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t. In this paper, an iterative multi-resolution method for the re
onstru
tionof the unmeasured 
omponents of the equivalent 
urrent density is proposed in orderto improve the retrieval of the diele
tri
 properties of an unknown s
enario probed byinterrogating ele
tromagneti
 waves. The mathemati
al formulation, 
on
erned withlossless as well as lossy diele
tri
 s
atterers, is provided and the theory is supportedby a set of representative examples dealing with syntheti
 as well as experimentals
attering data.Key Words - Inverse s
attering, Non-measurable 
urrents, Iterative multi-s
alingmethod.Classi�
ation Numbers (MSC) - 45Q05, 78A46, 78M501. Introdu
tionIn the framework of ele
tromagneti
 data inversion, several methodologies 
onsider theintrodu
tion of an equivalent 
urrent density de�ned into the diele
tri
 domain in orderto linearize the s
attering equations [1℄[2℄[3℄[4℄. One of the main drawba
ks of theseapproa
hes lies in the non-uniqueness of the arising inverse sour
e problem [5℄ and,
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onsequently, how to properly take into a

ount the so-
alled �non-radiating� (or �non-measurable� when the ele
tromagneti
 data are measured only in a limited domainor positions outside the investigation domain) 
omponents of the unknown equivalentsour
e. Failing to do so usually 
auses an ina

urate retrieval of the s
atterer pro�le,whi
h, in many realisti
 
ases, su�ers from a strong low-pass e�e
t [1℄[2℄.In order to over
ome this drawba
k, Habashy et al. [6℄ proposed a re
onstru
tionmethod where the problem of non-measurable 
urrents was properly and dire
tlyaddressed by means of an iterative algorithm that pro
eeds through the minimizationof two 
ost fun
tions. At the initial step the s
attering data are mat
hed through there
onstru
tion of the radiating or minimum norm s
attering 
urrents, then subsequentsteps re�ne the non-radiating s
attering and the material properties inside the s
atterer.Taking into a

ount these guidelines, Gragnani and Caorsi [7℄ proposed a nonlinearpro
edure. Starting from the re
onstru
tion of the measurable 
urrent 
omponents,
arried out through a singular value de
omposition (SVD) of the dis
retized Green'soperator, the problem was re
ast as the solution of a nonlinear set of equations wherethe unknowns are the non-measurable 
omponents as well as the diele
tri
 propertiesof the investigation domain. Although the obtained results indi
ated a signi�
antimprovement 
ompared to those obtained through the minimum-norm solution, themethod showed some ina

ura
ies due to the trade-o� between a
hievable spatial-resolution and the dimension of the non-radiating 
urrents spa
e. As a matter of fa
t, theexisten
e of non-radiating 
urrents 
auses the non-uniqueness of the the inverse sour
eproblem (i.e., determining the 
urrent de�ned in the investigation domain that radiatesan assigned ele
tromagneti
 �eld in the observation domain) and the 
orrespondingpresen
e of a non-empty null spa
e of the integral s
attering operator [8℄[9℄. Moreover,sin
e a numeri
ally-a

urate dis
retization of the integral s
attering operators requiresa detailed representation of the equivalent sour
es 
hara
terized by a sampling beyondthe Nyquist rate, the resultant set of algebrai
 equations is generally undeterminedand the arising impedan
e matrix turns out to be non-square with a null-spa
e oflarge dimension. Therefore, a rough 
urrent des
ription with a smaller number of basisfun
tions de
reases the size of the null spa
e, but it yields an ina

