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Abstract: A particle impact damper (PID) dissipates the vibration energy of a structure through
impacts within the damper. The PID is not commonly used in practice mainly because of its low
damping-to-mass ratio and the difficulty in achieving its optimal design due to its nonlinear charac-
teristics. In contrast, a Coulomb friction damper (FD) can offer a higher damping force-to-mass ratio
than other dampers, but it is also difficult to be controlled precisely due to its nonlinear characteristics
and excessive frequency sensitivity regarding the resonant frequency. This paper examines a hybrid
damper by combining a particle impact damper and a Coulomb friction damper (PID + FD) theo-
retically and experimentally. A theoretical model of the proposed damper is developed and tested
numerically on a single-degree-of-freedom (SDOF) structure. The predicted results are validated by
experimental tests on a prototype of the proposed damper. The damping force provided by the FD
in the prototype can be varied by adjusting the normal force applied through a compression spring,
while the vibration energy dissipation by the PID can be varied by changing the cavity size of the PID.
A parametric analysis of the proposed hybrid damper has been performed. The proposed hybrid
damper can reduce the maximum vibration amplitude of the SDOF primary structure by 66% and
43% compared with using the FD and PID only. The proposed damper is found to be effective over a
wide range of excitation frequencies. Furthermore, the proposed hybrid damper achieves a similar
vibration suppression performance to the traditional tuned mass damper (TMD) of a similar mass
ratio. The proposed damper does not require an optimally tuned natural frequency and damping,
unlike the TMD, and therefore it does not have the detuning problem associated with the TMD. In
addition, the performance of the proposed damper is tested and compared with the TMD for random
earthquake excitation data. Consequently, the proposed hybrid damper may be a simpler and better
alternative to the TMD in passive vibration control applications.

Keywords: particle impact damper; passive vibration control; nonlinear damping; friction damper;
hybrid damper

1. Introduction

A tuned mass damper (TMD) or dynamic vibration absorber (DVA) is a passive
control device that can be tuned and mounted to a flexible structure to reduce its resonant
vibration [1]. The TMD was invented nearly a century ago but is still not commonly used
in practice for damping machine vibrations mainly due to the difficulties of achieving
the optimal natural frequency and damping ratios of the TMD for its best performance
of vibration damping to the primary structure [2–5]. When the natural frequency of the
primary vibrating structure is changed, the TMD will be detuned and becomes ineffective
in redirecting the vibration energy from the primary structure to the TMD itself [6–10].

On the other hand, the particle impact damper (PID) [11–13] is a relatively new kind of
vibration damper that can damp down structural vibrations over a much wider frequency
range than the TMD [14]. The PID can dissipate the vibration energy of the primary system
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through impacts within the damper itself [15]. The PID does not have the detuning problem
in controlling the response of the structures [16]. The effectiveness of the PID in harsh
environmental conditions, simple installation requirements, less sensitivity to the direction
of excitation [17], and other benefits give the PID numerous advantages over other passive
vibration absorbers. Moreover, the PID is negligibly sensitive to oil contamination, does
not add significant excessive external weight [18], and is usually insensitive to atmospheric
temperature [19]. The PID is capable of damping vibrations due to different kinds of
excitations [20]. Material wearing is less likely to happen in the PID, and the PID is a
simple, affordable, and highly reliable device [21] that can be used for passive vibration
control. A key aspect of the PID is that it can operate in multiple directions over a wide
range of frequencies [22]. In addition to all these advantages, the PID is also not commonly
used in practice mainly because of its low damping-to-mass ratio and the difficulty in
achieving optimal design due to its nonlinear nature. The working principle of the PID
relies on impacts with the primary structure and the amount of energy dissipation by
impact can be increased by using a heavy particle but it can induce high local stress to the
primary structure, leading to structural integrity and noise problems.

The high nonlinearity of the PID led to contradicting conclusions in various studies [23].
Fundamental work on the particle impact damper can be found in the article of Bapat
and Sankar [24], where a basic single-unit model of a PID in free and forced vibrations
is presented. The study concluded that mass ratio, the coefficient of restitution, and
container size were the parameters that affected the performance of the PID [25]. In
the study of Papalou [26], the performance of a PID under harmonic excitations was
studied in various parametric combinations and the effect of fundamental parameters
on the overall performance was presented. However, it was concluded that the exact
mathematical model for such a damper could not be established due to many nonlinear
phenomena. Furthermore, Cheng et al. [27] showed that the damping generated by the
PID depended on the number of impacts when the particle and the primary mass were
in opposite directions rather than on the total number of impacts. The performance of
the PID was studied by considering the different surface properties of particles by Li
et al. [28], and it was concluded that metallic particles were more efficient in dissipating
the vibration energy. Several subsequent studies have supported the application-based
analysis of PID performance [29–33]. Particle impact dampers were also studied to reduce
railway vibrations by Jin [34] and concluded that the tuned particle damper outperformed
the traditional TMD and could work at a broader frequency range. Badri et al. [35] tried to
combine the PID with a viscous damper and proposed an improved hybrid damper.

