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ABSTRACT

Many industrial sectors have been collecting big sensor data.
With recent technologies for processing big data, companies
can exploit this for automatic failure detection and preven-
tion. We propose the first completely automated method for
failure analysis, machine-learning fault trees from raw obser-
vational data with continuous variables. Our method scales
well and is tested on a real-world, five-year dataset of do-
mestic heater operations in The Netherlands, with 31 million
unique heater-day readings, each containing 27 sensor and 11
failure variables. Our method builds on two previous pro-
cedures: the C4.5 decision-tree learning algorithm, and the
LIFT fault tree learning algorithm from Boolean data. C4.5
pre-processes each continuous variable: it learns an optimal
numerical threshold which distinguishes between faulty and
normal operation of the top-level system. These thresholds
discretise the variables, thus allowing LIFT to learn fault trees
which model the root failure mechanisms of the system and
are explainable. We obtain fault trees for the 11 failure vari-
ables, and evaluate them in two ways: quantitatively, with a
significance score, and qualitatively, with domain specialists.
Some of the fault trees learnt have almost maximum signifi-
cance (above 0.95), while others have medium-to-low signifi-
cance (around 0.30), reflecting the difficulty of learning from
big, noisy, real-world sensor data. The domain specialists
confirm that the fault trees model meaningful relationships
among the variables.

1. INTRODUCTION

Fault tree analysis is a world-leading standard for safety and
reliability assessment (Ruijters & Stoelinga, 2015; Vesely et
al., 2002), with growing applications in emergent fields such
as cybersecurity (Nagaraju, Fiondella, & Wandji, 2017).
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Fault trees are logical models for the propagation of basic
functional failures. From an engineering perspective, a fault
tree (FT) is a graphical representation of the possible failure
modes of a system, i.e. the distinct observable failure pro-
cesses of system functions, broken down into intermediate
failures and their interactions (Ruijters et al., 2019).

FT models are ubiquitous for reliability, availability, main-
tainability, and safety (RAMS) analyses as they are inter-
pretable by human experts, and extremely versatile: an FT
can describe the failure behaviour of a system or process to
almost any required level of detail. However, the traditional
expert-driven FT building practice is resource intensive, sub-
jective, and error-prone (Ruijters & Stoelinga, 2015). As a
result, engineers and researchers are looking for ways to au-
tomate this modelling step (Nauta, Bucur, & Stoelinga, 2018;
Lazarova-Molnar, Niloofar, & Barta, 2020; Ton et al., 2020).

1.1. Building FTs directly from data

The advent of the big data era has opened new possibilities for
the automatic construction of FT models. At the same time,
it exacerbates the combinatorial explosion in the number of
models that can be derived. This is inherent to the structure
of an FT, where each data variable is a potential leaf or gate.

Fault Tree Models. Technically, an FT is a single-rooted
directed acyclic graph (DAG), whose leaves are called ba-
sic events (BEs) and represent indivisible failures in the sys-
tem, such as “no power input” or “insufficient water supply”.
These BEs are connected to intermediate event nodes (IE):
when the failure corresponding to a BE takes place, it prop-
agates towards the connected IEs. In turn, each intermediate
event has an output that can be connected as input to an upper
IE, thus generating the DAG structure—see Fig. 1.

When the inputs of an intermediate event receive a fail signal,
the IE can propagate this failure to its output. The propaga-
tion mechanism is defined by a logical gate that labels the IE:
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OR gates propagate a failure if any input fails; AND gates
only do it when all its inputs fail. There are further gates
such as VOT: for an in-depth description of FTs we refer the
interested reader to (Ruijters & Stoelinga, 2015).

The root of the tree is identified with the node at its top, called
the top level event (TLE). The TLE represents the main event
of interest that the FT models, e.g. a heater system failure.
In turn, the BEs represent elemental failures that can lead to
such an event, e.g. “insufficient water supply”. The FT is said
to fail, when the failures of certain BEs propagate and cause
failures that eventually reach the TLE.

A fails

B fails

Main failure TLE

AND gate

OR gate

Middle disruption

BEs

IE

BE

C fails

Figure 1. Fault tree model structure and terminology

FT construction. Traditionally, building an FT is a human-
consensus process that includes experts from the areas related
to the corresponding asset/system (Vesely et al., 2002; Berk,
2009). The process starts with the identification of the TLE,
which defines the type of failure to study. This is a non-
trivial initial decision: compare e.g. “heater does not start”
vs. “heater stops after short operation”. Both involve a heater
system failure, but the causes leading to each type of failure
can be completely different, and this impacts the resulting
FTs (Ruijters & Stoelinga, 2015).

Once the TLE has been agreed upon, a functional analysis is
carried out to determine the relevant causes that could lead to
it. Then the causes of these causes are investigated and so on,
until failures that are deemed elemental (the BEs) are reached.
All of this involves expert knowledge, technical manuals, re-
visions, and discussions that span for weeks or months.

Big data. However, increasingly many assets are manufac-
tured to record elemental failures (Booleans) and perform-
ance indicators (continuous sensor readings); and ever since
the Internet of Things began, these readings are poured into
the data streams of most companies (Evans, 2011).

This brings a new approach to risk analysis, where data comes
first and (some) failures can be found based on it. More pre-
cisely, modern companies can take advantage of the data al-
ready available to them, determining its failure-predictive ca-
pabilities. However and unlike FTs, the learning models used
to find correlations between failures and data are not neces-
sarily human-intelligible. This hinders an adoption of the big

data solution by many industrial sectors, specially those that
traditionally use conservative risk management processes, e.g.
aviation, nuclear power, housing, and railway operation (Chen,
Ho, & Mao, 2007; Griffor, 2016).

