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Abstract
Forecasting the volume of emergency events is important for resource utilization in 
emergency medical services (EMS). This became more evident during the COVID-
19 outbreak when emergency event forecasts used by various EMS at that time 
tended to be inaccurate due to fluctuations in the number, type, and geographical 
distribution of these events. The motivation for this study was to develop a statisti-
cal model capable of predicting the volume of emergency events for Lombardy’s 
regional EMS called AREU at different time horizons. To accomplish this goal, we 
propose a negative binomial additive autoregressive model with smoothing splines, 
which can predict over-dispersed counts of emergency events one, two, five, and 
seven days ahead. In the model development stage, a large set of covariates was 
considered, and the final model was selected using a cross-validation procedure that 
takes into account the observations’ temporal dependence. Comparisons of the fore-
casting performance using the mean absolute percentage error showed that the pro-
posed model outperformed the model used by AREU, as well as other widely used 
forecasting models. Consequently, AREU decided to adopt the new model for its 
forecasting purposes.

Keywords  Decision support system · Emergency call data · Emergency departments 
data · Generalized nonlinear auto-regressive additive model · Predictive models

1  Introduction

Emergency medical services (EMS) represent the first point of healthcare access 
for millions of patients worldwide in need of urgent treatments. Despite the hetero-
geneous organization of EMS agencies globally, they all share the primary goal of 
minimizing intervention time. To achieve this goal with limited resources, statistical 
models for forecasting the number of emergency calls and rescue missions play a 
crucial role in informing EMS agencies about future activity volumes, which are 
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subject to significant daily and seasonal fluctuations. These fluctuations are influ-
enced by seasonal weather variations and extreme weather events (Alessandrini 
et al. 2011; Bassil et al. 2009; Lin et al. 2013; Attia and Edward 1998; Noble et al. 
1971), such as heat waves or cyclones (Noji 2000), social and demographic factors 
(Schuman et  al. 1977; Kamenetzky et  al. 1982), and epidemiological phenomena 
(Al Amiry and Maguire 2021; Diaz et al. 2001), such as influenza epidemics. Addi-
tionally, the day of the week and the time of the day impact the volume of EMS 
activity on different timescales (Cantwell et al. 2015; Batal et al. 2001). In this com-
plex framework, predictive models that account for all these factors can assist EMS 
organizations in optimal staff management and distributing ambulances and rescue 
equipment.

The importance of reliable predictive models became evident with the emergence 
of the COVID-19 pandemic. During that period, EMS organizations faced sudden 
and significant changes in the volume of emergency calls, and existing predictive 
models failed to capture this phenomenon. Thus, forecasting the number of calls and 
rescue missions in the near future is essential to optimize resource allocation and 
address the rapidly evolving needs of the served populations.

In this study, we describe the development of a predictive model to reliably fore-
cast the number of emergency events in the Lombardy region of Italy. This research 
effort was driven by a request from AREU (Agenzia Regionale Emergenza Urgenza), 
the regional agency responsible for the organization and implementation of EMS, 
for a reliable predictive model to inform organizational decisions during and after 
the COVID-19 outbreak. Before the COVID-19 pandemic, AREU routinely used a 
predictive tool based on an unobserved component model for time series data (Har-
vey 1990). However, this model was only developed to forecast events in the metro-
politan area of Milan, the region’s capital and most populous city in the Lombardy 
region, and it performed poorly when the COVID-19 pandemic began. Therefore, a 
new family of predictive models covering different areas of Lombardy and account-
ing for COVID-19-related factors was urgently needed.

The aim was to provide AREU with a predictive model that is (i) computationally 
efficient and time-effective, allowing for daily updates and new daily predictions, (ii) 
feasible in terms of accessible and up-to-date covariates, and (iii) flexible to accom-
modate epidemiological and social changes (Kenett and Gotwalt 2022).

To fulfill this purpose, we propose a generalized additive model (GAM, Hastie 
and Tibshirani 2017) with a negative binomial family, nonlinear autoregressive 
terms (Kedem and Fokianos 2002), and exogenous covariates, which can deal over-
dispersed count time series (Agresti 2015). The proposed model is flexible, allow-
ing for nonlinear dependence between covariates and outcomes. Although the same 
family of models (i.e., GAM) has already been used to develop predictive models in 
a similar framework (e.g., Viglino et al. (2017)), our approach is the first to simul-
taneously address nonlinearity, auto-regressive effects (Kedem and Fokianos 2002), 
over-dispersion (Agresti 2015), time (Kedem and Fokianos 2002), weather (Attia 
and Edward 1998; Noble et  al. 1971) and epidemiological (Diaz et  al. 2001) fac-
tors. For a recent and exhaustive review of the literature on predictive models in the 
field of EMS, see Al-Azzani et al. (2021); Huang et al. (2021) and the references 
therein. The developed model was compared, in terms of predictive performance, to 
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alternative forecasting methods, including the predictive tool used by AREU before 
the COVID-19 pandemic.