Furthermore, friction dampers have a higher damping force-to-mass ratio than viscous
dampers and they are low cost and compact in size. However, friction dampers are not
as commonly used as viscous dampers because their design involves nonlinear dynamics.
Stick-slip behaviors and nonlinearity associated with the FD are the major challenges to
overcome [36]. The stick-slip phenomenon arises when the excitation force magnitude is
not sufficient to overcome the static friction. A review of the available FD models is reported
by Gagon et al. [37]. A steady-state solution of forced vibrations with a hybrid damper
combining viscous and Coulomb dampers was derived by Den Hartog [38]. Considering
the various challenges associated with the FD and ineffectiveness at resonance, it is usually
combined with other dampers [39–44]. The FD can produce a large damping force and
combining it with other suitable dampers could make the combination effective at resonance
with various other advantages.

Overall, the PID and FD are two vibration suppression devices with advantages and
disadvantages as discussed above. Theoretically, a friction damper is considered ineffective
at resonance. However, various researchers have shown that the FD can reduce the damping
peak in practical applications due to the presence of internal damping in structures. The
stick-slip phenomenon can induce high-frequency vibrations in the structure, and the
durability of the FD is reduced due to material removal and increased temperature [45]. In
the case of large structure vibrations, global damping was also studied in [46]. Structural
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vibration control usually requires a higher damping force to reduce the vibration amplitude
of large structures. Therefore, the capability of the FD to produce a larger damping force
can be useful if it can be made effective at resonance. On the other hand, the PID shows a
low damping-to-mass ratio, requiring larger added mass to the primary system to achieve
higher damping.

Therefore, a hybrid damper consisting of a PID and FD is proposed for the very first
time, which utilizes the advantages of both damping technologies for the improvement of
the damping capacity of the PID and FD. It is illustrated that the two dampers, the PID and
FD, can supplement each other to avoid their respective constraints if designed properly
and implemented according to the procedure established in this study. A numerical model
is developed to simulate the hybrid damper effect on the response of an SDOF structure.
Additionally, a parametric analysis of the hybrid damper has been carried out to formulate
the optimal design methodology. A prototype of the hybrid damper is built to validate the
numerical model and the numerical results.

2. Numerical Modelling and Experimental Validation

The numerical models of the particle impact damper (PID) and the proposed hybrid
damper consisting of a PID and FD are established. The mechanical model of the SDOF
structure with a particle impact damper is shown in Figure 1, where k is the spring constant
and c represents the equivalent viscous damping coefficient of the system damping. The
mass of the primary structure is denoted by M, while the mass of the particle is denoted by
m. The particle can travel within a maximum distance of 2d and hit the primary structure
when it reaches the boundary.
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Neglecting friction inside the PID, the equation of motion for the primary structure
before any impact occurred may be written as

M
..
x + c

( .
x− .

z
)
+ k(x− z) + Ff sgn

( .
x− .

z
)
= 0 (1)

Here, Ff = µeFN is the friction force. The sgn is the signum function, which is defined as

sgn
( .
x− .

z
)
=


−1 if

.
x− .

z < 0
0 if

.
x− .

z = 0
1 if

.
x− .

z > 0
(2)

The equation of motion of the particle may be written as

m
..
y = 0 (3)
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An impact occurs when the difference between the position of the primary mass and
particle is equal to the clearance size, which can be expressed as

|x(t)− y(t)| ≥ d (4)

At each impact, energy is dissipated or redistributed depending on the direction of the
particle and primary mass. Furthermore, the velocities of the particle and primary mass
change at each impact. If the impact is perfectly elastic, the equation of the conservation
of momentum can be utilized to determine the velocities of both objects after impact. The
conservation of momentum between two colliding bodies is defined as

M
.
x−n + m

.
y−n = M

.
x+n + m

.
y+n (5)

where
( .

x+n ,
.
x−n
)

and
( .