Coincidentally, such industries are among the main users of
FTs for safety analysis, given the versatility and high degree
of explainability of FTs. These industries, and any companies
with online readings of sensor and failure data, can greatly
benefit by deriving FTs automatically from such data. That
is the main contribution of this study: a scalable learning
algorithm to learn FTs from continuous and Boolean data,
with a demonstration on the assets of a company that operates
over 30 million domestic heaters across The Netherlands.

Prior work. There is recent work on deriving FTs from fail-
ure data. This data can be obtained automatically—via online
data streams—or semi-automatically—recorded in situ and
then collected. In either case and to the best of our knowl-
edge, all literature assumes a Boolean data input, i.e. true/false
indicators of failures in the components of the main asset
(Ruijters & Stoelinga, 2015; Nauta et al., 2018; Linard, Bu-
cur, & Stoelinga, 2019; Lazarova-Molnar et al., 2020).

In contrast, our approach can process continuous-valued data
coming from performance indicators, viz. sensors readings,
which we relate to failure behaviour by learning a failure
threshold per sensor. We use the C4.5 learning algorithm for
this (Quinlan, 1993), originally designed for decision trees—
another type of tree model which can visualise the hierarchi-
cal propagation of any decisions, including failure.

Decision trees are in some respects simpler than FTs: fail-
ure propagation in decision trees is not regulated by logi-
cal gates. However, in other respects the decision trees are
richer in possibilities: they are learnt from continuous-valued
data, and this can be done automatically, detecting thresholds
for each variable such that a value below the threshold mod-
els a behaviour—e.g. failure—that differs from the behaviour
when the value is above the threshold.

The connection between FTs and decision trees has been used
before, for instance in (Lee, Alena, & Robinson, 2005) to
derive the latter from existing FT models. Here we exploit the
opposite direction, making use of the advantages that decision
trees bring, to provide a realistic integrated method to learn
FTs from real-world data. In that sense our work is closer in
methodology to e.g. (Abdallah et al., 2018), where the main
goal in our case is to use FT models to describe the governing
fault mechanisms found.

Besides C4.5, our work builds on the LIFT algorithm (Nauta
et al., 2018), which we modify to permit variable dataset
sizes, and then use to learn the FT structure that fits best the
failure under analysis. For this, LIFT employs the Mantel-
Haenszel statistical test to correlate events. Other probabilis-
tic causal models could be used, such as Bayesian Networks,
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to learn relations between Boolean events and component fail-
ures. This has been studied in (Linard, Bucur, & Stoelinga,
2019; Linard, Bueno, Bucur, & Stoelinga, 2019), and applied
to synthetic benchmarks, and failures in printer nozzles—all
starting from Boolean input. However, using Boolean data
(only) when continuous data is also be available, fails to cap-
ture failure mechanisms that surface in e.g. sensor readings
(Ton et al., 2020). In view of this, our work presents a step
towards more general, automatic learning algorithms.

1.2. Goal and approach

The main goal of this work is to use continuous sensor data
collected by existent company assets, to build FTs for the fail-
ure mechanism of these assets—inasmuch as these failures
are correlated to the data—in an automatic and scalable man-
ner. To orient our investigation, we formulate this goal in
term of the following research questions:

RQ1: Which automatic method(s) can generate a structure
of failure mechanisms, conforming to the FT standard,
from a continuous-valued data input of sensor readings?

RQ2: How to measure the quality of the resulting FTs, in
terms of the correlation between the sensors data and the
failures that they are expected to predict?

RQ3: Is the learning method directly applicable to big in-
dustrial input data?

In RQ1, “automatic methods” stands for algorithms that do
not require human input, and can learn the FTs solely from
the sensor data fed into the learning procedure.

In RQ2, we are mostly interested in quantitative quality met-
rics. Nevertheless, we also include the qualitative aspect of
explainability: these are enquiries to experts (in the applica-
tion domain of the case study) on whether the resulting FT
structures match their intuition, or if they are instead difficult
to comprehend from their expert perspective.

For RQ3, we ask whether the runtime of this learning method
scales with large data sizes, particularly when there are many
failure notifications in the dataset to learn from.

Outline and main results. We implemented our results in
an industrial case study, described next in Sec. 2. The details
of our FT learning procedure are given in Sec. 3, followed in
Sec. 4 by the results of its application to the case study.

Regarding RQ1, we found that feeding continuous data to
the C4.5 learning algorithm—to interpret Boolean failure be-
haviour out of the sensor readings—and then passing the re-
sults to LIFT—to learn FT structures from the Boolean-inter-
preted data—can generate FTs that relate continuous values
to explainable failure mechanisms.

As for RQ2, we used the concept of gate significance intro-
duced in (Nauta et al., 2018), but replacing the PAMH score
by the phi coefficient to allow for changes in the data size

and dimensionality (Cramér, 1946). The quality of an FT is
then measured as the significance of its top gate, interpreted
as a lower bound on the correlation between gate inputs and
output, across all the gates of the FT.

The application of this approach to our case study of domes-
tic heaters resulted in 44 FTs. Of these, the FTs of failures
related to the supply- or return-water temperature achieved
significance as high as 0.96 (higher is better, the range of val-
ues is [�1.0, 1.0]). For almost every other failure, an FT was
produced with significance around 0.3. Moreover, in cases
where expert technicians had good understanding of the un-
derlying failure mechanisms, they confirmed that the relevant
sensor variables were included in the corresponding FTs.