We focused our modeling efforts on predicting the volume of emergency events, 
defined as the dispatch of the most appropriate transport until the rescue is com-
pleted and/or the patient is referred to the most suitable hospital facilities. Planning 
emergency transportation dispatches is the most crucial organizational effort from 
a managerial and planning perspective. While most of the literature on forecasting 
models in EMS has focused on predicting emergency call volumes, trends in emer-
gency call volumes do not always align with changes in actual emergency events, 
which are the ultimate organizational targets. In Lombardy, approximately half of 
the emergency calls are not forwarded to the second-level public safety access point 
because they are deemed non-urgent upon initial assessment (AREU 2022). Various 
factors, such as media communications and social alerts, influence the proportion of 
calls that do not require emergency services. For example, immediately after the first 
COVID-19 case was confirmed in Italy, an unprecedented increase in emergency 
calls was observed in Lombardy. Many of these calls were requests for information 
and recommendations about the new disease (Marrazzo et  al. 2020; Dattner et  al. 
2022; Molenberghs 2023).

The fact that our study aims to predict the number of future emergency events is 
a strength. Specifically, having a reliable model to forecast such events allows the 
central direction unit to activate additional ambulances and increase the number 
of emergency teams on shift. As reported by AREU, the organization in charge of 
EMS in Lombardy, implementing such actions requires at least 24 hours. This des-
ignated time frame allows sufficient flexibility to adjust the number of ambulances. 
It ensures effective planning and response to potential emergencies, maintaining an 
optimal balance of resources and providing timely medical assistance to those in 
need (Berchi et al. 2010; Gilardi et al. 2021). Therefore, we considered predicting 
events one day in advance as the shortest forecasting time frame. In addition, since 
that data is updated hourly, the proposed model allows for considering shorter pre-
diction intervals if deemed necessary. The model presented in this paper has been 
implemented into user-friendly software. Following the initial testing phase reported 
here, the software has been successfully used by AREU for several months.

The paper is structured as follows. Subsec.  2.1 describes the Lombardy EMS, 
which is the target of our research. The data sources utilized in the model develop-
ment are outlined in Subsec. 2.2. The model development process is described in 
Subsec. 2.3, while Sect. 3 presents the estimates and predictive performance of the 
model. In Sect. 4, we discuss the strengths and limitations of our study.

2 � Methods

2.1 � EMS organization in Lombardy

Lombardy has a population of 10 million, the most populous region In Italy, 
accounting for approximately 17% of the Italian people. Before the COVID-19 
pandemic, the regional EMS received around 1 million emergency calls annually, 
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corresponding to over 900,000 emergency events. AREU, the public agency respon-
sible for coordinating, guiding, managing, and monitoring the out-of-hospital emer-
gency network and emergency number service in Lombardy, oversees these opera-
tions. The agency is structured into peripheral units known as Territorial Business 
Units (AAT, Articolazioni Aziendali Territoriali) as well as Regional Emergency 
Operations Rooms (SOREU, Sale Operative Regionali dell’Emergenza Urgenza). 
The twelve AATs are distributed throughout the region, approximately following the 
provincial division, while the four SOREUs coordinate rescue operations in super-
provincial competence areas (i.e., AAT aggregations). The geographical position 
and organization of the SOREUs and the distribution of the AATs are depicted in 
Fig. 1.

2.2 � Data

A comprehensive set of variables pertaining to emergency events in Lombardy 
from January 1st, 2015, until May 9th, 2021 were considered potential predictors 
for model development. We focused on predictors that are continuously available 
to AREU, enabling decision-makers to effectively utilize the predictive models for 
short-term forecasting (Kenett and Gotwalt 2022). A total of 134 variables were col-
lected from various data sources: the AREU databases for emergency response data; 
the Regional Agency for Environmental Protection (ARPA) registry for weather 
data; the Department of Civil Protection repository for COVID-19 data; the Higher 
Institute of Health (ISS) estimates for other epidemiological information.

The AREU database contains information about all received calls: the SOREU 
receiving the call, the exact time of the call (i.e., date and hour/minutes), the call 
classification (e.g., first aid), the AREU administrative area (i.e., province, zone, 
AAT), call initiation location (e.g., home, street) with geographic coordinates, the 
reason for the call, the severity code (i.e., triage), and whether the call triggered an 
aid response, resulting in an event. The data are aggregated at an hourly level.

Fig. 1   Description of the AREU organizational structures: a four SOREUs: AREU emergency manage-
ment; b twelve ATTs: AREU management of territorial resources
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Weather data from ARPA data are obtained through the Open Data project (ARPA - 
Regione Lombardia 2014), which collects temperature, rainfall, and snowfall data from 
sensors distributed across the Lombardy region. For each AAT, central sensors in the 
city center are selected, and the weighted average is computed at the SOREU level. 
The weights equal the proportion of calls (from January 1st, 2015 until May 9th, 2021) 
received from each province in the SOREU. The weather data are available at an hourly 
level but were aggregated at the daily level for our analyses, using indicators such as the 
daily average or the difference between the maximum and minimum temperature of the 
day.

