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Abstract— Open Science is a vital part in the current and 
future research agenda worldwide. In order to meet Open 
Science goals, it is of paramount importance to fully support the 
research process, which includes also properly addressing 
provenance and reproducibility of scientific experiments. 
Indeed, provenance and reproducibility are two key 
requirements for analytics workflows in Open Science contexts. 
Handling provenance at different levels of granularity and 
during the entire experiment lifecycle becomes key to properly 
and flexibly managing lineage information related to large-scale 
experiments as well as enabling reproducibility scenarios. To 
this end, this work introduces the micro-provenance concept, 
and it provides an in-depth description of its design, 
implementation and exploitation in the context of a multi-model 
climate analytics workflow. 

Keywords— micro-provenance, graph data model, 
reproducibility, Open Science, climate domain 

I. INTRODUCTION  
Open Science is a vital part in the current and future research 
agenda worldwide. One of the most prominent initiatives run 
by the EC is the European Open Science Cloud (EOSC) 
which “aims to create a trusted environment for hosting and 
processing research data to support EU science in its global 
leading role” [1]. Open Science leverages new ways to 
perform research and share the results through open digital 
technologies and collaborative tools [2] embracing the 
concepts of Open Access, Open Data, Open Source software 
and Open reproducible research [3][4]. Besides accessibility, 
an Open Science research culture fosters transparency, 
enabling trust and recognition as well as providing basic 
foundations for reproducibility [5]. Several efforts in 
literature have been made towards reproducibility [6][7][8].  
Moreover, reproducibility implicitly fosters re-usability, 
which is one of the FAIR guiding data principles [9][10]. 

In such a context, provenance can be a crucial element to 
enable scientific experiments reproducibility.  
This paper focuses on a multi-level provenance approach in 
climate workflows, as a way to explore data lineage across 
multiple dimensions and to provide in-depth knowledge and 
new tools to inspect, document and navigate climate 
experiments. The yProv micro-provenance service, a new 
core component within an Open Science-enabled research 
data lifecycle, is introduced in this work by highlighting the 
design and implementation aspects as well as it graph-based 
data model.  
The rest of the paper is organized as follows: Section I 
provides the motivation and definitions about the micro-
provenance paradigm, whereas Section II discusses the 
current state of art in the area; Section III presents the design 
of the yProv micro-provenance service, while Section IV 
discusses the implementation aspects. Section V presents an 
in-depth discussion of a micro-provenance use case 
addressing multiple aspects such as: scientific context, use 
case design and implementation, input data, workflow 
strategies and micro-provenance results. Finally, Section VI 
draws the final conclusions, highlighting future work. 
 

II. MICRO-PROVENANCE: MOTIVATION AND DEFINITIONS 
Provenance, i.e., the description of the different stages data 
has undergone during the analysis process, from its origin to 
the outcome, provides crucial information for scientific 
experiments in the climate domain and beyond. Indeed, a 
complete provenance record can enable reproducibility 
scenarios, which are becoming a mandatory target within 
Open Science contexts, particularly in the climate domain. 
Climate experiments are usually documented in terms of 
provenance from a very high-level perspective, without  



delving into the internals of a specific workflow task. As 
climate experiments are rapidly evolving towards end-to-end 
workflows including simulation runs, data pre-post 
processing, data-driven and data-intensive applications, task 
heterogeneity can lead to different needs from scientists about 
the exploration of specific provenance information. For 
instance, someone could be interested in the overall set of 
macro-tasks in the workflow to provide the provenance 
metadata of the final data products, while others could be 
more intrigued by the data lineage information of a data-
intensive step consisting of a Directed Acyclic Graph (DAG) 
of hundreds or thousands of data analytics kernels. 
It becomes clear that a more articulated and multifaceted end-
to-end approach for scientific experiments requires a new 
vertical dimension to navigate and explore the provenance 
metadata, beyond the usual horizontal one. 
This concept leads to the micro-provenance definition as a 
“multi-dimensional metadata description to navigate within 
the provenance space across different axes”.  
The present paper addresses the horizontal and vertical 
dimensions of provenance, by providing a first 
implementation of the multi-level concept. Related to the 
previous definition, we define the micro-provenance service 
as “the software component in charge of handling the micro-
provenance metadata”. 
It is worth mentioning the micro-provenance concept can 
contribute towards (i) stronger traceability, transparency and 
trust, through a richer and detailed set of metadata); (ii) multi-
dimensional exploration/navigation of provenance metadata 
(by definition), (iii) knowledge extraction, through data 
mining techniques) on the micro-provenance database, and 
finally (iv) fine-grained tasks understanding as a means/tool 
to address the explainability of complex processes (i.e., 
Machine Learning/Deep Learning). 
 