The above also answers RQ3 positively: we could success-
fully work with sensor data, recorded daily between 2015 and
2020 by Dutch heaters, totalling 31 million unique heater-day
readings. Per fault tree, the runtime of our learning algorithm
in a standard desktop computer is in the order of minutes.

2. THE CASE STUDY

We analyse a large dataset containing time series of continu-
ous-valued sensor data, collected automatically by Intergas
Heating. The data describes the operation of Intergas do-
mestic heaters—the Combi Compact HRE models—installed
at consumers’ houses throughout The Netherlands (Intergas,
2018). Between 2015 and 2020, data sensed locally by each
connected heater was collected every 24 h. The resulting data-
set consists of multiple terabytes of raw data, with 31 million
unique heater-day data collections, each with data from 27
built-in sensors and 11 self-diagnosed system failures.

Sensor variables. The 27 built-in sensors measure internal
variables, such as water usage or the temperature at various
zones, and an external variable, namely outside temperature.
All variables are listed in alphabetical order in Table 1, with
a description in terms of components of the Combi Compact
HRE service instructions (Intergas, 2018). For each variable,
four basic statistics are recorded or computed automatically
every day: the minimum, maximum, average, and range.

Failure variables. The values of all sensors are monitored
by a control loop running in the heater. Some sensors perform
safety-critical measurements. For example, sensors s1_temp
and s2_temp from Table 1 are located in the heat exchanger,
and measure whether the heat from the gas is transferred to
the water at the expected rate. If a critical sensor reports
values surpassing a threshold, the heater diagnoses this as a
system failure (a Boolean), and marks the failure in the data
collected for the day. We study 11 such Boolean failures,
listed in Table 2, which are present in the input data. The
failure variables “Warning low t1” and “Warning low t2” are
triggered by sensors s1_temp and s2_temp, so they are ex-
pected to be highly correlated. Similarly, the failure variable
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Table 1. Heater sensor variables (27 in total)

Sensor variable Description

bc_tapflow Water usage (L/min)
boilertemp Machine temperature (�C)
burnerstarts_24h Number of starts per 24h
ch_pressure Water pressure (bar)
flue_sided_resistance Torque for fan rotation in flue duct (Nm)
gasmeter_ch_24h Gas used per 24h for central heating

�
m3

�

gasmeter_dhw_24h Gas used per 24h for domestic hot water
�
m3

�

heaterload_ch_24h Delivered power % of full power over last 24h,
per hour, in central heating mode (%)

heaterload_ch_total Delivered power % of full power over last 24h,
total, in central heating mode (%)

heaterload_dhw_24h Delivered power % of full power over last 24h,
per hour, in domestic hot water mode (%)

heaterload_dhw_total Delivered power % of full power over last 24h,
total, in domestic hot water mode (%)

heatertemp Boiler temperature (�C)
io_curr_high Ionization current on high output power (µA)
io_curr_low Ionization current on low output power (µA)
outside_temp Outside temperature (�C)
override_outside_temp Alternative temperature measure (�C)
pump_pwm Pulse-width modulation control signal for mod-

ulating pump (%)
room_override_zone1 Override temperature for zone 1 (�C)
room_override_zone2 Override temperature for zone 2 (�C)
room_set_zone1 Set temperature for zone 1 (�C)
room_set_zone2 Set temperature for zone 2 (�C)
room_temp_zone1 Measured temperature for zone 1 (�C)
room_temp_zone2 Measured temperature for zone 2 (�C)
s1_temp Supply water temperature (�C)
s2_temp Return water temperature (�C)
s3_temp Warm water temperature (�C)
waterflow_ch Water used for central heating (L)

“Warning low ch_pressure” reports low water pressure. De-
pending on the type of heater, a normal pressure is between
1 and 1.5 bar; by the company’s business model, a value of
0.49 bar triggers a failure diagnosis. No other failure variable
is directly associated to a sensor variable from Table 1.

Table 2. Boolean failure modes (11 in total)

Failure Description

Lockout code 0 Sensor fault at self check
Lockout code 4 No flame signal
Lockout code 5 Poor flame signal
Lockout code 8 Incorrect fan speed
Lockout code 11 Fault in S1 flow (vent)
Lockout code 13 Fault in S1 flow (switch)
Warning flame lost Flame lost
Warning ignition failed Ignition failed 4 times
Warning low ch_pressure Channel pressure below 0.49bar
Warning low t1 Temperature s1_temp at 0 �C
Warning low t2 Temperature s2_temp at 0 �C

In summary, the table of available data consists of 27 real-
valued sensor columns—each with four daily statistics com-
puted over high-frequency readings—and 11 Boolean failure
columns. Each row in this data table corresponds to the read-
ings of a heater during a day of operation. We analyse each
failure mode independently, using all sensor variables and
data collected from all the heaters which exhibited such a
failure, to gain a general understanding of how raw sensor

readings are associated to each system failure.

Data quality. We remove duplicates from the raw dataset,
as well as data from heaters with clearly corrupt readings, e.g.
with values out of feasible physical ranges. Despite this pre-
processing, a large amount of noise remains in the data due
to individual sensors with temporal malfunction or discon-
nections: these can report values near the minimum or max-
imum range, or the value zero. For example, some temper-
ature sensors occasionally report the value 327.67 �C, which
is the maximum recordable temperature1. Since they occur in
real data, we choose to preserve these extreme readings in the
dataset, and learn from them. This data-cleaning process is,
as usual, heavily dependent on the nature of the data; as such,
we do not include it as part of our proposed solution to the
research questions.