y+n ,
.
y−n
)

are the velocity vectors of the primary structure and particle

before and after the nth impact. The superscript plus (+) denotes the velocity after impact
and minus (−) denotes the velocity before impact. The conservation of momentum states
that the impact is perfectly elastic and all the energy is conserved. However, most impacts
are not perfectly elastic in practice. There will be some energy dissipated during the impact
through material compression, heat, or other means. Therefore, the coefficient of restitution
is the measure of energy dissipated during impacts calculated as the ratio of final to initial
velocity difference. This may be written as

e = −
.
x+n −

.
y+n

.
x−n −

.
y−n

(6)

Hence, accurate calculation of the velocities after impact, in this case, must include the
conservation of momentum and the coefficient of restitution. Therefore, combining and
rearranging Equations (5) and (6) for the velocities of the particle and primary structure
after each impact gives

.
x+n =

[{
(1− βe)

.
x−n
}
+
{

β(1 + e)
.
y−n
}]

(1 + β)
(7)

.
y+n =

[{
(1 + e)

.
x−n
}
+
{
(β− e)

.
y−n
}]

(1 + β)
(8)

Here, β = m/M is the mass ratio.
The numerical solution of the PID requires a time-based approach to identify the

impacts accurately. The flowchart shows the computation principle in Figure 2. The
Runge–Kutta fourth-order method is used to solve the equations of motion. The method
begins with the vibration of the primary structure due to the support motion z(t). The
impact is then identified based on the condition (|x(t)− y(t)| > d). The velocities after
the impacts are calculated through Equations (5) and (6). Then the system restarts based
on the calculated velocities and the position at the time of impact as initial conditions.
If the condition for the impact is not satisfied, then the next time step is computed. A
minimum time step is recommended for determining the precise impact time, although it
may increase the computational effort. Generally, the parameters affecting the damping
performance of PID [24,47] are clearance (d), the coefficient of restitution (e), and mass
ratio (β). The mass ratio is fixed at 0.1 for the numerical simulations.
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Figure 2. Process flow chart of the numerical model.

Experimental Identification of Model Parameters

The contact time between the particle and primary mass is neglected in the numerical
models of the PID in the literature. The negligible contact time assumption may be accept-
able if a large coefficient of restitution such as e ≈ 0.8 is considered to represent a “hard”
impact. However, some numerical tests using the present model show that the best damp-
ing performance of the PID can be achieved at a mid-range magnitude of the coefficient of
restitution of about 0.5. A cushioning material (Polyurethane Foam) is therefore used in
the proposed PID design to affirm the mid-range coefficient of restitution. To improve the
accuracy of the proposed numerical model, the contact time and coefficient of restitution
are determined by conducting experiments with a hard impact (steel-to-aluminum impact)
and a soft impact (steel-to-foam impact), as shown in Figure 3.
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A particle made of mild steel is dropped fixed to a train (from the rail-train mechanism)
from different heights, as shown in Figure 3. The experiment is recorded with a high-speed
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camera (Sony RX100-M7) in a 20× slow-motion video with 1000 frames per sec. The
frames are then extracted and analyzed to calculate the instant of contact between the
particle and primary mass and the time of separation during the rebound to determine the
contact time. A ruler together with a precision transmission grating (Sine Patterns LLC)
is used in the experiment to provide the spatial reference of any image distortion due to
the lens of the camera and the resolution. Similarly, the frames, each of 3456 × 2304 pixels,
are extracted from the recorded videos and the frame with the release and final rebound
height is processed in a CAD software program to calculate the coefficient of restitution.
The impact velocity of the particle can be determined from the dropping height with
gravitational acceleration. The COR is defined as e =

v f
vi

, and kinetic and potential energies
are calculated as

1
2

mv2 = mgh

v =
√

2gh

Hence, substituting this in the coefficient of restitution expression gives

e =
v f

vi
=

√
2gh f√
2ghi

=

√
h f

hi
(9)

The free-fall experiment is repeated three times, and the magnitude of the COR
is calculated from Equation (9). The average magnitude of the COR for soft impact is
measured as 0.47, and 0.82 for hard impact.