urate spatial a

ura
yin the re
onstru
tion. On the other hand, the problem be
omes harder to solve when amore detailed representation is adopted due to the non-uniqueness of the solution.In this paper, starting from the idea that an inverse sour
e method may yield
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onstru
tion of the s
atterer under test when the number of degrees offreedom to model the obje
t is small [10℄, an iterative multi-zooming pro
ess is adopted.By keeping at ea
h iteration of the zooming pro
ess the number of unknowns 
lose to thenumber of independent data 
olle
table from the �eld measurements [11℄, it is possible onone hand to fully exploit the redu
tion of the null-spa
e for restoring the well-position ofthe inverse problem and, on the other hand, to enhan
e the a
hievable spatial resolutionthus avoiding low-detailed re
onstru
tions [10℄. More spe
i�
ally, starting from a 
oarserepresentation of the unknowns, the method iteratively de�nes a subgridding of thesupport of the equivalent 
urrent density su

essively improving the representation (interms of spatial a

ura
y) of the 
urrent as well as the s
atterer pro�le of lossless andlossy diele
tri
 obje
ts by minimizing a suitable nonlinear multi-resolution 
ost fun
tion.An outline of the paper is as follows. The mathemati
al issues 
on
erned with theproposed approa
h are detailed in Se
tion 2, while Se
tion 3 is devoted to a preliminarynumeri
al assessment. A set of representative test 
ases are dealt with and analyzed by
omparing the obtained results with those from the homogeneous-resolution method[7℄ (in the following, indi
ated as �bare� approa
h) as well as the minimum-normsolution. Moreover, some 
omparisons with an alternative IMSA-based approa
h [12℄are dis
ussed. Eventually, in Se
tion 4, some 
on
lusions are drawn.2. Mathemati
al FormulationLet us 
onsider a two-dimensional inverse s
attering problem under TM plane waveillumination. By 
onsidering a set of V illuminations,Ev
inc (r) = Ev

inc (x, y) ẑ v = 1, ..., V ,probing an unknown investigation domain Dinv des
ribed through the following 
ontrastfun
tion
τ (x, y) = [εR (x, y) − 1] − j σ(x,y)

ωε0
, (1)(εR and σ being the relative permittivity and 
ondu
tivity, respe
tively; ε0 isthe diele
tri
 permittivity of the lossless and non-magneti
 ba
kground) the arisingele
tromagneti
 s
attering phenomena turn out to be des
ribed by the Data and Stateintegral equations that in the 
ontrast-sour
e formulation appear as follows

Ev
scat (x, y) = −j

k2
0

4

∫ ∫

Dinv
Jv

eq (x′, y′) H
(2)
0 (k0d) dx′dy′ (x, y) ∈ Dobs (2)

τ (x, y)Ev
inc (x, y) = Jv

eq (x, y) + j
k2
0

4
τ (x, y)

∫ ∫

Dinv
Jv

eq (x′, y′)H
(2)
0 (k0d) dx′dy′

(x, y) ∈ Dinv

(3)
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Jv

eq (x, y) = τ (x, y)Ev
tot (x, y) ; v = 1, . . . , V (4)

k0 = 2π
λ
, λ being the wavelength of the free-spa
e ba
kground medium and H

(2)
0 isthe 0-th order se
ond-kind Hankel fun
tion [d =

√

(x − x′)2 + (y − y′)2℄.Starting from the measurement of a set of M (v) (v = 1, ..., V ) samples of thes
attered ele
tri
 �eld, Ev
scat (x, y), 
olle
ted in an external observation domain Dobs andof the knowledge of the in
ident �eld in the investigation domain, the inversion pro
essis aimed at determining τ (x, y) and Jv

eq (x, y) in the investigation domain through theinversion of (2)(3). Towards this end, the iterative multi-s
aling strategy (IMSA−NR)is adopted where a multi-resolution representation of the unknowns is taken into a

ountat ea
h step s of the re
onstru
tion pro
ess
τ (x, y) =

R(s)
∑

r=1

N(r)
∑

n(r)=1

τ
(

xn(r), yn(r)

)

Bn(r) (x, y) (5)
Jv

eq (x, y) =
R(s)
∑

r=1

N(r)
∑

n(r)=1

cv
n(r)V

v
n(r) (x, y) (6)where {

Bn(r) (x, y) ; n(r) = 1, ..., N(r)
} is a set of re
tangular basis fun
tions, r and

