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Abstract. In this paper, an iterative multi-resolution method for the reconstruction
of the unmeasured components of the equivalent current density is proposed in order
to improve the retrieval of the dielectric properties of an unknown scenario probed by
interrogating electromagnetic waves. The mathematical formulation, concerned with
lossless as well as lossy dielectric scatterers, is provided and the theory is supported
by a set of representative examples dealing with synthetic as well as experimental

scattering data.
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1. Introduction

In the framework of electromagnetic data inversion, several methodologies consider the
introduction of an equivalent current density defined into the dielectric domain in order
to linearize the scattering equations [1][2][3][4]. One of the main drawbacks of these

approaches lies in the non-uniqueness of the arising inverse source problem |[5] and,
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consequently, how to properly take into account the so-called ”non-radiating” (or "non-
measurable” when the electromagnetic data are measured only in a limited domain
or positions outside the investigation domain) components of the unknown equivalent
source. Failing to do so usually causes an inaccurate retrieval of the scatterer profile,
which, in many realistic cases, suffers from a strong low-pass effect [1][2].

In order to overcome this drawback, Habashy et al. 6] proposed a reconstruction
method where the problem of non-measurable currents was properly and directly
addressed by means of an iterative algorithm that proceeds through the minimization
of two cost functions. At the initial step the scattering data are matched through the
reconstruction of the radiating or minimum norm scattering currents, then subsequent

steps refine the non-radiating scattering and the material properties inside the scatterer.

Taking into account these guidelines, Gragnani and Caorsi |7] proposed a nonlinear
procedure. Starting from the reconstruction of the measurable current components,
carried out through a singular value decomposition (SVD) of the discretized Green’s
operator, the problem was recast as the solution of a nonlinear set of equations where
the unknowns are the non-measurable components as well as the dielectric properties
of the investigation domain. Although the obtained results indicated a significant
improvement compared to those obtained through the minimum-norm solution, the
method showed some inaccuracies due to the trade-off between achievable spatial-
resolution and the dimension of the non-radiating currents space. As a matter of fact, the
existence of non-radiating currents causes the non-uniqueness of the the inverse source
problem (i.e., determining the current defined in the investigation domain that radiates
an assigned electromagnetic field in the observation domain) and the corresponding
presence of a non-empty null space of the integral scattering operator [8][9]. Moreover,
since a numerically-accurate discretization of the integral scattering operators requires
a detailed representation of the equivalent sources characterized by a sampling beyond
the Nyquist rate, the resultant set of algebraic equations is generally undetermined
and the arising impedance matrix turns out to be non-square with a null-space of
large dimension. Therefore, a rough current description with a smaller number of basis
functions decreases the size of the null space, but it yields an inaccurate spatial accuracy
in the reconstruction. On the other hand, the problem becomes harder to solve when a
more detailed representation is adopted due to the non-uniqueness of the solution.

In this paper, starting from the idea that an inverse source method may yield
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a reasonable reconstruction of the scatterer under test when the number of degrees of
freedom to model the object is small [10], an iterative multi-zooming process is adopted.
By keeping at each iteration of the zooming process the number of unknowns close to the
number of independent data collectable from the field measurements [11], it is possible on
one hand to fully exploit the reduction of the null-space for restoring the well-position of
the inverse problem and, on the other hand, to enhance the achievable spatial resolution
thus avoiding low-detailed reconstructions [10]. More specifically, starting from a coarse
representation of the unknowns, the method iteratively defines a subgridding of the
support of the equivalent current density successively improving the representation (in
terms of spatial accuracy) of the current as well as the scatterer profile of lossless and

lossy dielectric objects by minimizing a suitable nonlinear multi-resolution cost function.

An outline of the paper is as follows. The mathematical issues concerned with the
proposed approach are detailed in Section 2, while Section 3 is devoted to a preliminary
numerical assessment. A set of representative test cases are dealt with and analyzed by
comparing the obtained results with those from the homogeneous-resolution method
[7] (in the following, indicated as “bare” approach) as well as the minimum-norm
solution. Moreover, some comparisons with an alternative I M S A-based approach [12]

are discussed. Eventually, in Section 4, some conclusions are drawn.