Determining the coefficient of restitution with different impact velocities justifies the
assumption that the COR remains constant in each impact, as shown in Figure 4a. Similarly,
the contact time during impact with different impact velocities is measured and plotted in
Figure 4b. The average time determines the contact time between the particle and primary
mass with a hard impact surface and cushioning material as presented in Table 1. The time
step used in the numerical simulation is 0.001 s. The contact times between the colliding
masses are added in all the numerical simulations presented in this paper. In addition, the
COR is the measure of the impact surface in the numerical model; therefore, only two impact
surfaces with a higher and lower COR are tested to study the effect of the COR on the damping
performance. As mentioned, the hard aluminum impact surface is created without using any
cushioning material. On the other hand, a commonly available cushioning material (PU foam)
is fixed on the container wall for a soft impact with a lower COR.
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Table 1. Calculated contact time and coefficient of restitution of different types of impact surfaces used.

Hard/Soft Impact Contact Time (s) Coefficient of Restitution

Hard Impact
(Steel–Aluminum) 0.046 0.82

Soft Impact (Steel–Foam) 0.411 0.47

3. Experimental Setup and Structural Parameters Identification

A prototype consisting of a single-degree-of-freedom structure is designed and tested
with a PID, as shown in Figure 5. The experimental setup consists of a primary mass,
contactless displacement sensors, an exciter, and a data acquisition system connected to the
computer. The primary structure consists of two steel strips of 1.5 mm thickness working
as leaf springs, and an aluminum plate is fixed at the top to be the primary mass. The
design dimensions of the primary SDOF structure are presented in Figure 5c. A rail-train
mechanism is installed (Figure 5a) on the top of the primary structure for the PID. The
particle is glued to the train (which can slide over a rail) and the rail is fixed to the top of
the primary structure. Using a rail-train mechanism ensures that the particle can only slide
and there is no rolling motion. The experimental testing results are presented together with
the simulation results using the numerical model in Sections 2 and 4.
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primary structure.

First of all, a free vibration test of the SDOF structure without any damper is carried
out to determine the magnitude of the structural damping. The structure is provided
with an initial displacement to initiate the free vibrations. The free vibration response is
recorded, and the logarithmic decrement method is used to determine the internal damping
magnitude of the structure. The parameters of the prototype designed for the experiments
are presented in Table 2.

Furthermore, a friction damper (FD) with tunable friction is installed on the SDOF
structure, as shown in Figure 6. A metal block is installed to apply friction force on one
side of the primary structure and linear guide bearings are installed on the opposite side
of the structure to prevent any change in the shape of the structure when friction force is
applied. The normal force, in this case, can be varied by loosening or tightening the spring
through the bolt and lock nut, as shown in Figure 6.
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Table 2. System parameters.

System Parameters Magnitude

Damping ratio (ζ) 0.0038
Natural frequency ( f ) 2.5 Hz

Mass of primary structure (M) 1605 g
Coefficient of restitution (Steel to PU Foam) 0.47

Coefficient of restitution (Steel to Aluminum) 0.82
Mass of particle 160 g
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4. Results for SDOF Structure

In this section, the results obtained from the numerical simulations and experiments
are discussed. A sinusoidal ground motion at the base of the SDOF structure is used to
excite the structure during the experiments. It is observed that the PID operates with
respect to time, and that damping may vary over the time domain. The time–domain
response of the primary mass shows that the amplitude increases initially due to no
impacts, and then a steady-state amplitude can be observed after the first peak when
there are consistent impacts. Therefore, general frequency sweep tests are invalid on the
PID unless it is ensured that the system vibrates for a sufficient number of cycles at each
excitation frequency. Therefore, it is challenging to determine a frequency response curve of
the structure with the PID. To accurately measure the frequency response, the experiments
are conducted over a set of excitation frequencies around the natural frequency of the
primary mass separately. After that, the steady-state amplitude at each excitation frequency
is measured and the data are combined for all frequencies to form a frequency response.
The experiments are performed on the SDOF primary structure respectively with the PID
only, the FD only, and the PID + FD.

4.1. Particle Impact Damper (PID)

In this section, the performance of the PID on a single-degree-of-freedom structure
is tested numerically and validated with experiments. The length of the cavity of the PID
can be set at 15 mm, 45 mm, and 75 mm respectively, in the experiments. The numerical
simulations are performed with the same parameters used in the experiments to validate
the accuracy of the numerical model.

