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Abstract

In this Thesis we explore, both theoretically and numerically, splitting strategies for a hyperbolic
system of one-dimensional (1D) blood flow equations with a passive scalar transport equation.
Our analysis involves a two-step framework that includes splitting at the level of partial differential
equations (PDEs) and numerical methods for discretizing the ensuing problems. This study is
inspired by the original flux splitting approach of Toro and Vázquez-Cendón (2012) originally
developed for the conservative Euler equations of compressible gas dynamics. In this approach
the flux vector in the conservative case, and the system matrix in the non-conservative one, are
split into advection and pressure terms: in this way, two systems of partial differential equations
are obtained, the advection system and the pressure system.

From the mathematical as well as numerical point of view, a basic problem to be solved is the
special Cauchy problem called the Riemann problem. This latter provides an analytical solution
to evaluate the performance of the numerical methods and, in our approach, it is of primary
importance to build the presented numerical schemes.

In the first part of the Thesis a detailed theoretical analysis is presented, involving the exact
solution of the Riemann problem for the 1D blood flow equations, depicted for a general constant
momentum correction coefficient and a tube law that allows to describe both arteries and veins
with continuous or discontinuous mechanical and geometrical properties and an advection
equation for a passive scalar transport. In literature, this topic has been already studied only for a
momentum correction coefficient equal to one, that is related to the prescribed velocity profile and
in this case corresponds to a flat one, i.e. an inviscid fluid. In the case of discontinuous properties,
only the subsonic regime is considered. In addition we propose a procedure to compute the
obtained exact solution and finally we validate it numerically, by comparing exact solutions to
those obtained with well-known, numerical schemes on a carefully designed set of test problems.
Furthermore, an analogous theoretical analysis and resolution algorithm are presented for the
advection system and the pressure system arising from the splitting at the level of PDEs of the
complete system of 1D blood flow equations. It is worth noting that the pressure system, in case
of veins, presents a loss of genuine non-linearity resulting in the formation of rarefactions, shocks
and compound waves, these latter being a composition of rarefactions and shocks.

In the second part of the Thesis we present novel finite volume-type, flux splitting-based,
numerical schemes for the conservative 1D blood flow equations and splitting-based numeri-
cal schemes for the non-conservative 1D blood flow equations that incorporate an advection
equation for a passive scalar transport, considering tube laws that allow to model blood flow in
arteries and veins and take into account a general constant momentum correction coefficient. A
detailed efficiency analysis is performed in order to showcase the advantages of the proposed
methodologies in comparison to standard approaches.
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Introduction

i Motivations and goals

Blood circulation is fundamental to human physiology, having as main functions the transport of
substances and the regulation of temperature. Modelling such processes in single vessels or in
networks of vessels allows to study the effect of different stimuli on blood flow from a systemic
point of view. In turn, these effects are related to changes in the geometry and mechanical
properties of vessels. Arterial circulation has been the focus of attention in the past decades for
researchers looking at pathological states of the cardiovascular system and its role played in other
diseases. However, nowadays clinical research is looking into the potential role played by the
venous system in the development and clinical course of neurodegenerative diseases such as
Idiophatic Parkinson’s disease [48], Ménière disease [2, 14, 25], multiple sclerosis [74, 95, 99, 37].

Blood flow models are essential tools used in medical research and healthcare to study and
understand the complex dynamics of blood circulation in the human body. These models are
designed to simulate the flow of blood through various parts of the body and can be used to study
diseases, develop new treatments, and improve medical technologies. The three-dimensional
(3D) incompressible Navier-Stokes equations are commonly utilized as a preferred model to
examine the blood flow in a specific region of the cardiovascular system. The main goal of these
models is to improve our understanding of the complex processes that take place within the
cardiovascular system. It is imperative to consider the mechanical reaction of vessel or organ
walls when simulating the cardiovascular system. 3D fluids models combined with a description
of the interation between fluid and vessel walls result in 3D fluid-structure-interaction (FSI)
solvers. These models take into account the 3D geometry of blood vessels, and thus provide 3D
description of pressure and velocity fields [19]. While 3D blood flow models provide a high level
of detail and accuracy, they are computationally expensive and often require high-performance
computing resources to run simulations. Consequentially these models can be time-consuming
and expensive to implement, making them less practical for routine clinical use.

One-dimensional (1D) blood flow models [40] are simplified models derived from the 3D FSI
models. For certain applications, they are more computationally efficient than the 3D Fluid
Structure Interaction (FSI) models [94], making them more suitable for clinical applications [36].
These schemes use simplified representations of blood vessels as interconnected 1D segments, and
they focus on modeling blood flow in a more macroscopic manner. While 1D blood flow models
may lack the fine-grained detail of their 3D counterparts, they can be readily integrated into
clinical workflow and can provide rapid assessments of hemodynamic parameters, making them
valuable for diagnostic and treatment planning purposes. Moreover, these models can be used
to study large-scale physiological phenomena and simulate the effects of various cardiovascular
pathologies on blood circulation. They are in fact valuable for studying various aspects of blood
flow, including pressure and flow waveforms [72].

This Thesis focuses on the construction of new efficient first-order, finite-volume numerical
schemes, to model 1D blood flow in arteries and veins with a passive scalar transport equation

1



2 Introduction

added, for different constant velocity profiles. Not inferior in significance an extensive theoretical
analysis and the exact solutions of the considered mathematical problems is presented, providing
also reference solutions along with building blocks for the numerical schemes under study.

ii State of the art

The one-dimensional blood flow equations are a non-linear system of two partial differential
equations with source term. These equations represent conservation of mass and balance of
momentum and are obtained by cross-sectional averaging the 3D Navier-Stokes equations, and
including a tube law describing the interaction between vessel wall and fluid [28]. The space-
and time-dependent unknowns are the cross-sectional area, flow rate and pressure. To close
the system, elastic tube laws have been proposed, which distinguish between arteries and veins.
In Bernard et al. [4], 1D blood flow equations were derived for the first time from the 3D
incompressible Navier-Stokes equations. During the derivation of the 1D blood flow equations
the velocity profile of the axial component of velocity has to be prescribed. This in turn determines
a couple of coefficients appearing in the momentum balance equation, one related to dissipation
due to friction between blood and the vessel wall and a second one, called momentum correction
coefficient, which is related to the convective term of the equation.

One-dimensional blood flow models have been extensively used to study wave propagation
phenomena in arteries [27, 73, 6, 60, 8, 51]. More recently, their use has been extended to the
venous circulation [57, 58, 61]. Main aspects of the venous system posing modelling challenges are
collapsibility of veins and the relevance of external forces such as gravity and external pressure to
venous flow. Nevertheless, the effectiveness of 1D blood flow models for various applications has
been verified through in-silico analysis, where the predictions of these models were compared
with those of more complex models [36, 94, 10], in-vitro by assessing 1D blood flow model output
with respect to highly controlled experiments [52, 5] and in-vivo by assessing the capacity of
these models to reproduce pressure and flow waveforms observed in the clinical context [62,
69]. Moreover, when combined with zero-dimensional (0D) models, 1D blood flow models have
enabled the development of comprehensive models of the entire human circulation [1, 46, 57, 9,
61, 31]. Additionally, 1D models have proven to be valuable in their ability to be coupled with 3D
models, thereby providing realistic boundary conditions necessary for the analysis of detailed 3D
problems that focus on the investigation of spatially localized pathological conditions [26, 7, 29,
68].

1D blood flow models with discontinuous mechanical and geometrical properties are repre-
sentative of physical situations of medical interest in which certain properties that characterize
compliant vessels change rapidly in space, for example due to the insertion of stents in arteries or
in veins after a surgical procedure with the purpose of returning the vessel lumen to approxi-
mately its original shape. A common pathology in the human circulatory system is the presence
of atherosclerotic plaques that can cause restrictions of the arterial lumen called stenoses. In the
most severe cases stenoses may hinder, or even stop, the flow of blood. One of the available
techniques to treat this problem is the implantation of a stent (an expandable metal mesh) into
the affected region which has the purpose of returning the artery lumen to approximately its
original shape. Whenever possible, this procedure is preferred to more invasive ones, such as
surgical by-pass. Nevertheless, besides other effects, the presence of a stent causes an abrupt
variation in the elastic properties of the vessel wall, since the stent is usually different from
the soft arterial tissue [15, 72]. This may cause a disturbance in the blood flow pattern and
wall displacement with the appearance of reflected waves and abrupt jumps in mechanical and
geometrical properties may arise. As a consequence of the spatial variation of parameters, the
one-dimensional mathematical model will include additional source terms involving parameter
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derivatives. These source terms are called geometric source terms and must be treated carefully
while discretizing the equations. Otherwise, spurious oscillations may arise in approximated
solutions and numerical schemes will be unable to correctly resolve steady or stationary solutions
(see for example [3, 35]). Numerical schemes able to appropriately solve steady state solutions are
said to be well-balanced [64]. While in this Thesis we deal with an extreme case of discontinuous
parameters (see next paragraph), it is worth noting that many have addressed the smooth case.
The impact of varying mechanical properties due to stent placement was addressed in [72], where
smooth variations where considered and no considerations on the well-balanced properties of the
resulting schemes were made. Well-balanced schemes for smooth variation of parameters were
designed in [22, 59, 93, 30, 45].

From the mathematical as well as numerical point of view, a basic problem to be solved is the
special Cauchy problem called the Riemann problem [44, 87, 33]. In particular, comprehending
the behavior when dealing with discontinuous parameters enables us to effectively apply cou-
pling conditions at vessel junctions [11, 53, 18]. Toro and Siviglia [90] formulated a complete
one-dimensional blood flow model with discontinuous properties and passive scalar transport
equation added. They presented the complete exact solution for the Riemann problem for initial
conditions resulting in sub-critical flow regimes. This topic was completed in Spilimbergo et
al. [81] with a novel approach to calculate superimposed contact waves relations. The complete
solution of the Riemann problem was addressed in [38, 39], evidencing the existence of multiple
solutions. More recently, an entropy-based criteria was proposed to identify the physically
relevant solution [71]. It is worth noting that these last contributions about complete solutions
to the Riemann problem regard blood flow in arteries, while the venous counterpart (highly
non-linear and exhibiting large deformations, including collapse) remains to be studied. All these
available exact solutions were obtained for a momentum correction coefficient equal to one (i.e.
corresponding to a flat blood velocity profile and consequently to an inviscid fluid).

The model presented in Toro and Siviglia [90] can not be cast in conservative form for conserved
variables. Numerical approximation of this type of problems are found resorting in generalizations
of well-known results for conservative problems [21], and numerical approximations are obtained
with so-called path-conservative numerical schemes [64]. In particular, Dumbser and Toro [23, 24]
extended the Osher-Solomon Riemann solver [63] to non-conservative systems, presenting a path-
conservative, finite-volume type, first order scheme and a high-order extension. Subsequently
Müller and Toro [56] improved it, constructing well-balanced fluctuations for a first order non-
oscillatory scheme, and extending it to higher order of accuracy in both space and time. Moreover,
a different approach based on the Generalized Hydrostatic Reconstruction [16] was followed in
[55, 67], where an exactly well-balanced scheme for non-stationary steady state solutions was
designed.

It is worth noting that the specific waveforms arising in the aforementioned Riemann prob-
lems are smooth waves (rarefactions), discontinuous jumps (shocks) and contact discontinuities,
due to the particular nature of the related characteristic fields. In fact, for these models, the
aforementioned fields are normally genuinely non-linear (rarefactions and shocks) and linearly
degenerate (contact discontinuities) [80]. In [42], Lax introduced the notion of genuine non-
linearity and solved the Riemann problem with initial data sufficiently close to each other, with
the discontinuous solutions satisfying the so-called Lax-Entropy criterion. Smoller [78, 79] solved
the Riemann Problem in the class of shock and rarefaction waves, for arbitrary initial states,
under certain conditions and the assumption that the characteristic fields are genuinely non-
linear and the discontinuous solutions satisfy the Lax-Entropy criterion. Liu [49] proved the
existence and uniqueness of the solution of the Riemann Problem for general 2x2 hyperbolic
conservation laws, with particular conditions for fluxes, in the class of shocks, rarefaction waves
and contact discontinuities, when the genuine non-linearity condition is lost on a disjoint union
of 1-manifolds in the phase-plane, introducing a new entropy criterion for the discontinuous
jumps, the so-called Oleinik-Liu condition. The characteristic fields with this peculiarity are called
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nongenuinely non-linear. Afterwards Liu [50] extended this theory to general systems of n × n
hyperbolic conservation laws. The consequences of the loss of the genuine non-linearity include
the formation of a new type of wave, composed by a mix of rarefactions and shocks [49, 50].

iii Contributions of the Thesis

Computational cost plays a crucial role when describing the flow of blood in complex networks
of vessels. Hence, it is imperative to prioritize the investigation of numerical techniques that
exhibit growing efficiency. In this regard, a particular approach involves the utilization of splitting
techniques, which partition the initial system into two subsystems. These subsystems possess
a simpler eigenstructure compared to the entire system, thereby contributing to improve the
computational efficiency [85, 43, 47, 97, 92]. Our analysis involves a two-step framework that
includes flux splitting at the level of partial differential equations (PDEs) and numerical methods
for discretizing the ensuing problems. We build upon the flux splitting approach of Toro and
Vázquez [92], hereafter called the TV splitting, originally developed for the conservative Euler
equations of compressible gas dynamics. In this approach the flux vector is split into advection
and pressure terms: in this way, two systems of partial differential equations are obtained, one
advection system and one pressure system. The TV-splitting approach exhibits several properties
that are potentially valuable for simulating blood flow in complex vessel networks. By separating
the original problem into an advection and a pressure system, the wave relations that need
to be enforced when employing a Riemann solver are simplified. In more general blood flow
models, wave relations can be highly complex and require the solution of non-linear ordinary
differential equations for evaluation, of which a closed form is not always available (Chapter 2).
The simplification of wave relations will also yield positive effects not only on the numerical
method utilized to solve the blood flow equations within vessels but also on the determination of
coupling conditions between one-dimensional domains, which are in turn determined by wave
relations [27, 73].

Regarding the conservative 1D blood flow model, we introduce two main modifications with
respect to the approach presented in [92]. The first change is at PDEs level and regards the flux
of the continuity equation: in the TV splitting approach this flux is assigned to the advection
system, here it is assigned to the pressure system. This particular feature is consistent with zero-
dimensional models that are based on neglecting the inertial term in the momentum equation,
followed by spatial integration. Furthermore, straightforward calculations show that applying
the splitting methodology as presented in [92] to the 1D blood flow equations, leads to a loss
of hyperbolicity of the two resulting subsystems of PDEs. The second modification is at the
numerical level: the numerical fluxes for the advection and the pressure system are obtained from
exact or approximate Riemann problem solvers for each system, being the Riemann problem
a special Cauchy problem [44, 87, 33]. The difference lies in the way the solution of the cited
Riemann solvers is used to construct the advection numerical flux. An advection equation for the
concentration of a passive scalar is added, at PDEs level its conservative flux is assigned to the
advection system for simplicity. In this study we consider a general tube law that can accurately
describe relations between pressure and area [13, 27, 75]. This general setting has a a significant
impact on the complexity of the various elements that characterize the underlying hyperbolic
PDEs system. At the numerical level, on the other hand, we propose simple finite volume, first
order, numerical schemes of the Godunov type, evaluated on a suite of test problems with exact
solution. This research study has been carried out in collaboration with with Prof. Toro, Prof.
Siviglia and Prof. Müller and has been published in [83, 91].

Regarding the non-conservative case, our analysis involves the same two-step framework
that considers a first split at the level of PDEs in which the initial complete system is divided
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into two subsystems of PDEs, with a simpler eigenstructure with respect to the complete one.
Again we add an advection equation for a passive scalar and consider a general tube law that
can accurately describe blood flow in arteries and veins. Furtermore we take into account a
momentum correction coefficient that describes flat and parabolic velocity profiles. The complete
system of non-conservative 1D blood flow equations is again split into the advection subsystem in
conservative form, and the pressure one in non-conservative form. At PDEs level the modification
with respect to the original TV-splitting approach in [92] is maintaned: the flux of the continuity
equation is assigned to the pressure system instead to the advection one as for the conservative
case, this choice is determined by both the consistency with zero-dimensional models and the
loss of the hyperbolicity of the resulting subsystems of PDEs, otherwise. Regarding the advection
equation for a passive scalar transport, at PDEs level its conservative flux is assigned to the
advection system for simplicity. At the numerical level, on the other hand, we propose simple,
finite volume-type, first order, numerical schemes derived from a conservative form of the path-
conservative schemes [64] applied to the pressure system, evaluated on a set of test problems
with exact solution. This topic is a joint work with Prof. Toro, Prof. Siviglia and Prof. Müller and
is in preparation.

The proposed numerical schemes are first order accurate, they can be integrated into higher-
order methods. For more details see [76].

Concerning the theoretical analysis of the exact solution of the Riemann problems, the complete
knowledge of the model eigenstructure and wave relations for a momentum correction coefficient
different from one (i.e. for different velocity profiles) is highly desirable, since these relations play
a fundamental role in the determination of coupling and boundary conditions when 1D blood flow
models are applied to networks of vessels [73, 54]. In the most general setting, the momentum
correction coefficient, which depends on the assumed velocity profile, can be space and/or time
dependent [69]. In this study, we consider the momentum correction coefficient as a constant,
ranging values that result from velocity profiles frequently used to describe friction terms in the
momentum balance equation [77, 10]. While in this Thesis friction terms are omitted since we
focus our attention on the analysis of Riemann problems, which, as is well-established, considers
only the homogeneous part of the system, we emphasize that our results are also relevant for
blood flow simulations where the friction terms are actually considered, since the discretization of
this model often relies on having to solve classical Riemann problems to compute numerical fluxes
or coupling conditions. Noteworthy, the derivation of the exact Riemann problem solution for the
non-linear hyperbolic 1D blood flow equations with continuous and discontinuous parameters
for the cases of arteries and veins and for a constant momentum correction coefficient α ∈ [1, 2],
turns out to be significantly more challenging than the one employed for previously presented
results, due in part to the lack of closed-form wave relations for rarefaction waves. This research
study has been carried out in collaboration with Prof. Toro and Prof. Müller and is in press in
[82].

A complete analysis of the exact solutions of the Riemann problem for the advection and
pressure subsystems resulting from the aforementioned splitting is also presented, both being
hyperbolic systems of PDEs, giving further reference solutions and building blocks for the
numerical schemes under study. The advection system, in particular, can be traced back to
the more well-known class of pressureless systems of PDEs, generally developed for the Euler
equations, which have been deprived of the pressure-related parts of the system. Such a model
has been proposed by Zeldovich [96] as a simplified model for the early stages of the formation of
galaxies, when a dust of particles moving without pressure should start to collide and aggregate
into bigger and bigger clusters. In our approach, the modified TV-splitting we apply to the
complete system of 1D blood flow equations leaves the resulting conservative advection subsystem
without both the pressure terms and the flux of the continuity equation. We propose a complete
mathematical analysis of the wave relations and the construction of the exact solution of the
Riemann problem. The pressure system, on the other hand, is a hyperbolic system of PDEs whose
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characteristic fields present a loss of genuine non-linearity in a isolated point of the domain in
case of veins. Solving this problem requires a different entropy criterion for the discontinuous
jumps with respect to the ones that occur in the more common genuinely non-linear fields,
i.e. the Oleinik-Liu entropy condition [49, 50]. Its solution depicts a waveform not included in
the genuinely non-linear case: the compound wave i.e. a wave composed by rarefactions and
semi-characteristic shocks [70, 98]. This topic has not been extensively explored for the 1D blood
flow equations and in this work we propose a complete mathematical analysis and a numerical
procedure to compute the resulting exact solution for the case of continuous parameters and
transport, for both arteries and veins. It is worth noting that no momentum correction coefficient
is present, being assigned to the advection system after the aforementioned splitting at the level
of PDEs. These latter research works are in preparation.

iv Structure of the Thesis

This Thesis is divided into two parts.

• Part 1: Theoretical Analysis

This part is devoted to the theoretical discussion of the hyperbolic systems of PDEs under
study, and their related Riemann problems. In Chapter 1 we introduce the 1D blood flow
equations deriving them from the 3D Navier-Storkes equations. In Chapter 2 we present
the theoretical analysis and the numerical construction of the exact solution of the Riemann
problem for the complete 1D blood flow equations with continuous and discontinuous
parameters and transport added, with a constant momentum correction coefficient different
from one and tube laws that describes both arteries and veins. In Chapter 3 we propose the
actual advection-pressure splitting at the level of PDEs we apply in this study. Subsequently
in Chapter 4 the exact solution of the Riemann problem for the advection system derived
from the splitting of the 1D blood flow equations with continuous and discontinuous
parameters and a constant momentum correction coefficient different from one, arising from
the aforementioned splitting is detailed theoretically and constructed numerically. Finally
the same theoretical and numerical description regarding the exact solution of the Riemann
problem for the pressure system for both arteries and veins and transport added, limited to
the case af continuous mechanical and geometrical properties (conservative case) is depicted
(Chapter 5).

• Part 2: Numerical Schemes

This part is devoted to the presentation of novel finite volume-type, advection-pressure
splitting, numerical schemes, to solve the complete 1D blood flow model with continuous
and discontinuous properties and a passive scalar transport equation added, with a general
constant momentum correction coefficient, presented in Chapter 2. In particular we present
two novel first-order, finite volume-type, flux splitting numerical schemes for the 1D blood
flow equations with continuous mechanical and geometrical parameters and an advection
equation for a passive scalar transport added (Chapter 6). In addition two novel first-
order, finite volume, advection-pressure splitting numerical schemes for the 1D blood flow
equations with discontinuous mechanical and geometrical parameters and a passive scalar
transport equation added, are also presented (Chapter 7).



Part I

Theoretical analysis





Chapter1

Derivation of the mathematical

model

In this Chapter, following [28], starting from the 3D Navier-Stokes equations, considering an
incompressible Newtonian fluid and from the Reynolds Theorem applied to a 3D blood vessel, we
derive the 1D blood flow equations, which are constituted by mass conservation and momentum
balance laws, with the addition of the 1D advection equation for a passive scalar transport.

1.1 The incompressible Navier-Stokes equations

The incompressible Navier-Stokes equations in Cartesian coordinates are





∂xu + ∂yv + ∂zw = 0,

∂tu + u∂xu + v∂yu + w∂zu +
1

ρ
∂x p = gx +

µ

ρ

(
∂2

xu + ∂2
yu + ∂2

zu
)

,

∂tv + u∂xv + v∂yv + w∂zv +
1

ρ
∂y p = gy +

µ

ρ

(
∂2

xv + ∂2
yv + ∂2

zv
)

,

∂tw + u∂xw + v∂yw + w∂zw +
1

ρ
∂z p = gz +

µ

ρ

(
∂2

xw + ∂2
yw + ∂2

zw
)

,

(1.1)

where the unknowns are

U(x, y, z, t) = (u, v, w) Velocity vector,
p(x, y, z, t) pressure,

(1.2)

while
G(x, y, z) = (gx, gy, gz) external force vector,
ρ constant density of blood,
µ constant viscosity of blood

(1.3)

are known values. The equations (1.1) can also be written more succinctly as





∇ · U = 0 continuity,

∂tU + (U · ∇)U +
1

ρ
∇p =

µ

ρ
∆U + G momentum,

(1.4)

where ∇ is the gradient operator and ∆ is the Laplacian operator.

9
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Figure 1.1: Sketch of section of blood vessel in three dimensions defining control volume V = V(t) with
boundary S = S(t). Courtesy of E. F. Toro.

1.2 Derivation of the one-dimensional equations

Consider a generic blood vessel with axial coordinate x as shown in Fig.1.1:

• s = s(x, y, z, t): generic cross section at x,

• sL: left cross section at x = xL, fixed, normal to direction x,

• sR: right cross section at x = xR fixed, normal to direction x,

• V=V(t) is the vessel control volume,

• boundary S = S(t) is decomposed as

S = Sw ∪ {sL, sR} , (1.5)

• Sw = Sw(x, y, z, t): vessel wall.

Theorem 1.2.1 (Reynolds transport theorem). Being Ub: velocity of boundary S, F (x, t): a continuous
function, x=(x, y, z), n: outward unit normal vector to S; the Reynolds transport theorem states:

d

dt

∫

V
F (x, t)dV =

∫

V
∂tF (x, t)dV +

∫

S

FUb · ndσ. (1.6)

Proof. Omitted (see [28]).

For our problem the Reynolds theorem becomes

d

dt

∫

V
F (x, t)dV =

∫

V
∂tF (x, t)dV +

∫

Sw

FUw · ndσ, (1.7)

with Uw the velocity of the vessel wall Sw. Note that Ub · n = 0 at x = xL and x = xR (i.e. here
the normal component of Ub is 0).

Assume the general case in which there may be fluid filtration across the vessel wall (permeable
wall). Then the relative velocity is

Ur = Uw − U. (1.8)
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Definition 1.2.1 (Cross-sectional average). The cross-sectional average of a quantity a(x, t) at section s

of area A is

ā =
1

A

∫

s

a(x, t)dσ, (1.9)

where: A = A(x, t) =
∫

s

dσ.

Note that ∫

V
a(x, t)dV =

∫ xR

xL

[∫

s

a(x, t)dσ

]
dx. (1.10)

By (1.9) we have ∫

V
a(x, t)dV =

∫ xR

xL

Aā(x, t)dx. (1.11)

Being xL and xR independent of time, we have

d

dt

∫

V
F (x, t)dV =

d

dt

∫ xR

xL

AF (x, t)dx =
∫ xR

xL

∂t

(
AF (x, t)

)
dx. (1.12)

The second term of the right hand side of (1.7), considering (1.8), becomes

∫

Sw

FUw · ndσ =
∫

Sw

FUr · ndσ +
∫

Sw

FU · ndσ. (1.13)

For an impermeable wall, the first term of the right hand side of (1.13) is zero. Noting that S can
be decomposed as in (1.5), the second term of the right hand side of (1.13) becomes

∫

Sw

FU · ndσ =
∫

S

FU · ndσ −
∫

sL

FU · ndσ −
∫

sR

FU · ndσ. (1.14)

Since u is the x component of velocity U, then (1.14) becomes

∫

Sw

FU · ndσ =
∫

S

FU · ndσ +
∫

sL

F udσ −
∫

sR

F udσ. (1.15)

The first term on the right hand side of (1.15), in view of Gauss’ theorem, becomes

∫

S

FU · ndσ =
∫

V
∇ · (FU)dV, (1.16)

and thus (1.15) becomes

∫

Sw

FU · ndσ =
∫

V
∇ · (FU)dV +

∫

sL

F udσ −
∫

sR

F udσ. (1.17)

From (1.9) we may write the last two terms in (1.17) as

∫

sL

F udσ −
∫

sR

F udσ = −
∫ xR

xL

∂x(AF u)dx, (1.18)

and thus (1.17) becomes

∫

Sw

FUw · ndσ =
∫

Sw

FUr · ndσ +
∫

V
∇ · (FU)dV −

∫ xR

xL

∂x(AF u)dx. (1.19)
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Inserting (1.12) and (1.19) in (1.7) and using (1.10) yields

∫ xR

xL

∂t(AF )dx =
∫

V
∂tF dV +

∫

V
∇ · (FU)dV +

∫

Sw

FUr · ndσ −
∫ xR

xL

∂x(AF u)dx. (1.20)

That is

∫ xR

xL

∂t(AF )dx =
∫ xR

xL

(∫

s

∂tF dσ

)
dx +

∫ xR

xL

(∫

s

∇ · (FU)dσ

)
dx+

+
∫ xR

xL

(∫

∂s
FUr · ndϵ

)
dx −

∫ xR

xL

∂x(AF u)dx,

(1.21)

which after rearranging becomes

∂t(AF ) + ∂x(AF u) =
∫

s

(∂tF +∇ · (FU)) dσ +
∫

∂s
FUr · ndϵ. (1.22)

The function F is open to choice, and appropriate choices of it will give the governing blood flow
equations. For an impermeable wall the last term on the right hand side vanishes.

1.2.1 Conservation of mass

Using (1.22), setting F =1 and noting that for an incompressible fluid

∇ · U = 0, (1.23)

equation (1.22) gives the equation of continuity or mass conservation equation

∂t A + ∂x(Aū) =
∫

∂s
Ur · ndϵ, (1.24)

which for an impermeable wall
∂t A + ∂x(Aū) = 0, (1.25)

where

• A(x, t) is the unknown cross-sectional area,

• ū(x, t) is the unknown cross-section averaged velocity across x.

1.2.2 Balance of momentum

Setting F = u, noting that
∇ · (uU) = u∇ · U + U · ∇u, (1.26)

that for an incompressible fluid
∇ · U = 0, (1.27)

and that

∂tu + U · ∇u =
Du

Dt
, (1.28)

equation (1.22) becomes

∂t(Au) + ∂x(Au2) =
∫

s

Du

Dt
dσ +

∫

∂s
uUr · ndϵ. (1.29)
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Now imposing the equation for momentum balance

∫

V

D(ρU)

Dt
dV =

∫

V
ρBdV +

∫

S

Tndσ, (1.30)

where

• ρ is density (constant),

• B: body forces,

• T: Cauchy stress tensor.

Applying the divergence theorem to last term in the right hand side of (1.30), we obtain

∫

V

DU

Dt
dV =

∫

V
BdV +

1

ρ

∫

V
∇ · TdV. (1.31)

From the constitutive law for a fluid
T = −pI + D, (1.32)

where

• p is pressure,

• I is the identity tensor,

• D is tensor of deviatoric stresses.

