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Abstract
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Doctor of Philosophy

The representation of numerosity in the human brain and machines

by Alireza KARAMI

The capacity to estimate the number of objects (numerosity) in the environment
is ontogenetically precocious and phylogenetically ancient. In animals, this abil-
ity holds significant adaptive advantages, directly influencing survival and repro-
ductive success. In humans, it may serve an additional purpose by providing a
start-up kit for the acquisition of symbolic numbers, thus making it a potential focus
for mathematics education and intervention strategies. Behavioral, neurophysio-
logical, and neuroimaging findings suggest that numerosity information is directly
extracted from the environment. However, numerosity is inherently linked with
other visual characteristics of sets (such as larger sets often occupy more space or
are more densely spaced), making it challenging to determine the extent to which
the observed response to numerosity is distinct from the response to other visual
attributes.

In my PhD research I provide experimental evidence through neuroimaging and
computational modeling techniques elucidating where, when, and how numerical
information is encoded in the human brain. This work therefore provides a three-
fold contribution. First, I show that numerosity is represented over and above non-
numeric visual features in a widespread network of areas starting from early visual
areas and further amplified in associative areas along the dorsal but also notably the
ventral stream, and that the neural representational geometries of regions across the
two steams are substantially identical. Second, I showed that numerosity is repre-
sented at an early stage and seemingly in parallel across of a set of regions includ-
ing early visual, parietal, and temporal, preceding the emergence of non-numeric
features that could indirectly contribute to numerosity computation. Finally, by
comparing the fMRI data with a convolutional neural network (CNN) to explore
similarities and differences between the model and human brain data, I discovered
that although the CNN can perform approximate numerosity comparisons and the

HTTPS://WWW.UNITN.IT/EN
https://www.cogsci.unitn.it/en
https://www.cimec.unitn.it/en


vi

structure of their representation in their hidden layers captures well numerosity rep-
resentation in early visual areas of humans, it falls short of fully simulating the way
in which associative brain regions represent numerosity.

Taken together, the findings of this thesis provide experimental evidence support-
ing the notion that number is a primary visual feature, encoded independent from
other visual features quickly and widely across the human brain. Furthermore, they
emphasize the need for additional investigation to unravel the computational mech-
anisms underlying numerosity in the human brain.
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Chapter 1

General Introduction

SOCRATES Now tell me, my young friend, what is the object of mathematics? What things
does a mathematician study?

HIPPOCRATES I have asked Theaitetos the same question. He answered that a mathemati-
cian studies numbers and geometrical forms.

SOCRATES Well, the answer is right, but would you say that these things exist?

HIPPOCRATES Of course. How can we speak of them if they do not exist?

SOCRATES Then tell me, if there were no mathematicians, would there be prime numbers,
and if so, where would they be?

A Socratic Dialogue on Mathematics

ALFRÉD RÉNY

I was born in Tehran (Figure 1.1), the capital of Iran. As the capital of Iran, Tehran is
a big and highly populated city with a population density of 11,800/km2. I traveled
over 4,669.6 km from Iran to Italy for my Ph.D. Currently, I live in Trento (Figure 1.1).
Trento is a city in the north of Italy with beautiful nature and eye-catching scenery.
Compared to Tehran, Trento, with a population density of 760/km2, is small. Tehran
and Trento may not have much in common, as one may expect by looking at their
photos. However, all four images, as may one notice immediately, have something
in common. All of them contain multiple objects: people, cars, trees, or buildings.

Numbers are prevalent in everyday life, shaping a wide array of activities such as es-
timating the number of people or cars in the street or communicating the population
of a city or the distance between two countries. Research indicates that difficulties
in numeracy negatively affect mental well-being and employment rates (Parsons &
Bynner, 2005). Moreover, the inability to grasp essential numeracy skills during pri-
mary education can impose expenses on the public purse. However, timely and
effective numeracy interventions can reduce these costs (J. Gross et al., 2008). Cur-
rently we miss a complete model of numerical cognition that could effectively guide
both education and remediation.
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FIGURE 1.1: Images from (A) Tehran: Azadi Stadium and Tabiat Bridge, and (B) Trento:
Cathedral Square and the Italian Garden of Buonconsiglio.

Perceiving and manipulating numbers is not only vital for our daily lives but has
also captivated the minds of philosophers for centuries. Philosophers of mathemat-
ics are preoccupied with two fundamental questions: the nature of numbers (ontol-
ogy) and how we can access them (epistemology) (Horsten, 2023). Philosophers are
divided into two main camps: anti-realists who argue that numbers do not exist,
while realists assert their existence. Within the realist, there are at least three dif-
ferent views: Numbers, according to some realists, are solely mental entities, while
others contend that numbers are aspects of the physical universe that exist outside
of people’s brains (Balaguer, 1998).

For a thorough discussion on the matter, it’s crucial to clarify that the term "num-
ber" in the preceding paragraphs actually refers to two distinct concepts. Firstly, it
can indicate the property of any set of objects that specifies its cardinal value, of-
ten termed “numerosity” or “howmanyness.” Brains are capable of perceiving and
representing this property. In this sense, non-symbolic number representations fall
under the realm of percepts—for example, number of people or cars in the street or
the count of taps against a table. Secondly, the term “number” can also denote the
symbols devised by humans to quantify, measure, and order. For instance, we can
use numbers for measuring distance or population.

In the cognitive science literature, the ability to represent non-symbolic numbers
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(numerosities) is commonly referred to as “number sense.” Tobias Danzig was the
first to coin this term, defining it as an individual’s ability to detect changes in a small
collection when objects are added or removed without the person’s direct aware-
ness (Dantzig & Mazur, 1967). Over time, the term “number sense” has broadened
and it currently mainly denotes the capacity to estimate the number of objects in
sets, irrespective of the set size. There is evidence that number sense is ontogenet-
ically precocious, as infants, shortly after birth spontaneously differentiate sets on
the bases of their numerosity (Hyde et al., 2010; V. R. Izard et al., 2009; V. Izard et al.,
2008; Xu & Spelke, 2000). Moreover, the ability to perceive the number of objects
in the natural environment carries evolutionary advantages for non-human animals
(Nieder, 2020). This phylogenetically ancient ability has been observed in birds (Ditz
& Nieder, 2016; Lyon, 2003; Rugani et al., 2008, 2009, 2015; Scarf et al., 2011; Temple-
ton et al., 2005; Vallortigara, 2017), fish (Agrillo & Bisazza, 2018; Agrillo et al., 2012;
Dadda et al., 2009; Hager & Helfman, 1991; Potrich et al., 2015, 2019), insects (Carazo
et al., 2009; Dacke & Srinivasan, 2008; Giurfa, 2019; H. Gross et al., 2009; MaBouDi
et al., 2020; Skorupski et al., 2018), amphibians (Balestrieri et al., 2019; Stancher et al.,
2014; Uller et al., 2003), rodents (Davis & Albert, 1986), cats (Pisa & Agrillo, 2008),
elephants (Perdue et al., 2012), and primates (Beran, 2004, 2012; Beran et al., 2011;
Jordan et al., 2005, 2008; Thomas & Chase, 1980). Additionally, members of oral in-
digenous communities with no formal education systems and no verbal counting
routines, such as the Pirahã (Gordon, 2004), and the Munduruku tribes (Pica et al.,
2004), both residing in the Amazon rainforest of Brazil , exhibit the ability to repre-
sent and manipulate numerosity approximately.

Depending on the numerosity of the set and the attentional resources available,
two systems can be at play in enumeration: the Object Tracking System (OTS), also
known as the parallel individuation system, and the Approximate Number System
(ANS). The OTS only handles small sets of one to about four items, whereas the ANS
enables us to grasp the cardinality of an unlimited number of objects. However,
while the OTS represents numbers precisely, the ANS representation is noisy and, as
the name suggests, approximate. The ANS behavioral hallmarks are the “numerical
distance effect” and the “numerical magnitude effect”. According to the numerical
distance effect, it is easier to discriminate between distant numbers than those that
are closer. For instance, discriminating between 7 and 10 dots is easier than 7 and
8. On the other hand, based on the numerical magnitude effect for equal numerical
distances as the numbers to be compared increase in magnitude, performance de-
clines. For instance, it is easier to differentiate between 4 and 5 dots than between
12 and 13. To achieve a discrimination performance comparable to that seen in the
case of 4 versus 5, the numerical distance would need to increase proportionally
with the magnitudes of the numbers, in this example to 12 versus 15. Therefore, the
capacity to discriminate between quantities is influenced by their ratio and is thus
“ratio-dependent” which is the reason why numerosity is accounted for by Weber’s
law(Dehaene, 2011; Nieder, 2019).
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To represent the quantity of objects, the OTS individuates objects by placing them
in mental files. As each mental file can simultaneously and rapidly hold one object,
the reaction time for discriminating between one to four items remains relatively
constant (Nieder, 2019). This phenomenon, often referred to as subitizing (from the
Latin word “subitus,” meaning “immediately”), was termed by Kaufman and Lord
(1949) and refers to OTS capacity.

Current cognitive development theories propose that knowledge acquisition during
development relies on a few fundamental “core knowledge” systems (Spelke & Kin-
zler, 2006). Number sense is thought to be one of these core knowledge systems,
playing a crucial role in supporting culture-based learning of mathematics, particu-
larly arithmetic. Numerous studies have demonstrated that individuals with a more
acute 1 number sense exhibits more skilled calculation abilities (for a meta-analysis
see: Chen & Li, 2014; Schneider et al., 2016), and that number sense acuity is lower in
children with developmental dyscalculia compared to age and intelligence-matched
controls (Piazza et al., 2010). Compared with the OTS, the evidence, albeit some-
times contradictory (for a review see: De Smedt et al., 2013) suggests that the ANS
plays a more fundamental role in the development of mathematical abilities (for a
review see: Piazza, 2010).

The most common task to measure ANS acuity is the dot comparison task (Fig-
ure 1.2). In this task, participants are required to choose the more numerous (or, left
often, the less numerous) sets of pairs of dots following a brief presentation, either
simultaneous or sequential. Similar to other physical magnitudes (such as duration
or weight), non-symbolic numbers are represented with an internal variability that
scales with stimulus magnitude (here cardinality), a phenomenon described by We-
ber’s law (Whalen et al., 1999). Although traditional models for estimating numer-
ical acuity, often expressed as the Weber fraction (Barth et al., 2006; Dehaene, 2003;
Piazza et al., 2004; Pica et al., 2004), approach the question of the relation between
numerosity estimation and the other visual features of the arrays (e.g. total surface,
density) by randomizing the visual features across trials and numerosities when gen-
erating the dot stimuli for the experiments, recent evidence indicates that the visual
features may interfere in numerical judgements in a more profound way than ini-
tially thought, and thus suggest that it is better to model, rather than try to control,
those factors in the analyses (DeWind et al., 2015; Gebuis & Reynvoet, 2012; Piazza
et al., 2018). The underlying source of such interference is currently unknown, but
researchers have proposed at least four potential explanations. First, it’s conceivable
that both number, as well as co-varying visual parameters, like dot size or density
are encoded through extremely low-level visual features such as contrast or spatial

1When referring to acuity, I mean how imprecise the internal vision of numbers is. For instance,
individuals with a more acute number sense might estimate a set of 15 items as having 13, 14, 16,
or 17 items. In contrast, individuals with a less acute number sense might estimate the same set as
containing between 11 to 22 items. Similarly, subjects with a more acute number sense may be able to
differentiate sets differing by a ratio of 9:10, while those with a less acute number sense may be able to
differentiate sets only if they differ by a 5:6 ratio.
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frequency (Dakin et al., 2011; Stoianov & Zorzi, 2017) but see (Burr & Ross, 2008) for
a different view. According to this perspective, altering size can lead to a change in
perceived numerosity, but the underlying reason for this phenomenon is that both
size and numerosity are derived from a common low-level feature. The second pos-
sibility is that numerical information is computed through the combination of other
quantities: mathematically number can be computed by multiplying total field area
of dots by their density as well as dividing the total surface area of dots by their
average item area. According to this view, because the different visual features con-
cur in the computation of number, their estimation directly impacts the estimation
of numerosity. A third hypothesis proposes that numeric and non-numeric features
are independently extracted by separate direct channels but compete for the same
decision-making component, akin to the classical STROOP effect. This hypothesis
suggests that interference arises at the stage of response selection (Barth, 2008; Hure-
witz et al., 2006; Nys & Content, 2012; Odic et al., 2016; Piazza et al., 2018; Rousselle
& Noël, 2008; Van Opstal & Verguts, 2013). A final view, synthetized in the ATOM
(as in “A Theory Of Magnitude”) theory (Walsh, 2003) suggests that numerical infor-
mation is represented on a shared representational scale along other visual features,
as suggested by partially overlapping representations of different quantities in the
parietal cortex (Harvey et al., 2015; Tudusciuc & Nieder, 2007, 2009). The nature of
this representation is unitless, and various types of magnitudes are represented on
a domain-general magnitude scale. This scale encodes only the distinction between
more and less (Cantrell & Smith, 2013; Lourenco & Longo, 2010; Sheahan et al., 2021).

FIGURE 1.2: Numerosity comparison task

The mechanism by which the brain extracts the cardinality of a set is a topic of ongo-
ing debate. It has been suggested that evolution shapes human numerical concepts
(for reviews see: Cantlon, 2017). According to this hypothesis, primate perception
is object-oriented. In the process of making quantitative judgments, the perceptual
systems of primates might be predisposed to prioritize the numerosity associated
with discrete objects, as opposed to dimensions such as area and size that are based
on surface characteristics (Ferrigno et al., 2017). This is evidenced by a greater al-
location of primate cortex to objects compared to surfaces (Cantrell & Smith, 2013).
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Despite a growing body of evidence from behavioral, neurophysiological, and neu-
roimaging studies suggesting that numerosity is estimated through a dedicated neu-
ral pathway (for reviews see: Eger, 2016; Nieder, 2016; Piazza & Eger, 2016), various
combinations of co-varying non-numerical factors, such as item size or density, also
appear to significantly influence estimation in both adults and children (for a review
see: Leibovich et al., 2016).

In what follows, I will briefly review some of the most important studies within be-
havioral, neurophysiological, and neuroimaging literature that have been conducted
to investigate the neural representation of numerosity and show that most support
the idea of a direct representation of numerosity in the brain. Additionally, I will also
address the objections that were raised against these studies. Lastly, I will review no-
table computational models proposed for extracting numerosity information from a
visual set of dots. I will assess whether, according to these models, numerosity in-
formation is extracted directly through a dedicated mechanism or indirectly through
other non-numeric features.

1.1 Behavior

The numerical abilities of babies have been studied extensively using visual, audi-
tory, and cross-modal stimulation. Collectively, these studies have led to a consen-
sus that infants possess an amodal or supramodal approximate number system for
representing discrete quantities measurable soon after birth. Initial investigations
into infants’ numerical abilities employed habituation procedures (Antell & Keat-
ing, 1983; Starkey & Cooper, 1980; Strauss & Curtis, 1981; Xu & Spelke, 2000). In
these studies, infants are habituated to images of various numerosities (e.g., 2 or 3
dots) and then presented with novel quantities. If habituated to two dots, they ex-
hibit dishabituation to three, and vice versa, indicating their ability to detect changes
in cardinality. This ability to dishabituate to novel stimuli has also been observed
with auditory stimuli (Lipton & Spelke, 2003). In both visual and auditory presen-
tations of numerosity, there are non-numeric confounds that cannot be simultane-
ously controlled. Infants’ numerical abilities have also been explored using a pref-
erential looking paradigm, where they gaze longer at the visual quantity matching
the auditory quantity (Coubart et al., 2013; V. R. Izard et al., 2009), for a review see
Cantrell and Smith (2013). This cross-modal paradigm is truly devoid of sensory
factors confounded with numerosity, thus it firmly demonstrates the existence of a
mode-invariant system for extracting purely numerical information.

Behavioral evidence from adaptation studies suggests that number is perceived di-
rectly through a dedicated mechanism, thus that it can be considered (similarly to
colour) a “primary” visual property of the image. Adaptation causes the change
in the appearance of a stimulus following exposure to that stimulus for several sec-
onds. The susceptibility of a perceptual mechanism to adaptation is indeed typically
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taken as evidence of the presence of a dedicated perceptual system (P. Thompson &
Burr, 2009). Burr and Ross (2008) showed that visual numerosity is prone to adap-
tation: the number of dots in a very numerous visual stimulus was underestimated
after several seconds of exposure; similarly, the number of dots in a not very nu-
merous visual stimulus was overestimated. Despite this striking effect, whether
numerosity can be considered a primary visual feature was contested by Durgin
(2008). According to Durgin’s perspective, numerosity is not a primary visual fea-
ture, but a feature that is estimated, similarly to texture density, through stages of
spatial filtering, akin to the estimation of ensemble statistics, like average size, as
demonstrated by Ariely (2001). To establish that numerosity is a primary feature
directly extracted and not indirectly computed, Arrighi et al. (2014) conducted sev-
eral adaptation studies across modalities and formats (Figure 1.3). Their research
revealed that adapting to a given number of sequentially presented tones, for in-
stance, influenced the perceived numerosity of visual flashes and that the effect size
is similar to that observed in within-modality adaptation contexts. This observation
implies that, at a certain level, the representations of numerosity are not dependent
on the modality or format of the stimuli to be enumerated, thus, they do not de-
pend on sensory-specific systems. Previous studies had similarly suggested that
both children (Barth et al., 2005) and adults (Barth et al., 2003) exhibit comparable
accuracy in cross-modal comparison as they do in visual comparison, suggesting
no performance cost associated with numerosity comparison across sensory modal-
ities. These cross-modal findings suggest that the perception of numerosity can be
entirely independent of the perception of other sensory features, thus contradicting
Durgin (2008) claim.

FIGURE 1.3: (A) Example of stimulus for the cross-modal numerosity adaptation. (B) Mean
adaptation index for different experimental settings (figure adapted from Anobile et al.

(2015))
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1.2 Animal Neurophysiology

Neurophysiological recordings in animals have revealed single neurons with dis-
tinct responses to different numerosities. R. F. Thompson et al. (1970) discovered sin-
gle neurons in the association cortex of anesthetized cats that seemed to encode nu-
merosity during sequential presentations of visual and auditory items. Neurons en-
coding numerosity have subsequently also been identified in monkeys through var-
ious tasks (Figure 1.4), including movement executions (Sawamura et al., 2002), de-
layed match-to-sample (Nieder & Miller, 2003, 2004; Nieder et al., 2002), and saccade
to target (Roitman et al., 2007). Wagener et al. (2018) more recently demonstrated
that in numerically naive crows, neurons in the endbrain encode visual numerosity.
Kobylkov et al. (2022) could also find number neurons in the caudal nidopallium
(higher associative area with functional similarities to the mammalian prefrontal cor-
tex) in naive 10-day-old domestic chicks. Neurons encoding numerosity have been
mainly observed in the intraparietal sulcus (IPS) and subregions of the prefrontal
cortex of the macaque brain. However, very few regions were studied, notably the
early visual cortex and the occipitotemporal cortex (see Figure 1.4). The tuning func-
tions of these neurons resemble bell-shaped functions with asymmetric profiles; that
become symmetric Gaussian tuning functions only after a log-transformation of the
number scale (Nieder & Miller, 2003). In addition to the number-selective neurons in
the IPS and prefrontal cortex, monkeys’ lateral intraparietal area (LIP) also contains
number neurons that, contrary to the ones previously mentioned exhibit a mono-
tonic response to numbers (Roitman et al., 2007).

It was proposed that the tuning shape of neurons might not be innate but rather a
consequence of training (Roitman et al., 2012). This hypothesis was proven wrong by
a later study conducted by Viswanathan and Nieder (2013), who identified number-
selective neurons in the intraparietal sulcus and the dorsolateral prefrontal cortex
of monkeys that had never undergone number discrimination training. In all of
the above studies with animals, other covarying factors such as size and density
were individually controlled in different trials, as in many experiments with human
subjects.

1.3 Human Neuroimaging

Various studies using adaptation paradigms (Cantlon et al., 2006; Piazza et al., 2004,
2007; Tsouli et al., 2021), frequency tagging techniques (Van Rinsveld et al., 2020,
2021), multivariate decoding and representational similarity analysis (Bulthé et al.,
2014, 2015; Castaldi et al., 2019; Eger et al., 2009), and population receptive field
mapping (Harvey & Dumoulin, 2017a; Harvey et al., 2013) consistently found that
the posterior parietal cortex plays a pivotal role in the processing of visual numeros-
ity.
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FIGURE 1.4: Neurophysiological evidence of encoding numerosity in monkey’s brain with
different experimental setting: (A) Sequential movement task, (B) Delayed match-to-sample
task, and (C) Non-numerical saccade to target task (figure adapted from Piazza and Eger

(2016))

Piazza et al. (2004) were pioneers in using fMRI adaptation to explore visual nu-
merosity representation, as depicted in Figure 1.5 Their study revealed that after a
period of adaptation to a specific numerosity with a constant large number of el-
ements (16 or 32, in different blocks) but variable low-level features like size and
density, a change in numerosity resulted in a release from adaptation in the bilat-
eral intraparietal cortex. Consistent with Weber’s law, the variation in IPS activation
reflected the ratio between the adapted and deviant numbers.