COVID-19 data from the Department of Civil Protection are obtained from Dipar-
timento della Protezione Civile (2020). The data cover the Lombardy region, except 
for the total number of positive cases reported at the province level. The data are avail-
able daily. In addition to the basic epidemiological information, we compute the effec-
tive reproduction number (Rodpothong and Auewarakul 2012; Dabbaghian and Mago 
2014) using the method employed by the ISS, available at Istituto Superiore di Sanità 
(2020).

Finally, we consider the weekly flu incidence at the national level from 2015 to 2021 
as communicated by ISS (Istituto Superiore di Sanità 2020).

2.3 � Model development

Let Y be a random vector of dimension T × 1 , with its components Yt representing the 
counts of events at time t ∈ T  , T ∶= {1,… , T} . In our study, the time index t is on the 
hourly scale, and the spatial aggregation unit was the SOREU. Therefore, we targeted 
the prediction of the number of emergency events for each hour of the day in each of 
the four SOREUs. Let X =

(
X1,… ,XK

)
 be a set of T-dimensional covariates associ-

ated with the response variable Y , indexed by k ∈ K,K ∶= {1,… ,K} . Covariates can 
be year-, month- or day-specific and can be lags of Y , such as the total number of events 
in the previous days.

Given the important territorial and urban differences of the SOREUs, characterized 
by extremely different orographic characteristics and distributions of metropolitan and 
rural areas, we developed separate models for each area.

We opted for a GAM model to capture nonlinear relationships between X and 
Y with smoothing splines (Wood 2004, 2011, 2017). Since the response was a count 
variable and preliminary exploratory data analyses showed evidence of over-disper-
sion (Agresti 2015), we assumed a negative binomial distribution (Casella and Berger 
1990) for the response. Specifically, we assumed Yt ∼ NB

(
rt,�

)
 , where t ∈ T  , with 

E
(
Yt
)
= �t =

rt�

1−�
 and V

(
Yt
)
= �t +

�2
t

�
 . The expected value �t of Yt is assumed to 

depend on the covariates as follows:

Here, the coefficients �kd are the unknown parameters to be estimated, while bkd(⋅) 
are known basis functions, and Dk is the number of bases for the covariate Xtk.

ln(�t) = � +

K∑

k=1

fk(Xtk), where fk(Xtk) =

Dk∑

d=1

�kdbkd(Xtk).
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Table 1   Description of the five models considered in the cross-validation step

Model Covariates

Model 1 Hour of the day when the event occurs at SOREU level.⋆
Day of the week when the event occurs at SOREU level.⋆
Interaction between the hour of the day and the day of the week.⋆
Quarter of the year when the event occurs at SOREU level.⋆
Daily average temperature lagged one day at the SOREU level
Number of events of the day before delayed 1/2/3 h at SOREU level
Number of events aggregated by day and delayed 1/2/7 days at SOREU level
Weekly flu incidence lagged one day at the national level
COVID-19 reproduction number based on the total amount of positive cases
lagged one day at Lombardy level

Model 2 Hour of the day when the event occurs at the SOREU level
Day of the week when the event occurs at the SOREU level
Interaction between the hour of the day and the day of the week
Month of the year when the event occurs at the SOREU level. ⋆
Daily difference between the minimum and maximum temperature ⋆
lagged one day at the SOREU level
Number of events of the day before delayed 1/2/3/4 h at SOREU level
Number of events aggregated by day and delayed 1/7/14 days at SOREU level
Weekly flu incidence lagged one day at the national level
COVID-19 reproduction number based on the total amount of hospitalized patients
lagged one day at Lombardy level

Model 3 Hour of the day when the event occurs at the SOREU level. ⋆
Variable indicating if the day when the event occurs at SOREU level
is during the weekend or a working day
Quarter of the year when the event occurs at the SOREU level. ⋆
Week of the year when the event occurs at the SOREU level. ⋆
Daily difference temperature with respect to 16◦ C lagged one day at the SOREU level
Number of events of the day before delayed 1/2/3 h at SOREU level
Number of events aggregated by day and delayed 1/2/7 days at SOREU level
Weekly flu incidence lagged one day at the national level
Number of hospitalized patients lagged one day at Lombardy level

Model 4 Hour of the day when the event occurs at the SOREU level
Variable indicating if the day when the event occurs at SOREU level
is during the weekend or a working day
Interaction between the hour of the day and working days/weekend dummy variable
Month of the year when the event occurs at the SOREU level. ⋆
Daily average temperature lagged one day at the SOREU level. ⋆
Daily average precipitation lagged one day at the SOREU level. ⋆
Number of events of the day before delayed 1/2/3 h at SOREU level
Number of events aggregated by day and delayed 1/2/7/14 days at SOREU level
Weekly flu incidence lagged one day at the national level
Number of intensive care admissions lagged one day at Lombardy level
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We had to perform variable selection to find the optimal model to predict the 
number of events in each SOREU. The variable selection process was based on the 
data from the Plain SOREU, the second largest SOREU. We did not use the Metro-
politan SOREU, which is the largest among the four, because AREU already had 
a predictive model for this area, and the development of a model for the remaining 
SOREU was their priority.