Equation (1.31) can now be written thus

∫ xR

xL

(∫

s

DU

Dt
dS

)
dx =

∫ xR

xL

(∫

s

[
B +

1

ρ
(−∇p +∇ · D)

]
dσ

)
dx. (1.33)

For the x-component, equation (1.33), with obvious notation for b and d, becomes

∫

s

Du

Dt
dσ =

∫

s

[
b +

1

ρ
(− ∂

∂x
p + d)

]
dσ. (1.34)

Returning to (1.29), we have

∂t(Au) + ∂x(Au2) =
∫

s

[
b +

1

ρ
(−∂x p + d)

]
dσ +

∫

∂s
uUr · ndϵ. (1.35)

In terms of area-averages, and considering p constant over the cross-sectional area we have

∂t(Au) + ∂x(Au2) =
A

ρ

[
ρb − ∂x p + d)

]
+
∫

∂s
uUr · ndϵ. (1.36)

Defining
u(x, y, z, t) = s(y, z, t)ū(x, t), (1.37)

where s is the prescribed velocity profile, we have

u2 =
1

A

∫

s

u2dσ =
1

A

∫

s

s2u2dσ = αu2, (1.38)

with

α =
1

A

∫

s

s2dσ (1.39)
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the momentum correction coefficient. It depends on the assumed velocity profile: α = 1 for a flat

profile and α =
4

3
for a parabolic velocity profile. Viscous forces are represented by d and here

we assume the linear relation
A

ρ
d = −Ru, (1.40)

R > 0 represents viscous resistance per unit length of tube and depends on the assumed velocity
profile. Finally, the momentum equation becomes

∂t(Au) + ∂x(αAu2) +
A

ρ
∂x p = Ab − Ru +

∫

∂s
uUr · ndϵ. (1.41)

Assuming an impermeable wall and zero body forces, we obtain

∂t(Au) + ∂x(αAu2) +
A

ρ
∂x p = −Ru. (1.42)

The unknowns are

• A(x, t): cross-sectional area,

• u(x, t): area-averaged velocity,

• p(x, t): area-averaged pressure.

To close the system a tube law is needed, such law can be constructed from mechanical consid-
erations. Tube laws can be algebraic relations (normally for vessel walls with elastic behaviour)
or differential, if viscoelasticity and/or inertia and/or longitudinal tension of vessel walls is
accounted for ([27]).

1.2.3 Equation for a passive scalar transport

For what concerns the passive scalar we use (1.22), setting F =ϕ, with ϕ(x, y, z, t) the concentration
of the passive scalar, equation (1.22) becomes

∂t(Aϕ) + ∂x(Auϕ) =
∫

s
(∂tϕ +∇ · (ϕU)) dσ +

∫

∂s
ϕUr · ndϵ, (1.43)

with ϕ: average concentration of the passive scalar in the considered cross-sectional area. Eq.
(1.43) for an impermeable wall becomes

∂t(Aϕ) + ∂x(Auϕ) =
∫

s
(∂tϕ +∇ · (ϕU)) dσ. (1.44)

Noting that being for an incompressible fluid

∇ · U = 0, (1.45)

Eq. (1.44) becomes

∂t(Aϕ) + ∂x(Auϕ) =
∫

s
(∂tϕ + U∇ · ϕ) dσ. (1.46)

The advection equation for a passive scalar is

∂tϕ + U∇ · ϕ = 0, (1.47)
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so (1.46) becomes
∂t(Aϕ) + ∂x(Auϕ) = 0. (1.48)

Introducing
ϕ(x, y, z, t) = h(y, z, t)ϕ(x, t), (1.49)

where h is a function that describes the distribution of ϕ over the cross section, we have

uϕ =

∫
s

uϕ

A
=

∫
s

hsuϕdσ

A
= ūϕ̄ω, (1.50)

with

ω =

∫
s

shdσ

A
, (1.51)

considering by hypothesis that ϕ is uniformly distributed over the cross section, we have that
h = 1 and by (1.37)

u =

∫
s

sdσ

A
u =⇒

∫
s

sdσ

A
= 1, (1.52)

i.e ω = 1, so (1.48) becomes
∂t(Aϕ) + ∂x(Auϕ) = 0, (1.53)

the advection equation for a passive scalar in conservative form.

1.3 The complete mathematical model

Dropping bars (standing for cross-section averaged quantities) from the unknowns, equations
(1.25), (1.42) and (1.48) become





∂t A + ∂x(Au) = 0,

∂t(Au) + ∂x(αAu2) +
A

ρ
∂x p = −Ru,

∂t(Aϕ) + ∂x(Auϕ) = 0,

(1.54)

where

• A(x, t) is the cross-sectional area of the vessel or tube at position x and time t assumed
A ∈ R

+,

• u(x, t) ∈ R is the averaged velocity of blood at a cross section,

• p(x, t) ∈ R is the pressure,

• R ∈ R
+ is the viscous resistance of the flow per unit lenght of the tube, assumed to be a

known function,

• ρ ∈ R
+ is the density of blood, assumed constant,

• α is the momentum correction coefficient assumed constant,

• ϕ(x, t) ∈ R
+
0 is the concentration of the passive scalar.

The first equation in (1.54) represents the mass conservation, the second the momentum balance,
while the third is the advection equation for the passive scalar transport. To close the system, we
adopt a tube law of the form

p = pe + ψ, (1.55)
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where

• pe(x) ∈ R is the external pressure,

• ψ(x, t) ∈ R is the transmural pressure.

This model will be described in detail and analyzed in Chapter 2, for both continuous and
discontinuous parameters.



Chapter2

Exact solution of the Riemann

problem for the 1D blood flow equations

with general constant momentum

correction coefficient and transport

In this Chapter we present the exact solution of the Riemann problem for the 1D blood flow
equations describing both arteries and veins with continuous and discontinuous mechanical
and geometrical parameters, with a general constant momentum correction coefficient and an
advection equation for the passive scalar transport.

The governing equations are well known and widely treated in literature ([40, 28, 90, 84,
71, 81] and others). In particular for their derivation we refer the reader to Chapter 1. In
the theoretical discussion we examine both subsonic and transonic flow regimes in the case
of continuous parameters, while we consider only the subcritical flow regime when studying
the case of discontinuous parameters (for a complete discussion of the Riemann problem for
blood flow in arteries with α = 1 please see [71]) and we provide new propositions regarding
the physical admissibility of rarefactions and shocks in waves associated with genuinely non-
linear fields. Finally we compare numerically these results with FORCE, a centred, monotone,
numerical scheme, suitable for conservative systems [88], and DOT, a Riemann solver suitable for
non-conservative systems [23], in order to further validate the theoretical analysis since the two
selected numerical methods use minimal information from the PDEs.

In detail, in Section 2.1 we discuss the 1D blood flow model with continuous properties: in
Section 2.1.1 we present the mathematical model, in Section 2.1.2 we give a theoretical presentation
of the exact solution of the Riemann problem while in Section 2.1.3 we describe our solution
strategy, which follows the methodology presented in [87]. In Section 2.1.4 we show and
comment the numerical results. The same structure is adopted for the 1D blood flow model with
discontinuous properties in Section 2.2. In Section 2.2.1 we present the mathematical model. Then,
in Section 2.2.2 we give a theoretical presentation of the exact solution of the Riemann problem,
while in Section 2.2.3 we describe the practical approach adopted to obtain it, following the
methodology presented in [90, 81]. Finally, in Section 2.2.4 we present and discuss the numerical
results. In Section 2.3 the conclusions are drawn.

Part of the of the content of this Chapter has been published in Spilimbergo et al. [82].
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2.1 The 1D blood flow model with continuous prop-

erties and transport

2.1.1 Governing equations

Assuming an axially symmetric vessel configuration in three space dimensions at time t, and a
one-dimensional flow in the axial direction x, the 1D blood flow model with continuous properties
reads 




∂t A + ∂x(Au) = 0,

∂t(Au) + ∂x(αAu2) +
A

ρ
∂x p = 0,

∂t(Aϕ) + ∂x(Auϕ) = 0,

(2.1)

where A(x, t) is the cross-sectional area of the vessel at position x and time t, assumed to be
A ∈ R

+, u(x, t) ∈ R is the averaged velocity of blood at a cross section, p(x, t) ∈ R is the pressure,
ρ ∈ R

+ is the density of blood, assumed constant, ϕ(x, t) ∈ R
+
0 is the concentration of a passive

scalar, α is the momentum correction coefficient.

The momentum correction coefficient in the 1D blood flow equations is related to the assumed
velocity profile. Here we consider the velocity profile function proposed in [77] and given by

s(r) =
ξ + 2

ξ

[
1 −

( r

R

)ξ
]

, (2.2)

where r = [0, R] is the radial coordinate and ξ ∈ R
+ determines the shape of the velocity profile.

Then, the momentum correction coefficient α can be defined as in Chapter 1, i.e.

α =

∫
s

s2dσ

A
, (2.3)

where s is the cross section of the vessel and A =
∫
s

dσ is the cross-sectional area of the vessel.
Inserting (2.2) in (2.3), we obtain

α = α(ξ) =
2 + ξ

1 + ξ
, (2.4)

that has the following property
dα

dξ
< 0, ∀ξ > 0. (2.5)

Clearly
lim

ξ→+∞
α(ξ) = 1, lim

ξ→0+
α(ξ) = 2, (2.6)

consequently in this Thesis we consider α ∈ [1, 2]. In particular ξ = 2

(
i.e. α =

4

3

)
is related to a

parabolic velocity profile, and ξ → +∞ (i.e. α → 1) to an inviscid fluid (Fig. 2.1).

The first equation in (2.1) represents the mass conservation, the second describes the momentum
conservation, the third equation is the advection equation for a passive scalar transport. To close
the system, we adopt the following tube law

p = pe + ψ(A), (2.7)
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x
R

0

R

r

Blood Velocity Profiles in a Vessel

Flat
Blunt
Parabolic

Figure 2.1: Velocity profiles obtained with (2.2). The flat velocity profile is the limiting value for ξ → +∞

(i.e. α → 1) and is related to an inviscid fluid. The blunt velocity profile observed in canine large
vessels by [41] and widely adopted in the one-dimensional blood flow literature, is obtained with

ξ = 9 (α = 1.1). The parabolic velocity profile corresponds to ξ = 2 (α =
4

3
). The two black thick

horizontal continuous lines represent the vessel walls.

where pe is the external pressure and ψ(A) is the transmural pressure, assumed of the form

ψ(A) = K

[(
A

A0

)m

−
(

A

A0

)n]
, (2.8)

with

K =





E

(1 − ν2)

(
h0

R0

)
for arteries,

E

12(1 − ν2)

(
h0

R0

)3

for veins,

(2.9)

m =

{
1/2 for arteries,

10 for veins,
n =

{
0 for arteries,

−3/2 for veins.
(2.10)

h0 is the vessel wall thickness, A0 and R0 are the cross-sectional area of the vessel and the radius
at equilibrium, i.e. ψ(A) = 0, E is the Young’s modulus, ν is the Poisson ratio taken as ν = 0.5,
m, n ∈ R and in general are taken m > 0 and −2 ≤ n ≤ 0. K ∈ R

+, A0 ∈ R
+, pe ∈ R, R0 ∈ R

+,
E ∈ R

+, h0 ∈ R
+ are constants.

System (2.1) is conservative, in fact it can be written as





∂t A + ∂x(Au) = 0,

∂t(Au) + ∂x

(
αAu2 +

∫
c2(A)dA

)
= 0,

∂t(Aϕ) + ∂x(Auϕ) = 0,

(2.11)

i.e. in the form
∂tQ + ∂xF(Q) = 0, (2.12)
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with

Q =




A(x, t)
Au(x, t)
Aϕ(x, t)


 ,

F(Q) =




Au

αAu2 +
∫

c2(A) dA

Auϕ


 =




Au

αAu2 +
KA

ρ

(
m

m + 1

(
A

A0

)m

− n

n + 1

(
A

A0

)n)

Auϕ


 ,

(2.13)

where c is the wave speed

c(A) =

√
A

ρ

∂p

∂A
=

√
K

ρ

[
m

(
A

A0

)m

− n

(
A

A0

)n]
, (2.14)

which is always real, for the choices of m and n given in (2.10). The Jacobian matrix of system
(2.11) is

J(Q) =




0 1 0
c2 − αu2 2αu 0
−uϕ ϕ u


 . (2.15)

The eigenvalues of J(Q) are given by

λ1 = αu − cα, λ2 = u, λ3 = αu + cα, (2.16)

with

cα(Q) =
√

c2 + α(α − 1)u2, (2.17)

a possible choice of right eigenvectors of J(Q) corresponding to eigenvalues (2.16) is

R1(Q) =




1
αu − cα

ϕ


 , R2(Q) =




0
0
1


 , R3(Q) =




1
αu + cα

ϕ


 . (2.18)

Remark 2.1.1. Please note that in this Section we denote flow rate as Au or q = Au interchangeably

(and obviously u =
q

A
).

Proposition 2.1.1 (Hyperbolicity). The system of conservation laws defined in (2.11) is strictly hyperbolic
under the following hypotheses:

1. the set of admissible solutions is restricted to Q ∈ Ω = [R+ × R × R
+
0 ] ⊂ R

3;

2. α ∈ [1, 2];

3. the tube law is a monotonically increasing function of the cross-sectional area A, i.e.
∂p

∂A
> 0, ∀A ∈

R
+.

Proof. It is straightforward to prove that under the specified hypotheses and parameters cα ∈ R
+

and thus eigenvalues (2.16) will always be real and distinct ∀Q ∈ Ω. In particular this is true for
parameters in (2.9), (2.10).
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Proposition 2.1.2 (Nature of the λ1-characteristic field). Under the hypotheses of Proposition 2.1.1,
the λ1-characteristic field is genuinely non-linear with

∇λ1(Q) · R1(Q) < 0, ∀Q ∈ Ω, (2.19)

provided m > 0, −2 ≤ n ≤ 0.

Proof. From (2.16)

∇λ1(Q) =

[
∂λ1(Q)

∂A
,

∂λ1(Q)

∂q
,

∂λ1(Q)

∂(Aϕ)

]
=

[
−α

u

A
− ∂cα

∂A
,

α

A
− ∂cα

∂q
, 0

]
. (2.20)

Then, inserting (2.18) and (2.20) in (2.19), and recalling that q = Au, after manipulations one
obtains

∇λ1(Q) · R1(Q) = −
2α(Acα + q − αq)2 + A3 ∂c

∂A
2c

2A3cα
. (2.21)

The denominator is always positive. To check the genuine non-linearity the numerator must be
different from zero. In particular we will prove that

2α(Acα + q − αq)2 + A3 ∂c

∂A
2c > 0. (2.22)

(2.22) can be written as

− ∂c

∂A
− c

A
g1(A, α) < 0, (2.23)

with
g1(A, α) =

α

c2
[cα + (1 − α)u]2; (2.24)

that can be proved to be

g1(A, α) ≥ 1, g1(A, 1) = 1, ∀Q ∈ Ω. (2.25)

For α = 1 (2.23) is satisfied if parameters m and n are in the range we consider, i.e. m > 0,
−2 ≤ n ≤ 0. It follows that for this same range of the parameters, for α ∈ [1, 2] (2.23) holds too,
consequently we have proved the statement.

Proposition 2.1.3 (Nature of the λ3-characteristic field). Under the hypotheses of Proposition 2.1.1
and Proposition 2.1.2 the λ3-characteristic field is genuinely non-linear with

∇λ3(Q) · R3(Q) > 0, ∀Q ∈ Ω. (2.26)

Proof. From (2.16)

∇λ3(Q) =

[
∂λ3(Q)

∂A
,

∂λ3(Q)

∂q
,

∂λ3(Q)

∂(Aϕ)

]
=

[
−α

u

A
+

∂cα

∂A
,

α

A
+

∂cα

∂q
, 0

]
. (2.27)

Then, inserting (2.18) and (2.27) in (2.26), and recalling that q = Au, after some manipulations
one obtains

∇λ3(Q) · R3(Q) =
2α(Acα − q + αq)2 + A3 ∂c

∂A
2c

2A3cα
. (2.28)
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The denominator is always positive. To check the genuine non-linearity the numerator must be
different from zero. In particular we will prove that

2α(Acα − q + αq)2 + A3 ∂c

∂A
2c > 0. (2.29)

(2.29) can be written as
∂c

∂A
+

c

A
g2(A, α) > 0, (2.30)

with
g2(A, α) =

α

c2
[(α − 1)u + cα]

2; (2.31)

that can be proved to be

g2(A, α) ≥ 1, g2(A, 1) = 1, ∀Q ∈ Ω. (2.32)

For α = 1 (2.30) is satisfied if parameters m and n are in the range we consider, i.e. m > 0,
−2 ≤ n ≤ 0. It follows that for this same range of the parameters, for α ∈ [1, 2], (2.30) holds too,
consequently we have the statement.

Proposition 2.1.4 (Nature of the λ2-characteristic field). Under the hypotheses of Proposition 2.1.1 the
λ2-characteristic field is linearly degenerate.

Proof. It is straightforward to prove that

∇λ2(Q) · R2(Q) = 0, ∀Q ∈ Ω. (2.33)

2.1.2 Exact solution of the Riemann problem - Theoretical

study

In this Section we generalize the results provided in [90, 81], to a generic coefficient α ∈ [1, 2].
The Riemann problem for system (2.12) is the initial-value problem





∂tQ + ∂xF(Q) = 0, x ∈ R, t > 0,

Q(x, 0) =

{
QL, if x < xd

QR, if x > xd

with xd ∈ R,
(2.34)

being xd the spatial coordinate of the discontinuity at t = 0. The initial conditions are given by
the two constant states

QL =




AL

ALuL

ALϕL


 , QR =




AR

ARuR

ARϕR


 . (2.35)

The unknown is Q∗ defined as

Q∗ =




A∗

A∗u∗

A∗ϕ∗


 . (2.36)

Fig. 2.2 depicts the structure of the exact solution of the Riemann problem (2.34) for the
homogeneous blood flow equations (2.12). There are two wave families associated with the two
real eigenvalues λ1 = αu − cα, λ3 = αu + cα, these are associated with genuinely non-linear fields
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t

xx = xd

λ3 = αu + cα

λ2 = u

λ1 = αu − cα

Q∗

QL QR

Figure 2.2: The configuration of the solution of Riemann problem (2.34) within the subsonic regime. The
green solid lines represent waves associated with genuinely non-linear fields, that can be either
shocks or rarefactions. In this Section the λ1-wave will be sometimes called left wave, while the
λ3-wave, right wave. It follows that the related wave patterns will be called left rarefaction/left shock
or right rarefaction/right shock. The dashed purple line depicts a wave associated with a linearly
degenerate field and is a contact discontinuity.

and can be either shocks (elastic jumps) or rarefactions [80]. The λ2-characteristic field is a contact
discontinuity.

We say that we are in subsonic regime if

λ1(Q) < 0 and λ3(Q) > 0, i.e. α|u| < cα ∀Q ∈ Ω. (2.37)

In this Section we will present test problems that fulfill this property and a test that does not, i.e.
a test in which the associated left eigenvalue λ1(Q) goes monotonically from negative values to
positive ones, passing through a critical point where αu = cα.

Remark 2.1.2. In this Thesis we do not focus our attention on proving the existence and uniqueness
of the solution of the Riemann problem for the 1D blood flow equations. The existence and
uniqueness of the solution of the Riemann problem has already been proved for strictly hyperbolic
systems of conservation laws defined in a open set Ω ∈ R

n, with smooth coefficients, provided
the initial data are sufficiently close and each characteristic field is either genuinely non-linerar or
linearly degenerate [12].

Proposition 2.1.5 (Generalized Riemann invariants for the λ1- and λ3-characteristic fields ). A not
complete list of Riemann invariants is

ϕ = const. (2.38)

for the λ1 and λ3-characteristic fields. Regarding the relations between variables A and u no closed form is
present for α > 1.

Proof. The problem can be solved applying the generalized Riemann invariants method (see
for example [90]), i.e for a given hyperbolic system of n unknowns [w1, w2, . . . , wn]T , for any
λk-characteristic field with right eigenvector Rk =[r1,k, r2,k, . . . , rn,k]

T the generalized Riemann
invariants are solutions of the following n − 1 ordinary differential equations in phase-plane

dw1

r1,k
=

dw2

r2,k
= · · · = dwn

rn,k
. (2.39)

For the λ1-characteristic field we have

dA

1
=

d(Au)

αu − cα
=

d(Aϕ)

ϕ
. (2.40)
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From the first and the second term results

dq

dA
= αu − cα, (2.41)

that can not be solved in closed form and will be treated later. From the first and the third

dA

1
=

d(Aϕ)

ϕ
=⇒ dϕ = 0 =⇒ ϕ = const. (2.42)

For the λ3-characteristic field instead

dA

1
=

d(Au)

αu + cα
=

d(Aϕ)

ϕ
. (2.43)

From the first and the second term results

dq

dA
= αu + cα, (2.44)

that again will be treated later. From the first and the third

dA

1
=

d(Aϕ)

ϕ
=⇒ ϕ = 0 =⇒ ϕ = const. (2.45)

2.1.2.1 Wave relations across the contact discontinuity

Proposition 2.1.6 (Generalized Riemann invariants for the λ2-characteristic field). The generalized
Riemann invariants are

A = const, Au = const. (2.46)

for the λ2 characteristic field.

Proof. Applying again the generalized Riemann invariants method [90], for the λ2-characteristic
field we have

dA

0
=

d(Au)

0
=

d(Aϕ)

1
, (2.47)

from which we obtain the statement.

Considering Propositions 2.1.5 and 2.1.6, across the waves associated with the genuinely
non-linear fields the variable ϕ remains constant. In addition, the contact wave λ2 is the only
discontinuity for the passive scalar ϕ, while the other variables remain constant. It follows that in
the entire Star Region (the region between the two waves associated with the genuinely non-linear
fields in Fig. 2.2), the unknowns A∗ and q∗ remain constant. Furthermore the third equation in
(2.1) is not affecting the others, consequentially to study the relations across the waves associated
with the genuinely non-linear fields we focus only on the first two variables, referring to the
unknown as

Q∗ =
[

A∗

q∗

]
, (2.48)

and addressing ϕ∗ at a later point.
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2.1.2.2 Wave relations across rarefactions

An integral curve for Rk(Q), k = 1, 3 in (2.18) is a curve in the phase plane (A, q) which has the
property that the tangent to the curve at any point Q ∈ Ω lies in the direction of the vector field
Rk(Q) [44]. A rarefaction is a smooth wave whose states belong to that integral curve in the
phase-plane (A, q), this latter defined as the solution of an initial-value problem involving the
following Ordinary Differential Equations (ODEs)





dA

dξ
= 1

d(Au)

dξ
= αu − cα

for the λ1-wave, (2.49)





dA

dξ
= 1

d(Au)

dξ
= αu + cα

for the λ3-wave. (2.50)

Substituting q = Au, carrying out some algebraic calculations and adding the initial conditions,
systems (2.49), (2.50) become

ODE:
dq

dA
= α

q

A
− cα,

IC: q(AL) = qL,





for the λ1-wave, (2.51)

ODE:
dq

dA
= α

q

A
+ cα

IC: q(AR) = qR,





for the λ3-wave, (2.52)

where cα is defined in (2.17). Solving (2.51) and (2.52) for A ∈ R
+, results in the construction

of the two integral curves, one for each wave (the association of the λ1-wave with QL in (2.35)
is straightforward: this latter is the initial data that is connected to the unknown Q∗ by the
considered wave, the same for the right wave) that are actually functions of variable A (see Fig.
2.3c)

qrarL(A) and qrarR(A) with A ∈ R
+. (2.53)

Remark 2.1.3. In literature usually both the rarefaction and shock curves f = (A, q) are represented
depending on a parameter ξ in this way [42, 44]:

f (ξ) = (A(ξ), q(ξ)). (2.54)

In our case the parameter is the variable A. This choice is justified by (2.49) and (2.50): from the
first equations of the two systems we have in fact that dA = dξ. Thus the resulting curves are

Q(A) = (A, q(A)). (2.55)

Being q a function of A we will usually refer to these curves simply as q(A). Additionally, with
an abuse of notation, we sometimes refer to Q(A) = [A, q(A)]T as a generic state belonging to
that curve.

Remark 2.1.4. It is straightforward to see that the solutions of the ODEs (2.51) and (2.52) are the
generalized Riemann invariants respectively for the λ1- and λ3-characteristic fields [90, 81]
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Proposition 2.1.7 (Physically admissible rarefaction curves).
If the λ1-wave, associated with a genuinely non-linear field, is a smooth wave (i.e. is a physically admissible
rarefaction), the related admissible rarefaction curve in the (A, q) phase-plane is

qa
rarL(A) = {[A, qrarL(A)]T , s.t. A ∈ R

+ and A ≤ AL}, (2.56)

with qrarL(A) in (2.53). In particular A∗ ≤ AL.

If the λ3-wave, associated with a genuinely non-linear field, is a smooth wave (i.e. is a physically
admissible rarefaction), the related admissible rarefaction curve in the (A, q) phase-plane is

qa
rarR(A) = {[A, qrarR(A)]T , s.t. A ∈ R

+ and A ≤ AR}, (2.57)

with qrarR(A) in (2.53). In particular A∗ ≤ AR.

Proof. In a k-th genuinely non-linear characteristic field, λk(A) is monotonically varying along
the entire integral curve. Given the left state QL̂ belonging to the aforementioned integral curve
Qrar(A) = (A, qrar(A)), the admissible rarefaction curve is the part of that integral curve s.t

λk(QL̂) ≤ λk(Qrar). (2.58)

For the case of the λ1-wave, having a physically admissible rarefaction with left value QL,
the admissible rarefaction curve is the set of generic states QrarL(A) = [A, qrarL(A)]T in the
phase-plane (A, q), lying on the left integral curve qrarL(A) built in (2.51), for A ∈ R

+, such that

λ1(QL) ≤ λ1(QrarL(A)). (2.59)

Considering now the curve QrarL(A) = (A, qrarL(A)) we want to calculate

dλ1(QrarL(A))

dA
= ∇λ1(QrarL(A)) · dQrarL(A)

dA
. (2.60)

We have that

dQrarL(A)

dA
=




1
dqrarL(A)

dA


 , (2.61)

but by construction of (2.51)

dqrarL(A)

dA
= α

qrarL(A)

A
− cα(QrarL(A)), (2.62)

consequently

dQrarL(A)

dA
=




1

α
qrarL(A)

A
− cα(QrarL(A))


 = R1(QrarL(A)), (2.63)

where R1 is the right eigenvector in (2.18). So

dλ1(QrarL(A))

dA
= ∇λ1(QrarL(A)) · R1(QrarL(A)) < 0, (2.64)

for genuine non-linearity of the λ1-field, as presented in Proposition 2.1.2. This means that
λ1(QrarL(A)) is strictly decreasing in the domain A ∈ R

+. In other words from (2.59)

λ1(QL) = λ1(QrarL(AL)) ≤ λ1(QrarL(A)) =⇒ A ≤ AL, (2.65)
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thus we obtain the statement. In particular for a left rarefaction that has as left state QL and right
state Q∗, (2.59) becomes

λ1(QL) ≤ λ1(Q
∗), (2.66)

from which
A∗ ≤ AL. (2.67)

On the contrary, given the right state QR̂ belonging to the integral curve Qrar(A) = (A, qrar(A)),
the admissible rarefaction curve is the part of that integral curve s.t

λk(Qrar) ≤ λk(QR̂). (2.68)

For the case of the λ3-wave, having a physically admissible rarefaction with right value QR,
the admissible rarefaction curve is the set of generic states QrarR(A) = [A, qrarR(A)]T in the
phase-plane (A, q), lying on the right integral curve qrarR(A) built in (2.52), for A ∈ R

+, such that

λ3(QrarR(A)) ≤ λ3(QR). (2.69)

Considering now the curve QrarR(A) = (A, qrarR(A)), we want to calculate

dλ3(QrarR(A))

dA
= ∇λ3(QrarR(A)) · dQrarR(A)

dA
. (2.70)

We have that

dQrarR(A)

dA
=




1
dqrarR(A)

dA


 , (2.71)

but by construction of (2.52)

dqrarR(A)

dA
= α

qrarR(A)

A
+ cα(QrarR(A)), (2.72)

consequently

dQrarR(A)

dA
=




1

α
qrarR(A)

A
+ cα(QrarR(A))


 = R3(QrarR(A)), (2.73)

where R3 is the right eigenvector in (2.18). So

dλ3(QrarR(A))

dA
= ∇λ3(QrarR(A)) · R3(QrarR(A)) > 0 (2.74)

for genuine non-linearity of the λ3-field, as presented in Proposition 2.1.3. This means that
λ3(QrarR(A)) is strictly increasing in the domain A ∈ R

+. In other words

λ3(QrarR(A)) ≤ λ3(QrarR(AR)) = λ3(QR) =⇒ A ≤ AR, (2.75)

thus we obtain the result. In particular for a right rarefaction that has as left state Q∗ and right
state QR we have

λ3(Q
∗) ≤ λ3(QR), (2.76)

from which
A∗ ≤ AR. (2.77)
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2.1.2.3 Wave relations across shocks

We start considering that if a discontinuity propagating with speed S has constant values QR̂, QL̂,
on either side (right and left) of it, then the Rankine-Hugoniot jump condition [44] must hold,
namely

F(QR̂)− F(QL̂) = S(QR̂ − QL̂) . (2.78)

Substituting QR̂ with Q∗ = [A∗, q∗]T , QL̂ with Qj = [Aj, qj]
T , S with Sj, with j = L, R and q = Au,

we obtain two different systems





q∗ − qj = Sj(A∗ − Aj),

α
q∗2

A∗ − α
q2

j

Aj
+ Bj = Sj(q

∗ − qj),
(2.79)

with

Bj(A∗) =
K

ρ

[
m

m + 1

A∗m+1 − Am+1
j

Am
0

− n

n + 1

A∗n+1 − An+1
j

An
0

]
, (2.80)

one for each j = L, R. Solving for q∗ we obtain

q∗ =
A∗qj

Ajα + A∗ − αA∗ ±

√√√√ (Aj − A∗)A∗(−Aj(Ajα + A∗ − αA∗)Bj + (α − 1)α(Aj − A∗)q2
j )

Aj(Ajα + A∗ − αA∗)2
,

(2.81)
with j = L, R. We thus obtain two q∗ values for each state j = L, R but unfortunately there is
actually one and only q∗ as the result of the entire Riemann problem (see for example [20]). We
must consider the following propositions.

Proposition 2.1.8. We define one and only admissible, locally at least C1, shock curve in the phase-plane
(A, q), passing through the left state QL and one and only admissible, locally at least C1, shock curve
passing through the right state QR as

qshockL(A) =

{
q+HL(A) for A ≤ AL,

q−HL(A) for A > AL,
for the left state, (2.82)

qshockR(A) =

{
q−HR(A) for A ≤ AR,

q+HR(A) for A > AR.
for the right state, (2.83)

with

q−Hj(A) =
Aqj

Ajα + A − αA
−

√√√√ (Aj − A)A(−Aj(Ajα + A − αA)Bj + (α − 1)α(Aj − A)q2
j )

Aj(Ajα + A − αA)2
, (2.84)

q+Hj(A) =
Aqj

Ajα + A − αA
+

√√√√ (Aj − A)A(−Aj(Ajα + A − αA)Bj + (α − 1)α(Aj − A)q2
j )

Aj(Ajα + A − αA)2
, (2.85)

with j = L, R.