Prompted by this initial study, later Eger et al. (2009) focussed their MRI acquisition
on parietal regions and employed a multivariate decoding approach to assess the
discriminability of sample numerosities in the bilateral intraparietal cortex. Partic-
ipants were shown sample numbers and instructed to remember them during the
task. Other studies with slightly varied task settings (Bulthé et al., 2014, 2015) suc-
cessfully differentiated between various numerosities using a multivariate decoding
method in regions in the parietal and frontal cortex. However, the interpretation
of the results from the multivariate decoding approach is not straightforward, as
uncertainty persists regarding whether the information crucial for successful decod-
ing in multivariate classification analysis, when collapsing across the non-numerical
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FIGURE 1.5: Using adaptation paradigm Piazza et al. (2004) showed that (A) by presenting
deviant stimulus after adaptation stimulus. (B) Gaussian-shape distribution would be pro-
duced both in the behavior and (C,D) bilateral mid-posterior parietal cortex (figure adapted

from Piazza and Eger (2016))

dimensions of the stimulus set, was exclusively numerical in nature.

The role of the parietal area in representing numbers has been also highlighted by
the finding that this region hosts numerotopic maps (Harvey et al., 2013). Harvey et
al. (2013) identified a cluster of voxels situated in the posterior superior parietal lob-
ule that displayed a preference for different numbers, and that those clusters were
spatially organized reflecting numerotopy (Figure 1.6). Later Harvey and Dumoulin
(2017a) reported that these numerotopic maps were present also elsewhere in the
brain, and found six such maps across the human association cortex, spanning re-
gions in the parietal, frontal, and occipito-temporal cortex. While their initial studies
constrained the number range from 1 to 7, their later research (Cai et al., 2021) ex-
tended beyond this range and they found that both small and large numbers are
organized within the same topographic maps. To generate the numerosity map,
population receptive field (pRF) modeling, as proposed by Dumoulin and Wandell
(2008), was employed. This method enables us to predict the cumulative response of
populations of cells contained within a single fMRI voxel to various stimuli. How-
ever interpreting results from pRF modeling is not without challenges (Gebuis et al.,
2014). It is possible that the variance in the fMRI BOLD signal observed in the data
can be attributed to a combination of other correlated non-numeric features along
with number.

To address the challenges mentioned above, Harvey and Dumoulin (2017b) tried to
directly quantify the effect of non-numeric features. However, they primarily fo-
cused on the impact of one non-numeric variable at the time, comparing it to that
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FIGURE 1.6: Harvey et al. (2013) could find numerotopic map in the(A, B) right posterior
superior parietal cortex of subjects (C) while they were seeing patterns of dots that increase

and decrease in numerosity (figure adapted from Piazza and Eger (2016))

of number, without considering the effects explained by all relevant non-numerical
dimensions simultaneously. DeWind et al. (2019) tried to address the issue of corre-
lated non-numeric dimensions by introducing two orthogonal dimensions referred
to as “size” and “spacing,” 2 (DeWind et al., 2015). However, the study did not
consider the perceptual discriminability of these features, as “size” and “spacing”,
that were introduced by them, were mathematical constructs and did not represent
natural, perceptually relevant feature dimensions. Only a recent study by Castaldi
et al. (2019) have quantified the effect of numeric and perceptually relevant non-
numeric features on the brain activity simultaneously. Castaldi et al. (2019) used a
multiple regression approach in order to disentangle brain signals related to numer-
ical and non-numerical quantities and showed that numerosity is represented over
and above other visual features in parietal association areas. Moreover, the study
revealed that the representation of numbers is not only present in parietal regions
but is also present in early visual areas, a finding in line with previous multivariate
decoding fMRI study (DeWind et al., 2019; Lasne et al., 2019).

Few studies have investigated the timing of numerosity encoding in the human
brain (Fornaciai et al., 2017; Park et al., 2015). The electroencephalogram (EEG)
study conducted by Park et al. (2015) was among the pioneering research efforts
to explore the temporal representation of numerosity in the adult human brain. Em-
ploying a regression-based method with three orthogonal regressors—number, size,
and spacing (DeWind et al., 2015)—they analyzed univariate event-related potential
(ERP) signals of EEG. The findings revealed that numerosity explained a significant
portion of the variance in the ERP very early in time, approximately around 75 ms
after stimulus onset. Subsequent research with the same experimental design and
analytical approach replicated this outcome, demonstrating that numerosity infor-
mation is encoded remarkably early, around 90 ms post-stimulus (Fornaciai et al.,

2According to their definition, size was obtained through a linear combination of the logarithm of
the total surface area and the average item area. Spacing, on the other hand, was derived by a linear
combination of the logarithm of the total field area and the inverse of density.
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2017). However, as explained earlier, interpreting these results is not straightfor-
ward because the two orthogonal dimensions, “size” and “spacing,” are mathemat-
ical constructs and not perceptually relevant non-numeric features. Consequently,
there is a lack of clear information regarding the timing of perceptually defined non-
numeric features.

1.4 Computational Modeling

Dehaene and Changeux (1993) introduced one of the earliest connectionist models
of numerosity perception (Figure 1.7). According to their model, objects are initially
mapped onto a location map. Through the process of lateral inhibition, the location
map disregards the size of objects, a mechanism known as normalization. In the
subsequent summation stage, units aggregate information from the previous layers.
This layer acts as an integrator. Finally, the summation units project to numerosity
units through central excitation and lateral inhibition connections. The model posits
that numerosity detection is innate and present from birth, hardwired and imple-
mented thanks to a pattern of on-center off-surround units. The concept of the loca-
tion map might be linked to the saliency map in the parietal cortex (Roggeman et al.,
2010). Knops et al. (2014) tested this idea using fMRI and computational modeling,
exploring the possibility of a flexible system resembling a saliency map underlying
an enumeration task. Additionally, Wurm et al. (2021) demonstrated that estimating
a small number of objects involves two sequential stages: a location-specific stage
followed by a location-invariant stage. This finding aligns with an fMRI study con-
ducted by Eger et al. (2013), which highlighted numerical information encoded in a
location-invariant manner in specific areas of the human posterior parietal cortex.

Another computational model of numerosity perception was proposed by Stoianov
and Zorzi (2012), who took a different approach to model numerosity encoding by
training a Deep Belief Network (DBN) in an unsupervised manner, without provid-
ing any explicit information about numerosity of object in the images. They dis-
covered that numerosity selectivity emerges as a high-order statistical feature in the
deepest layer of the network, which learns a hierarchical generative model of the
sensory input. This modeling approach aligns with Dakin et al. (2011), where they
suggested that numerosity is encoded through low-level visual features like contrast
or spatial frequency. Additionally, Stoianov and Zorzi’s model effectively separates
non-numerical features from numerical information (Testolin et al., 2020).

Recently, studies have demonstrated that Convolutional Neural Networks (CNN;
Figure 1.7) have the capability to represent numbers (Kim et al., 2021; Nasr et al.,
2019). Nasr et al. (2019) found that number-detector units emerged in a CNN trained
for visual object recognition. Subsequently, Kim et al. (2021) showed that these
number-detector units even emerged in an untrained CNN. Notably, they discov-
ered that these number-selective units were not influenced by non-numeric visual
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features, thus suggesting that the extraction of numerosity occurs through a dedi-
cated mechanism in these networks.

Formal models, through providing quantitative description of a system, aid us to
understand how the brain processes information. The two key criteria that define
a good model are its accuracy and understandability (Kay, 2018). Accuracy refers
to how well the model can predict human behavior or brain data at various levels,
such as single neurons or populations of neurons. Understandability pertains to
how well the scientific community can grasp each component of a model and the
relationships between these components and the model’s outcomes. To date, to the
best of my knowledge, there has been no attempt at investigating how well compu-
tational models of numerosity processing align with human population-level neural
data. Thus, in the last chapter of my thesis I will focus on investigating the accu-
racy of one particular model at simulating the human fMRI data that I illustrate in
chapter two.

FIGURE 1.7: (A) Structure and function of numerosity detector network (figure adapted
from Dehaene and Changeux (1993)). (B) The convolutional neural network architecture
employed by Nasr et al. (2019) to demonstrate the network’s sensitivity to numbers (figure

adapted from Nasr et al. (2019)).

1.5 Questions addressed in this thesis

Thus far, I have reviewed various behavioral, neurophysiological, and neuroimag-
ing methods employed in the literature to unveil how numerosity is encoded in
humans and animals. In this thesis, I will use the approach employed by Castaldi
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et al. (2019) to further investigate the question of how numerosity is encoded in the
human brain using different neuroimaging methods. I chose model-based represen-
tational similarity analysis because it enables us to concurrently model the effects of
both numeric and non-numeric features of stimuli, an issue that is very important to
consider.

In particular, in this thesis I will address three different but related questions:

1. The first question pertains to the localization of numerical representations in
the cortical space. While most neuroimaging studies on number processing
have concentrated on the dorsal stream, particularly the parietal region, as a
pivotal area for number representation, findings from numerotopic maps (Cai
et al., 2021; Harvey & Dumoulin, 2017a) have provided some suggestions that
numerosity may be encoded also beyond the classical regions in the parietal
and frontal lobes. Consequently, in the second chapter of this thesis, I used
whole brain functional magnetic resonance imaging (fMRI) to address whether
other brain regions, especially along the ventral stream, represent numerical
information when subjects are tested with visual sets of dots with the rigorous
control over other non-numeric features which lacked in previous research.

2. The second question pertains to the temporal characterization of numerical
representations in the brain. Indeed, while there has been extensive research
in the field of numerosity perception focusing on localization, there have been
relatively few studies investigating the time course of the neural response to
numerosity. In the third chapter, employing the same control over other non-
numeric features as used in the first chapter, I use magnetoencephalography
(MEG) to examine the temporal unfolding of numerosity representations in the
adult human brain. This approach enabled us to tackle the second question:
when numeric and non-numeric features of a visual set of dots are separately
represented in the brain. Furthermore, I extended my exploration by integrat-
ing fMRI data from the previous chapter with MEG data (an approach that is
referred to as “fMRI-MEG fusion”), aiming to investigate the spatio-temporal
representation of each feature. This approach involved studying the tempo-
ral unfolding of the representation of both numeric and non-numeric features
across different brain areas.

3. The third question pertains to the question of whether deep neural networks
as computational models are able to accurately simulate how numerical and
non numerical information are encoded in the brain. Despite extensive com-
putational research aimed at understanding how numerosity information can
be extracted from a visual set of dots, we still do not know the mechanisms
through which the brain processes this information. There has been limited
effort to compare these models against neural data, although there are excep-
tions (see Nasr et al., 2019). Thus, in the fourth and final chapter, I employed
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the same method used to analyze the fMRI and MEG data in the first and sec-
ond chapters to examine how CNNs represent numeric and non-numeric fea-
tures of visual sets of dots. I subsequently compared the results from a CNN
against fMRI data from the second chapter to address the third question: de-
termining the extent to which the representations of numerical information in
the CNN align with the fMRI data of the human brain.

I will address each of the three questions in the upcoming chapters, each of which
has been written independently of the others and will result in three separate scien-
tific publications.
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Chapter 2

Neural codes for visual numerosity
in the dorsal and ventral stream of
the human brain

2.1 Introduction

Single cell recording studies indicate that both in the animal (e.g., Kobylkov et al.,
2022; Nieder & Miller, 2003; Wagener et al., 2018) and the human brain (Kutter et
al., 2018) there are numerosity-tuned neurons, whose Gaussian tuning functions
demonstrate scalar variability, a proportional increase in the standard deviation of
numerical estimates with the quantity being estimated. The activity of these func-
tions underlies behavior in numerosity comparison and matching tasks, similarly
adhering to Weber’s law (Ditz & Nieder, 2016; Gallistel & Gelman, 1992; Merten &
Nieder, 2009; Piantadosi & Cantlon, 2017). This approximate and compressed code
can also be inferred from the population-level responses to numerosity as measured
by fMRI using multivariate pattern analyses, adaptation, or population receptive
field mapping approaches (e.g., Eger et al., 2009; Harvey et al., 2013; Piazza et al.,
2004). However, because numerosity is necessarily coupled with other visual char-
acteristics of the sets (e.g., more items tend to occupy a larger area, or to be more
densely spaced), establishing the degree to which the observed neural response to
numerosity is distinct from the response to other visual attributes is not trivial. To
address this issue Castaldi et al. (2019) recently analyzed the human BOLD response
to numerosity combining multivariate analyses with multiple regression, allowing
the estimation of the brain activity evoked by different numerosities once taking
into account the effects of other relevant non-numerical variables at the same time
(Castaldi et al., 2019). This study however solely focussed on the dorsal stream
and demonstrated that numerosity is represented over and above other visual fea-
tures in retinotopic regions of interest and that, especially when task relevant, it
is amplified in parietal areas. In terms of localization, these results were in agree-
ment with several previous observations, including the first single cell recordings in
macaques (Nieder & Miller, 2003, 2004) and the first fMRI studies in humans (e.g.,
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Ansari & Dhital, 2006; Cantlon et al., 2006; Castelli et al., 2006; Piazza et al., 2004)
that suggested that parietal cortex is the key brain region for numerosity process-
ing (for a review see: Eger, 2016; Faye et al., 2019). They were also consistent with
the neuropsychological literature that associates deficits in numerosity processing
to parietal cortex damage (Lemer et al., 2003; Warrington & James, 1967). Partially
biased by these initial observations, several later key fMRI studies on numerosity
restricted the brain data acquisition to a limited volume centered on parietal cortex
(e.g., Castaldi et al., 2019; Eger et al., 2009) or focussed the analyses on parietal cor-
tex using an ROI approach (e.g, Bulthé et al., 2015; Castaldi et al., 2020). While a
few studies looking at the whole brain did sometimes report numerosity-related re-
sponse outside parietal cortex, both in the frontal and in the occipito-temporal cortex
(e.g., Bulthé et al., 2014; Harvey & Dumoulin, 2017a), they mostly tested small nu-
merosities, which some suggest are elaborated by a dedicated mechanism, referred
to as “subitizing”, potentially different from the one at play with large numerosities
(Kutter et al., 2023; Revkin et al., 2008). A notable exception is the recent work of
Cai et al. (2021), who employed a population receptive field mapping (pRF) method
(Harvey & Dumoulin, 2017a) and found that the numerotopic maps that encode
small numerosities in the dorsal and ventral stream also respond to large numerosi-
ties. A couple of important limitations from this study, however, call for further
confirmations for this stand-alone report:

1. In the study there was no attempt at controlling/analyzing the impact of non-
numerical features. In all stimuli total surface area was held constant across
numerosities, thus as a consequence dot size decreased and density increased
with number. This prevents concluding that the activation to numerosity was
solely due to numerosity and not to concurrent changes in other visual features
(Gebuis et al., 2014) especially as Harvey et al. (2015) showed numerosity and
object size are associated in overlapping topographic maps..

2. The strictly ordered presentation of numerosities (ascending or descending),
while ideal for pRF approach, likely created expectations (e.g. Esterman & Yan-
tis, 2009; Puri et al., 2009; Summerfield & De Lange, 2014) and attentional bi-
ases (e.g. Ester et al., 2016; Jehee et al., 2011; Lage-Castellanos et al., 2022), the
effect of which cannot be readily disentangled from the effect of numerosity
itself.

Thus, the question of whether large numerosity is encoded over and above the other
visual properties solely along the dorsal stream, or whether it is also represented in
other regions of the human brain still remains open. In order to probe this questions,
here I adapted the paradigm of Castaldi et al. (2019) and recorded the BOLD signal
from the whole brain of subjects looking at sets of different number of dots, and an-
alyzed the data using a combination of model-based representational similarity and
dimensionality reduction analyses, both in pre-defined ROIs and across the whole
brain.
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2.2 Methods

2.2.1 Participants

Thirty-seven healthy adults (twenty-two females; mean age 21.9 years) with normal
or corrected vision participated in the study. The sample size for our study was es-
tablished based on a prior study by Castaldi et al. (2019), which involved twenty
healthy adults. Our chosen sample size is comparable to or even exceeds the typ-
ical sample sizes employed in similar experiments in the field (e.g. DeWind et al.,
2019; Eger et al., 2009, 2013). The ethics committee of the University of Trento (Italy)
approved the study, and all participants gave written informed consent and were re-
imbursed for their time. Given their excessive head motion (translation, exceeding
3mm in any of the x, y, or z directions, or rotation, surpassing 2 degrees around any
of the axes) or poor behavioral performance (accuracy < 65%), data from six partic-
ipants (four participants for poor behavioral performance and two participants for
excessive head motion) were excluded from the final analysis. This led to the final
sample of thirty-one subjects (eighteen females; mean age 21.9 years).

2.2.2 Stimuli and procedure

Participants were familiarized with the task by practicing 20 trials outside of the MRI
before the experiment. During fMRI scanning, arrays of black dots on a mid-gray
background were centrally shown to participants. Dots were generated orthogo-
nally varied in number, average item area, and total field area (similar to Castaldi et
al., 2019). There were 32 conditions (resulting by crossing 4 numerosities, 4 average
item areas, and 2 total field areas): six, ten, seventeen, or twenty-nine dots were pre-
sented with varying average item area (0.04, 0.07, 0.12, 0.2 visual square degree) that
were made to fit within a small or large total field area (defined by a virtual circle of
either about 9 or 13.5 visual degree diameter; Figure 2.1). Numbers and average item
areas were chosen based on a previous behavioral study (Castaldi et al., 2018, 2019)
to be perceptually equally discriminable. Total field areas were selected to have suit-
ably sparse arrays of dots (1 dot/vd2) to be within the numerosity estimation regime
and not within the density estimation regime (Anobile et al., 2013).

In each trial, a set of dots was presented for 500 ms over a wide red fixation cross,
and participants were required to estimate their number and simply keep them in
memory until, after a variable ISI of 3.5–5.5 s, the next set of dots appeared (Fig-
ure 2.1). When the color of the fixation cross changed from red to green, subjects
were required to compare the number of dots in the current set (match stimulus)
with the previous one and determine whether it was larger or smaller by pressing
one of two buttons following the instructions. After a delay of 3.5–5.5 s the follow-
ing trial started. Match stimuli were designed to be approximately 2 JNDs larger
or smaller in numerosity than the previous sample stimulus, based on an average
numerosity Weber fraction estimated on an independent group of healthy adults
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(Castaldi et al., 2018), while the other dimensions (total field area and average item
area) were the same. Match trials occurred approximately 20% of the time.

The experiment consisted of six runs, with two blocks within each run. Each block
consisted of thirty-six trials: four match trials and thirty-two sample trials, one for
each of the thirty-two conditions (4 number × 4 average item area × 2 total field
area). After the third run, in the middle of the experiment, participants’ response
assignments were switched. There was a brief practice session at the beginning of
the experiment and after changing the hand assignment. Each run lasted about 7
minutes.

FIGURE 2.1: (A) An illustration of the entire collection of stimulus conditions. The dataset
orthogonally varied in number (6, 10, 17, 29), average item area (0.04, 0.07, 0.12, and 0.2
visual square degree), and total field area, enclosed by imaginary circles of 9° and 13.5°.
(B) Illustration of the temporal presentation of the trials during scanning. Subjects were
instructed to attend to the number of dots and keep the number in mind until the next set
of dots were shown. From time to time, the color of the fixation cross changed from red to
green. When the color changed, subjects were required to compare the number of dots in the
current set, (Match stimulus), with the previous one (Sample stimulus) by pressing a button.

2.2.3 MRI recordings and processing

Functional images were acquired at the Center for Mind/Brain Sciences (CIMeC)
with a SIEMENS MAGNETOM PRISMA 3T with gradient insert of 80mT/m max
and using a SIEMENS Head/Neck 64-channel phased array coil. Visual stimuli
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were presented through a mirror system connected to a 42" LCD monitor (MR-
compatible, Nordic NeuroLab) positioned at the back of the magnet bore. Functional
images were acquired using echo-planar (EPI) T2*-weighted fat-saturation echo-
planar image (EPI) volumes with 1.75 mm isotropic voxels using a multi-band se-
quence (Moeller et al., 2010) (https://www.cmrr.umn.edu/multiband/, multi-band
[MB] = 3, GRAPPA acceleration with [IPAT] = 0, partial Fourier [PF] = 7/8, matrix =
120×120, repetition time [TR] = 20.3 ms, echo time [TE] = 31.2 ms, echo spacing [ES]
= 0.62 ms, flip angle [FA] = 60°, bandwidth [BW] = 2450 Hz/px, phase-encode di-
rection Anterior » Posterior). In total, 1206 volumes from the six experimental runs
made up the functional acquisition. A whole-brain gradient echo B0 map, matched
for spatial resolution, was acquired after the functional scans for fieldmap-based
correction of susceptibility-induced geometric distortions. T1-weighted anatomical
images were acquired at 1 mm isotropic resolution using an MPRAGE sequence
(GRAPPA acceleration with [IPAT] = 2, matrix = 176×256, repetition time [TR] =
2530 s, echo time [TE] = 1.69 ms, time of inversion [TI] = 1100 ms, flip angle [FA]
= 7°, bandwidth [BW] = 650 Hz/px,). Padding and tape were used to reduce head
movement. In their left and right hands, participants each held two response but-
tons. Stimuli were presented using a custom-written Psychtoolbox 3 (Brainard, 1997)
script running on top of MATLAB R2018.