2. Mathematical Formulation

Let us consider a two-dimensional inverse scattering problem under 7'M plane wave
illumination. By considering a set of V' illuminations, £}, (r) = EY, . (z,y) 2v=1,...,V,

probing an unknown investigation domain D, described through the following contrast

function

7(2,y) = [en (v,y) — 1] — j22L (1)

(eg and o being the relative permittivity and conductivity, respectively; &y is

the dielectric permittivity of the lossless and non-magnetic background) the arising
electromagnetic scattering phenomena turn out to be described by the Data and State

integral equations that in the contrast-source formulation appear as follows

EYo (2,y) = =45 [ [, J2 (@ y') HY? (kod) da'dy’  (2,y) € Dops (2)

" (@9) Bl (@9) = Jiy (0:9) + 357 @000) [ o, Ty (& ) Y (Rod) de'dy’ o

($ay) € Dinv
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where

Jeg (@,y) =7 (2,9) By (2,9); v=1,....,V (4)
ko = 27“, A being the wavelength of the free-space background medium and HSQ) is
the 0-th order second-kind Hankel function [d = \/(x — 2+ (y—y)’

Starting from the measurement of a set of M® (v = 1,...,V) samples of the

scattered electric field, EY, , (z,y), collected in an external observation domain D, and

of the knowledge of the incident field in the investigation domain, the inversion process
is aimed at determining 7 (7, y) and J¢, (7,y) in the investigation domain through the
inversion of (2)(3). Towards this end, the iterative multi-scaling strategy (/M SA—NR)
is adopted where a multi-resolution representation of the unknowns is taken into account

at each step s of the reconstruction process
R(s) N(r)
)=

=2

r=1 n(r

( Yni)) Buir (,) (5)

N(T’)

(z,y) Z (r) nv(r) (z,9) (6)
r=1 ):

where {Bn(r) (x,y); n(r)=1,.., N(r)} is a set of rectangular basis functions, r and
N(r) being the spatial-resolution index and the number of basis functions at the r-th
level, respectively. Moreover, {V,f(r) (x,y);n(r)=1,.., N(r)} defines an orthonormal
set of eigenvectors computed by means of the SV D of the discretized external Green’s

operator Gz |7, which turns out being equal to

M@ N(r)

emt ZL' y Z Z Uv ZL' y [Vrz)(r) (l’,y)}* . (7)

m=1n(r)=1
According to such a description, the problem unknowns are the con-
trast coefficients {T (xn(r),yn(r)> sn(r)=1,...,N(r); r=1, ...,R(s)} and the non-
radiating source components {CZ(T) =Gy () =1(r)+1,.. . N(r);ir=1,.., R(s)},
since the remaining source coefficients (namely, the minimum norm components,

{cfl(r) =& n(r) =1 I(r);r=1,.., R(s)} are easily computed as follows

1 M)
5111}(7“) = Z [Uﬁm ('T7 )] E:cat (l’m, ym> (8)
an(r) m=1

where {U;;L (x,y);m=1,.., M(”)} is another set of orthonormal eigenvectors from

(7) and {O‘Z(r)? n(r)=1,.., I(r)} is the corresponding set of singular values. Moreover,
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the apex * stands for complex conjugate. These unknowns are then determined through

a multi-step procedure, where the following operations take place:

e Zero-order Reconstruction (s = 0)
At the first iteration, the region of interest (Rol) coincides with D;,,, (Dggg ;1 = Diny).
Obtain a coarse reconstruction of both the contrast 7 (x,,y,), n =1, ..., N, and the
induced equivalent currents J¢, (zn,yn), n = 1,.., N, v = 1,...,V, by subdividing
the Rol into N uniform cells according to the amount of information collected from

the scattered field measurement [11] and solving the problem as in [7];

e Higher-order Reconstructions (s > 1)
After the O-th order reconstruction, the synthetic zoom is iteratively performed