There are also missing readings, caused either by a failed
heater or by failed network communication during data col-
lection2. Fig. 2 shows the number of (unique) heater readings
recorded per day, from the beginning of data recordings at
the company in 2015. The positive slope of the curve reflects
the installation of new heaters by Intergas across The Nether-
lands. The drops in the line indicate missing data: while
roughly 90% of the heaters on record miss at least one reading
during this five-year period, data overall remains abundant.

Figure 2. Number of unique heaters recorded per day.
Drops in the curve indicate missing values, due to malfunc-
tioning heaters or network communication issues.

3. METHOD

The data from the previous section is automatically collected
by the Combi Compact HRE heaters of Intergas. To address
RQ1 we design an algorithm that uses it to learn a fault tree
for each system failure, without human input in the process.

Since the variables from Table 2 were designed as Boolean

1This is due to the use of 16-bit registers to hold signed integers, which
results in a maximum value of 215 � 1 = 32767.

2The latter is explained by the use of the UDP transport protocol, which does
not guarantee delivery nor duplicate protection.
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indicators of heater failure, we use them as TLEs of our fault
trees. Below these TLEs, the intermediate and basic events
will be formed with automatically-selected sensor variables,
which are found to be correlated to the top event via the meth-
ods detailed in Secs. 3.1 and 3.2. As a result, the gates of
the FT link the behaviour of the sensors to the TLE, mod-
elling how failures (are learnt to) propagate across system
subcomponents. However, fault trees encode Boolean rela-
tions, while our sensor readings are real-valued variables. We
bridge this gap by discretising each sensor variable.

3.1. Learning failure thresholds for sensor variables

The first step of our approach is to learn real-valued thresh-
olds for the sensor variables, such as 27.21 �C for the min-
imum daily value of the temperature variable s2_temp from
Table 1. Each threshold applies only in the context of a par-
ticular failure mode: for instance the previous example is re-
lated to the failure variable “Lockout code 4”. In contrast, the
threshold 38.81 �C was found for the range of daily values of
s2_temp in relation to the failure variable “Lockout code 11”.

To evaluate how good a threshold ✓ 2 R is, we use a metric
based on information gain for Boolean variables. Essentially,
the gain measures the correlation between the failure variable,
and the sensor variable split by the threshold ✓. This follows
the internal logic of the C4.5 algorithm (Quinlan, 1993). We
now explain in detail how we use it for our purposes.

An optimal threshold is learnt for each combination of sen-
sor variable, statistic, and failure variable. Let s denote the
statistic of a sensor variable (e.g. minimum daily value of
s2_temp), and f a failure variable (e.g. “Warning low t1”).
These are two columns in our data table: s is a real-valued
column, and f a Boolean-valued column. In the correspond-
ing dataset D = s | f , let p0 denote the proportion of class 0
in column f : this represents normal operation, viz. absence of
failure recordings. In turn, let p1 denote class 1 (failure). The
information entropy E is then defined as a weighted sum of
these class probabilities, which reaches value 1 if the classes
are equal in size, and value 0 if one class is empty:

E(D) = �
�
p0 · log(p0) + p1 · log(p1)

�
.

Then, the dataset D = s | f is split by a proposed threshold
✓ 2 R into a left and a right split. The left split, denoted
D✓

6 ✓ D, are the rows where the sensor values s are lower
than ✓. The right split D✓

> ✓ D is analogously defined.

The gain of a threshold. The gain G✓(D) of a proposed
threshold ✓ for the dataset D is defined as the difference in
entropy between the unsplit dataset, and the weighted sum of
the entropy values after the split:

G✓(D) = E(D)�
��D✓

6
��

|D| E
�
D✓

6
�
�

��D✓
>

��
|D| E

�
D✓

>

�
,

where |D| is the size in number of rows of dataset D, so the
weights are the fractions of readings on each side of the split.

Intuitively, G✓ measures the amount of entropy removed by
the split at ✓. In a perfect split, all sensor values s below ✓
would be part of one class of f (either normal or failure), and
the remaining sensor values would be part of the other class.
More generally, the better the threshold, the higher the gain.

To find the optimal threshold for a dataset D = s | f , our al-
gorithm compares the gains of the possible thresholds in the
range of s. Fig. 3 illustrates the selection of a threshold for
the daily minimum of the sensor variable s2_temp w.r.t. the
failure variable “Warning low t1”. These variables are corre-
lated only to a certain degree, as shown by the overlapping
histograms: the blue histogram counts the number of min
s2_temp values on days with normal heater operation (w.r.t.
the failure “Warning low t1”); the orange histogram are val-
ues on days when that failure was recorded. Clearly, normal
values are related to higher temperatures, while the tempera-
ture measured on days with failures are comparatively lower.
The gain of each possible threshold is plotted in Fig. 3 as a
red line at the bottom. The sensor value that maximises the
gain is the optimal threshold that our method learns, in this
case 21.0 �C, shown as a red dashed vertical line.

Figure 3. Threshold selection for the daily minimum of the
sensor variable s2_temp, w.r.t. the failure variable “Warning
low t1”. The optimal threshold is ✓ = 21, corresponding
to gain G✓ = 0.60 (gain values are plotted with a 500 fac-
tor). The threshold applies to the values of s2_temp: a good
threshold splits the normal and error histograms.