Functional images were preprocessed in MATLAB R2019 using the Statistical Para-
metric Mapping Software (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). Preprocessing included the following steps: Functional images were slice-
time corrected to the middle slice, realignment of each scan to the mean of each run,
co-registration of the anatomical scan to the mean functional image, and segmen-
tation of the anatomical image into native space tissue components. No smoothing
was applied.

The preprocessed EPI images (in subjects’ native space) were high-pass filtered at
128 s and pre-whitened by means of an autoregressive model AR(1). A general lin-
ear model (GLM) was used to estimate subject-specific beta weights. For each run,
thirty-two regressors of interest were included for each sample stimuli (4 number ×
4 average item area × 2 total field area). Regressors for match stimuli, left hand, and
right hand were also included. Nuisance regressors were identified with The PhysIO
toolbox (Kasper et al., 2017) using six motion parameters and CompCor with five
components (Behzadi et al., 2007) and were included in the GLM.

The surface of each subject was generated using Freesurfer 6 (Fischl, 2012) (https:
//surfer.nmr.mgh.harvard.edu/). The surfaces were then converted to a SUMA
standard mesh of 141,000 nodes per hemisphere (Saad et al., 2005) from each partic-
ipant’s anatomical scan using algorithms implemented in the Surfing toolbox (Oost-
erhof et al., 2011) (https://surfing.sourceforge.net) to produce node-to-node anatom-
ical correspondence across participants’ surfaces. For each subject, the parameter
estimates (beta weights) for each of the 32 regressors of interest were converted

https://www.cmrr.umn.edu/multiband/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://surfing.sourceforge.net
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into a t-statistic and projected on the subject-specific cortical surface using AFNI’s
3dVol2Surf (R. W. Cox, 1996) (https://afni.nimh.nih.gov/) with the "average" map-
ping algorithm, which roughly represents the value at each vertex of the surface as
the average value along a line connecting the smooth white matter and pial surfaces.

2.2.4 Univariate fMRI activation

The contrast map of sample stimulus against the implicit baseline was smoothed
with a Gaussian 4 mm FWHM filter using the SurfSmooth function with the HEAT_07
smoothing method (Chung et al., 2005). I then performed a surface-based random-
effects group analysis for these maps using a one-sample t-test. The result was then
corrected using threshold-free cluster enhancement (TFCE; Smith & Nichols, 2009)
using Monte Carlo simulations with 10,000 permutations, as implemented in the
CoSMoMVPA MATLAB toolbox (Oosterhof et al., 2016) and projected onto the fsav-
erage surface for visualization (thresholded at p < 0.01, one-tailed).

2.2.5 Multivariate Representational Similarity Analysis (RSA)

In order to test if and in which brain regions the representations of numerical and
non-numerical features of the stimuli could be disentangled I used representational
similarity analysis (Kriegeskorte & Kievit, 2013; Kriegeskorte et al., 2008) enabling
the assessment of the simultaneous impact of multiple quantitative dimensions on
activity patterns.

In every region, which I approached both using a region of interest approach and a
searchlight approach (see below), I used the t-statistics from the first-level analysis
to extract the neural representational dissimilarity matrix (RDM) by computing the
correlation distance (Pearson correlation) between activation patterns for each pair
of conditions.

I subsequently used semipartial correlation analysis (Pearson correlation) to assess
the extent to which the fMRI pattern dissimilarity structure could be explained by
multiple predictor matrices, reflecting the stimuli’s dissimilarity across various sig-
nificant quantitative dimensions: numerosity, average item area, total field area, to-
tal surface area and density. To control for the shared variance between the predic-
tors and avoid overestimating the contribution of each variable because the vari-
ance that they share is counted several times, I used semipartial correlation analy-
sis (Abdi, 2007). Therefore, the semipartial correlation between a vectorized neural
RDM and the model RDM of interest is the portion of unique variance shared be-
tween the neural RDM and the model RDM of interest while partialling out the
effect of all other models RDM from the neural RDM. To account for different levels
of noise in different brain areas, I estimated the noise ceiling in all ROIs (Nili et al.,
2014) and normalized the semipartial correlation coefficients with the correspond-
ing noise ceiling (Al-Tahan & Mohsenzadeh, 2021; Khaligh-Razavi et al., 2018). A

https://afni.nimh.nih.gov/
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schematic of this process is shown in Figure 2.2. It’s important to note that my de-
sign orthogonally manipulated numerosity, average item area, and total field area.
Consequently, numerosity was correlated with both density and total surface area
(correlation between number and density predictor matrix = 0.84; between number
and total surface area predictor matrix = 0.36).

FIGURE 2.2: Neural representational dissimilarity matrices (RDM) obtained from fMRI data
were subjected to semipartial correlation analysis. fMRI RDMs were created using 1 – Pear-
son correlation between the activations of voxels in that region for each pair of images.
Five representational dissimilarity matrices, model RDMs, used as predictors in the semi-
partial correlation analysis. These matrices represent the logarithmic distance between pairs
of stimuli in terms of number, average item area, total field area, total surface area, and den-

sity.

2.2.6 Surface-based ROI RSA

Following Castaldi et al. (2019), I selected several retinotopic regions of interest
(ROIs) along the dorsal stream from a surface-based probabilistic atlas based on vi-
sual topography (L. Wang et al., 2014). However, I here extended the analysis to a
number of retinotopic regions also of the ventral stream (L. Wang et al., 2014). The
selected ROIs (on both hemispheres) along the dorsal stream were: V3AB (merging
V3A and V3B), V7, IPS 12 (merging IPS 1 and 2), IPS 345 (merging IPS 3, 4 and 5).
These were further merged into three large ROIs that correspond to intermediate
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(V3A, V3B, and V7, also known as IPS0), and higher-level (IPS1 to IPS5) areas. The
selected ROIs from the ventral stream were hV4, VO1, VO2, PHC1, PHC2. As for the
dorsal regions, the ventral ROIs were further merged into three large ROIs: interme-
diate (VO1 and VO2), and higher-level (PHC1 and PHC2) areas. The ROIs in early
visual areas included V1, V2, and V3, which were subsequently merged into a larger
early ROI referred to as V13. I chose the 600 most active vertices (in the contrast
“all sample stimuli > baseline”) in all ROIs to equate the number of vertices in each
ROIs to ease comparisons between ROIs (Mitchell et al., 2004). I choose the vertices
from each individual ROIs and large ROIs separately. The choice of 600 vertices was
made as a compromise between the maximum number of vertices inside all ROIs
(661 vertices) and the use of a significantly smaller number of vertices (such as 100
vertices). Selecting the latter, smaller number of vertices, might have resulted in arti-
ficially elevated selectivity for the desired contrast, potentially masking the genuine
patterns of interest. It is important to note, though, that when I selected all vertices
across each ROI the results remained very similar. For the ROI-based RSA I used
unsmoothed data but the results remained remarkably consistent when I smoothed
data (De Beeck, 2010) with the same method I described previously. ROI-based RSA
was implemented using the CoSMoMVPA MATLAB toolbox (Oosterhof et al., 2016)
and custom-written code in MATLAB R2019 (The MathWorks, Inc., Natick, MA). I
used one-sample t-tests against zero across subjects to test the statistical significance
of correlation coefficients for each feature and ROI. I analyzed the effects of ROI and
features with repeated measures analysis of variance (ANOVA).

2.2.7 Surface-based searchlight RSA

To find how numerical and non-numerical quantities are represented across the
whole cortical surface, RSA was performed using a surface-based searchlight ap-
proach (Oosterhof et al., 2011). Surface-based searchlight RSA was implemented
using the CoSMoMVPA MATLAB toolbox (Oosterhof et al., 2016), the Surfing tool-
box (Oosterhof et al., 2011), and custom-written code in MATLAB R2019 (The Math-
Works, Inc., Natick, MA). Each participant’s entire t-statistics brain map was smoothed
with the same method I used to smooth the contrast map and underwent a search-
light (radius 6 mm) procedure. A neural RDM was constructed using Pearson’s
correlation. Similar to the ROI-based RSA, the semipartial correlation between the
neural RDM and model RDMs were calculated and then mapped on the brain.

To identify vertices in which the Fisher-transformed semipartial correlation result-
ing from searchlight RSA was significantly above zero, a one-sample t-test was used
across subjects. The result was then corrected using threshold-free cluster enhance-
ment (TFCE; Smith & Nichols, 2009) using Monte Carlo simulations with 10,000
permutations implemented in the CoSMoMVPA MATLAB toolbox (Oosterhof et al.,
2016). The resulting statistical map was thresholded at p < 0.01 (one-tailed) and was
projected on the fsaverage surface for visualization.
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2.2.8 Multidimensional Scaling (MDS)

Finally, to explore the latent similarity structure of the neural RDMs, indexing the
neural representational geometry of the stimuli space, both across and within ROIs,
I used multidimensional scaling (MDS; Kruskal, 1964) using the MATLAB func-
tion cmdscale and visualized the first two dimensions of the MDS output. These
techniques organize the stimuli on a two-dimensional plot in a manner where the
distances between them mirror the differences in the response patterns they gen-
erated. As a result, stimuli positioned closer together in these depictions triggered
more akin response patterns (Nili et al., 2014). First, in order to compare the sim-
ilarity of the neural representation of the stimulus space across ROIs I vectorized
the 32 x 32 neural RDM reflecting the correlation across conditions within each of
the 12 ROIs and then constructed a 12 × 12 RDM across ROI. Then, to further ex-
plore the neural representational geometry in each stream, I applied the MDS on
the group-average RDM across participants for each ROI. The group-average RDM
is computed by averaging the RDMs for all thirty-one subjects, which are more
precise and less noise-prone in comparison to the RDMs obtained from individual
subjects (Nili et al., 2014). I also extended these analyses beyond the retinotopic
regions including three additional clusters resulting from the whole brain search-
light map of regions encoding numerosity. To isolate these clusters I used group-
constrained subject-specific (GCSS) analyses (Fedorenko et al., 2010; Julian et al.,
2012), using custom-written MATLAB R2019 code (The MathWorks, Inc., Natick,
MA) developed by Scott and Perrachione (2019) (available at https://github.com/
tlscott/make_parcels). The identification of these clusters involved a four-step pro-
cess, as depicted in Figure 2.3: Initially, the Fisher-transformed correlation values
from the number searchlight maps were converted into z-scores. Subsequently,
these z-scores were thresholded at p < 0.01 and then binarized. Secondly, a prob-
ability map was generated by overlaying all binary maps. This resulting map was
smoothed using a gaussian kernel of 6 mm FWHM, and vertices with contribu-
tions from fewer than ten subjects were discarded. Thirdly, the watershed algo-
rithm, as implemented in the SPM-SS toolbox (Nieto-Castañón & Fedorenko, 2012)
(https://www.nitrc.org/projects/spm_ss), was employed to locate local maxima in
the probability map. Clusters were defined around these local maxima by filling in
volumes surrounding them. Initially, vertices with local maxima were labeled, and
this labeling was iteratively extended to neighboring vertices until a local minimum
or a zero-valued vertex was encountered. The resulting parcels represent regions
where multiple subjects exhibited suprathreshold activity, without the requirement
that this activity occur in the exact same vertex across participants. Finally, the num-
ber of subjects contributing to each parcel was calculated, and parcels where more
than 80% of subjects contributed were selected as the final parcels. The advantage of
employing this method, as opposed to manual selection based on group mean, lies
in its ability to analyze nearby voxels from different subjects without the necessity

https://github.com/tlscott/make_parcels
https://github.com/tlscott/make_parcels
https://www.nitrc.org/projects/spm_ss
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of these vertices overlapping precisely in a common space. Additionally, this ap-
proach safeguards against the potential bias introduced by a few subjects exhibiting
exceptionally high vertex activity during the selection process (Scott & Perrachione,
2019).

FIGURE 2.3: I employ an algorithmic process to extract parcels in four steps: 1. Binarization:
Each subject’s searchlight map of number (thresholded at p<0.01) is binarized. 2. Probabil-
ity Map Creation: The binary maps are overlaid to generate a probability map, which is
subsequently smoothed. 3. Watershed Algorithm: The watershed algorithm is applied to
identify local maxima, around which parcels are created. 4. Filtering Criteria: Parcels are

retained if they encompass significant vertices from more than 80% of the subjects.

2.3 Results

Thirty-one healthy adult volunteers completed a numerosity comparison task on
arrays of dots orthogonally varying in numbers of items (6, 10, 17, 29), average item
areas (0.04, 0.07, 0.12, 0.2 visual squares degree), and total field areas (9 or 13.5 visual
degree diameter) while being scanned in a 3T MRI. Participants had to keep the
number of dots from the sample stimulus in their memory to compare it with an
occasionally presented subsequent match stimulus (indicated by a change in color
of the fixation cross). When presented with the match stimulus participants were
required to decide whether it was more or less numerous than the previous sample
stimulus and deliver their response by pressing a button with their right or left hand.

2.3.1 Behavioral performance and univariate fMRI activation results

Participants’ performance was overall high (Mean=82.14%, SD=6.83%, Range=66.66%
– 93.75%), indicating that they were attentive.

Surface-based random-effects group analysis for sample stimulus against the im-
plicit baseline, where participants fixating on a central cross and attended to the
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number of dot, revealed activation in a wide set of regions extending dorsally from
early visual to parietal up to the postcentral gyrus and the precentral sulcus in the
frontal cortex; Ventrally it included medial and lateral inferior occipito-temporal ar-
eas (Figure 2.4, thresholded at p < 0.01, TFCE corrected).

FIGURE 2.4: Results obtained from the surface-based group analysis (n = 31). The maps
show the activation elicited for all sample stimuli contrasted against the implicit baseline.
Activation maps are thresholded at p < 0.01, TFCE corrected, and displayed on Freesurfer’s
fsaverage surface with colored outlines identifying ROIs along the early visual (V1, V2, V3),
the dorsal (V3AB, V7, IPS12, IPS345), and the ventral stream (hV4, VO1, VO2, PHC1, PHC2)

from a surface-based probabilistic atlas (L. Wang et al., 2014).

2.3.2 Surface-based ROI representational similarity analysis

To unravel the contribution of both numerical and non-numerical features of the
stimuli to the distributed activity patterns of the BOLD signal, I performed repre-
sentational similarity analysis (Kriegeskorte et al., 2008). Figure 2.5 shows the results
from semipartial correlation between the neural and model RDMs across different
regions in the dorsal and ventral stream, respectively. Semipartial correlation en-
sures that the resulting coefficients reflect the unique variance explained by each
model while partialling out the effect of all other models. The results indicate that
the variance in brain activation patterns is significantly explained by number over
and above all other non-numerical features, in almost all regions starting already
in early visual areas (except V3 and PCH2, all p<0.01), and reaching its highest ex-
planatory power in higher-level regions: V7-IPS along the dorsal stream, and VO1-
VO2 along the ventral stream. The opposite pattern of results was true for most
non-numerical features: total field area explained independent portions of variance
in all regions, but maximally in V1-V3 and less so in higher-level regions of both
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streams; total surface area was significant only up to V3AB in the dorsal, and hV4 in
the ventral stream; density also was significant in V1-V3 and hV4, then stopped to
explain significant portion of the variance but regain some effect in IPS1-5. Finally,
the average item area was never significant, neither in the dorsal nor in the ventral
stream.

FIGURE 2.5: Color-coded ROIs for (A) dorsal and (B) ventral stream defined by the proba-
bilistic atlas (L. Wang et al., 2014) are displayed on Freesurfer’s fsaverage inflated surface. (C)
Semipartial correlation coefficient obtained from the representational similarity analysis for
number, average item area, total field area, total surface area and density from predefined
dorsal retinotopic ROIs. Number is represented along other visual features in almost all re-
gions and is amplified in association areas (from V3AB to IPS). Data points show mean semi-
partial correlation coefficient across subjects (n = 31) ± standard error of the mean (SEM). The
coloured points above the figure indicate where the effect significantly exceeds zero (p<0.01).
(D) Semipartial correlation coefficient obtained from the representational similarity analysis
for number, average item area, total field area, total surface area and density from predefined
retinotopic ventral ROIs. Within the ventral stream, number is solely represented in interme-
diate areas (from VO1 to PHC1). Data points show mean semipartial correlation coefficient
across subjects (n = 31) ± standard error of the mean (SEM). The coloured points above the
figure indicate where the effect significantly exceeds zero (p<0.01). All the semipartial cor-
relation coefficients were normalized according to the noise ceiling of their corresponding

regions, as detailed in the supplementary materials.
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To statistically support the differential impact of the different features across the
ROIs, I analyzed the semipartial correlation coefficients with four repeated measures
ANOVAs (see below) with ROIs and features as factors. ROIs were considered both
aggregated in three big regions, and separately for each of the individual regions,
for the ventral and the dorsal stream separately. The significant two-way interaction
between ROIs and features that I observed on all the four ANOVAs confirmed that
the semipartial correlation coefficient estimated for the different features were dif-
ferent across ROIs in both the dorsal stream hierarchy (for the three large regions:
F(4.30,128.95)=36.680, p<0.001; for the individual regions: F(8.10, 243.08)=32.404,
p<0.001) and in the ventral stream hierarchy (for the three large regions: F(3.56,
106.91)=29.330, p<0.001; for the individual regions: F(9.56, 286.82)=27.513, p<0.001).

I then performed five one-way repeated measures ANOVAs on each feature across
the ROIs. They revealed that all features were encoded differently across ROIs along
the dorsal stream hierarchy (all effects of ROIs for all features p<0.01, for both the
aggregated and the individual ROIs), and for all features but average item area
along the ventral stream (all p<0.0, average item area: three large ventral regions:
F(1.91,57.40)=2.304, p=0.111; eight individual ventral regions: F(5.45,163.43)=1.362,
p=0.238 ).

Finally, one-way repeated measures ANOVA on both large ROIs and individual
ROIs showed a main effect of features (all p<0.01).

2.3.3 Surface-based searchlight representational similarity analysis

Besides the region of interest analyses, I sought to investigate how patterns of activ-
ity across the cortical surface are captured by the models. To do this, I carried out
surface-based searchlight RSA, which revealed that number explained variance in
a number of regions widely spread across the cortical surface (Figure 2.6) that en-
compass but also extend well beyond the retinotopic ROIs. These regions include
the mid and anterior parietal cortex, both superior, inferior, and anterior to the intra-
parietal sulcus, the parieto-occipital cortex, the precentral gyrus and superior frontal
sulcus. Along the ventral stream, the regions isolated through the searchlight that
were not already part of the previously considered retinotopic ROI areas extended
laterally in the mid inferior temporal lobe. These results highlight that numerosity
is encoded not only in topographically organized visual areas, but also in a large
set of non-retinotopic parietal, temporal, as well as frontal regions. On the contrary,
all non-numerical features (apart from average item area, for which I could not find
any regions representing it) explained variance mainly in the early visual cortex (Fig-
ure 2.6).
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FIGURE 2.6: Surface-based searchlight representational similarity analysis searchlight re-
sults obtained from the surface-based group analysis (n = 31). The maps show how pat-
terns of activity across the cortical surface are captured by each model of interest while par-
tialling out the effect of other models. Activation maps are thresholded at p < 0.01, TFCE
corrected, and displayed on Freesurfer’s fsaverage surface with colored outlines identifying
ROIs along the early visual (V1, V2, V3), the dorsal (V3AB, V7, IPS12, IPS345), and the ven-
tral stream (hV4, VO1, VO2, PHC1, PHC2) from a surface-based probabilistic atlas (L. Wang

et al., 2014).

2.3.4 Visualization of similarity structure with multidimensional scaling

To further explore whether the neural representational geometry of the stimuli space
was similar or differed across the two streams I used MDS to obtain a low-dimensional
representation of the neural similarity structure, and I did it both across ROIs and
within ROIs.