Proof. Substituting QR̂ with QHj and QL̂ with Qj, j = L, R, the Rankine-Hugoniot condition (2.78)
becomes

F(QHj)− F(Qj) = Sj(QHj − Qj). (2.86)
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Attempting to determine the set of all states QHj(A) = [A, qHj(A)]T that can be connected to

Qj by a discontinuity satisfying (2.86) for some Sj, the so-called Hugoniot Locus of Qj ∈ R
2, we

obtain a system of 2 equations in 2 + 1 unknowns: the 2 components of QHj and Sj





qHj(A)− qj = Sj(A − Aj),

α
q2

Hj(A)

A
− α

q2
j

Aj
+ Bj = Sj(qHj(A)− qj),

(2.87)

with Bj in (2.80). In other words we obtain 2 curves through each state Qj, q−Hj(A) and q+Hj(A),

defined in (2.84) and (2.85), for j = L, R. q−Hj(A) and q+Hj(A) are called Hugoniot curves. If QHj

lies on the k-th Hugoniot curve passing through Qj, then we say that Qj and QHj are connected
by a k-shock (see [44]). These curves can be parametrized in various manners. In this Thesis, as
previously done for the rarefaction curves, for computational simplicity we use as parameter the
variable A (see Remark (2.1.3)). (2.86) is clearly

F(QHj(A))− F(Qj) = Sj(A)(QHj(A)− Qj), (2.88)

differentiating this expression with respect to A and setting A = Aj gives

FQ(QHj(Aj))Q
′
Hj(Aj) = S′

j(Aj)(QHj(Aj)− Qj) + Sj(Aj)Q
′
Hj(Aj). (2.89)

Being QHj(Aj) = Qj, we have

FQ(Qj)Q
′
Hj(Aj) = Sj(Aj)Q

′
Hj(Aj), (2.90)

that is not-trivially satisfied if and only if Q′
Hj(Aj) is an eigenvector of FQ(Qj) and Sj(Aj) the

correspondent eigenvalue. At this point we must check which curve, or part of it, is really
admissible for each state. Clearly the admissible one for each state is Qshockj(A) = (A, qshockj(A)),
j = L, R such that,
for QL: QshockL(A) such that

Q′
shockL(AL) = R1(QL), (2.91)

and for QR: QshockR(A) such that

Q′
shockR(AR) = R3(QR), (2.92)

in fact R1 is the tangent vector to the left integral curve at the point QL, while R3 is the tangent
vector to the right integral curve at the point QR. In other words
for QL:

dqshockL

dA
(AL) = λ1(QL), (2.93)

for QR:
dqshockR

dA
(AR) = λ3(QR). (2.94)

As shown in Figs. 2.3a neither q−Hj(A) nor q+Hj(A) are differentiable in Aj, so the tangent does not

exist in that point. Calculating we obtain that, for
K

ρ
> 0, A0 > 0, m > 0, −2 ≤ n ≤ 0

lim
A→A+

L

dq−HL(A)

dA
= lim

A→A−
L

dq+HL(A)

dA
= αuL − cα(QL) = λ1(QL), (2.95)
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and

lim
A→A−

R

dq−HR(A)

dA
= lim

A→A+
R

dq+HR(A)

dA
= αuR + cα(QR) = λ3(QR), (2.96)

while this is not valid for the other limits

(
limA→A−

L

dq−HL(A)

dA
, limA→A+

L

dq+HL(A)

dA
, limA→A+

R

dq−HR(A)

dA

and limA→A−
R

dq+HR(A)

dA

)
. It is clear that we have just defined the two unique, locally at least C1,

shock curves (one for each state) as

qshockL(A) =

{
q+HL(A) for A ≤ AL,

q−HL(A) for A > AL,
(2.97)

qshockR(A) =

{
q−HR(A) for A ≤ AR,

q+HR(A) for A > AR,
(2.98)

(See Fig. 2.3b). We have proved the statement.

Proposition 2.1.9 (Entropy-satisfying shock curves).
If the λ1-wave, associated with a genuinely non-linear field, is an admissible entropy-satisfying shock, the
related admissible shock curve in the (A, q) phase-plane is

qa
shockL(A) = {[A, qshockL(A)]T s.t. A > AL}, (2.99)

with A sufficiently close to AL and qshockL(A) in (2.82). In particular A∗ > AL.

If the λ3-wave, associated with a genuinely non-linear field, is an admissible entropy-satisfying shock,
the related admissible shock curve in the (A, q) phase-plane is

qa
shockR(A) = {[A, qshockR(A)]T s.t. A > AR}, (2.100)

with A sufficiently close to AR and qshockR(A) in (2.83). In particular A∗ > AR.

Proof. With Proposition 2.1.8 we have reduced the Hugoniot Locus of each state QL and QR to
one, locally at least C1, shock curve. Now we must check the physical admissibility of each of
them.

For a non-linear hyperbolic system in R
m (in our case R

2), for each state QHj belonging to a
k-th curve of the Hugoniot Locus of Qj, exists a parametrization A → Qk(A) with 1 ≤ k ≤ m
defined for A sufficiently close to Aj, and s.t

λk(Qk(A)) = λk(Qj) + (A − Aj)∇λk(Qj) · Rk(Qj) + O((A − Aj)
2), (2.101)

(see [33]).

In our case, for a left shock, we consider the just built (2.82), locally at least C1 curve, so we can
apply the Taylor expansion

λ1(QshockL(A)) = λ1(QL) + (A − AL)∇λ1(QL) · R1(QL) + O((A − AL)
2), (2.102)

∀ A sufficiently close to AL.
Considering that [33] presents also this result: ∀ A sufficiently close to AL

SL(QshockL(A)) =
1

2
(λ1(QL) + λ1(QshockL(A))) + O((A − AL)

2), (2.103)
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it is clear that a generic state QshockL(A) belonging to the left shock curve qshockL(A) in (2.82),
belongs to the left admissible entropy satisfying shock curve qa

shockL(A) if λ1(QshockL(A)) <

λ1(QL) in (2.102), that implies λ1(QL) > SL(QshockL(A)) in (2.103) verifying the Lax-Entropy
condition [42]

λ1(QL) > SL(QshockL(A)) > λ1(QshockL(A)), (2.104)

where SL is the left shock speed. But this is possible only if

A > AL, (2.105)

in (2.102) because ∇λ1(QL) · R1(QL) < 0 in (2.102), for genuine non-linearity (Proposition 2.1.2).
In particular, considering Q∗, which, when admissible, belongs by definition to the entropy-
satisfying subset qa

shockL(A) of the Hugoniot Locus of QL, (2.104) becomes

λ1(QL) > SL(Q
∗) > λ1(Q

∗), (2.106)

with

SL(Q
∗) =

q∗ − qL

A∗ − AL
, (2.107)

according to the first of (2.79), consequently in case of an entropy-satisfying left shock, the
admissible A∗ is such that

A∗
> AL, (2.108)

giving the desired result.

A similar proof for the right wave. In case of an entropy-satisfying right shock

λ3(QshockR(A)) = λ3(QR) + (A − AR)∇λ3(QR) · R3(QR) + O((A − AR)
2), (2.109)

∀ A sufficiently close to AR. Under the same conditions

SR(QshockR(A)) =
1

2
(λ3(QR) + λ3(QshockR(A))) + O((A − AR)

2), (2.110)

it is clear that a state QshockR(A) = [A, qshockR(A)]T ∈ qshockR(A) belongs to the right admissible
entropy-satisfying shock curve qa

shockR(A) if λ3(QshockR(A)) > λ3(QR) in (2.109), that implies
SR(QshockR(A)) > λ3(QR) in (2.110) verifying the Lax-Entropy condition [42]

λ3(QshockR(A)) > SR(QshockR(A)) > λ3(QR), (2.111)

where SR is the right shock speed. But it is possible only if

A > AR, (2.112)

in (2.109) because ∇λ3(QR) · R3(QR) > 0 in (2.109) for genuine non-linearity (Proposition 2.1.3).
In particular, considering Q∗, which, when admissible, belongs by definition to the entropy-
satisfying subset qa

shockR(A) of the Hugoniot locus of QR, (2.111) becomes

λ3(Q
∗) > SR(Q

∗) > λ3(QR), (2.113)

with

SR(Q
∗) =

q∗ − qR

A∗ − AR
, (2.114)
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(a) The obtained shock curves for QL and QR, for the Test
3 left rarefaction - right shock problem in a vein with
α = 1.1.
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(b) The qshockj(A) j = L, R curves defined in (2.82) and
(2.83), for the Test 3 left rarefaction - right shock prob-
lem in a vein with α = 1.1.
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(c) The qrarj(A) j = L, R curves for the Test 3 left rarefac-
tion - right shock problem in a vein with α = 1.1.
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(d) The qle f t(A) and qright(A) curves for the Test 3 left
rarefaction - right shock problem in a vein with α =
1.1 as defined in (2.120) and (2.121). The subscript
a stands for admissible, the curves are explained in
Propositions 2.1.7 and 2.1.9. It is clear that this test is
a rarefaction - shock problem, due to the nature of the
curves at the intersection. In black the part of the left
rarefaction curve inside the left rarefaction (Section
2.1.2.5).

Figure 2.3: Rarefaction and shock curves in the phase-plane (A, q) for the Test 3 left rarefaction - right shock
problem in a vein with α = 1.1. Initial data are in Tables 2.3, 2.4.

according to the first of (2.79), consequently in case of an entropy-satisfying right shock, the
admissible A∗ is such that

A∗
> AR, (2.115)

giving the desired result.

2.1.2.4 Solution in the Star Region

Defining the Star Region as the region in the half-plane (x, t) in Fig. 2.2 between the λ1-wave
and the λ3-wave and considering that a wave associated with a genuinely non-linear field can be
either a shock or a rarefaction (see for example [80]) what stated in Sections 2.1.2.2 and 2.1.2.3
leads to the following statements.
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Theorem 2.1.1. Given the Riemann problem (2.34), the λ1-wave is a physically admissible (left) rarefaction
if and only if

A∗ ≤ AL. (2.116)

The λ3-wave is a physically admissible (right) rarefaction if and only if

A∗ ≤ AR. (2.117)

Proof.
(=⇒)In Proposition 2.1.7 we have proved this part.
(⇐=)In Proposition 2.1.9 we have proved this part.

Theorem 2.1.2. Given the Riemann problem (2.34), the λ1-wave is an entropy-satisfying (left) shock if
and only if

A∗
> AL. (2.118)

The λ3-wave is an entropy-satisfying (right) shock if and only if

A∗
> AR. (2.119)

Proof.
(=⇒)In Proposition 2.1.9 we have proved this part.
(⇐=)In Proposition 2.1.7 we have proved this part.

Proposition 2.1.10 (Graphic construction of Q∗). Given the Riemann problem (2.34), the solution Q∗

is the unique intersection of the two curves in the phase-plane (A, q)

qle f t(A) =

{
qa

rarL(A) for A ≤ AL,

qa
shockL(A) for A > AL,

(2.120)

qright(A) =

{
qa

rarR(A) for A ≤ AR,

qa
shockR(A) for A > AR,

(2.121)

given A “not too far” from Aj, j = L, R. The nature of the two curves at the intersection will show the
wave pattern (for example see Fig. 2.3d).

Proof. In Propositions 2.1.7 and 2.1.9 we have proved that the physically admissible parts of
the left and right rarefaction and shock curves are qa

rarL(A), qa
rarR(A), qa

shockL(A), qa
shockR(A)

defined in the statements. The existence of these curves is a necessary condition for the physical
admissibility of each type of wave, but not a sufficient one. We can find the unknown Q∗

graphically, without knowing a priori which type of wave is actually present: having constructed
all these admissible curves, if the solution of our Riemann problem exists, it is unique (Remark
2.1.2), so by Propositions 2.1.7 and 2.1.9 it must belong to respectively one between qa

rarL(A) and
qa

shockL(A) curves and to one between qa
rarR(A) and qa

shockR(A) curves (considering that a wave
associated with a genuinely non-linear field can be only a shock or a rarefaction and it is not
possible to have both rarefactions and shocks together [80]). In other words the unknown Q∗ is
the unique intersection of the qle f t(A) and qright(A) curves in (2.120) and (2.121) thus obtained.

Now we will prove that the intersection of the qle f t(A) and qright(A) curves (if it exists) is
actually unique but only in a small neighbourhood of AL and AR, i.e. where the qa

shockj(A),

j = L, R; curves are built in Proposition 2.1.9. This can be easily proved for any combination of
waves. Considering only rarefaction waves, we define

h(A) = qrarL(A)− qrarR(A), (2.122)
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with qrarL(A) and qrarR(A) defined in (2.53). The solution of h(A) = 0 is clearly the sought A∗.
We want to check

dh

dA
=

dqrarL

dA
− dqrarR

dA
, (2.123)

considering (2.51) and (2.52) we obtain

dh

dA
= −2cα < 0, ∀ A ∈ R

+, (2.124)

so, in case of two rarefactions, function h in (2.122) is strictly monotonic in R
+, so if a zero

exists, it is unique. In case of shocks the discussion is the same, in fact recalling what stated in
Proposition 2.1.9, in a small neighbourhood of Aj, j = L, R; the behaviour of the two curves is
the same. Thus we can conclude that for any admissible wave pattern the intersection of the
two qle f t(A) and qright(A) curves is unique, provided it exists, and a small neighbourhood of the
initial data is considered.

2.1.2.5 Solution inside the rarefactions

If there is a physically admissible left rarefaction, the states QirarL = [AirarL, qirarL]
T inside it, are

those belonging to the left rarefaction curve qrarL(A) such that λ1(QL) ≤ λ1(QirarL) ≤ λ1(Q
∗),

i.e. from Proposition 2.1.7, such that A∗ ≤ AirarL ≤ AL and consequently qirarL = qrarL(AirarL). If
there is a physically admissible right rarefaction, the states QirarR = [AirarR, qirarR]

T inside it are
those belonging to the right rarefaction curve qrarR(A) such that λ3(Q

∗) ≤ λ3(QirarR) ≤ λ3(QR),
i.e. from Proposition 2.1.7, such that A∗ ≤ AirarR ≤ AR and consequently qirarR = qrarR(AirarR).
In Fig. 2.3d an example for the left rarefaction with data of Test 3.

2.1.2.6 The complete exact solution of the Riemann problem for the 1D

blood flow equations with continuous parameters

The complete exact solution of the Riemann problem consists of the states QL and QR (initial
data), Q∗ (the unknown), QirarL and QirarR (solution inside the rarefactions when they exist). In
Section 2.1.3 we will describe how we actually obtain these values.

2.1.3 Exact solution of the Riemann problem - Numerical

resolution

In this Section we present a practical method to calculate the desired states.

Remark 2.1.5. To compute the exact solution in Section 2.1.2, we must actually approximate
numerically the integral curves (2.51) and (2.52) (Section 2.1.3.1), the unknown Q∗ (Section 2.1.3.3)
and the solution inside the rarefactions (Section 2.1.3.4). Nevertheless we always refer to the
resulting solution as ”exact”.

We prefer to follow the methodology presented in [87]. We recall that u =
q

A
.

2.1.3.1 Rarefaction curves

Proposition 2.1.11. Written with respect to variable u, equations (2.51), (2.52) become

du

dA
=

(α − 1)u − cα

A
for the λ1-wave, (2.125)
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du

dA
=

(α − 1)u + cα

A
for the λ3-wave. (2.126)

Proof. From (2.51)

dq

dA
= α

q

A
− cα =⇒ d(Au)

dA
= αu − cα =⇒ udA + Adu

dA
= αu − cα, (2.127)

from which we obtain the result for the λ1-wave. The proof or the λ3-wave is similar.

In case of a generic α ∈ [1, 2] these ODEs have to be computed numerically. We give the
procedure for the left part, the right part is equivalent. We first construct a mesh of E = 100
equispaced computational cells ArarLdom = [10−10, AL], where AL is the left initial condition for
A. This is the integration interval for the left side. After we use scipy.integrate.solve ivp Python
function, with parameters in order: fun=(2.125), t span=[ArarLdom[−1], ArarLdom[0]], y0=uL the
left initial condition for u, method=’RK45’, t eval=np. f lip(ArarLdom), rtol=1e − 10, atol=1e − 13.
We now obtain the urarLdom = np. f lip(sol.y[0, :]) values for each state ArarLdom[i] ∈ ArarLdom, and
then we construct the required function urarL(A) with Python scipy.interpolate.CubicHermiteSpline,
with entries x = ArarLdom, y = urarLdom, dydx =(2.125).

The mesh E = 100 is chosen after the independence test performed in Section 2.1.4.1.

2.1.3.2 Shock curves

From Propositions 2.1.8 and 2.1.9, we can obtain an analogue formula for ushockj(A) considering
Proposition 2.1.9 and simply dividing (2.84), (2.85) by A

ushockL(A) =
ALuL

ALα + A − αA
−

−
√

(AL − A)(−AL(ALα + A − αA)BL + (α − 1)α(AL − A)A2
Lu2

L)

AL A(ALα + A − αA)2
,

(2.128)

ushockR(A) =
ARuR

ARα + A − αA
+

+

√
(AR − A)(−AR(ARα + A − αA)BR + (α − 1)α(AR − A)A2

Ru2
R)

AR A(ARα + A − αA)2
,

(2.129)

where BL and BR are defined in (2.80).

2.1.3.3 Solution in the Star Region (for variables A and u)

At this point we proceed as indicated, for α = 1, for example in [84].

Proposition 2.1.12 (Solution in the Star Region). The exact solution of the Riemann problem for the 1D
blood flow equations with contiuous parameters in the Star Region, is

Q∗ =
[

A∗

A∗u∗

]
, (2.130)

and is found as follows: A∗ is the root of the non-linear algebraic equation

fL(x) + fR(x) + uR − uL = 0, (2.131)
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where

fL(x) =

{
uL − urarL(x) if x ≤ AL (left rarefaction),

uL − ushockL(x) if x > AL (left shock),
(2.132)

fR(x) =

{
−uR + urarR(x) if x ≤ AR (right rarefaction),

−uR + ushockR(x) if x > AR (right shock).
(2.133)

Once A∗ is known from (2.131) we calculate

u∗ =
1

2
(uL + uR) +

1

2
[ fR(A∗)− fL(A∗)], (2.134)

where urarj(A), j = L, R are defined in Section 2.1.3.1, while ushockj(A), j = L, R are defined in Sec
2.1.3.2.

Proof. As explained in Proposition 2.1.10, if Q∗ exists, it is unique and A∗ is the zero of

h(A) = qle f t(A)− qright(A) = 0, A ∈ N ⊂ R
+, (2.135)

with qle f t(A) and qright(A) in (2.120) and (2.121), and N a proper neighbourhood of AL and AR.
A∗ is thus the zero of

f (A) =
h(A)

A
=

qle f t(A)

A
−

qright(A)

A
= 0, A ∈ N ⊂ R

+, (2.136)

where

qle f t(A)

A
=





qa
rarL

(A)

A
= urarL(A) if A ≤ AL,

qa
shockL

(A)

A
= ushockL(A) if A > AL,

(2.137)

qright(A)

A
=





qa
rarR

(A)

A
= urarR(A) if A ≤ AR,

qa
shockR

(A)

A
= ushockR(A) if A > AR,

(2.138)

with urarj(A), j = L, R; defined in Section 2.1.3.1 and ushockj(A), j = L, R; defined in Section
2.1.3.2. In [90, 81], for α = 1, these formulas hold

u∗(A∗) = uL − fL(A∗) for a left wave,
u∗(A∗) = uR + fR(A∗) for a right wave,

(2.139)

functions fL(A) and fR(A) varying according to the wave pattern (rarefactions or shocks).
Considering that Q∗ = [A∗, A∗u∗]T if it exists, is unique, (2.131) follows. From (2.139) we obtain

fL(A∗) = uL − u∗(A∗) for a left wave,
fR(A∗) = −uR + u∗(A∗) for a right wave,

(2.140)

from which generalizing and using (2.137) and (2.138) we obtain (2.132) and (2.133).

Remark 2.1.6. Equation (2.131) is solved for the unknown x, with a globally convergent Newton-
Raphson method with initial state AI = min(AL, AR). For an example see Appendix B.1.
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2.1.3.4 Solution inside the rarefactions (for variables A and u)

In this case, too, there are different ways to calculate the sought states. We prefer to continue in
the same manner as before.

Proposition 2.1.13 (Solution inside the left rarefaction). The exact solution of the Riemann problem
inside the left rarefaction is

QirarL =

[
AirarL

AirarLuirarL

]
, (2.141)

where AirarL is obtained solving with respect to the unknown x the following

X

t
+ cα(QrarL(x))− αurarL(x) = 0, (2.142)

with QrarL(x) = [x, x urarL(x)]
T , being X = x − xd where x is the specific place of the domain (vessel) in

which we are calculating the desired values, xd is the vessel spatial coordinate of the initial discontinuity,
t is the time, and urarL(x) defined in Section 2.1.3.1, Afterwards the actual uirarL, corresponding to the
found AirarL, is

uirarL = urarL(AirarL). (2.143)

Proof. We look for a similarity solution of the type

Q(x, t) = v

(
X

t

)
. (2.144)

Being

∂tQ = −v′
(
X

t

)
X

t2
, ∂xQ = v′

(
X

t

)
1

t
, (2.145)

system (2.12) becomes

−v′
(
X

t

)
X

t2
+ J(Q)v′

(
X

t

)
1

t
= 0, (2.146)

with J(Q) the Jacobian (2.15). (2.146) is

1

t

(
J(Q)− X

t
I

)
v′
(
X

t

)
= 0, (2.147)

that is true if and only if

v′
(
X

t

)
= 0, (2.148)

trivial solution, or (
J(Q)− X

t
I

)
v′
(
X

t

)
= 0, (2.149)

i.e if and only if v′
(
X

t

)
is an eigenvector of J(Q) and

X

t
is the corresponding eigenvalue, i.e.

X

t
= λk, (2.150)

with λk an eigenvalue in (2.16). This is possible only for eigenvalues and eigenvectors associated
with genuinely non-linear fields [33]. Considering (2.150), the unknown state (2.141) must solve

X

t
= λ1(QirarL) = αuirarL − cα(QirarL), (2.151)
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in other words we must solve (2.142) with respect to the unknown x. The rest follows.

Proposition 2.1.14 (Solution inside the right rarefaction). The exact solution of the Riemann problem
inside the right rarefaction is

QirarR =

[
AirarR

AirarRuirarR

]
, (2.152)

where AirarR is obtained solving with respect the unknown x the following

X

t
− cα(QrarR(x))− αurarR(x) = 0, (2.153)

with QrarR(x) = [x, x urarR(x)]
T , being X = x − xd where x is the specific place of the domain (vessel) in

which we are calculating the desired values, xd is the vessel spatial coordinate of the initial discontinuity,
t is the time and urarR(x) defined in Section 2.1.3.1. Afterwards the actual uirarR, corresponding to the
found AirarR, is

uirarR = urarR(AirarR). (2.154)

Proof. As in the proof for the left part, looking for a similarity solution as in (2.144) and considering
(2.150), the unknown state (2.152) must solve

X

t
= λ3(QirarR) = αuirarR + cα(QirarR), (2.155)

in other words we must solve (2.153) for the unknown x. The rest follows.

Again (2.142) and (2.153) are solved with a globally convergent Newton-Raphson method with
initial points respectively AL and AR.

2.1.3.5 The complete exact solution of the Riemann problem for the 1D

blood flow equations with continuous parameters

In this Section we present the sampling of the complete exact solution of the Riemann problem
for the 1D blood flow equations (2.34). Now we can add the last variable ϕ. Being as before
X = x − xd, x is the specific place of the domain (vessel) in which we are calculating the desired
values, xd is the vessel spatial coordinate of the initial discontinuity, and t is the time, thanks to
Theorems. 2.1.1, 2.1.2, on the left side the complete solution is:

• if A∗ ≤ AL (left rarefaction):

Q(x, t) =





QL if X < (αuL − cα(QL))t,

QirarL if (αuL − cα(QL))t ≤ X ≤ (αu∗ − cα(Q
∗))t,

Q∗ if (αu∗ − cα(Q
∗))t < X ≤ R,

(2.156)

• if A∗ > AL (left shock):

Q(x, t) =

{
QL if X ≤ SLt,

Q∗ if SLt < X ≤ R.
(2.157)

Similarly on the right side the complete solution is

• if A∗ ≤ AR (right rarefaction):

Q(x, t) =





Q∗ if L < X < (αu∗ + cα(Q
∗))t,

QirarR if (αu∗ + cα(Q
∗))t ≤ X ≤ (αuR + cα(QR))t,

QR if X > (αuR + cα(QR))t,

(2.158)
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• if A∗ > AR (right shock):

Q(x, t) =

{
Q∗ if L < X ≤ SRt,

QR if X > SRt.
(2.159)

cα is defined in (2.17), SL and SR are the left and the right shock speeds and are defined
according to (2.107) and (2.114). L and R are the left and the right borders of the Star Region
domain and vary according to the presence of shocks or rarefactions, in particular

L =

{
(αu∗ − cα(Q

∗))t in case of left rarefaction,

SLt in case of left shock,
(2.160)

R =

{
(αu∗ + cα(Q

∗))t in case of right rarefaction,

SRt in case of right shock.
(2.161)

Proposition 2.1.15. The λ2-discontinuity is always included in the Star Region.

Proof. It can be proved that
λ1(Q) ≤ λ2(Q), ∀ Q ∈ Ω (2.162)

λ2(Q) ≤ λ3(Q), ∀ Q ∈ Ω (2.163)

SL ≤ λ2(Q), ∀ Q ∈ Ω (2.164)

λ2(Q) ≤ SR, ∀ Q ∈ Ω (2.165)

in other words, the discontinuity for the passive scalar λ2 = u is always contained in the Star
Region, i.e. the region in the (x, t) plane included between the λ1 and λ3 waves.

Considering Proposition 2.1.15 it follows that the considered quantities described in this Section
are

QL =




AL

ALuL

ALϕL


 , QR =




AR

ARuR

ARϕR


 , (2.166)

QirarL =




AirarL

AirarLuirarL

AirarLϕL


 , QR =




AirarR

AirarRuirarR

AirarRϕR


 , (2.167)

Q∗ =




A∗

A∗u∗

A∗ϕ


 . (2.168)

All these unknowns have been already treated in the previous Sections, with the exception of ϕ
that is defined

ϕ(x, t) =

{
ϕL if X ≤ u∗t,

ϕR if X > u∗t.
(2.169)

2.1.4 Numerical results

Having obtained the exact solution of the Riemann problem as presented in Section 2.1.3, we
perform a mesh independence study to justify the choice of the mesh E = 100 to build the
approximated integral curves in Section 2.1.3.1. After having ensured that our computation of
the exact solution is independent of our numerical approach to approximate integral curves, we
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evaluate the entire exact solution thus constructed on a suite of test problems involving arteries
and veins and different wave patterns, for different momentum correction coefficients α, against
FORCE scheme [88] (see Appendix A.1).

2.1.4.1 Mesh independence study

To verify that our exact solution constructed in Section 2.1.3 is mesh independent with respect to
the one used to approximate the integral curves (see Section 2.1.3.1), we perform a study with
meshes En ∈ E = [50, 100, 200] computational cells choosing tests in which only rarefactions
waves are involved. We construct the urarj(A) curves as presented in Section 2.1.3.1 with each of
the prescribed En meshes, and then we build the complete solution of the Riemann problem as
presented in Section 2.1.3.5 with a mesh of I = 15000 computational cells. Then we calculate

L1
err(tEnd, ∆x) = ∆x

I

∑
i=1

|qtEnd
n+1,k,i − q

tEnd
n,k,i|,

L2
err(tEnd, ∆x) =

√√√√∆x
I

∑
i=1

(q
tEnd
n+1,k,i − q

tEnd
n,k,i)

2,

L∞
err(tEnd, ∆x) = max

i=1...I
|qtEnd

n+1,k,i − q
tEnd
n,k,i|,

k = 1, 2 (2.170)

where tEnd the output time, q
tEnd
n,k,i the k-th component of the exact solution Qexact

n,i at time tEnd

calculated with mesh En with n = 1, 2, 3, and ∆x =
l

I
, where l is the length of the vessel. Results

are in Tables 2.1, 2.2, the test data are those of Test 2 (left rarefaction - contact discontinuity - right
rarefaction in an artery) and Test 5 (left rarefaction - contact discontinuity - right rarefaction in an
vein) in Tables 2.3, 2.4. As result of this procedure, we choose the mesh E = 100 for the purpose
of this Thesis.

2.1.4.2 Results

We plot the exact solution of the Riemann problem for the 1D blood flow equations with continu-
ous parameters presented so far, for test problems that involve both arteries and veins, whose ini-
tial data are in Tables 2.3, 2.4, against FORCE method (Appendix A.1) with a Courant–Friedrichs–Lewy
number Cc f l = 0.9, both in a I = 15000 computational cells mesh, for different momentum correc-
tion coefficents α = [1, 1.1, 4/3, 2], where

Definition 2.1.1 (Cc f l). The Courant Number (Cc f l) is defined as

Cc f l =
∆t

∆x
Sn

max, (2.171)

where
Sn

max = maxi

{
maxk

∣∣∣λn
k,i

∣∣∣
}

, k = 1, ...N, i = 1, ..., I; (2.172)

with λn
k,i the k-th eigenvalue evaluated in cell i at time tn, and N is the number of eigenvalues of the

considered system.

The numerical results are described in Figs. 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13. Finally
a comparison of the exact solutions for the chosen α is drawn in Fig. 2.14. In Table 2.5 the Q∗

values for each test are presented for the considered α.



2.1 The 1D blood flow model with continuous properties and transport 41

Table 2.1: Mesh independence study for artery, left rarefaction - contact discontinuity - right rarefaction, Test
2 problem in Tables 2.3, 2.4.