Besides the optimal threshold, the algorithm returns the side
of the split with the highest correlation to the failure class.
This discretises the sensor variable s into a Boolean, with
values 0 on the split (left or right) with a majority of normal
readings, and 1 on the split with a majority of failure readings.

In Fig. 3, a fault tree for the failure variable “Warning low t1”
might use as basic or intermediate event the Boolean condi-
tion min(s2_temp) 6 21, associated to that system failure.
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3.2. Learning the fault tree

In the second step of our approach, we use the Boolean data
obtained during threshold learning, to generate and evaluate
an FT for each failure mode. Each input dataset contains all
sensor variables (in one of their daily statistics) and one fail-
ure variable.

As an example of data availability for the failure variable,
Fig. 4 shows the number of notifications per day for “Warn-
ing low ch_pressure”. The rising trend is due to the increasing
number of heaters installed—c.f. Fig. 2. Seasonality is clear,
as significantly more notifications are sent in months with
lower outside temperatures in The Netherlands. For this fail-
ure mode, the dataset contains 52489 daily data points with
failure notifications.

Figure 4. Daily notifications for “Warning low ch_pressure”

To each such data point showing failure, we add as counter-
part a data point that describes a normal operation regime.
More than one choice may be valid for this. We select the
most recent data point showing normal operation for the same
heater. The nearest future datapoint after the heater is fixed
would be another valid option, but options that take into ac-
count a longer history of operation for the heater are less
valid, because the heaters have different life spans (or ages)
in the dataset. Adding this counterpart leads to a combined,
balanced dataset of roughly twice the size. This is the dataset
used to generate the fault tree.

To learn the FT we use an improved version of our previous
algorithm LIFT (Nauta et al., 2018). Given a Boolean fail-
ure variable and the set of all real-valued sensor variables,
thresholds are first learnt for the discretisation of the sensor
variables into Boolean variables—henceforth referred to as
thresholded variables—as described in Sec. 3.1.

We then initialise a fault tree T with only the failure variable
as TLE, and proceed iteratively as shown in the flowchart in
Fig. 5. At each iteration, the algorithm chooses a thresholded

variable that is not yet the output of a gate in T , and greedily
searches for the best possible gate that can be constructed.
A logical gate is defined by its type (e.g. AND) and input
variables. LIFT explores all combinations of gate types and
subsets of thresholded variables, up to a configured maximum
number, set to 3 for our experiments.

Figure 5. The learning algorithm

The significance of a gate. During search, the gate with
maximum significance is chosen. Intuitively, the significance
of a gate measures the positive correlation between the out-
put and the inputs of a gate. The original implementation of
LIFT used the Mantel-Haenszel statistical test for this (Nauta
et al., 2018). Instead, here we use the phi coefficient as sig-
nificance score (Yule, 1912; Cramér, 1946). It is a correlation
coefficient for binary variables, whose value is 1 if the two
variables are in complete agreement about their values, 0 in-
dicates no relationship, and -1 complete disagreement. In par-
ticular, the phi coefficient remains stable when the size of the
dataset changes, unlike the Mantel-Haenszel statistical test.

For an illustration consider (i) the failure variable “Lockout
code 11”, (ii) the statistic that measures the range of values of
a sensor variable in a day, and (iii) the proposed gate:

AND(s1_temp > 88.18 , pump_pwm > 0.0).

The significance measures the positive association of two vari-
ables: 1. the output of the gate, i.e. the value of “Lockout code
11”; and 2. the Boolean expression, i.e. the AND gate over the
thresholded sensor ranges “s1_temp” and “pump_pwn”.

Additionally, we implement the following rules:

• A new gate is added to the FT only if its significance is
higher than or equal to that of the top gate.

• To limit the search space, each sensor variable is used at
most in one location in the fault tree.

The purpose of these rules is to reduce the search space, thus
lowering the runtime of LIFT. This is also the reason why the
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maximum number of inputs chosen for the gates was set to
3 for our experiments. Therefore, removing these rules can
only increase the quality of the resulting FTs—at the cost of
increasing the computation time.

The construction of an FT terminates when no gate can be
added that increases its significance, or when all sensor vari-
ables have already been used. The resulting fault tree T is
then reported together with the significance of its TLE.

Note that, since the algorithm only adds gates to T that have
higher significance than its TLE, the TLE significance is a
lower bound of correlation between gate inputs and output
across all the gates in T . Also, we annotate the BEs of T with
the probability p of them occurring in the dataset—but, as
indicated above, this probability is relative to a dataset which
has been balanced between failure and normal operations. As
such, p should only be interpreted in this context.

3.3. Computational complexity and execution runtime

To prepare the data for the learning procedure, the Intergas
database (terabytes of raw data) was processed in its Apache
Spark framework for big data, executed in a large computing
cluster. This resulted in datasets prepared for FT learning,
where the size of the resulting dataset was on the order of
105 records per failure mode and daily statistic. For these
datasets, our learning procedure could be executed in a single
computer, constructing each FT in a matter of minutes.

We highlight however that the procedure has high complex-
ity: Namely, to find the optimal threshold during the discreti-
sation of each sensor variable, all its unique values present
in the data are considered. This has linear complexity in the
dataset size, but must be repeated for each of the 44 combina-
tions of failure variables and daily statistics for which differ-
ent thresholds are necessary. Therefore, the aforementioned
105 records still lead to relatively long execution runtimes.

Furthermore, LIFT considers all feasible gate combinations:
a combinatorial problem in the number of the sensor and fail-
ure variables. We cap this combinatorial explosion by limit-
ing the maximum combination size to 3. Still, the resulting
polynomial of degree 3 in the total number of variables causes
the minutes (rather than seconds) runtimes mentioned above.