The across ROIs MDS (Figure 2.7) suggested the presence of three well distinct clus-
ters: one including early visual regions, the other all ventral regions, and the third
one all the dorsal regions, suggesting that the three groups of regions represent the
stimuli space differently. This result thus prompted us to further investigate the
neural representational geometry within each ROI (see Figure 2.7). In the early vi-
sual areas the results indicate a rank-order representation of numerosity along both
dimensions, as well as a clear separation between stimuli with a large total field
area and with those with a small total field area. While this pattern remains ap-
proximately constant along the ventral stream ROIs up to VO2, it changes as I get
to the higher ROIs along the dorsal stream (IPS12 and IPS345): here the separation
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based on total field area decreases and a curved pattern around the midpoints rep-
resenting number emerges. This curved pattern is not evident in the ventral stream
areas VO1 and VO2. Interestingly, the RSA analysis indicated an equally strong
significant representation of numerosity in VO1, VO2, and V7, IPS12, and IPS345.
These results highlight that even though numerosity information is equally present
in associative retinotopic areas of both streams, the underlying geometry seems dif-
ferent across streams in retinotopic regions. Importantly, however, the observed
distinction diminishes when examining regions beyond the retinotopic ROIs, where
the method used to consistently select activated parcels revealed three clusters of
numerosity-responsive vertices: two in the dorsal stream overlapped with Harvey
and Dumoulin’s (2017) “NPC1” and “NPC2” and the ventral parcel as “NTO.” NPC1
and NPC2 located in and around the postcentral sulcus, while NTO was situated in
the lateral occipito-temporal cortex, akin to the regions described by Harvey and
Dumoulin (2017a) (Figure 2.8). Specifically, I identified three parcels in the lat-
eral occipito-temporal cortex with the following MNI coordinates in the right hemi-
sphere (46, -71, -6; 46, -67, 3; 47, -60, -6) and left hemisphere (-46, -62, -6; -48, -79,
-11; -44, -61, -13). These coordinates appear to be in close proximity to the region
reported by Harvey and Dumoulin (2017a) (right hemisphere: 44, -75, -4; left hemi-
sphere: -42, -77, 3).

FIGURE 2.7: (A) Multidimensional scaling (MDS) reveals similarity of the representational
structures between ROIs in a two-dimensional space. Here the proximity between any
two ROIs indicates how similar their representation of the stimuli is. Three clusters of re-
gions become apparent. MDS reveals representational similarities between stimuli in a two-
dimensional space for regions in the (B) EVC, (C) dorsal regions, and (D) ventral regions.
The black circles represent the 32 stimuli. They are labeled according to their numerosity (6,
10, 17, 29), and scaled in size to represent stimuli with small total field area (small circles)
and larger total field area (large circles). The red circles indicate the average coordinates of

each number.

All three regions, including the ventral area NTO and the parietal areas NPC1 and
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NPC2, exhibited a similar curved structure in response to numerosity (Figure 2.8),
indicating a similar representational pattern.

FIGURE 2.8: (A) ROIs (NTO, NPC1, NPC2) chosen using GCSS analysis from outside the
retinotopic regions of interest, as defined in the probabilistic atlas by L. Wang et al. (2014),
were visualized on the number activation map derived from the searchlight analysis. (B)
Multidimensional scaling (MDS) reveals representational similarities between stimuli in a
two-dimensional space for regions in the dorsal (NPC1, and NPC2) and the (C) ventral

(NTO) stream.

2.4 Discussion

The current study aimed to identify neural correlates underlying representation of
numeric and non-numeric features of non-symbolic numerical stimuli. In contrast
to the existing body of studies that predominantly relied on univariate fMRI tech-
niques or MVPA decoding to address this issue, similar to Castaldi et al. (2019), I
employed a different approach called representational similarity analysis (RSA) to
simultaneously investigate the impact of numeric and non-numeric features on the
blood-oxygen-level-dependent (BOLD) signal. In my study, I extended the work
of Castaldi et al. (2019) by applying RSA to regions beyond the dorsal stream, in-
cluding various regions within the ventral stream hierarchy. This allowed us to
investigate the representation of numeric and non-numeric features in a broader
network of brain regions involved in visual processing. Moreover, I employed a
searchlight approach to examine how patterns of brain activity across the cortical
surface were captured by the models. This analysis involved systematically evalu-
ating small spherical regions across the cortical surface to understand how numeric
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and non-numeric features influenced neural activity locally throughout the brain.

Representations of non-symbolic numbers are not restricted to only the dorsal
stream

Similar to Castaldi et al. (2019) the results revealed that the variability observed in
activation patterns within the regions along the dorsal stream can be attributed sig-
nificantly to numerosity when participants attended to numbers. This effect was ob-
served in early visual areas (V1 – V3), and the effect was more pronounced in regions
spanning from V7 (a higher visual area) to the intraparietal sulcus (IPS). However,
my results were not limited to the regions in the dorsal stream. I could also identify
regions in the ventral stream which are sensitive to the number of objects.

At first glance, the obtained results may not appear particularly surprising, consid-
ering the accumulating evidence using ECoG (Daitch et al., 2016; Kutter et al., 2022;
Pinheiro-Chagas et al., 2018; Shum et al., 2013) and fMRI (Amalric & Dehaene, 2016;
Grotheer et al., 2018; Kersey et al., 2019; Yeo et al., 2020) pointing towards the exis-
tence of a specialized brain region known as the number form area (NFA). This re-
gion is located in the inferior temporal gyrus (ITG) and has been associated with the
processing of Arabic numerals (for a review see: Yeo et al., 2017). The previous ab-
sence of evidence regarding a consistent localization of the purported number form
area (NFA) or visual number form area (VNFA) using fMRI has been attributed to a
potential dropout of the fMRI signal in this region due to the proximity of the NFA
to the signal-dropout zone generated by the nearby auditory canal and venous sinus
(Shum et al., 2013). Nevertheless, recent findings from Grotheer et al. (2018) indicate
that it is feasible to examine brain activity within this specific region of the inferior
temporal area using fMRI. The aforementioned studies provide compelling evidence
for the involvement of the inferior temporal gyrus (ITG) in number processing, none
of the previously mentioned studies used non-symbolic representations of numbers,
as I did in my own investigation. Instead, some of them employed Arabic represen-
tations of digits (Daitch et al., 2016; Grotheer et al., 2018; Pinheiro-Chagas et al., 2018;
Shum et al., 2013; Yeo et al., 2020) while others employed arithmetic or math-related
tasks (Amalric & Dehaene, 2016; Daitch et al., 2016; Grotheer et al., 2018; Kutter et
al., 2022; Pinheiro-Chagas et al., 2018; Shum et al., 2013). Considering the hypothe-
sis that the foundation of symbolic counting and arithmetic in humans can be traced
back to non-symbolic representations of numbers (Dehaene & Cohen, 2007; Nieder,
2020; Piazza, 2010) offers a potential explanation for my findings. For instance, in
a study by Cai et al. (2023), it was observed that there are overlapping yet distinct
tuned neural populations in the ventral temporal-occipital cortex that respond to
both symbolic and nonsymbolic numbers. The researchers interpreted these findings
as evidence supporting the connection between nonsymbolic and symbolic numer-
ical processing. However, it is important to note that alternative hypotheses argue



36 Chapter 2. Neural codes for numerosity in the dorsal and ventral pathway

that approximate number representations are insufficient for establishing the con-
ceptual content required for integers (Carey & Barner, 2019). For example, Lyons et
al. (2014) conducted a study where they directly correlated the activation patterns for
symbolic (words, digits) and non-symbolic (visual sets) numbers in the intraparietal
sulcus. However, their findings did not provide evidence of a shared representation
between these two types of numbers. In my study, I focused exclusively on non-
symbolic representations of numbers and did not assess participants with symbolic
representations. Consequently, my findings do not provide evidence either support-
ing or refuting the hypothesis that non-symbolic representations of numbers serve
as the foundation for the conceptual content of integers.

Earlier investigations employing whole-brain functional imaging failed to detect ev-
idence of numerosity representation beyond the established network of areas in the
frontal and parietal cortices (e.g. Piazza et al., 2004, 2007). This limitation may be
attributed to their restricted power, likely stemming from the use of passive or min-
imally demanding tasks. While more recent studies could identify numerosity rep-
resentation in the early visual areas (Bulthé et al., 2014, 2015; DeWind et al., 2019)
and temporal regions of cortex (Bulthé et al., 2014, 2015), one should interpret these
results with caution, as discussed before, because it remains uncertain whether the
information crucial for successful decoding in multivariate classification analysis,
when collapsing across the non-numerical dimensions of the stimulus set, was ex-
clusively numerical in nature. Additionally, it is worth noting that in the studies
conducted by Bulthé et al. (2014, 2015) the range of stimuli employed did not en-
tirely fall within the estimation range, some fell within the subitizing range.

Additional lines of inquiry provide evidence that numerosity representation extends
beyond the areas in the frontal and parietal cortices comes from population recep-
tive field (pRF) studies (Cai et al., 2021; Harvey & Dumoulin, 2017a; Harvey et
al., 2013; Paul et al., 2022). In these studies, a network of topographic numeros-
ity maps was identified across the brain, encoding numerosity. These Numerotopic
maps were categorized as numerosity temporo-occipital (NTO), numerosity parieto-
occipital sulcus (NPO), numerosity postcentral sulcus (NPC1, NPC2, NPC3), nu-
merosity frontal sulci (NF). These findings suggest that numerosity representation
extends beyond the frontal and parietal cortices. However, it’s worth noting that
these pRF studies did not encompass the entire brain, and they excluded anterior
frontal and temporal lobes from their analyses. Only Cai et al. (2021) conducted
full-brain-coverage imaging, but they did not find evidence of numerosity represen-
tation beyond the regions they had previously identified. Moreover, this study faces
a couple of important limitations. First, in all stimuli, the total surface area was held
constant across numerosities, resulting in a decrease in dot size and an increase in
density with number. Although they argued that the observed response solely re-
flects numerosity in their study, as it has been represented in the same numerotopic
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maps in their previous studies where they investigated numbers within the subitiz-
ing range without any correlation between number and both density and dot size
(Harvey & Dumoulin, 2017a; Harvey et al., 2013), this explanation may not be sat-
isfactory. Previously, they have demonstrated an association between numerosity
and object size in overlapping topographic maps (Harvey et al., 2015). Therefore,
it is also plausible that the reported maps reflect dot size as it decreased with nu-
merosity. Furthermore, in all of their studies, they did not control for the effect
of non-numerical features alongside numerosity on the variance explained by the
BOLD signal simultaneously, a step we adhered to in our study by employing semi-
partial correlation. Therefore, it remains plausible that the numerotopic maps reflect
the weighted combination of responses to non-numerical features, from which nu-
merosity can be indirectly computed (Gebuis et al., 2014). Second, to minimize the
effects of expectation and attention, we employed a randomized event-related de-
sign, whereas they presented stimuli in a strictly ordered manner (either ascending
or descending). This approach can introduce biases whose effects cannot be easily
separated from the sensory representation of the stimuli themselves. Research has
shown that expectations about specific categories can lead to an increase in BOLD
signals within category-selective regions, even in the absence of stimuli. For in-
stance, presenting the word ’FACE,’ which predicts the subsequent presentation of
face stimuli, elicits a higher BOLD signal in the fusiform area (Puri et al., 2009). Sim-
ilarly, face stimuli gradually emerging from noise result in a larger BOLD signal in
the fusiform area (Esterman & Yantis, 2009). Attention can also amplify stimulus-
driven responses in the brain (e.g. Castaldi et al., 2019; Ester et al., 2016; Jehee et
al., 2011). Recently, Lage-Castellanos et al. (2022) demonstrated that attending to a
specific sound feature can induce receptive field changes throughout the auditory
cortex. Attention can also modulate population receptive fields when the stimuli
are visual sets of dots through both faciliatory and suppressive components (Cai
et al., 2022) by a center–surround configuration (Zuiderbaan et al., 2012). In an ex-
periment, Cai et al. (2022) presented participants with both black and white sets of
dots, instructing them to focus on either the black or white dots. They proposed
that neural responses are a combination of enhanced responses to the numerosity
of the attended set and suppressive responses to the numerosity of the unattended
set. When stimuli are presented in a strictly ascending or descending order, the an-
ticipation for a certain numerosity may lead to enhanced responses to anticipated
numbers and suppression of responses to numerosities deemed improbable to be
presented. Therefore, the alternative explanation suggesting that non-numeric fea-
tures confounding numerosity tuning might more adequately explain the absence
of selective tuning for digits, except in the NTO map (Cai et al., 2023), as digits and
their low-level features are not confounded in the same way as numerosity.

In addition to fMRI studies, computational modeling using Convolutional Neural
Networks (CNNs) has provided valuable support for the hypothesis that number
representation is not confined solely to the regions in the dorsal stream. CNNs
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have demonstrated their ability to capture brain responses in the inferior tempo-
ral cortex (IT), a crucial region for object recognition in both humans and monkeys
(Khaligh-Razavi & Kriegeskorte, 2014). By training CNNs on object classification
tasks, researchers have successfully accounted for the neural activity observed in
the IT cortex. Recent studies have extended the application of CNNs to investigate
the representation of numerosity. It has been revealed that number-detecting units,
similar to the specialized neurons recorded in the prefrontal and parietal cortex of
monkeys, emerge in the final layer of a CNN trained for visual object recognition
(Nasr et al., 2019). Surprisingly, even untrained CNNs have shown the emergence of
these number-detecting units (Kim et al., 2021). Overall, these findings collectively
suggest that the neurocomputational mechanisms involved in extracting numeros-
ity are not limited exclusively to the parietal and frontal regions. Instead, evidence
from computational modeling using CNNs suggests that regions along the ventral
stream, including the IT cortex, may also play a role in representing numerical infor-
mation.

In my study, I successfully identified regions in both the dorsal and ventral streams
of the brain that are involved in representing numerosity. This finding suggests
that numerosity processing is not confined to a single location but distributed across
multiple cortical regions. Similar to how sensory maps operate (Young, 1998), it is
plausible that different cortical locations in the brain function in parallel to analyze
numerical information. Given the distinct functional roles observed in various cor-
tical regions, such as object recognition, attentional control, decision making, and
mathematical cognition, it is plausible that quantity processing plays a guiding role
in these different cognitive functions. This notion is supported by previous research
by Harvey and Dumoulin (2017a), who proposed that numerosity representation in
each cortical location may serve different functional purposes. However, an alterna-
tive possibility is that the representation of numbers in ventral regions is a result of
projections from the dorsal regions and that it develops as the effect of formal math
education (Dehaene-Lambertz et al., 2018; Kersey et al., 2019). This connectivity-
based framework suggests that the ventral regions receive input from the dorsal
regions and uses this information. In a recent study by Conrad et al. (2022), com-
pelling evidence was presented regarding the structural and functional connectivity
of the NFA in the occipitotemporal cortex (OTC) with the parietal regions. For fur-
ther investigation, it would be intriguing to explore whether the development of the
NFA in its specific locations is influenced by differences in the connectivity of that
region with the rest of the brain. This intriguing line of inquiry is reminiscent of a
study conducted by Saygin et al. (2016), in which longitudinal scanning of children
before and after they acquired reading skills revealed that early connectivity pat-
terns play a crucial role in shaping the functional development of the visual word
form area (VWFA). Drawing parallels from this study, exploring the potential influ-
ence of pre-existing connectivity on the developmental trajectory of the NFA could
provide valuable insights into the mechanisms underlying numerical processing in
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the ventral stream.

Representations of non-numeric features are mostly restricted to the early visual
area

The results obtained from the searchlight analysis revealed an interesting pattern of
brain activation. Specifically, the representation of non-numeric features was pre-
dominantly localized in the early visual area, while the representation of numbers
spread across the cortex. These findings were further supported by the ROI analysis,
which corroborated the results obtained from the searchlight analysis. It is notewor-
thy that only density showed amplified representation in the IPS, which could be at-
tributed, at least in part, to its correlation with number. In my experimental design,
density exhibited the strongest correlation with number among other non-numeric
features. The significant representation of density detected solely through the ROI
analysis could indicate a non-focal representation of density in the IPS as searchlight
analyses have a tendency to bias towards identifying focal representations (Bulthé
et al., 2019). Therefore, the detection of density representation only through the ROI
analysis may result from a distributed representation of density in the IPS. Moreover,
the total field area remained significant in the IPS, ventral occipital (VO) region, and
parahippocampal cortex (PHC), without showing amplification along the dorsal or
ventral stream. In contrast, it was specifically numerosity that exhibited amplified
representation along the dorsal and ventral stream.

Quite surprising compared to my initial expectations, I failed to find any evidence
of average item area representation along the dorsal or ventral stream using ROI
or searchlight analysis. Previous research has demonstrated that observers can per-
ceive the average size of an array of circles, even during brief displays lasting less
than one-tenth of a second (Ariely, 2001; Chong & Treisman, 2003). However, the
perception of average size is a topic of debate, partly due to the uncertainty sur-
rounding the existence of low-level size detectors, unlike the perception of average
motion, position, or orientation (Whitney & Leib, 2018). In a study by Castaldi et
al. (2019), no evidence of information regarding the average item area was found in
the pattern of neural activity across the examined regions, even when participants
directed their attention to the average item area. These findings suggest that the neu-
ral mechanisms underlying the representation of average item area may differ from
those involved in analyzing the size of individual objects, which has been shown to
partially overlap with numerosity maps in parietal regions (Harvey et al., 2015). The
perception of average item area has been a topic of inquiry, and some researchers
propose that it, along with density perception, relies on texture processing mecha-
nisms rather than the identification of individual items (Im & Halberda, 2012). This
suggests that instead of processing each item individually, the brain processes the
arrangement and patterns of elements in a visual scene to extract information about
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average size or density. Recent findings propose that the ventral visual pathway
may primarily represent local features rather than shapes (Ayzenberg & Behrmann,
2022). In a series of studies, researchers transformed naturalistic object images into
texture-like representations called “texforms.” These texforms preserved the visual
statistics of the images while distorting the shapes of the objects, rendering them
unrecognizable to human observers. Despite the lack of object recognition, these
unrecognizable texform images evoked similar large-scale organizational patterns
as real objects in the ventral pathway. The neural topography of the ventral path-
way corresponded functionally to dimensions of animacy and real-world size (Long
et al., 2018; R. Wang et al., 2022). Another study by Cant and Xu (2012) revealed that
object ensembles and surface textures produce equal release from adaptation, sug-
gesting similar processing mechanisms in the parahippocampal place area (PPA).
These findings further support the notion that ensembles and textures are processed
in a comparable manner. Based on these results, it might be expected that the repre-
sentation of average item area would be present in the ventral pathway. However, in
my study, I did not identify any specific region in the ventral stream that represented
the average item area. The absence of average item area information could be at-
tributed to a lack of attention. In a study conducted by Jackson-Nielsen et al. (2017),
they used a modified inattentional blindness paradigm and observed that color and
size ensembles were not perceived when attention was not directed towards them.
This may explain why in my study I could find average item area representation in
the ventral pathway. However, further investigation is needed to find out whether
in presence of attention to this feature, I could find evidence of information regard-
ing the average item area in the ventral pathway or not.

The geometry of representation is similar across the dorsal and ventral regions
(but not in retinotopically organized regions)

Through the use of MDS on the dissimilarity matrices obtained from various regions
of interest, I was able to unveil a condensed, low-dimensional representation of the
underlying similarity structure present within these matrices. I visualize the first
two dimensions of the MDS output. Closer proximity of the points to each other
within this visualization correspond to patterns that exhibit greater similarity, while
those situated farther apart indicate patterns with comparatively lesser resemblance
(Nili et al., 2014). An evident pattern in the visualization resulting from MDS is a
clear separation of stimuli with larger total field area and smaller total field area in
the early visual areas (V1, V2, and V3). While this clear separation is evident in
the ventral regions up to mid occipito-temporal regions (VO1 and VO2), this clear
separation is replaced by a curved structure in the parietal region (IPS 12, IPS 345).
In a recent study, conducted by (Nelli et al., 2023), a similar curved structure was
identified around a midpoint from the MDS on BOLD data originating from the
posterior parietal cortex (PPC). This analysis was conducted while subjects were
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engaged in a comparison task involving rank-ordering novel objects. They argued
that PPC encodes items at the extremes of the rank-ordered list, where comparisons
are unambiguous, and middle items, where comparisons become less clear, with
distinct neural codes for each. A similar mechanism might be at play in my case. It’s
plausible that subjects encoded the extreme numbers (9 and 29) differently from the
intermediary numbers in the list (10 and 17) within the parietal regions.