The ⋆ symbol expresses if the corresponding variable enters by a spline function

Table 1   (continued)

Model Covariates

Model 5 Hour of the day when the event occurs at the SOREU level. ⋆
Dummy variable describing the exceptional days, like 1st of January
when there are events that cause an increase in calls
Dummy variable describing the calendar school
Daily average temperature lagged one day at the SOREU level. ⋆
Daily average precipitation lagged one day at the SOREU level
Number of events of the day before delayed 1/2/5 h at SOREU level
Number of events aggregated by day and delayed 1/2/7/14 days at SOREU level
Weekly flu incidence lagged one day at the national level
Number of daily total positive cases at the province level lagged 5 days
The sum is computed to have the variables at the level of SOREU

Table 2   MAPE from five different models described in Table 1 calculated across different time periods 
(30 days) considering respectively one, two, five, and seven days ahead predictions for the Plain SOREU

Model Year MAPE

One day ahead Two days ahead Five days ahead Seven days ahead

Model 1 2016 4.131 4.206 6.047 7.157
Model 2 2016 4.987 5.218 6.886 8.388
Model 3 2016 4.679 5.195 7.063 8.039
Model 4 2016 4.47 4.924 7.088 9.042
Model 5 2016 4.334 4.745 6.293 7.488
Model 1 2018 5.072 4.617 4.67 4.942
Model 2 2018 5.212 4.415 4.772 4.719
Model 3 2018 6.884 6.719 7.891 8.93
Model 4 2018 5.302 4.654 4.959 4.787
Model 5 2018 5.639 4.643 5.284 4.983
Model 1 2020 4.648 5.334 4.573 4.264
Model 2 2020 4.75 5.466 4.951 4.778
Model 3 2020 4.931 6.292 5.888 5.84
Model 4 2020 5.893 6.911 6.489 5.183
Model 5 2020 5.879 6.654 6.671 5.187
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Given the large number of available explanatory variables (i.e., 134 ), we relied on 
assumptions a priori, based on the existing literature, about their effects on the count 
of events and their possible interactions. We assumed the presence of a time effect 
at the annual, weekly, and daily levels. In addition, we assumed an effect of weather 
(Attia and Edward 1998; Noble et al. 1971), epidemiological (Diaz et al. 2001) and 
auto-regressive factors (Kedem and Fokianos 2002). We constructed several sets of 
covariates to explain seasonal, weather, epidemiological, and auto-regressive effects 
with the available variables. For example, we explored whether the seasonal effect 
was better modeled at the month or quarter levels. In the first case, the variable 
“month” was entered into the model, while in the second case, we entered the vari-
able “quarter”. Similarly, the meteorological impact was analyzed by considering 
the average daily temperature and the difference between the daily minimum and 
maximum temperature. Again, the impact of the COVID-19 spread was analyzed 
through the number of hospitalized patients with symptoms and the number of posi-
tive swabs. These are just a few examples of the combinations analyzed in this vari-
able selection process.

Fig. 2   Plain model results: coefficients plots during the COVID-19 pandemic, a Effect of the hour of 
the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters of the year, 
where 1 stands for the first quarter of the year; d Effect of the interaction between days and hours, where 
1 stands for Monday. The black dotted lines represent two standard error bounds
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After that, we analyzed this set of covariates through exploratory analysis to 
understand the underlying relationships between the dependent variable (i.e., count 
of events) and covariates and among the covariates themselves. We finally selected 
five models with different sets of covariates X cross-validated across different time 
periods. Table 1 briefly describes the set of variables inserted in these five final mod-
els. Some of them are considered categorical variables in some models, and others 
as continuous variables inside a spline function. The ⋆ symbol in Table 1 expresses 
if the ordinal variable is considered a continuous variable inside a spline function.

The observations in time–series data are temporally dependent, which means that 
traditional cross-validation procedures do not apply directly. To tackle this issue, a 
rolling cross-validation approach suitable for temporal data was preferred. Particu-
larly, the candidate models were fitted to data Y1,… , Yt , forecasts Ŷt+1 were obtained, 
and the relative prediction errors Et =

Ŷt+1−Yt+1

Yt+1
 were calculated for each model. This 

was repeated for t = m,… ,m + N − 1 , where m corresponds to the minimum size of 
the dataset used to fit the models and N is the number of forecasts. The mean abso-
lute percentage error (MAPE) for each model, computed across N forecasts, was 
used as a performance metric in the cross-validation step:

Fig. 3   Plain model results:  coefficients plots using data before the COVID-19 pandemic, a Effect of 
the hour of the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters 
of the year, where 1 indicates the first quarter of the year; d Effect of the interaction between days and 
hours, where 1 stands for Monday. The black dotted lines represent two standard error bounds
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where | ⋅ | is the absolute value, and Ei is the relative prediction error from forecast i , 
i = 1,… ,N . The choice of the relative prediction error for assessing forecasting per-
formance was based on matching the performance measure used by AREU. How-
ever, the user-friendly software where the final model is implemented also reports 
other performance metrics, such as the minimum absolute percentage error, the 
maximum absolute percentage error, and the median absolute percentage error.