1)

inside DRO] to focus the reconstruction on the support where the unknown

scatterers are supposed to be located. More in detail,

— Regions-of-Interest (Rols) Estimation
Increase the step counter (s — s+1). Starting from the reconstruction obtained
at the previous step (s), define the number Q*), the locations (x E()) yé‘z))
qg=1, Q(s)), and the extensions (LEZ;, qg=1,..,Q9) of the regions-of-
interest D' Rol(q) (Where the Q) scatterers are supposed to be located) according
to the clustering procedure described in [12| and perform a noise filtering to
eliminate some artifacts in the reconstructed image [13];

— Initialization
In the Rols, set the currents to the minimum norm solution [, = &,

n(r)=1,...1(r) and ¢,y = 0.0, n(r) = I(r) + 1,..., N(r), being r = R(s)] as

well as the object functlon 78 s (xn(r), yn(r)) = T](V[)N ( n(r)s yn(r))], where

V Jv n\r) Jn(r
7'1(\/[)1\7( ()yn(r)>—%2{ MN(x()y()>} (9)

v=1 Ezz}otMN ($n(r)a yn(r))
being Ef, = (v,y) the field generated in the Rols when the scatterer is

modeled by means of the minimum-norm equivalent source Jy,y (z,y) =
R(s
Zr(l) n(r lén(r n(r (.Z’ y)] More SpeCIﬁcaHYJ

EZ}otMN (xn(r)v yn(r)) Ezvnc (‘TW(T’)7 y"(r)) +
N(r)

+ > Jun (xu(r)v yu(r)) Gaq ( u(r)s ’((]r@

u(r)=1

G5y and A, being the discretized form of the Green’s operator and the area
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of the u-th cell at the r-th resolution level, respectively;

— Unknowns Retrieval
Determine a new estimate of the unknowns {7‘((;)) (xn(r), yn(r)); n(r) =
L., N(r),r=1,..,R(s)} and {C},y, n(r) = I(r)+1,...,N(r),r =1,..., R(s)}

through the minimization of the multi-resolution cost function

)

CDErSA)MA—NR
(s) s
£ S S S {wld
I'®) being the residual defined as
QG) v R(s) N(r)

=22 2 Z { Wa

g=1v=1 r=1 n(r)=
I(r) N(r)

Z & Vit (@ ) ¥ 22 G Vit (a0, 9

Jj(r)= J(r=I(r)+1

N(r)
+705) (@atr)s Yn(r) (z):l L%z &) Vitey (s vun) +

N(r) 2

+ Y GV (T yu(r))] Gaa (Autr), Qu(r) nr))
J(r)=I(r)+1

where w is a weighting function

. (s-1)
@ { 0 Zf (xn(r)vynr) ¢ DRoI(q
1

13)
) (s=1) 7 (
Zf ($n(r)> yn(r)) € DROI(Q)

— Convergence Check
Go to the “Rols Estimation” until a stationary condition [12| either on the

number of Rols
—Z{]@(& Q| <, (14)

or on the quahtatlve reconstruction parameters

[ufl) — uler)
min {% X 100} <My, U=2Te, Yo, L (15)

holds true (s = S,pt), 1, and 7, being fixed thresholds.

3. Numerical Validation

In order to test the effectiveness of the proposed approach and also to evaluate

the benefit respect to the “bare” approach, some numerical simulations have been

) 16 Vat (xnma yn(v")) ‘2}

(xn(r) yn(r)) Ezvnc (‘TW(T’)7 y"(r)) +

(11)

+

(12)
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performed by considering synthetic as well as experimental scattering data where
field data are collected for both lossless as well as lossy dielectric objects. Moreover,
some reconstructions concerned with inhomogeneous objects are compared with those
obtained by means of another implementation of the same multi-resolution strategy that,
unlike the N R-based approach at hand, exploits the contrast-field (C'F') formulation of
the scattering equations (2)-(3).