The frequency response of the primary system determined from the experiments
and simulations is shown in Figure 7. A smaller clearance (d = 7.5 mm) leads to lower
damping as there is not enough space for the particle to gather momentum before impact,
as shown in Figure 7a. On the other hand, increasing the clearance magnitude in the PID
design improves the damping. Figure 7c shows that the X/Z is minimum at resonance
frequency when the PID with d = 35.5 mm is tested. These results show that there are
various nonlinear phenomena present in the PID, leading to contradicting opinions. It is
one of the reasons that an optimal design method for the PID is not yet available.
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Furthermore, the effect of the coefficient of restitution is analyzed on the damping
performance by changing the impact surfaces to vary the COR magnitude, as shown in
Figure 8. This reveals that increasing the coefficient of restitution degrades the PID perfor-
mance due to the impacts with better momentum exchange but less energy dissipation. On
the other hand, the larger clearance magnitude may result in non-uniform displacement of
the primary structure leading to other problems relating to structural integrity. Hence, the
results show that there are nonlinear relationships with the design parameters as well.
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4.2. Friction Damper (FD)

In this section, the role of the friction damper (FD) in the resonant vibration of the
SDOF structure is analyzed. Assuming no PID in Figure 1, the equation of motion of the
SDOF structure with only the friction damper (i.e., c = 0) can be written as

M
..
x + Ff sgn

( .
x− .

z
)
+ k(x− z) = 0 (10)

Here, Ff = µeFN is the friction force, µe is the coefficient of friction, and FN is the
normal force of the primary structure. A new variable friction force ratio is defined to
compare the effect of external friction on the dynamic response. Friction force ratio γF is
the ratio of friction force to excitation force, defined as

γF =
µeFN
kZ

(11)

The dynamic response of the system for a finite time with different magnitudes of γF
is recorded over a range of excitation frequencies. The plot shows the response of the SDOF
structure with the FD, as shown in Figure 9.
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It is understood that using a sole friction damper cannot suppress the vibration ampli-
tude efficiently at resonance, as proved by Luca et al. [48]. Furthermore, Levitan et al. [49]
presented the analytical form for a single-degree-of-freedom structure with Coulomb fric-
tion under base excitations, and it was validated that the friction damper alone could not
suppress the resonant vibration amplitude. Levitan shows that a structure can exhibit a
harmonic response if a friction force is relatively smaller; however, a large friction force may
lead to a discontinuous motion of the primary structure. Similarly, Min et al. [50] derive
a solution for a friction damper at resonance; however, it is concluded that the structure
cannot exhibit a steady-state response at resonance. Although friction dampers are very
capable of producing a large friction force, a large friction force brings various challenges
to a dynamic structure. When two masses rub against each other with a large friction
force, higher temperature and excessive wearing raise questions about the reliability of
the dynamic structure and damping system [51]. In addition, a large friction force is very
complicated to control and it does not remain constant as the rise in temperature and
material wearing/removal may alter the contact surfaces [52]. FDs have limited applica-
tions in structural vibration control due to reasons such as the stick-slip phenomenon and
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nonlinear damping force, affecting the stability of the structure and leading to discomfort
for living beings in the area [53]. Considering the theory of the structure with the friction
damper under base excitation [54], the expression of the relative steady-state response
of the primary structure under base excitation with friction damper may be written as
(Appendix A)

A
Z

=


(
n2)2 −

(
4µe NM
πkZ

)2

(1− n2)
2


1
2

(12)

Here, A = X− Z, and n = ω
ωn

is the frequency ratio. Equation (12) demonstrates that
the solution of this equation at resonance i.e., (n = 1) becomes infinite with any magnitude
of the friction force. This shows that the friction damper alone is not sufficient to suppress
the vibration amplitude at resonance.

Experiments are performed with different extensions of the spring in the FD to alter
the normal force applied to the primary mass. The normal force depends on the stiffness
of the spring and the change in its length, as (FN = ks∆s). Here, ks is the stiffness of the
spring, and ∆s = s0 − s is the change in the length of the spring. The coefficient of external
friction (µe) and spring stiffness (ks) is interpreted as a constant; therefore, a change in the
length of the spring changes the friction force. First of all, the spring is stretched until the
metallic block is very close to the primary mass and the extension of the spring is measured,
which is regarded as the zero reading. Afterwards, the spring is expanded further by
loosening the nut to increase the normal force in the FD, leading to a larger friction force.
The displacement response of the primary structure with different compressions of the
spring in the FD is plotted in Figure 10. It can be observed that the resonant vibration
amplitude reduces by increasing the deflection ∆s of the spring, as shown in Figure 10.
In the comparison of Figures 9 and 10, the curve of γF = 0.6 in Figure 9 has a similar
peak value of X/Z about 20 to the curve of the FD ∆s = 3mm. The experimental result
validates the numerical results as increasing the friction force can reduce the vibration peak
at resonance in forced vibrations. However, the vibration peak is still high even at γF = 0.6
which is quite close to the theoretical limit of π/4. Therefore, the FD alone is not effective
in suppressing the resonant vibration of the SDOF primary system.
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4.3. Hybrid Damper (PID + FD)