Table  2 shows the MAPE considering the five different models described in 
Table 1 cross-validated on a rolling basis across different time periods for the Plain 
SOREU. The MAPE is computed across 30 days considering one, two, five, and 
seven days ahead predictions in 2016, 2018, and 2020. Therefore, for each year, 30 
days were randomly selected. Then, in the first step, the training set is composed of 
the period before the first day of the 30 days randomly selected. The test set com-
prises the first, second, fifth, and seventh days of the 30 days selected to have predic-
tions one, two, five, and seven days ahead. In the second step, the first day of the 30 
days randomly selected is added to the training set, the remaining 29 days are used 
as a test set, and so on. Model 1 has the lowest cross-validated MAPE overall com-
pared to the other four models.

The predictive performance of the developed models was compared to that of 
other alternative approaches. The first comparator was the model used by AREU 
for the Metropolitan SOREU, which was based on an unobserved component 
time series model (Harvey 1990). The model included several covariates such as 
a dichotomous variable for increased calls (e.g., snowfall), a dichotomous variable 
for decreased calls (e.g., midweek holiday), predicted average daily temperature, flu 
incidence value (estimated), and the square of the difference between the average 
daily temperature and a reference temperature ( 16◦C). The model also considered 
stochastic seasonality at the weekly level. The developed model was also compared 

(1)MAPE =

∑N

i=1
�Ei�

N
100,

Fig. 4   Plain model results: Quantiles at level 0.8 (black) and 0.99 (light green) considering the predicted 
events at hourly level one day ahead. The red dotted line shows the maximum quantile at level 0.8 ( 0.99 ) 
corresponding to 23 ( 29 ) events expected on March 29, 2021
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to other benchmarking models estimated on the same training data. These included 
a naive, deterministic model where predictions were simply set to the latest avail-
able observation, an ARIMA model based on the time series of previous events 
(Makridakis and Hibon 1997), and a generalized linear model (GLM) for count time 
series (Christou and Fokianos 2014).

We use the open-source statistical software R (R Core Team 2015) for preprocess-
ing and model fitting. Among the available R packages for fitting GAMs, we utilized 
the mgcv (Wood 2011) package, which enables the fitting of GAMs on large data-
sets through the bam function. The ARIMA and GLM benchmarking models were 
fitted using the auto.arima R function and the tsglm function from tscount 
package (Liboschik et  al. 2017), respectively. The full code used in this paper is 
available at https://​github.​com/​angee​lla/​Tsuna​mi_​proje​ct.

Fig. 5   Plain model results: a Predictions one, two, five, and seven days ahead across one year and rela-
tive true values; b Forecast errors one day ahead, the predictions inside the two red dotted horizontal 
lines have absolute errors below 5% . The black dotted line represents an absolute error equals 0

Fig. 6   Metropolitan  model results: a Predictions one, two, five, and seven days ahead across one year 
and relative true values; b Forecast errors one day ahead, the predictions inside the two red dotted hori-
zontal lines have absolute errors below 5% . The black dotted line represents an absolute error equals 0

https://github.com/angeella/Tsunami_project
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3 � Results

3.1 � Model estimates

This section will focus on presenting the model developed specifically for the Plain 
SOREU, which was used for variable selection. The covariates included in the opti-
mal model are described in the first model of Table 1.

We employed cubic regression splines (Green and Silverman 2019) to capture the 
seasonal effects of hours and quarters. The cubic splines were chosen because they 
match up to the second derivative with their start, which is suitable for modeling 
cyclical effects. Specifically, we used 24 basis functions for modeling the seasonal 
effects of hours and 4 basis functions for modeling the seasonal effects of quarters.

Fig. 7   Lakes model results: a Predictions one, two, five, and seven days ahead across one year and rela-
tive true values; b Forecast errors one day ahead, the predictions inside the two black dotted horizontal 
lines have absolute errors below 5% . The black dotted line represents an absolute error equals 0

Fig. 8   Alps model results: a Predictions one, two, five, and seven days ahead across one year and rela-
tive true values; b Forecast errors one day ahead, the predictions inside the two black dotted horizontal 
lines have absolute errors below 5% . The black dotted line represents an absolute error equals 0
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For the day variable, we opted for P-splines with 7 basis functions (Eilers and 
Marx 1996) to capture the day’s seasonal effects. Finally, the tensor product smooth 
(Ramsay et  al. 1997) (two-dimensional smooth, where the shape of one dimen-
sion varies smoothly over the other dimension) between day and hour covariates is 
applied to analyze the interaction between these two variables. Linear associations 
were assumed for the remaining covariates, which were included in the model with-
out any smoothing terms. P-splines performed similarly to cubic regression splines 
but are numerically more stable and easier to fit. In addition, this permits a fast 
estimate of the smooth tensor product. The time complexity of the model fitting is 
essential in this case since AREU needs a computationally fast model to forecast the 
number of emergency events (Kenett and Gotwalt 2022).