α Variable Mesh L1-err L2-err L∞-err

1 A 50 - - -
100 1.8913e − 13 3.2380e − 13 6.2586e − 13
200 8.6133e − 15 1.4670e − 14 3.8653e − 14

Au 50 - - -
100 8.6353e − 15 4.4845e − 14 4.4072e − 13
200 5.4880e − 16 2.8819e − 15 2.9006e − 14

11/10 A 50 - - -
100 1.3114e − 13 2.2222e − 13 5.8115e − 13
200 1.2407e − 14 2.1242e − 14 3.7586e − 14

Au 50 - - -
100 7.3852e − 15 3.7584e − 14 3.7064e − 13
200 4.6594e − 16 2.4094e − 15 2.5669e − 14

4/3 A 50 - - -
100 4.0619e − 14 8.7806e − 14 5.5381e − 13
200 1.1751e − 14 1.9914e − 14 3.510e − 14

Au 50 - - -
100 5.9117e − 15 2.9560e − 14 2.9040e − 13
200 3.6012e − 16 1.7885e − 15 1.8459e − 14

2 A 50 - - -
100 1.1844e − 13 1.9113e − 13 5.3207e − 13
200 1.0169e − 14 1.6568e − 14 3.1991e − 14

Au 50 - - -
100 4.5326e − 15 2.0669e − 14 1.9155e − 13
200 2.6224e − 16 1.1984e − 15 1.1987e − 14

Table 2.2: Mesh independence study for vein, left rarefaction - contact discontinuity - right rarefaction, Test
5 problem in Tables 2.3, 2.4.

α Variable Mesh L1-err L2-err L∞-err

1 A 50 - - -
100 1.1710e − 13 4.5173e − 13 4.7812e − 12
200 7.6829e − 15 2.7388e − 14 3.0069e − 13

Au 50 - - -
100 1.5401e − 13 4.4924e − 13 2.4343e − 12
200 9.3101e − 15 2.7259e − 14 1.5208e − 13

11/10 A 50 - - -
100 1.4987e − 13 5.1967e − 13 5.1267e − 12
200 1.0406e − 14 3.2101e − 14 3.1329e − 13

Au 50 - - -
100 1.3778e − 13 3.9741e − 13 2.3985e − 12
200 8.3501e − 15 2.4182e − 14 1.4707e − 13

4/3 A 50 - - -
100 2.6502e − 13 7.2429e − 13 5.7895e − 12
200 8.8624e − 15 3.8686e − 14 3.5916e − 13

Au 50 - - -
100 1.0290e − 13 3.1088e − 13 2.2285e − 12
200 6.3128e − 15 1.9010e − 14 1.3761e − 13

2 A 50 - - -
100 2.6884e − 13 9.3605e − 13 8.0358e − 12
200 6.2201e − 14 1.4366e − 13 4.8467e − 13

Au 50 - - -
100 1.0144e − 13 2.8906e − 13 1.7350e − 12
200 6.0544e − 15 1.7278e − 14 1.0557e − 13

Test 1 The solution of Test 1 consists of a left transonic rarefaction, a contact discontinuity and
a right shock in an artery (R(sonic)CS). In this case the associated left eigenvalue λ1 = αu − cα

goes monotonically from negative values to positive values, passing through a critical point at
which αu = cα. We can see how the increasing of α changes noticeably the value of both A∗ and
u∗ in the final result of the exact solution (Fig. 2.14). Also the (A, q) plots describe a remarkable
change of the curvature of the qright(A) curve, due to the variation of α, and a lower change of
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Table 2.3: Parameters used for Tests from 1 to 5: blood density ρ, vessel wall stiffness K; cross-sectional
area A0; external pressure pe ; domain length ℓ; location of the initial discontinuity xd and output
time tEnd. Regarding the resulting wave pattern, R stands for rarefaction, S for shock, C for contact
discontinuity.

Test Vessel Wave pat. ρ[ kg

m3 ] K[Pa] A0[m
2] pe[Pa] ℓ[m] xd[m] tEnd[s]

1 Artery R(sonic)CS 1000 20005.0715 3.14 · 10−4 0.0 0.5 0.5ℓ 0.025
2 Artery RCR 1000 20005.0715 3.14 · 10−4 0.0 0.5 0.5ℓ 0.05
3 Vein RCS 1000 333.0 3.14 · 10−4 0.0 0.5 0.5ℓ 0.05
4 Vein SCS 1000 33.3333 2.8274 · 10−5 66.661 0.5 0.5ℓ 0.06
5 Vein RCR 1000 333.0 3.14 · 10−4 0.0 0.5 0.5ℓ 0.07

Table 2.4: Initial conditions for Tests from 1 to 5. The units of
measures used for this Thesis are: m, s, kg, Pa.

Test AL[m
2] uL[m/s] ϕL AR[m

2] uR[m/s] ϕR

1 10 · 10−4 0.0 1.0 1.0 · 10−4 0.0 0.5
2 3.14 · 10−4 −0.5 1.0 3.14 · 10−4 0.5 0.5
3 3.5 · 10−4 0.0 0.5 3.0 · 10−4 0.0 1.0
4 3.42 · 10−5 0.5 0.5 3.34 · 10−5 −0.1 1.0
5 3.14 · 10−4 −0.5 1.0 3.14 · 10−4 0.5 0.5

Table 2.5: Exact solution in the Star Region of Tests
from 1 to 5.

Test α A∗[m2] u∗[m/s]

1 1 3.5186 · 10−4 3.8839
11/10 3.2357 · 10−4 4.0178
4/3 2.6821 · 10−4 4.2692
2 1.8673 · 10−4 4.5209

2 1 2.6722 · 10−4 0.0
11/10 2.6759 · 10−4 0.0
4/3 2.6844 · 10−4 0.0
2 2.7072 · 10−4 0.0

3 1 3.2817 · 10−4 0.1782
11/10 3.2807 · 10−4 0.1783
4/3 3.2784 · 10−4 0.1786
2 3.2718 · 10−4 0.1792

4 1 3.8944 · 10−5 0.2187
11/10 3.8964 · 10−5 0.2214
4/3 3.9009 · 10−5 0.2277
2 3.9121 · 10−5 0.2461

5 1 2.0580 · 10−4 0.0
11/10 2.0791 · 10−4 0.0
4/3 2.1259 · 10−4 0.0
2 2.2418 · 10−4 0.0

the qle f t(A) one. (Fig. 2.5). The exact solution regarding the contact discontinuity for the passive
scalar ϕ shows instead a minor change (Fig. 2.14).

Test 2 The solution of Test 2 consists of a left rarefaction a contact discontinuity and a right
rarefaction in an artery (RCS) (Fig. 2.7), in this case no transonic rarefactions are depicted. As
α increases, the change of the curvature of the qle f t(A) and qright(A) curves is present but less
evident (Fig. 2.6). We face also a change in the value of A∗, instead u∗ remains equal to 0;
finally the increasing of α produces an elongation of the left and the right rarefactions (Fig. 2.14).
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The exact solution regarding the contact discontinuity for the passive scalar ϕ shows instead no
remarkable changes (Fig. 2.14).

Test 3 Test 3 presents a left rarefaction a contact discontinuity and a right shock in a vein (RCS)
(Fig. 2.8). The difference between the different exact solutions and the different values of A∗ and
u∗ for the given α is the less prominent (Fig. 2.14), but from the (A, q) plots we can appreciate the
small variations of the qle f t(A) and qright(A) curves (Fig. 2.9). Again the exact solution regarding
the contact discontinuity for the passive scalar ϕ shows instead no remarkable changes (Fig. 2.14).

Test 4 Test 4 shows a left shock a contact discontinuity and a right shock in a vein (SCS) (Fig.
2.11). The variation of both A∗ and u∗ is minimal (Fig. 2.14), and thus is the difference between
the qle f t(A) and qright(A) curves shown in the (A, q) plots (Fig. 2.10). For the passive scalar ϕ no
visible changes are depicted by the exact solution (Fig. 2.14).

Test 5 Test 5 produces a left rarefaction a contact discontinuity and a right rarefaction in a
vein (RCR) (Fig. 2.12). The value of A∗ remarkably changes with the increasing of α, while the
value of u∗ remains 0 (Fig. 2.14). Also in this case we face an elongation of the left and the right
rarefaction (Fig. 2.13). Concerning the passive scalar ϕ no visible changes are depicted (Fig. 2.14).

In every case Figs. 2.4, 2.7, 2.8, 2.11, 2.12 show a very good matching between the exact solutions
and the approximations obtained with the centered FORCE method.
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Test 1. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.4: Test 1. Artery. Left transonic rarefaction - contact discontinuity - right shock. Exact solution of
the Riemann problem with α = 1, α = 1.1, α = 4/3 and α = 2 against FORCE numerical scheme.
Initial data are in Tables 2.3, 2.4.
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(c) α = 4/3
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Figure 2.5: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
1 in Tables 2.3, 2.4, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Figure 2.6: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
2 in Tables 2.3, 2.4, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Test 2. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.7: Test 2. Artery. Left rarefaction - contact discontinuity - right rarefaction. Exact solution of the
Riemann problem with α = 1, α = 1.1, α = 4/3 and α = 2 against FORCE numerical scheme.
Initial data are in Tables 2.3, 2.4.
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Test 3. Exact solution of the Riemann problem with α ∈ [1, 2]

0 1 2 3 4 5
x [m] 1e 1

3.0

3.1

3.2

3.3

3.4

3.5

A
[m

2 ]

1e 4
Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
[m

/s
]

1e 1

Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.5

0.6

0.7

0.8

0.9

1.0 Exact solution
FORCE

(a) α = 1

0 1 2 3 4 5
x [m] 1e 1

3.0

3.1

3.2

3.3

3.4

3.5

A
[m

2 ]

1e 4
Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
[m

/s
]

1e 1

Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.5

0.6

0.7

0.8

0.9

1.0 Exact solution
FORCE

(b) α = 11/10

0 1 2 3 4 5
x [m] 1e 1

3.0

3.1

3.2

3.3

3.4

3.5

A
[m

2 ]

1e 4
Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
[m

/s
]

1e 1

Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.5

0.6

0.7

0.8

0.9

1.0 Exact solution
FORCE

(c) α = 4/3

0 1 2 3 4 5
x [m] 1e 1

3.0

3.1

3.2

3.3

3.4

3.5

A
[m

2 ]

1e 4
Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
[m

/s
]

1e 1

Exact sol.
FORCE

0 1 2 3 4 5
x [m] 1e 1

0.5

0.6

0.7

0.8

0.9

1.0 Exact solution
FORCE

(d) α = 2

Figure 2.8: Test 3. Vein. Left rarefaction - contact discontinuity - right shock. Exact solution of the Riemann
problem with α = 1, α = 1.1, α = 4/3 and α = 2 against FORCE numerical scheme. Initial data
are in Tables 2.3, 2.4.
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Figure 2.9: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
3 in Tables 2.3, 2.4, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Figure 2.10: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
4 in Tables 2.3, 2.4, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Test 4. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.11: Test 4. Vein. Left shock - contact discontinuity - right shock. Exact solution of the Riemann
problem with α = 1, α = 1.1, α = 4/3 and α = 2 against FORCE numerical scheme. Initial data
are in Tables 2.3, 2.4.
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Test 5. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.12: Test 5. Vein. Left rarefaction - contact discontinuity - right rarefaction. Exact solution of the
Riemann problem with α = 1, α = 1.1, α = 4/3 and α = 2 against FORCE numerical scheme.
Initial data are in Tables 2.3, 2.4.
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Figure 2.13: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
5 in Tables 2.3, 2.4, forα = 1, α = 1.1, α = 4/3 and α = 2.
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Comparison of the exact solutions for different momentum correction coefficients α
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Figure 2.14: Comparison of the exact solutions of Tests in Table 2.3, 2.4 for different α.
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2.2 The 1D blood flow model with discontinuous

properties and transport

2.2.1 Governing equations

Assuming an axially symmetric vessel configuration in three space dimensions at time t, and as-
suming one-dimensional flow in the axial direction x, the 1D blood flow model with discontinuous
properties reads 




∂t A + ∂x(Au) = 0,

∂t(Au) + ∂x(αAu2) +
A

ρ
∂x p = 0,

∂t(Aϕ) + ∂x(Auϕ) = 0,

(2.173)

where A(x, t) is the cross-sectional area of the vessel or tube at position x and time t assumed
A ∈ R

+, u(x, t) ∈ R is the averaged velocity of blood at a cross section, p(x, t) ∈ R is the pressure,
ρ ∈ R

+ is the density of blood, assumed constant, ϕ(x, t) ∈ R
+
0 is the concentration of the passive

scalar, α ∈ [1, 2] is the momentum correction coefficient defined as in Section 2.1.1.
The first equation in (2.173) represents the mass conservation and the second implies the momen-
tum conservation, the third is the advection equation for a passive scalar transport. To close the
system, we adopt a tube law of the form

p = pe + ψ(A, K, A0), (2.174)

where: pe(x) is the external pressure, ψ(A, K, A0) is the transmural pressure, assumed of the form

ψ(A, K, A0) = K

[(
A

A0

)m

−
(

A

A0

)n]
, (2.175)

with

K(x) =





E(x)

(1 − ν2)

(
h0(x)

R0(x)

)
for arteries,

E(x)

12(1 − ν2)

(
h0(x)

R0(x)

)3

for veins,

(2.176)

m =

{
1/2 for arteries,

10 for veins,
n =

{
0 for arteries,

−3/2 for veins.
(2.177)

Here: h0(x) is the vessel wall thickness; A0(x) and R0(x) are the cross-sectional area of the vessel
and the radius at equilibrium, i.e. ψ(A, K, A0) = 0; E(x) is the Young’s modulus; ν is the Poisson
ratio taken as ν = 0.5, m, n ∈ R and in general are taken m > 0 and −2 ≤ n ≤ 0. K ∈ R

+,
A0 ∈ R

+, pe ∈ R, R0 ∈ R
+, E ∈ R

+, h0 ∈ R
+.

Developing the partial derivative of the pressure, we have





∂t A + ∂x(Au) = 0,

∂t(Au) + ∂x(αAu2) +
A

ρ
ψA∂x A = − A

ρ
ψK∂xK − A

ρ
ψA0

∂x A0 −
A

ρ
∂x pe,

∂t(Aϕ) + ∂x(Auϕ) = 0,

(2.178)
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where

ψA =
∂ψ

∂A
=

K

A

[
m

(
A

A0

)m

− n

(
A

A0

)n]
,

ψK =
∂ψ

∂K
=

[(
A

A0

)m

−
(

A

A0

)n]
,

ψA0
=

∂ψ

∂A0
= − K

A0

[
m

(
A

A0

)m

− n

(
A

A0

)n]
.

(2.179)

We note that the right hand side of equation (2.178) has terms involving unknowns and spatial
gradients of parameters. Such terms are normally called geometric source terms. Following [90] we
consider the augmented system





∂t A + ∂x(Au) = 0,

∂t(Au) + ∂x(αAu2) +
A

ρ
ψA∂x A +

A

ρ
ψK∂xK +

A

ρ
ψA0

∂x A0 +
A

ρ
∂x pe = 0,

∂tK = 0,

∂t A0 = 0,

∂t pe = 0,

∂t(Aϕ) + ∂x(Auϕ) = 0.

(2.180)

System (2.180) in quasi-linear form reads

∂tQ + M(Q)∂xQ = 0, (2.181)

where

Q =




A(x, t)
Au(x, t)

K(x)
A0(x)
pe(x)

Aϕ(x, t)




, M(Q) =




0 1 0 0 0 0

c2 − αu2 2αu
A

ρ
ψK

A

ρ
ψA0

A

ρ
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−uϕ ϕ 0 0 0 u




. (2.182)

Here c is the wave speed

c(A, K, A0) =

√
A

ρ

∂p

∂A
=

√
A

ρ
ψA =

√
K

ρ

[
m

(
A

A0

)m

− n

(
A

A0

)n]
, (2.183)

which is always real, being ψA ∈ R
+ for the choices of m and n given in (2.177). The eigenvalues

of M(Q) are given by

λ1 = αu − cα, λ2 = λ3 = λ4 = 0, λ5 = u, λ6 = αu + cα, (2.184)

with

cα(Q) =
√

c2 + α(α − 1)u2. (2.185)
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A possible choice of right eigenvectors of M(Q) corresponding to eigenvalues (2.184) is

R1 =




1
αu − cα

0
0
0
ϕ




, R2 =




0
0
1
0

−ψK

0




, R3 =




0
0
0
1

−ψA0

0




,

R4 =




1
0
0
0

ρ

A
(αu2 − c2)

ϕ




, R5 =




0
0
0
0
0
1




, R6 =




1
αu + cα

0
0
0
ϕ




.

(2.186)

Remark 2.2.1. Please note that also in this Section we denote flow rate as Au or q = Au inter-

changeably (and obviously u =
q

A
).

Being the considered domain Ωd = [R+ × R × ΩP × R
+
0 ] ⊂ R

6, with ΩP ⊆ R
+ × R

+ × R, we
will limit ourselves to consider subcritical states, i.e. situations in which α|u| < cα, and we define
the new domain

Ωd =
{

Q ∈ Ωd | α|u| < cα

}
. (2.187)

Proposition 2.2.1 (Hyperbolicity). The system defined in (2.181) is hyperbolic under the following
hypotheses:

1. the set of admissible solutions is restricted to Q ∈ Ωd,

2. α ∈ [1, 2],

3. the tube law is a monotonically increasing function of the cross-sectional area A, i.e.
∂p

∂A
> 0.

Proof. Since α ∈ [1, 2] and for tube laws that satisfy the last hypothesis, it can be easily verified that
cα ∈ R

+ and thus eigenvalues (2.184) will always be real. Since we have 3 repeated eigenvalues
λk = 0, with k = 2, 3, 4, strict hyperbolicity is lost ∀Q ∈ Ωd .

Remark 2.2.2. It is worth noting that condition (1) of Proposition 2.2.1 is necessary for hyperbolicity
only for α = 1, for α > 1, hyperbolicity is never lost.

Proposition 2.2.2 (Nature of the characteristic fields). Under the hypotheses of Proposition 2.2.1, the
λ1- and λ6-characteristic fields for system (2.181) are genuinely non-linear for Q ∈ Ωd. Moreover the λ2-,
λ3-, λ4-, λ5-characteristic fields, are linearly degenerate. In praticular provided m > 0, −2 ≤ n ≤ 0, we
have

∇λ1(Q) · R1(Q) < 0, ∇λ6(Q) · R6(Q) > 0 ∀Q ∈ Ωd. (2.188)

Proof. Eigenvalues λ1 and λ6 are identical to the ones associated with genuinely non-linear fields
of system (2.11). Comparing eigenvectors associated with corresponding eigenvalues in both
systems, it is evident that the relations obtained by requiring that

∇λk(Q) · Rk(Q) ̸= 0, ∀Q ∈ Ωd, (2.189)
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and k = 1, 6, are identical to the ones obtained for the original 3×3 model with continuous tube
law properties. Finally, it is easy to verify that the λk-characteristic fields k = 2, 3, 4, 5, are linearly
degenerate by noting that

∇λk(Q) · Rk(Q) = 0, k = 2, 3, 4, 5 ∀Q ∈ Ωd. (2.190)

2.2.2 Exact solution of the Riemann problem - Theoretical

study

We now adapt the theory described in [90], [81], for a generic α ∈ [1, 2].

The Riemann problem for system (2.181) is the initial-value problem





∂tQ + M(Q)∂xQ = 0, x ∈ R, t > 0,

Q(x, 0) =

{
QL, if x < xd

QR, if x > xd

with xd ∈ R,
(2.191)

being xd the spatial coordinate of the discontinuity at t = 0. The initial conditions are given by
the two constant states

QL =




AL

ALuL

KL

A0L

peL

ALϕL




, QR =




AR

ARuR

KR

A0R

peR

ARϕR




. (2.192)

The unknowns are Q∗
L and Q∗

R defined

Q∗
L =




A∗
L

A∗
Lu∗

L
K∗

L
A∗

0L
p∗eL

A∗
Lϕ∗

L




, Q∗
R =




A∗
R

A∗
Ru∗

R
K∗

R
A∗

0R
p∗eR

A∗
Rϕ∗

R




. (2.193)

Fig. 2.15 shows the structure of the exact solution of the Riemann problem (2.191) for the
homogeneous blood flow equations (2.181). There are two wave families associated with the
two real eigenvalues λ1 = αu − cα, λ6 = αu + cα. The two waves are associated with genuinely
non-linear fields and can be either shocks (elastic jumps) or rarefactions [80]. The waves associated
with the eigenvalues λ2 = λ3 = λ4 = 0 and λ5 = u are related to linearly degenerate fields and
are contact discontinuities.

As already stated in (2.187), in this work we stay always in subsonic regime.

Proposition 2.2.3 (Generalized Riemann invariants for the λ1- and λ6-characteristic fields). A not
complete list of Riemann invariants is

K = const, A0 = const, pe = const, ϕ = const, (2.194)
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t

xx = xd

λ6 = αu + cα

λ5 = u

λ2 = λ3 = λ4 = 0
λ1 = αu − cα

Q∗

L
Q∗

R

QL QR

(a) Case 1

t

xx = xd

λ6 = αu + cα

λ5 = u
λ2 = λ3 = λ4 = 0

λ1 = αu − cα

Q∗

L
Q∗

R

QL QR

(b) Case 2

t

xx = xd

λ6 = αu + cα

λ2 = λ3 = λ4 = λ5 = 0
λ1 = αu − cα

Q∗

L
Q∗

R

QL QR

(c) Case 3

Figure 2.15: The three posssible configurations of the solution of Riemann problem for the complete system
of 1D blood flow equations with discontinuous mechanical and geometrical parameters (2.191)
within the subsonic regime. Green solid lines represent waves associated with genuinely
non-linear fields that can be either shocks or rarefactions, while the dotted blue line and the
dashed purple one depict contact discontinuities and are associated with linearly degenerate
fields. In this Chapter the λ1-wave will be sometimes called left wave, while the λ6-one, right
wave. It follows that the related wave patterns will be called left rarefaction/left shock or right
rarefaction/right shock.

for the λ1-characteristic field;

K = const, A0 = const, pe = const, ϕ = const, (2.195)

for the λ6-characteristic field. Regarding the relations between variables A and u no closed form is present
for α > 1.

Proof. The problem can be solved again applying the generalized Riemann invariants method
(for example see [90]), i.e for a given hyperbolic system of n unknowns [w1, w2, . . . , wn]T , for
any λk-characteristic field with right eigenvector Rk =[r1,k, r2,k, . . . , rn,k]

T the generalized Riemann
invariants are solutions of the following n − 1 ordinary differential equations in phase-plane

dw1

r1,k
=

dw2

r2,k
= · · · = dwn

rn,k
. (2.196)

For the λ1-characteristic field we have

dA

1
=

d(Au)

αu − cα
=

dK

0
=

dA0

0
=

dpe

0
=

d(Aϕ)

ϕ
. (2.197)
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From the first and the second term results

dq

dA
= αu − cα, (2.198)

that is exactly the ODE in (2.51). From the third, fourth and fifth term

K = const, A0 = const, pe = const. (2.199)

From the first and the last
ϕ = const. (2.200)

For the λ6-characteristic field instead

dA

1
=

d(Au)

αu + cα
=

dK

0
=

dA0

0
=

dpe

0
=

d(Aϕ)

ϕ
. (2.201)

From the first and the second term results

dq

dA
= αu + cα, (2.202)

that is exactly the ODE in (2.52). From the third, fourth and fifth term

K = const, A0 = const, pe = const. (2.203)

From the first and the last
ϕ = const. (2.204)

2.2.2.1 Wave relations across the contact discontinuities

Proposition 2.2.4 (Jump conditions across the stationary contact discontinuity associated with
eigenvalues λ2 = λ3 = λ4 = 0 (Case 1 and Case 2 of Fig. 2.15)). Across the stationary contact
discontinuity the following relations hold

Au = const,
1

2
αρu2 + ψ + pe = const, ϕ = const. (2.205)

Proof. This problem can be solved by applying the generalized Riemann invariants method
described in the proof of Proposition 2.2.3, following the approach presented in [81]. For an
arbitrary right eigenvector R = [r1, r2, r3, r4, r5, r6]

T we clearly have

MR = λR, (2.206)

being M the system matrix defined in (2.182), which gives the algebraic system





r2 = λr1,

(c2 − αu2)r1 + 2αur2 +
A

ρ
ψKr3 +

A

ρ
ψA0

r4 +
A

ρ
r5 = λr2,

0 = λr3,

0 = λr4,

0 = λr5,

−uϕr1 + ϕr2 + ur6 = λr6.

(2.207)
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Substituting λ = 0 in (2.207), we first notice that r2 = 0. Posing r1 = β, r3 = γ, r4 = ϵ, for β, γ, ϵ
arbitrary constants, we obtain

R0 =




β
0
γ
ϵ[

(αu2 − c2)β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A
ϕβ




. (2.208)

This vector belongs to the subspace related to λ = 0, for every choice of β,γ and ϵ ∈ R, and
every vector of that subspace has this form. At this point we can apply the generalized Riemann
invariants method to vector (2.208), i.e.

dA

β
=

d(Au)

0
=

dK

γ
=

dA0

ϵ
=

dpe[
(αu2 − c2)β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A

=
d(Aϕ)

ϕβ
, (2.209)

from the second of (2.209) we have

d(Au) = 0 → Au = const, (2.210)

from the first and the fifth of (2.209) we have

dA

β
=

dpe[
(αu2 − c2)β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A

→ (αu2 − c2)
ρ

A
dA − ψK

γ

β
dA − ψA0

ϵ

β
dA = dpe,

(2.211)
considering the first and the third of (2.209) coupled together and then the first and the fourth of
(2.209), we have that

γdA = βdK, ϵdA = βdA0. (2.212)

Being c defined in (2.183) and d(Au) = 0, it follows that

(αu2 − c2)
ρ

A
dA = −αρudu − ψAdA, (2.213)

so (2.211) becomes
−αρudu − ψAdA − ψKdK − ψA0

dA0 − dpe = 0. (2.214)

Considering that
dψ = ψAdA + ψKdK + ψA0

dA0, (2.215)

(2.214) becomes
−αρudu − dψ − dpe = 0, (2.216)

from that, integrating, we obtain the second of (2.205). From the first and the last of (2.209) we
have

dA

β
=

d(Aϕ)

ϕβ
→ dϕ = 0 → ϕ = const. (2.217)
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Proposition 2.2.5 (Jump conditions across the contact discontinuity associated with eigenvalue
λ5 = u ̸= 0 (Case 1 and Case 2 of Fig. 2.15)). Across the contact discontinuity the following relations
hold

A = const, Au = const, K = const, A0 = const, pe = const. (2.218)

Proof. Applying the generalized Riemann invariants method already described [90, 81], we obtain

dA

0
=

d(Au)

0
=

dK

0
=

dA0

0
=

dpe

0
=

d(Aϕ)

1
, (2.219)

from which the statement is straightforward.

Proposition 2.2.6 (Jump conditions across the stationary contact discontinuity associated with
eigenvalues λ2 = λ3 = λ4 = λ5 = 0 (Case 3 of Fig. 2.15)). Across the stationary contact discontinuity
the following relations hold

Au = 0, ψ + pe = const. (2.220)

Proof. This problem can again be solved by employing the generalized Riemann invariants method
with the approach presented in [81], already described in the Proof of Proposition 2.2.4, now
applied to matrix M in (2.182) but considering u = 0, i.e.

M̃(Q) =




0 1 0 0 0 0

c2 0
A

ρ
ψK

A

ρ
ψA0

A

ρ
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ϕ 0 0 0 0




. (2.221)

It follows that
M̃R = λR, (2.222)

which gives the algebraic system





r2 = λr1,

c2r1 +
A

ρ
ψKr3 +

A

ρ
ψA0

r4 +
A

ρ
r5 = λr2,

0 = λr3,

0 = λr4,

0 = λr5,

ϕr2 = λr6,

(2.223)

Substituting λ = 0 in (2.223), we first notice that r2 = 0. Posing r1 = β, r3 = γ, r4 = ϵ, r6 = δ, for
β, γ, ϵ, δ ∈ R, arbitrary constants, we obtain

R0 =




β
0
γ
ϵ[

−c2β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A
δ




. (2.224)
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This is a general form of a vector belonging to the subspace associated with λ = 0 for every
choice of β, γ, ϵ, δ, ∈ R. We then apply the generalized Riemann invariants method to this vector

dA

β
=

d(Au)

0
=

dK

γ
=

dA0

ϵ
=

dpe[
−c2β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A

=
d(Aϕ)

δ
. (2.225)

From the second of (2.225) we have
Au = const, (2.226)

that considering u = 0, becomes
Au = 0. (2.227)

From the first and the fifth of (2.225) we have

dA

β
=

dpe[
−c2β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A

→ −c2 ρ

A
dA − ψK

γ

β
dA − ψA0

ϵ

β
dA = dpe, (2.228)

considering the first and the third of (2.225) coupled together and then the first and the fourth of
(2.225), we have that

γdA = βdK, ϵdA = βdA0. (2.229)

Being c as in (2.183), we have

−c2 ρ

A
dA = −ψAdA, (2.230)

so (2.228) becomes
−ψAdA − ψKdK − ψA0

dA0 − dpe = 0. (2.231)

Considering that
dψ = ψAdA + ψKdK + ψA0

dA0, (2.232)

we have that (2.231) becomes
−dψ − dpe = 0, (2.233)

from that, integrating, we obtain the second of (2.220). From the first and the sixth of (2.225) we
have

dA

β
=

d(Aϕ)

δ
, (2.234)

that leads to
dA

A
=

(
β

δ − βϕ

)
dϕ. (2.235)

Unfortunately β and δ are arbitrary, so from (2.234) and (2.235) the only thing we can say is that

Aϕ ̸= const, ϕ ̸= const. (2.236)

Remark 2.2.3. Propositions 2.2.3, 2.2.4, 2.2.5, 2.2.6, prove that the stationary contact discontinuities
marked with λ2 = λ3 = λ4 = 0 are the only discontinuities for the parameters K, A0 and pe,
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while the λ5-contact wave is the only discontinuity for the passive scalar. It follows that the
unknowns (2.193) become

Q∗
L =




A∗
L

Au∗
L

K∗
L

A∗
0L

p∗eL
A∗

Lϕ∗
L



=




A∗
L

Au∗
L

KL

A0L

peL

A∗
Lϕ




, Q∗
R =




A∗
R

Au∗
R

K∗
R

A∗
0R

p∗eR
A∗

Rϕ∗
R



=




A∗
R

Au∗
R

KR

A0R

peR

A∗
Rϕ




, (2.237)

where the concentration of the passive scalar ϕ does not follow the left-right classification and
must be treated separately. However in this context, the use of the left parameters KL, A0L, peL

for the construction of the left admissible rarefactions and shocks curves, and the use of the
right parameters KR, A0R, peR for the construction of the right admissible rarefactions and shocks
curves in Section 2.2.2.2, 2.2.2.3 are clear.