Figure 1 shows the actual geometry of the first model on which we tested the
IMSA — NR. The scatterer is a lossless homogeneous (77¢/ = 1.0) circular cylinder
of radius R = 2 centered at xg el = yref = 0.15 A and located in a square investigation
domain )\—s1ded. By considering such a scenario, synthetic scattering data have been
generated with a MoM simulator (partitioning D;,, in Ny = 100 x 100 homogeneous
square sub-domains) using V' = 4 illuminations and M) = 8, v = 1, ..., VV, measurement
locations in a circular observation domain (Rp,,, = 0.74X). Moreover, the samples of
EY (T, Ym), m = 1,..., M® v = 1,...V, have been blurred with a Gaussian noise
characterized by different values of signal-to-noise ratio (SINR) in order to assess the
robustness of the approach. The reconstruction results obtained by minimizing the cost
function (11) through the alternate conjugate gradient method |14] are shown in Figs.
2-3 (SNR = 10dB) and Figs. 4-5 (SNR = 5dB) in terms of both dielectric profile
and equivalent current density |i.e., Jo, (z,y) = M |. The IMSA — N R-based
inversion has been carried out by discretizing DS(ZI in N(r) =10 x 10, r = R(s) square
sub-domains. For comparison, the minimum-norm solution and that obtained with the
“bare” approach |7] are also shown (D, discretized into N = 20 x 20 in order to have
a spatial resolution of the same order as that of the IMSA — NR in the Rol where the
actual scatterer is located). As it can be observed, whatever the SNR value, a non-
negligible improvement is obtained when using the iterative multi-scaling procedure. As
a matter of fact, by comparing the retrieved distributions |Fig. 2(¢) and Fig. 3(c¢) -
SNR = 10dB; Fig. 4(c) and Fig. 5(¢) - SNR = 5dB]| with the actual profiles [Fig.
2(d) and Fig. 3(d)]|, it turns out that the IMSA — NR performs better as confirmed

by the error indexes defined as follows

1§ () )

Z Z Tref (xn(r)a Z/n(r)> ‘

(9)
1N (r) n(r)=1
where N((f)) ranges over the whole investigation domain (j = tot), or over the area

}x100(16)

where the actual object is located (j = int), or over the background belonging to the
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investigation domain (j = ext),

VIa) =]+ o - ']

)= 3

(17)

L(Som) _ Lref
A:{T} XlOO (18)

and reported in Tab. I.

The second test case is concerned with a set of data experimentally-acquired in a
controlled environment at the Institute Fresnel, Marseille, France [15]. The experimental
set-up consisted of a fixed emitter (a double-ridged horn transmitting antenna) and the
object has been illuminated from V' = 36 different locations equally-spaced on a circle
Rp,,. = 720mm £ 3mm in radius. Due to the physical limitations, the scattered field
has been measured in M = 49 points for each illumination angle from a receiver
rotating, with a mechanical support, around the vertical axis of scatterer under test.
A detailed description of the underlying experimental setup together with the complete
data-set can be found in the introduction of [16] (pp. 1565-1571) by Belkebir and
Saillard. As far as the scattering configuration is concerned, two different experiments
with lossless as well as lossy objects are considered. In the former case, the multiple-
objects scenario called “twodielTM 8f.exp* illuminated by the probing source at a
working frequency of f = 3GHz has been managed. More in detail, the scatterers
are two lossless homogeneous dielectric cylinders characterized by an object function
T(f)f = T(T;)f = 2.0 £ 0.3 with circular cross-sections R = 0.15 )\ in radius and placed
about 0.3 A from the center of the experimental setup. The latter experiment deals
with the “rectTM dece.exp” dataset, where an off-centered highly conducting cylinder of
rectangular section of 0.17 Ax0.34 X is illuminated by an impinging wave at the frequency
of f =4 GHz. In both the experiments, the objects have been supposed to lie in a square
area of 30 cm x 30c¢m (i.e., 3A x 3A when f =3GHz, and 4 A x 4 X when f =4GHz).
The retrieved profiles are shown in Fig. 6 and Fig. 8i, respectively. As expected,
thus confirming the conclusions drawn in the first example, the reconstruction with the

