
Robotics and Autonomous Systems 165 (2023) 104427

J
a

b

c

f
t
n
a
l
a
t

r
e
r
f
s

t
t
i
t

h
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Continual learning from demonstration of robotics skills
Sayantan Auddy a,∗, Jakob Hollenstein a, Matteo Saveriano b, Antonio Rodríguez-Sánchez a,
ustus Piater a,c

Department of Computer Science, University of Innsbruck, Austria
Department of Industrial Engineering, University of Trento, Italy
Digital Science Center (DiSC), University of Innsbruck, Austria

a r t i c l e i n f o

Article history:
Received 4 November 2022
Received in revised form 17 March 2023
Accepted 7 April 2023
Available online 22 April 2023

Keywords:
Learning from demonstration
Continual learning
Hypernetwork
Neural ordinary differential equation solver

a b s t r a c t

Methods for teaching motion skills to robots focus on training for a single skill at a time. Robots
capable of learning from demonstration can considerably benefit from the added ability to learn new
movement skills without forgetting what was learned in the past. To this end, we propose an approach
for continual learning from demonstration using hypernetworks and neural ordinary differential
equation solvers. We empirically demonstrate the effectiveness of this approach in remembering long
sequences of trajectory learning tasks without the need to store any data from past demonstrations.
Our results show that hypernetworks outperform other state-of-the-art continual learning approaches
for learning from demonstration. In our experiments, we use the popular LASA benchmark, and two
new datasets of kinesthetic demonstrations collected with a real robot that we introduce in this
paper called the HelloWorld and RoboTasks datasets. We evaluate our approach on a physical robot
and demonstrate its effectiveness in learning real-world robotic tasks involving changing positions as
well as orientations. We report both trajectory error metrics and continual learning metrics, and we
propose two new continual learning metrics. Our code, along with the newly collected datasets, is
available at https://github.com/sayantanauddy/clfd.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Robots deployed in unstructured real-world environments will
ace new tasks and challenges over time, requiring capabilities
hat cannot be fully anticipated at the beginning. These robots
eed to learn continually, which implies that they should be
ble to acquire new capabilities without forgetting the previously
earned ones. Furthermore, a continual learning robot should be
ble to do this without the need to store and retrain on the
raining data of all the previously learned skills.

Continual learning can be effective in expanding a robot’s
epertoire of skills and in increasing the ease of use for non-
xpert human users. However, apart from a few approaches for
obotics [1,2], the current continual learning research mostly
ocuses on vision-based tasks such as incrementally learning clas-
ification of new image categories [3–5].
Continually acquiring perceptive skills is important for a robot

hat interacts with its environment, but equally important is
he ability to incrementally learn new movement skills. Learn-
ng from demonstration (LfD) [6] is a popular and tangible way
o impart motion skills to robots, for instance via kinesthetic
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teaching, where a human user teaches new skills by guiding the
robot. A trend that recently received increased attention in LfD is
encoding observations into a vector field [7–12]. These methods,
like many other works in the field, focus on learning a single
motion. To naively learn multiple motion skills, one would need
to train a different model for each skill, or jointly train on the
demonstrations for all skills.

In this paper, we propose an approach to continual learning
from demonstration in which a robot learns individual motions
sequentially without retraining on past demonstrations. The mo-
tion demonstrations are recorded in the robot’s task space and
consist of either trajectories of the end-effector position, or tra-
jectories of the end-effector position and orientation (the robot
is free to rotate in all 3 rotation axes). The skills learned
from demonstrations of different tasks are incorporated into a
common unified model, after which our robot can reproduce all
the trajectories it has learned in the past (Fig. 1). To the best of our
knowledge, this is the first work on continual trajectory learning
from demonstrations.

More specifically, we show that a Hypernetwork [5,13], that
generates the parameters of a Neural Ordinary Differential Equa-
tion (NODE) solver [14], remembers a long sequence of motion
skills equally well as when learning each task with a separate

NODE. The number of parameters of the hypernetwork grows

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A robot, continually trained using learning from demonstration to perform real-world tasks involving changing positions and orientations of the end-effector,
can reproduce all the tasks that it has learned in the past with negligible parameter growth and without retraining on past tasks. The order of tasks during sequential
training is 0: box opening, 1: bottle shelving, 2: plate stacking, 3: pouring. Video of the robot performing these tasks is available at https://youtu.be/0gdIImIBnXc. Further
etails can be found in Section 5.3.3.
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y a negligible amount for each new task, making it suitable for
otential deployment on resource-constrained, non-networked
obotic platforms. We also demonstrate the effectiveness of chun-
ed hypernetworks [5] which can be even smaller in size than the
ODEs they generate. Our results show how using a time index
s an additional, direct input to a NODE increases its prediction
ccuracy for complex trajectories. We first evaluate our approach
n the popular LASA trajectory learning benchmark [8], where our
odel learns a long sequence of 26 tasks without forgetting. Due

o the lack of datasets containing real robot data useful for contin-
al learning from demonstration, we introduce two new datasets,
amed HelloWorld and RoboTasks. The HelloWorld dataset con-
ists of two-dimensional trajectories of the robot’s position col-
ected with a Franka Emika Panda robot. RoboTasks is a dataset
f real-world robot tasks containing trajectories of the robot’s
osition as well as its orientation in 3D space (Fig. 1). These
wo datasets serve as additional benchmarks to evaluate our
pproach, both quantitatively and qualitatively on a real robot.
or all three datasets, we extensively compare our hypernetwork-
ased continual LfD approach against methods from all major
ontinual learning families (dynamic architecture, replay, and reg-
larization [15]) and report multiple metrics, both for accuracy of
he reproduced motion skills, as well as the continual learning
erformance. Finally, we introduce two new easily-computable
etrics that offer additional insights into the continual learning
erformance: Time Efficiency (TE) and Final Model Size (FS). TE
aptures training time changes while learning multiple tasks, and
S measures the relative model size after learning all tasks.
In summary, our primary contributions are:
• We propose an approach to learning from demonstration

with hypernetworks and NODEs for continually learning
new tasks without reusing training data of previous tasks.
We show that this approach can be used for learning robot
tasks in the real world.
2

• We release 2 new datasets suitable for continual LfD: a
dataset containing 7 tasks of planar motions, and a dataset
of 4 tasks of motions involving both position and orien-
tation. Both datasets are collected with a real robot using
kinesthetic teaching.

. Related work

Robot learning from demonstration (LfD) is a means for humans
o teach motion skills to robots without explicitly programming
hem [6], which allows even users without expertise in robotics to
rain robots. It is also known by other names such as programming
y demonstration or imitation learning [6,16]. The demonstrations
equired for training robots via LfD can be obtained by different
eans, some of which are: (i) using a motion-tracking system

o record human motions, (ii) using teleoperation to operate the
obot while recording the robot’s state, or (iii) using kinesthetic
eaching where a human user physically guides the robot to
erform a motion task [6,17–19]. Once the demonstrations are
vailable, there exist several different algorithmic approaches for
earning from this data [6]. Supervised learning has been used
o learn from either a single demonstration [20] or a collection
f demonstrations [21]. LfD has also been used in conjunction
ith reinforcement learning (RL) [22] where RL is used to refine
he skills learned with LfD. Another approach is to learn a cost
unction from demonstrations and then to train a model predic-
ive controller to reproduce the skills through inverse RL [23] or
hrough constrained optimization [24]. In addition to demonstra-
ions which show the robot the motion it has to perform, negative
emonstrations have also been shown to be advantageous [25].
e refer the reader to [6,17,18] for a comprehensive overview of

fD.
In this paper, we focus on a subfield of LfD: trajectory-based

earning methods that use a supervised approach for acquiring
otion skills. These methods can be broadly categorized into two

https://youtu.be/0gdIImIBnXc
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roups [19]: some methods use generative models to fit a distri-
ution from the training data [7–9], while other methods exploit
unction approximators like neural networks to fit the training
ata [10,11]. In both groups, training data can be used to learn
static mapping (time input → desired position) or a dynamic
apping (input position → desired velocity). A dynamic mapping
enerates vector fields where input quantities are transformed
nto their time derivatives, and different strategies have been
roposed to ensure convergence of the vector field to a given
arget [9,10,26,27]. Among others, the Imitation Flow (iFlow)
pproach of Urain et al. [9] leverages the representational power
f neural networks and normalizing flows to learn vector fields
rom demonstrations. Another neural network based approach
or learning vector fields is Neural Ordinary Differential Equation
olvers (NODEs) [14]. Although NODEs have not been exploited
or LfD, in our experiments we found that their empirical perfor-
ance is comparable to that of iFlow. Crucially, the time needed

o train a NODE to convergence is significantly less than that
equired for an iFlow model with an equivalent parameter size.

Trajectory-based LfD is a mature research field, but most
ethods assume that different tasks are encoded in different

epresentations, i.e., one has to fit a new model for each task the
obot has to execute [6]. In this paper, we take the continual
earning perspective on learning by demonstration and propose
n approach capable of continuously learning new tasks without
eeding to store and use the training data from past tasks.
Continual Learning approaches in the current literature mostly

ddress the problem of continual image classification. Popular
trategies include growing the network architecture [28], replay-
ng data from past tasks, or regularizing trainable parameters to
void catastrophic forgetting [15]. Replay-based methods cache
amples of real data from past tasks [29], or use generative
odels to create pseudo-samples of past data [3], which are

nterleaved with the current task’s data during training. Regu-
arization-based methods [4,30] add a regularization term to the
earning objective to minimize changes to parameters important
or solving previous tasks. Refer to [15,31] for in-depth surveys
n continual learning methods.
Continual learning has also been successfully applied to

obotics, though the number of such studies is relatively few.
ao et al. [1] present an approach for continual imitation learning
hat relies on deep generative replay [3] and action-conditioned
ideo prediction to generate state and action trajectories of past
asks. This pseudo-data is interleaved with demonstrations of the
urrent task to train a policy network that controls the robot’s
ctions. The authors note that the generation of high-quality
ideo frames can be problematic for a long sequence of tasks.
Xie and Finn [32] propose a method for lifelong robotic re-

nforcement learning that seeks to improve the forward transfer
erformance while learning a new current task by pre-training
n the entire experience collected from all previous tasks. The
roblem of catastrophic forgetting is not considered.
Our continual LfD approach shares some similarities with the

ork of Huang et al. [2] who continually learn a dynamics model
or reinforcement learning. In their work, a task-conditioned hy-
ernetwork generates the parameters of the dynamics model for
einforcement learning tasks such as opening doors or pushing
locks. In contrast, we use hypernetworks for generating param-
ters for a trajectory learning NODE in a setup for learning from
emonstration. We follow a supervised approach and do not need
o rely on robot simulators. Compared to [2], we evaluate on
uch longer sequences of tasks and also investigate the effective-
ess of chunked hypernetworks [5]. In addition, we qualitatively
valuate our approach on a physical robot.
LfD involves learning the entire vector field of a robot’s motion
rom only a handful of demonstration trajectories. This makes it r

3

more challenging problem than typical supervised regression
r classification scenarios where the amount of training data is
sually much greater. To continually learn such vector fields of
ifferent kinds of motion demonstrations, we need to tackle the
hallenges of LfD as well as the problem of catastrophic forgetting
ssociated with neural networks. As far as we know, ours is the
irst work that demonstrates that continual LfD is feasible for
equences of real-world robot tasks.