N(r) being the spatial-resolution index and the number of basis fun
tions at the r-thlevel, respe
tively. Moreover, {

V v
n(r) (x, y) ; n(r) = 1, ..., N(r)

} de�nes an orthonormalset of eigenve
tors 
omputed by means of the SV D of the dis
retized external Green'soperator Gext [7℄, whi
h turns out being equal to
Gv

ext (x, y) =
M (v)
∑

m=1

N(r)
∑

n(r)=1

Uv
m (x, y)αv

n(r)

[

V v
n(r) (x, y)

]

∗

. (7)A

ording to su
h a des
ription, the problem unknowns are the 
on-trast 
oe�
ients {

τ
(

xn(r), yn(r)

)

; n(r) = 1, ..., N(r); r = 1, ..., R(s)
} and the non-radiating sour
e 
omponents {

cv
n(r) = ζv

n(r); n(r) = I(r) + 1, ..., N(r); r = 1, ..., R(s)
},sin
e the remaining sour
e 
oe�
ients (namely, the minimum norm 
omponents,

{

cv
n(r) = ξv

n(r); n(r) = 1, ..., I(r); r = 1, ..., R(s)
} are easily 
omputed as follows

ξv
n(r) =

1

αv
n(r)







M (v)
∑

m=1

[Uv
m (x, y)]∗ Ev

scat (xm, ym)







(8)where {

Uv
m (x, y) ; m = 1, ..., M (v)

} is another set of orthonormal eigenve
tors from(7) and {

αv
n(r); n(r) = 1, ..., I(r)

} is the 
orresponding set of singular values. Moreover,
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omplex 
onjugate. These unknowns are then determined througha multi-step pro
edure, where the following operations take pla
e:
• Zero-order Re
onstru
tion (s = 0)At the �rst iteration, the region of interest (RoI) 
oin
ides with Dinv (D(0)

RoI = Dinv).Obtain a 
oarse re
onstru
tion of both the 
ontrast τ (xn, yn), n = 1, ..., N , and theindu
ed equivalent 
urrents Jv
eq (xn, yn), n = 1, ..., N , v = 1, ..., V , by subdividingthe RoI into N uniform 
ells a

ording to the amount of information 
olle
ted fromthe s
attered �eld measurement [11℄ and solving the problem as in [7℄;

• Higher-order Re
onstru
tions (s ≥ 1)After the 0-th order re
onstru
tion, the syntheti
 zoom is iteratively performedinside D
(s−1)
RoI to fo
us the re
onstru
tion on the support where the unknowns
atterers are supposed to be lo
ated. More in detail,� Regions-of-Interest (RoIs) EstimationIn
rease the step 
ounter (s → s+1). Starting from the re
onstru
tion obtainedat the previous step (s), de�ne the number Q(s), the lo
ations (x(s)

c(q), y
(s)
c(q),

q = 1, ... , Q(s)), and the extensions (L(s)
(q), q = 1, ... , Q(s)) of the regions-of-interest D

(s)
RoI(q) (where the Q(s) s
atterers are supposed to be lo
ated) a

ordingto the 
lustering pro
edure des
ribed in [12℄ and perform a noise �ltering toeliminate some artifa
ts in the re
onstru
ted image [13℄;� InitializationIn the RoIs, set the 
urrents to the minimum norm solution [cv

n(r) = ξv
n(r),

n(r) = 1, ..., I(r) and ζv
n(r) = 0.0, n(r) = I(r) + 1, ..., N(r), being r = R(s)℄ aswell as the obje
t fun
tion [τ (s)

guess

(

xn(r), yn(r)

)

= τ
(s)
MN

(

xn(r), yn(r)

)℄, where
τ

(s)
MN

(

xn(r), yn(r)

)

=
1

V

V
∑

v=1







Jv
MN

(

xn(r), yn(r)

)

Ev
totMN

(

xn(r), yn(r)

)