The numerical model for a combined hybrid damper (PID + FD) proposed in Section 2
is simulated over various possible combinations of friction force ratio γF of the FD and
relative length of the cavity d/Z of the PID to determine the steady-state displacement
response of the primary structure. After that, a programme written in MATLAB software
gathers this huge dataset to calculate the displacement response on each design combination
at resonance. The contour plot with the 2-D dataset of resonant vibration amplitude with
respect to the clearance d and friction ratio γF is shown in Figure 11.
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Additionally, experiments are performed for the proposed hybrid damper consisting
of a PID and FD mounted on the SDOF structure. The displacement response of the primary
structure is recorded with different friction forces and clearance d of the PID. PU cushions
are installed in the PID to provide soft impact effects. The displacement response of the
primary structure with different spring deflections ∆s of the spring in the FD and clearance
d in the PID is shown in Figure 12.

The minimum resonant vibration amplitude X/Z = 5.46 is achieved with d = 7.5
mm, as shown in Table 3. The proposed hybrid damper reduces the resonant vibration
amplitude by 66% in comparison to using the FD only and 43% in comparison to using the
PID only with d = 22.5 mm.
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Table 3. Dimensionless maximum vibration amplitude. X/Z with different dampers.

d = 7.5 mm d = 22.5 mm d = 37.5 mm

PID only 29.73 9.64 15.06
FD only (∆s = 4 mm) 16.22 16.22 16.22
Hybrid (PID + FD) 5.46 7.99 8.06

4.4. Comparison with an Optimally Tuned Mass Damper

A traditional tuned mass damper (TMD) is a passive vibration-absorbing device,
as shown in Figure 13. The TMD is a widely researched vibration absorber, resulting
in considerable knowledge of analytical methods for its optimal design for maximum
vibration suppression. The TMD is usually pre-tuned to the natural frequency of the
primary mass; therefore, it is only effective for that frequency. In addition to being highly
effective in theory, the TMD is not widely used in vast application scenarios. That is because
of the challenges in practice, especially related to the precise damping requirements for the
secondary mass in the TMD.
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The response of the primary structure with a TMD can be derived as [55]

∣∣∣∣ X
Xst

∣∣∣∣ = ∣∣∣∣XZ
∣∣∣∣ =

√√√√ (γ2 − λ2)
2 + (2γλζ)2

[(1− λ2)(γ2 − λ2)− µ1γ2λ2]
2 + [2γλζ(1− λ2 − µ1λ2)]

2 (13)

Here, µ1 = m/M, γ = ωa/ωn, ωa =
√
(k1/m) and ωn =

√
k/M), λ = ω/ωn,

ζ = c/
(
2
√

mk1
)
, and X is the vibration amplitude of the primary structure. The optimal

parameters for a tuned mass damper are derived from the following equations

γopt =
1

1 + µ1
(14)

ζopt =

√
3µ1

8(1 + µ1)
(15)

The response of the primary structure with an optimized TMD with design parameters,
shown in Table 4, is simulated and compared with the proposed hybrid damper, as shown
in Figure 14. The traditional tuned mass damper is effective at resonance; however, it
requires precise tuning of the damping coefficient for its optimum function. The tuning
range is usually very small and it becomes challenging to identify or design a damper with
the required damping coefficient. If the damping coefficient is not accurate, the TMD can
perform negatively. Additionally, the effectiveness of a tuned mass damper is determined
by the actual weight that can be practically placed on top of the primary structure.

Table 4. Optimal design parameters for the comparison of TMD and proposed hybrid damper.

TMD

Mass ratio (µ1)
Optimal frequency

ratio (γ opt)
Optimal damping ratio

(
ζopt

)
0.1 0.9091 0.1679

Hybrid Damper (PID + FD)

Mass ratio (µ) Relative clearance
(d/Z)

Coefficient of
restitution (e)

Spring compression
(∆s)

0.1 5 0.47 4 mm
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The results show that the proposed hybrid damper (PID + FD) performs close to the
optimally tuned TMD, as shown in Figure 14. It can be observed that the TMD has a smaller
resonance amplitude compared with the proposed hybrid damper; however, the proposed
damper shows effectiveness over a wider frequency range. In addition, the proposed
damper is easier to design compared with the TMD and can perform comparably to the
TMD. The proposed hybrid damper can become an alternative to the TMD for passive
vibration control applications where the application of TMD is costly and challenging.