III. STATE OF THE ART 

A. Main research projects 
Two major projects address linking of resources via graph 
data model approaches, namely: Freya1 and OpenAire2.  
Freya [16] is a European Commission-funded project 
established with the aim of interconnecting resources with 
persistent identifier (PID), a unique identifier for entities of 
scientific interest such as publications, datasets, or people. 
These PIDs also carry metadata that make it possible to 
unambiguously relate resources belonging to the same type 
or to different types, thus allowing the creation of a graph 
(PID Graph [11]) that is used as a basis for other services.  
OpenAire (Open Access Infrastructure for Research in 
Europe) is a digital infrastructure funded by the European 
Union that offers a variety of services for Open Science. By 
exploiting a graph data model approach, it aims to offer 
services about scientific publications and results, such as 
search, publication management, validation, and more [12].  
While the proposed work shares the graph database approach 
for storing information about connected resources with the 

 
1 https://www.project-freya.eu/en 
2 https://www.openaire.eu 
3 https://openprovenance.org/store/ 
4 https://openprovenance.org/services/view/validator 
5 https://openprovenance.org/services/view/translator 

two projects above, it also differs from them for two main 
reasons. First, it focuses on tracking detailed provenance 
information about scientists’ workflows and experiments, 
and provides a rich set of lineage metadata in terms of (i) 
tasks performed, (ii) data (input, output, but also intermediate 
products), (iii) type of storage (persistent vs in-memory data 
structures), and (iv) the set of steps that connect input to 
output datasets, therefore laying the ground for a 
reproducibility framework. Second, our work also introduces 
the multi-level concept as a way to navigate through the 
different levels of provenance, and so distinguishing between 
coarse and fine-grain (micro-provenance) steps within the 
same climate analytics workflow. 
 

B. W3C PROV implementations 
The W3C PROV [13] family of standards plays a crucial role 
in addressing interoperability. At present, the best 
implementations of W3C PROV are the following: 
- ProvStore3: an online repository for storing provenance 

documents both privately and publicly. It features a Web 
interface and a REST API [14]. 

- Validator4: a web service from openprovenance.org for 
validating provenance descriptions against the PROV 
specification. 

- Translator5: a web service from openprovenance.org for 
translating between the various representations 
supported by PROV. 

- ProvToolbox6: a Java library that allows the creation and 
conversion of PROV model representations.  

- ProvJS7: an implementation of the PROV standard for 
JavaScript. 

- Prov Python8 : an open source Python library created 
according to the PROV data model specification. It 
allows the creation of in-memory representations of 
provenance documents and the gradual addition of 
records to them. It also offers support for serialization 
and deserialization in PROV-O, PROV-XML and 
PROV-JSON and export to various graphical formats. 

- prov2neo 9 : a Python library for efficiently importing 
PROV documents to Neo4j [15]. 

- Git2PROV10: an application for exporting provenance 
data from a Git repository into the PROV standard. 

 

IV. YPROV SERVICE DESIGN 
This section deals with several design aspects of the yProv 
service, such as the requirements elicitation, the architectural 
design, the service modes and the API. The challenge is to 
fully address micro-provenance in end-to-end scientific 
workflows, through a lightweight and interoperable service, 
based on a simple architecture as well as a graph data model 
and a well-defined API. 
 

6 https://github.com/lucmoreau/ProvToolbox 
7 https://bitbucket.org/provenance/provjs/src/master 
8 https://github.com/trungdong/prov 
9 https://github.com/DLR-SC/prov2neo 
10 https://github.com/IDLabResearch/Git2PROV 



A. Requirements elicitation 
Starting from the main motivation reported in Section I, the 
key requirements for a micro-provenance service are listed 
below: 

• Scalability: running complex end-to-end scientific 
workflows implies tracking a myriad of tasks/sub-
tasks, spanning across multiple provenance levels. 
There is a strong need to provide scalable solutions 
to properly implement the micro-provenance 
paradigm. 

• Multi-level support: according to the micro-
provenance definition, the related service must 
properly deal with the provenance space and the 
different levels. 