(9)being Ev
totMN

(x, y) the �eld generated in the RoIs when the s
atterer ismodeled by means of the minimum-norm equivalent sour
e Jv
MN (x, y) =

∑R(s)
r=1

∑I(r)
n(r)=1 ξv

n(r)V
v
n(r) (x, y)℄. More spe
i�
ally,

Ev
totMN

(

xn(r), yn(r)

)

= Ev
inc

(

xn(r), yn(r)

)

+

+
N(r)
∑

u(r)=1

Jv
MN

(

xu(r), yu(r)

)

Gv
2d

(

Au(r), du(r),n(r)

)(10)
Gv

2d and Au(r) being the dis
retized form of the Green's operator and the area
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ell at the r-th resolution level, respe
tively;� Unknowns RetrievalDetermine a new estimate of the unknowns {τ (s)
(q)

(

xn(r), yn(r)

); n(r) =

1, ..., N(r), r = 1, ..., R(s)} and {ζv
n(r), n(r) = I(r)+1, ..., N(r), r = 1, ..., R(s)}through the minimization of the multi-resolution 
ost fun
tion

Φ
(s)
IMSA−NR =

Γ(s)

∑Q(s)

q=1

∑V
v=1

∑R(s)
r=1

∑I(r)
n(r)=1

{

w
(q)
n(r)

∣

∣

∣ξv
n(r)V

v
n(r)

(

xn(r), yn(r)

)
∣

∣

∣

2
}(11)

Γ(s) being the residual de�ned as
Γ(s) =

Q(s)
∑

q=1

V
∑

v=1

R(s)
∑

r=1

N(r)
∑

n(r)=1

{

w
(q)
n(r)

∣

∣

∣τ
(s)
(q)

(

xn(r), yn(r)

)

Ev
inc

(

xn(r), yn(r)

)

+

−





I(r)
∑

j(r)=1

ξv
j(r)V

v
j(r)

(

xn(r), yn(r)

)

+
N(r)
∑

j(r)=I(r)+1

ζv
n(r)V

v
j(r)

(

xn(r), yn(r)

)



 +

+ τ
(s)
(q)

(

xn(r), yn(r)

)

N(r)
∑

u(r)=1





I(r)
∑

j(r)=1

ξv
j(r)V

v
j(r)

(

xu(r), yu(r)

)

+

+
N(r)
∑

j(r)=I(r)+1

ζv
n(r)V

v
j(r)

(

xu(r), yu(r)

)



 G2d

(

Au(r), du(r),n(r)

)

∣

∣

∣

∣

∣

∣

2










(12)where w is a weighting fun
tion
w

(q)
n(r) =







0 if
(

xn(r), yn(r)

)

/∈ D
(s−1)
RoI(q)

1 if
(

xn(r), yn(r)

)

∈ D
(s−1)
RoI(q)

; (13)� Convergen
e Che
kGo to the �RoIs Estimation� until a stationary 
ondition [12℄ either on thenumber of RoIs
1

s

s
∑

γ=1

{
∣

∣

∣Q(s) − Q(γ)
∣

∣

∣

}

≤ ηq (14)or on the qualitative re
onstru
tion parameters
min

q=1,...,Q(s)







∣

∣

∣u
(s)
(q) − u

(s−1)
(q)

∣

∣

∣

∣

∣

∣u
(s)
(q)

∣

∣

∣

× 100







< ηu, u = xc, yc, L (15)holds true (s = Sopt), ηq and ηu being �xed thresholds.3. Numeri
al ValidationIn order to test the e�e
tiveness of the proposed approa
h and also to evaluatethe bene�t respe
t to the �bare� approa
h, some numeri
al simulations have been
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onsidering syntheti
 as well as experimental s
attering data where�eld data are 
olle
ted for both lossless as well as lossy diele
tri
 obje
ts. Moreover,some re
onstru
tions 
on
erned with inhomogeneous obje
ts are 
ompared with thoseobtained by means of another implementation of the same multi-resolution strategy that,unlike the NR-based approa
h at hand, exploits the 
ontrast-�eld (CF ) formulation ofthe s
attering equations (2)-(3).Figure 1 shows the a
tual geometry of the �rst model on whi
h we tested the
IMSA − NR. The s
atterer is a lossless homogeneous (τ ref = 1.0) 
ir
ular 
ylinderof radius R = λ