IMSA — NR [Fig. 6(c), Fig. 8(c¢)] is much closer to the actual cylinder compared

1 Because of the highly conducting assumption on the scatterer properties, the a-priori condition
Re {7 (z,y)} has been made.
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to the “bare” solution |Fig. 6(b), Fig. 8(b)| where the scatterers are only localized.
Moreover, the reported results demonstrate that the proposed inverse algorithm can
work effectively when dealing with complex scenarios, where either multiple objects, or
small loss type of scatterers are embedded in the region under test. For completeness,
Figure 7 and Figure 9 reports the inversion results in terms of current densities.
Finally, the reconstruction of inhomogeneous objects is taken into account to
further assess the effectiveness of the IMSA — NR approach. In these experiments,
the results of the IMSA — NR are compared with those of both the “bare” approach
and the IMSA — CG [17] where, unlike (2) and (3), the inverse scattering equations
are expressed in terms of the dielectric profile and the induced electric field instead of
contrast and source distributions. The scattered field data have been experimentally-
acquired at the same laboratory of the previous experimental dataset [18|. The same
investigation domain D,,, has been kept, while the acquisition setup differs in terms

of radius of the measurement domain (i.e., Rp, = 167cm), number of views, and

obs
number of measurement points. As regards to the data-sets called “FoamDielExtTM”
and “FoamDiellntTM”, V. = 8 and M® = 241. Two different objects having
radius equal to Ry = 80mm and Ry, = 30mm and estimated dielectric properties
T(Tle)f = 0.45+ 50.0 and T(T;)f = 2.0+ 50.0 are under test in both scenarios. In the former
case (“FoamDielExtTM?), the objects are placed one close to the other, while the small
scatterer is located inside the bigger one in the “FoamDiellntTM” scenario.

The images of the reconstructed dielectric profiles for both test cases are shown in
Fig. 10 (f =2GHz) and Fig. 11 (f = 4GHz), respectively. They are concerned with
the solutions obtained with the “bare” approach [Figs. 10(a)-11(a)|, the IMSA — NR
|[Figs. 10(b)-11(b)| and the IMSA — CG |Figs. 10(¢)-11(¢)]. Also in such a numerical
assessment, is worth noticing that the IMSA — NR succeeds in distinguishing and
correctly localizing the two scatterers. On the contrary, the solutions from the “bare”
approach present some artifacts [Fig. 10(a)] and a low-pass representation of the actual
profile [Fig. 11(a)], respectively.

As far as the IMSA — CG is concerned, the retrieved profiles are quite similar to
those obtained by IMSA— NR approach thus pointing out the efficiency and reliability
of the multi-zooming strategy for dealing with inverse scattering problems. Nevertheless,
it is worthwhile to observe that the quality of the M S A— N R reconstructions is slightly
better than that of the IMSA — CG ones. As a matter of fact, both scatterers turn out
to be more carefully defined in Fig. 10(b) and Fig. 11(b) than in Fig. 10(¢) and Fig.
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11(¢), respectively. Such an event is mainly related to the attempt of the N R technique
of exploiting the information on the scatterer coming from the non-radiating parts of
the induced equivalent sources. Otherwise, the C'F' approach of the IMSA — CG only
considers the amount of information coming from the scattered field, which is related

to the measurable component of the equivalent source (i.e., Jy;n)-

4. Conclusions

In this paper, the IMSA — NR has been described. The iterative method proceeds by
improving at each step a multi-resolution representation of both the object function and
the equivalent current density in the investigation domain. At each step, the scattered
data are initially matched through the solution of an inverse source problem for the
minimum-norm part of the scattering currents. Then, the process updates the material
properties and the non-radiating part of the equivalent currents in order to minimize a
suitable multi-resolution cost function.

A preliminary evaluation of the effectiveness of the IMSA — NR in dealing with
noisy as well as experimental data has been carried out pointing out a significant
improvement with respect to single-step approaches for the reconstruction of non-
measurable currents. Moreover, some comparisons with an alternative C'F’ formulation
of the IMSA strategy have pointed out that it is profitable to exploit the knowledge
of the existence of the null-space of the inverse scattering operators. Certainly, several
issues still need to be addressed, but, thanks to these experiments, it may be stated
that globally the approach demonstrated an acceptable stability and robustness to noisy
conditions allowing, also in the presence of large errors in the scattering data, an accurate

localization and reconstruction of lossless as well as lossy scatterers under test.
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Figure 1. Off-Centered Circular Scatterer (R = %, ro =yc = 0.15)\, 7 = 1.0).