• Interoperability: the micro-provenance service must 
expose an interoperable interface and be compliant 
with the W3C PROV family of standards. 

• Data model: the micro-provenance service must 
adopt a data model that values relationships as a 
first-class citizen. In this respect, graph data models 
can turn out to be very flexible in modelling 
relationships, incorporating new classes of 
information over time, and helping an agile 
development of the system. 

• Consistency: community-based vocabularies should 
be integrated into the micro-provenance service to 
ensure consistent tracking of provenance 
information. 

 

 
Figure 1: yProv service chunked mode. 

 

B. yProv service architectural design 
The yProv service architecture follows a simple web-service 
paradigm. A client connects to the web service front-end 
through the exposed API.  
The web service in turn acts as a client for the graph-database 
back-end, thus implementing all the needed CRUD (Create, 
Read, Update, Delete) logic to manage provenance 
information. Fig. 1 shows how a generic workflow can track 
lineage information step-by-step by calling the provenance 
web service API.  
Provenance of different workflows can then be stored into 
different graph databases, thus ensuring isolation with respect 
to the provenance management of separate experiments.  
 

C. yProv service modes 
The yProv service has been designed to support two different 
modes, i.e., one-shot and chunked. In the former case, 
provenance information is entirely sent to the web service at 

the end of the workflow through a single call, whereas in the 
chunked mode, provenance information is sent in separate 
chunks to the web service during workflow execution. While 
the first mode limits (to one) the number of interactions with 
the web service and it is well-suited for small-medium 
workflows, the second one streams provenance information 
at run-time in separate chunks to the web service, thus 
enabling real-time inspection of provenance information by 
the end-users, while the workflow is running. 

 
Table 1: yProv service API and mapping with HTTP verbs. 

 

D. yProv service API design 
The yProv API has been designed by following the REST 
principles. A simplified list of methods and the corresponding 
action for each HTTP verb is reported in Table 1. 
More in detail, five classes of resources have been identified, 
namely document, entity, activity, agent, and relation.  
Document is the abstraction of full provenance information 
associated to a workflow. For each abstract document there is 
a one-to-one association with a graph database. Entity, 
activity, and agent are sub-resources of the document 
resource, and they allow performing the CRUD operations on 
the three types of elements stored into a provenance graph 
according to the W3C PROV data model, thus ensuring a 
fine-grain control on each node stored in the graph database; 
similarly, relation allows acting on each individual 
relationship of the graph.  
 

V. YPROV SERVICE IMPLEMENTATION 
From an implementation perspective, the yProv service 
consists of the following components:  

- yProv Command Line Interface (CLI) 
- yProv Web Service front-end 
- Graph database engine back-end 



The yProv CLI provides a set of commands which are 
basically Python wrappers to the RESTful API calls. 
The yProv web service is implemented in Python by using 
Flask micro-framework, which is based on the Jinja2 
Template Engine and Werkzeug WSGI Toolkit. Flask has 
been preferred to other solutions like Django since it is rather 
lightweight and easy-to-use to rapidly build RESTful web-
services in Python. Additionally, two libraries have been used 
to develop the API methods, namely Prov Python and 
py2neo3. More in detail: 
- Prov Python is an open source Python library created 

according to the W3C PROV specification. In particular, 
yProv uses the prov.model module that defines the 
ProvDocument, ProvRecord, ProvElement, and 

ProvRelation classes to provide a very good in-memory 
representation of a provenance document. This 
representation is very useful not only for the serialization 
and deserialization methods but also because it operates 
checks on the validity of the document against PROV 
constraints. 

- py2neo3 is a Python library that provides support for 
connecting and querying Neo4j databases. Basic 
functionality is provided by the Graph class that 
represents a graph database exposed by an instance of 
Neo4j. The Node, Relationship, and Subgraph classes, 
on the other hand, are the basic types of library that offer 
methods for interacting with the elements of a graph. 

 
 

 
Figure 2. Design (abstract workflow) of the precipitation trend analysis use case 

 
 

VI. MICRO-PROVENANCE USE CASE 
This section delves into the use case design. It provides 
some context in the first sub-section to introduce the main 
source of data for the proposed use case, and it also 
illustrates the abstract workflow in the second section. 
 