The presence of this curved manifold enveloping a midpoint, as extracted from MDS
on RDMs derived from the IPS, might reveal dimensions of numerosity perception
that hold cognitive relevance. The first dimension arising from the MDS process
can be seen as an absolute mapping of numbers onto space (Hubbard et al., 2005).
The functional relevance of the second dimension remains unknown. According
to Summerfield et al. (2020), the posterior parietal cortex is capable of encoding
abstract relational information among stimuli, whether situated in physical space
(Behrens et al., 2018) or within an abstract conceptual space (Freedman & Assad,
2006), all within a low-dimensional framework. This efficient, low-dimensional en-
coding proves particularly beneficial for adapting to novel situations. Thus, the
presence of two distinct neural pathways, as revealed by our MDS analysis of ROIs,
can likely be explained by the dimensionality of neural data. The ventral stream
is responsible for creating high-dimensional representations crucial for identifying
objects, whereas the dorsal stream focuses on forming low-dimensional represen-
tations that are optimal for abstraction and generalization. In the realm of num-
bers and magnitudes, it has been proposed that there could be overlapping neural
codes for space, time, and number (Sheahan et al., 2021; Walsh, 2003), which as-
sist in grasping the analogical connections between abstract concepts. Notably, this
representation is one-dimensional, with numbers arranged along a left-to-right ori-
ented ’mental number line,’ where smaller numbers are positioned on the right and
larger numbers on the left (Hubbard et al., 2005). Summerfield et al. (2020) further
suggest that the acquisition of structural knowledge is intrinsically linked to action,
similar to the function of neurons in the Lateral Intraparietal area (LIP), which serve
as information accumulators to direct behavior (Mazurek et al., 2003; Roitman &
Shadlen, 2002). Similarly, during a task where participants were asked to generate
random numbers, they tended to move their eyes to the left when thinking of larger
numbers and to the right when considering smaller numbers (Loetscher et al., 2010).
Consequently, the observed curvature in the MDS may reflect a decision variable
essential for behavior guidance; in terms of numbers, this could relate to the degree
of being towards the left or right mental number line (or being smaller or larger).
Notably, a recent CNN model, specially trained for a numerosity classification task,
displayed a similar curved structure in its final layer (Mistry et al., 2023). This align-
ment suggests that a curved manifold could be functionally relevant in the context
of comparative decision-making. These representations seem notably absent in the
ventral retinotopic regions of the brain.
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However, extending my analyses to non-retinotopic regions representing numeros-
ity, as identified through the searchlight analysis, I found that the same curved man-
ifold extended not only to lateral parietal cortex (in regions NPC1 and NOP2), but
also, notably, to the lateral occipito-temporal (NTO) areas. This structural similarity
could indicate the presence of important connectivity between the dorsal and ventral
pathways (Conrad et al., 2022).

2.5 Conclusion

In summary, my study illustrates that visual numerosity is represented beyond the
non-numerical visual features in a large set of regions. This representation is present
already in early visual areas and spreads along both the dorsal pathway (up to the
anterior parietal region) but also the ventral stream (reaching the lateral and inferior
occipito-temporal cortex). This representation surpasses the boundaries of retino-
topically organized regions and extends to higher-level regions in both streams. I
also observed that the neural representational geometry was consistent across both
the dorsal and ventral association areas, diverging significantly from that character-
izing early numerosity representations in visual areas. The shared curved manifold
in both streams, where numerical information is encoded alongside decision vari-
ables, underscores the potential importance of both dorsal and ventral associative
regions in numerosity decision-making processes.
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Chapter 3

Investigating spatio-temporal
representation of visual
numerosity of the human brain

3.1 Introduction

Over the past two decades, the scientific community has accumulated substantial ev-
idence of visual numerosity representation at the population level using fMRI (see
the second chapter, for a review see also: Piazza & Eger, 2016). This process is fre-
quently explored using visually presented dot arrays and has been investigated in
various brain areas, including both dorsal, especially parietal regions (Castaldi et al.,
2019; Eger et al., 2009; Harvey et al., 2013; Piazza et al., 2004), and also more recently
ventral streams (Harvey & Dumoulin, 2017a, see also second chapter). While these
studies illustrate where in the brain number representation may occur, the low tem-
poral resolution of fMRI fails to provide insights into when numerosity information
emerges in the brain. While previous finding on how the pattern of BOLD signal
activity from fMRI across various brain regions can be simultaneously captured by
both numeric and non-numeric features of the visual set of dots (Castaldi et al., 2019,
see also second chapter) are quite convincing that number uniquely contributes to
the variance of BOLD signals across different regions of the brain, neuroimaging re-
sults remain inconclusive regarding whether number is encoded directly (thus can
be considered as a “primary” visual feature) or not. It is well-known that the visual
system involves both a feedforward flow of information from early visual areas to
higher brain regions and feedback from higher brain regions to the early visual ar-
eas (Lamme & Roelfsema, 2000). Therefore it is possible that even if number appears
as being represented independently from other features in a certain region, e.g., the
intraparietal sulcus (IPS), that representation could be the outcome of a combination
of other non-numeric features encoded earlier on in another region, e.g., early visual
areas. At the same time, observing a separate representation of number and other
visual features in early visual areas does not guarantee that the pattern of response
represents what is computed early in time and that is not due to a back-projection
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from higher-level brain areas. Hence, understanding the timing of the representa-
tion of numeric and non-numeric features becomes crucial to be more specific about
how number is encoded in the brain. If numerosity information is encoded before
other non-numeric features from which number can be computed, then this is strong
evidence that number could be considered a primary visual feature. On the con-
trary, if numerosity information is encoded after these features, it is possible (but
not necessary) that it is derived by the combination of non-numeric information, in-
dicating an indirect encoding process. To the best of my knowledge, currently only
few studies directly investigated the temporal representation of visual number in
human adults using electroencephalogram (EEG; Fornaciai et al., 2017; Gebuis &
Reynvoet, 2013; Park et al., 2015). Contrary to the study by Gebuis and Reynvoet
(2013), which found no evidence of numerosity-related effects in the ERP signals of
EEG, both Park et al. (2015) and Fornaciai et al. (2017) provide evidence that a sig-
nificant portion of variance in the ERP signal can be attributed to numerosity. The
absence of numerosity information in the ERP signal in Gebuis and Reynvoet (2013)
study may be attributed to problematic stimuli design, where there was much larger
variation in non-numerical features than in numerosity. This difference could result
in masking the effect of numerosity, as it has less variance and is therefore less de-
tectable. On the other hand, although Park et al. (2015) and Fornaciai et al. (2017)
provided evidence for the representation of numerosity very early in time, their re-
sults remain inconclusive, as they only explored the timing of numerosity and two
mathematically constructed variables, “size” and “spacing” (see the second chap-
ter of the thesis). This raises the question of how other perceptually relevant non-
numeric features of the visual set of dots are represented in the brain and whether
these features can account for the numerosity information observed or not.

In this study, similar to previous chapter, I employed time-resolved representational
similarity analysis (Kriegeskorte et al., 2008) to model the unique contributions of
numeric and all perceptually relevant non-numeric features to the magnetoencephalog-
raphy (MEG) data. The rationale behind this approach is that if numbers are en-
coded before non-numeric features that could indirectly contribute to the represen-
tation of numbers, then numbers should be considered primary visual features.

While time-resolved results from EEG or MEG can provide a clear picture of the
temporal representation of numeric and non-numeric features of visual stimuli, the
cortical source of each feature remains a question due to the limited spatial resolu-
tion of EEG or MEG. While some studies (Fornaciai et al., 2017; Park et al., 2015) have
attempt to support the claim that the early visual area acts as the source for extract-
ing numerosity information from visual stimuli by relying on the observation that a
significant proportion of the variance in the ERP can be attributed to numerosity on
the medial occipital channel of EEG, linking scalp topographies to underlying source
locations proves challenging due to the well-established phenomenon that electrical
potentials from various sources blend at the level of scalp recordings (Baillet, 2017).
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Other studies that employed steady-state visual evoked potentials (SSVEP), a brain
response to stimuli flickering at a specific frequency, in children (Park, 2018) and
adults (Guillaumé et al., 2018; Lucero et al., 2020; Van Rinsveld et al., 2020) have
made a similar claim regarding the underlying source of numerosity. However, their
results are again unfounded as they are solely based on the scalp topography of the
EEG response. Hence, the temporal unfolding of numeric and non-numeric fea-
tures across different brain regions remains a subject of debate. While fMRI data (as
discussed in the second chapter) can give us insights into where numerosity is rep-
resented in the brain, and MEG data can provide a clear temporal representation of
numeric and non-numeric features across the brain, we lack a clear understanding of
the temporal unfolding of each feature within the regions that fMRI results suggest
numerosity is encoded.

Here and in the rest of this chapter, I explored the temporal dynamics of various
retinotopic regions (L. Wang et al., 2014) along both the dorsal and ventral streams
using MEG-fMRI fusion based on representational similarity analysis (Cichy & Oliva,
2020). Employing a model-based MEG-fMRI fusion allowed to determine where
in the brain and to what extent each numeric and non-numeric feature is encoded
across the time course of trials. This approach enabled us to ascertain whether num-
bers are encoded before non-numeric features within the predefined brain regions.
Moreover, it provided insight into the latency differences across the brain regions.

3.2 Methods

3.2.1 Participants

Thirty-nine healthy adults (twenty-one females, average age 25.1 years) with either
normal vision or vision corrected participated. The sample size for our study was
established based on a prior study by Castaldi et al. (2019), which involved twenty
healthy adults. Our chosen sample size is comparable to or even exceeds the typical
sample sizes employed in similar experiments in the field (e.g. Fornaciai et al., 2017;
Gebuis & Reynvoet, 2013). The University of Trento’s ethics committee in Italy ap-
proved the study, and all participants provided written informed consent and were
compensated for their participation. To keep head movement below 10 mm, data
from six participants were omitted from the final analysis. Additionally, three more
participants were excluded because of poor behavioral performance (accuracy be-
low 60%). This resulted in a final sample of thirty subjects (17 females, average age
25.6 years).

3.2.2 Stimuli and procedure

Before the MEG experiment, participants were introduced to the task through 20
practice trials conducted outside the MEG environment. During the MEG scanning
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session, participants were presented with arrays of black dots on a mid-gray back-
ground. These dots orthogonally varied in terms of number, average item area, and
total field area. There were 32 conditions resulting from the combination of four nu-
merosities (six, ten, seventeen, or twenty-nine dots), four average item areas (0.04,
0.07, 0.12, 0.2 visual square degrees), and two total field areas (defined by a virtual
circle with diameters of approximately 9 or 13.5 visual degrees; Figure 3.1). The
selection of these numbers and average item areas was based on their perceptual
discriminability, as established in previous research (Castaldi et al., 2018, 2019). The
total field areas were chosen to ensure suitably sparse arrays of dots (1 dot/vd2) to
be within the numerosity estimation regime and not within the density estimation
regime (Anobile et al., 2013).

In each trial, a set of dots was presented for 500 ms and displayed over a wide thin
red fixation cross (the sample set). Participants were asked to estimate the number
of dots and hold that information in memory until the appearance of the next set,
after a variable interstimulus interval (ISI) of 500 or 800 milliseconds (Figure 3.1).
When the color of the fixation cross changed from red to green, participants were
instructed to compare the number of dots in the current set (the match set) with the
previous set and indicate whether it was larger or smaller by pressing one of two
buttons, following provided instructions. After a delay of 1.8 seconds, the next trial
began. Match sets differed by approximately 2 just noticeable differences (JNDs) in
numerosity from the previous sample stimulus, based on the average numerosity
JND estimated from a separate group of healthy adults (Castaldi et al., 2018). The
other features (total field area and average item area) remained constant. Match
trials occurred approximately 20% of the time.

The experiment consisted of twelve runs, each containing four blocks. Each block
included thirty-six trials, comprising four match trials and thirty-two sample trials,
one for each of the thirty-two conditions (4 number × 4 average item area × 2 total
field area). After the sixth run participants’ response assignments were switched.
Brief practice sessions were conducted at the beginning of the experiment and after
the hand assignment change. Each run had a duration of approximately 3.5 minutes.

3.2.3 MEG recordings and preprocessing

Subjects’ brain activity was recorded at the Center for Mind/Brain Sciences at the
University of Trento using a MEG system comprising 306 channels (204 planar gra-
diometers and 102 magnetometers) manufactured by Elekta-Neuromag Ltd. in Helsinki,
Finland. The data was acquired at a sampling rate of 1000 Hz and underwent on-
line band-pass filtering within the frequency range of 0.01–330 Hz. The participants
were seated upright within a room that was shielded against magnetic interference
(AK3B, Vakuumschmelze, Hanau, Germany). Prior to the recording session, the
unique head shape of each participant was measured using a Polhemus FASTRAK
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FIGURE 3.1: (A) A visual representation of the entire collection of stimulus conditions. The
dataset encompasses orthogonal variations in multiple aspects, including the number of
items (6, 10, 17, 29), the average item area (0.04, 0.07, 0.12, and 0.2 visual square degree), and
the total field area defined by imaginary circles with diameters of 9° and 13.5°. (B) Visual
representation of the chronological sequence of trials during the scanning process. Partici-
pants were instructed to focus on the number of dots and retain this information until the
subsequent dot set was displayed. Periodically, the fixation cross’s color transitioned from
red to green. When this color shift occurred, participants were instructed to assess whether
the number of dots in the current set, known as the match stimulus, was greater or lesser
than the previous one, and indicate their choice by pressing a button with their left or right

hand.

3D digitizer (Polhemus, Vermont, USA). This process involved acquiring three fidu-
cial points (nasion and pre-auricular points), five head position indicator (HPI) coils
(one on each of the left and right mastoids and three on the forehead), and approxi-
mately 100 more locations distributed across the subjects’ skull. At the start of each
run, head positioning inside the MEG helmet was measured by inducing a non-
invasive current through the HPI coils. Additionally, both horizontal and vertical
electro-oculograms (EOGs) were recorded, along with an electrocardiogram (ECG),
with the intention of later offline eliminating artifacts related to eye movements and
heart activity. For stimulus presentation and control, Psychtoolbox 3 (Brainard, 1997)
was employed. Each visual stimulus image was rear-projected onto a screen posi-
tioned at a distance of 120 cm from the participant’s eyes using a VPixx PROPixx
projector.
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The offline raw MEG data underwent a visual inspection to identify and eliminate
noisy channels. Subsequently, I employed the MaxMove function of the Elekta Max-
filter software to remove head motion and to denoise the data using Maxfilter Signal
Space Separation (Taulu et al., 2003). Following the maxfiltering, I proceeded with
additional preprocessing using MNE-Python version 0.24.1 (Gramfort, 2013). First,
the data underwent band-pass filtering within the range of 0.05 to 330 Hz and band-
stop filtering at 50 Hz and its harmonics for line noise removal. To eliminate arti-
facts caused by eye movement and heart rate, independent components of the MEG
data were computed and correlated with the EOG and ECG signals. Components
displaying significant correlations were subsequently removed through manual in-
spection. Subsequently, to enhance signal-to-noise ratio (SNR) and lower compu-
tational demands, I applied temporal smoothing on signals using Savitzky–Golay
filter (Acharya et al., 2016, with order 4 and frame size 25, ) and downsample the
data to 200 Hz (Grootswagers et al., 2017). Following these preprocessing steps, the
data was epoched into 0.9-second trials, starting 100 ms before the stimulus onset.
Each epoch was then normalized by subtracting the baseline period mean. Given
that magnetometer and gradiometer sensors have different measurement units, I
opted to exclusively use gradiometer data for my subsequent analysis. This choice
aligns with prior studies, such as Ritchie et al. (2015), which exclusively focused on
gradiometer measurements, as well as studies like Kaiser et al. (2016) that concen-
trated solely on magnetometer data. Additionally, some studies, such as Proklova
et al. (2019), have chosen to report results separately for each sensor type.

3.2.4 Time Resolved Multivariate Representational Similarity Analysis
(RSA)

To explore whether and when the representations of numerical and non-numerical
features of the stimuli can be disentangled from the brain signal I employed repre-
sentational similarity analysis combined with semipartial correlation (Kriegeskorte
& Kievit, 2013; Kriegeskorte et al., 2008).

To create neural representational dissimilarity matrices (RDMs), I organized the pre-
processed MEG data into pattern vectors, each encompassing MEG data from all
selected channels for each trial and time point. Following this, I averaged data from
trials of the same conditions into single trial representations. Consequently, this pro-
cess yielded 32 distinct MEG patterns, each corresponding to one of the 32 condi-
tions, for each time point (100 ms before to 600 ms after stimulus onset). To quantify
the similarity between all pairs of these 32 patterns, I employed Pearson correlation.
I then subtracted these correlation values from 1 to generate 32 x 32 MEG RDMs for
each time point. Following the approach outlined in the previous chapter, I then
conducted a semipartial correlation analysis (using Pearson correlation) to assess
the extent to which the dissimilarity structure in MEG patterns could be attributed
to multiple predictor or model matrices that capture key quantitative dimensions of
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the stimuli. These dimensions include number, average item area, total field area,
total surface area, and density. These five model RDMs quantitatively represent the
logarithmic distance between pairs of stimuli in terms of number, average item area,
total field area, total surface area, and density. The semipartial correlation between
a vectorized neural RDM and the specific model RDM under examination measures
the unique variance shared between the neural RDM and the chosen model RDM
while partialling out the effect of all other models RDM from the neural RDM. A
diagram outlining this procedure is presented in Figure 3.2 The analysis was im-
plemented using the CoSMoMVPA MATLAB toolbox (Oosterhof et al., 2016) and
custom-written code in MATLAB R2019 (The MathWorks, Inc., Natick, MA).

FIGURE 3.2: Representational dissimilarity matrices (RDMs) extracted from MEG signals
were subjected to a semipartial correlation analysis. MEG RDMs were generated by com-
puting the 1 – Pearson correlation between channel activations across time points for every
pair of images. In the semipartial correlation analysis, five model RDMs were used as pre-
dictors, representing the logarithmic distance between pairs of stimuli based on number,

average item area, total field area, total surface area, and density.

3.2.5 Sensor-space Searchlight Multivariate RSA

In order to identify sensors over time where the independent contribution of five
model RDMs to the neural RDM could be observed, I conducted a sensor-space
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searchlight analysis (Kriegeskorte et al., 2006; Proklova et al., 2019). Applying the
method described in the preceding section, I employed semipartial correlation anal-
ysis (Pearson correlation) to evaluate the degree to which the dissimilarity structure
in MEG patterns be explained by the model matrices. To achieve this, I designated a
neighborhood for each MEG channel comprising its 20 nearest MEG channels. Sub-
sequently, I conducted time-resolved RSA for each MEG channel, with the analysis
being restricted to the data from its neighboring channels. I proceeded to average
the results in 150 ms bins, producing a single map representing the grand average
correlation coefficient for each feature.

The analysis was carried out using the CoSMoMVPA MATLAB toolbox (Oosterhof
et al., 2016) alongside custom-written code in MATLAB R2019 (The MathWorks, Inc.,
Natick, MA). The results were then visualized using the ft_topoplotER function in the
FieldTrip Toolbox (Oostenveld et al., 2011).

3.2.6 Time-Frequency Resolved Multivariate RSA

I employed time-frequency decomposition to investigate whether the representa-
tion of numbers occurs in a distinct frequency band compared to other non-numeric
features. These findings could be crucial to indicate whether number is encoded
separately from other non-numeric features. Following Xie et al. (2022), I produced
time-frequency decompositions of the preprocessed MEG time series using Morlet
wavelets for each trial and sensor. The wavelets used in the analysis had a consis-
tent length of 2,600 ms and were logarithmically distributed across 40 frequency bins
ranging from 2 Hz to 30 Hz. Absolute power values for every time point and fre-
quency bin were derived by taking the square root of the resulting time-frequency
coefficients. These power values were then normalized to represent relative changes,
expressed in decibels (dB), concerning the pre-stimulus baseline (–100 ms to 0 ms
in relation to stimulus onset). This analysis was carried out using custom-written
MATLAB R2019 code (The MathWorks, Inc., Natick, MA). I decompose the MEG
time series using a custom function developed by Xie et al. (2022) (available at
https://github.com/siyingxie/VCR_infant/blob/main/code/timefrexdecomp.m).

3.2.7 Temporal Generalization Analysis

I employed temporal generalization analysis (King & Dehaene, 2014) to better ex-
plore the potential evolution of the neural representation of numbers over time. This
analysis allows making inferences on the level of stability of the neural code in time.
In particular, when it is possible to decode a given information across different time
points this indirectly proves that the neural representational format of that informa-
tion remains sufficiently constant in time. On the contrary, when decoding cannot
be extended in time, this indicates that the neural representational format undergoes
important transformations. To conduct this analysis, I first randomly combined ev-
ery four trials into pseudo-trials in order to enhance the overall signal-to-noise ratio

https://github.com/siyingxie/VCR_infant/blob/main/code/timefrexdecomp.m
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(Guggenmos et al., 2018). Subsequently, I trained a support vector machine (SVM)
classifier to decode the four numbers (6, 10, 17, and 29) at a specific time point and
then tested the same classifier across all other time points separately. The preced-
ing steps were repeated for a total of twenty randomized assignments of trials to
pseudo-trials (permutations). Finally, I computed the average decoding accuracy
across all permutations. The analysis was carried out using the CoSMoMVPA MAT-
LAB toolbox (Oosterhof et al., 2016) and LIBSVM (Chang & Lin, 2011).