5. Conclusions

A hybrid particle impact damper (PID) combined with a Coulomb friction damper
(FD) is proposed and analyzed both numerically and experimentally. The FD is found to
be ineffective to suppress the resonant vibration of the primary system, and the PID has
the disadvantage of a low damping-to-mass ratio. However, the proposed hybrid damper
(PID + FD) is proven to be highly effective in suppressing resonant structural vibration. A
theoretical model of the proposed hybrid damper is built and tested numerically on a single-
degree-of-freedom (SDOF) structure. The predicted results are validated by experimental
tests on a prototype of the proposed damper. A parametric analysis of the proposed hybrid
damper has been performed and the optimal design combination of the PID and FD is
derived numerically and validated by experiments. The proposed hybrid damper can
reduce the maximum vibration amplitude of the SDOF primary structure by 66% more
than using the FD only and 43% more than using the PID only.

The proposed hybrid damper can achieve a similar vibration suppression perfor-
mance to the optimum tuned mass damper (TMD) of the same mass ratio. Furthermore,
the proposed hybrid damper is proved to be effective over a wide range of excitation
frequencies. In comparison to the TMD, the proposed hybrid damper does not require
an optimally tuned natural frequency and damping and therefore it does not have the
detuning problem of TMD. Additionally, random earthquake excitation data are used to
compare the performance of the studied dampers. The results show that the proposed
hybrid damper has significantly better damping than the TMD due to its wide frequency
band. The proposed hybrid damper lowers the maximum vibration amplitude by about
46% during the earthquake compared to the TMD, as shown in Appendix B. The proposed
damper may be used as a better alternative to the TMD in passive vibration control.
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Nomenclature

Symbols
..
x Acceleration of primary structure; m/s2
..
y Acceleration of particle; m/s2

Z Amplitude of support motion; m
d Clearance; m
e Coefficient of restitution
c Damping coefficient; Ns/m
z Displacement of support; m
y Displacement of particle; m
x Displacement of primary structure; m
F(t) Excitation force; N
x0 Initial position of primary structure; m
y0 Initial position of particle; m
.
x0 Initial velocity of primary structure; m/s
.
y0 Initial velocity of particle; m/s
M Mass of primary structure; kg
m Mass of primary structure; kg
k Spring constant; N/m
.
z Velocity of support; m/s
.
y Velocity of particle; m/s
.
x Velocity of primary structure; m/s
.
y+n Velocity of particle after nth impact; m/s
.
y−n Velocity of particle before nth impact; m/s
.
x+n Velocity of primary structure after nth impact; m/s
.
x−n Velocity of primary structure before nth impact; m/s
Greek Symbols
µe Coefficient of friction (external)
µi Coefficient of friction (internal)
ω Frequency of excitation force; rad/s
γF Friction to excitation force amplitude ratio
ωn Natural frequency of primary structure; rad/s
β Mass ratio
Abbreviations
PID Particle impact damper
RMS Root mean square
FD Friction damper
SDOF Single degree of freedom

Appendix A. Steady-State Response of an SDOF Structure with Friction Damper
under Harmonic Base Excitations

Considering a single-degree-of-freedom structure excited by the harmonic motion of
the base, as shown in Figure A1 the structure is damped with a friction damper, where the
friction damper is connected to the moving base as well.
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The equation of motion of the presented system might be written as

M
..
x + k(x− y) + µeNMsgn

( .
x− .

y
)
= 0 (A1)

Here, µe is the coefficient of friction, NM = Mg is the normal force of the mass M, and
sgn is the signum function which is defined as

sgn
( .
x− .

y
)
=


−1 if

.
x− .

y < 0
0 if

.
x− .

y = 0
1 if

.
x− .

y > 0
(A2)

The analytical solution of Equation (A1) is difficult to achieve due to the nonlinear
expressions. However, the friction damper can be assumed as an equivalent viscous damper(
ceq
)

to formulate an approximate analytical expression.
To find the equivalent viscous damping coefficient, we equate the energy dissipated by

friction and the energy dissipated by an equivalent viscous damper. The energy dissipated
by the friction damper in a full cycle of vibration is calculated as

∆W = 4µeNM(X−Y) (A3)

Here, (X−Y) is the relative displacement amplitude of vibration. The energy dissi-
pated by an equivalent viscous damper in a full cycle can be determined as

∆W = πceqω(X−Y)2 (A4)