. Background

In this paper, we utilize Neural Ordinary Differential Equation
NODE) solvers [14] to learn from demonstrations and different
tate-of-the-art continual learning approaches [4,5,30] to allevi-
te catastrophic forgetting [15] when the NODEs learn a sequence
f multiple tasks.

.1. Learning from demonstration

In the simplest case, task space demonstrations provided to a
obot can consist of trajectories of only the end-effector positions.
ince these position trajectories reside in Euclidean space, we can
irectly use a NODE to learn them using maximum likelihood
stimation. However, the more general situation is when demon-
trations contain both the position and orientation (which are
ommonly expressed in terms of unit quaternions). Trajectories
f unit quaternions do not reside in Euclidean space and require
dditional processing, as discussed in Section 3.1.2.

.1.1. Neural ODE solver
Consider a set of N observed trajectories D = {y(0)0:T−1, . . . ,

(N−1)
0:T−1}, where each trajectory y(i)0:T−1 is a sequence of T obser-
ations y(i)t ∈ Rd. Each observation y(i)t is a perturbation of an
nknown true state x(i)t generated by an unknown underlying
ector field ftrue [33]:

t = x0 +

∫ t

0
ftrue(xτ ) dτ , (1)

here x0 is the true starting state of the trajectory. The goal of
Neural Ordinary Differential Equation (NODE) solver [14] is to

earn a neural network fθ parameterized by θ that approximates
he true underlying dynamics of the observed system such that
θ ≈ ftrue. As we do not have access to ftrue but only to the
oisy observed trajectories, we compute the loss L based on the
ifference of the forward simulated states of the NODE ŷt and the
bservations yt :

=
1
2

∑
t

∥ yt − ŷt ∥
2
2 (2)

where ŷt = ŷ0 +

∫ t

0
fθ(ŷτ ) dτ

hen the set of observed trajectories D consists of only positions,
hen the demonstrations can be learned directly with the help of
q. (2).

.1.2. Learning orientation trajectories
When demonstration trajectories of the robot’s orientation

re expressed as unit quaternions, it is not possible to directly
tilize Eq. (2) due to the unit norm constraint [34]. Following
de et al. [35] and Huang et al. [34], we project quaternions into
he tangent space which we can consider a local Euclidean space.
hese transformed trajectories can then be learned with Eq. (2).
or inference, the Euclidean trajectories predicted by the NODE
re transformed back into quaternions and then passed to the
obot.



S. Auddy, J. Hollenstein, M. Saveriano et al. Robotics and Autonomous Systems 165 (2023) 104427

{

o

u

i
a
π

3

g
a
r
a
c
t

3
P
p
o
m
w
t
n
g
s
c

3

o
c
a
d
w
{

f
l

3
S
i
p
t
d

L

i
M
a
f
d
t

g
b
a

n
p
L

L

H
m
f
t

L

t
c
t
n

Consider a set of N observed orientation trajectories Dq =

q(0)
0:T−1, . . . , q

(N−1)
0:T−1}, where the ith trajectory q(i)

0:T−1 is a sequence

f T quaternions q(i)
t =

[
v
(i)
t

u(i)
t

]
, where q(i)

t ∈ S3, v
(i)
t ∈ R and

(i)
t ∈ R3. We convert q(i)

t into a rotation vector r(i)t ∈ R3 using

r(i)t = Log(q̄(i)
t ∗ q(i)

T−1) (3)

where q̄ indicates the conjugate of the quaternion q and the ∗

operator denotes quaternion multiplication, and Log(·) : S3
↦→ R3

is the logarithmic map [36], defined as

Log(q) =

{
arccos(v) u

∥u∥
if ∥u∥ > 0,

[0, 0, 0]T otherwise.
(4)

Here, q(i)
T−1 is the final quaternion in the sequence q(i)

0:T−1 and q̄(i)
t is

the conjugate of q(i)
t . By applying Eq. (3) on the trajectories in Dq,

we obtain a set of Euclidean trajectories Dr , which can then be
learned using Eq. (2). After learning is complete, the trajectories
D̂r = {r̂(0)0:T−1, . . . , r̂

(N−1)
0:T−1} predicted by the NODE can be converted

into quaternion trajectories D̂q using

q̂(i)
t = q(i)

T−1 ∗ Exp(r̂(i)t ) (5)

where Exp(·) : R3
↦→ S3 is the exponential map [36], defined as

Exp(r) =

⎧⎨⎩
[
cos(∥r∥), sin(∥r∥) rT

∥r∥

]T
if ∥r∥ > 0,

[1, 0, 0, 0]T otherwise.
(6)

Once we obtain D̂q, it can be directly compared against the
ground truth demonstrations Dq. However, we assume that the
nput domain of Log(·) is restricted to S3 except for [1, 0, 0, 0]T
nd the input domain of Exp(ζ ) is constrained to satisfy ∥ζ∥ <
[34].

.2. Continual learning

Existing continual learning approaches can be broadly cate-
orized into a few groups, the most prominent among which
re methods based on dynamic architectures, methods based on
eplaying (or pseudo-rehearsing on) training data of past tasks,
nd methods based on regularization [15]. In this paper, we
onsider continual learning methods (CL methods) from all of
hese categories.

.2.1. Dynamic architectures
rogressive Networks: One of the early continual learning ap-
roaches, proposed by Rusu et al. [28], involves the addition
f a new network for each new task, while reusing feature-
apping knowledge from previous tasks through lateral layer-
ise connections from the networks of previous tasks. Although
his approach eliminates catastrophic forgetting by design, it does
ot scale well to a large number of tasks due to the unconstrained
rowth of parameters and it also has the problem of a gradual
lowing down of inference due to the increasing number of lateral
onnections.

.2.2. Replay
Some continual learning approaches are based on the idea

f replaying the training data (or some part of the data, or a
ompressed version of the data) of previous tasks while learning
new task [29]. While learning task k, the most naive way to
o this is to combine the data from older tasks {D0, . . . ,Dk−1}

ith the data of the current task Dk to get a combined dataset
D0, . . . ,Dk}. Thus, the network has access to all the training data
rom every task. However, this approach is not scalable due to the

inear storage requirements with the number of tasks. a

4

.2.3. Regularization
ynaptic Intelligence: Synaptic Intelligence (SI) [30] is a regular-
zation-based continual learning approach. Each neural network
arameter is assigned an importance measure based on its con-
ribution to the change in the loss. The loss for the mth task is
efined as:

˜m = Lm
+ c

∑
k

Ωm
k

(
θ∗

k − θk
)2

, (7)

where c is the regularization constant which trades off between
learning a new task and remembering previously learned tasks,
θ∗

k denotes the value of the kth parameter before starting to learn
the mth task, and θk is the current value of the kth parameter. The
per-parameter regularization strength Ωm

k [30] is given by

Ωm
k =

∑
l<m

ωl
k

(∆l
k)2 + ξ

, (8)

where ωl
k is the importance of parameter k for learning task l, ∆l

k
s the change in parameter k, and ξ is a damping constant.
emory Aware Synapses: Memory Aware Synapses (MAS) [4] is
lso a regularization-based continual learning approach. The loss
or the mth task for MAS has the same form as SI (Eq. (7)). MAS
iffers from SI in the way Ωm

k is computed: the importance of a
rainable parameter depends on the gradient of the squared L2
norm of the network’s output, i.e.,

Ωm
k =

1
N

N∑
n=1

||gk(xn)|| =
1
N

N∑
n=1

∂L22 (fθ (xn))
∂θk

. (9)

The above summation is performed over N input data points.
Hypernetworks: A hypernetwork [5,13] is a meta-model that
generates the parameters of a target network that solves the task
we are interested in. It uses a trainable task embedding vector as
an input to generate the network parameters for a task. Though
the parameters h of the hypernetwork fh are regularized, the
parameters θm+1 produced by a hypernetwork for the (m + 1)th
task can be arbitrarily far away in parameter space from the pa-
rameters θm produced for the previous mth task. Intuitively, this
ives a hypernetwork more freedom to find good solutions for
oth the mth and (m+1)th tasks than other regularization-based
pproaches [4,30].
A two-step optimization process is used for training a hyper-

etwork [5]. First, a candidate change ∆h for the hypernetwork
arameters is computed which minimizes the task-specific loss
m for the (current) mth task with respect to θm:
m

= Lm(θm, ym) where θm = fh(em,h) (10)

ere em is the task embedding vector and ym is the data for the
th task. Next, ∆h is considered to be fixed and the actual change

or the hypernetwork parameters h is learned [5] by minimizing
he regularized loss L̃m with respect to θm = fh(em,h):

˜m = Lm(
θm, ym

)
+

β

m − 1

m−1∑
l=0

⏐⏐⏐⏐fh(el,h∗) − fh(el,h + ∆h)
⏐⏐⏐⏐2 (11)

Here h∗ denotes the hypernetwork parameters before learning
the mth task, and β is a hyperparameter that controls the regu-
larization strength. To calculate the second part of Eq. (11), the
stored task embedding vectors {e0, e1, . . . , el, . . . , em−1

} for all
asks before the mth task are used. In each learning step, the
urrent task embedding vector em is also updated to minimize the
ask-specific loss Lm [5]. Note that the parameters of the target
etwork θm for themth task are simply the hypernetwork outputs
nd are not directly trainable.
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Fig. 2. Overview of a continual learning system. The task learner performs
the task we are interested in (purple dashed box) and the continual learning
mechanism (green dashed box) mitigates the effect of catastrophic forgetting.
The continual learning (CL) mechanism can be one of many alternatives:
dynamic architecture-based, replay-based, or regularization-based. For learning
from demonstration (LfD), the task learner can be any trajectory learning
approach, but we use NODEs for LfD (reasons are detailed in Section 4.1).
Methods depicted with gray text are not considered for continual LfD in this
paper. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Chunked hypernetworks [5] produce the parameters of the
target network in segments known as chunks. A regular hy-
pernetwork has a very high-dimensional output, but a chunked
hypernetwork’s output is of a much smaller dimension, leading to
a lower hypernetwork parameter size. A chunked hypernetwork
requires additional inputs in the form of trainable chunk embed-
ding vectors. While each task has its dedicated task embedding
vector, chunk embedding vectors are shared across tasks and are
regularized in the same way as the hypernetwork parameters.
The task embedding vector and all the chunk embedding vec-
tors are combined in a batch and fed into the hypernetwork to
produce the target network parameters for a task in one forward
pass [5].