3.2.8 Model-based MEG-fMRI Fusion

To unfold the temporal dynamics of different brain regions involved in processing
numerosity and the non-numeric features I used model-based MEG-fMRI fusion (Ci-
chy & Oliva, 2020). The RSA-based MEG-fMRI fusion approach enables us to ascer-
tain whether and when (in time) the representational structure in a specific brain
region, as determined by fMRI, aligns with the representational structure derived
from time-resolved MEG signals. When there is a correspondence between the fMRI
RDM of a brain region and the MEG RDM at a particular time point, it implies a
shared representational format within that brain area at that specific moment in time
(Cichy, Pantazis, & Oliva, 2016; Cichy et al., 2014). Here, building upon the work of
Hebart et al. (2018), I expanded this approach to incorporate different models in the
fusion process. This extension allowed us to spatiotemporally resolve the processing
of both numeric and non-numeric information.

For the model-based MEG-fMRI fusion, three distinct types of RDMs were em-
ployed: (I) five model RDMs representing number, average item area, total field
area, total surface area, and density, as previously described, (II) MEG RDMs from
individual subjects, as detailed earlier, and (III) five group-averaged RDMs derived
from thirty-one participants in five regions of interest (ROIs) as outlined in the sec-
ond chapter. In my fMRI study, I employed the exact same task as in the current
study, except for the timing of the stimuli, which were presented at a faster pace
in the MEG experiment. I used t-statistics from the first-level analysis to derive the
neural RDM. This was achieved by calculating the correlation distance between ac-
tivation patterns for every pair of conditions, done separately for each region of
interest (ROIs: V13, V3ABV7, IPS15, VO, and PHC).

Twenty-three participants from the fMRI study overlapped with the participants in
this study. Consequently, I used the group-average RDMs from the fMRI study as
the most reliable estimate of the actual pattern dissimilarity (Nili et al., 2014). A
schematic of this process is shown in Figure 3.3. For subsequent analysis, I extracted
the lower triangular component of each RDM, excluding the diagonal, and vector-
ized them. These vectors were referred to as representational dissimilarity vectors
(RDV). To identify the shared variance among three desired RDVs (MEG RDV, fMRI
RDV, and number RDV) while partialling out the effect of other RDVs (RDVs related
to non-numeric features, including average item area, total field area, total surface
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area, and density), I initially regress out the effects of all five model RDVs. This pro-
cess allowed us to isolate the unexplained portion (residual) within the MEG RDV.
Subsequently, I calculated the semipartial correlation coefficient between the fMRI
RDV and the MEG RDV, while partialling out the effects of all non-numeric RDVs
and the residual RDV from the previous step. The resulting semipartial coefficient
illustrates the shared variance among MEG, fMRI, and number RDV, as depicted in
the Venn diagram in Figure 3.3.

3.2.9 Multidimensional Scaling (MDS)

While the results from RSA reveal how each feature contributes to the variance of
my data in a hypothesis-driven manner, I also explore the latent structure of my
data using a data-driven approach with MDS (Kruskal, 1964). This approach was
applied directly to the RDM, and subsequently I visualized the first two dimen-
sions of the MDS output. With MDS I visualize the organization of stimuli on a
two-dimensional plot, where the distances between them accurately reflect the dif-
ferences in the neural response patterns they evoked. Stimuli positioned closely
together in these representations represent similar neural response patterns (Nili et
al., 2014). The MDS analysis was conducted using the MATLAB function cmdscale
on the group-average RDM across participants spanning various time points from
the onset of stimulus presentation to 600 ms. The group-average RDM is calculated
by averaging the RDMs from all thirty subjects. This group-level RDM is more accu-
rate and less susceptible to noise compared to the RDMs obtained from individual
subjects (Nili et al., 2014).

3.2.10 Statistical Testing

Throughout this chapter, statistical significance was evaluated through a one-sample
t-test against zero across subjects. To control for multiple comparisons, the results
were corrected using threshold-free cluster enhancement (TFCE; Smith & Nichols,
2009), employing Monte Carlo simulations with 10,000 permutations, as implemented
in the CoSMoMVPA MATLAB toolbox (Oosterhof et al., 2016). The resulting statis-
tics were then thresholded at p < 0.01 (one-tailed) to determine significance. For the
searchlight analysis, significance was evaluated independently for each time point
using the TFCE method. This method helped identify sensors where the contribu-
tion of a specific predictor to neural dissimilarity was significantly above zero.

3.3 Results

Thirty healthy adult volunteers were presented with arrays of dots varying in the
number of items (6, 10, 17, 29), average item areas (0.04, 0.07, 0.12, 0.2 visual square
degrees), and total field areas (9 or 13.5 visual degree diameter) while undergoing
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FIGURE 3.3: (A) The current model-based MEG-fMRI fusion formulation involves capturing
the shared variance among three dissimilarity matrices: (1) a group-averaged fMRI RDM
created from voxel patterns within a specific ROI, (2) a model RDM representing the ex-
pected dissimilarity structure related to a variable of interest (e.g., number), while excluding
the influence of other variables of interest (e.g., average item area, total field area, total sur-
face area, and density), and (3) an MEG RDM derived from MEG data at a specific time
point. This analysis was conducted independently for each MEG time point, resulting in
a time course of semipartial correlations for each ROI. (B) Identifying the shared variance
between the fMRI, MEG, and the RDM representing the model of interest, while controlling
for the impact of other model RDMs, involves a two-step process. First, the effects of other
models and the models of interest are regressed out to obtain residuals. Second, the semipar-
tial correlation between fMRI and MEG is computed, while also controlling for the effects of
other models and the residuals from the initial step. The resulting semipartial correlation co-
efficient indicates the shared variance between fMRI, MEG, and the model of interest, with

the influence of other models partialled out.

scanning in an MEG system. Participants were tasked with memorizing the num-
ber of dots from a sample stimulus and comparing it with a subsequently presented
match stimulus, signaled by a change in the color of the fixation cross. Upon seeing
the match stimulus, participants had to determine whether it was more or less nu-
merous than the previous sample stimulus and indicate their response by pressing
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a button with either their right or left hand. Participants demonstrated high over-
all performance (Mean=%77.81, SD=%5.83, Range=65.21% –88.54%), indicating their
attentiveness and engagement in the task.

3.3.1 Time Resolved Multivariate Representational Similarity Analysis
(RSA)

In order to characterize how numeric and non-numeric feature representations change
over time, I employed time-resolved multivariate RSA. Figure 3.4 displays the re-
sults of the semipartial correlation between the neural and model RDMs from 100
milliseconds before the stimulus presentation to 100 milliseconds after it disappeared
from the screen (-100 ms to 600 ms). Semipartial correlation ensures that the coef-
ficients obtained reflect the variance uniquely explained by each model, while par-
tialling out the influence of all other models. The findings reveal that the brain ac-
tivity is significantly modulated by number over and above the other non-numerical
features, with significant effects in three time windows: 115 – 140 ms (peak at 135
ms), 245 – 290 ms (peak at 260 ms), and 335 – 355 ms (peak at 340 ms) after stimulus
presentation. The other non-numeric features, except for average item area, show
significant effects either earlier (total field area: 65 – 600ms, peak at 120 ms, total
surface area: 75 – 275 ms, peak at 165 ms) or later (density: 160 – 250, peak at 215
ms) than number. Thus, the representation of number preceded that of two specific
pairs of non-numeric features, specifically total field area and density on one side,
and total surface area and average item area, from the combination of which number
can be indirectly inferred (see introduction).

3.3.2 Sensor-Space Searchlight RSA

Results from the sensor-space searchlight RSA (Figure 3.5) indicate that information
related to number independent from other features is present in the MEG channels
positioned over the occipital and parietal cortex already within 150 ms from stimulus
presentation and is further amplified in time up to 450 ms. In contrast, information
concerning other non-numeric features appears to be more pronounced in the MEG
channels overlying the occipital cortex and instead of increasing in time they appear
to be decreasing after 300 ms. In terms of differences in localization, these findings
appear to align with those obtained from the searchlight analysis in my fMRI study
(see second chapter), which demonstrated that while the representation of numbers
is distributed across the cortex, non-numeric features are predominantly localized in
early visual areas. In terms of timing the observation that pure number information
peaks in the MEG channels beyond the strictly posterior ones within 150 ms suggests
that numerical representations emerge very early and potentially also in regions that
extend beyond primary visual cortex.
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FIGURE 3.4: Semipartial correlation coefficients derived from the representational similar-
ity analysis for number, average item area, total field area, total surface area, and density.
Standard error of the mean (SEM) across participants is depicted as a shaded area. The hori-
zontal coloured dots indicate significant time points with effects significantly exceeding zero

(thresholded at p < 0.01, TFCE corrected).

3.3.3 Time-Frequency Resolved RSA

I then further expanded the analysis from the time domain to the time-frequency do-
main. The rationale behind this approach lies in the possibility that if numbers are
represented in a distinct frequency range compared to other non-numeric features,
it suggests that numeric and non-numeric features are represented through different
functional networks. The time-frequency analysis, depicted in Figure 3.6, demon-
strated that number is represented independently from other visual features in the
lower beta range (12-17 Hz), whereas density and total surface area are represented
in the higher beta range (17-30 Hz). Total field area is represented in a broader fre-
quency range that encompasses both lower and higher beta. However, total field
area varied orthogonally to number in my experiment. Thus the fact that it is rep-
resented in the same frequencies cannot be taken as an index for their functional
dependency. Finally, the average item area did not exhibit significance within any
frequency range.

3.3.4 Temporal Generalization Analysis

The results from the time-resolved RSA in the first section of this chapter demon-
strates that number is represented independently from the other non-numeric fea-
tures in three periods, and that in the first one (115 – 140 ms), peaking at 135 ms
numerosity is unlikely computed based on the other visual features. However, in
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FIGURE 3.5: Semipartial correlation coefficients obtained from the representational similar-
ity analysis demonstrate the contribution of numeric and non-numeric features on MEG
patterns across channels (gradiometers) within four distinct time windows. Bold dots indi-
cate sensors where semipartial correlation coefficients were significantly greater than zero
(thresholded at p < 0.01, TFCE corrected). Here, I did not use the same scale for the number
and the other three features as doing so would render the effect of number on sensors un-

recognizable.

the second and third periods (245 – 290 ms and 335 – 355 ms), all non-numeric fea-
tures, except average item area, are already encoded. This raises the possibility about
whether numerosity undergoes important transformations in time.

To investigate the stability of number representation over time, I conducted a tem-
poral generalization analysis (King & Dehaene, 2014). If the neural representational
geometry of numerosity changes in time this would not allow cross-decoding in
time. The results, depicted in Figure 3.7, revealed significant cross-temporal decod-
ing especially after 100 ms (Figure 3.7), which is suggestive of a process that quickly
stabilizes into a stationary representational format of numerosity.

3.3.5 Model-based MEG-fMRI Fusion

Prior fMRI studies have demonstrated that numerical information is represented
across retinotopic regions in both the dorsal stream up to the Intraparietal Sulcus
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FIGURE 3.6: Semipartial correlation coefficient obtained from time-frequency resolved RSA
for number, average item area, total surface area, and density. The outline reflects the sig-
nificant clusters (thresholded at p < 0.01, TFCE corrected). The vertical figure next to each
matrix represents the average of individual frequencies across time. The colored dots above

them indicate significant frequencies (thresholded at p < 0.01, TFCE corrected).

(Castaldi et al., 2019, see also second chapter) and the ventral stream up to Ven-
tral Occipital (see also second chapter). Results from the time-resolved RSA in the
previous sections indicate that pure numerical information, independent of other
non-numeric features, is represented very early in time. However, due to the lim-
ited spatial resolution of MEG and the sluggish nature of BOLD signals in fMRI, a
detailed understanding of brain activity across time in individual regions of interest
remains elusive. For example, the representation of numerosity observed in early
visual cortex in the prior fMRI studies (Castaldi et al., 2019, see also second chapter)
might either reflect a feedforward processing starting there but it might also be the
result of feedback signals from higher-order cortical areas. To distinguish between
these hypotheses, I employ a model-based MEG-fMRI fusion approach. The findings
from the model-based MEG-fMRI fusion, illustrated in Figure 3.8 and Figure 3.9,
showed that pure numerical information is equally rapidly represented across re-
gions in the early visual area (V1-3), dorsal (V3ABV7, and IPS1-5) and ventral (VO,
PHC) streams, preceding pairs of non-numeric features (total field area and density,
or total surface area and average item area) which could indirectly contribute to the
encoding of numerical information in all of them. The fact that I was not able to de-
tect variations in the onset of numeric and non-numeric features across different re-
gions, suggests the parallel emergence of these representations in these brain regions
within the temporal precision afforded by my analysis approach. This interpretation
is consistent with the findings of the sensor-space searchlight RSA, which tentatively
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FIGURE 3.7: The temporal generalization matrix reflects the decoding accuracy (with a
chance level of 0.25). The y-axis represents the training time during which the classifier
was trained to classify among four numbers (6, 10, 17, 29), while the x-axis represents the
test time when the classifier was tested to decode the numbers. The outline reflects the sig-

nificant clusters (thresholded at p < 0.01, TFCE corrected).

suggest that the source of numerosity information spreads beyond strictly posterior
sensors since very early in time. The results of fusion further showed that while nu-
merosity information is present across all regions, it is particularly strongly present
in IPS1-5 and VO, consistent with my fMRI study. Together, these results highlight
a parallel and direct representation of numerical information along both the dor-
sal and ventral streams, with an increasing significance of numerosity information
observed in IPS1-5 and VO.

3.3.6 Multidimensional Scaling

Finally, I employed multidimensional scaling (MDS) to derive a low-dimensional
representation of the similarity structure. I applied MDS to the group-average RDMs
derived from thirty participants calculated across various time points, ranging from
the onset of stimulus presentation to 100 ms after it vanished from the screen, up to
600 ms (see also the attached Video 1).
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FIGURE 3.8: Time courses of semipartial correlation coefficient depicting the shared variance
between model of interest (number, average item area, total field area, total surface area,
density), fMRI RDM from the dorsal stream and MEG RDM. Standard error of the mean
(SEM) across participants is depicted as a shaded area. The horizontal coloured dots indicate
significant time points with effects significantly exceeding zero (thresholded at p < 0.01,
TFCE corrected). The gray rectangle overlaid on each figure highlights that numbers are
represented before pairs of non-numeric features (total field area and density or total surface
area and average item area) that could indirectly contribute to number computation. It’s
important to note that the time courses of the average item area are not depicted here, as

they did not show significance in any region.

The MDS results reveal a clear rank-ordering of numbers, starting around 100 ms
post-stimuli. Furthermore, a curved pattern becomes apparent at specific time points
during the second period when numerosity becomes significant (see Figure 3.10 for
a snapshot of that time point, 275 ms, 290 ms, and 300 ms). This curved structure
bears a resemblance to the patterns observed in the parietal region in my earlier
fMRI study (see the second chapter).
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FIGURE 3.9: Time courses of semipartial correlation coefficient depicting the shared variance
between model of interest (number, average item area, total field area, total surface area,
density), fMRI RDM from the ventral stream and MEG RDM. Standard error of the mean
(SEM) across participants is depicted as a shaded area. The horizontal coloured dots indicate
significant time points with effects significantly exceeding zero (thresholded at p < 0.01,
TFCE corrected). The gray rectangle overlaid on each figure highlights that numbers are
represented before pairs of non-numeric features (total field area and density or total surface
area and average item area) that could indirectly contribute to number computation. It’s
important to note that the scale of the four represented features differs and the time courses
of the average item area are not depicted, as they did not show significance in any region.

3.4 Discussion

The current study aimed to explore when numeric and non-numeric features of a
visual array of dots are encoded in the brain. In contrast to previous research that
examined feature timing by analyzing univariate event-related potential (ERP) sig-
nals of EEG (Fornaciai et al., 2017; Park et al., 2015), I employed representational
similarity analysis (RSA). This approach enabled us to combine the sensitivity of
pattern-based methods with the temporal resolution offered by MEG, providing a
more comprehensive understanding of the encoding process.
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FIGURE 3.10: Multidimensional scaling (MDS) reveals representational similarities between
stimuli in a two-dimensional space for three distinct time points from the first period when
numerosity becomes significant: 115 ms, 135 ms, and 140 ms and three distinct time points
from the later period: 275 ms, 290 ms, and 245-355 ms. The black circles represent the 32
stimuli. The circle sizes vary, indicating stimuli with small total field area (small circles) and
larger total field area (large circles). The red circles indicate the average coordinates of each

number.

Similar to my previous fMRI study (second chapter), in this study, I employed semi-
partial correlation RSA to understand how numeric and non-numeric features within
a visual set of dots unfold over time and frequency. Additionally, I extended my
analysis by integrating model-based MEG-fMRI fusion techniques, providing a more
comprehensive understanding of how numeric and non-numeric features evolve
over time across various brain regions. This approach allowed us to investigate
whether numerical information emerges hierarchically or simultaneously within the
brain and whether it precedes or follows the processing of non-numeric features in
different regions.

Number is a primary visual feature

Using representational similarity analysis I unfolded the temporal dynamics of nu-
meric and non-numeric features of the stimuli. The result suggests that numerosity
is represented very early in time, extracted prior to the pairs of non-numeric features
from which number can be indirectly computed (see first chapter). This finding sug-
gests that numerosity information is extracted from the visual image through a ded-
icated mechanism, thus that it can be considered a primary visual property of the
image. This finding was further confirmed by the fact that numerosity information
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is represented in a different frequency band than the pairs of non-numeric features
from which number can be indirectly computed.

To the best of my knowledge, prior to my study, RSA for investigating the timing of
numerosity encoding in the brain had only been explored by Bankson et al. (2019).
However, their study encountered two significant limitations that complicate the in-
terpretation of their results. Firstly, although they attempted to minimize the influ-
ence of non-numeric features on number prediction, they did not account for these
effects when correlating neural RDM with number RDM, a step I rigorously fol-
lowed in this research. Secondly, their selection of numbers did not ensure equal
perceptual discriminability, as I did in my study. This raises the possibility that,
given my uncertainty about whether these numbers are perceptually discriminable,
the observed differences in activation across numbers could be influenced by other
non-numeric features that can be perceptually discriminated more easily.

In contrast to my finding that numerosity uniquely explains the variance of MEG
signals over other non-numeric features, Gebuis and Reynvoet (2013) reported no
numerosity-related effects in the ERP signals of EEG during both passive and active
viewing of a visual set of dots. Although they employed a smaller number of sub-
jects, seventeen in total, compared to my study, the doubt in their results arises from
the stimulus design, wherein they introduced a non-linear relationship between nu-
merosity and non-numeric features to de-correlate them. This design choice led to
a high variance in the non-numeric features. The high variance in non-numeric fea-
tures, when compared to numerosity, could potentially mask the effect of number in
the ERP signals. My findings do fit with two previous studies that used univariate
ERP signals in EEG analysis to explore the timing of number representation (Forna-
ciai et al., 2017; Park et al., 2015). Paralleling my observations, their results indicate
a rapid and direct encoding of numerosity information. However, a direct compar-
ison between the timing of my results and these two studies is not straightforward,
given that I designed my stimuli and analyzed the data differently. I employed per-
ceptually definable non-numeric features to create my stimuli, while they used two
orthogonal mathematically defined constructs (size and spacing) to define theirs
(DeWind et al., 2015). Additionally, I ensured that number and average item area
were chosen to be equally discriminable and the total field area was selected to al-
low arrays of dots to be adequately sparse, targeting the number regime rather than
the density regime (Anobile et al., 2013), whereas in their case they did not control
for the perceptual discriminability of size and spacing since these constructs were
mathematical and inherently non-perceptual. In addition to my distinct approach in
stimulus design, the current study also differed in data analysis. In their analysis,
they only controlled for the effects of size and spacing, leaving open the possibil-
ity that the effect of number might reflect a combination of other non-numeric fea-
tures, such as density and total field area. In contrast, in this study, I simultaneously
controlled for the effects of all non-numeric features using semipartial correlation.
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Consequently, the effect I reported for numbers reflects its unique influence, with all
other non-numeric features having been partialled out.

Neural oscillations are rhythmic patterns of activity in the brain that play a crucial
role in how visual information is processed and represented (Ward, 2003). Different
frequencies of neural oscillations tend to be associated with different aspects of vi-
sual processing. For instance, gamma oscillations tend to be linked to the binding
of features into coherent objects (Fries, 2009), while theta oscillations are often in-
volved in spatial navigation (Buzsáki & Moser, 2013). Paralleling previous observa-
tions (Rubinsten et al., 2020), I found representation of non-symbolic visual number
in the lower beta frequency band. Notably, I observed a shift from the lower beta fre-
quency range to higher beta frequencies in the case of density and total surface area.
One plausible explanation for these observations could be that distinct processes
underlie the extraction of numerical information as compared to other non-numeric
features, i.e. density and total surface area.