A. Background: CMIP and ESGF 
Multi-model data analysis requires access to data from 
multiple climate models simulations like those produced in 
the context of the Coupled Model Intercomparison Project 
(CMIP) [36]. These data are available through the Earth 
System Grid Federation (ESGF) data archive [17][18], 
which provides production-level support for search & 
discovery, browsing and access to climate simulation data 
and observational data products. 
ESGF puts together: (i) a few tens of data nodes from 
multiple climate modelling centers around the world, (ii) 
tens of petabytes of data published (most of which relate to 
the CMIP5 [34] and CMIP6 [20][35] experiments), (iii) 
tens of thousands of users worldwide, and (iv) more than 
one billion downloads over the last five years. CMIP data 
are key for the IPCC Assessment Reports [19]. 

Data of course are just the input, whereas the infrastructure 
and the software stack provide respectively the proper 
capacity and the enabling technologies. 
In the CMIP context, multi-model analyses are clearly 
among the most relevant exercises that can be run by 
scientists.  As an example, the multi-model precipitation 
trend analysis was considered. This use case was also 
selected as a pilot case in the context of the H2020 
INDIGO-Datacloud project [21-23] [33] since it is 
scientifically relevant and general enough to extrapolate 
outcomes, patterns and lessons learnt on multi-model 
analysis, beyond the specific example.  
 

B. Use case design: abstract workflow  
Fig. 2 shows the design (abstract workflow) of the multi-
model precipitation trend analysis in the CMIP context 
[29].  
The inputs, in NetCDF [26] format, are precipitation data 
related to the historical run and a future scenario of a set of 
models from the CMIP experiment. The outputs are some 
statistical indicators (maximum, minimum, average, 
standard deviation, and variance) stored into NetCDF 
format; maps are also generated for visualization purposes. 

Data

IMPORT TEMPORAL 
SUBSETTING

SEASONAL
SUBSETTING

PERCENTILE 
CALCULATION TREND 

COMPARISON

EXPORT
TREND CALCULATION

ENSEMBLE
MERGE

STATISTICAL 
ANALYSIS

Data
maps

MAPS 
GENERATION

IMPORT TEMPORAL 
SUBSETTING

SEASONAL 
SUBSETTING

PERCENTILE 
CALCULATION TREND CALCULATION

Data

IMPORT TEMPORAL 
SUBSETTING

SEASONAL 
SUBSETTING

PERCENTILE 
CALCULATION

TREND 
COMPARISON

EXPORT

TREND CALCULATION

IMPORT TEMPORAL 
SUBSETTING

SEASONAL
SUBSETTING

PERCENTILE 
CALCULATION TREND CALCULATION

DataIMPORT TEMPORAL 
SUBSETTING

SEASONAL 
SUBSETTING

PERCENTILE 
CALCULATION TREND 

COMPARISON

EXPORT

TREND CALCULATION

IMPORT TEMPORAL 
SUBSETTING

SEASONAL 
SUBSETTING

PERCENTILE 
CALCULATION TREND CALCULATION

MODEL1 DATA
FUTURE SCENARIO

MODEL1 DATA
HISTORICAL

MODEL2 DATA
FUTURE SCENARIO

MODEL2 DATA
HISTORICAL

MODELn DATA
FUTURE SCENARIO

MODELn DATA
HISTORICAL

ESGF 
Data

ESGF 
Data

ESGF 
Data



Additionally, intermediate products are also stored and 
retained, for later analysis and re-use. 
In terms of workflow, the analysis consists of two major 
steps (single-model and multi-model), as described below. 
 

1) Workflow step1: single model  
The single-model step consists in the difference between 
the precipitation trends evaluated with respect to both the 
historical and future scenario data on the same model. The 
step1 steps are shown within blue rectangles. The tasks 
related to historical data processing are in pink circles, 
whereas the tasks that process data resulting from the future 
scenario are in green circles. More in detail, starting from 
the input data, the trend is calculated by performing the 
following sub-tasks: 

a) Importing the data from files to memory 
structures. 

b) Sub-setting over a 30-year timeframe (2071-2100 
for the future scenario and 1976-2005 for the 
historical).  

c) Sub-setting over JJA (June-July-August). 
d) 90th percentile calculation (on the JJA data). 
e) Linear regression and calculation of the trend 

coefficient. 
f) Comparison (difference) between the historical 

and future trends. 
It should be noted that spatial sub-setting is not performed 
on the input data, as the analysis is run at a global scale. 
Moreover, as it can be seen from the Fig. 2, five operators 
of Step1 are unary (a, b, c, d, e), whereas only one is binary 
(f). 
 