4. Methods

As depicted in Fig. 2, any continual learning system in general
consists of 2 components: (i) a task learner, and (ii) a continual
learning mechanism. The task learner performs the task we are
interested in; e.g. for continual learning of image classification,
the task learner can be a CNN classifier. In this paper the task that
we are interested in is learning from demonstration (LfD), and the
task learner in our case is a NODE as described in Section 3.1.1.
The continual learning mechanism mitigates the effects of catas-
trophic forgetting as the task learner is trained on a sequence
of tasks. This mechanism can act directly on the parameters
of the task learner and can also contain other sub-components
to achieve this goal. In this section, we describe in detail our
proposed approach for continual learning from demonstration, as
well as the other models used in our experiments. We also discuss
the design choices made in this paper regarding the task learner
and the continual learning mechanism.

4.1. Learning from demonstration

Along with the basic NODE fθ(ŷt ) described in Section 3.1.1,
we use another variant where the NODE neural network fθ(ŷt , t)
is a function of both the state ŷt and the normalized time t of
the state (t scales linearly from t = 0.0 for the starting state
to t = N/f for the Nth state of the trajectory, where f is the
recording frequency). This explicit time input results in the NODE
learning a time-evolving vector field. We show empirically that
this improves the accuracy of predicted trajectories, especially for
those containing loops. We refer to this time-dependent NODE as

T I
NODE , and to the time-independent one as NODE .

5

There exist many approaches for LfD [9,26], and in principle,
any such method can be used as the task learner (in Fig. 2). In
this paper we focus on neural network-based continual learning.
Hence methods such as Stable Estimator of Dynamical Systems
(SEDS) [26] are not considered as the constrained parameters
(covariance matrices in case of SEDS) required by such methods
cannot be produced by a neural network in a straightforward
way. Alternative options for the task learner can be deep learn-
ing methods such as Imitation Flow (iFlow) [9] or NODEs [14].
We performed an experimental comparison between NODEs and
iFLow (details in Appendix A.5) and found that the empirical
performance of NODEs is better than iFlow and their training
converges much quicker. Consequently, we use NODEs as the task
learner in all the models used in our experiments.

4.2. Baselines and continual learning models

We enable continual learning for NODEs by adapting sev-
eral state-of-the-art continual learning approaches for LfD. We
consider all major families of continual learning (dynamic ar-
chitecture, replay, and regularization) and describe the details
of each continual learning method (CL method) used in our
experiments (Fig. 3).

4.2.1. Dynamic architecture
Single NODE per task (SG): A simple way to learn M tasks
is to use a dedicated, newly-initialized NODE to learn a task
and to freeze it afterwards. At the end we get M NODEs, from
which we can pick one at prediction time to reproduce the
desired trajectory (Fig. 3(a)). In this setting, which acts as an
upper-performance baseline, catastrophic forgetting is eliminated
because the parameters of a NODE trained on a task are not
affected when a new NODE is trained on the next task. However,
this also means that we end up with M times the number of
parameters of a single NODE. This setup acts as a simplified
version of the Progressive Networks approach [28], but without the
layer-wise lateral connections to the networks of previous tasks.
This keeps the inference time constant as new tasks are added.

4.2.2. Optimizing only for the current task
Finetuning (FT): A single NODE is sequentially finetuned on M
tasks. To tell the NODE which task it should reproduce, i.e. to
make it task-conditioned, we use an additional input in the form
of a trainable vector known as a task embedding vector. This is
similar to the approach followed for hypernetworks. After the
mth task is learned, the trained task embedding vector em for that
task is saved. To reproduce the trajectory for the mth task, we
pick the corresponding task embedding vector and use it as the
additional network input. The NODE parameters are finetuned to
minimize the loss on the current task without any mechanism
for avoiding catastrophic forgetting. In this setting (Fig. 3(b)), we
would expect the NODE to only remember the latest task and so
this acts as a lower-performance baseline.

4.2.3. Replaying training data
Replay (REP): For most continual learning scenarios replaying
training data from previous tasks is a trivial exercise of combining
the data from disparate tasks and then training a model with the
composite dataset. However, for learning from demonstration,
such a simple approach does not suffice as our NODE models need
to be task conditioned. If they are trained using a jumbled up
combination of demonstration trajectories from different tasks,
they will be unable to learn any of the tasks. To overcome this
issue we propose to use a task selector, as shown in Fig. 3(c).
REP stores the dataset of each task it learns, and similar to

FT, also maintains separate task embeddings for each task. In
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Fig. 3. Continual learning models used in our experiments are depicted in (a)–(f). Non-regularized trainable parameters that are initialized before and saved after
ach task are shown with . Non-regularized parameters that are initialized only once before learning the first task are shown with . Regularized trainable

parameters that are protected from catastrophic forgetting while learning a sequence of tasks are shown with . Other inputs and outputs are not trainable (shown
with ). Given a start state and time steps, a NODE generates the state trajectory for the time steps. (a) Single NODE per task (SG): A separate NODE learns only
single task. This forms the upper-performance baseline. (b) Finetuning (FT): The NODE from the previous task is optimized for the current task by finetuning.

c) Replay (REP): The training data from previous tasks is combined with the data of the current task. (d) Synaptic Intelligence (SI) and Memory Aware Synapses
MAS): NODE parameters are regularized to prevent changes to parameters important for solving previous tasks. (e) Hypernetworks (HN): A hypernetwork produces
ll the NODE parameters using a task embedding vector. (f) Chunked Hypernetworks (CHN): Chunk embedding vectors together with a task embedding vector are
sed to produce the NODE parameters in segments called chunks. HN and CHN (highlighted in turquoise) are our proposed solutions for continual learning from
emonstration.
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ach training iteration during learning task m, the task selector
andomly selects 1 out of the m previous tasks, and then passes
he selected dataset and task embedding to the NODE, which
ptimizes its parameters for the selected task in that training
teration. When the REP model is trained for a moderately high
umber of iterations, each past task is sampled approximately
niformly and the NODE is able to learn continually. For learning
ew tasks, instead of scaling the number of iterations linearly
ith the number of tasks, we use a fixed number of training

terations, irrespective of the task being learned so that the run
ime does not explode while learning a long sequence of tasks.

.2.4. Regularization
ynaptic Intelligence (SI): To learn M tasks, the NODE parame-
ers are regularized with the SI loss L̃m (Eq. (7)). The task-specific
art (Lm) of L̃m corresponds to the NODE loss (Eq. (2)). Similar to
T, we make the SI NODE task-conditioned using a trainable task
mbedding vector, as shown in Fig. 3(d).
emory Aware Synapses (MAS): For MAS [4], we also follow the
rchitecture in Fig. 3(d). The NODE parameters are learned using
q. (7) and we use Eq. (9) to compute Ωm

k . As before, we apply
q. (2) as the task-specific loss Lm. The MAS NODE is also made
ask-conditioned with a trainable task embedding vector.

Both SI and MAS seek to change the plasticity/elasticity of the
arameters of the NODE in an attempt to prevent changes to
arameters that are important for solving past tasks.
ypernetworks (HN): We use a hypernetwork to generate the
arameters of a NODE. We first compute the candidate change
h for the hypernetwork parameters by minimizing the NODE

oss (Eq. (2)), which acts as our task-specific loss Lm:

m
= Lm(θm, ym) =

1
2

∑
∥ ymt − ŷmt ∥

2
2 (12)
t

6

where θm = fh(em,h), ŷmt = ŷm0 +

∫ t

0
fθm (ŷmτ ) dτ

s in Eqs. (2) and (10), ymt and ŷmt denote the ground truth
bservation and the prediction for the tth timestep of task m
espectively, and θm denotes the NODE parameters for task m
enerated by the hypernetwork fh (with parameters h) using the
mbedding vector em as input. We use Eq. (11) for training the
ypernetwork in the second optimization step. The structure of
N is shown in Fig. 3(e).
hunked Hypernetworks (CHN): We use a chunked hypernet-
ork to generate the parameters of a NODE (Fig. 3(f)). For this,
qs. (12) and (11) are employed as the loss functions in the 2-step
ptimization process.
To reproduce a particular task with HN or CHN at test time,

e input the corresponding task embedding vector to the hyper-
etwork which generates the NODE for that task. Thereafter, we
imply provide the NODE with the starting state of the trajectory
and the timesteps in the case of NODET) and it predicts the entire
rajectory for the desired task.

For the comparative baselines (SG, REP, FT, SI, MAS), we in-
luded representative methods from all the major groups of con-
inual learning methods. The choice of hypernetworks for our
roposed approach to continual LfD (HN, CHN) was motivated
y the following: (i) Hypernetworks have exhibited remarkable
erformance in multiple domains [2,5]. (ii) A robot capable of
earning multiple tasks from demonstration needs to be told
hich task it should execute. Hypernetworks provide a natural
ay of task-conditioning using task embedding vectors, and thus
re a very good fit for the LfD setup. (iii) Hypernetworks do not
eed to retrain on the data of past tasks. (iv) The chunked version
f hypernetworks can be smaller than the NODEs they generate
model compression).
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. Experiments

We first describe the datasets used in our experiments and
he metrics we report. This is followed by the details of our
xperimental results.

.1. Datasets

We evaluate the performance of all models described in Sec-
ion 4 on three different datasets with different numbers of tasks
nd degrees of difficulty: (i) LASA [8]: A dataset that is used
requently for comparisons and benchmarking in the area of
fD [9,37,38]; (ii) HelloWorld: A dataset of trajectories recorded
hile a robot was shown how to write letters containing loops;
iii) RoboTasks: A dataset of trajectories collected while the robot
as shown how to perform tasks which need both the positions
s well as orientations of the end-effector to be varied. Of these
hree datasets, HelloWorld and RoboTasks are introduced by us in
this paper.