4. RESULTS

We obtain 44 fault trees with various significance levels. We
first present the fault trees with the highest significance, then
provide a summary of results. We note that, for this case
study, from among the four basic statistics of the sensor data,
the daily minimum, maximum, and range tended to be the
most useful, leading to fault trees with higher significance
than the daily average.

Fault tree for “Warning low t1”. This failure mode makes
for a good test of the fault-tree learning method, because it
has a clear semantic link to the s1_temp sensor variable for
the supply water temperature (which is thus expected to ap-
pear in the fault tree). This is indeed what we obtain: Fig. 6
shows the fault tree (with nearly maximum significance, 0.96)
for this failure mode. When the daily statistic min(s1_temp)
falls at or below ✓ = 0, this occurrence strongly associates
with the failure “Warning low t1”, with gain 0.86. This is
the main reason of the failure notification, but the tree pro-
vides more information. An interruption in the water supply,
min(bc_tapflow) 6 0.0, is also linked to the failure. Then,
low minimum daily readings for s1_temp associate with a
temporary lack of water pressure, min(ch_pressure) 6 0.0.
The final sensor variable, room_set_zone2, whose value is al-
ways below the threshold (p = 1%), is due to the gate syntax
requiring more than one input, and can be omitted.

min(bc_tapflow) <= 0.0
p = 1.0

Warning low t1

min(s1_temp) <= 0.0

min(ch_pressure) <= 0.0
p = 0.5

min(room_set_zone2) <= 327.67
p = 1.0

Figure 6. Fault tree for “Warning low t1”. Significance 0.96.

An alternative fault tree (also with nearly maximum signif-
icance, 0.95) for this failure mode is in Fig. 7. This uses
maximum daily readings and is less intuitive, since the max-
imum daily value of s1_temp are not relevant for the failure,
the way the minimum daily value is. Instead, two other daily
maximums are significantly associated with “Warning low
t1”: the sensor variables boilertemp (whose maximum daily
values above ✓ = �34.03 are strongly associated with the
failure “Warning low t1”, with gain 0.81) and outside_temp
(similarly, above ✓ = �11.48 with gain 0.84). These ex-
tremely low temperature thresholds are explained by the be-
haviour of the temperature sensor: it records in the data a
very broad range [-51, MAX] �C of maximum temperature
values, where MAX is the maximum possible stored value on
the sensor register (327.67 �C). For the two sensors present
in this fault tree (boilertemp and outside_temp), the MAX
temperature occurs in the data much more often than realis-
tic temperatures, and thus must signal a local sensor failure.
When both of these sensors record extreme maximum daily
values, this associates with the failure mode “Warning low
t1”, and could thus be used as an early warning sign.
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max(boilertemp) > -34.03
p = 0.51

Warning low t1

max(outside_temp) > -11.48
p = 0.50

Figure 7. Fault tree for “Warning low t1”. Significance 0.95.

Fault tree for “Warning low t2”. This failure variable is
similar to “Warning low t1” in that it has a semantic link to
a temperature sensor variable, here s2_temp. In the resulting
fault tree shown in Fig. 8, s2_temp appears as expected, with
minimum daily values at or below ✓ = 0 strongly associated
with “Warning low t2”, gain 0.87. In this case though, the
fault tree also shows a different intuitive association: a tem-
porary lack of water pressure (ch_pressure) or a low supply
water temperature (s1_temp) associate with a low return wa-
ter temperature (s2_temp). It is also likely that this is a causal,
not only correlational, relationship between these sensor vari-
ables, since the water supply system precedes (and must af-
fect) the return water system.

min(bc_tapflow) <= 0.0
p = 1.0

Warning low t2

min(s2_temp) <= 0.0

min(ch_pressure) <= 0.0
p = 0.51

min(s1_temp) <= 10.53
p = 0.43

Figure 8. Fault tree for “Warning low t2”. Significance 0.96.

Also here, an alternative fault tree (significance 0.95) for this
failure mode is in Fig. 9, now using the daily range statistic.
“Warning low t2” associates with days with large variation
in outside temperature, range(outside_temp) > 13.97 (gain
0.85), and the sensed machine temperature range(boilertemp)
(gain 0.84). For the sensor outside_temp, the range read-
ings are above 0 and mostly below 80 �C. This range of
outside_temp itself associates with the range of ch_pressure
(gain 0.75) and that of s2_temp (gain 0.73), sensor variables
which were also found predictive in the FT from Fig. 8 using
the minimum daily readings. We note that the daily minimum
of s2_temp is more predictive of “Warning low t2” than the
range of s2_temp: this variable appears higher in the FT us-
ing daily minimums. However, overall, both minimum and
range daily readings are similarly predictive for this failure,
with small and significant FTs obtained.

range(boilertemp) > 15.89
p = 0.51

Warning low t2

range(outside_temp) > 13.97

range(ch_pressure) > 0.73
p = 0.51

range(s2_temp) > 53.99
p = 0.51

Figure 9. Fault tree for “Warning low t2”. Significance 0.95.

Fault tree for “Lockout code 11”. The fault trees obtained
so far for temperature-related failure modes had nearly max-
imum significance levels, suggesting the presence of strong
associations among the variables. This is not always the case:
other failure modes are more complex, and much harder to
model out of noisy data, resulting in lower significance levels
and deeper fault trees.