2) Workflow step2: multi-model  
The multi-model step consists in the ensemble analysis on 
the trend comparison data gathered from the different 
models as well as computation and storage of the output 
(five statistical indicators).  
More in detail, the multi-model step performs the following 
sub-tasks: 

a) Ensemble analysis on the n outputs gathered from 
the single model step. 

b) Calculation of five statistical indicators 
c) Maps generation 
d) Output storage on the file system. 

As it can be seen from Fig. 2, three operators of Step2 are 
unary (b, c, d), while one (a) is n-ary. 

 

C. Use case implementation 
The micro-provenance use case on the precipitation trend 
analysis has been implemented by using the Ophidia High 
Performance Data Analytics framework [37] and the yProv 
service on the HPC cluster hosted at the SuperComputing 
Centre of the Euro-Mediterranean Center on Climate 
Change (CMCC). More info about Ophidia are provided in 
sub-section E. 
 

D. Input data 
Data have been collected through ESGF and downloaded 
at a central location at the CMCC SuperComputing Center. 

The details of the datasets gathered from ESGF are 
reported in Table 2. 
 

E. Ophidia HPDA and workflow strategies 
Ophidia provides support for the implementation of 
analytics workflows [30], a collection of an arbitrary set of 
parallel operators (analytical kernels) organised in the form 
of a direct acyclic graph (DAG). Each kernel is responsible 
for addressing a specific core task like data sub-setting, 
data aggregation, statistical analysis (e.g., max, min, avg) 
etc. When combined into an analytics workflow, they can 
address Science use cases like, among others, extreme 
events analysis, climate indicators computation and 
anomalies detection. It is worth mentioning that each 
kernel is based on the hybrid parallelization approach 
(MPI+OpenMP) and runs over a cluster taking advantage 
of the in-memory analytics support offered by Ophidia.  
 

 
Table 2: List of models, with full name, spatial resolution and institute, 

used for the precipitation trend analysis use case. 
 
Based on that, the use case described in the previous section 
has been implemented with Ophidia by using two different 
strategies, i.e., (i) workflow-based and (ii) notebook-based, 
in both cases exploiting the API made available by the 
HPDA framework.  
More specifically, in the former case, a single JSON file 
with the entire workflow definition has been submitted to 
the HPDA framework via a single Ophidia Workflow API 
call. In the notebook-based strategy, instead, the concrete 
workflow has been developed as a Jupyter Notebook, by 
using multiple Python calls to the operators through the 
PyOphidia API [31].  
For the sake of completeness, it is rather interesting to 
analyze how the two different approaches differ according 



to the following dimensions of analysis: approach, mode, 
library, code, lines of code (LoC) (Table 3). 
 

 
Workflow Notebook 

Approach SSSC* MSSC* 

Mode Batch Interactive 

Library Ophidia WF PyOphidia 

Code JSON Python 

LoC 544 199 
Table 3: Main differences between the two workflow implementation 

solutions for the precipitation trend analysis use case. 
 
To sum up, the native workflow approach requires more 
coding (544 vs 199 LoC) and exhibits higher complexity 
(JSON vs Python) with respect to the notebook approach, 
although it represents a machine-readable format; yet, it 
requires a single batch server-side call (SSSC) with 
Ophidia as opposed to the multiple interactive server-side 
calls (MSSC), one per operator, needed in the Jupyter 
Notebook solution. 
Provenance-wise, the two approaches lead to the same 
metadata information, so it is up to the developer to choose 
the most suitable option for any specific data analytics 
workflow. The following section describes the provenance 
result obtained in the aforementioned implementations. 
 

F. Micro-provenance result and outcomes discussion 
Every time an Ophidia analytics operator is executed, the 
Ophidia framework stores the related lineage information 
into a memory structure; at the end of the workflow 
execution, a JSON representation (based on the W3C 
PROV standard) is inferred and sent to the yProv service 
via the yProv document API call.  
As a result, the yProv service parses the JSON document, 
validates it, and adds nodes and edges to the associated 
provenance graph database running on the Neo4J back-end. 
For the precipitation trend analysis workflow, the resulting 
graph is provided in Figure 3, which represents the output 
of a web application built on top of the yProv service, to 
query, retrieve and visualize micro-provenance 
information. As it can be noted, the output (full graph) is 
quite articulated and deserves further description to capture 
all the information it provides. 
As it can be seen from the figure, the provenance graph 
consists of several repeated patterns with two branches 
each. One of the patterns is represented in box (a). These 
patterns describe the single-model steps of the use case; 
more specifically, the two branches represent the historical 
and future scenario paths in the Step1 of the workflow. For 
the sake of clarity, the design of the use case is also reported 
in the same figure (top-right box). 
Box (a) contains blue, yellow and red circles, which 
respectively relate to I/O files, tasks, and in-memory 
results. According to that, and consistently with the design 
of the use case, box (a) shows: 

• Two input files as well as an (intermediate) output 
(blue circles), respectively at the beginning and at 
the end of Step1. 