Here,ω is the excitation frequency. By equating Equations (A3) and (A4), we obtain

ceq =
4µeNM

πω(X−Y)
(A5)

Equation (A1) can be changed to

M
..
x + ceq

( .
x− .

y
)
+ k(x− y) = 0 (A6)

If we consider the motion of the mass (M) relative to the base motion, we obtain

M
..
z + ceq

( .
z
)
+ kz = M

..
y (A7)

Here, z = (x− y). If the base has harmonic motion i.e (y = Y sin(ωt)), where Y is the
amplitude of base motion. Equation (A7) is rearranged as

M
..
z + ceq

.
z + kz = Mω2Y sin(ωt) (A8)

The steady-state solution of Equation (8) is given by

Z =
Mω2Y(

(k−mω2)
2 + (cω)2

) 1
2

(A9)

Or

Z =
Yn2(

(1− n2)
2 +

(
2ζeqn

)2
) 1

2
(A10)

Here, n = ω/ωn is the frequency ratio, and ζeq =
ceq
cc

is the equivalent damping ratio, giving

ζeq =
ceq

cc
=

4µe NM
πωZ

2Mωn
=

4µeNM
2πMωnωZ

(A11)
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and Z = X−Y, substituting Equation (A11) into Equation (A10) gives

Z =
Yn2(

(1− n2)
2 +

((
4µe NM
πkZ

))2
) 1

2
(A12)

Squaring both sides and rearranging gives

Z2

((
1− n2

)2
+

((
4µeNM
πkZ

))2
)

=
(

Yn2
)2

(A13)

Z2
(

1− n2
)2

+

(
4µeNM
πk

)2
=
(

Yn2
)2

(A14)

Z2
(

1− n2
)2

=
(

Yn2
)2
−
(

4µeNM
πk

)2
(A15)

Multiplying with 1
Y2 gives

1
Y2

(
Z2
(

1− n2
)2
)
=

1
Y2

((
Yn2

)2
−
(

4µeNM
πk

)2
)

(A16)

Z2

Y2

((
1− n2

)2
)
=

Y2n4

Y2 −
((

4µeNM
πk

)2
)

1
Y2 (A17)

Z2

Y2

((
1− n2

)2
)
= n4 −

((
4µeNM
πkY

)2
)

(A18)

Z2

Y2 =
n4 −

(
4µe NM
πkY

)2

(1− n2)
2 (A19)

Taking the square root of both sides gives

Z
Y

=


(
n2)2 −

(
4µe NM
πkY

)2

(1− n2)
2


1
2

(A20)

Equation (A13) is the steady-state response of a single-degree-of-freedom structure
with friction damper under harmonic base excitations.

Appendix B. Random Excitation Case

The proposed hybrid damper is designed and tested under harmonic excitations in
previous sections. However, the excitation in practice is sometimes random, such as an
earthquake. Considering the potential applications of the proposed hybrid damper in an
earthquake, the model is tested under random earthquake data. The earthquake input is
extracted from the built-in MATLAB example data “quake”, which contains earthquake
data from the Loma Prieta earthquake in the Santa Cruz Mountains on 17 October 1989.
The test under earthquake data is performed numerically and compared with the optimally
tuned mass damper with a similar mass ratio under the same excitation conditions.

Figure A2 shows a random earthquake example case for the proposed hybrid damper
compared with the other dampers tested in this article. The results show that the proposed
damper provides better damping to the SDOF under random excitation. The proposed
damper performs better in this case due to its wide frequency band, unlike the TMD which
is tuned for one frequency. Random excitations are generally with a range of excitation
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frequencies. Regarding the nature of the article, this could be an interesting topic to study
in the future.
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Figure A2. Comparison of the response of the SDOF structure under earthquake excitation with
different dampers.

Table A1 presents the maximum and RMS amplitude of the primary structure under
earthquake excitation with different dampers. The RMS amplitude represents the overall
performance of the damper during the whole excitation period and shows the effectiveness
of the damper over a longer duration. Comparing the maximum and RMS amplitude of
the structure with different dampers, the proposed hybrid damper shows the best vibration
suppression. The proposed hybrid damper reduces the maximum vibration amplitude by
46% compared to the TMD.

Table A1. Maximum and RMS amplitude of primary structure under earthquake excitation with
different dampers.

No Damper TMD PID FD PID + FD

Maximum amplitude (m) 0.1671 0.1473 0.0851 0.1400 0.0790
RMS amplitude (m) 0.0335 0.0238 0.0168 0.0200 0.0106
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