For each covariate, we analyze the estimated association with the outcome. Fig-
ure 2a illustrates the estimated seasonal effects of hours within a day. We observe 
a positive effect during the late morning and afternoon when people are typically 
awake and active. In contrast, the effect becomes negative during the night and early 
morning when people are usually asleep. Figure 2b displays the effects of the day 
of the week. Mondays show the highest incidence of events compared to the other 
days of the week. Figure 2c presents the seasonal effects of quarters. The number 
of events is generally lower in the summer when the schools are closed, and people 
are on vacation. This observation may be associated with rising temperatures during 
that period. Finally, looking at the interaction between hours and days in Fig. 2d, we 
can see a positive effect in the morning (9 a.m.–12 p.m.) of weekdays and a strong 
negative effect in the morning of the weekend. Furthermore, we can see a positive 
effect during the night on the weekend and a negative effect around 5 a.m. on Mon-
day, Tuesday, and Wednesday.

We estimate the model considering data before the COVID-19 era to see if 
the temporal dynamics, particularly the seasonal effects, have also changed due 
to the pandemic. Figure  3 shows the same plots presented in Fig.  2. We can see 
that the effect of the hour of the day (Fig. 3a) and of the quarter (Fig. 3d) do not 
change markedly, unlike the effect of the day of the week (Fig. 3b). One possible 

Fig. 9   Metropolitan model results: Predictions one day ahead across 145 days and relative true values



648	 A. Andreella et al.

1 3

interpretation could be that before the COVID-19 pandemic, many emergency events 
were concentrated during the weekend. Therefore, with the arrival of the COVID-19 
pandemic, the emergencies referred to AREU have shifted by a few days. People 
become infected during the week and weekend and seek care on Monday. Before 
the COVID-19 pandemic, on the other hand, the primary demand, as we have said, 
was at weekends, when people went out to parties/hiking or when general practition-
ers were simply not available. Furthermore, Fig. 3d shows a positive effect on early 
mornings during all weeks and a night effect during the weekend. Again, before the 
COVID-19 pandemic, people most needed AREU interventions during weeknights 
and weekends.

Finally, we report the quantiles at levels 0.8 and 0.99 of the predictive distribu-
tion considering hourly predictions one day ahead. Figure 4 shows these quantiles 
for each day from May, 9th, 2020 until May, 9th, 2021. Knowing the quantiles of 
predicted values can help AREU with resource planning and making informed 
emergency management decisions as a risk measure. For example, AREU knows 
that there is 80% probability that on March, 29th 2021, the hourly events will be at 
most 23 (and 29 at most with probability 99% ), represented by the red dotted line in 
Fig. 4. In other words, 23 ( 29 ) represents the cut-off point such that only 20% ( 1% ) of 
the predicted emergency events exceed this value.

3.2 � Model performance

We first focus on the model’s performance developed for the Plain SOREU. For 
each date from May, 9th, 2020 until May, 9th, 2021, the model described in the pre-
vious section was fitted on one year of retrospective data. The resulting model was 
used to forecast the number of events one, two, five, and seven days ahead. Figure 5a 
compares the predictions one, two, five, and seven days ahead with the true number 
of emergency events, while Fig. 5b shows the forecast errors for the one day ahead 

Fig. 10   Screenshot of one of the many user-friendly interfaces that make the proposed model fully opera-
tional on a daily basis to support the decisions by AREU
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prediction. The periods where the error appears to be slightly larger are during the 
second pandemic wave (November-February 2021) and around the holiday season. 
In general, the mean absolute percentage error over the whole year was 4.53% . This 
is a good result, considering that AREU required the mean absolute percentage error 
to be at most 5% for the predictions to be helpful in efficiently planning future activi-
ties. Appendix 2 shows the MAPE values grouped by month and year to have a bet-
ter view of Fig. 5.

The model selected for the Plain SOREU data was then applied to the data of 
the other three SOREUs. The one day ahead mean absolute percentage error was 
still acceptable for the Alps ( 6.241% ), Lakes ( 5.815% ), and Metropolitan ( 4.309% ) 
SOREUs. Figure  6a shows the predictions one, two, five, and seven days ahead 
for the Metropolitan SOREU, while Fig. 6b describes the prediction errors for the 
one day ahead forecast. Similarly, Fig. 7a and b illustrate the results for the Lakes 
SOREU, and Fig.  8a and b for the Alps SOREU. As the Plain case, Appendix 2 
reports the MAPE values considering all SOREUs grouped by month and year. The 

Fig. 11   Metropolitan model results: coefficients plots during the COVID-19 pandemic, a Effect of the 
hour of the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters of 
the year, where 1 stands for the first quarter of the year; d Effect of the interaction between days and 
hours, where 1 stands for Monday. The black dotted lines represent two standard error bounds
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changes in the effects after fitting the model to pre and post-COVID data for the 
Metropolitan, Lakes and Alps SOREUs are reported in Appendix 1.  