5.1.1. LASA
LASA [8] is a widely-used benchmark [9,27,37,38] for eval-

uating motion generation algorithms. It contains 30 patterns of
handwritten motions, each with 7 similar demonstrations (see
Fig. 7 for examples). We refer to each pattern Dm as a task. Of
the 30 tasks, we use the first 26 tasks: DLASA = {D0:25}. We omit
he last 4 tasks, each of which contains 2 or 3 dissimilar patterns
erged together. Each demonstration of a task is a sequence of
000 2-D points. We arrange the 26 tasks alphabetically in the
rder of their names and train sequentially models of SG, FT, REP,
I, MAS, CHN and HN on each task. During training only REP has
ccess to the data of older tasks while the other methods are
rained with the data of only the current task. We evaluate
n the LASA dataset because of its wide adoption by the LfD
ommunity [9,27,37,38], and because it contains a large number
f diverse tasks which can be used to gauge the continual learning
bility of our models.

.1.2. HelloWorld
We further evaluate our approach on a dataset of demonstra-

ions we collected using the Franka Emika Panda robot. The x and
coordinates of the robot’s end-effector were recorded while a
uman user guided it kinesthetically to write the 7 lower-case
etters h,e,l,o,w,r,d one at a time on a horizontal surface. The Hel-
oWorld dataset DHW = {D0:6} consists of 7 tasks, each containing
slightly varying demonstrations of a letter. Each demonstration

s a sequence of 1000 2-D points. After training on all the tasks,
he objective is to make the robot write the words ‘‘hello world’’.
ur motivation for using this dataset is to test our approach on
rajectories containing loops and to show that it also works on
inesthetically recorded demonstrations using a real robot. This
ataset is available at https://github.com/sayantanauddy/clfd.

.1.3. RoboTasks
To evaluate our approach on robotic tasks that can be expected

n the real world, we collect a dataset of 4 tasks. For each task, a
uman user kinsethetically guides the robot’s end-effector while
arying both the position in 3D space and also the orientation
n all three rotation axes. The tasks of this dataset are: (i) box
pening: the lid of a box is lifted to an open position; (ii) bottle
helving: a bottle in a vertical position is transferred to a hori-
ontal position on a shelf; (iii) plate stacking: a plate in a vertical
osition is transferred to a horizontal position on an elevated
latform while orienting the arm so as to avoid the blocks used
or holding the plate in its initial vertical position; (iv) pouring:

cup full of coffee beans is taken from an elevated platform and

7

he contents of the cup are emptied into a container. Thus, the
oboTasks dataset DRobot = {D0:3} consists of 4 tasks, where each

task contains 9 demonstrations, each of 1000 steps. In each step
we record the position p ∈ R3 and the orientation as a unit
quaternion q ∈ S3. Compared to DLASA and DHW, DRobot contains
a lot more variability in the demonstrations and presents a more
difficult learning challenge.

We use this dataset because we want to evaluate our approach
in a real-world setup involving changing positions and orienta-
tions, and also because we did not find any existing datasets that
are suitable for our purpose. Datasets such as RoboNet [39] and
Meta-World [40] are designed for reinforcement learning and do
not contain the demonstrations in terms of task-space trajecto-
ries. See Fig. 1 for a visual example of the tasks in DRobot. This
dataset is also available at https://github.com/sayantanauddy/
clfd.

5.2. Metrics

5.2.1. Trajectory metrics
To evaluate the end-effector position trajectories, we report

the following widely used metrics: Dynamic Time Warping error
(DTW) [9,41], Swept Area error [26], and Frechet distance [9],
which measure how close the predicted trajectories are to the
ground-truth demonstrations. For orientation, we report the com-
monly used quaternion error [35,36] defined as

eq(q1, q2) = 2Log(q1 ∗ q̄2) ∈ R3 (13)

where q1 and q2 are quaternions. Given a ground truth trajec-
tory q0:T−1 and a predicted trajectory q̂0:T−1 (both containing T
quaternions), we compute the error between the two trajectories
using

Eq =
1
3T

T−1∑
t=0

∥eq(qt , q̂t )∥1 (14)

5.2.2. Continual learning metrics
We report Accuracy (ACC), Remembering (REM), Model Size

Efficiency (MS) and Sample Storage Size Efficiency (SSS) [42]. ACC
is a measure of the average accuracy for the current and past
tasks. REM measures how well past tasks are remembered. MS
measures how much the size of a model grows compared to its
size after learning the first task. SSS measures how the storage
requirements of a model grows due to the storage of training data
from older tasks.

Additionally, we introduce two new easy-to-compute contin-
ual learning metrics: Time Efficiency (TE) and Final Model Size
(FS). TE measures the increase in training duration with the
number of tasks, relative to the training time for the first task.
TE only needs the training times to be logged, and it reflects
the extra effort needed in the training loop (e.g. due to extra
regularization steps) with an increase in the number of tasks. TE
is similar to the Computational Efficiency metric (CE) proposed
in [42], but while CE is based on the number of addition and
multiplication operations, TE is based on the observed wall clock
time. When a neural network is trained on a GPU (as is most
often the case), many neural network operations are performed
in parallel. Hence, simply counting the number of operations does
not provide an accurate estimate of the increase in training effort
with increasing number of tasks. A time-based measure such as
TE is more suited to this task. For a meaningful interpretation
of this metric, all experiments need to be run on near-identical
hardware.

For M tasks, TE is defined as

TE = min

{
1,

T0

M

M−1∑
i=0

1
Ti

}
, (15)

where T is the time required to learn task i.
i

https://github.com/sayantanauddy/clfd
https://github.com/sayantanauddy/clfd
https://github.com/sayantanauddy/clfd
https://github.com/sayantanauddy/clfd
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FS is a measure of the absolute parameter size, which contrasts
with MS which only measures the parameter growth relative to
the size after learning the first task. A model which has a large
number of parameters for the first task and adds a relatively small
number of parameters for subsequent tasks will achieve a high
score for MS, but will fare worse in terms of FS if models of other
compared methods have a smaller absolute size. FS is defined as

FS = 1 − Memnorm(θM−1) (16)

Memnorm(θM−1) is the parameter size after learning M tasks,
normalized by the size of the largest compared model among SG,
FT, REP, SI, MAS, HN and CHN. With these 6 metrics, we compute
the overall continual learning metrics [42]:

CLscore =

n(C)∑
ci, (17)

CLstability = 1 −

n(C)∑
STDEV(ci), (18)

where C = {ACC, REM, MS, TE, FS, SSS}. All the continual learning
metrics lie in the range 0 (worst) to 1 (best).

5.3. Results

We present next the results of our experiments on three
different datasets: LASA, HelloWorld, and RoboTasks. Details of
our hardware setup (Appendix A.1), experiment hyperparameters
(Appendix A.4), results of the experimental comparison of NODEs
and iFlow (Appendix A.5), and additional results (Appendix A.6)
can be found in Appendix A.

5.3.1. LASA dataset
We train each model (SG, FT, REP, SI, MAS, CHN and HN) on

the 26 tasks of DLASA sequentially. Fig. 4 shows the median DTW
errors of the predictions for tasks D0–Dm after training on task
Dm (using NODET) for m = 0, 1, . . . , 25. For example, the value
for task 10 denotes the median of the evaluation errors for all
the predicted trajectories from tasks 0 to 10 after training on task
10. We provide the same information using the other trajectory
error metrics (Frechet distance and Swept Area in Fig. A.2 in
Appendix A).

Fig. 4 (top) shows a drastic increase in the error for FT as
the number of learned tasks increases, since FT optimizes its
parameters only for the current task. After the first task, the errors
for SI and MAS also increase steeply. Fig. 4 (bottom) shows a
zoomed-in version showing the methods which perform well in
more detail (SG, REP, CHN and HN). The performance of REP for
task 0 is the same as FT, but the performance does not deteriorate
as more tasks are learned, since REP has access to the data from
prior tasks. Till task 7, CHN performs better than REP, after which
it starts exhibiting catastrophic forgetting as can be seen from the
upward trend in its error plot. Overall, SG and HN exhibit the best
performance. They do not suffer from catastrophic forgetting, and
their error plots overlap with each other (red and blue lines in
Fig. 4 (bottom)).

An overall picture of the continual learning performance of the
different methods may be obtained from Fig. 5, which shows the
overall errors of the predicted trajectories during the course of
learning all the tasks. It can be seen that SG, REP, CHN and HN
perform much better than FT, SI, and MAS, and that HN and SG
are the best performers. Note that in Fig. 5 the trajectory metrics
are plotted in the log10 scale to accommodate the high errors for
FT, SI, and MAS in the same plot as SG, REP, HN and CHN.

Note that a regular HN model produces all the parameters
of the target NODE directly from its final layer. This implies a
much larger number of HN parameters compared to the produced
 l

8

Fig. 4. DTW errors of trajectories predicted for the LASA dataset (lower is
better). The x-axis shows the current task. After learning a task (using NODET),
all current and previous tasks are evaluated. HN performs as well as SG but
with negligible growth in parameter size. Lines show medians and shaded
regions denote the lower and upper quartiles of the errors over 5 independent
seeds. (top) The DTW errors for all methods. (bottom) A zoomed-in view of the
methods that perform well. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. DTW errors (lower is better) of all trajectory predictions during the learn-
ing of all tasks of the LASA dataset. Results are obtained using 5 independent
seeds. The hypernetwork approach (HN, CHN) performs substantially better than
regularization-based continual learning methods (SI, MAS) and on par with the
upper baseline SG and REP.

target network parameters. To keep the overall size of the HN
comparable to the other models, the target NODE for HN has one-
tenth the number of units in each layer as the NODEs used by the
other models (SG, FT, REP, SI, MAS, CHN). We refer the reader to
Table A.3 in Appendix A for details.

Although HN’s performance after learning 26 tasks is very
similar to that of SG, its parameter size is 4.3× 106 compared to
SG’s combined size of 52.2 × 106 parameters, as shown in Fig. 6.
HN’s final parameter size is 1.9×106. Also, the parameter count
or SG grows by 2.1 × 106 per task, whereas CHN and HN grow
t a much smaller rate of 256 parameters per task, same as SI,
AS, FT and REP (Fig. 6 does not include REP as it has the same
odel size as FT). Thus, CHN and especially HN perform similar to

he upper baseline SG, while their parameter size is close to the
ower baseline FT. Fig. 7 shows examples of trajectories predicted
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Fig. 6. Growth of parameter size with new tasks for the LASA dataset (using
NODET). SG has a high rate of growth since it uses a separate network for each
task. All other models grow by only 256 parameters for each new task. Plots
for CHN and FT overlap with each other. The plot for REP is not shown since
its size is identical to FT.

Fig. 7. Example of trajectories predicted by SG, CHN and HN using NODET for
a selection of LASA tasks after learning the last task. HN can remember all past
tasks, while CHN exhibits some forgetting.

by SG, CHN, and HN for a selection of past tasks after learning the
last task.