Reference scenario of the first numerical test case.
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Figure 2. Off-Centered Circular Scatterer (R = %, ro=yc =0.15\, 7=1.0,V =4,
M® =8 SNR =10dB). Object Function Reconstruction - Minimum-norm solution
(a). Retrieved distributions with the “bare” 7] procedure (b) and the IMSA — NR

approach |[s = S, =4 (¢)]. Optimal reconstruction of the actual dielectric profile

achievable with the ITMSA — N R approach (d).
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Figure 3. Off-Centered Circular Scatterer (R = %, ro =yc =0.15\, 7=1.0,V =4,
M® =8 SNR = 10dB). Equivalent Current Density Reconstruction -
Minimum-norm solution (a). Retrieved distributions with the “bare” |7| procedure (b)
and the IMSA — NR approach [s = S,y = 4 (¢)]. Actual current distribution
(N =40 x 40) (d).
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Figure 4. Off-Centered Circular Scatterer (R = %, ro=yc =0.15\, 7=1.0,V =4,
M® =8 SNR =5dB). Object Function Reconstruction - Minimum-norm solution
(a). Retrieved distributions with the “bare” 7] procedure (b) and the IMSA — NR

approach [s = S, =2 (¢)].
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Figure 5. Off-Centered Circular Scatterer (R = %, ro=yc =0.15\, 7=1.0,V =4,
M® =8, SNR = 5dB). Equivalent Current Density Reconstruction - Minimum-norm
solution (a). Retrieved distributions with the “bare” [7] procedure (b) and the
IMSA — NR approach [s = S, = 2 (¢)].
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Figure 6. Dataset “twodielTM _8f.exp” - Benchmark “Marseille” [16| (f = 3GHz).
Object Function Reconstruction - Minimum-norm solution (a). Retrieved distributions

with the “bare” [7] procedure (b) and the IMSA — NR approach [s = S, = 5 (¢)].
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Figure 7. Dataset “twodielTM _ 8f.exp” - Benchmark “Marseille” [16] (f = 3GH?z).
FEquivalent Current Density Reconstruction - Minimum-norm solution (a). Retrieved
distributions with the “bare” [7] procedure (b) and the IMSA — NR approach
[s = Sopt =5 ()]
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Figure 8. Dataset “rectTM__dece.exp” - Benchmark “Marseille” |16] (f = 4 GHz).

Object Function Reconstruction - Minimum-norm solution (a). Retrieved distributions

with the “bare” |7] procedure (b) and the IMSA — NR approach [s = Sy = 2 (¢)].
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Figure 9. Dataset “rectTM_ dece.exp” - Benchmark “Marseille” [16] (f = 4 GHz).
FEquivalent Current Density Reconstruction - Minimum-norm solution (a). Retrieved

distributions with the “bare” [7] procedure (b) and the IMSA — NR approach
[s = Sopt =2 ()]
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Figure 10. Dataset “FoamDielExtTM ” - Benchmark “Marseille” [18| (f =2GHz).
Object Function Reconstruction - Retrieved distributions with the “bare” |7| procedure
(a), the IMSA — NR approach [s = S, = 2| (b) and the IMSA — CG approach
|s = Sopt = 2] (¢).
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Figure 11. Dataset “FoamDiellntTM” - Benchmark “Marseille” [18| (f = 4GHz).
Object Function Reconstruction - Retrieved distributions with the “bare” |7| procedure
(a), the IMSA — NR approach [s = S, = 5| (b) and the IMSA — CG approach
|s = Sopt = 2] (¢).
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Table 1. Off-Centered Circular Scatterer (R = %, ro =yc = 0.15\, 7=1.0, V =4,
M® =8). Object Function Reconstruction - Values of the error indexes for the
distributions retrieved with the “bare” procedure and the IMSA — N R approach at
different SNR.