6

entered at xref

C = yref
C = 0.15 λ and lo
ated in a square investigationdomain λ-sided. By 
onsidering su
h a s
enario, syntheti
 s
attering data have beengenerated with a MoM simulator (partitioning Dinv in NMoM = 100×100 homogeneoussquare sub-domains) using V = 4 illuminations and M (v) = 8, v = 1, ..., V , measurementlo
ations in a 
ir
ular observation domain (RDobs

= 0.74 λ). Moreover, the samples of
Ev

scat(xm, ym), m = 1, ..., M (v), v = 1, ..., V , have been blurred with a Gaussian noise
hara
terized by di�erent values of signal-to-noise ratio (SNR) in order to assess therobustness of the approa
h. The re
onstru
tion results obtained by minimizing the 
ostfun
tion (11) through the alternate 
onjugate gradient method [14℄ are shown in Figs.2-3 (SNR = 10 dB) and Figs. 4-5 (SNR = 5 dB) in terms of both diele
tri
 pro�leand equivalent 
urrent density [i.e., Jeq (x, y) =
∑V

v=1
Jv

eq(x,y)

V
℄. The IMSA − NR-basedinversion has been 
arried out by dis
retizing D

(s)
RoI in N(r) = 10× 10, r = R(s) squaresub-domains. For 
omparison, the minimum-norm solution and that obtained with the�bare� approa
h [7℄ are also shown (Dinv dis
retized into N = 20 × 20 in order to havea spatial resolution of the same order as that of the IMSA−NR in the RoI where thea
tual s
atterer is lo
ated). As it 
an be observed, whatever the SNR value, a non-negligible improvement is obtained when using the iterative multi-s
aling pro
edure. Asa matter of fa
t, by 
omparing the retrieved distributions [Fig. 2(
) and Fig. 3(
) -

SNR = 10 dB; Fig. 4(
) and Fig. 5(
) - SNR = 5 dB℄ with the a
tual pro�les [Fig.2(d) and Fig. 3(d)℄, it turns out that the IMSA − NR performs better as 
on�rmedby the error indexes de�ned as follows
Ξτ

(j) =
R

∑

r=1

1

N
(j)
(r)

N
(j)

(r)
∑

n(r)=1







∣

∣

∣τ (Sopt)
(

xn(r), yn(r)

)

− τ ref
(

xn(r), yn(r)

)∣

∣

∣

∣

∣

∣τ ref
(

xn(r), yn(r)

)
∣

∣

∣







×100(16)where N
(j)
(r) ranges over the whole investigation domain (j ⇒ tot), or over the areawhere the a
tual obje
t is lo
ated (j ⇒ int), or over the ba
kground belonging to the
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δ =

√

[

x
(Sopt)
C − xref

C

]2
+

[

y
(Sopt)
C − yref

C

]2

λ
(17)

∆ =

{

L(Sopt) − Lref

Lref

}

× 100 (18)and reported in Tab. I.The se
ond test 
ase is 
on
erned with a set of data experimentally-a
quired in a
ontrolled environment at the Institute Fresnel, Marseille, Fran
e [15℄. The experimentalset-up 
onsisted of a �xed emitter (a double-ridged horn transmitting antenna) and theobje
t has been illuminated from V = 36 di�erent lo
ations equally-spa
ed on a 
ir
le
RDobs