To compute the continual learning metrics [42], each predicted
trajectory needs to be marked as accurate or inaccurate based on
its difference to the ground truth. Since there is no preexisting
procedure for this, we adopt the following approach: We set a
threshold on the DTW error, such that predictions with an error
less than the threshold are considered accurate. As each task has
multiple ground truth demonstrations, we first compute the DTW
error between all pairs of demonstrations for each task. We
then find the maximum value from this list and multiply it by
3. The multiplicative factor 3 was chosen empirically to allow
some room for error such that a predicted trajectory with the
same general shape as its demonstration (discerned visually) is
considered accurate. Doing so, we arrive at a DTW threshold of
2191 for DLASA, and use it to evaluate the continual learning
metrics shown in Table 1.

For both NODE variants, HN outperforms all the compared
models in terms of CLscore. For NODET, HN performs close to the
upper baseline SG in terms of both ACC and REM. The addi-
tional regularization needed for training hypernetworks leads to
a comparatively lower score for the time efficiency metric TE for
CHN and HN (actual wall-clock training times can be found in
Table A.1(a) in Appendix A). A very high parameter growth rate
for SG results in poor scores for MS and FS. The replay method
REP achieves a low score for SSS since it is the only method that
needs to store the training data from previous tasks. The direct
time input in NODET also leads to better ACC scores for SG, REP
and HN, compared to NODEI. Fig. 8 shows how the different
methods measure up against each other in the different aspects
of continual learning performance.

To test the sensitivity of the regularization-based continual
learning methods (SI, MAS, HN and CHN) to changes in the regu-

larization hyperparameters, we create sets of 5 hyperparameters

9

Table 1
Continual learning metrics for the LASA dataset (median over 5 seeds). Values
range from 0 (worst) to 1 (best).
(a) NODET

MET ACC REM MS TE FS SSS CLsco CLstab
SG 0.87 1.00 0.15 0.85 0.00 1.00 0.64 0.55
FT 0.06 0.20 1.00 0.89 0.96 1.00 0.68 0.57
REP 0.67 1.00 1.00 0.88 0.96 0.48 0.83 0.79
SI 0.04 0.38 1.00 0.98 0.78 1.00 0.70 0.60
MAS 0.02 0.86 1.00 0.83 0.83 1.00 0.76 0.63
HN 0.86 0.97 1.00 0.51 0.92 1.00 0.88 0.81
CHN 0.51 0.80 1.00 0.53 0.96 1.00 0.80 0.77

(b) NODEI

MET ACC REM MS TE FS SSS CLsco CLstab
SG 0.81 1.00 0.15 0.85 0.00 1.00 0.64 0.56
FT 0.06 0.22 1.00 0.88 0.96 1.00 0.69 0.57
REP 0.65 1.00 1.00 0.83 0.96 0.48 0.82 0.79
SI 0.04 0.38 1.00 0.91 0.78 1.00 0.69 0.61
MAS 0.03 0.84 1.00 0.87 0.83 1.00 0.76 0.63
HN 0.76 0.97 1.00 0.55 0.92 1.00 0.87 0.82
CHN 0.57 0.86 1.00 0.52 0.96 1.00 0.82 0.78

Table 2
Robustness to changes in regularization hyperparameters for the LASA dataset
(5 configurations for each method).
Method CLscore CLstability

Median IQR Median IQR

HN 0.8578 0.0011 0.8324 0.0050
CHN 0.7939 0.0098 0.8126 0.0022
MAS 0.7104 0.0019 0.6562 0.0062
SI 0.6047 0.0065 0.6403 0.0011

each for SI, MAS, HN and CHN by drawing independently and
uniformly from the following ranges: (SI) c ∈ [0.1, 0.5], ξ ∈

[0.1, 0.5], (MAS) c ∈ [0.1, 0.5], (CHN) β ∈ [10−3, 10−2
], (HN)

β ∈ [10−3, 10−2
] resulting in 20 different configurations. We

then repeat the LASA experiment with NODET for all these con-
figurations. In terms of CLscore we observe that all configurations
of HN outperform all configurations of CHN, which in turn are
better than all configurations of MAS, followed by SI. This trend
is reflected in the medians and inter-quartile ranges (IQR) of the
overall continual learning metrics CLscore and CLstability for each
method (over its 5 configurations) shown in Table 2. It can be
seen that HN and CHN perform better than the other methods and
the variability in terms of IQR is very small, thereby showing that
they are robust to changes in the regularization hyperparameter
β . For calculating CLscore and CLstability in this experiment, we do
not consider the SSS metric since none of the regularization-based
methods need to cache training data from prior tasks.

5.3.2. HelloWorld
For DHW, which comprises 7 tasks, we perform the same

experiments as DLASA. Fig. 9 shows the errors in the predicted tra-
jectories for all past and current tasks, as new tasks are learned.
The median errors for CHN, HN and REP stay nearly unchanged
and are similar to the upper baseline SG, although CHN and HN
do not need to store the training data of past tasks like REP. As
before, FT, SI, and MAS exhibit severe catastrophic forgetting. Due
to fewer tasks in DHW, CHN’s performance does not deteriorate
even after learning all tasks. Fig. A.3 in Appendix A shows the
other trajectory error metrics (Frechet distance and Swept Area),
which exhibit the same trend as DTW.

Fig. 10 shows examples of trajectories predicted by SG, CHN
and HN for past tasks after being trained sequentially on all DHW
tasks. All models exhibit superior performance when using the
additional time input in NODET (Fig. 10(a)), without which even
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Fig. 8. Continual learning metrics (0: worst, 1: best) for the different methods (with NODET) on the LASA dataset. In (a)–(e), each of the baseline methods is
ompared against HN and CHN to illustrate the different tradeoffs made by the methods. HN shows good performance for almost all metrics (apart from TE, in which
t performs moderately). CHN is similar to HN in terms of TE but scores lower in REM and ACC. REP also performs well but has a low score for SSS, and the other
ethods fail in multiple metrics.
Fig. 9. DTW errors of trajectories predicted for the HelloWorld dataset (lower is
better). The x-axis shows the current task. After learning a task (using NODET),
ll current and previous tasks are evaluated. Lines show medians and shaded
egions denote the lower and upper quartiles of the errors over 5 independent
eeds. (top) The DTW errors for all methods. (bottom) A zoomed-in view of the
ethods that perform well. The performance of SG, REP, HN and CHN are nearly

dentical and much better than FT, SI and MAS.

G is unable to learn trajectories with loops. This can be seen from
he errors for the letters e, r and d in Fig. 10(b). This is also evident
n Fig. 11 which shows the errors for all predictions during the
ourse of learning all the tasks. Apart from FT, all methods have
igher median errors when using NODEI (Fig. 11(b)) compared to

NODET (Fig. 11(a)).
Using the same threshold computation approach we followed

for DLASA, we compute a DTW threshold value of 1821 for DHW.
ith this, we compute the continual learning metrics shown in
able 3. The advantage of using NODEs with a time input is clear
rom the higher values of ACC for NODET compared to NODEI for
ll the methods. In terms of ACC or REM, there is very little to
hoose between SG, REP, HN and CHN. However, when all the CL
etrics are considered together (see the CLsco column in Table 3),
HN exhibits the best performance on account of its small size
nd the fact that it does not need to cache training data from past
asks. HN shows the second-best overall performance. Fig. 12
llustrates that the hypernetwork methods (HN and CHN) perform
ell in all continual learning metrics, while the other methods
erform well in only some aspects of continual learning but fail
n others.
10
Fig. 10. Example of trajectories predicted by SG, CHN and HN using NODET

for all past HelloWorld tasks after learning the last task. With NODET , even
trajectories with loops can be learned. HN and CHN (with NODET) can remember
all past tasks.

Fig. 11. DTW errors (lower is better) of all trajectory predictions during the
learning of all tasks of the HelloWorld dataset. Results are obtained using 5
independent seeds. HN, CHN perform as well as the upper baseline SG.

We qualitatively evaluate how the trajectories predicted by
HN can be reproduced with a physical robot. For this, we use the
same Franka Emika Panda robot that was used for recording the
demonstrations for DHW. The HN model trained on the 7 tasks of
DHW is queried to produce the letters h, e, l, l, o, w, o, r, l, d by
using the appropriate task embedding vectors in sequence. The
trajectory of each letter is scaled and translated by a constant
amount and provided to the robot, which then follows this path
with its end-effector. The z-coordinate and orientation of the
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is compared against HN and CHN to illustrate the different tradeoffs made by the methods. The hypernetwork methods (HN,CHN) show good performance for all
metrics whereas the other methods perform well only in some metrics and poorly for others.
s
g
s
(
f
a

T
t
a
a
D
a
d
v
D
s
d

Table 3
Continual learning metrics for the HelloWorld dataset (median over 5 seeds).
Values range from 0 (worst) to 1 (best).
(a) NODET

MET ACC REM MS TE FS SSS CLsco CLstab
SG 0.99 1.00 0.37 0.94 0.00 1.00 0.72 0.57
FT 0.26 0.07 1.00 0.97 0.84 1.00 0.69 0.59
REP 0.94 0.96 1.00 0.98 0.84 0.43 0.86 0.78
SI 0.25 0.04 1.00 0.95 0.19 1.00 0.57 0.55
MAS 0.38 0.25 1.00 0.86 0.36 1.00 0.64 0.65
HN 0.97 0.98 1.00 0.76 0.69 1.00 0.90 0.86
CHN 0.89 0.95 1.00 0.78 0.87 1.00 0.92 0.91

(b) NODEI

MET ACC REM MS TE FS SSS CLsco CLstab
SG 0.71 1.00 0.37 0.93 0.00 1.00 0.67 0.59
FT 0.17 0.24 1.00 0.93 0.84 1.00 0.70 0.62
REP 0.71 1.00 1.00 0.94 0.84 0.43 0.82 0.78
SI 0.19 0.29 1.00 0.94 0.19 1.00 0.60 0.59
MAS 0.25 0.47 1.00 0.86 0.36 1.00 0.66 0.66
HN 0.74 0.99 1.00 0.75 0.69 1.00 0.86 0.85
CHN 0.68 0.96 1.00 0.76 0.87 1.00 0.88 0.87

Fig. 13. After being continually trained using learning from demonstration to
rite single letters, the robot can reproduce all the trajectories that it has

earned in the past with a single HN network and without having access to
raining data from past tasks. Video is available at https://youtu.be/0gdIImIBnXc.

nd-effector are fixed. Fig. 13 shows the letters written by the
obot.