Figure  9 compares the one day ahead predictions obtained with the proposed 
model to the predictions of the model currently used by AREU on the Metropolitan 
SOREU, which was the only SOREU for which the AREU model was calibrated. 
The predictions are compared across 145 days (i.e., from 2020–10-14 until 2021–03-
07). We observed a significant improvement: our model achieved a MAPE of 4.44% 
whereas the AREU model achieved a MAPE of 5.11% . Therefore, the developed 
GAM showed a significantly lower error than the unobserved component time series 
model used by AREU.

Regarding the other benchmarking models, when looking at the one day ahead 
predictions over one year, the naive deterministic, ARIMA and model and tsglm 
models achieved a MAPE of 7.359% , 11.177% and 10.461% respectively. Thus, the 
proposed model outperformed all of the considered benchmark models.

To test the flexibility of the proposed model, we trained it using data from the 
pre-COVID-19 period only, spanning from December 31, 2017, to December 31, 
2018. Considering the Plain SOREU, we obtained MAPE values (calculated from 

Fig. 12   Metropolitan model results: coefficients plots before the COVID-19 pandemic, a Effect of the 
hour of the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters 
of the year, where 1 stands for the first quarter of the year; d Effect of the interaction between days and 
hours, where 1 stands for Monday. The black dotted lines represent two standard error bounds
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December 31, 2017, to December 31, 2018): 4.093 for one day ahead, 4.341 for two 
days ahead, 4.391 for five days ahead and 4.465 for seven days ahead. The results 
for the other SOREUs are provided in Appendix 2. The proposed model demon-
strates its ability to capture the dynamic changes in epidemiological and societal 
circumstances thanks to the incorporation of selected covariates such as the effective 
reproduction number (Rodpothong and Auewarakul 2012; Dabbaghian and Mago 
2014)), as well as the adaptability of the splines in handling variations in the number 
of emergency events across different periods.

4 � Discussion

We have described the development of a statistical model developed with state-of-
the-art techniques to predict emergency events in the most populous Italian region. 
Because the forecasting errors were compatible with the organizational needs of 
AREU, the model is a valuable tool for efficiently planning emergency activities. 

Fig. 13   Lakes model results: coefficients plots during the COVID-19 pandemic, a Effect of the hour of 
the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters of the year, 
where 1 stands for the first quarter of the year; d Effect of the interaction between days and hours, where 
1 stands for Monday. The black dotted lines represent two standard error bounds
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A user-friendly dashboard providing the model estimates was implemented to make 
this model available to decision-makers in AREU, enabling the use of the model in 
everyday EMS coordination. Such an application is represented in Fig. 10.

Due to the different organization schemes of EMS around the globe, generaliz-
ing models predicting emergency events or calls to other contexts is often complex 
and, in some cases, impossible. However, the general methodology applied in this 
study and the overall model development process can also be used in other settings. 
Additionally, we found that our model performed very well on all of the SOREUs in 
Lombardy, even though the variables were selected based on the Plain SOREU data 
only. This suggests that the form of the model may generalize to slightly different 
contexts, such as other Italian regions or other European countries. This possibility 
is already under consideration by AREU decision-makers.

Our study focused on the GAM methodology for model development. Further 
research should evaluate the application of generalized additive mixed models 
(GAMMs), i.e., extensions of GAM incorporating random effects. GAMMs are 
better suited to deal with autocorrelation structures at a price, however, of higher 

Fig. 14   Lakes model results: coefficients plots before the COVID-19 pandemic, a Effect of the hour of 
the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters of the year, 
where 1 stands for the first quarter of the year; d Effect of the interaction between days and hours, where 
1 stands for Monday. The black dotted lines represent two standard error bounds
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computational costs (Lin and Zhang 1999). In addition, further analyses should 
explore the possible addition of interaction terms. Bayesian extensions could also 
be explored. Such models could be used to model trend and seasonal components 
with appropriate Markov random field priors with different forms and degrees of 
smoothness (Fahrmeir and Lang 2001). Finally, considering additional epidemio-
logical variables, especially those related to COVID-19 or other emerging health 
crises, could be valuable and appropriate.

The proposed model was able to capture the dramatic daily and seasonal varia-
tions that emerged during the COVID-19 pandemic, attaining good performances 
both during one of the peaks of the COVID-19 epidemic in Lombardy and in 
moments when the volume of cases was limited. Nonetheless, we emphasize 
how predictive models like the one we presented need periodic, rigorous, qual-
ity evaluations and, eventually, substantial updates. This is particularly true in 
the COVID-19 era, when the rapidly increasing proportion of vaccinated indi-
viduals and the sudden spread of new viral variants may change the effect of 

Fig. 15   Alps model results: coefficients plots during the COVID-19 pandemic, a Effect of the hour of 
the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters of the year, 
where 1 stands for the first quarter of the year; d Effect of the interaction between days and hours, where 
1 stands for Monday. The black dotted lines represent two standard error bounds
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COVID-19-related predictors in the model. Even beyond COVID-19 factors, 
structural and organizational modifications in the EMS apparatus may heavily 
impact the role of the predictors in the model. For these reasons, strict, continu-
ous collaboration between public health stakeholders and data analysts is deemed 
essential.