For the failure mode “Lockout code 11” (a sensor fault also
related to s1_temp), the fault tree with the highest signif-
icance is shown in Fig. 10. This tree uses the daily range
statistic of the sensor variables. It has a significance of 0.35,
meaning that, at every gate, the input-to-output correlation is
at least 0.35. In other words, only part of the reasons for fail-
ure are learnt out of the data available, and either more exist
but are not sensed in the data, or the failure is partly random.
We describe below the associations which were learnt.

The left-hand side of the tree suggests that the failure can be
predicted by the behaviour of the water supply temperature
s1_temp, although only partly (gain 0.09). The failure corre-
lates with a very large daily range for s1_temp: this range
varies between 0 and 180.2 �C in the data (a large range,
due to the presence of extreme temperature readings, as de-
scribed for “Warning low t1”). The higher the daily range
value, the more likely the failure is. In turn, range(s1_temp)
is correlated with the ranges of the other two temperature
sensors s2_temp and s3_temp, whose values vary mostly be-
tween 0 and 100 �C in the data. The range of the return wa-
ter temperature s2_temp is then correlated with (and possi-
bly caused by) the range of the current on high output power
io_curr_high and the resistance of the flue duct flue_res, with
higher values always signalling failure. The right-hand side
of the tree states that above-zero control signal for the modu-
lating pump (range(pump_pwm), with values in [0, 100] %)
is also a predicting factor for this failure mode, although also
weakly (gain 0.03). A combination of other technical vari-
ables are further predictive for range(pump_pwm).

An alternative FT for “Lockout code 11”, obtained using min-
imum daily sensor data, is shown in Fig. 11. It is much
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range(pump_pwm) > 0.0

Lockout code 11

range(s1_temp) > 88.18

range(gasmeter_ch_24h)
> 0.0

range(heatertemp)
> 58.33
p = 0.55

range(s2_temp) > 38.81 range(s3_temp) > 43.8
p = 0.51

range(heaterload_ch_24h)
> 0.0

range(waterflow_ch) > 0.0
p = 0.66range(flue_res) > 0.11

range(io_curr_high)
> 0.0

p = 0.47

range(io_curr_low)
> 0.0

p = 0.71
range(room_override_zone1) > 0.0

p = 0.49
range(gasmeter_dhw_24h)

> 0.0
range(heaterload_dhw_total)

> 5.86e-07

range(bc_tapflow)
> 0.0

p = 0.80

range(heaterload_dhw_24h)
<= 18.98
p = 0.99

range(heaterload_ch_total)
> 0.69
p = 0.91

range(outside_temp)
> 0.12
p = 0.72

Figure 10. Fault tree for “Lockout code 11”. Significance 0.35.

smaller and slightly less significant (significance 0.27). The
minimum daily readings for four temperature sensors (s1_temp
to s3_temp and heatertemp) are slightly predictive of this fail-
ure: in all cases, if the minimum daily temperature falls below
a threshold of 24-27 �C, the failure is more likely to occur.

min(s1_temp) <= 26.14

Lockout code 11

min(s3_temp) <= 25.29
p = 0.68

min(heatertemp) <= 27.73
p = 0.65

min(s2_temp) <= 24.6
p = 0.57

Figure 11. Fault tree for “Lockout code 11”. Significance
0.27.

Such alternative fault trees learnt a partial pattern for the fail-
ure from different sets of daily statistics. They can then be
used together, as a predictive ensemble for the failure mode.

Fault tree for “Lockout code 4”. This failure mode triggers
when there is no flame signal, so it is of a different nature than
the previous examples. However, the set of predictive sensor
readings and their thresholds are similar to those which also

Figure 12. Summary of results: significance scores (left)
and significance vs. depth for all fault trees obtained (right).

predict other failures, so the failures themselves are likely de-
pendant. The best fault tree obtained for “Lockout code 4” is
shown in Fig. 13 (significance 0.30) and uses minimum daily
readings. Some temperature sensors (s1_temp to s3_temp)
appear with similar thresholds as for “Lockout code 11” (the
fault tree in Fig. 11), and they are the sensor variables with
the highest gain, so strongest individual association to the
failure. In total, 20 out of 27 sensor variables available are
thresholded and included, leading to a complex fault tree.

Summary of results and evaluation. We obtained 44 FTs
of various depths, internal structure, and significance scores:
Fig. 12 provides a quantitative overview. Trees with low depths
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min(room_temp_zone1) > 0.0

Lockout code 4

min(s1_temp) <= 27.21

min(boilertemp) <= -34.81
min(heaterload_ch_total)

> 0.0
p = 0.96

min(heatertemp)
<= 27.29

min(s2_temp) <= 26.03
p = 0.75

min(heaterload_dhw_total)
> 0.0

min(outside_temp)
<= -34.81

min(gasmeter_dhw_24h)
<= 0.43

min(s3_temp) <= 26.8
p = 0.79

min(ch_pressure)
> 1.41
p = 0.60

min(heaterload_dhw_24h)
> 0.0

min(burnerstarts_24h)
<= 53.0

min(flue_res) > 0.0
p = 0.64

min(io_curr_high)
<= 0.0
p = 0.62

min(waterflow_ch)
<= 0.0
p = 0.54

min(io_curr_low)
> 0.0

p = 0.53

min(pump_pwm)
<= 0.0
p = 0.74

min(gasmeter_ch_24h)
<= 5.41
p = 0.84

min(heaterload_ch_24h)
<= 11.87
p = 0.83

Figure 13. Fault tree for “Lockout code 4”. Significance 0.30.

tend to have high significance. With regards to the best signif-
icance score per failure variable, we observe three classes: (a)
failure variables for which the significance score was nearly
maximum (“Warning low t1” and “. . . t2”), (b) those for which
the significance is medium-to-low, between 0.21 and 0.35
(the majority of the cases), and (c) those for which no sig-
nificant FT could be learnt (one case: Lockout code 0). The
depths of the trees, defined as the number of gates on the
longest path from the TLE to a BE, varies between 1 and 7.
For our case study, we find that the FTs are deep only when
they also have low significance.