Number is encoded directly in all retinotopically organized regions along the dor-
sal and ventral stream extremely fast and with no detectable signs of a clear tem-
poral hierarchy

Previous studies, employing a regression-based approach, have revealed that a sig-
nificant proportion of the variance in the ERP can be explained by numerosity very
early in time, approximately around 75 ms (Park et al., 2015) and 90 ms (Fornaciai
et al., 2017) post-stimulus on the medial occipital channel. Based on these findings,
it has been concluded that the rapid encoding of numerosity information initiates
from the early visual cortex. However, their conclusions are primarily based on
the examination of scalp topographies. Relating scalp topographies to underlying
source locations is challenging due to the well-established phenomenon in which
electrical potentials from various sources blend at the level of scalp EEG recordings
(Baillet, 2017). Subsequent studies (Guillaumé et al., 2018; Lucero et al., 2020; Park,
2018; Van Rinsveld et al., 2020) sought to strengthen these initial findings by using
steady-state visual evoked potentials (SSVEP). The rationale behind this method is to
present stimuli flickering at specific frequencies, thereby tagging the neural activity
pattern in the brain with the desired stimulus frequency (Norcia et al., 2015; Vialatte
et al., 2010). Due to their robustness against artifacts and high signal-to-noise ratio,
these evoked potentials are suitable for isolating responses to numerosity in both
children and adults; however, they do not contain temporal information. All of the
aforementioned studies, including those conducted by Park (2018) in children and
Guillaumé et al. (2018), Lucero et al. (2020), Van Rinsveld et al. (2020) in adults,
provide evidence that SSVEPs of the occipital channels of EEG are modulated by
numerosity. However, their claim that the early visual cortex is the source of activity



66 Chapter 3. Investigating spatio-temporal representation of numerosity in brain

relies solely on the scalp topography of the EEG response, without any source recon-
struction to localize the anatomical sources of signals, thereby making it unfounded
(Baillet, 2017). Interestingly, Van Rinsveld et al. (2021) recently enhanced the same
SSVEP paradigm used by Van Rinsveld et al. (2020) with source localization to iden-
tify the anatomical source of evoked potentials. Their findings challenge previous
literature that suggested the early visual area as the sole source of numerosity ac-
tivity based solely on scalp topography results. Instead, they discovered multiple
sources of numerosity, including the IPS, supplementary motor area, and middle
temporal gyrus.

Here, through the use of model-based MEG-fMRI fusion, I was able to unravel the
temporal dynamics of numeric and non-numeric features within various brain re-
gions along both the dorsal and ventral streams, extending beyond the early vi-
sual cortex. My findings indicate that numerical information is rapidly encoded
along both the dorsal and ventral streams, preceding the pairing of non-numeric
features (such as total surface area and average item area, or total field area and den-
sity), through which numbers may be indirectly represented by their combination.
One possible interpretation of these findings is that, akin to the operation of sen-
sory maps (Young, 1998), where multiple repetitions of topographically organized
maps operate parallelly to analyze various aspects of sensory input, different cortical
regions in the brain may work in parallel to analyze numerical information. Inter-
estingly, as demonstrated in the first chapter of the thesis using searchlight analysis,
the representation of numerosity information is widely distributed across the cortex
along both the dorsal and ventral streams, which is comparable to the numerotopic
maps discovered by Harvey and Dumoulin (2017a). The distribution of numeros-
ity information across various brain regions, including those associated with differ-
ent functions such as mathematics, decision-making, motion, and object processing,
suggests the use of numerosity information for diverse functions. An alternative
interpretation suggests a hierarchical processing of numerosity. In this view, the
encoding of numerosity must be abstracted from local spatial representations of vi-
sual input to create a global representation, which appears to manifest along the IPS
(Viswanathan & Nieder, 2020). Furthermore, Paul et al. (2022) presented evidence
that monotonic responses to the number of objects originating in the primary vi-
sual cortex (V1) are more closely aligned with aggregate Fourier power than with
numerosity. They hypothesized that spatial frequency analyses in early visual pro-
cessing may underlie neural responses related to numerosity in higher brain regions.
They also suggested that a nonlinear interaction among early visual Fourier power
responses is essential for converting Fourier power responses into numerosity-tuned
responses in the higher cortical areas. While their experimental design lacked con-
clusive evidence for this interpretation, computational modeling results also indi-
cate a similar mechanism (Kim et al., 2021; Nasr et al., 2019; Stoianov & Zorzi, 2012).
It appears that responses in the initial layers of neural networks (Kim et al., 2021;
Stoianov & Zorzi, 2012) align more closely with total Fourier power rather than with
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numerosity (Paul et al., 2022) and numerosity-tuned units that emerge in the later
layers of the neural network result from the weighted sum of units in the earlier
layers. Interestingly, in the hierarchical generative network developed by Stoianov
and Zorzi (2012), which was trained for efficient image encoding, the deeper layer’s
numerosity-tuned responses were normalized by the total surface area. This sug-
gests that the total surface area should be presented prior to numerosity which is
also consistent with our finding. Nonetheless, the hierarchical representation ob-
served in these neural networks does not necessarily mean that the brain processes
information similarly. This is especially evident in a recent computational model
that demonstrates numerosity responses can be represented in a single-layer model
as opposed to a multi-layer neural network model (Park & Huber, 2022). However,
the interpretation that suggests the existence of hierarchical processing is plausi-
ble, latency differences between regions remain an open question. For instance, as
shown by Nieder and Miller (2004), there are latency differences between the poste-
rior parietal and prefrontal cortex, with the parietal cortex leading significantly by
27 ms. Yet, the scale of latency differences between early visual areas and higher
brain regions remains uncertain. If such differences exist at a scale of just a few tens
of milliseconds, my analysis approach may not be sufficiently sensitive to capture
them.

Multiple stages of numerical information processing

The results from representational similarity analysis suggest the existence of at least
two and potentially three stages of numerosity processing. The first stage initiates
around 115 ms, followed by the second stage around 245 ms post-stimuli and a third
one after 300 post-stimulus. These findings parallel previous observations in infants
(Gennari et al., 2023) and adults (Fornaciai et al., 2017; Park et al., 2015). The results
from adults indicate that the visual cortex seems to process numerical information
through two sequential stages, occurring at approximately 100 ms and 150 ms after
stimulus onset. One possible explanation of my results is that in the second stage,
number is computed through a combination of density and total field area, as both
of these features have been encoded prior to the second stage of numerosity repre-
sentation. However, this explanation appears unlikely, given that the results from
temporal generalization analysis suggest a consistent cognitive process underlying
number representation over time. This consistency makes it unlikely that numeros-
ity is computed directly at the first stage of representation but it is computed indi-
rectly by combining density and total field area at the second stage. According to
an alternative hypothesis, the initial stage of numerosity representation involves an
early encoding process which is not sufficient for the conscious experience of num-
ber, while the following stages represent the content of the subjective perceptual
experience of number (Fornaciai & Park, 2018). Fornaciai and Park (2018) observed
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that the ERP signal initially reflects numerosity without any apparent impact of con-
nectedness, with the influence of connectedness becoming evident as early as 150 ms
after stimulus onset. According to the connectedness illusion phenomena, connect-
ing items with lines reduces perceived numerosity (He et al., 2009, 2015). Notably,
they also identified that the connectedness effect remains robust even in the face of
interruptions in feedback signals (Fornaciai & Park, 2021). These results were inter-
preted as evidence supporting the idea that numerosity representations encompass
two distinct stages, with the second stage following the first one through a feedfor-
ward segmentation process that underlies the perception of number.

While the current findings do not provide definitive evidence for the conscious expe-
rience of number at the second stage and after, as subjects retain the number in their
minds without reporting it, it is noteworthy that previous research has indicated that
the ERP correlates of visual awareness typically manifest between 170 – 290 ms after
stimulus onset (Dembski et al., 2021). Moreover, upon closely examining the MDS
results in Video 1, a curved structure emerges at several time points (e.g., 275 ms, 290
ms, 300 ms) post-stimuli. This resembles the structure discovered in both dorsal and
ventral associative areas, particularly within the IPS, a region where fMRI decoding
performance was associated with behavioral number discrimination acuity (Lasne
et al., 2019), as reported in my prior fMRI study (see second chapter). Given this
evidence, the suggested explanation that the second stage of numerosity encoding
gives rise to the conscious experience of numerosity appears plausible.

3.5 Conclusion

In summary, my study employed magnetoencephalography (MEG) to unravel the
temporal dynamics of numeric and non-numeric features in the human brain. My
findings indicate that numbers are represented at an early stage, preceding pairs of
non-numeric features that could indirectly contribute to numerosity computation,
suggesting that number is encoded directly and not indirectly computed through
the combinations of other features, thus that it is a primary visual feature. More-
over, using model-based MEG-fMRI fusion,I observed rapid representation of num-
bers along all retinotopic regions of both the dorsal and ventral streams . This oc-
curred before pairs of non-numeric features, from which numbers can be indirectly
computed, with no detectable signs of a clear temporal hierarchy.
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Chapter 4

Investigating representation of
visual numerosity in machine and
its relation to the human brain

4.1 Introduction

Convolutional neural networks (CNNs) are computational models based on the early
discoveries in the study of biological vision (Lindsay, 2021). Similar to the brain,
these hierarchical models consist of several feedforward layers. Each layer is com-
posed of numerous artificial units that are meant to simulate neurons in the brain.
Since their introduction, they have developed into state-of-the-art models of neural
activity and behavior on visual tasks (Cichy, Khosla, et al., 2016; Khaligh-Razavi &
Kriegeskorte, 2014; Kubilius et al., 2019; Yamins & DiCarlo, 2016; Yamins et al., 2014).
It has been demonstrated that CNNs trained on an object classification task can well
account for the brain responses of both humans’ and monkeys’ inferior temporal cor-
tex (IT), a key region for object recognition (Khaligh-Razavi & Kriegeskorte, 2014).
With respect to number processing, it has been recently shown that number-detector
units, similar to number neurons recorded in monkey prefrontal and parietal cortex,
emerge in a final layer of a CNN trained for visual object recognition (Nasr et al.,
2019), and even in a completely untrained CNN (Kim et al., 2021). Notably, the
authors discovered that these number-selective units were not influenced by non-
numeric visual features. Additionally, Zhou et al. (2021) demonstrated that the phe-
nomenon of numerosity underestimation in connected dots, previously observed in
humans (Franconeri et al., 2009; He et al., 2009), also affected the estimation of nu-
merosity in CNNs. These results together with specialized neurons that respond
to number of items in visual display in numerically naive monkeys (Viswanathan
& Nieder, 2013) and crows (Wagener et al., 2018), untrained 10-day-old domestic
chicks (Kobylkov et al., 2022), or neural encoding of number in 3-month-old infants
(Gennari et al., 2023) suggest that response to numbers occurs on the basis of pro-
cesses built into the visual system, which can be simulated by CNNs. While results
from previous studies (Kim et al., 2021; Nasr et al., 2019; Zhou et al., 2021) suggest
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that a simple feedforward CNN contains numerosity-tuned units, similar to number
neurons, it is unknown whether the network represents numbers on a population
level and to what extent this representation is similar to the fMRI data of human
brains. Here, I investigated how a specific CNN model, CORnet-Z, represents nu-
merical and non-numerical quantities and whether it can capture how the human
different brain regions represent numerosity at the population level.

4.2 Methods

To test whether CNN models can capture how the human brain represents numeros-
ity over and above the other non-numerical features at the population level, I used
CORnet-Z, a model with four anatomically mapped areas (V1, V2, V4, and IT) which
is followed by a decoder layer. CORnet-Z is the simplest network in the CORnet
family and a lightweight alternative to AlexNet. Each anatomically mapped area in
the CORnet-Z consists of a single convolution, followed by a ReLU nonlinearity and
max pooling and the decoder is a 1000-way linear classifier (Kubilius et al., 2019).
I chose CORnet-Z because it balanced the resemblance to the architecture that was
used by previous studies on numerosity and because it well fit visual system. I used
the three versions of the CORnet-Z:

1. the completely untrained version with randomly initialized weights to reveal
the effect of architecture alone (Cichy, Khosla, et al., 2016)(Cichy et al., 2016),

2. a version trained on object recognition using the ImageNet dataset (Deng et
al., 2009), which contained 1.2 million images of objects over 1,000 categories
(Krizhevsky et al., 2012), as it has been used in a previous study by Nasr et al.
(2019), and

3. a version trained on SOS The Salient Object Subitizing dataset (SOS; J. Zhang
et al., 2015) which contains about 14,000 everyday images sourced from four
widely used image datasets: COCO (Lin et al., 2014), ImageNet (Deng et al.,
2009), VOC07 (Everingham et al., 2009), and SUN (Xiao et al., 2010). The SOS
dataset contains five different categories: 1. category zero: images without
any salient objects, 2. category one: images with only one salient object, 3.
category two: images with two salient objects, 4. category three: images with
three salient objects, 5. category four and more: images with four or more than
four salient objects (Figure 4.1). Given that over two-thirds of the images in the
aforementioned datasets belong to the zero or one category, a cut-and-paste ap-
proach was employed to generate synthetic images for categories lacking suf-
ficient data. For these synthetic images, salient objects were selected from the
THUS10000 dataset (Cheng et al., 2015). I opted to use this version of CORnet-
Z to explore the effect of augmenting the network with the task to recognize
the number of objects (subitizing task). I fine-tuned a pre-trained CORnet-Z
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model on the ImageNet dataset using the SOS dataset for 50 epochs. The train-
ing employed Stochastic Gradient Descent (SGD) with a learning rate of 0.001.
The training process was implemented using a custom PyTorch code as imple-
mented in Mistry et al. (2023) (available at https://github.com/scsnl/Mistry_
Strock_NatureComm_2023). The network’s subitizing performance increased
to 65% after fine-tuning on the SOS dataset.

FIGURE 4.1: Sample images from SOS dataset (figure adapted from J. Zhang et al. (2015)).

After training, the three versions of the model were fed with 100 images for each of
the 32 conditions (4 numerosities, 4 average item areas, and 2 total field areas) of the
same dots images used in the fMRI and the MEG studies presented in chapter one
and two of this thesis. An image with a size of 500 × 500 pixels served as the input
to the network. I selected four layers (V1, V2, V4, and IT) of the network which are
analogous to visual brain areas and extracted the activation of all nodes in each of
the layers. I extracted the activation using the THINGSvision toolbox (Muttenthaler
& Hebart, 2021) and averaged the results of the 100 instances of each condition to
get one vector of activity for each condition from each layer’ output. Similar to the
process of making neural RDM from selected voxels activation, I used the Pearson
correlation to build the CORnet-Z’s RDMs. The model RDMs for each feature and
neural RDMs were computed as described in previous chapters.

4.2.1 Comparing convolutional neural network with predictor models

To investigate whether the representations of numerical and non-numerical features
of the stimuli can be disentangled from the layers of the networks I employed rep-
resentational similarity analysis combined with semipartial correlation. To assess
the significance of the resulting semipartial correlation values I performed statistical
inference on the correlation using permutation test (Nili et al., 2014). To do this, I
first shuffled the stimulus labels and then I calculated the RDM of CORnet-Z lay-
ers based on the permuted labels stimulus. I repeat this process for 50000 times to
generate a null distribution of semipartial correlation. I reject the null hypothesis
of unrelatedness of dissimilarity matrices if the actual semipartial correlation is in-
side the top 5% of the simulated null distribution of semipartial correlations with a
false-positives rate of 0.05 (Kriegeskorte et al., 2008).

https://github.com/scsnl/Mistry_Strock_NatureComm_2023
https://github.com/scsnl/Mistry_Strock_NatureComm_2023
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4.2.2 Comparing convolutional neural network to human fMRI data

To address the question of how much variance in human fMRI brain data can be ex-
plained by the layers of the networks, I examined the correlation between different
layers of the networks and the human fMRI data using Pearson correlation. The cor-
relation coefficients were then normalized by the noise ceiling of the corresponding
region and then one-sample t-tests against zero across subjects were used to test the
statistical significance of correlation coefficients for each ROI.

4.2.3 Controlling for the convolutional neural network features

To determine whether numerosity representation in the human fMRI data is similar
to the representation of number by the networks, I performed a semipartial cor-
relation analysis between neural RDM and number RDM while partialling out all
non-numeric features RDMs and RDMs obtained from layers of the networks (Fig-
ure 4.2). The semipartial correlation coefficients were then normalized by the noise
ceiling of the corresponding region and one-sample t-tests against zero were used to
test the statistical significance of correlation coefficients for each ROI.

FIGURE 4.2: Neural representational dissimilarity matrices (RDM) obtained from fMRI data
were subjected to semipartial correlation analysis. Number RDM were used as a model
of interest in the semipartial correlation analysis while the effect of all non-numeric model

RDMs and RDMs derived from CORnet-Z layers were partialled out.
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4.3 Results

4.3.1 Results of representational similarity analysis on CNN layers with
features as predictors

Similar to the analysis I did with the fMRI data from different regions of interest, I
used representational similarity analysis to disentangle the contribution of numeri-
cal and non-numerical features of the stimuli on the CORnet-Z layers patterns of ac-
tivity. Figure 4.3 shows the results from semipartial correlation between the RDMs
derived from CORnet-Z and model RDMs across different layers of the untrained
network and the network trained on ImageNet dataset, respectively. The result
shows that the variance in layers activations is significantly explained by number
over and above the other features already in deeper layers of the neural network
(Untrained network: IT layers, Network trained on ImageNet: V4 and IT, p<0.05). I
detect a similar pattern for average item area in the CORnet-Z trained on ImageNet,
total surface area in the untrained CORnet-Z, and total surface area in both versions
of the network while the opposite pattern of results was true for density in both un-
trained network and the network trained on ImageNet: density was higher at earlier
layers while it gets lower at the deeper layers.

I replicate the same analysis for CORnet-Z fine-tuned on SOS. Figure 4.3 depicts
the results from semipartial correlation between the RDMs derived from CORnet-Z
and model RDMs across different layers of the network trained on ImageNet dataset
and the network fine-tuned on SOS dataset, respectively. No discernible differences
appear to be present in the four layers of the network.

4.3.2 Results of representational similarity analysis on fMRI data with
CNN layers as predictors

I then quantified the degree of similarity between the CORnet-Z layers and different
predefined retinotopic brain regions across the dorsal and ventral streams (L. Wang
et al., 2014) using representational similarity analysis. The results revealed that in
both the untrained network and the network trained on ImageNet, all layers of the
network exhibited high correlations between the fMRI data and the network’s layers.
These correlations gradually decreased as I moved closer to the higher brain areas
in the dorsal and ventral streams (Figure 4.4).

Next, I measured the extent of similarity between the layers of CORnet-Z fine-tuned
on SOS and predefined retinotopic brain regions (Figure 4.4). Once again, no dis-
cernible differences were observed between CORnet-Z trained on ImageNet and
CORnet-Z fine-tuned on SOS.
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FIGURE 4.3: Semipartial correlation coefficient obtained from the representational similar-
ity analysis for number, average item area, total field area, total surface area and density
from different layers of (A) untrained CORnet-Z, (B) CORnet-Z trained on ImageNet, and
(C) CORnet-Z fine-tuned on SOS. While all non-numeric features, except average item area,
is represented in almost all layers of CORnet-Z, number is represented in the last layers of
CORnet-Z (untrain CORnet-Z: layer IT; CORnet-Z trained on ImageNet: layer V4 and IT;
and CORnet-Z fine-tuned on SOS: layer V4 and IT). Data points show mean semipartial
correlation coefficient. The coloured points above the figure indicate where the effect signif-
icantly exceeds zero (p<0.05). Semipartial correlation coefficients were not normalized here

by a noise ceiling due to the absence of neuroimaging data.

4.3.3 Results of representational similarity analysis on fMRI data with
CNN layers and features as predictors

I then quantified the similarity between the number model’s RDM and the RDMs ex-
tracted from fMRI data, while controlling for the influence of all non-numeric model
RDMs and the RDM extracted from the IT layer of CORnet-Z. This analysis aimed
to determine whether CORnet-Z’s IT layer could account for the numerical informa-
tion present in various brain regions across both the dorsal and ventral streams. I
focus my report solely on the IT layer of CORnet-Z because it was the only layer con-
taining numerosity information in both untrained CORnet-Z and CORnet-Z trained
on ImageNet, as indicated by previous analyses. Additionally, the IT layer exhib-
ited a high correlation with brain regions, as established in the preceding section.
The regions of interest analysis shows that after removing CORnet-Z’s IT layer nu-
merosity information became non-significant in the early visual areas with reduced
number information (all brain regions p<0.001) but it remained significant in the
higher-level areas along both the dorsal, up to parietal regions, and ventral stream,
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FIGURE 4.4: Semipartial correlation coefficient obtained from the representational similar-
ity analysis for five layers of CORnet-Z (V1, V2, V4, and IT) from predefined dorsal and
ventral retinotopic ROIs as defined in the probabilistic atlas by L. Wang et al. (2014) for (A)
untrained CORnet-Z and (B) CORnet-Z trained on ImageNet, and (C) CORnet-Z fine-tuned
on SOS. Data points show mean semipartial correlation coefficient across subjects (n = 31) ±
standard error of the mean (SEM). The coloured points above the figure indicate where the
effect significantly exceeds zero (p<0.01). All the semipartial correlation coefficients were
normalized according to the noise ceiling of their corresponding regions, as detailed in the

supplementary materials.

up to occipitotemporal regions (Figure 4.5), suggesting that CORnet-Z’ IT captures
well the way in which early visual regions represent numerosity but not so well the
representational geometry of higher-level ones.