.3.3. RoboTasks
DRobot comprises 4 tasks, where each task involves learning

he vector fields of the position as well as the orientation of the
nd-effector of the robot. For this experiment, the methods we
valuate are SG, FT, REP, CHN and HN. We omit SI and MAS
ecause of their poor performance on the previous datasets. We
se only NODET for this experiment since in the previous exper-
ments it has been shown to be better than NODEI. As before, SG
cts as an upper baseline and FT serves as a lower performance
 t

11
baseline. For each method, we train separate models for learning
the position and orientation trajectories. The order of tasks for
this experiment is: box opening, bottle shelving, plate stacking, and
pouring.

Fig. 14 shows the position and orientation errors of the pre-
dicted trajectories for all past and current tasks, as new tasks
are learned. For both positions and orientations, FT is unable to
predict correct trajectories for past tasks as soon as the second
task is learned. The performance of the other methods is com-
parable to each other. For the end-effector position trajectories
(Fig. 14(a) (bottom)), the performance of SG, REP and HN are
nearly identical, while CHN is slightly worse. However this dif-
ference does not result in significant qualitative differences in
the robot’s movement. SG, REP, CHN and HN are equally good at
predicting the orientation trajectories, as can be seen in Fig. 14(b)
(bottom). The slight upward trend in the plots of SG, REP, CHN
and HN in Fig. 14 can be attributed to the fact that task 2 (plate
tacking) is more difficult than the other tasks due to very diverse
round truth demonstrations. It can be observed that CHN
hows a more pronounced upward trend in the position error plot
Fig. 14(a) (bottom)). This is probably due to the fact that CHN has
ar fewer parameters than HN and thus has lower representation
nd remembrance capabilities.
Similar to the results for DLASA and DHW, it can be seen that

for continually learning real-world robot tasks involving both
position and orientation, the hypernetwork-based methods CHN
and HN perform similar to SG and REP, but without needing
significant growth in parameters and without requiring to be
retrained on the data from prior tasks.

Fig. 15 shows an example of the position trajectories and
Fig. 16 shows an example of the orientation trajectories predicted
by SG, CHN and HN for tasks 0–4 after the last task has been
learned (here we show the orientation in terms of Euler angles
and the corresponding results in terms of quaternion elements
can be seen in Fig. A.4). In both these qualitative examples, CHN
and HN produce trajectories that closely mimic the ground truth
demonstration. Fig. 17 shows the overall prediction errors during
the course of training. Images of the robot performing the 4 tasks
of DRobot after learning all the tasks sequentially with CHN can be
seen in Fig. 1.

Next, we report the continual learning metrics for DRobot in
able 4. For this we again need to set thresholds on the posi-
ion and orientation errors to categorize predicted trajectories as
ccurate or inaccurate. This time we follow a slightly different
pproach for setting these thresholds compared to DLASA and
HW. For positions, we first compute the DTW error between
ll pairs of demonstrations for each task. Since the ground truth
emonstrations are already quite diverse, we use the maximum
alue from this list as the position error threshold. This threshold
TW value is 7131. For setting the orientation error threshold, we
imply use a threshold of 10 degrees, since an absolute error of 10
egrees (averaged across the 3 rotation axes) results in roughly
he same orientation as the desired one.

https://youtu.be/0gdIImIBnXc
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Fig. 14. Position (a) and orientation (b) errors of trajectories predicted for the RoboTasks dataset (lower is better). The x-axis shows the current task. After learning
a task (using NODET), all current and previous tasks are evaluated. Lines show medians and shaded regions denote the lower and upper quartiles of the errors over
5 independent seeds. (top row) The errors for all methods are plotted. (bottom row) A detailed view of the methods that perform well. The performance of HN is
comparable to the upper baseline SG.
Fig. 15. Example of end-effector position trajectories predicted for all past tasks after sequentially learning all the tasks of the RoboTasks dataset. All methods employ
NODET as the trajectory learning method. Hypernetworks (HN and CHN) remember all past tasks and mimic the demonstrations accurately.
Fig. 16. Example of end-effector orientation trajectories predicted for all past tasks after sequentially learning all the tasks of the RoboTasks dataset. All methods
employ NODET as the trajectory learning method. The ground truth demonstrations as well as the predictions of the orientation consist of a sequence of unit
quaternions. Here, we convert each quaternion in the sequence to its corresponding Euler angle representation (z − y − x convention) for easier interpretation.
olumns show the predictions for each task, and rows show the different Euler angles in degrees. A figure with the original quaternion sequences can be seen in
ig. A.4. Hypernetworks (HN and CHN) remember all past tasks and mimic the ground truth orientations accurately.
For position as well as orientation, SG, REP, CHN and HN are
omparable to each other in terms of ACC and REM. However,
12
when all the metrics are considered together, CHN is the best
amongst all the methods on account of its small near-constant
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Fig. 17. Prediction errors (lower is better) showing DTW position errors (a) and
Quaternion orientation errors (b) of all trajectory predictions during the learning
of all tasks of the RoboTasks dataset. Results are obtained using 5 independent
seeds. Overall, HN and CHN produce low errors which are comparable to the
performance of the upper baseline SG.

Table 4
Continual learning metrics for the RoboTasks dataset (median over 5 seeds).
Values range from 0 (worst) to 1 (best).
(a) Position

MET ACC REM MS TE FS SSS CLsco CLstab
SG 0.95 1.00 0.52 0.93 0.00 1.00 0.73 0.60
FT 0.39 0.01 1.00 0.84 0.69 1.00 0.66 0.61
REP 0.94 0.94 1.00 0.84 0.69 0.38 0.80 0.77
HN 0.88 0.98 1.00 0.72 0.45 1.00 0.84 0.78
CHN 0.90 0.90 1.00 0.75 0.74 1.00 0.88 0.89

(b) Orientation

MET ACC REM MS TE FS SSS CLsco CLstab
SG 0.98 1.00 0.52 0.99 0.00 1.00 0.75 0.59
FT 0.49 0.15 1.00 0.99 0.66 1.00 0.68 0.62
REP 0.99 1.00 1.00 1.00 0.66 0.38 0.84 0.74
HN 0.99 1.00 1.00 0.77 0.20 1.00 0.83 0.68
CHN 0.98 0.97 1.00 0.78 0.79 1.00 0.92 0.90

parameter size and its non-dependence on the demonstrations of
previous tasks. This is also corroborated by Fig. 18, which shows
that CHN performs well in all the continual learning metrics,
while the other methods perform poorly in one or more metrics.

We also evaluate the robustness of the predicted trajectories
hen the robot starts from novel initial positions that are not
resent in the demonstrations used for training. To this end, we
ompare the predictions made by upper-baseline SG and CHN
or 100 randomly selected starting positions on each of the 4
asks of the RoboTasks dataset. Please refer to Appendix A.7 for
etails. Our results indicate that SG is much more sensitive to
mall changes in the starting position despite being the best at
redicting trajectories that have the same starting position as the
emonstrations. The continual learning process for CHN appears
o reduce overfitting to the demonstrations and makes the model
ore robust to changes in the initial state of the robot.

. Discussion

To be functional in the real world, a robot must be able to
cquire multiple skills over time, without forgetting the skills
hat were learned in the past and also without needing to be
etrained on past skills. In this paper, we have taken a further
tep in this direction by presenting the first work on continual
rajectory learning from demonstrations.

The results from our experiments on 3 different datasets show
hat the hypernetwork model (HN) performs on par with the
pper baseline (SG) for all datasets, and the smaller chunked hy-
ernetwork (CHN) performs on par with SG on the robot datasets
13
Fig. 18. Continual learning metrics (0: worst, 1: best) for the different methods
(with NODET) on the RoboTasks dataset. In each individual plot, one of the
baseline methods is compared against HN and CHN to illustrate the different
tradeoffs made by the methods. The first column (a)–(c) shows the results for
position, and the second column (d)–(f) shows the results for orientation. Across
all metrics, CHN shows good performance for both position and orientation. HN
exhibits a similar performance but due to its bigger size, achieves a low score
for FS for orientation. REP’s score for SSS is low due to its requirement of storing
training data of all tasks. SG and FT achieve low scores in multiple metrics.

(HelloWorld and RoboTasks). Compared to the growth of SG
for each new task, the hypernetwork models (HN, CHN) scale
much more efficiently as the growth per task of HN and CHN is
negligible (Section 5.3).

Using continual learning metrics (e.g. accuracy of predictions,
how well past tasks are remembered, model size growth, stor-
age of training data from past tasks, etc.), we compared the
hypernetwork-based approach to methods from all continual
learning families and found that empirically, hypernetworks per-
form best. Specifically, HN is the best among the compared mod-
els for the LASA dataset. On the remaining 2 robot datasets, the
hypernetwork-based methods outperform the other approaches.
CHN, due to its memory efficiency, is empirically the best, fol-
lowed by HN.

We also improve the trajectory learning NODE by introduc-
ing an additional time input to create the NODET model. In
Section 5.3.2, we show how NODET improves performance and
enables the models to learn trajectories with loops.

To facilitate future research in the area of continual-LfD, we
release 2 new datasets of trajectories collected kinesthetically
with a real robot: HelloWorld (Section 5.3.2) and RoboTasks (Sec-
tion 5.3.3). The latter includes tasks involving changing positions
and orientations. After continually learning all the tasks from
these datasets using our hypernetwork-based approach, we ver-
ified that the real robot can successfully perform all past tasks.
Further, we verified that the order of tasks during training does
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ot affect the performance of these models (refer to Appendix A.8
or details).

The code used in this paper is made publicly available to aid
eproducibility. Although the HelloWorld and RoboTasks datasets
sed in our experiments were recorded kinesthetically, our im-
lementation only requires the training data in terms of the
obot’s trajectories and does not depend on how this data is
ollected. Similar to [19], our implementation can potentially
lso be used for trajectories recorded using other means such as
hadowing or teleoperation [17].
A limitation of our current hypernetwork-based approach is

he increase in training time with an increasing number of tasks
ecause an additional regularization term is added for each new
ask (e.g. HN needs 620 s to learn task 0 and 1609 s to learn
ask 25 of the LASA dataset, further details in Table A.1). As
roposed by von Oswald et al. [5], this can be overcome by using
n approximate sample-based regularization instead of the full
egularization process. We leave the experimental verification of
his solution to future work.

In this paper, our focus is on continual learning and we use
ODEs as a simple trajectory learning method because of its
ood empirical performance and fast convergence during train-
ng, which facilitates running multiple experiments on long se-
uences of tasks (Section 4.1). However, NODEs do not have a
echanism for enforcing the stability of the predicted trajec-

ories. To overcome this, it is possible to substitute the simple
ODE with a stable alternative in the future [9,10]. Interestingly,
e found that even without stability guarantees, NODEs gen-
rated by a chunked hypernetwork (CHN) produce trajectories
hat are much more robust to novel initial conditions than the
pper-baseline SG, which uses separate networks to learn each
ndividual task (refer to Appendix A.7 for details).