2.2.2.2 Wave relations across rarefactions

As in the case of continuous properties, considering Propositions 2.2.3, 2.2.4, 2.2.5 and 2.2.6,
across the waves associated with the genuinely non-linear fields the variable ϕ remain constant.
The contact wave λ5 is the only discontinuity for the passive scalar ϕ. Furthermore the third
equation in (2.173) is not affecting the others, consequentially to study the relations across the
waves associated with the genuinely non-linear fields we focus only on the first five variables,
referring to the unknowns as

Q∗
L =




A∗
L

q∗L
KL

A0L

peL




, Q∗
R =




A∗
R

q∗R
KR

A0R

peR




(2.238)

and addressing ϕ at a later point.

Clearly Proposition 2.1.7 now is stated in this form

Proposition 2.2.7 (Physically admissible rarefaction curves).
If the λ1-wave, associated with a genuinely non-linear field, is a physically admissible rarefaction, the
related admissible rarefaction curve in the (A, q) phase-plane is

qa
rarL(A) = {[A, qrarL(A)]T , s.t. A ∈ R

+ and A ≤ AL}, (2.239)

with qrarL(A) in (2.53). In particular A∗
L ≤ AL.

If the λ6-wave, associated with a genuinely non-linear field, is a physically admissible rarefaction, the
related admissible rarefaction curve in the (A, q) phase-plane is

qa
rarR(A) = {[A, qrarR(A)]T , s.t. A ∈ R

+ and A ≤ AR}, (2.240)

with qrarR(A) in (2.53). In particular A∗
R ≤ AR.

Proof. The proof is the same considering for the left wave Q∗
L instead of Q∗ and for the right wave

Q∗
R instead of Q∗, λ6 and R6 instead of λ3 and R3. The qrarj(A), j = L, R curves are shown in Fig.

2.16c.
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2.2.2.3 Wave relations across shocks

As in the case of rarefactions, considering Propositions 2.2.3, 2.2.4, 2.2.5 and 2.2.6, the considered
unknowns are (2.238).

Section 2.1.2.3 still holds because, as presented in [90] and in [81], in the subsonic regime the
waves associated with genuinely non-linear fields remain “far from the discontinuity” of the
parameters (blue dotted line in Fig. 2.15), thus we act as we were in the continuous parameter
case. Being

Q =




A
Au
K
A0

pe




, F(Q) =




Au

αAu2 +
KA

ρ

(
m

m + 1

(
A

A0

)m

− n

n + 1

(
A

A0

)n)

0
0
0




, (2.241)

we construct the wave relations across shocks using the Rankine-Hugoniot jump condition, i.e

F(QR̂)− F(QL̂) = S(QR̂ − QL̂), (2.242)

where QR̂ and QL̂ are the constant states to the right and to the left of the shock discontinuity
and S is the shock speed. Substituting QR̂ with Q∗

j = [A∗
j , q∗j ]

T , QL̂ with Qj = [Aj, qj]
T , S with Sj

and qj = Ajuj, with j = L, R; now we obtain two different systems





q∗j − qj = Sj(A∗
j − Aj),

α
q∗2

j

A∗
j

− α
q2

j

Aj
+ Bj = Sj(q

∗
j − qj),

(2.243)

with

Bj(A∗
j ) =

Kj

ρ

[
m

m + 1

A∗m+1
j − Am+1

j

Am
0j

− n

n + 1

A∗n+1
j − An+1

j

An
0j

]
, (2.244)

one for j = L and one for j = R. We refer to Remark 2.2.3 as the reason for the use of parameters
in formula (2.244).

Solving for q∗j we obtain

q∗j =
A∗

j qj

Ajα + A∗
j − αA∗

j

±

√√√√ (Aj − A∗
j )A∗

j (−Aj(Ajα + A∗
j − αA∗

j )Bj + (−1 + α)α(Aj − A∗
j )q

2
j )

Aj(Ajα + A∗
j − αA∗

j )
2

,

(2.245)
with j = L, R. In this way, we obtain two q∗j values for each state j = L, R. Considering that there

is one and only q∗j for each state j = L, R as the result of the Riemann problem (see for example

[20]), we consider again Proposition 2.1.8 that holds also in the discontinuous case replacing λ3

with λ6, R3 with R6, considering Bj defined in (2.244) and replacing K with KL and A0 with A0L

for the left part and K with KR and A0 with A0R for the right part (see Figs. 2.16a, 2.16b the
example for a left shock - (stationary contact - contact discontinuity for the passive scalar) - right
shock problem in an artery with α = 4/3).

Proposition 2.1.9, is now stated in this form



64 Exact solution of the Riemann problem for the 1D blood flow equations with transport

Proposition 2.2.8 (Entropy-satisfying shock curves).
If the λ1-wave, associated with a genuinely non-linear field, is an admissible entropy-satisfying shock, the
related admissible shock curve in the (A, q) phase-plane is

qa
shockL(A) = {[A, qshockL(A)]T s.t. A > AL}, (2.246)

with A sufficiently close to AL and qshockL(A) in (2.82) with Bj defined in (2.244). In particular A∗
L > AL.

If the λ6-wave, associated with a genuinely non-linear field, is an admissible entropy-satisfying shock,
the related admissible shock curve in the (A, q) phase-plane is

qa
shockR(A) = {[A, qshockR(A)]T s.t. A > AR}, (2.247)

with A sufficiently close to AR and qshockR(A) in (2.83) with Bj defined in (2.244). In particular
A∗

R > AR.

Proof. The same as in Proposition 2.1.9 replacing Q∗ with Q∗
L, q∗ with q∗L and A∗ with A∗

L for
the left part and Q∗ with Q∗

R, q∗ with q∗R, A∗ with A∗
R, λ3 with λ6 and R3 with R6 for the right

part.

2.2.2.4 Solution in the Star Region

Defining again the Star Region as the region in the half-plane (x, t) in Fig. 2.15 between the
λ1-wave and the λ6-wave and considering that a wave associated with a genuinely non-linear
field can be either a shock or a rarefaction (see for example [80]) Theorems 2.1.1 and 2.1.2 clearly
are stated in this way

Theorem 2.2.1. Given the Riemann problem (2.191), the λ1-wave is a physically admissible (left) rarefac-
tion if and only if

A∗
L ≤ AL. (2.248)

The λ5-wave is a physically admissible right rarefaction if and only if

A∗
R ≤ AR. (2.249)

Proof.
(=⇒) Proposition 2.2.7.
(⇐=) Proposition 2.2.8.

Theorem 2.2.2. Given the Riemann problem (2.191), the λ1-wave is an entropy-satisfying (left) shock if
and only if

A∗
L > AL. (2.250)

The λ5-wave is an entropy-satisfying right shock if and only if

A∗
R > AR. (2.251)

Proof.
(=⇒) Proposition 2.2.8.
(⇐=) Proposition 2.2.7.

The final qle f t(A) and qright(A) curves in the phase-plane (A, q) are defined in (2.120), (2.121)
(Fig. 2.16d), unfortunately Proposition 2.1.10 does not hold anymore, because now we are looking
for two different states Q∗

L and Q∗
R so we can not consider any intersection of the obtained curves.

In any case, we maintain this graphic representation of the curves for completeness, in which we
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(a) The obtained shock curves for QL and QR, for the Test
7 left shock - (stationary contact - contact discontinuity
for the passive scalar) - right shock problem in an
artery with discontinous properties, with α=4/3.
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(b) The qshockj(A) j = L, R curves for the Test 7 left shock
- (stationary contact - contact discontinuity for the
passive scalar) - right shock problem in an artery
with discontinous properties, with α=4/3. qshockj(A)
j = L, R are defined in (2.82) and (2.83) but with Bj

defined in (2.244).
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(c) The obtained qrarj(A) j = L, R curves for the Test 7 left
shock - (stationary contact - contact discontinuity for
the passive scalar) - right shock problem in an artery
with discontinous properties, with α=4/3.
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(d) The final qle f t(A) and qright(A) curves for the Test 7

left shock - (stationary contact - contact discontinuity
for the passive scalar) - right shock problem in an
artery with discontinous properties, with α=4/3, as
defined in (2.120) and (2.121). The subscript a stands
for admissible. It is clear that this Test is a left shock -
right shock problem (plus the contact discontinuities
here not depicted), due to the nature of the curves in
the neighbourhood of Q∗

L and Q∗
R.

Figure 2.16: Rarefaction and shock curves in the phase-plane (A, q) for data of Test 7 left shock - (stationary
contact - contact discontinuity for the passive scalar) - right shock problem in an artery with
discontinuous properties and α = 4/3. Initial data are in Tables 2.7, 2.8.

add the actual exact solution of the Riemann problem in the Star Region as shown for example in
Fig. 2.16d.

2.2.2.5 Solution inside the rarefactions

This is basically the same as in Section 2.1.2.5, considering A∗
j , Q∗

j with j = L or j = R for the

corresponding waves, instead of A∗, Q∗, and obviously λ6 instead of λ3.
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2.2.2.6 The complete exact solution of the Riemann problem for the 1D

blood flow equations with discontinuous parameters

The complete exact solution of the Riemann problem consists of the states QL and QR (initial
data), Q∗

L and Q∗
R (the unknowns), QirarL and QirarR (solution inside the rarefactions when they

exist). In Section 2.2.3 we will describe how we actually obtain these values.

2.2.3 Exact solution of the Riemann problem - Numerical

resolution

Similarly to what presented in Section 2.1.3, we present a practical method to calculate the desired
states.

Remark 2.2.4. Also in case of discontinuous parameters, to compute the exact solution in Section
2.2.2, we must actually approximate numerically the results just presented, as we will see in the
next Sections. Nevertheless we always refer to the resulting solution as ”exact”.

We choose to follow the methodology presented in [87]. We recall that u =
q

A
.

2.2.3.1 Rarefaction and shock curves

We construct the two urarj(A), j = L, R functions solving (2.125) and (2.126) approximately, via
scipy.integrate.solve ivp Python function in the same way as described in Section 2.1.3.1, clearly
now (2.126) regards the λ6-wave and cα in (2.125) is calculated with the left parameters in (2.272),
instead in (2.126), cα is calculated with the right parameters in (2.272). The two ushockj(A), j = L, R
functions are the same as in Section 2.1.3.2 but with Bj in (2.244).

2.2.3.2 Solution in the Star Region (without variable ϕ)

We proceed as presented, for the case of α = 1, in [90, 81].

Proposition 2.2.9 (Solution in the Star Region). The exact solution of the Riemann problem for the 1D
blood flow equations with discontinuous parameters in the Star Region is

Q∗
L =




A∗
L

A∗
Lu∗

L
KL

A0L

peL




, Q∗
R =




A∗
R

A∗
Ru∗

R
KR

A0R

peR




, (2.252)

and is found solving for the unknown

X =




x1

x2

x3

x4


 =




A∗
L

u∗
L

A∗
R

u∗
R


 , (2.253)
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the system





f1(x1, x2) = x2 − uL + fL(x1) = 0,

f2(x3, x4) = x4 − uR − fR(x3) = 0,

f3(x1, x2, x3, x4) = x1x2 − x3x4 = 0,

f4(x1, x2, x3, x4) =
1

2
αρ(x2

2 − x
2
4) + KL

[(
x1

A0L

)m

−
(

x1

A0L

)n]
− KR

[(
x3

A0R

)m

−
(

x3

A0R

)n]
+

+ (peL − peR) = 0,
(2.254)

where

fL(x1) =

{
uL − urarL(x1) if x1 ≤ AL (left rarefaction),
uL − ushockL(x1) if x1 > AL (left shock),

(2.255)

fR(x3) =

{
−uR + urarR(x3) if x3 ≤ AR (right rarefaction),
−uR + ushockR(x3) if x3 > AR (right shock).

(2.256)

Proof. The proof is similar to that of Proposition 2.1.12, but considering all the relations across the
waves studied in Section 2.2.2 (for details see [90], [81]).

Remark 2.2.5. (2.254) is solved with a globally convergent Newton-Raphson method with initial
state XI = [AL, 0, AR, 0]T (see Appendix B.1). urarL(A), urarR(A), ushockL(A) and ushockR(A) are
constructed in Section 2.2.3.1. These initial guesses work fine in our case, but in case they fail it
is possible to choose other possibilities, for example, in case of α ̸= 1, the exact solution of the
considered Riemann problem for α = 1 as presented in [81].

2.2.3.3 Solution inside the rarefactions (without variable ϕ)

Proposition 2.2.10 (Solution inside the left rarefaction). The exact solution of the Riemann problem
inside the left rarefaction is

QirarL =




AirarL

AirarLuirarL

KL

A0L

peL




, (2.257)

where AirarL is obtained solving with respect to the unknown x the following

X

t
+ cα(QrarL(x))− αurarL(x) = 0, (2.258)

with QrarL(x) = [x, x urarL(x), KL, A0L, peL]
T , being X = x − xd where x is the specific place of the

domain (vessel) in which we are calculating the desired values, xd is the vessel spatial coordinate of the
initial discontinuity, t is the time, and urarL(x) defined in Section 2.2.3.1, Afterwards the actual uirarL,
corresponding to the found AirarL, is

uirarL = urarL(AirarL). (2.259)

Proof. The proof is similar to that of Proposition 2.1.13. For the parameters K, A0 and pe we refer
to Remark. 2.2.3.
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Proposition 2.2.11 (Solution inside the right rarefaction). The exact solution of the Riemann problem
inside the right rarefaction is

QirarR =




AirarR

AirarRuirarR

KR

A0R

peR




, (2.260)

where AirarR is obtained solving with respect the unknown x the following

X

t
− cα(QrarR(x))− αurarR(x) = 0, (2.261)

with QrarR(x) = [x, x urarR(x), KR, A0R, peR]
T , being X = x − xd where x is the specific place of the

domain (vessel) in which we are calculating the desired values, xd is the vessel spatial coordinate of the
initial discontinuity, t is the time and urarR(x) defined in Section 2.2.3.1. Afterwards the actual uirarR,
corresponding to the found AirarR, is

uirarR = urarR(AirarR). (2.262)

Proof. Similar to that of Proposition 2.1.14. For the parameters K, A0 and pe we refer to Remark.
2.2.3.

Again (2.258) and (2.261) are solved with a globally convergent Newton-Raphson method with
initial points respectively AL and AR .

2.2.3.4 The complete exact solution of the Riemann problem for the 1D

blood flow equations with discontinuous parameters

In this Section we present the sampling of the complete exact solution of the Riemann problem
for the 1D blood flow equations (2.191). Now we can add the last variable ϕ. Being as before
X = x − xd, x is the specific place of the domain (vessel) in which we are calculating the desired
values, xd is the vessel spatial coordinate of the initial discontinuity, and t is the time, thanks to
Theorems 2.2.1, 2.2.2, on the left side the complete solution is:

• if A∗
L ≤ AL (left rarefaction):

Q(x, t) =





QL if X < (αuL − cα(QL))t,

QirarL if (αuL − cα(QL))t ≤ X ≤ (αu∗
L − cα(Q

∗
L))t,

Q∗
L if (αu∗

L − cα(Q
∗
L))t < X ≤ 0,

(2.263)

• if A∗
L > AL (left shock):

Q(x, t) =

{
QL if X ≤ SLt,

Q∗
L if SLt < X ≤ 0.

(2.264)

Similarly on the right side the complete solution is

• if A∗
R ≤ AR (right rarefaction):

Q(x, t) =





Q∗
R if 0 < X < (αu∗

R + cα(Q
∗
R))t,

QirarR if (αu∗
R + cα(Q

∗
R))t ≤ X ≤ (αuR + cα(QR))t,

QR if X > (αuR + cα(QR))t,

(2.265)
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• if A∗
R > AR (right shock):

Q(x, t) =

{
Q∗

R if 0 < X ≤ SRt,

QR if X > SRt.
(2.266)

Considering Proposition 2.1.15 and Remark 2.2.3, the considered quantities are QL and QR in
(2.192),

QirarL =




AirarL

AirarLuirarL

KirarL

A0irarL

peirarL

AirarLϕL




, QirarR =




AirarR

AirarRuirarR

KirarR

A0irarR

peirarR

AirarRϕR




, (2.267)

Q∗
L =




A∗
L

A∗
Lu∗

L
KL

A0L

peL

A∗
Lϕ




, Q∗
R =




A∗
R

A∗
RuR

K∗
R

A0R

peR

A∗
Rϕ




, (2.268)

All these unknowns have been already treated in the previous Sections, with the exception of ϕ in
(2.268), that is defined

ϕ(x, t) =

{
ϕL if X ≤ u∗t,

ϕR if X > u∗t.
(2.269)

being

u∗ =

{
u∗

L if u∗
L ≤ 0,

u∗
R if u∗

R > 0.
(2.270)

This latter definition is straightforward remembering that sgn(u∗
L) = sgn(u∗

R). cα is defined in
(2.185), SL and SR are the left and the right shock speeds and are defined according to the first of
(2.243)

SL =
q∗L − qL

A∗
L − AL

=
A∗

Lu∗
L − ALuL

A∗
L − AL

,

SR =
q∗R − qR

A∗
R − AR

=
A∗

Lu∗
R − ARuR

A∗
R − AR

.

(2.271)

Remark 2.2.6. Recalling Remark 2.2.3, and Fig. 2.15, the parameters are defined as follows

K(x) =

{
KL if X ≤ 0,

KR if X > 0,
A0(x) =

{
A0L if X ≤ 0,

A0R if X > 0,
pe(x) =

{
peL if X ≤ 0,

peR if X > 0.
(2.272)

2.2.4 Numerical results

Having obtained the exact solution of the Riemann problem as presented in Section 2.2.3, we
perform a mesh independence study to justify the choice of the mesh E = 100 to build the
approximated integral curves in Section 2.2.3.1, also for the discontinuous case. After that, we
evaluate the entire exact solution thus constructed on a suite of test problems involving arteries
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and veins and different wave patterns, for different momentum correction coefficients α, against
DOT Riemann solver [24] (see Appendix A.5).

2.2.4.1 Mesh independence study

Table 2.6: Mesh independence study for vein, left rarefaction - contact discontinuity for the passive scalar-
stationary contact - right rarefaction, Test 10 problem in Tables 2.7, 2.8.

α Variable Mesh L1-err L2-err L∞-err

1 A 50 - - -
100 4.8567e − 15 2.5461e − 14 1.6338e − 13
200 8.0954e − 16 4.5177e − 15 2.9203e − 14

Au 50 - - -
100 1.7127e − 14 3.5945e − 14 8.7834e − 14
200 2.4470e − 15 5.4011e − 15 1.2445e − 14

11/10 A 50 - - -
100 5.8785e − 15 3.0851e − 14 1.9578e − 13
200 7.6170e − 16 4.1755e − 15 2.6616e − 14

Au 50 - - -
100 1.4903e − 14 3.1089e − 14 9.2827e − 14
200 2.2018e − 15 4.8336e − 15 1.1104e − 14

4/3 A 50 - - -
100 5.5939e − 15 2.8037e − 14 1.7191e − 13
200 5.6236e − 16 2.9147e − 15 1.7943e − 14

Au 50 - - -
100 1.1438e − 14 2.4368e − 14 1.1822e − 13
200 1.7497e − 15 3.7779e − 15 9.7998e − 15

2 A 50 - - -
100 2.0588e − 15 8.4390e − 15 8.8586e − 14
200 2.7271e − 16 1.0108e − 15 5.2546e − 15

Au 50 - - -
100 9.0131e − 15 3.1157e − 14 2.6412e − 13
200 1.0944e − 15 2.4385e − 15 1.5819e − 14

To verify that our exact solution constructed in Section 2.2.3 is mesh independent with respect
to the one used to approximate the integral curves (see Section 2.2.3.1), we perform a study with
meshes En ∈ E = [50, 100, 200] computational cells choosing tests in which only rarefactions
waves are involved. We construct the urarj(A) curves as presented in Section 2.2.3.1 with each of
the prescribed En meshes, and then we build the complete solution of the Riemann problem as
presented in Section 2.2.3.4 with a mesh of I = 3000 computational cells. Then we calculate L1

err,
L2

err and L∞
err as defined in (2.170). The results are shown in Table 2.6, the test data are those of

Test 10 (left rarefaction - contact discontinuity for the passive scalar- stationary contact - right
rarefaction in a vein) in Tables 2.7, 2.8. As result of this procedure, we choose the mesh E = 100
computational cells also for the discontinuous parameters part.

2.2.4.2 Results

We plot the exact solution of the Riemann problem for the 1D blood flow equations with
discontinuous parameters presented so far, for test problems that involve both arteries and
veins, whose initial data are in Tables 2.7, 2.8, against DOT solver (Appendix A.5), with a
Courant–Friedrichs–Lewy number Cc f l = 0.9 defined in Def. 2.1.1, both in a I = 3000 computa-
tional cells mesh, for different momentum correction coefficents α = [1, 1.1, 4/3, 2]. The numerical
results are described in Figs. 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24, 2.25, 2.26. In Fig. 2.27 is
shown a comparison of the different exact solutions of some tests for the considered α. In Table
2.9 is reported the exact solution in the Star Region for each test and for the considered α.
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Table 2.7: Parameters used for Tests 6 to 10: blood density ρ; reference vessel wall stiffness Kre f ; reference
cross-sectional area A0,re f ; domain length ℓ; location of the initial discontinuity xd and output
time tEnd. Regarding the resulting wave pattern, R=rarefaction, S=shock, Cu=contact discontinuity
associated with λ = u, C0=contact discontinuity associated with λ = 0.

Test Vessel Wave pattern ρ[kg/m3] Kre f [Pa] A0,re f [m
2] ℓ[m] xd[m] tEnd[s]

6 Artery Stationary 1050 58725.0 3.1353 · 10−4 0.2 0.5ℓ 0.007
7 Artery SC0CuS 1050 58725.0 3.1353 · 10−4 0.2 0.3ℓ 0.007
8 Vein SCuC0R 1050 33.3333 2.8274 · 10−5 0.5 0.3ℓ 0.025
9 Vein SC0CuS 1050 33.3333 2.8274 · 10−5 0.5 0.5ℓ 0.05
10 Vein RCuC0R 1050 33.3333 2.8274 · 10−5 0.5 0.3ℓ 0.05

Table 2.8: Left and right initial conditions for Tests from 6 to 10. The units of measures used for this Thesis
are: m, s, kg, Pa.

Left data

Test AL[m
2] uL[m/s] KL[Pa] A0L[m

2] peL[Pa] ϕL

6 1.0228A0L 0.0 Kre f 2.0A0,re f 9999.15 1.0
7 1.6A0L 1.0 Kre f 0.5A0,re f 3999.66 1.0

8 2.9 · 10−5 0.2 Kre f A0,re f 66.661 1.0

9 3.42 · 10−5 0.5 Kre f A0,re f 66.661 0.5

10 3.1 · 10−5 −0.2 Kre f A0,re f 66.661 0.5

Right data

Test AR[m
2] uR[m/s] KR[Pa] A0R[m

2] peR[Pa] ϕR

6 0.9977A0R 0.0 10Kre f A0,re f 11340.56820743433 0.5
7 1.05A0R 0.0 10Kre f A0,re f 0.0 0.5

8 3.2 · 10−5 0.1 100Kre f 1.05A0,re f 66.661 0.5

9 3.34 · 10−5 −0.1 40Kre f 1.15A0,re f 66.661 1.0

10 3.1 · 10−5 0.1 30Kre f 1.05A0,re f 66.661 1.0

Table 2.9: Exact solution in the Star Region of Tests from 6 to 10.

Test α A∗
L[m

2] u∗
L[m/s] A∗

R[m
2] u∗

R[m/s]

6 1 6.4136 · 10−4 0.0 3.1281 · 10−4 0.0
11/10 6.4136 · 10−4 0.0 3.1281 · 10−4 0.0
4/3 6.4136 · 10−4 0.0 3.1281 · 10−4 0.0
2 6.4136 · 10−4 0.0 3.1281 · 10−4 0.0

7 1 2.7010 · 10−4 0.5553 3.3792 · 10−4 0.4439
11/10 2.7024 · 10−4 0.5576 3.3795 · 10−4 0.4459
4/3 2.7056 · 10−4 0.5631 3.3802 · 10−4 0.4507
2 2.7145 · 10−4 0.5791 3.3821 · 10−4 0.4648

8 1 3.8612 · 10−5 −0.2578 3.0202 · 10−5 −0.3296
11/10 3.8597 · 10−5 −0.2579 3.0198 · 10−5 −0.3296
4/3 3.8563 · 10−5 −0.2581 3.0190 · 10−5 −0.3297
2 3.8465 · 10−5 −0.2586 3.0167 · 10−5 −0.3297

9 1 4.0863 · 10−5 0.0607 3.4649 · 10−5 0.0716
11/10 4.0894 · 10−5 0.0623 3.4661 · 10−5 0.0735
4/3 4.0967 · 10−5 0.0659 3.4692 · 10−5 0.0779
2 4.1171 · 10−5 0.0765 3.4778 · 10−5 0.0906

10 1 2.5291 · 10−5 −0.0767 2.9616 · 10−5 −0.0655
11/10 2.5429 · 10−5 −0.0760 2.9618 · 10−5 −0.0653
4/3 2.5728 · 10−5 −0.0746 2.9624 · 10−5 −0.0648
2 2.6430 · 10−5 −0.0714 2.9639 · 10−5 −0.0636

Test 6 The solution of Test 6 consists of a stationary solution in an artery, i.e. a solution in
which u(x, t) = 0 ∀x ∈ R and ∀t ∈ R

+. The variation of α does not change the stationary nature
of the solution, however we can appreciate an accentuation of the curvatures of the qle f t(A) and
qright(A) curves (Figs. 2.17, 2.18).
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Test 7 The solution of Test 7 describes a left shock, a stationary contact, a contact discontinuity
for the passive scalar and a right shock in an artery (SC0CuS). In this case we face a variation of
both A∗

j and u∗
j , j = L, R, with both of them growing when α increases (Fig. 2.27), again (A, q)

plots describe a small accentuation of the curvature of the qle f t(A) and qright(A) curves with the
rise of α (Fig. 2.20, 2.19).

Test 8 The solution of Test 8 consists of a left shock, a contact discontinuity for the passive
scalar, a stationary contact and a right rarefaction in a vein (SCuC0R). Also in this case we face
a variation of both A∗

j and u∗
j , with both of them decreasing when α increases (Fig. 2.27). The

accentuation of the curvatures of the left and right curves is present but minimal (Fig. 2.21, 2.22).

Test 9 Test 9 presents a left shock, a stationary contact, a contact discontinuity for the passive
scalar, and a right shock in a vein (SC0CuS). In this test both A∗

j and u∗
j increase with α (Fig. 2.27).

The same discussion as before for the qle f t(A) and qright(A) curves (Fig. 2.24, 2.23).

Test 10 In Test 10 a left rarefaction, a contact discontinuity for the passive scalar, a stationary
contact and a right rarefaction in a vein (RCuC0R) are depicted with both A∗

j and u∗
j increasing

with α (Fig. 2.27). Also a small variation in the inclination of the rarefaction is observed. For the
curvature of the left and right curve the discussion is the same as before (Fig. 2.25, 2.26).

Figs. 2.17, 2.20, 2.21, 2.24, 2.25 show a very good matching between the exact solutions and the
DOT solver. Regarding the passive scalar ϕ, Fig. 2.27 does not show remarkable differences in
depicting the related discontinuities for the different values of α.
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Test 6. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.17: Test 6. Artery. Stationary. Exact solution of the Riemann problem with α = 1, α = 1.1, α = 4/3,
α = 2 against DOT Riemann solver. Initial data are in Tables 2.7, 2.8.
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Figure 2.18: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
6 in Tables 2.7, 2.8, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Figure 2.19: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
7 in Tables 2.7, 2.8, for α = 1, α = 1.1, α = 4/3 and α = 2.



2.2 The 1D blood flow model with discontinuous properties and transport 75

Test 7. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.20: Test 7. Artery. Left shock - stationary contact - contact discontinuity for the passive scalar - right
shock. Exact solution of the Riemann problem with α = 1, α = 11/10, α = 4/3, α = 2 against
DOT Riemann solver. Initial data are in Tables 2.7, 2.8.
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Test 8. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.21: Test 8. Vein. Left shock - contact discontinuity for the passive scalar - stationary contact - right
rarefaction. Exact solution of the Riemann problem with α = 1, α = 1.1, α = 4/3, α = 2 against
DOT Riemann solver. Initial data are in Tables 2.7, 2.8.
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Figure 2.22: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
8 in Tables 2.7, 2.8, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Figure 2.23: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
9 in Tables 2.7, 2.8, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Test 9. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.24: Test 9. Vein. Left shock - stationary contact - contact discontinuity for the passive scalar -right
shock. Exact solution of the Riemann problem with α = 1, α = 1.1, α = 4/3, α = 2 against DOT
Riemann solver. Initial data are in Tables 2.7, 2.8.
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Test 10. Exact solution of the Riemann problem with α ∈ [1, 2]
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Figure 2.25: Test 10. Vein. Left rarefaction - contact discontinuity for the passive scalar - stationary contact -
right rarefaction. Exact solution of the Riemann problem with α = 1, α = 1.1, α = 4/3, α = 2
against DOT Riemann solver.Initial data are in Tables 2.7, 2.8.
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(c) α = 4/3
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Figure 2.26: A detail of the graphic representations of the solutions in the (A, q) phase-plane for data of Test
10 in Tables 2.7, 2.8, for α = 1, α = 1.1, α = 4/3 and α = 2.
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Comparison of the exact solutions for different momentum correction coefficients α
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Figure 2.27: Comparison of the exact solutions for different α of some of the Tests considered in Tables 2.7,
2.8.
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2.3 Conclusions

In this Chapter we have presented the exact solution of the Riemann problem for the 1D blood flow
equations with continuous and discontinuous parameters with a constant momentum correction
coefficient α ∈ [1, 2] in the case of arteries and veins. The momentum correction coefficient in the
1D blood flow models is related to the velocity profile: for example α = 1 corresponds to a flat
velocity profile, i.e. to an inviscid fluid, α = 4/3 is related to a parabolic velocity profile. This
exact solution already exists in literature but only for a momentum correction coefficient α = 1.
We have given a detailed mathematical analysis for the case of α ∈ [1, 2], although limiting our
discussion to the subsonic regime in case of discontinuous parameters, describing the relations
across each wave pattern, i.e.: rarefactions, elastic jumps (shocks), and contact discontinuities,
and we have given a condition of physical admissibility of shocks and rarefactions in waves
associated with genuinely non-linear fields. Finally we have added a graphic interpretation of
the results. After, we have presented a simple and efficient numerical procedure to compute the
constructed exact solution, following the methodology of [87], [90], [81]; adapting it for α ∈ [1, 2].
The obtained exact solution has then been verified against FORCE [88], first order, conservative,
centred numerical scheme, for the case of continuous parameters (conservative hyperbolic system
of PDEs) and DOT Riemann solver [23], first order, path-conservative numerical scheme, for
the case of discontinuous parameters (non-conservative hyperbolic system of PDEs). The DOT
solver has been adapted for the case of a momentum correction coefficient α ∈ [1, 2] and the
well-balanced properties have been proved analitically also in this case.