Fig. 16   Alps model results: coefficients plots before the COVID-19 pandemic, a Effect of the hour of 
the day; b Effect of the day of the week, where 1 stands for Monday; c Effect of the quarters of the year, 
where 1 stands for the first quarter of the year; d Effect of the interaction between days and hours, where 
1 stands for Monday. The black dotted lines represent two standard error bounds

Table 3   MAPE for one, two, five, and seven days ahead predictions of events volume in Metropolitan, 
Lakes and Alps SOREUs

SOREU MAPE

One day ahead Two days ahead Five days ahead Seven days ahead

Metropolitan 4.257 4.6 5.804 5.885
Lakes 6.087 6.57 6.482 6.892
Alps 5.338 5.511 6.147 6.336
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Appendix 1: Model estimates

We show here the plots of the component smooth functions for Metropolitan 
(Figs. 11 and 12), Lakes (Figs. 13 and 14) and Alps (Figs. 15 and 16) SOREUs 
using the entire dataset and data pre-COVID pandemic era.

Table 4   Plain model results: One, two, five, and seven days ahead MAPE for the Plan SOREU grouped 
by month and year

Month Year MAPE

One day ahead Two days ahead Five days ahead Seven days ahead

5 2021 3.428 3.388 3.903 2.942
4 2021 3.851 4.088 4.409 4.834
3 2021 4.690 4.450 5.265 5.709
2 2021 5.958 6.214 6.882 6.201
1 2021 4.292 5.275 4.258 5.540
12 2020 6.078 7.037 6.095 5.581
11 2020 4.861 5.056 5.626 6.023
10 2020 4.373 4.161 4.263 4.250
9 2020 3.431 3.347 4.026 3.870
8 2020 6.882 7.311 6.836 6.546
7 2020 4.853 5.049 5.640 9.994
6 2020 4.897 5.821 6.475 5.943
5 2020 5.007 7.422 5.859 5.483

Table 5   Metropolitan model results: One, two, five, and seven days ahead MAPE for the Metropolitan 
SOREU grouped by month and year

Month Year MAPE

One day ahead Two days ahead Five days ahead Seven days ahead

5 2021 3.782 5.121 6.613 6.181
4 2021 4.033 4.326 5.915 6.492
3 2021 3.630 4.085 4.344 4.701
2 2021 3.408 4.330 4.186 4.624
1 2021 5.490 5.838 6.346 7.173
12 2020 5.773 5.523 6.015 5.510
11 2020 4.533 5.360 7.753 9.697
10 2020 3.857 4.381 4.972 6.356
9 2020 4.403 9.118 6.980 7.959
8 2020 4.559 6.223 7.297 14.282
7 2020 5.181 6.362 4.173 4.484
6 2020 4.664 5.484 5.230 4.909
5 2020 4.786 4.374 6.453 6.586
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Appendix 2: Model performance

Table  3 shows the MAPE computed during the pre-COVID-19 period (i.e., from 
2017–12-31 to 2018–12-31) concerning one, two, five, and seven days ahead 

Table 6   Alps model results: One, two, five, and seven days ahead MAPE for the Alps SOREU grouped 
by month and year

Month Year MAPE

One day ahead Two days ahead Five days ahead Seven days ahead

5 2021 5.167 5.356 4.167 5.019
4 2021 7.385 7.547 7.499 7.919
3 2021 5.941 6.275 6.993 6.701
2 2021 4.677 5.397 5.870 6.423
1 2021 5.801 5.648 5.835 5.881
12 2020 6.254 5.786 5.992 6.157
11 2020 7.585 7.379 7.031 7.300
10 2020 6.154 6.084 5.968 6.095
9 2020 5.184 5.978 6.983 7.325
8 2020 8.265 10.084 13.004 14.502
7 2020 4.686 4.787 5.013 5.061
6 2020 5.754 6.267 5.647 5.788
5 2020 8.134 8.489 10.961 11.182

Table 7   Lakes model results:  One, two, five, and seven days ahead MAPE for the Lakes SOREU 
grouped by month and year

Month Year MAPE

One day ahead Two days ahead Five days ahead Seven days ahead

5 2021 3.333 4.570 6.064 4.471
4 2021 5.808 6.17 6.020 6.311
3 2021 5.447 6.175 5.697 6.091
2 2021 6.044 5.727 5.704 7.038
1 2021 6.368 6.735 6.198 7.259
12 2020 6.769 6.877 7.771 9.065
11 2020 6.189 7.067 11.571 14.247
10 2020 4.798 6.851 6.869 6.855
9 2020 4.883 5.116 6.515 6.405
8 2020 6.313 5.237 6.811 7.773
7 2020 5.391 7.310 5.162 5.470
6 2020 6.511 5.749 6.817 7.493
5 2020 5.401 6.701 7.522 7.553
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predictions of events volume for the SOREUs Metropolitan, Alps and Lakes.
Tables 4, 5, 6 and 7 show the one, two, five, and seven days ahead MAPE values 

for the Plain, Metropolitan, Lakes and Alps SOREUs respectively grouped by month 
and year. The time period considered is the one represented in Figs. 5, 6, 7 and 8.
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