= 720 mm ± 3 mm in radius. Due to the physi
al limitations, the s
attered �eldhas been measured in M (v) = 49 points for ea
h illumination angle from a re
eiverrotating, with a me
hani
al support, around the verti
al axis of s
atterer under test.A detailed des
ription of the underlying experimental setup together with the 
ompletedata-set 
an be found in the introdu
tion of [16℄ (pp. 1565-1571) by Belkebir andSaillard. As far as the s
attering 
on�guration is 
on
erned, two di�erent experimentswith lossless as well as lossy obje
ts are 
onsidered. In the former 
ase, the multiple-obje
ts s
enario 
alled �twodielTM_8f.exp� illuminated by the probing sour
e at aworking frequen
y of f = 3 GHz has been managed. More in detail, the s
atterersare two lossless homogeneous diele
tri
 
ylinders 
hara
terized by an obje
t fun
tion
τ ref
(1) = τ ref

(2) = 2.0 ± 0.3 with 
ir
ular 
ross-se
tions R = 0.15 λ in radius and pla
edabout 0.3 λ from the 
enter of the experimental setup. The latter experiment dealswith the �re
tTM_de
e.exp� dataset, where an o�-
entered highly 
ondu
ting 
ylinder ofre
tangular se
tion of 0.17 λ×0.34 λ is illuminated by an impinging wave at the frequen
yof f = 4 GHz. In both the experiments, the obje
ts have been supposed to lie in a squarearea of 30 cm× 30 cm (i.e., 3 λ× 3 λ when f = 3 GHz, and 4 λ× 4 λ when f = 4 GHz).The retrieved pro�les are shown in Fig. 6 and Fig. 8‡, respe
tively. As expe
ted,thus 
on�rming the 
on
lusions drawn in the �rst example, the re
onstru
tion with the
IMSA − NR [Fig. 6(
), Fig. 8(
)℄ is mu
h 
loser to the a
tual 
ylinder 
ompared
‡ Be
ause of the highly 
ondu
ting assumption on the s
atterer properties, the a-priori 
ondition
Re {τ (x, y)} has been made.



Iterative Multi-Resolution Retrieval of Non-Measurable 9to the �bare� solution [Fig. 6(b), Fig. 8(b)℄ where the s
atterers are only lo
alized.Moreover, the reported results demonstrate that the proposed inverse algorithm 
anwork e�e
tively when dealing with 
omplex s
enarios, where either multiple obje
ts, orsmall loss type of s
atterers are embedded in the region under test. For 
ompleteness,Figure 7 and Figure 9 reports the inversion results in terms of 
urrent densities.Finally, the re
onstru
tion of inhomogeneous obje
ts is taken into a

ount tofurther assess the e�e
tiveness of the IMSA − NR approa
h. In these experiments,the results of the IMSA − NR are 
ompared with those of both the �bare� approa
hand the IMSA − CG [17℄ where, unlike (2) and (3), the inverse s
attering equationsare expressed in terms of the diele
tri
 pro�le and the indu
ed ele
tri
 �eld instead of
ontrast and sour
e distributions. The s
attered �eld data have been experimentally-a
quired at the same laboratory of the previous experimental dataset [18℄. The sameinvestigation domain Dinv has been kept, while the a
quisition setup di�ers in termsof radius of the measurement domain (i.e., RDobs
= 167 cm), number of views, andnumber of measurement points. As regards to the data-sets 
alled �FoamDielExtTM �and �FoamDielIntTM �, V = 8 and M (v) = 241. Two di�erent obje
ts havingradius equal to R1 = 80 mm and R2 = 30 mm and estimated diele
tri
 properties