• Several tasks (yellow circles), mostly unary (i.e., 
JJA subsetting, 90th percentile JJA) and one binary 
task (the trend comparison sub-task in Step1). 

• Several in-memory data (red circles) acting as the 
output of one task and the input of the subsequent 
one. Indeed, not all the partial results of the 
workflow need to be stored on the file system, so 
they are managed in-memory by default, unless 
differently specified by the user through a specific 
“export-to-file” Ophidia operator. 

Box (b) represents the first part of Step2, more precisely 
the one related to the n-ary operator that performs the 
ensemble computation. As it can be seen, such operator 
takes as input a set of files (blue circles) which are (i) 
imported in memory into separated data cubes (red circles) 
and then (ii) merged by the n-ary operator (central yellow 
circle) into an ensemble data cube in-memory structure, 
i.e., the red circle on the right hand-side of box (b). 
This kind of data structure represents then the input for the 
statistical analysis, i.e., box (c), which performs the 
computation of the five statistical indicators (one branch 
each). Box (c) also includes five blue nodes which 
represent the five maps produced as final output of Step2. 
As a final note, the provided example represents just one 
query run against the yProv service, and many other could 
be performed to retrieve sub-graph information, thanks to 
the flexible query language support provided by the graph-
database technology running in the back-end. Some other 
examples include:  
- A Step1 sub-graph related to a specific climate model 

(the equivalent of box (a) in Fig. 3). 
- A Step2 sub-graph related to the ensemble analysis. 
- The input and output data (including PIDs 

information) to build the data-chain without 
considering the in-depth details of the performed 
workflow tasks. 

Of course, many other types of queries can be performed, 
including running more advanced algorithms on the 
provenance graph, filtering on the provenance level of 
interest in complex workflows, etc. However, for page 
limit constraints, advanced queries and knowledge 
extraction through graph mining algorithms will be further 
discussed in a future work. 
Finally, as general remarks, it is important to point out that 
(i) the output graph can be queried at run-time during 
workflow execution, thus providing preliminary 
exploratory and inspection capabilities to scientists; (ii) the 
outputs of the queries are provided in a W3C PROV-
compliant JSON representation, which ensures 
interoperability with other services and software 
components built on top of the same family of provenance 
standards; (iii) the interoperable formats for inputs and 
outputs (i.e., JSON) ensure a straightforward integration of 
the yProv service API into data science applications like 
Jupyter Notebooks.  
 

 



 
Figure 3: Provenance graph for the precipitation trend analysis use case. 

 

VII. CONCLUSIONS AND FUTURE WORK 
This paper presents yProv, a new micro-provenance service 
developed at the University of Trento to address multi-level 
provenance as well as reproducibility challenges in climate 
analytics experiments. Presently, the yProv is mainly 
explored for retrospective provenance through the native, 
available query support. More precisely, the current 
support allows end-users to perform CRUD operations on 
the available resources, thus providing complete 
provenance graph management. The service has been 
deployed at CMCC and tested on several use cases in the 
climate domain. 
Future work on this topic concerns (i) the knowledge 
extraction part, by focusing on graph mining algorithms, 
including learning aspects, (ii) the development of a micro-
service (container-based) version of yProv for cloud/HPC-
enabled environments (i.e., ENES Data Space 
[24][28][32]), as well as (iii) the service registration into 
the EOSC Marketplace for a wider adoption both within the 
climate community and across scientific communities. 
Finally, (iv) the extension of the graph data model is also 
envisaged to include system-level provenance resources 
(i.e., containers) that will be essential to better address 
provenance (in terms of more complete documentation), 
computational reproducibility (in terms of virtualized 
resources running in cloud environments) and to spot issues 
related to the surrounding software ecosystem (rather than 
the specific task or application) [27]. 
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