Further interesting research directions in continual LfD may
nclude: improving the ability of the chunked hypernetworks to
emember long sequences of tasks (e.g., via architectural changes),
sing continual reinforcement learning [2] to refine predicted
rajectories [22], and the inclusion of visual cues to improve and
dapt trajectories [43].

. Conclusion

In this paper, we presented the first study on continual learn-
ng of trajectories from demonstrations, thereby expanding the
ield of continual learning in robotics to LfD. We adapted con-
inual learning (CL) methods from all CL families, and compared
hese against our hypernetwork-based approaches on three dif-
erent datasets. Two of these three datasets were collected using
inesthetic teaching with the real robot and are released by us
n this paper. We have also verified that our approach works for
eal-world tasks involving changing positions and orientations by
valuating it on a real robot. Compared to other continual learn-
ng approaches considered in this paper, hypernetworks achieve
qual or better accuracy, but scale much better in terms of other
riteria such as growth in model size, and storage of past training
ata. Our results suggest that a regular hypernetwork (HN) is
apable of learning many LfD tasks and is empirically the method
f choice for a long sequence of tasks. For a shorter task sequence,
he smaller chunked hypernetwork (CHN) is empirically the best
hoice for continual-LfD.
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Appendix A

A.1. Hardware setup

We run all our experiments on a shared computing cluster
with 125GB of RAM and 16 nodes, with each node having 1 AMD
Ryzen 2950X 16-Core processor and 4 GeForce RTX 2070 GPUs.
Each experiment uses a limited amount of RAM and only a single
GPU and can be easily run on a single GPU or even on a CPU-only
system.

A.2. Training times

In Table A.1, we show the time (in seconds) needed to train
each of the 7 continual learning methods presented in this paper
(median values over 5 independent seeds). The hypernetwork-
based methods (HN and CHN) show a small gradual increase in
the training time as the number of tasks increase. This is due to
the extra regularization that needs to be performed to prevent
catastrophic forgetting. A possible way to attain a near constant
training time (as proposed by von Oswald et al. [5]) is to randomly
sample a fixed set of task embedding vectors to regularize with
instead of using the embeddings of all tasks in each training
iteration. We do not apply this process in this paper, but leave
it for future work.

A.3. Inference times

The time taken by a network to produce predictions is criti-
cally important in a robotics scenario. The hypernetwork-based
solutions for learning from demonstration are well suited for this
task, as can be seen by the speed of making predictions reported
in Table A.2. For this evaluation, the models which were originally
trained on the GPU, were loaded either into GPU memory (Ta-
ble A.2 (a)) or into the CPU memory (Table A.2 (b)). After loading
the hypernetworks (HN or CHN), one of the task embedding vec-
tors was used as an input to generate the parameters for a NODE
and the speed of this forward pass is noted (column fh → fθ in
Table A.2 (a) and (b)). Note that this NODE generation step occurs
only when the robot is required to perform a new task (task
switch). Once a NODE for a task is generated, it can be reused
for multiple predictions of that task. The generated NODE is then
made to predict a trajectory and the speed of each step (column
fθ(x) = ẋ), as well as the time to integrate over a 1000 steps
column

∫
fθ(xτ )dτ ) is noted. This process is repeated 100 times

nd the median times and speeds are reported in milliseconds
nd Hz. As expected, using the GPU generally results in faster
redictions. The time taken to integrate over the entire trajectory
f 1000 steps is more than a thousand times the time for a single
tep (due to the integration operation) and in the majority of
ases, this takes much less than 1 s. It can be seen from Table A.2
hat hypernetworks are able to produce predictions very fast on
oth the GPU as well as the CPU. This makes them suitable for
se in a robotics application.

.4. Hyperparameters

The hyperparameters used for the LASA, HelloWorld and Rob-
Tasks datasets are listed in Tables A.3, A.4 and A.5 respectively.
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Table A.1
Wall clock training times (in seconds) of the models for continual learning from demonstration (median over 5
independent seeds).
(a) LASA (15 × 103 iterations/task)

Method Task 0 Task 5 Task 9 Task 13 Task 17 Task 21 Task 25

SG 586 691 714 728 677 721 737
FT 665 722 767 752 673 747 735
REP 792 909 900 913 904 934 936
SI 694 699 707 702 647 713 686
MAS 603 705 753 697 712 723 705
HN 620 1087 1186 1253 1305 1510 1609
CHN 604 991 1119 1257 1384 1624 1743

(b) HelloWorld (40 × 103 iterations/task)

Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

SG 1896 2012 1872 1960 2030 2030 2281
FT 1954 2022 1973 2016 2050 2086 2385
REP 1926 1939 1950 1942 1957 1975 2016
SI 2019 2128 2093 2091 2110 2132 2268
MAS 1965 2281 2252 2302 2316 2362 2500
HN 1968 2337 2508 2702 2843 2930 3234
CHN 1948 2254 2341 2578 2786 2858 3150

(c) RoboTasks-position (50 × 103 iterations/task)

Method Task 0 Task 1 Task 2 Task 3

SG 1869 2400 2328 1684
FT 1483 1985 1923 1732
REP 1486 1952 1901 1797
HN 1508 2387 2585 2214
CHN 1591 2484 2662 2141

(d) RoboTasks-orientation (50 × 103 iterations/task)

Method Task 0 Task 1 Task 2 Task 3

SG 1809 1800 1800 1783
FT 2026 2068 2061 2058
REP 1396 1409 1409 1409
HN 1461 1903 2116 2303
CHN 1504 1840 2204 2511
Table A.2
Inference speeds of trained hypernetworks (HN and CHN) in milliseconds and Hz (median over 100 forward passes).
fh → fθ denotes the generation of a NODE by a hypernetwork, fθ(x) = ẋ denotes a single step taken by the generated
NODE, and

∫
fθ(xτ )dτ denotes the generation of an entire trajectory from a NODE by integrating over 1000 steps.

(a) GPU

Dataset Method fh → fθ fθ(x) = ẋ
∫
fθ(xτ )dτ

(ms) (Hz) (ms) (Hz) (ms) (Hz)

LASA HN 0.73 1373.83 0.27 3765.08 584.27 1.71
LASA CHN 0.61 1642.25 0.27 3771.86 569.71 1.76
HelloWorld HN 0.72 1391.15 0.26 3856.83 562.79 1.78
HelloWorld CHN 0.60 1662.43 0.27 3731.59 569.51 1.76
RoboTasks (pos) HN 0.74 1360.24 0.27 3761.71 570.53 1.75
RoboTasks (pos) CHN 0.60 1660.45 0.27 3728.27 570.28 1.75
RoboTasks (ori) HN 0.74 1348.00 0.27 3685.68 595.44 1.68
RoboTasks (ori) CHN 0.63 1597.83 0.28 3548.48 574.78 1.74

(b) CPU

Dataset Method fh → fθ fθ(x) = ẋ
∫
fθ(xτ )dτ

(ms) (Hz) (ms) (Hz) (ms) (Hz)

LASA HN 3.01 332.56 0.12 8422.30 261.13 3.83
LASA CHN 5.23 191.04 0.61 1634.89 730.18 1.37
HelloWorld HN 2.94 339.99 0.12 8456.26 262.61 3.81
HelloWorld CHN 5.29 189.14 0.66 1511.73 750.89 1.33
RoboTasks (pos) HN 2.87 348.16 0.17 5833.52 257.85 3.88
RoboTasks (pos) CHN 5.78 172.94 0.57 1749.81 738.15 1.35
RoboTasks (ori) HN 7.51 133.10 0.15 6579.30 265.23 3.77
RoboTasks (ori) CHN 17.68 56.55 1.22 820.88 1499.81 0.67
15
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Table A.3
Hyperparameters for the LASA dataset.
Hyperparameter SG FT REP SI MAS HN CHN

Train iterations 15000 15000 15000 15000 15000 15000 15000
Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
NODE output dim. 2 2 2 2 2 2 2
NODE hidden layers [1000] × 3 [1000] × 3 [1000] × 3 [1000] × 3 [1000] × 3 [100] × 3 [1000] × 3
NODE activation elu elu elu elu elu elu elu
Task Emb. dim. – 256 256 256 256 256 256
c (SI) – – – 0.3 – – –
ξ (SI) – – – 0.3 – – –
λ (MAS) – – – – 0.1 – –
HN hidden layers – – – – – [200] × 3 [200] × 3
β (HN) – – – – – 0.005 0.005
Chunk Emb. dim. – – – – – – 256
Chunk dim. – – – – – – 8192
Table A.4
Hyperparameters for the HelloWorld dataset.
Hyperparameter SG FT REP SI MAS HN CHN

Train iterations 40000 40000 40000 40000 40000 40000 40000
Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
NODE output dim. 2 2 2 2 2 2 2
NODE hidden layers [1000] × 3 [1000] × 3 [1000] × 3 [1000] × 3 [1000] × 3 [100] × 3 [1000] × 3
NODE activation elu elu elu elu elu elu elu
Task Emb. dim. – 256 256 256 256 256 256
c (SI) – – – 0.3 – – –
ξ (SI) – – – 0.3 – – –
λ (MAS) – – – – 0.1 – –
HN hidden layers – – – – – [200] × 3 [200] × 3
β (HN) – – – – – 0.005 0.005
Chunk Emb. dim. – – – – – – 256
Chunk dim. – – – – – – 8192
Table A.5
Hyperparameters for the RoboTasks dataset.
(a) Position (b) Orientation

Hyperparameter SG FT REP HN CHN Hyperparameter SG FT REP HN CHN

Train iterations 50000 50000 50000 50000 50000 Train iterations 50000 50000 50000 50000 50000
Learning rate 0.00001 0.00001 0.00001 0.00001 0.00001 Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001
NODE output dim. 3 3 3 3 3 NODE output dim. 3 3 3 3 3
NODE hidden layers [1000] × 3 [1000] × 3 [1000] × 3 [100] × 3 [1000] × 3 NODE hidden layers [1500] × 3 [1500] × 3 [1500] × 3 150,150,150 [1500] × 3
NODE activation elu elu elu elu elu NODE activation elu elu elu elu elu
Task Emb. dim. – 512 512 512 512 Task Emb. dim. – 1024 1024 1024 1024
HN hidden layers – – – [200] × 3 [200] × 3 HN hidden layers – – – 300,300,300 300,300,300
β (HN) – – – 0.0005 0.0005 β (HN) – – – 0.0005 0.0005
Chunk Emb. dim. – – – – 512 Chunk Emb. dim. – – – – 1024
Chunk dim. – – – – 8192 Chunk dim. – – – – 8192
The regularization hyperparameters for SI (c, ξ ), MAS (λ) and
N/CHN (β) are based on values proposed by [4,5,30] respec-
ively. Earlier, in Section 5.3 we have shown that HN and CHN
re robust to changes in regularization hyperparameters. In all
ases, NODEs use the smooth ELU activation function, and hyper-
etworks have ReLU activations. We use the Adam optimizer in
ll our experiments.