τ ref
(1) = 0.45 + j0.0 and τ ref

(2) = 2.0 + j0.0 are under test in both s
enarios. In the former
ase (�FoamDielExtTM �), the obje
ts are pla
ed one 
lose to the other, while the smalls
atterer is lo
ated inside the bigger one in the �FoamDielIntTM � s
enario.The images of the re
onstru
ted diele
tri
 pro�les for both test 
ases are shown inFig. 10 (f = 2 GHz) and Fig. 11 (f = 4 GHz), respe
tively. They are 
on
erned withthe solutions obtained with the �bare� approa
h [Figs. 10(a)-11(a)℄, the IMSA − NR[Figs. 10(b)-11(b)℄ and the IMSA − CG [Figs. 10(
)-11(
)℄. Also in su
h a numeri
alassessment, is worth noti
ing that the IMSA − NR su

eeds in distinguishing and
orre
tly lo
alizing the two s
atterers. On the 
ontrary, the solutions from the �bare�approa
h present some artifa
ts [Fig. 10(a)℄ and a low-pass representation of the a
tualpro�le [Fig. 11(a)℄, respe
tively.As far as the IMSA − CG is 
on
erned, the retrieved pro�les are quite similar tothose obtained by IMSA−NR approa
h thus pointing out the e�
ien
y and reliabilityof the multi-zooming strategy for dealing with inverse s
attering problems. Nevertheless,it is worthwhile to observe that the quality of the IMSA−NR re
onstru
tions is slightlybetter than that of the IMSA−CG ones. As a matter of fa
t, both s
atterers turn outto be more 
arefully de�ned in Fig. 10(b) and Fig. 11(b) than in Fig. 10(
) and Fig.
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), respe
tively. Su
h an event is mainly related to the attempt of the NR te
hniqueof exploiting the information on the s
atterer 
oming from the non-radiating parts ofthe indu
ed equivalent sour
es. Otherwise, the CF approa
h of the IMSA − CG only
onsiders the amount of information 
oming from the s
attered �eld, whi
h is relatedto the measurable 
omponent of the equivalent sour
e (i.e., Jv
MN).4. Con
lusionsIn this paper, the IMSA − NR has been des
ribed. The iterative method pro
eeds byimproving at ea
h step a multi-resolution representation of both the obje
t fun
tion andthe equivalent 
urrent density in the investigation domain. At ea
h step, the s
attereddata are initially mat
hed through the solution of an inverse sour
e problem for theminimum-norm part of the s
attering 
urrents. Then, the pro
ess updates the materialproperties and the non-radiating part of the equivalent 
urrents in order to minimize asuitable multi-resolution 
ost fun
tion.A preliminary evaluation of the e�e
tiveness of the IMSA − NR in dealing withnoisy as well as experimental data has been 
arried out pointing out a signi�
antimprovement with respe
t to single-step approa
hes for the re
onstru
tion of non-measurable 
urrents. Moreover, some 
omparisons with an alternative CF formulationof the IMSA strategy have pointed out that it is pro�table to exploit the knowledgeof the existen
e of the null-spa
e of the inverse s
attering operators. Certainly, severalissues still need to be addressed, but, thanks to these experiments, it may be statedthat globally the approa
h demonstrated an a

eptable stability and robustness to noisy
onditions allowing, also in the presen
e of large errors in the s
attering data, an a

uratelo
alization and re
onstru
tion of lossless as well as lossy s
atterers under test.
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, xC = yC = 0.15λ, τ = 1.0, V = 4,

M (v) = 8, SNR = 10 dB). Obje
t Fun
tion Re
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tion - Minimum-norm solution(a). Retrieved distributions with the �bare� [7℄ pro
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Figure 3. O�-Centered Cir
ular S
atterer (R = λ

6
, xC = yC = 0.15λ, τ = 1.0, V = 4,

M (v) = 8, SNR = 10 dB). Equivalent Current Density Re
onstru
tion -Minimum-norm solution (a). Retrieved distributions with the �bare� [7℄ pro
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h [s = Sopt = 4 (
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tual 
urrent distribution(N = 40 × 40) (d).
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Table I. O�-Centered Cir
ular S
atterer (R = λ
8
, xC = yC = 0.15λ, τ = 1.0, V = 4,

M (v) = 8). Obje
t Fun
tion Re
onstru
tion - Values of the error indexes for thedistributions retrieved with the �bare� pro
edure and the IMSA − NR approa
h atdi�erent SNR.