It is worth noticing that the goal of our work was to describe the exact solution of a Riemann
problem, and to then validate the numerical solution strategy by comparing the exact solution
to numerical solutions obtained using centered numerical schemes. Therefore, the relevance of
our work lies in providing reference solutions for the construction of numerical solvers, as well
as in laying the ground for the determination of boundary and coupling conditions for blood
flow in networks of one-dimensional domains. Importantly, we have not assessed the efficiency
of the proposed solver in the context of Godunov-type schemes. While this will be the subject of
future work, we can anticipate that it is highly unlikely that the exact solver will turn out to be
an efficient alternative, especially because of the lack of an explicit formulation of generalized
Riemann invariants.



Chapter3

Advection-Pressure splitting at

the level of PDEs

In this Chapter we present the actual advection-pressure splitting we propose for the complete
system of hyperbolic 1D blood flow equations described in Chapter 2, both for the case of
continuous parameters (Section 2.1) and for the case of discontinuous parameters (Section 2.2).
This is a modification of the flux splitting approach introduced in Toro and Vázquez [92] for the
Euler equations. Following this method the original complete system of 1D blood flow equations
is split into two hyperbolic subsystems of PDEs: the advection system and the pressure one,
both showing a simpler eigenstructure with respect to the complete system. As described in
the Introduction to this Thesis, this turns out to be advantageous when dealing with coupling
conditions in large networks of vessels.

In both conservative and non-conservative cases the flux of the continuity equation is assigned
to the pressure system, differently from the TV approach. The decision is influenced by the
alignment with zero-dimensional models and the absence of hyperbolicity in the subsystems of
PDEs that arises conversely.

It is worth noting that the expression advection-pressure is a more general way to refer to flux
vector splitting methods, this latter name suitable only for conservative 1D blood flow models (i.e.
the particular models with continuous mechanical and geometrical properties).

In Section 3.1 we present the flux splitting at the level of PDEs for the conservative 1D blood
flow model with transport described in Section 2.1, while in Section 3.2 we present the advection-
pressure splitting for the non-conservative 1D blood flow model with transport depicted in
Section 2.2.

This Chapter is partially presented in Toro et al. [91] and in Spilimbergo et al. [83].

3.1 Splitting for the conservative 1D blood flow

model with transport

Given the conservative hyperbolic system of PDEs

∂tQ + ∂xF(Q) = 0, (3.1)

defined in (2.12), we split F(Q) in (2.13) into the sum of advection and pressure fluxes as follows

F(Q) = A(Q) +P(Q), (3.2)
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and we propose to split system (2.12) via (3.2) into the two subsystems

{
∂tQ + ∂xA(Q) = 0, (3.3)

∂tQ + ∂xP(Q) = 0, (3.4)

where

Q =




A
Au
Aϕ


 , A(Q) =




0
αAu2

Auϕ


 ,

P(Q) =




Au
∫

c(A)2 dA

0


 =




Au

KA

ρ

(
m

m + 1

(
A

A0

)m

− n

n + 1

(
A

A0

)n)

0


 .

(3.5)

System (3.3) is called “advection system”, system (3.4) is called “pressure system”. As it will be
presented in Chapter 6, the aim is to compute a numerical flux

Fi+ 1
2
= Ai+ 1

2
+ Pi+ 1

2
, (3.6)

The numerical strategy to determine the advection and pressure numerical fluxes Ai+ 1
2

and Pi+ 1
2

in (3.6) relies on first solving the Riemann problem for the pressure system in (3.4). The solution
of this system will fully determine the pressure numerical flux Pi+ 1

2
and will also provide the

information for determining the advection numerical flux Ai+ 1
2

(Chapters 6, 7).

3.2 Splitting for the non-conservative 1D blood

flow model with transport

Given the non-conservative hyperbolic system of PDEs

∂tQ + M(Q)∂xQ = 0 (3.7)

defined in (2.181), we split M(Q) in (2.182) into the sum of an advection and a pressure matrix as
follows

M(Q) = A(Q) +P(Q), (3.8)

and we propose to split system (2.181) via (3.8) into the two subsystems

{
∂tQ +A(Q)∂xQ = 0, (3.9)

∂tQ +P(Q)∂xQ = 0, (3.10)
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where

Q =




A
Au
K
A0

pe

Aϕ




, A(Q) =




0 0 0 0 0 0
−αu2 2αu 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−uϕ ϕ 0 0 0 u




,

P(Q) =




0 1 0 0 0 0

c2 0
A

ρ
ψK

A

ρ
ψA0

A

ρ
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




.

(3.11)

where c is the wave speed (2.183). System (3.9) is called advection system, system (3.10) is called
pressure system. The aim is to build a numerical scheme from the solution of the Riemann problem
for the pressure systems (3.10). This solution will fully determine the different part of the final
numerical scheme.





Chapter4

Exact solution of the Riemann

problem for the 1D advection system with

general constant momentum correction

coefficient without transport

In this Chapter we solve exactly the Riemann problem for the advection system arising in the
advection-pressure splitting for conservative 1D blood flow models presented in Chapter 3.1, and
for non-conservative 1D blood flow models described in Chapter 3.2, for tube laws describing
arteries and veins with a constant momentum correction coefficient different from one without
considering the passive scalar transport equation. The resulting system is a hyperbolic system of
conservation laws both in case of continuous or discontinuous parameters. We give a detailed
mathematical analysis and a numerical procedure to compute the resulting solution. Finally
we further verify the obtained mathematical results against a second order extension of FORCE
numerical scheme.

In detail: in Section 4.1, we present exact solution of the Riemann problem for the advection
system generated from the splitting of the conservative 1D blood flow equations, in Section 4.2
the one arising from the splitting of the non-conservative one. In Section 4.3 the conclusions are
drawn.

The research article regarding this topic is in preparation.

4.1 Exact solution of the Riemann problem for the

advection system

The advection system is {
∂t A = 0,

∂t(Au) + α∂x(Au2) = 0,
(4.1)

i.e
∂tQ + ∂xA(Q) = 0, (4.2)

with

Q =

[
A(x, t)

Au(x, t)

]
, A(Q) =

[
0

αAu2

]
, (4.3)

where A(x, t) is the cross-sectional area of the vessel, u(x, t) is the blood speed, α is the momentum
correction coefficient, constant, considered α ∈ [1, 2].
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The Jacobian of (4.2) is

Â(Q) =

[
0 0

−αu2 2αu

]
, (4.4)

The eigenvalues of Â are all real and given by

λA1 = 2αu λA2 = 0. (4.5)

A possible choice of right eigenvectors corresponding to eigenvalues (4.5) is

RA1 =

[
0
1

]
, RA2 =

[
1
u
2

]
. (4.6)

Proposition 4.1.1 (Hyperbolicity). System (4.1) is hyperbolic ∀Q ∈ Ω = [R+ × R].

Proof. It is straightforward to see that eigenvalues (4.5) are always real and eigenvectors (4.6) are
linearly independent in the entire domain Ω. System (4.1) however, is not strictly hyperbolic since
for u = 0 the two eigenvalues (4.5) are the same.

Proposition 4.1.2 (Nature of λA1-characteristic field). The λA1-characteristic field is genuinely
non-linear ∀Q ∈ Ω.

Proof. It can be easily verified that

∇λA1(Q) · RA1(Q) =
2α

A
> 0 ∀Q ∈ Ω. (4.7)

Proposition 4.1.3 (Nature of λA2-characteristic field). The λA2-characteristic field is linearly degener-
ate ∀Q ∈ Ω.

Proof. It can be easily verified that

∇λA2(Q) · RA2(Q) = 0 ∀Q ∈ Ω. (4.8)

The Riemann problem for system (4.2) is





∂tQ + ∂xA(Q) = 0, x ∈ R, t > 0,

Q(x, 0) =

{
QL if x < xd,

QR if x > xd,

(4.9)

where xd ∈ R is the initial discontinuity of the data

QL =

[
AL

AuL

]
, QR =

[
AR

AuR

]
. (4.10)

There are three possible configuration of the solution in the (x, t) half-plane, as shown in Fig. 4.1.
As will be proved in this Chapter, the actual formula for Q∗

A varies according to the “position”
to the left or to the right of the λA2 discontinuity in Fig. 4.1, or in case the two waves are
superimposed (Case 3 of Fig. 4.1). To build the final exact solution we adopt the scheme in Fig.
4.2, i.e. we pretend to have two fake unknowns

Q∗
AL =

[
A∗

L
Au∗

L

]
, Q∗

AR =

[
A∗

R
Au∗

R

]
, (4.11)
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t

xx = xd

λA2 = 0
λA1 = 2αu

Q∗

A

QL

QR

t

xx = xd

λA1 = 2αu
λA2 = 0

Q∗

A

QL

QR

t

xx = xd

λA1 = λA2 = 0

QL QR

Figure 4.1: The three possible configurations of the solution of Riemann problem (4.9). The green solid lines
represent the wave associated with the genuinely non-linear field, that can be either a shock
or a rarefaction, the blue dashed line is the contact discontinuity associated with the linearly
degenerate field. The top-left picture depicts the case of λA1 < 0, the top-right one the case
λA1 > 0 and the bottom picture the case λA1 = λA2 = 0. The last case presents a not trivial
configuration of the solution and will be treated in Section 4.1.4.

t

xx = xd

λA1 > 0
λA2 = 0

λA1 < 0

Q∗

AL
Q∗

AR

QL QR

Figure 4.2: The theoretical approach we use in this Chapter to calculate the unknown Q∗
A . We suppose to

have two “virtual” unknowns Q∗
AL and Q∗

AR that are supposed to exist in any case of Fig. 4.1,
clearly with different values. The green solid lines are now lighter than in Fig. 4.1 because we
don’t know a priori in which position the one and only λA1 wave actually is. In this Chapter we
name left part the part of the (x, t) plane that is to the left of the λA2 discontinuity, right part the
part of the (x, t) plane that is to the right of the λA2 discontinuity.

to which finally we will assign the proper value according to the position of the λA1 wave, as
explained in Section 4.1.5.

Before describing the relations across each wave, necessary for the exact solution of the Riemann
problem, we present this result

Proposition 4.1.4. For the Riemann problem (4.9)

A∗
L = AL, A∗

R = AR, (4.12)
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regardless of the type of wave.

Proof. Considering that, for the first of (4.1)

∂t A = 0, (4.13)

i.e
A = const, ∀t ∈ R

+
0 , (4.14)

it is clear that given a discontinuous initial condition for A

A(x, 0) =

{
AL for x < xd,
AR for x > xd,

(4.15)

results
A(x, t) = A(x, 0), ∀x ∈ R, ∀t ∈ R

+
0 , (4.16)

in other words
A∗

L = AL, A∗
R = AR. (4.17)

4.1.1 Wave relations for the case λA1 ̸= 0

In this Section we propose the relations across the waves presented before in case the genuinely
non-linear one and the contact discontinuity are not superimposed (Cases 1 and 2 of Fig. 4.1).

Proposition 4.1.5 (Generalized Riemann invariants for the λA1 - characteristic field). The Riemann
invariants for the λA1 = 2αu ̸= 0 characteristic field, are given by

A = const, q ̸= const (4.18)

i.e.
A = const, u ̸= const (4.19)

for the λA1 -characteristic field.

Proof. The Riemann invariants are the solution of the following ODE [90]

dA

0
=

dq

1
. (4.20)

From dA = 0 we have A = const and being dq ̸= const we have u ̸= const.

Proposition 4.1.6 (Shock speed). The shock speed is

Sj =
α

Aj
(q∗j + qj) = α(u∗

j + uj), j = L, R. (4.21)

Proof. Being the actual system (4.1), we recall that if a discontinuity propagating with speed S
has constant values Q̂, Q̃ on either side of the discontinuity, then the Rankine-Hugoniot jump
condition

A(Q̂)−A(Q̃) = Sj(Q̂ − Q̃), (4.22)

must hold, with A in (4.3) (see for example [44]). So, considering Fig. 4.2, (4.22) becomes

A(Q∗
A j)−A(Qj) = Sj(Q

∗
A j − Qj), j = L, R. (4.23)



4.1 Exact solution of the Riemann problem for the advection system 91

(4.23) becomes 



0 = Sj(A∗
j − Aj),

α
q2∗

j

A∗
j

− α
q2

j

Aj
= Sj(q

∗
j − qj).

(4.24)

For Proposition 4.1.4 system (4.24) becomes





0 = 0,

α
q2∗

j

Aj
− α

q2
j

Aj
= Sj(q

∗
j − qj),

(4.25)

from which we obtain the results for the shock speed

Sj =
α

Aj
(q∗j + qj) = α(u∗

j + uj), j = L, R. (4.26)

Clearly, having one and only shock wave, formula (4.26) becomes

S = α(u∗ + uj), (4.27)

where uj is initial value of u to the side of the actual shock, side that is still unknown. The same
for the actual side of u∗ and its value. An explicit formula for u∗ will be given later.

Proposition 4.1.7 (Generalized Riemann invariants for the λA2 - characteristic field. Case λA1 ̸= 0).
The generalized Riemann invariants for the λA2- contact discontinuity, with λA1 ̸= 0, are given by

A ̸= const, ln(|u|) + 1

2
ln(A) = const. (4.28)

Proof. Applying the generalized Riemann invariants method [90] to the λA2-wave and to the
related right eigenvector we obtain

dA

1
=

d(Au)
u

2

, (4.29)

i.e.
u

2
dA = d(Au) → Adu +

u

2
dA = 0, (4.30)

via separation of variables,
1

u
du = − 1

2A
dA, (4.31)

integrating, ∫
1

u
du = −1

2

∫
1

A
dA, (4.32)

and consequently we obtain the second of (4.28), being A > 0 by hypothesis.

4.1.2 Solution in the Star Region in case of λA1 ̸= 0

Being the Star Region, as usual, the region in the (x, t) plane included between the λA1 and the
λA2 wave, we obtain the following results.
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Proposition 4.1.8 (Definition of u∗ under certain conditions). In case of λA1 ̸= 0, i.e. u∗ ̸= 0, u∗ is
defined as

u∗ =





u∗
R =

√
AL

AR
|uL| with uL > 0 if λA1 > 0,

u∗
L = −

√
AR

AL
|uR| with uR < 0 if λA1 < 0,

(4.33)

either in case of rarefaction or shock in the λA1-wave.

Proof. Using what stated in Proposition 4.1.7, across λA2 = 0 discontinuity we have

∫
1

u
du = −1

2

∫
1

A
dA. (4.34)

Considering Fig. 4.2 and carrying out the calculations, (4.34) becomes

∫ u∗
R

u∗
L

1

u
du = −1

2

∫ A∗
R

A∗
L

1

A
dA. (4.35)

For Proposition 4.1.4, (4.35) becomes

∫ u∗
R

u∗
L

1

u
du = −1

2

∫ AR

AL

1

A
dA. (4.36)

Now we consider some cases

1. λA1 > 0
In this case as shown in Fig. (4.2), the λA1- wave lays to the right of the discontinuity.
It follows that Q∗

AR = Q∗
A , i.e. is the real Q∗

A , instead Q∗
AL does not actually exist. It is

straightforward to put Q∗
AL = QL for computational simplicity. It follows that u∗

R = u∗,
while u∗

L = uL:

∫ u∗
R=u∗

uL

1

u
du = −1

2

∫ AR

AL

1

A
dA. (4.37)

Now considering that
λA1 = 2αu∗

> 0 ⇒ u∗ = u∗
R > 0, (4.38)

and considering that function
1

u
presents a vertical asymptote for u = 0, it is clear that in

this case we can only consider u∗
R > 0 and uL > 0.

So (4.37) becomes

ln(u∗
R)− ln(uL) = −1

2
(ln(AR)− ln(AL)) −→

u∗
R

uL
=

√
AL

AR
. (4.39)

So in conclusion, if λA1 > 0

u∗
L = uL > 0, u∗

R = u∗ =

√
AL

AR
uL =

√
AL

AR
|uL|, (4.40)

either if u∗
R > uL or u∗

R < uL.

2. λA1 < 0
In this case according to Fig. (4.2), the λA1- wave lays to the left of the discontinuity. It
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follows that Q∗
AL = Q∗

A , i.e. is the real Q∗
A , instead Q∗

AR does not actually exist. It is
straightforward to put Q∗

AR = QR for computational simplicity. It follows that u∗
L = u∗,

while u∗
R = uR:

∫ uR

u∗
L=u∗

1

u
du = −1

2

∫ AR

AL

1

A
dA. (4.41)

Now considering that
λA1 = 2αu∗

< 0 ⇒ u∗ = u∗
L < 0, (4.42)

and considering that function
1

u
presents a vertical asymptote for u = 0, it is clear that in

this case we can only consider u∗
L < 0 and uR < 0.

So (4.41) becomes

ln(|uR|)− ln(|u∗
L|) = −1

2
(ln(AR)− ln(AL)) −→

∣∣∣∣
uR

u∗
L

∣∣∣∣ =
√

AL

AR
. (4.43)

In conclusion, for λA1 < 0

u∗
L = u∗ =

√
AR

AL
uR = −

√
AR

AL
|uR|, u∗

R = uR < 0, (4.44)

both for |u∗
L| < |uR| and |u∗

L| > |uR|.

So we have the results.

Remark 4.1.1. The definition of u∗ given in (4.33), as emphasized, is, by construction, admissible
only under specific conditions

• u∗
R > 0 is defined only for uL > 0,

• u∗
L < 0 is defined only for uR < 0.

The cases including uL ≤ 0 and uR ≥ 0 are treated in Section 4.1.4.

Remark 4.1.2. The formulas treated in Proposition 4.1.8 are given without specifying in which
actual side the real Q∗

A is. This issue will be treated in Section 4.1.4.

4.1.3 Wave relations for the case λA1 = λA2 = 0 (u∗ = 0)

This case (n° 3 of Fig. 4.1), is not trivial and includes different possibilities and will be treated in
Section 4.1.4. However it is possible to notice that being

Q∗ =
[

A∗

Au∗

]
, (4.45)

clearly we expect that in this case

Q∗ =
[

A∗

0

]
. (4.46)

At this point we should determine which of the two A∗
j , j = L, R, is appropriate in this case.

This issue is treated in Section 4.1.4, where we want to determine the actual side of the λA1-wave
and the presence of shocks or rarefactions only from the initial data.
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Remark 4.1.3. As it will be proved in Corollary. 4.1.16.1 the case λA1 = 0 does not correspond
necessarily to a stationary solution. Actually it corresponds to a stationary solution ⇐⇒ (uL = 0
and uR = 0).

4.1.4 Sides and conditions for the different types of waves

Developing the calculations for system (4.1) we obtain

{
∂t A = 0,

A∂tu + u∂t A + αA∂x(u
2) + αu2∂x A = 0,

(4.47)

that becomes 



∂t A = 0,

∂tu + α∂x(u
2) + α

u2

A
∂x A = 0.

(4.48)

For Proposition 4.1.4, A(x, t) is a piecewise constant function, for every t ∈ R
+
0 . So ∂x A = 0

in each point where this spatial derivative exists: i.e. everywhere with the exception of the
discontinuity x = xd. So, for x < xd and x > xd, system (4.48) reduces to the conservative,
unidimensional equation

∂tu + α∂x(u
2) = 0, (4.49)

that holds separately in each of the two sides (sides L and R of Fig. 4.2).

Analysing this equation we obtain
λ(u) = 2αu, (4.50)

that is the eigenvalue λA1 of (4.5).

Remark 4.1.4. As remarked in caption of Fig. 4.2, in this Chapter we name left part the part of the
(x, t) plane in Fig. 4.2 that is to the left of the λA2 discontinuity, on the contrary we name right
part the part of the (x, t) plane in Fig. 4.2 that is to the right of the λA2 discontinuity.

Proposition 4.1.9. Given (4.49) that holds in each left and right part, and considering Fig. 4.2, we have

• in the left part
left rarefaction ⇐⇒ uL ≤ u∗

L, (4.51)

entropy-satisfying left shock ⇐⇒ uL > u∗
L, (4.52)

• in the right part
right rarefaction ⇐⇒ u∗

R ≤ uR, (4.53)

entropy-satisfying right shock ⇐⇒ u∗
R > uR. (4.54)

Proof. A discontinuity of a weak solution of the conservation law (4.49) satisfies the Rankine-
Hugoniot jump condition across it, named

f (uR̂)− f (uL̂) = S(uR̂ − uL̂) ⇒ αu2
R̂
− αu2

L̂
= S(uR̂ − uL̂), (4.55)

where uL̂ and uR̂, are the constant values of u to the left and to the right of the jump. From (4.55)
we obtain the shock speed S

S = α(uR̂ + uL̂). (4.56)
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According to the Lax-Entropy condition [42], an entropy-satisfying shock in a wave associated
with a genuinely non-linear field satisfies

λ(uL̂) > S > λ(uR̂), (4.57)

in other words
2αuL̂ > S > 2αuR̂ =⇒ uL̂ > uR̂. (4.58)

This means that, according to Fig. 4.2,

Entropy-satisfying left shock =⇒ uL > u∗
L,

Entropy-satisfying right shock =⇒ u∗
R > uR,

(4.59)

while (4.56) is (4.21).

On the contrary, having an admissible rarefaction in a wave associated with a genuinely
non-linear field, being that a smooth wave, leads the opposite of (4.57) to hold, i.e.

λ(uL̂) ≤ λ(ur̂ar) ≤ λ(uR̂), (4.60)

where ur̂ar are the states inside the rarefaction, and uL̂ and uR̂ are the states that define its border.
In other words

2αuL̂ ≤ 2αur̂ar ≤ 2αuR̂ =⇒ uL̂ ≤ uR̂. (4.61)

According to Fig. 4.2

Left rarefaction =⇒ uL ≤ u∗
L,

Right rarefaction =⇒ u∗
R ≤ uR.

(4.62)

Considering that a wave associated with a genuinely non-linear field can be either a rarefaction
or a shock [80], and putting together (4.59) and (4.62), we obtain the if and only if statement.

We can extend the definition of u∗ in Proposition 4.1.8 to 0 only in particular cases, as explained
in the following Proposition.

Proposition 4.1.10 (Extension of the definition of u∗ in Proposition 4.1.8).
In case of uR = 0

u∗
L = u∗ = 0 ⇐⇒ there is a left rarefaction. (4.63)

In case of uL = 0
u∗

R = u∗ = 0 ⇐⇒ there is a right rarefaction. (4.64)

Proof. Even if (4.33) are not given for uL = 0 and uR = 0 we can notice that

lim
uL→0

u∗
R = lim

uL→0

√
AL

AR
|uL| = 0,

lim
uR→0

u∗
L = lim

uR→0
−
√

AR

AL
|uR| = 0,

(4.65)

so it is possible to extend (4.33) by continuity to 0 and now we will prove in which particular
cases.

(⇐=)Now we will prove that

(an admissible left rarefaction with uR = 0) =⇒ u∗ = 0. (4.66)
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In case of admissible rarefactions, by definition these latter are smooth waves characterized by
the property

λA1(uL) ≤ λA1(urarL) ≤ λA1(u
∗
L = u∗) for an admissible left rarefaction,

λA1(u
∗
R = u∗) ≤ λA1(urarR) ≤ λA1(uR) for an admissible right rarefaction,

(4.67)

where urarL and urarR are the states inside the left and the right rarefactions. In case of left
rarefaction, for example, uR = 0 leads to u∗

L = 0 for (4.65) and this implies that

λA1(uL) ≤ λA1(urarL) ≤ 0 =⇒ 2αuL ≤ 2αurarL ≤ 0, (4.68)

in (4.67), that is consistent with the hypothesis of a left rarefaction.

A similar proof for the right rarefaction.

(=⇒)To prove the opposite implication, considering that a genuinely non-linear field can
present only either a shock or a rarefaction [80], we prove that

(an entropy-satisfying left shock with uL = 0) =⇒ u∗ ̸= 0. (4.69)

The Lax-Entropy condition (4.57) becomes

λA1(uL) > SL > λA1(u
∗
L = u∗) =⇒ 2αuL > SL > 2αu∗

L, (4.70)

so uR = 0 leads to u∗
L = 0 by (4.65) but this implies that

2αuL > SL > 0, (4.71)

that leads to a contradiction, because by construction for a left shock SL ≤ 0 (see Remark 4.1.5).

An analogue proof for a right shock that must have SR ≥ 0, with the related Lax-Entropy
condition

λA1(u
∗
R = u∗) > SR > λA1(uR). (4.72)

Putting together (4.66) and (4.69) we obtain the statement.

Remark 4.1.5. In case of shock, the shock discontinuity with speed S is a characteristic in the (x, t)

plane having angular coefficient mS =
1

S
that is thus of the same sign as the shock speed. By

construction (Remark 4.1.4), we named left shock the ones whose shock discontinuity is to the left
of the λA2 discontinuity on the (x, t) plane. On the contrary we named right shock the ones whose
shock discontinuity is to the right of the λA2 discontinuity on the (x, t) plane. It follows that a left
shock must have SL ≤ 0 and a right shock SR ≥ 0.

Proposition 4.1.9 and Proposition 4.1.10 lead to

Proposition 4.1.11 (Final conditions for rarefactions). We have a

• left rarefaction ⇐⇒

uL ≤ −
√

AR

AL
|uR| with uL ≤ 0 and uR ≤ 0, (4.73)

• right rarefaction ⇐⇒

uR ≥
√

AL

AR
|uL| with uL ≥ 0 and uR ≥ 0. (4.74)
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Proof. According to Proposition 4.1.9 and Proposition 4.1.10 there is a left rarefaction ⇐⇒ uL ≤
u∗

L ≤ 0 with uR ≤ 0, i.e ⇐⇒

uL ≤ −
√

AR

AL
|uR| ≤ 0 with uR ≤ 0, (4.75)

that necessarily implies uL ≤ 0.

According to Proposition 4.1.9 and Proposition 4.1.10 there is a right rarefaction ⇐⇒ 0 ≤
u∗

R ≤ uR with uL ≥ 0, i.e ⇐⇒

0 ≤
√

AL

AR
|uL| ≤ uR with uL ≥ 0, (4.76)

that necessarily implies uR ≥ 0.

Proposition 4.1.12 (Shocks-part1). We have a

• left shock if

uL > −
√

AR

AL
|uR| with uL ≤ 0 and uR < 0, (4.77)

• right shock if

uR <

√
AL

AR
|uL| with uL > 0 and uR ≥ 0. (4.78)

Proof. According to Proposition 4.1.9 and Proposition 4.1.10, we have a shock on the left side
⇐⇒ uL > u∗

L with u∗
L < 0, i.e. ⇐⇒

uL > −
√

AR

AL
|uR| with uR < 0. (4.79)

According to Proposition 4.1.9 and Proposition 4.1.10, we have a shock on the right side ⇐⇒
u∗

R > uR with u∗
R > 0, i.e. ⇐⇒

uR <

√
AL

AR
|uL| with uL > 0. (4.80)

Unfortunately given the definition (4.33) the two conditions are partially superimposed, in details





uL > −
√

AR

AL
|uR| with uR < 0,

uR <

√
AL

AR
|uL| with uL > 0,

= uL > −
√

AR

AL
|uR| with uR < 0 and uL > 0. (4.81)

While under condition (4.81) we actually know that there is a shock but we still do not know on
which side, we are sure that under the complementary conditions

uL > −
√

AR

AL
|uR| with uL ≤ 0 and uR < 0, (4.82)
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for the left shock, and

uR <

√
AL

AR
|uL| with uL > 0 and uR ≥ 0, (4.83)

for the right shock, we have the desired results.

Proposition 4.1.13. Under conditions uL > 0 and uR < 0, we have an admissible j-shock (j=L,R) ⇐⇒

SL < 0 for left shocks,

SR > 0 for right shocks.
(4.84)

Proof. we must prove that we can not have both SL < 0 and SR > 0. Shock speeds are defined in
(4.21).





SL = α(uL −
√

AR

AL
|uR|) < 0 ⇐⇒ uL < −

√
AR

AL
uR,

SR = α(uR +

√
AL

AR
|uL|) > 0 ⇐⇒ uR > −

√
AL

AR
uL ⇐⇒ uL > −

√
AR

AL
uR.

(4.85)

So SL and SR are either both positive or negative considering conditions uL > 0 and uR < 0.

Proposition 4.1.14 (Shocks-part2). We have a

• left shock if
uL > 0 and uR < 0 and SL < 0, (4.86)

• right shock if
uL > 0 and uR < 0 and SR > 0. (4.87)

Proof. Follows directly from (4.81) and Proposition 4.1.13. Please note that conditions

uL > −
√

AR

AL
|uR|, uR <

√
AL

AR
|uL|, (4.88)

in (4.81), are redundant for uL > 0 and uR < 0.

Proposition 4.1.15 (Final conditions for shocks). We have a

• left shock ⇐⇒

uL > −
√

AR

AL
|uR| with uL ≤ 0 and uR < 0, (4.89)

or

uL <

√
AR

AL
|uR| with uL > 0 and uR < 0, (4.90)

• right shock ⇐⇒

uR <

√
AL

AR
|uL| with uL > 0 and uR ≥ 0, (4.91)

or

uR > −
√

AL

AR
|uL| with uL > 0 and uR < 0. (4.92)
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Proof. Given in Proposition 4.1.12 and 4.1.14.