.5. Imitation flow comparison

To compare NODEs against an alternative trajectory learning
pproach, we performed a small non-continual learning experi-
ent using the LASA dataset. For each task, we trained a model
f iFlow [9], NODEI, and NODET and measured the DTW errors
Fig. A.1 shows the errors for all tasks taken together). The iFlow
yperparameters are shown in Fig. A.1 (right) and the NODE
yperparameters are given in Table A.3. Although for iFlow we
sed almost twice the number of training iterations as NODEs, the
mpirical performance of NODEs is still better. An iFlow model
eeds around 60 min to be trained to convergence for a single

ASA task on our setup, whereas a NODE takes around 10 min.

16
Fig. A.1. Comparison of NODE with iFlow. (left) DTW errors (lower is better) of
all trajectory predictions for all tasks of the LASA dataset. Standalone models
of iFlow, NODET , and NODEI are used to learn each of the 26 LASA tasks.
Results are obtained using 5 independent seeds. (right) Hyperparameters for
iFlow. Hyperparameters for NODE are given in Table A.3. NODEs show better
empirical performance and converge faster than iFlow.

A.6. Additional results

Figs. A.2 and A.3 report additional trajectory error metrics
(Frechet distance and Swept Area error) for the LASA and Hel-
loWorld datasets respectively. Fig. A.4 shows a qualitative ex-
ample of orientation prediction in terms of quaternions for the
RoboTasks dataset.



S. Auddy, J. Hollenstein, M. Saveriano et al. Robotics and Autonomous Systems 165 (2023) 104427

Fig. A.2. DTW, Frechet distance and Swept Area errors of trajectories predicted for the LASA dataset (lower is better). The x-axis shows the current task. After learning
a task (using NODET), all current and previous tasks are evaluated. Plots for SG and HN overlap with each other. Lines show medians and shaded regions denote the
lower and upper quartiles of the errors over 5 independent seeds. (top) The errors for all methods. (bottom) A zoomed-in view of the methods that perform well.

Fig. A.3. DTW, Frechet distance and Swept Area errors of trajectories predicted for the HelloWorld dataset (lower is better). The x-axis shows the current task. After
learning a task (using NODET), all current and previous tasks are evaluated. Lines show medians and shaded regions denote the lower and upper quartiles of the
errors over 5 independent seeds. (top) The errors for all methods. (bottom) A zoomed-in view of the methods that perform well.

Fig. A.4. Example of end-effector orientation trajectories predicted for all past tasks after sequentially learning all the tasks of the RoboTasks dataset. All methods
employ NODET as the trajectory learning method. The ground truth demonstrations as well as the predictions of the orientation consist of a sequence of unit
quaternions. Columns show the predictions for each task, and rows show the different elements of the quaternions (scalar first convention).

17
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Fig. A.5. Robustness of SG and CHN on the RoboTasks dataset. Each row shows the results for 1 of the 4 tasks of this dataset. Columns (a,b) show that for small
values of start position ∆, SG’s trajectories often diverge far from the goal position but CHN’s trajectories do not. For larger values of start position ∆, CHN gets worse
ut much less than SG. In column (a), values greater than end position ∆ = 100 cm are grouped together and shown in the shaded region marked ‘‘Large’’. Column
b) shows the divergence of SG and CHN by grouping the results based on the start position ∆. Here, the symbol × shows the value of end position ∆ when start
position ∆ = 0. Column (c) shows overall divergence of SG and CHN for novel initial positions, where CHN shows much less divergence. All models use NODE-T for
learning.
A.7. Robustness to starting position

To test the robustness of the different CL methods to changes
in the initial positions of the robot (i.e., when the robot starts at
a position that is different from the start position of the demon-
strated trajectory), we perform an analysis using the RoboTasks
dataset.

For each of the four tasks of this dataset, we randomly select
one ground truth demonstration. We then create a sphere with
a radius of 20 cm (the maximum reach of the Franka Emika
Panda robot is 85.5 cm) centered at the starting position of the
ground truth trajectory. From within the volume of this sphere,
we uniformly sample 100 random starting points. We then take
the trained models of SG and CHN (trained on all the tasks of
the dataset), and use these to predict trajectories for each of the
4 tasks and each of the 100 random starting points with the
same timesteps as the ground truth demonstration. By sampling
points from a sphere of radius 20 cm, we are asking the models
to extrapolate from the demonstrations and start from areas for
which no demonstration has been provided.

For each predicted trajectory, we measure (i) start position ∆:
the distance between the random starting position and the start-
ing position of the demonstration; (ii) end position ∆: the distance
between the end point of the predicted trajectory (that starts
from a random starting position) and the end position (goal)
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of the demonstration. The results are shown in Fig. A.5. In the
ideal case, the end position ∆ would always be 0 irrespective of
the start position ∆ (every trajectory, irrespective of the starting
position would always converge at the goal). In the absence of
any stability guarantees, if the starting positions of the robot are
very different from the ground truth, the predicted trajectory can
be expected to diverge far from the ground truth goal, leading to
a large end position ∆.

It can be seen that for all tasks, when the random starting
position is up to 6 cm from the GT source, the CHN model pro-
duces trajectories that end up very close to the GT goal. This is not
true for SG. Although SG performs almost perfectly when starting
from the GT source position (see the × symbols in column (b) of
Fig. A.5, and also Figs. 14 and 15), it produces trajectories that
diverge far from the GT goal even when the random starting
positions are quite close to the GT source position. For larger start
position differences, the performance of CHN does degrade, but
much less than that for SG, which most of the time produces
trajectories that end up far beyond the reachable task space of
the robot (in the scatter plots we club together all predictions
that end up more than 100 cm from the goal). This shows that
the continual learning process for CHN has a regularization ef-
fect which prevents the strong overfitting to demonstrations as
exhibited by SG.
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Fig. A.6. Robustness to task order during training. The models for SG, REP, CHN and HN are trained and evaluated with 3 different task orders for each dataset
(each column of plots shows the result of 1 order). Overall the same trends are visible for all task orders. For LASA, HN is almost identical to SG, and CHN performs
well for a small number of tasks but degrades afterwards. For HelloWorld, HN and CHN perform as well as the other baselines. For RoboTasks, again HN and CHN
perform comparably to the other baselines. This shows that the continual learning performance is not affected by the order in which tasks are learned. The x-axis
n the plots denotes the task number. To see the name of a task from a given order, please refer to Table A.6 (e.g., for LASA, task 0 from Order 0 is ‘Angle’, while
ask 0 from Order 1 is ‘Spoon’). Also, note that the DTW metric is dependent on the dimension of the trajectory points. Thus, the DTW values for a 2D dataset such
s HelloWorld are lower than those for RoboTasks. In all cases, the upper baseline SG provides a reference for comparison. For each model, each dataset and each
ask order, we train and evaluate with 3 independent seeds. Similar to Figs. 4, 9 and 14, in this plot lines show median values and shaded areas represent the IQR
f the errors (lower is better).
.8. Robustness to task order

We test the robustness of the best performing models (SG,
EP, CHN and HN) against changes in the order in which tasks
re presented during training. For each of the 3 datasets used in
his paper, we create 3 different orders of tasks: Order 0, Order
1, and Order 2. The first order (Order 0) is the same as that used
for the results reported in Section 5.3. The next 2 task orders for
each dataset are created by randomly shuffling the first task order
of the respective datasets. The task orders and the corresponding
data file names used during training are listed in Table A.6.

We train and evaluate models for SG, REP, CHN, and HN (as
they perform the best) each with 3 independent seeds on each
task order of each dataset. The results for this evaluation are
shown in Fig. A.6. Although the results are marginally different
for the different task orders, the overall trends are similar across
task orders for the LASA, HelloWorld and RoboTasks datasets.

For LASA (see the first row of plots in Fig. A.6), the perfor-
mance of HN is almost identical to that of the upper baseline SG,
while REP and CHN perform worse for all orders. CHN performs
well up to a small number of tasks but its performance degrades
as more tasks are learned.
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The results for HelloWorld (second row of plots in Fig. A.6) also
show similar trends for all 3 task orders: CHN performs similarly
to SG, REP and HN, in spite of being much smaller in size than SG
and HN, and without needing to store training data of past tasks
like REP.

Similarly, for RoboTasks (last two rows of plots in Fig. A.6),
the task order does not seem to affect the continual learning
performance. Learning a difficult task is equally challenging for
all the methods (e.g. the plateslyingtostanding task, which is task
2 in Order 0 and task 0 in Order 1, appears to be a difficult task
judging from the relatively higher errors). However this does not
affect the relative performance of the different methods. CHN
performs almost equally well as the other methods, although
other methods have more parameters (SG, HN) or store past
training data (REP).

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2023.104427.

https://doi.org/10.1016/j.robot.2023.104427
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Table A.6
Task orders.
(a) LASA

Task ID Order 0 file Order 1 file Order 2 file

0 Angle Spoon BendedLine
1 BendedLine Sine RShape
2 CShape Zshape Trapezoid
3 DoubleBendedLine NShape WShape
4 GShape PShape PShape
5 heee heee heee
6 JShape_2 Angle Sshape
7 JShape Khamesh Line
8 Khamesh Line JShape
9 Leaf_1 LShape DoubleBendedLine

10 Leaf_2 JShape_2 Sine
11 Line WShape GShape
12 LShape Leaf_2 Sharpc
13 NShape RShape LShape
14 PShape JShape Saeghe
15 RShape Sharpc Khamesh
16 Saeghe Snake CShape
17 Sharpc DoubleBendedLine Zshape
18 Sine Saeghe JShape_2
19 Snake Worm Snake
20 Spoon Leaf_1 Angle
21 Sshape GShape Worm
22 Trapezoid BendedLine Leaf_2
23 Worm Sshape Spoon
24 WShape CShape NShape
25 Zshape Trapezoid Leaf_1

(b) HelloWorld

Task ID Order 0 file Order 1 file Order 2 file

0 h l o
1 e d w
2 l h l
3 o o h
4 w w e
5 r r d
6 d e r

(c) RoboTasks

Task ID Order 0 file Order 1 file Order 2 file

0 openbox platestandingtolying pouring
1 bottle2shelf openbox openbox
2 platestandingtolying bottle2shelf platestandingtolying
3 pouring pouring bottle2shelf
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