The runtime of the method to construct one fault tree, for
this dataset and algorithm configuration, is a few minutes (for
threshold computation) and a few tens of seconds (for the tree
generation) on an average consumer desktop computer.

5. DISCUSSION AND CONCLUSIONS

Evaluation. To evaluate the FTs learnt, we consulted with
Intergas domain specialists, who confirmed that the fault trees
do contain meaningful relationships between variables. In
cases where the domain experts already had good understand-
ing of how a failure occurs, they also confirmed that the im-
portant variables were in the tree.

Limitations. Many design decisions may affect the accu-
racy of the resulting fault trees. In particular we note:

High runtimes The method has high computational com-

plexity, although it can be configured so that it remains
feasible. Our runtime per fault tree with a dataset on the
order of 105 records and 27 sensor variables per record is
on the order of minutes in a standard desktop computer.

Lack of optimality This learning procedure, as many clas-
sical machine-learning algorithms such as those based
on decision trees (Breiman, Friedman, Olshen, & Stone,
1984) is a greedy heuristic: while the gate with the high-
est significance available is constructed at every step, the
average significance score over the entire fault tree may
not be maximum. As a consequence, there may be other
good alternatives for the tree structure.

Single threshold: bias is likely Model bias can stem from
making oversimplified assumptions about the data. We
compute only one threshold per sensor variable (a poten-
tial cause of bias), and then use the result at most once
in an FT. However, in some datasets, multiple thresholds
for the same variable may be of interest, in different parts
of the tree. We made the choice to disregard this option
and precompute this single threshold per sensor variable
and failure variable, to keep the runtimes feasible.

Real-world data is faulty and complex We observed unor-
dinary sensor values (very low, very high, and zero), par-
ticularly from temperature sensors; these are documented
in the sensor data sheets (Banner, 2021), and are un-
avoidable during the lifetime of a sensor. Both noise
and unusual or missing (zero) values are pervasive in the
data: we have only cleaned the dataset minimally. The
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resulting FTs have learnt from these unusual values.
Overfitting to noise is possible In datasets where noise is

frequent, it is possible that some of the low-significance
trees overfit (learn from) noise.

No proven causality The fault trees learn correlations rather
than causal relationships, which are difficult to extract
from passive (non-interventional) datasets like ours.

No cover for dynamic failures We use the LIFT algorithm,
which can learn static fault trees (AND and OR gates).
However, some failures may be dynamic in nature, e.g.
when failure order matters. This cannot be captured by
static gates, and poses a much harder learning problem.

We note, nonetheless, that some of these limitations could be
resolved in other case studies. We designed and configured
the method to keep the runtime low, but some of the restric-
tions can be lifted if the runtime remains feasible.

Discussion of results. We were able to address our research
questions to different degrees of success.

Regarding RQ1, the combination (and modification) of the
C4.5 and LIFT algorithms allowed us to build FTs automati-
cally from sensor data. The basic and intermediate events of
these trees were chosen based on the correlations of failure
behaviour and sensor values, which was our main objective.

Access to failure variables was instrumental to achieve au-
tomation, since these guide both steps of our learning algo-
rithm. More precisely, for each FT: (1) we discretise all sen-
sor values, by learning failure behaviour based on the avail-
able failure variables, and (2) we evaluate all possible combi-
nations of FT structures, selecting a failure variable as TLE.

As mentioned above, our decision to discretise each sensor
variable with a single threshold may be imposing unneeded
limitations. Still, some resulting FTs achieved high quality,
both according to our metrics and by expert assessment.

In that respect and regarding RQ2, we use gate significance—
lifted to FTs by taking the significance of its TLE—as metric
for the the quality of our trees. The original implementation
of LIFT used a similar concept, which we modified as indi-
cated in Sec. 3.2 to cater for variable dataset sizes. An extra
advantage of our choice, for this case study, is that larger FTs
had generally lower significance. Smaller FTs are easier to in-
terpret by humans, and thus preferable for risk management.

Finally, RQ3 was answered in a positive manner, as our im-
plementation could handle the input of a company with sev-
eral millions of data readings. Although the initial data pro-
cessing and filtering was performed in the cluster of Intergas,
this is not considered a limitation since data protection reg-
ulations make it a usual case. More relevant are our rules to
keep the learning problem within manageable size for a desk-
top computer. We achieved our goal, but loosing restrictions
to favour the FT quality—e.g. allowing several thresholds per

sensor variable—will have a direct impact in the execution
runtime of the core learning algorithm.

Perspectives and future work. A first point of improve-
ment would be to allow repeated uses of a sensor variable in
an FT, with different thresholds, and a higher number of chil-
dren per gate. The challenge lies in keeping the runtime rea-
sonable, which may call for rules such as scoring and penalis-
ing sensor variables already present in an FT. Semi-automatic
FT construction is promising for this, to mitigate the combi-
natorial explosion faced by the FT learning step. We intend
to contribute to public benchmarks such as (Ruijters et al.,
2019), by submitting the fault trees of our work.
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