Now we consider what happens under initial conditions not given in Proposition 4.1.8, i.e.
uL ≤ 0 and uR ≥ 0. As marked in Remark 4.1.1, u∗

L and u∗
R in this case are not defined as in

Proposition 4.1.8.

Proposition 4.1.16 (Conditions for a transonic rarefaction). We have a single rarefaction that overtakes
the λA2 discontinuity ⇐⇒ uL ≤ 0 and uR ≥ 0.

Proof. Let us analyse the characteristics of the leading equation (4.49).

We briefly recall that for a general Cauchy problem

{
∂tu + ∂x f (u) = 0,

u(x, 0) = h(x),
(4.93)

the characteristic curves x = x(t) are defined





dx

dt
= λ(u(x, t)),

x(0) = x0.
(4.94)

and the total derivative of u along one of these curves is

du

dt
=

∂u

∂t

dt

dt
+

∂u

∂x

dx

dt
= ∂tu + λ(u)∂xu. (4.95)

Considering our Riemann problem





∂tu + α∂x(u
2) = 0

u(x, 0) =

{
uL if x < xd,

uR if x > xd,

(4.96)

it follows that
du

dt
= 0, (4.97)

so u(x, t) is constant along the characteristics satisfying (4.94), and this implies that λ(u) = 2αu
is also constant along the characteristics.

From (4.94) it follows that the equation of the characteristics is

x = x0 + λ(u(x, t))t, (4.98)

from which it is clear that the characteristics are straight lines in the (x, t) plane and λ(u) = 2αu
is the inverse of the angular coefficient of the straight lines.

Being u constant along the characteristics, it is clear that

u(x, t) = h(x0), (4.99)

where x0 = x(0) is the foot of the characteristic of the considered u(x, t), and

h(x0) =

{
uL if x0 < xd,

uR if x0 > xd,
(4.100)
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t

xx = gate

uL uR

t

xx = gate

uL uR

Figure 4.3: In the left picture the characteristics for generic initial data uL < 0 and uR > 0. In the right
picture the complete solution with characteristics inside the rarefaction. We remind that the

angular coefficent of the characteristics is m =
1

2αu
, from which the graphs are straightforward.

so u(x, t) in (4.99) is s.t.

u(x, t) = h(x0) =

{
uL if x − λ(uL)t < xd,

uR if x − λ(uR)t > xd,
=

{
uL if x − 2αuLt < xd,

uR if x − 2αuRt > xd,
(4.101)

in other words

u(x, t) =





uL if
x − xd

t
< 2αuL,

uR if
x − xd

t
> 2αuR,

(4.102)

and for uL < 0, uR > 0, we obtain Fig. 4.3-left.

It is quite clear that we are in presence of a single rarefaction that overtakes the discontinuity
marked with λA2 (the latter superimposed on the t-axis), Fig. 4.3-right.

In particular the case uL = 0 and uR = 0 leads to a single rarefaction with both borders
superimposed on the λA2 discontinuity, i.e. a stationary solution (please see Corollary 4.1.16.1).

Please note that under the considered conditions u∗ is not defined in Proposition 4.1.8 anymore,
it is only defined for uL = 0 and uR = 0 (case stationary solution seen as a particular case of a
left and a right null rarefaction) thanks to Proposition 4.1.10. Actually the Star Region (defined as
the region in the (x, t) plane between the λA1 and λA2-wave) does not exist in any of the cases
treated in this Proposition. We choose to put u∗ = u∗

L = u∗
R = 0 for computational simplicity due

to the fact that λA1 = 2αu = 0.

In case uL = 0 or uR = 0, according to (4.102) we obtain again a single rarefaction with one
or two boundaries superimposed on the λA2-discontinuity, cases already seen in Proposition
4.1.11. This is not a contradiction in fact actually the result is a single right or left rarefaction (for
description of boundaries of a rarefaction please see Section 4.1.6).

Remark 4.1.6. It is clear that Riemann problem (4.96) is not really accurate since the equation
proposed is valid for x < xd and x > xd but not in x = xd. However we chose to ignore the
discontinuity to draw the characteristics for the intitial data uL and uR that do not cross the
λA2-discontinuity and study the solution through them. Given the characteristics in Fig. 4.3 in
fact only a rarefaction is admissible.

Corollary 4.1.16.1 (Stationary solutions). We have stationary solutions (u(x, t) = 0, ∀x, t) ⇐⇒
(uL = 0 and uR = 0). This implies u∗ = u∗

L = u∗
R = 0.

Proof. The only possibilities so far that allow these initial data are in Proposition 4.1.11 and
Proposition 4.1.16. According to the cited Propositions, this is a particular case of a left, a right,
or a transonic rarefaction. In particular according to Proposition 4.1.11 we should have both
a left and a right rarefaction at the same time. So considering Proposition 4.1.10 we obtain
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u∗ = u∗
L = u∗

R = 0. Clearly λA1 = 0. On the other hand considering Proposition 4.1.16, according
to (4.102) we have

u(x, t) =





0 if
x − xd

t
< 0,

0 if
x − xd

t
> 0,

(4.103)

i.e a stationary solution.

Proposition 4.1.16 and Corollary 4.1.16.1 are the two possibilites of case 3 in Fig. 4.1.

Proposition 4.1.17 (Steady-state solutions not stationary). We have steady-state solutions that are not
stationary (i.e. solutions for which ∂tu = 0 but u(x, t) ̸= 0) ⇐⇒

uL =

√
AR

AL
uR, with uL < 0, and uR < 0, (4.104)

or

uL =

√
AR

AL
uR, with uL > 0, and uR > 0, (4.105)

or

uL =

√
AR

AL
|uR|, with uL > 0, and uR < 0. (4.106)

Proof. Steady-state solutions are clearly obtained when

{
uL = u∗

L,

uR = u∗
R.

(4.107)

There are some possibilities. First we must notice that by our construction, only one between u∗
L

and u∗
R could be the real u∗ (see Fig. 4.1 top-left and top-right) with the exception of the case of

transonic rarefactions in Proposition 4.1.16, and stationary solutions in Corollary 4.1.16.1. These
are the only cases in which we could have uL = uR = u∗

L = u∗
R = 0, i.e. when there is a stationary

solution, that is actually steady, and has been already treated in Corollary 4.1.16.1.

Considering the case in which
u∗ = u∗

L, (4.108)

for computational simplicity we pose u∗
R = uR (as explained in the proof of Proposition 4.1.8).

(4.108) and (4.107) lead us to u∗ = u∗
L = uL, i.e. by (4.42)

uL < 0. (4.109)

With the exception of the cases of transonic rarefactions and stationary solutions, u∗
L is defined in

Proposition 4.1.8 and as reminded in Remark 4.1.1, only for uR < 0, so

uL = u∗
L =⇒ uL =

√
AR

AL
uR. (4.110)

This is a limiting case of a left rarefaction (Proposition 4.1.11) in which the two borders of the
rarefaction are superimposed on each other but not on the λA2-wave.

Considering now the case in which
u∗ = u∗

R, (4.111)



102 Exact solution of the Riemann problem for the 1D advection system

for computational simplicity we pose u∗
L = uL (as explained in the proof of Proposition 4.1.8).

(4.111) and (4.107) lead us to u∗ = u∗
R = uR, i.e. by (4.38)

uR > 0. (4.112)

With the exception of the cases of transonic rarefaction and stationary solutions, u∗
R is defined in

Proposition 4.1.8 and as reminded in Remark 4.1.1, only for uL > 0, so

uR = u∗
R =⇒ uR =

√
AL

AR
uL. (4.113)

This is a limiting case of a right rarefaction (Proposition 4.1.11) in which the two borders of the
rarefaction are superimposed on each other but not on the λA2-wave.

There is however, another possibility. Having uL > 0, uR < 0 and uL =

√
AR

AL
|uR|, with some

calculations we obtain

uL = −u∗
L,

or

uR = −u∗
R.

(4.114)

The only possibility for uL > 0, uR < 0 is to have a shock somewhere (4.81), however due to
(4.21), SL = α(uL + u∗

L) and SR = α(uR + u∗
R), so (4.114) leads to SL = 0 or SR = 0. In Proposition

4.1.13 we treated the case uL > 0, uR < 0 and Sj ̸= 0, but we did not mention what happens
when SL = 0 or SR = 0. Clearly in this case we have a shock somewhere with speed 0, i.e. a
steady-state solution.

All we have seen lead us to the final

Theorem 4.1.1 (Sides and conditions for the waves). In the advection system described in (4.1) we
have

• a left rarefaction ⇐⇒ 



uL ≤ 0,

uR ≤ 0,

uL ≤ −
√

AR

AL
|uR|,

(4.115)

• a left shock ⇐⇒ 



uL ≤ 0,

uR < 0,

uL > −
√

AR

AL
|uR|,

or





uL > 0,

uR < 0,

uL <

√
AR

AL
|uR|,

(4.116)

• a right rarefaction ⇐⇒ 



uL ≥ 0,

uR ≥ 0,

uR ≥
√

AL

AR
|uL|,

(4.117)
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• a right shock ⇐⇒




uL > 0,

uR ≥ 0,

uR <

√
AL

AR
|uL|,

or





uL > 0,

uR < 0,

uR > −
√

AL

AR
|uL|,

(4.118)

• a transonic rarefaction ⇐⇒ {
uL ≤ 0,

uR ≥ 0,
(4.119)

• a stationary solution ⇐⇒ {
uL = 0,

uR = 0,
(4.120)

• a steady-state solution not stationary ⇐⇒




uL < 0,

uR < 0,

uL = −
√

AR

AL
|uR|,

or





uL > 0,

uR > 0,

uL =

√
AR

AL
uR,

or





uL > 0,

uR < 0,

uL =

√
AR

AL
|uR|.

(4.121)

Proof. The entire Section 4.1.4.

Remark 4.1.7. Please note that some items in Theorem 4.1.1 are superimposed. However this is
not a mistake. For example as described in the proof of Corollary. 4.1.16.1, stationary solutions
are limiting cases of left rarefactions, right rarefactions, and transonic ones. A same description
for rarefactions that have an initial condition equal to uj = 0, that can be seen as limiting cases of
j-rarefactions or transonic ones, indeed the third condition for steady state solution is a particular
case of a shock with speed S = 0 etc....

4.1.5 Solution in the Star Region

The Star Region is the region in the (x, t) plane between the λA1 and the λA2-waves. Putting
together what stated in Section 4.1.4, we obtain:

• initial data

QL =

[
AL

ALuL

]
, QR =

[
AR

ARuR

]
, (4.122)

• case left rarefaction or left shock:

Q∗ = Q∗
AL =

[
AL

ALu∗
L

]
, Q∗

AR = QR, (4.123)

• case right rarefaction or right shock:

Q∗
AL = QL Q∗ = Q∗

AR =

[
AR

ARu∗
R

]
, (4.124)
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• case transonic rarefaction or stationary solution:

Q∗ = Q∗
AL =

[
AL

0

]
, Q∗ = Q∗

AR =

[
AR

0

]
, (4.125)

• case steady-state solution not stationary:

(cases 1 and 2 of (4.121)) Q∗
AL = QL Q∗

AR = QR, (4.126)

(case 3 of (4.121)) Q∗
AL =

[
AL

−ALuL

]
, Q∗

AR =

[
AR

−ARuR

]
, (4.127)

where u∗
L and u∗

R are as in (4.33).

Remark 4.1.8. Please note that (4.127) are the actual values of Q∗
A j for the considered case, but they

do not compare in the actual final solution, due to the fact that the final solution is steady-state,
i.e. remains equal to the initial conditions.

4.1.6 Solution inside the rarefactions

To calculate the solution inside a rarefaction, being X = x − xd, x being the spatial coordinate of
the vessel domain and xd the spatial coordinate of the λA2 discontinuity, we look for a similarity
solution of equation (4.49)

u(x, t) = g

(
X

t

)
, (4.128)

with g

(
X

t

)
smooth, then

∂tu = −X
t2

g′
(
X

t

)
, (4.129)

∂xu =
1

t
g′
(
X

t

)
, (4.130)

so (4.49) becomes

g′
(
X

t

) [
−X

t2
+

1

t
λ

(
g

(
X

t

))]
= 0, (4.131)

that holds ⇐⇒
g′
(
X

t

)
= 0, (4.132)

trivial solution, or

λ

(
g

(
X

t

))
=
X

t
. (4.133)

It follows that

λA1(urar(x, t)) = 2αurar(x, t) =
X

t
, (4.134)

so

urar =
X

2αt
, (4.135)

where urar is the value of u inside the rarefaction. Clearly inside a rarefaction will hold

QrarL =

[
AL

ALurar

]
, or QrarR =

[
AR

ARurar

]
, (4.136)
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according to the actual side of the rarefaction.

Please note that for (4.61), (4.102) and (4.134), the actual borders of a rarefaction in the (x, t)
plane are

for a left rarefaction
left border

X

t
= λA1(uL) = 2αuL,

right border
X

t
= λA1(u

∗
L) = 2αu∗

L,
(4.137)

for a right rarefaction
left border

X

t
= λA1(u

∗
R) = 2αu∗

R,

right border
X

t
= λA1(uR) = 2αuR,

(4.138)

for a transonic rarefaction
left border

X

t
= λA1(uL) = 2αuL,

right border
X

t
= λA1(uR) = 2αuR.

(4.139)

4.1.7 Complete exact solution of the Riemann problem for

the advection system

Here we present the complete exact solution in the entire vessel domain according to the wave
pattern of the λA1 wave. Being again X = x − xd, x being the spatial coordinate of the vessel
domain and xd the spatial coordinate of the λA2 discontinuity and t the time, we obtain the
complete solution according to the cases of Theorem 4.1.1.

• Case of left rarefaction:

Q(x, t) =





QL if X < (2αuL)t,

QrarL if (2αuL)t ≤ X ≤ (2αu∗
L)t,

Q∗
AL if (2αu∗

L)t < X ≤ 0

QR if X > 0.

(4.140)

• Case of left shock:

Q(x, t) =





QL if X ≤ SLt,

Q∗
AL if SLt < X ≤ 0,

QR if X > 0.

(4.141)

• Case of right rarefaction:

Q(x, t) =





QL if X ≤ 0,

Q∗
AR if 0 < X ≤ (2αu∗

R)t,

QrarR if (2αu∗
R)t ≤ X ≤ (2αuR)t,

QR if X > 2αuRt.

(4.142)

• Case of right shock:

Q(x, t) =





QL if X ≤ 0,

Q∗
AR if 0 < X ≤ SRt,

QR if X > SRt.

(4.143)
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• Case of transonic rarefaction:

Q(x, t) =





QL if X < (2αuL)t,

QrarL if (2αuL)t ≤ X ≤ 0,

QrarR if 0 < X ≤ (2αuR)t,

QR if X > (2αuR)t.

(4.144)

• Case of steady-state solution or stationary solution:

Q(x, t) =

{
QL if X ≤ 0,

QR if X > 0.
(4.145)

QL, QR are defined in (4.122), QrarL and QrarR are defined in (4.136) and (4.135), while Q∗
AL, Q∗

AR

as described in Section 4.1.5, are defined as

Q∗
AL =

[
AL

ALu∗
L

]
, Q∗

AR =

[
AR

ARu∗
R

]
, (4.146)

with u∗
L and u∗

R in Proposition 4.1.8. SL and SR are defined in (4.21).

4.1.8 Results

We propose 7 test problems including arteries and veins. However the parameters that distinguish
arteries and veins are not involved in the advection system, so the type of vessel is not specified.
The solution of Test 1 describes a right rarefaction. In Test 2 is proposed a left shock, in Test 3 a
left rarefaction,that can be also classified as a transonic one, Test 4 produces a steady state solution
not stationary. In Test 5 the solution is stationary, in Test 6 a right rarefaction is produced, and
finally in Test 7 a transonic rarefaction is given. These exact solutions are further validated by the
comparison with a numerical, mesh-independent solution obtained with a second order, centred,
extension of FORCE scheme, FORCEII (Appendix A.2) for different values of α ∈ [1, 2] with a
mesh of I = 3000 computational cells and a Courant-Friederich-Lewy coefficient CC f l = 0.9.

Initial data are in Tables 4.1, 4.2, while in Table 4.3 the exact solution of the Riemann problem
in the Star Region is depicted. Results are in Figs. 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10.

4.2 Exact solution of the Riemann problem for the

advection system derived from the 1D blood

flow equations with discontinuous parameters

The splitting is treated in Section 3.2. The resulting advection system is now





∂t A = 0,

∂t(Au) + α∂x(Au2) = 0,

∂tK = 0,

∂t A0 = 0,

∂t pe = 0.

(4.147)
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Table 4.1: Parameters used for Tests 1 to 7: momentum correction coefficient
α, domain length ℓ; location of the initial discontinuity xd and
output time tEnd. The units of measures used for this Thesis are:
m, s, kg, Pa.

Test α ℓ[m] xd[m] tEnd[s]

1 1.0 0.5 0.5ℓ 0.3
2 1.1 0.5 0.5ℓ 0.15
3 1.0 0.5 0.5ℓ 0.2
4 1.0 0.5 0.5ℓ 0.1
5 2.0 0.5 0.5ℓ 0.05
6 4/3 0.5 0.5ℓ 0.05
7 1.0 0.5 0.5ℓ 0.1

Table 4.2: Initial conditions and wave patterns for Tests from 1 to 7.

Test AL[m
2] uL[m/s] AR[m

2] uR[m/s] Wave pattern

1 3.5 · 10−4 0.1 3.0 · 10−4 0.3 right rarefaction
2 2.9 · 10−4 −0.5 3.5 · 10−4 −0.5 left shock
3 3.5 · 10−4 0.5 3.05 · 10−4 0.1 right shock
4 3.14 · 10−4 0.5 3.14 · 10−4 −0.5 steady-state solution not stationary
5 3.5 · 10−4 0.0 3.0 · 10−4 0.0 stationary solution
6 3.1 · 10−4 −0.5 3.0 · 10−4 0.0 left rarefaction/transonic rarefaction
7 2.0 · 10−5 −0.2 1.9 · 10−5 0.7 transonic rarefaction

Table 4.3: Exact solution in the Star Region of the Riemann problem for the advection system.

Test A∗
L[m

2] u∗
L[m/s] A∗

R[m
2] u∗

R[m/s] Note

1 3.5 · 10−4 0.1 3.0 · 10−4 0.1080 Q∗
A = Q∗

AR
2 2.9 · 10−4 −0.5493 3.5 · 10−4 −0.5 Q∗ = Q∗

AL
3 3.5 · 10−4 0.5 3.05 · 10−4 0.5356 Q∗ = Q∗

AR
Otherwise both are considered.

4 3.14 · 10−4 −0.5 3.14 · 10−4 0.5 Q∗
AL and Q∗

AR
5 3.5 · 10−4 0.0 3.0 · 10−4 0.0 Q∗

AL and Q∗
AR

6 3.1 · 10−5 0.0 3.0 · 10−5 0.0 Q∗
A = Q∗

AL as a left rarefaction.
7 2.0 · 10−5 0.0 1.9 · 10−5 0.0 Q∗

AL and Q∗
AR

The resulting system is still conservative, i.e.

∂tQ + ∂xA(Q) = 0, (4.148)

where

Q =




A(x, t)
Au(x, t)

K(x)
A0(x)
pe(x)




, A(Q) =




Au
αAu2

0
0
0




. (4.149)

The jacobian of (4.149) is

Â(Q) =




0 0 0 0 0
−αu2 2αu 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




. (4.150)
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Exact solution of the Riemann problem for the advection system. Tests 1,2,3
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Figure 4.4: Test 1. Right rarefaction. Momentum correction coefficient α = 1. Exact solution vs. FORCEII
numerical scheme. The plot to the right shows a detail of the solution in the Star Region for
velocity u. Initial data in Tables 4.1, 4.2.
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Figure 4.5: Test 2. Left shock. Momentum correction coefficient α = 1.1. Exact solution vs. FORCEII
numerical scheme. The plot to the right shows a detail of the solution in the Star Region for
velocity u. Initial data in Tables 4.1, 4.2.
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Figure 4.6: Test 3. Right shock. Momentum correction coefficient α = 1. Exact solution vs. FORCEII
numerical scheme. The plot to the right shows a detail of the solution in the Star Region for
velocity u. Initial data in Tables 4.1, 4.2.

The eigenvalues of (4.150) are all real and given by

λA1 = 2αu λA2 = λA3 = λA4 = λA5 = 0. (4.151)
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A possible choice of right eigenvectors corresponding to eigenvalues (4.151) is

R1 =




0
1
0
0
0




, R2 =




0
0
0
0
1




, R3 =




0
0
0
1
0




, R4 =




0
0
1
0
0




, R5 =




1
u
2
0
0
0




. (4.152)

Proposition 4.2.1 (Hyperbolicity). System (4.147) is hyperbolic ∀Q ∈ Ω = [R+ × R × R
+ × R

+ ×
R].

Proof. It is straightforward to see that eigenvalues (4.151) are always real and eigenvectors (4.152)
are linearly independent in the entire domain Ω. System (4.147) however, is not strictly hyperbolic
since there are four identical eigenvalues.

Proposition 4.2.2 (Nature of the λA1-characteristic field). The λA1-characteristic field is genuinely
non-linear ∀Q ∈ Ω.

Proof. It can be easily verified that

∇λA1(Q) · RA1(Q) =
2α

A
> 0 ∀Q ∈ Ω. (4.153)

Proposition 4.2.3 (Nature of λAk-characteristic field, k = 2, 3, 4, 5). The λAk-characteristic field
k = 2, 3, 4, 5 is linearly degenerate ∀Q ∈ Ω.

Proof. It can be easily verified that

∇λAk(Q) · RAk(Q) = 0 k = 2, 3, 4, 5 ∀Q ∈ Ω. (4.154)

The Riemann problem for system (4.148) is





∂tQ + ∂xA(Q) = 0, x ∈ R, t > 0,

Q(x, 0) =

{
QL if x < xd,

QR if x > xd,

(4.155)

with

QL =




AL

AuL

KL

A0L

peL




, QR =




AR

AuR

KR

A0R

peR




. (4.156)

Regarding the parameters from (4.147) we have

∂tK = 0 ∂t A0 = 0, ∂t pe = 0, (4.157)
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in other words the parameters do not change with time, i.e. remain equal to the initial conditions

K(x) =

{
KL for the left part,

KR for the right part,

A0(x) =

{
A0L for the left part,

A0R for the right part,

pe(x) =

{
peL for the left part,

peR for the right part,

(4.158)

where the left part is s.t X < 0 and the right part is s.t. X > 0 with X = x − xd and xd is the initial
discontinuity of the parameters, as defined in Section 4.1.7, and proved in the following

Proposition 4.2.4 (Wave relations across the λA2 = λA3 = λA4 = λA5-wave for the case λA1 ̸= 0).
The relations across the contact discontinuity marked with λA2 = λA3 = λA4 = λA5, with λA1 ̸= 0, are
given by

A ̸= const, ln(|u|) + 1

2
ln(A) = const, K ̸= const, A0 ̸= const, pe ̸= const.

(4.159)

Proof. Following the method presented in [81], we consider matrix A(Q) in (4.150). For an
arbitrary right eigenvector R = [r1, r2, r3, r4, r5, r6]

T we have

AR = λR, (4.160)

which gives the algebraic system





0 = λr1,

−αu2r1 + 2αur2 = λr2,

0 = λr3,

0 = λr4,

0 = λr5.

(4.161)

Putting λ = 0 in (4.161), r1 = β, r3 = γ, r4 = ϵ, r5 = δ, for β, γ, ϵ, δ ∈ R, arbitrary constants, we
obtain

R0 =




β
uβ

2
γ
ϵ
δ




. (4.162)

This is a general form of a vector belonging to the subspace associated with λ = 0 for every
choice of β, γ, ϵ, δ, ∈ R. We then apply the generalized Riemann invariants method to this vector

dA

β
=

dq

uβ

2

=
dK

γ
=

dA0

ϵ
=

dpe

δ
. (4.163)

From the first and the second of (4.163) we have

u

2
dA = d(Au) (4.164)
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that has been already treated in Proposition 4.1.7. From the third, the fourth and the fifth the
only thing we can say is that

K ̸= const, A0 ̸= const, pe ̸= const. (4.165)

Proposition 4.2.5 (Wave relations across rarefactions for the case λA1 ̸= 0). The generalized Riemann
invariants for the case λA1 = 2αu ̸= 0, are given by

A = const, q ̸= const, K = const, A0 = const, pe = const, (4.166)

for the λA1 -characteristic field.

Proof. It is straightforward (please see [90]) to show that Riemann invariants can be obtained
from

dA

0
=

dq

1
=

dK

0
=

dA0

0
=

dpe

0
. (4.167)

So, from the first we have A = const, from the third we have K = const, from the fourth we have
A0 = const from the fifth we have pe = const, and being dq ̸= const we have u ̸= const.

In conclusion it is straightforward to note that parameters K, A0 and pe are not involved in the
computation of variable A and u so their presence and values does not change the final results
that are exactly those presented in Section 4.1.8.

4.3 Conclusions

In this Chapter we have built the exact solution of the Riemann problem for the advection
system (4.1) arising from the flux splitting of the complete conservative 1D blood flow equations
for arteries and veins, with general constant momentum correction coefficient, presented in
Chapter 3.1, and the advection-pressure splitting of the complete non-conservative 1D blood
flow equations for arteries and veins, with general constant momentum correction coefficient,
described in Chapter 3.2 We have given a complete mathematical analysis of the wave relations
and have presented the conditions to obtain each type of wave. Through a comparison with the
solutions obtained with the centred, second order numerical scheme FORCEII (Appendix A.2) we
have further proved its correctness.
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Exact solution of the Riemann problem for the advection system. Tests 4,5,6,7
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Figure 4.7: Test 4. Steady-state solution not stationary. Momentum correction coefficient α = 1. Exact
solution vs. FORCEII numerical scheme. Initial data in Tables 4.1, 4.2.
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Figure 4.8: Test 5. Stationary solution. Momentum correction coefficient α = 2. Exact solution vs. FORCEII
numerical scheme. Initial data in Tables 4.1, 4.2.
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Figure 4.9: Test 6. Left rarefaction. Momentum correction coefficient α = 4/3. Exact solution vs. FORCEII
numerical scheme. Initial data in Tables 4.1, 4.2.
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Figure 4.10: Test 7. Transonic rarefaction. Momentum correction coefficient α = 1. Exact solution vs.
FORCEII numerical scheme. Initial data in Tables 4.1, 4.2.



Chapter5

Exact solution of the Riemann

problem for the conservative 1D pressure

system with transport

In this Chapter we solve exactly the Riemann problem for the pressure system arising in the
advection-pressure splitting for conservative 1D blood flow models presented in Chapter 3.1, for
tube laws describing arteries and veins with a constant momentum correction coefficient different
from one and a passive scalar transport equation added.

In case of arteries the genuine non-linearity of the characteristic fields originates rarefactions
and shocks, in addition to contact waves corresponding to the linearly degenerate fields. On the
contrary in case of veins, the loss of genuine non-linearity leads to the presence of compound
waves, i.e. mixed waves, composed by rarefactions and shocks. We give a detailed mathematical
analysis and a numerical procedure to compute the resulting solution. Finally we further verify
the obtained mathematical results against a second order extension of FORCE numerical scheme.

In detail: in Section 5.1, we present the (conservative) pressure system, in Section 5.2, we
present the Riemann problem for the pressure system, in cases of both arteries and veins. In
Section 5.3 we describe in detail the relations across each wave and the construction of the final
complete exact solution of the Riemann problem for the pressure system in case of arteries, with
the numerical procedure we use to compute it. In Section 5.4 we present the theoretical analysis
of the mathematical relations across the waves in case of veins, and the numerical procedure we
use to construct the exact solution also in this case, facing the loss of genuine non-linearity and
the formation of compound waves. in Section 5.5 the conclusions are drawn.

The research article regarding this topic is in preparation.

5.1 The conservative pressure system with trans-

port

The pressure system arising after the splitting for the conservative 1D blood flow equations has
been introduced in Chapter 3.1 and is here recalled for convenience. The system is





∂t A + ∂x(Au) = 0,

∂t(Au) + ∂x

(∫
c2(A)dA

)
= 0,

∂t(Aϕ) = 0,

(5.1)

113
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where as usual A(x, t) is the cross-sectional area of the vessel at position x and time t, assumed
to be A ∈ R

+, u(x, t) is the averaged velocity of blood at a cross section, ϕ(x, t) ∈ R
+
0 is the

concentration of the passive scalar. c is the wave speed already defined in (2.14)

c(A) =

√
K

ρ

[
m

(
A

A0

)m

− n

(
A

A0

)n]
, (5.2)

with

K =





E

(1 − ν2)

(
h0

R0

)
for arteries,

E

12(1 − ν2)

(
h0

R0

)3

for veins,

(5.3)

m =

{
1/2 for arteries,

10 for veins,
n =

{
0 for arteries,

−3/2 for veins.
(5.4)

h0 is the vessel wall thickness, A0 and R0 are the cross-sectional area of the vessel and the radius
at equilibrium, E is the Young’s modulus, ν is the Poisson ratio taken as ν = 0.5, m, n ∈ R and
in general are taken m > 0 and −2 ≤ n ≤ 0. K ∈ R

+, A0 ∈ R
+, R0 ∈ R

+, E ∈ R
+, h0 ∈ R

+ are
constants. ρ is the density of blood, assumed constant. c is always real, for the choices of m and n
given in (5.4).

(5.1) can be written as
∂tQ + ∂xP(Q) = 0, (5.5)

where

Q =




A
Au
Aϕ


 ,

P(Q) =




Au
∫

c2(A) dA

0


 =




Au
KA

ρ

(
m

m + 1

(
A

A0

)m

− n

n + 1

(
A

A0

)n)

0




(5.6)

The Jacobian of system (5.1) is

J P(Q) =




0 1 0
c2 0 0
0 0 0


 . (5.7)

The eigenvalues of J P(Q) are

λP1 = −c, λP2 = 0, λP3 = +c, (5.8)

moreover a possible choice of right eigenvectors corresponding to eigenvalues (5.8) is

RP1 =




1
−c
0


 , RP2 =




0
0
1


 , RP3 =




1
c
0


 , (5.9)

where and c is the wave speed (5.2).