Then, to statistically support the differential impact of the variables of interest across
the ROIs, I conducted analyses on semipartial correlation coefficients using four re-
peated measures ANOVAs (as described below). In these analyses, ROIs and the
variables of interest were treated as factors. The variables of interest, in this context,
refer to: (I) the resulting semipartial correlation coefficients between number RDM
and fMRI RDM while partialling out the effect of other non-numeric features and (II)
the resulting semipartial correlation coefficients between number RDM and fMRI
RDM while partialling out the effect of other non-numeric features and the RDM ex-
tracted from IT layer of CORnet-Z trained on ImageNet. ROIs were considered both
aggregated in three big regions (not depicted in the Figure, see the second chap-
ter), and separately for each of the individual regions within the ventral and dorsal
streams. The significant two-way interaction between ROIs and the variables of in-
terest, observed across all four ANOVAs, confirmed that the semipartial correlation
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FIGURE 4.5: Semipartial correlation coefficient obtained from the representational similarity
analysis between predefined dorsal and ventral retinotopic ROIs and number model RDM.
This analysis controlled for the influence of non-numeric number model RDM (represented
by the black line), non-numeric model RDM and the IT layer from the untrained CORnet-
Z (indicated by the red line), as well as non-numeric model RDM and the IT layer from
CORnet-Z trained on ImageNet (depicted by the green line) and CORnet-Z fine-tuned on
SOS (depicted by the blue line). Data points show mean semipartial correlation coefficient
across subjects (n = 31) ± standard error of the mean (SEM). The coloured points above the

figure indicate where the effect significantly exceeds zero (p<0.01).

coefficient estimated for the different variables of interest were different across ROIs
in both the dorsal stream hierarchy (for the three large regions: F(1.82,54.46)=19.238,
p<0.001; for the individual regions: F(1.21,36.16)=16.022, p<0.001) and in the ven-
tral stream hierarchy (for the three large regions: F(1.82,54.53)=31.797, p<0.001; for
the individual regions: F(1.30,38.90)=14.891, p<0.001). I then replicated the afore-
mentioned analysis using two different variables of interest: (I) the resulting semi-
partial correlation coefficients between number RDM and fMRI RDM while par-
tialling out the effect of other non-numeric features and (II) the resulting semipar-
tial correlation coefficients between number RDM and fMRI RDM while partialling
out the effect of other non-numeric features and the RDM extracted from IT layer
of untrained CORnet-Z. Once more, the significant two-way interaction between
ROIs and the variables of interest, identified in all four ANOVAs, reaffirmed the
distinctiveness of semipartial correlation coefficients calculated for the variables of
interest across ROIs. This pattern held true within both the dorsal stream hier-
archy (for the three large regions: F(1.94,58.18)=28.311, p<0.001; for the individ-
ual regions: F(1.17,35.19)=11.265, p=0.001) and the ventral stream hierarchy (for
the three large regions: F(1.63,49.05)=41.538, p<0.001; for the individual regions:
F(1.30,38.97)=11.174, p=0.001).

I performed the same representational similarity analysis as outlined above for the
IT layer of CORnet-Z fine-tuned on SOS (Figure 4.5). Once again, no discernable
differences were detected between CORnet-Z trained on ImageNet and CORnet-Z
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fine-tuned on SOS.

4.3.4 Results of applying multidimensional scaling on layers of CNN

Finally, to further investigate the latent similarity structure of the CORnet-Z’s lay-
ers—specifically V1, V2, V4, and IT—in a data-driven manner, I employed multidi-
mensional scaling. This was carried out in a similar way that has been outlined in
previous chapters. MDS was applied on the dissimilarity matrix extracted from the
four layers of the three networks (untrained CORnet-Z, CORnet-Z trained on Ima-
geNet, CORnet-Z fine-tuned on SOS). The results from the MDS (see Figure 4.6) re-
veal a rank-ordering of numbers along the second dimension across all four layers of
the networks. Additionally, there is a distinct separation between stimuli with large
and small total field area apparent in the results for all layers of the networks. This
implies a difference in the representation of stimuli within the network compared to
higher associative areas of the brain. Notably, in the MDS of higher associative areas
of both ventral and dorsal stream, this separation is less pronounced (see chapter
two).

4.4 Discussion

Together with that of others my work has demonstrated that numerosity is rep-
resented in the brain in several areas all along the dorsal and the ventral stream,
starting from early visual areas and up to parietal and occipitotemporal regions (see
second chapter). Intensive modeling efforts have been made to explore how a com-
putational system can effectively represent numerosity information when presented
with visual images (Dakin et al., 2011; Dehaene & Changeux, 1993; Hannagan et al.,
2018; Kluth & Zetzsche, 2016; Knops et al., 2014; Park & Huber, 2022; Paul et al.,
2022; Stoianov & Zorzi, 2012; Testolin et al., 2020; Verguts & Fias, 2004).

Testolin et al. (2020) employed a similar approach, using RSA along with dimension-
ality reduction for 2D visualization through t-SNE, to assess visual sense of number
in deep belief networks. These networks are capable of deriving complex internal
representations of the environment from sensory data (Zorzi et al., 2013). While
my approach involved training the CORnet-Z network through supervised learning,
the approach taken by Testolin et al. (2020) involved unsupervised learning. Unsu-
pervised learning is often preferred over supervised learning for its biological and
psychological plausibility (D. D. Cox & Dean, 2014; Zhuang et al., 2021), reflecting
real-world scenarios where human infants learn without explicit millions of cate-
gory labels (Bergelson & Swingley, 2012; Frank et al., 2021). Despite this, supervised
models have shown a closer alignment with the representations found in the ventral
cortex (Khaligh-Razavi & Kriegeskorte, 2014). Comparing my results directly with
those of Testolin et al. (2020) is not straightforward due to differences in training
methodologies and datasets. My network was trained using ImageNet and the SOS
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FIGURE 4.6: Multidimensional scaling (MDS) reveals representational similarities between
stimuli in a two-dimensional space for four layers (V1, V2, V4, and IT) of (A) untrained
CORnet-Z , (B) CORnet-Z trained on ImageNet, and (C) CORnet-Z fine-tuned on SOS. The
black circles represent the 32 stimuli. The circle sizes vary, indicating stimuli with small total
field area (small circles) and larger total field area (large circles). The red circles indicate the

average coordinates of each number.

dataset, whereas their network was trained using artificial images of dot sets, similar
yet not identical to the stimuli used in our fMRI experiments. Upon a closed exami-
nation of the results, both similarities and differences emerge. In both Testolin et al.
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(2020) and CORnet-Z, numerosity information is represented along other visual fea-
tures. In the network by Testolin et al. (2020), numerosity becomes the most salient
feature after training, aligning with the hypothesis that humans can learn to focus
more on number and ignore irrelevant non-numerical features (Piazza et al., 2018).
Conversely, in my network, the total field area was more salient than numerosity, as
it was Testolin et al. (2020) young network. However, training the CorNet-Z with Im-
ageNet and the SOS dataset improved its ability to represent numerosity, as shown
by higher semipartial correlation values in the trained vs. untrained versions. This
finding would fit with fMRI studies showing sharper numerosity tuning functions
in adults (Piazza et al., 2004) compared to preschoolers (Kersey & Cantlon, 2016).

Despite significant efforts to model numerosity information extraction from visual
sets of dots, there is no research comparing these models with population-level neu-
ral data. As state-of-the-art models of neural activity on visual tasks, CNNs have
been shown to encode the number of objects through single units tuned to specific
numerosities (Kim et al., 2021; Nasr et al., 2019). However, this research has been
criticized, both for the statistical analyses adopted to identify such few number-
sensing units over a large set of units, and for the relatively small number of sample
images used for testing them (X. Zhang & Wu, 2020). To address these challenges I
have taken two key steps. Firstly, I significantly increased the size of my test dataset
by using 3200 sample images, a notable expansion compared to the 336 sample im-
ages used in previous studies. Secondly, I adopt a distinct approach in my data
analysis, going beyond the search for single numerosity-tuned units and examining
the population level response. Furthermore, I directly explore the extent to which
the polulation-level representations resemble that of the human brain as assessed
through the model-based RSA analysis of the fMRI BOLD signal. To accomplish this
aim, I quantified the representation of numerosity across many units in the CNN’
layers using model-based RSA and compared it to the neural model-based RSA re-
sults. Moreover, I explore the representational geometries of different layers to that
of different brain regions. My analysis demonstrated

1. that the last layer (layer IT) of all three versions of CORnet-Z are capable of
encoding numerical information.

2. that in all three version of CORnet-Z all layers of the network, except the de-
coder layer, exhibited high correlations with the fMRI data. These correlations
gradually decrease as I moved closer to the higher brain areas in the dorsal and
ventral streams, suggesting that the current models still fall considerably short
of being acceptable models of higher brain areas in both the dorsal and ventral
streams for the stimulus space. This result is further confirmed by examining
the latent similarity structure of all layers of the CNN on the stimulus set using
MDS. Despite the diminished difference between stimuli with large and small
total field area in higher brain regions (specially IPS), a distinct separation be-
tween them is evident in all layers of the network.
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3. that after accounting for the effect of CORnet-Z’s IT layer, the fMRI activation
in early visual area no longer exhibits numerosity information, suggesting that
the network extremely well simulates how the human early visual regions rep-
resent numerosity. However, the CORnet-Z failed to explain the numerosity
information observed in the fMRI signal from higher cortical areas of both the
dorsal and the ventral regions. This highlights that the models do not repre-
sent numerosity information in similar ways as the higher-level regions of the
human brain do.

Augmenting the CNN training with a subitizing task does not reduce the gap
between the model and brain

It has been suggested that there are two main anatomically distinct pathways in
the brain: the dorsal, or “where”, and the ventral, or “what”, pathway (Goodale &
Milner, 1992; Mishkin et al., 1983). The functional role of each pathway also seems
different. The dorsal pathway is though as coding for abstract relation among the
objects, spatial position and saliency of of object in a scene (Bisley & Goldberg, 2010;
Itti & Koch, 2001; Summerfield et al., 2020) while the ventral pathway is special-
ized for visual object recognition (Bracci & De Beeck, 2023; Gauthier & Tarr, 2016).
A CNN trained in a supervised manner to categorize objects has demonstrated the
ability to simulate object representations in the ventral stream (Khaligh-Razavi &
Kriegeskorte, 2014; Storrs et al., 2021; Yamins et al., 2014). However, fewer studies
have explored the similarity of dorsal representations with deep networks (Bakhtiari
et al., 2021; Güçlü & Van Gerven, 2017). According to classical connectionist mod-
els of numerosity perception, objects are mapped onto a location map during the
process of extracting numerosity from visual images (see first chapter for more de-
tail). This concept of a location map in their model may be connected to the saliency
map, which has been proposed to reside in the parietal cortex (Roggeman et al.,
2010). While some experimental evidence suggests that our ability to enumerate
small groups of stimuli is based on a salience map (e.g. Fu et al., 2022; Knops et al.,
2014; Melcher & Piazza, 2011; Piazza et al., 2011), which represents the locations of
important items, there is ongoing debate regarding whether this saliency map ar-
chitecture may also apply to number estimation of large sets (Castaldi et al., 2021;
Roggeman et al., 2010). The proposed computational mechanism of the saliency map
consists of a single layer of an on-center off-surround recurrent network. In this net-
work, each neuron has an excitatory connection with itself and inhibitory connec-
tions with all other neurons, with each node representing a specific spatial location.
Higher levels of lateral inhibition result in more precise representations, yet they
also limit the capacity of the map. Conversely, lower levels of lateral inhibition lead
to coarser representations, and a higher capacity limit (Knops et al., 2014; Roggeman
et al., 2010; Sengupta et al., 2014; Verma & Sengupta, 2023). Predictions from these
models have been corroborated by neurophysiological data from monkeys (Bisley &
Goldberg, 2003) and fMRI data from human subjects (Knops et al., 2014; Roggeman
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et al., 2010). Roggeman et al. (2010) found that during a numerosity estimation task
with numbers exceeding the subitizing range, activity in the IPS regions rose for up
to eight items before slightly decreasing, consistent with salience map models fea-
turing medium lateral inhibition settings. In contrast, when participants undertook
a similar but less challenging task, IPS activity initially decreased from four to eight
or sixteen items, then increased again, mirroring the pattern seen in models with
low inhibition settings. This implies that the on-center off-surround recurrent net-
work architecture, through adjusting the degree of lateral inhibition, may underlie
processing both small and large numbers (Sengupta et al., 2014; Verma & Sengupta,
2023). Moreover, emergent evidence suggests CNNs trained on ImageNet may use
texture and context (Baker et al., 2018; Gatys et al., 2017; Geirhos et al., 2018) for
successful object classification instead of explicitly representing object shapes (Ku-
bilius et al., 2016). Local differences in texture within an image may be what the
networks trained with ImageNet could pick up in terms of saliency and thus use
it for estimating numerosity. Consequently, training on the SOS dataset could help
mitigate this bias. However, for the moment this is simply a speculation that future
studies could maybe further address. By drawing inspiration from these previous
studies, I tried to augment CNN training procedures by incorporating salient objects
detection task. Specifically, I trained CORnet-Z to subitize salient objects using the
SOS dataset, aiming to minimize the gap between CORnet-Z results and fMRI data
derived from the dorsal stream. This approach was motivated by previous findings
indicating that face-processing signatures are present in networks trained on face
recognition but not in those trained on object recognition (Dobs et al., 2023; Kan-
wisher et al., 2023). However, augmenting the network training procedure does not
appear to impact its performance on the numerosity detection task, as indicated by
the results from RSA and MDS analysis with the different layers of networks. One
possible explanation for this result is that the network has been trained to detect a
range of numbers within the subitizing range (see the first chapter), while my stimuli
extend beyond this range and it has been suggested that two distinct neural mech-
anisms underlie the representation of small and large numbers (Kutter et al., 2023;
Revkin et al., 2008). Therefore, it is essential to train a network with a range of num-
bers beyond subitizing. This need may be further supported by recent findings from
Mistry et al. (2023), who observed that after training a CNN for a numerosity clas-
sification task, a curved structure resembling the pattern discovered in the parietal
region in the second chapter of the thesis emerges in the last layer of the network.

4.5 Conclusion

In summary, my study revealed that, similarly as humans, the final layers of both un-
trained CORnet-Z and CORnet-Z trained on ImageNet to discriminate images and
on SOS to enumerate salient objects equally encode numerosity information beyond
the non-numeric features of visual sets of dots. However, while the deep layers of
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the network displayed high correlation with fMRI data from early visual areas of hu-
man subjects, it falls short in explaining the variance of numerosity representation
as it progresses to higher brain regions along both the dorsal and ventral streams.
Furthermore, training the network to subitize salient objects did not alleviate the
gap between the network and the brain.
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Chapter 5

Conclusion

5.1 Summary

In my thesis, I presented evidence regarding where and when numeric information
extracted from a visual set of dots is represented in the human brain. Through the
unique analytical approach I employed, I successfully separated numerical informa-
tion from non-numerical features within the visual set of dots. This disentanglement
allowed me to discern how each feature is distinctly represented in the brain. Ad-
ditionally, I could integrate the results from different modalities, fMRI and MEG,
facilitating the identification of the spatio-temporal representation of each feature in
the brain. Also, I compared the fMRI result with a computational model, a CNN, to
identify both the similarities and differences in the representation of visual sets of
dots in the CNN and the human brain. I began this work by asking three questions,
each shaping the focus of a specific chapter in my thesis. Now, I am able to provide
brief answers to each question, thereby concluding the thesis.

Question 1. Do brain regions aside from the parietal region also represent pure
numerical information when subjects are presented with visual sets of dots?

The answer is YES. Prior research has provided evidence indicating the presence of
numerical information in the parietal, frontal, and early visual regions of the brain.
With this study I was able to provide evidence suggesting that numerical informa-
tion representation extends to brain regions beyond the aforementioned areas, no-
tably encompassing regions within the ventral stream. Moreover, I also showed that
associative regions of both streams encode numerosity in a very similar way, and
differently from primary visual regions, indicating that the former and not the latter
might be involved in numerical decision-making.

Question 2. When numeric and non-numeric features of a visual set of dots are
represented in the brain?
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I addressed this question through the application of representational similarity anal-
ysis. My findings indicate that the total field area and total surface area of a visual
set of dots are represented prior to the numerical information. However, number is
represented before density, very early around 115 ms after presenting the stimulus to
participants. Furthermore, my analysis did not reveal any evidence of the represen-
tation of average item area over time. Consequently, it can be deduced that number
number is represented before pairs of non-numeric features, such as the total field
area and density or total surface area and average item area. This implies that num-
ber is a primary visual feature, directly encoded rather than computed through the
combination of other non-numeric features. Next, by expanding my analysis and
integrating the MEG results with the fMRI findings, I discovered that numerical in-
formation is encoded extremely fast along both the dorsal and ventral pathways.

Question 3. To what extent do the representations of numerical information in
the Convolutional Neural Network (CNN) align with the fMRI data of the human
brain at the population level?

I answered this question by employing representational similarity analysis to exam-
ine the capacity of a CNN to represent number at the population level. My analysis
revealed that, firstly, the CNN, specifically CORnet-Z, whether untrained or trained
on ImageNet, is capable of representing numerical information. However, the man-
ner in which CORnet-Z represents numbers differs from the representation of num-
bers in higher brain regions. It does, however, exhibit the ability to simulate the
representation of numbers in the early visual areas (V1 – V3).

5.2 Future Work

The work presented in this study aimed to address specific questions as outlined ear-
lier. Nonetheless, there exist several research directions that I would like to highlight
for future investigations, outlined below.

5.2.1 The ventral stream representation of numerosity

In this study, I could find regions within the ventral stream, which I have referred
to as NTO due to its apparent overlap with a numerotopic map previously reported
by Harvey and Dumoulin (2017a). Nevertheless, the functional significance of this
numerosity map and the mechanisms governing its formation remain debated. It
remains unclear whether this region serves a distinct functional role compared to
the established number form area (NFA). This area might emerge as a result of func-
tional connectivity between the dorsal and ventral regions, possibly influenced by
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formal math education. Alternatively, the ventral stream could independently ex-
tract numerosity information, a possibility not necessarily exclusive with the previ-
ous explanation. Future works can differentiate between these two explanations us-
ing functional connectivity analysis and by conducting experiments with preschool
children or innumerate adults.

5.2.2 Computational model of numerosity extraction from visual set of
dots

Despite extensive research on computational models for extracting numerosity in-
formation from visual dot sets, the precise mechanism by which the brain accom-
plishes this remains unknown. While my analysis indicates that CCNs could be
potential candidates for numerosity extraction in early visual areas, the mechanisms
underlying numerosity extraction in higher brain areas are still unclear. One poten-
tial research direction for future modeling could involve training CNNs with tasks
other than object recognition (Kanwisher et al., 2023) to investigate their ability to
explain numerosity information in higher brain regions.

5.2.3 Extraction of numerosity information from auditory stimulus

Although one conventional approach to assess numerosity perception is through
the visual modality, where all stimuli are presented simultaneously, it’s important
to note that this is not the exclusive method for evaluating it. In a previous study
with monkeys (Nieder et al., 2006), examining both sequential and simultaneous
presentations of visual sets of dots, the findings suggested that distinct populations
of neurons were involved in the ongoing quantification processing for both presen-
tation methods. However, the final result was encoded by a different population
of neurons, irrespective of how the stimulus was presented. A recent study with
infants suggests that numbers are encoded in the infant brain in a supramodal man-
ner (Gennari et al., 2023). Employing EEG and sequential auditory stimuli, the study
demonstrated the spontaneous encoding of numbers in the brain. Notably, they con-
trolled for non-numeric auditory features, specifically tone rate and total sequence
duration, which can be likened to density and total field area when testing with a vi-
sual set of dots. For future investigations, it would be worthwhile to explore which
brain areas encode both numeric and non-numeric auditory sequences of tones. This
exploration can help determine whether the neural code for numbers generalizes
from a visual set of dots to auditory sequences of tones or not.

5.2.4 Numerosity representation in the natural context

Almost all studies exploring numerosity representation in both humans and ani-
mals have relied on artificial stimuli, primarily visual arrays of dots. However, in
natural environments, we encounter complex objects. It is crucial to investigate the
distribution of numeric and non-numeric features of these objects in their natural
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context and understand how this distribution might influence numerosity estima-
tion. If there exists a bias in the natural environment, such as a correlation between
the number of objects and their total surface area, it is essential to examine how this
bias impacts numerosity estimation and in what manner.
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