Proposition 5.1.1 (Hyperbolicity). System (5.1) is strictly hyperbolic under the following hypotheses:

1. the set of admissible solutions is restricted to Q ∈ Ω = [R+ × R × R
+
0 ] ⊂ R

3;
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2. the tube law is a monotonically increasing function of the cross-sectional area A, i.e.
∂p

∂A
> 0.

Proof. This can be clearly seen from the definition of wave speed given in (5.2). Under the
conditions considered in this proposition c ∈ R

+ ∀Q ∈ Ω, which results in λP1 ∈ R
−, λP3 ∈ R

+,
∀Q ∈ Ω. In particular this is true for the parameters given in (5.3), (5.4).

Proposition 5.1.2 (Nature of the λP1 and λP3 - characteristic fields). Under the hypotheses of
Proposition 5.1.1, in case of arteries (parameters are given in (5.4)) the λP1 and λP3 - characteristic fields
are genuinely non-linear with

∇λP1(Q) · RP1(Q) < 0, ∀Q ∈ Ω,

∇λP3(Q) · RP3(Q) > 0, ∀Q ∈ Ω,
(5.10)

instead in case of veins, they are not. In fact

∇λP1(Q) · RP1(Q)





> 0 for A < Ac,

= 0 for A = Ac,

< 0 for A > Ac;

∇λP3(Q) · RP3(Q)





< 0 for A < Ac,

= 0 for A = Ac,

> 0 for A > Ac,

(5.11)

where Ac, for parameters in (5.4), is
Ac ≈ 0.7190 A0. (5.12)

A characteristic field in which (5.11) occurs is called nongenuinely non-linear [17].

Proof. It can be easily verified that

∇λP1(Q) · RP1(Q) = − ∂c

∂A
, (5.13)

and

∇λP3(Q) · RP3(Q) =
∂c

∂A
, (5.14)

where RP1 and RP3 are the right eigenvectors (5.9).

For genuine non-linearity we must prove that
∂c

∂A
̸= 0. Having

∂c

∂A
=

K

ρ

((
A

A0

)m

m2 −
(

A

A0

)n

n2

)

2A

√
K

ρ

((
A

A0

)m

m −
(

A

A0

)n

n

) , (5.15)

being √
K

ρ

((
A

A0

)m

m −
(

A

A0

)n

n

)
= c > 0, (5.16)

by hypothesis, with c as in (5.2) and being by hypothesis K > 0, ρ > 0, A0 > 0 and A > 0, we
must prove that ((

A

A0

)m

m2 −
(

A

A0

)n

n2

)
̸= 0, (5.17)
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for our considered values of variables and parameters.
It is easy to verify that for the case of arteries, i.e m = 0.5 and n = 0, (5.17) always holds, and in
particular

∂c

∂A
> 0, ∀A ∈ R

+, (5.18)

that gives the result. On the contrary, for the case of veins i.e m = 10 and n = −1.5

y(ζ) = ζ10102 − ζ−1.51.52, (5.19)

with ζ =
A

A0
, changes its sign from negative to positive and exists one and only ζz in the interval

I =]0, ∞[ s.t. y(ζz) = 0, that is approximately

ζz =
Ac

A0
≈ 0.7190, (5.20)

this means that in case of veins

∂c

∂A





< 0 for A < Ac,

= 0 for A = Ac,

> 0 for A > Ac,

(5.21)

the statement briefly follows.

Proposition 5.1.3 (Generalization of Proposition 5.1.2). In case of arteries (m > 0, n = 0) the λP1

and λP3 - characteristic fields are genuinely non-linear, instead in case of veins (m > 0, −2 ≤ n < 0),
they are not.

Proof. Condition (5.17) holds for any m > 0, n = 0, while it is always false for any m > 0,
−2 ≤ n < 0. The proof is straightforward, having

ζmm2 − ζnn2 = 0, (5.22)

that, considering generic m > 0 and −2 ≤ n ≤ 0, can be written as

ζm+|n|m2 − n2

ζ |n|
= 0, (5.23)

by hypothesis
ζ ∈ R

+, (5.24)

so we must check
g(ζ) = ζm+|n|m2 − n2. (5.25)

g in (5.25) is s.t. g(0) = −n2 and is continuous in R
+ for any m + |n| > 0, the derivative

g′(ζ) = m2(m + |n|)ζm+|n|−1
> 0 ∀ζ ∈ R

+, (5.26)

(5.25) is increasing in R
+ and

lim
ζ→+∞

g(ζ) = +∞. (5.27)
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Consequently if n ̸= 0, g(0) < 0 and g(ζ) > 0 for large enough ζ, so, for the Intermediate Value
Theorem, there exists at least one zero for (5.25). Furthermore, as g(ζ) is a strictly increasing
function, the root is unique. In other words, if n ̸= 0 there is always a unique state ζz ∈ R

+ s.t.

g(ζz) = ζ
m+|n|
z m2 − n2 = 0, (5.28)

othewise for n = 0 (5.25) is always positive.

Proposition 5.1.4 (Nature of the λP2 - characteristic field). Under the hypotheses of Proposition 5.1.1,
the λP2 - characteristic field is linearly degenerate.

Proof. It is straightforward to show that

∇λP2(Q) · RP2(Q) = 0, ∀Q ∈ Ω. (5.29)

5.2 The Riemann problem for the pressure system

The Riemann problem (later also named RP) for system (5.1) is





∂tQ + ∂xP(Q) = 0, x ∈ R, t > 0,

Q(x, 0) =

{
QL if x < xd,

QR, if x > xd,

(5.30)

where xd ∈ R is the spatial location of the initial discontinuity. The initial conditions are given by
the two constant states

QL =




AL

ALuL

ALϕL


 , QR =




AR

ARuR

ARϕR


 . (5.31)

The unknowns are Q∗
PL and Q∗

PR defined

Q∗
PL =




A∗
L

(Au)∗L
(Aϕ)∗L


 , Q∗

PR =




A∗
R

(Au)∗R
(Aϕ)∗R


 . (5.32)

Fig. 5.1 depicts the structure of the exact solution of the Riemann problem (5.30) for the pressure
system (5.1). The waves related to the two real eigenvalues λP1 = −c, λP3 = +c in case of
arteries represent waves associated with genuinely non-linear fields that can be either shocks or
rarefactions [80], while in case of veins this property is lost, allowing the formation of compound
waves [49], the wave related to the eigenvalue λP2 = 0 is associated with a linearly degenerate
field and is a contact discontinuity.

We are always in subsonic regime, because

λP1(Q) < 0 and λP3(Q) > 0, i.e. c > 0, ∀Q ∈ Ω. (5.33)

Remark 5.2.1. In this Thesis we do not focus our attention on proving the existence and uniqueness
of the solution of the Riemann problem for the pressure system. Results have been obtained in case of
2 × 2 and n × n hyperbolic systems of conservation laws with a loss of genuine non-linearity in isolated
(hyper)surfaces and under certain conditions of the related fluxes [49, 50]
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t

xx = xd

λ3 = c

λ2 = 0

λ1 = −c Q∗

PL Q∗

PR

QL QR

Figure 5.1: The configuration of the exact solution of the Riemann problem for the pressure system (5.30).
The green solid lines in case of arteries represent waves associated with genuinely non-linear
fields that can be either shocks or rarefactions, while in case of veins this property is lost, allowing
the formation of compound waves. The purple dashed line represents the contact discontinuity
for the passive scalar and is associated with a linearly degenerate field. In this Chapter the λP1-
wave will be sometimes called left wave, while the λP3-one, right wave. It follows that the related
wave patterns will be called left rarefaction/shock/compound or right rarefaction/shock/compound.

Proposition 5.2.1 (Generalized Riemann invariants for the λP1 and λP3- characteristic fields). The
generalized Riemann invariants are given by

q +
∫

c(A)dA = const, Aϕ = const, (5.34)

for the λP1 - characteristic field,

q −
∫

c(A)dA = const, Aϕ = const, (5.35)

for the λP3 - characteristic field.

Proof. The problem can be solved applying the generalized Riemann invariants method [90], i.e
for a given hyperbolic system of n unknowns [w1, w2, . . . , wn]T , for any λk - characteristic field
with right eigenvector Rk =[r1,k, r2,k, . . . , rn,k]

T the generalized Riemann invariants are solutions of
the following n − 1 ordinary differential equations in phase-plane

dw1

r1,k
=

dw2

r2,k
= · · · = dwn

rn,k
. (5.36)

.

For the λP1 - characteristic field we have

dA

1
=

dq

−c
=

d(Aϕ)

0
, (5.37)

i.e. from the first and the second term

(−c)dA = dq, (5.38)

and from the third
d(Aϕ) = 0 =⇒ Aϕ = const. (5.39)
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For the λP3 - characteristic field

dA

1
=

dq

c
=

d(Aϕ)

0
, (5.40)

i.e. from the first and the second term
cdA = dq, (5.41)

and from the third
d(Aϕ) = 0 =⇒ Aϕ = const. (5.42)

Proposition 5.2.2 (Generalized Riemann invariants for the λP2- characteristic field). The generalized
Riemann invariants for the λP2 - characteristic field are

A = const, q = const, ϕ ̸= const. (5.43)

Proof. For the λP2 - characteristic field

dA

0
=

dq

0
=

dAϕ

1
, (5.44)

that implies
A = const, q = const, ϕ ̸= const. (5.45)

Proposition 5.2.2 states clearly that across the λP2 - wave, only variable ϕ changes, so Q∗
PL and

Q∗
PR in (5.32), become

Q∗
PL =




A∗

A∗u∗ = q∗

A∗ϕ∗
L


 , Q∗

PR =




A∗

A∗u∗ = q∗

A∗ϕ∗
R


 . (5.46)

Now we will treat separately the exact solution of the Riemann problem for the pressure system
introduced in this Section, for the cases of arteries (Section 5.3) and veins (Section 5.4). In each of
these Sections we refer to the model proposed in Section 5.1 and to the relations described in
Section5.2 that are valid for both cases.

Remark 5.2.1. It is worth noting that, being λPk(Q) = ±c(A), k = 1, 3; in this Chapter we
sometimes refer to the function λPk(Q) directly as λPk(A).

5.3 Exact solution of the Riemann problem for the

pressure system in arteries

The model is that presented in Section 5.2, now we will describe how to calculate the exact
solution of the Riemann problem in case of arteries.

5.3.1 Wave relations

The λP2- wave relations are those in Proposition 5.2.2. Regarding the λP1- and λP3- waves, for
arteries the related fields are genuinely non-linear, so they can be smooth waves (rarefactions) or
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discontinuous waves (shocks) [80]. Now we will describe the relations in these different cases
with a graphical insight into the rarefaction and shock curves in the phase plane (A, q) in a similar
manner as in Chapter 2.

5.3.1.1 λP1 and λP3- wave relations. Case of rarefactions

The generalized Riemann invariants in Proposition 5.2.1 clearly hold. The third equation in (5.1)
is not affecting the others so variable ϕ can be treated separately. From Proposition 5.2.1, the
generalized Riemann invariants for A and q defined from these ODEs with initial conditions

ODE:
dq

dA
= −c,

IC: q(AL) = qL,





for the λP1-wave, (5.47)

ODE:
dq

dA
= c,

IC: q(AR) = qR,





for the λP3-wave, (5.48)

where c is defined in (5.2). The solutions of (5.47) and (5.48) for A ∈ R
+, are the two integral

curves, one for each wave (the association of the λP1-wave with QL in (5.47) is straightforward:
this latter is the initial data that is connected with the unknown Q∗

PL by the considered wave, the
same for the right wave) that are actually functions of variable A (see Fig. 5.2a)

qrarL(A) and qrarR(A) with A ∈ R
+. (5.49)

The resulting curves are
Q(A) = (A, q(A)). (5.50)

Being q a function of A we will usually refer to these curves simply as q(A). Additionally, with
an abuse of notation, we sometimes refer to Q(A) = [A, q(A)]T as a generic state belonging to
that curve.

Proposition 5.3.1 (Physically admissible rarefaction curves).
If the λP1-wave, associated with a genuinely non-linear field, is a smooth wave (i.e. is a physically
admissible rarefaction), the related admissible rarefaction curve is

qa
rarL(A) = {[A, qrarL(A)]T , s.t. A ∈ R

+ and A ≤ AL}, (5.51)

with qrarL(A) in (5.49). In particular A∗ ≤ AL.

If the λP3-wave, associated with a genuinely non-linear field, is a smooth wave (i.e. is a physically
admissible rarefaction), the related admissible rarefaction curve is

qa
rarR(A) = {[A, qrarR(A)]T , s.t. A ∈ R

+ and A ≤ AR}, (5.52)

with qrarR(A) in (5.49). In particular A∗ ≤ AR.

Proof. In a k-th genuinely non-linear characteristic field, λk(A) is monotonically varying along
the entire integral curve. Given the left state QL̂ belonging to the aforementioned integral curve
Qrar(A) = (A, qrar(A)), the admissible rarefaction curve is the part of the that integral curve s.t.

λk(QL̂) ≤ λk(Qrar). (5.53)
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For the case of the λP1-wave, having a physically admissible rarefaction with left value QL,
the admissible rarefaction curve is the set of generic states QrarL(A) = [A, qrarL(A)]T in the
phase-plane (A, q), lying on the left integral curve qrarL(A) built in (5.47), for A ∈ R

+, such that

λP1(QL) ≤ λP1(QrarL(A)). (5.54)

Considering now the curve QrarL(A) = (A, qrarL(A)) we want to calculate

dλP1(QrarL(A))

dA
= ∇λP1(QrarL(A)) · dQrarL(A)

dA
. (5.55)

We have that

dQrarL(A)

dA
=




1
dqrarL(A)

dA


 , (5.56)

but by construction of (5.47)
dqrarL(A)

dA
= −c(A), (5.57)

consequently
dQrarL(A)

dA
=

[
1

−c(A)

]
= RP1(QrarL(A)), (5.58)

where RP1 is the right eigenvector in (5.9). So

dλP1(QrarL(A))

dA
= ∇λP1(QrarL(A)) · RP1(QrarL(A)) < 0, (5.59)

for genuine non-linearity of the λP1-field, as presented in Proposition 5.1.2. This means that
λP1(QrarL(A)) is strictly decreasing in the domain A ∈ R

+. In other words from (5.54)

λP1(QL) = λP1(QrarL(AL)) ≤ λP1(QrarL(A)) =⇒ A ≤ AL, (5.60)

thus we obtain the statement. In particular for a left rarefaction that has as left state QL and right
state Q∗, (5.54) becomes

λP1(QL) ≤ λP1(Q
∗
PL), (5.61)

from which
A∗ ≤ AL. (5.62)

The proof for the λP3 - wave (sometimes called in this Chapter right wave) is similar, considering
that for a right rarefaction

λP3(QrarR(A)) ≤ λP3(QR) ∀Q, (5.63)

must hold, furthermore

dλP3(QrarR(A))

dA
= ∇λP3(QrarR(A)) · RP3(QrarR(A)) > 0, (5.64)

for genuine non-linearity of the λP3-field, as proved in Proposition 5.1.2.

5.3.1.2 λP1 and λP3- wave relations. Case of shocks

In this Section we treat the relations across the λP1 and λP3-waves, in case they are shocks.
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(a) The integral curves qrarL and qrarR defined in
(5.49) for data of Test 2.
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(b) The shock curves qshockL and qshockR defined
in (5.66) and (5.90) for data of Test 2.
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(c) The admissible rarefaction and shock curves for Test 2 as
defined in Propositions 5.3.1, 5.3.2, 5.3.3.

Figure 5.2: Integral and shock curves for the Riemann problem in case of arteries with data of Test 2 in
Tables 5.1, 5.2.

Proposition 5.3.2 (Entropy-satisfying left shock curves - case of arteries).
If the λP1 - wave, associated with a genuinely non-linear field, is an entropy satisfying shock, the related
admissible shock curve is

qa
shockL(A) = {[A, qshockL(A)]T , s.t. A ∈ R

+ and A > AL}, (5.65)

where

qshockL(A) =

{
qL + fL(A) for A ≤ AL,

qL − fL(A) for A > AL.
with fL(A) =

√
(A − AL)

∫ A

AL

c2(σ)dσ. (5.66)

In particular Q∗
PL is s.t. 




q∗ = qL − fL(A∗),

ϕ∗
L =

AL

A∗ ϕL,
(5.67)

with
A∗

> AL. (5.68)

Proof. If a discontinuity propagating with speed S has constant values Q̂, Q̃ on either side of it,
then the Rankine-Hugoniot jump condition

P(Q̃)−P(Q̂) = S(Q̃ − Q̂), (5.69)
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where P is defined in (5.6), must hold (see for example [44]). Now substituting Q̃ = QshockL,
Q̂ = QL and S = SL; attempting to determine the set of all states QshockL(A) = [A, qshockL(A)]T

that can be connected to QL by a discontinuity satisfying (5.69) for some SL, the so-called Hugoniot
Locus of QL ∈ R

3, we obtain a system of 3 equations in 3 + 1 unknowns: the 3 components of
QshockL and SL 




qshockL(A)− qL = SL(A − AL),
∫ A

AL

c2(σ)dσ = SL(qshockL(A)− qL),

0 = SL(AϕL(A)− ALϕL),

(5.70)

with SL the left shock speed.

We first analyze the first two variables A and q. With some calculations we obtain from the first
and the second equation in (5.70)

(qshockL(A)− qL)
2 − (A − AL)

∫ A

AL

c2(σ)dσ = 0, (5.71)

so

qshockL(A)− qL = ±
√
(A − AL)

∫ A

AL

c2(σ)dσ. (5.72)

As result

qshockL(A) = qL ± fL(A), with fL(A) =

√
(A − AL)

∫ A

AL

c2(σ)dσ. (5.73)

To choose the correct sign we consider that for the first of (5.70)

SL =
qshockL(A)− qL

A − AL
=

± fL(A)

A − AL
=

±
√
(A − AL)

∫ A
AL

c2(σ)dσ

A − AL
, (5.74)

a shock, to be entropy-satisfying, must fulfill the Lax-Entropy condition [42]

λP1(QL) > SL > λP1(QshockL(A)) =⇒ −c(AL) > SL > −c(A). (5.75)

It follows that SL < 0, being c > 0 by hypothesis in (5.2). This leads to two possibilities:

SL =





+ fL(A)

A − AL
for A < AL,

− fL(A)

A − AL
for A > AL,

(5.76)

i.e

qshockL(A) =

{
qL + fL(A) for A ≤ AL,

qL − fL(A) for A > AL,
(5.77)

extended to A = AL by continuity. This curve is locally at least C1 in a neighbourhood of AL as it
is easy to prove, it belongs to the Hugoniot Locus of QL (please see [33]) and is shown in Fig. 5.2b.
We proceed calculating

dλP1(QshockL(A))

dA
= ∇λP1(QshockL(A)) · dQshockL(A)

dA
, (5.78)
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where

QshockL(A) =

[
A

qshockL(A)

]
, (5.79)

is the generic state belonging to the left shock curve, with

dQshockL(A)

dA
=




1
dqshockL(A)

dA


 =




1

±d fL(A)

dA


 . (5.80)

It is clear that

dλP1(QshockL(A))

dA
= ∇λP1(QshockL(A)) · dQshockL(A)

dA
= − ∂c

∂A
, (5.81)

i.e.
dλP1(QshockL(A))

dA
=

dλP1(QrarL(A))

dA
< 0, (5.82)

for genuine non-linearity of the left field in case of arteries (Proposition 5.1.2). The entropy
satisfying part of the curve (5.77) considering the Lax-Entropy condition (5.75), is

λP1(QL) = λP1(QshockL(AL)) > λP1(QshockL(A)) =⇒ A > AL. (5.83)

In particular, considering Q∗
PL, which, when admissible, belongs by definition to the entropy-

satisfying subset of the Hugoniot Locus of QL, (5.83) becomes

λP1(QshockL(AL)) > λP1(QshockL(A∗)) =⇒ A∗
> AL. (5.84)

A∗ > AL is thus a necessary condition for an entropy-satisfying shock, and the correct formula
from (5.77) is

q∗ = qL − fL(A∗), (5.85)

obtaining the statement.

Regarding the passive scalar ϕ, the third equation in (5.70) is verified for SL = 0 trivial solution,
or for

A∗ϕ∗
L = ALϕL ⇐⇒ ϕ∗

L =
AL

A∗ ϕL, (5.86)

this is clear also from the third of (5.1)

∂t(Aϕ) = 0, (5.87)

i.e.
Aϕ = const ∀t ∈ R

+
0 . (5.88)

Proposition 5.3.3 (Entropy-satisfying right shock curves - case of arteries). If the λP1 - wave,
associated with a genuinely non-linear field, is an entropy satisfying shock, the related admissible shock
curve is

qa
shockR(A) = {[A, qshockR(A)]T , s.t. A ∈ R

+ and A > AR}, (5.89)

where

qshockR(A) =

{
qR + fR(A) for A ≤ AR,

qR − fR(A) for A > AR.
with fR(A) =

√
(A − AR)

∫ A

AR

c2(σ)dσ. (5.90)
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In particular Q∗
PR is s.t. 




q∗ = qR + fR(A∗),

ϕ∗
R =

AR

A∗ ϕR,
(5.91)

with
A∗

> AR. (5.92)

Proof. With a proof similar to that of Proposition 5.3.2 we obtain the result, considering that now
the Lax-Entropy condition is

λP3(QshockR(A)) > SR > λP3(QR) =⇒ c(A) > SR > c(AR), (5.93)

that leads to SR > 0, the locally smooth right shock curve in the phase-plane (A, q) (please see
Fig. 5.2b) is

qshockR(A) =

{
qR − fR(A) for A ≤ AR,

qR + fR(A) for A > AR,
(5.94)

and
dλP3(QshockR(A))

dA
=

dλP3(QrarR(A))

dA
> 0, (5.95)

for genuine non-linearity of the λP3- field in case of arteries (Proposition 5.1.2). For the last
variable ϕ the proof is similar.

5.3.2 Solution in the Star Region for arteries

Defining the Star Region as the region in the half-plane (x, t) in Fig. 5.1 between the λP1 and the
λP3 - wave, considering that a wave associated with a genuinely non-linear field can be either a
shock or a rarefaction [80], we present these results

Theorem 5.3.1. Given the Riemann problem (5.30), the λP1-wave is a physically admissible (left)
rarefaction if and only if

A∗ ≤ AL. (5.96)

The λP3-wave is a physically admissible (right) rarefaction if and only if

A∗ ≤ AR. (5.97)

Proof.
(=⇒)In Proposition 5.3.1 we have proved this part.
(⇐=)In Propositions 5.3.2, 5.3.3 we have proved this part.

Theorem 5.3.2. Given the Riemann problem (5.30), the λP1-wave is an entropy-satisfying (left) shock if
and only if

A∗
> AL. (5.98)

The λP3-wave is an entropy-satisfying (right) shock if and only if

A∗
> AR. (5.99)

Proof.
(=⇒)In Propositions 5.3.2, 5.3.3 we have proved this part.
(⇐=)In Proposition 5.3.1 we have proved this part.



126 Exact solution of the Riemann problem for the conservative 1D pressure system with transport

Proposition 5.3.4 (Graphic construction of Q∗
P). Given the Riemann problem (5.30), the solution

Q∗
P = [A∗, q∗]T is the unique intersection of the two curves in the phase-plane (A, q)

qle f t(A) =

{
qa

rarL(A) for A ≤ AL,

qa
shockL(A) for A > AL,

(5.100)

qright(A) =

{
qa

rarR(A) for A ≤ AR,

qa
shockR(A) for A > AR.

(5.101)

The nature of the two curves at the intersection will show the wave pattern (Fig. 5.2c).

Proof. In Propositions 5.3.1, 5.3.2 and 5.3.3 we have proved that the physically admissible parts
of the left and right rarefaction and shock curves are qa

rarL(A), qa
rarR(A), qa

shockL(A), qa
shockR(A)

defined in the statements. The existence of these curves is a necessary condition for the physical
admissibility of each type of wave, but not a sufficient one. We can find the unknown Q∗

P

graphically, without knowing a priori which type of wave is actually present: having constructed
all these admissible curves, if the solution of our Riemann problem exists, it is unique (Remark
5.2.1), so by Propositions 5.3.1, 5.3.2 and 5.3.3 it must belong to respectively one between qa

rarL(A)
and qa

shockL(A) curves and to one between qa
rarR(A) and qa

shockR(A) curves (considering that a
wave associated with a genuinely non-linear field can be only a shock or a rarefaction and it is
not possible to have both rarefactions and shocks together [80]). In other words the unknown Q∗

P

is the unique intersection of the qle f t(A) and qright(A) curves in (5.100) and (5.101) thus obtained.

Now we will prove that the intersection of the qle f t(A) and qright(A) curves (if it exists). This
can be easily proved for any combination of waves. Considering only rarefaction waves, we define

h(A) = qrarL(A)− qrarR(A), (5.102)

with qrarL(A) and qrarR(A) defined in (5.49). The solution of h(A) = 0 is clearly the sought A∗.
We want to check

dh

dA
=

dqrarL

dA
− dqrarR

dA
, (5.103)

considering (5.47) and (5.48) we obtain

dh

dA
= −2c < 0, ∀ A ∈ R

+, (5.104)

so, in case of two rarefactions, function h in (5.102) is strictly monotonic in R
+, so if a zero

exists, it is unique. In case of shocks the discussion is the same, in fact recalling what stated
in Propositions 5.3.2, 5.3.3, the behaviour of the two curves is the same. Thus we can conclude
that for any admissible wave pattern the intersection of the two qle f t(A) and qright(A) curves is
unique, provided it exists.

Following the approach presented in [87] and considering the relations across the waves
presented in this Section, the exact solution of the Riemann problem for the pressure system in
the Star Region, is found as follows:

Proposition 5.3.5 (Solution in the Star Region - Arteries). The exact solution of the Riemann problem
for the pressure system in the Star Region for arteries is (5.46), found as follows: A∗ is the root x of the
non-linear algebraic equation

fL(x) + fR(x) + qR − qL = 0, (5.105)
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where

fL(x) =





∫
x

AL

c(σ)dσ if x ≤ AL (left rarefaction),

√
(x− AL)

∫
x

AL

c2(σ)dσ if x > AL (left shock),

(5.106)

fR(x) =





∫
x

AR

c(σ)dσ if x ≤ AR (right rarefaction),

√
(x− AR)

∫
x

AR

c2(σ)dσ if x > AR (right shock),

(5.107)

while c is the wave speed (5.2). Once A∗ is known from (5.105) the solution q∗ = (Au)∗ is

q∗ =
1

2
(qL + qR) +

1

2
[ fR(A∗)− fL(A∗)]. (5.108)

Regarding the concentration of the passive scalar

ϕ∗
L =

AL

A∗ϕL
, ϕ∗

R =
AR

A∗ϕR
. (5.109)

Proof. We put together the results stated in Section 5.3.1, and in Theorems 5.3.1, 5.3.2. The values
of ϕ∗

L and ϕ∗
R are obtained thanks to the third of (5.1)

∂t(Aϕ) = 0, (5.110)

which gives the result.

The integrals in case of arteries having m = 0.5 and n = 0 in (5.4), are explicitly calculated.
Equation (5.105) is solved with a globally convergent Newton-Raphson method (see Appendix
B.2).

5.3.3 Solution inside the rarefactions

Proposition 5.3.6 (Solution inside the left rarefaction). The exact solution of the Riemann problem for
the pressure system inside the left rarefaction is

QirarL =




AirarL

AirarLuirarL

AirarLϕirarL


 , (5.111)

where AirarL is obtained solving for the unknown x the following

X

t
+ c(x) = 0, (5.112)

being X = x − xd, where x is the specific place of the domain (vessel) in which we are calculating the
desired values, xd is the vessel spatial coordinate of the discontinuity, and t is the time. Afterwards the
actual qirarL = AirarLuirarL corresponding to the found AirarL is

qirarL(AirarL) = qL −
∫ AirarL

AL

c(A)dA. (5.113)
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Regarding the last variable

ϕirarL =
AL

AirarL
ϕL. (5.114)

Proof. We look for a similarity solution of the type

Q(x, t) = v

(
X

t

)
. (5.115)

Being

∂tQ = −v′
(
X

t

)
X

t2
, ∂xQ = v′

(
X

t

)
1

t
, (5.116)

so, considering system (5.1)

−v′
(
X

t

)
X

t2
+J P(Q)v′

(
X

t

)
1

t
= 0, (5.117)

with J P(Q) the Jacobian (5.7), then (5.117) becomes

1

t

(
J P(Q)− X

t
I

)
v′
(
X

t

)
= 0, (5.118)

that is true if and only if

v′
(
X

t

)
= 0, (5.119)

trivial solution, or (
J P(Q)− X

t
I

)
v′
(
X

t

)
= 0, (5.120)

i.e if and only if v′
(
X

t

)
is an eigenvector of J P(Q) and

X

t
is the corresponding eigenvalue, i.e.

X

t
= λPk, (5.121)

with λk in (5.8). This is possible only for eigenvalues and eigenvectors associated with genuinely
non-linear fields [33]. Considering (5.121), we are looking for (5.111) s.t.

X

t
= λP1(QirarL) = −c(AirarL), (5.122)

with c in (5.2), AirarL is the value of A inside the left rarefaction. We find the actual AirarL

corresponding to the given
X

t
, solving (5.122), i.e. solving for the unknown x, equation (5.112).

Regarding the last variable, the result is straightforward due to the third of (5.1).

Please note that for (5.54) and (5.121), the actual boundaries of the left rarefaction in the
half-plane (x, t) are the charateristics s.t.

X

t
= λP1(QL), left border,

X

t
= λP1(Q

∗
PL), right border.

(5.123)
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Proposition 5.3.7 (Solution inside the right rarefaction). The exact solution of the Riemann problem
for the pressure system inside the right rarefaction is

QirarR =




AirarR

AirarRuirarR

AirarRϕirarR


 , (5.124)

where AirarR is obtained solving for the unknown x the following

X

t
− c(x) = 0, (5.125)

being X = x − xd, where x is the specific place of the domain (vessel) in which we are calculating the
desired values, xd is the vessel spatial coordinate of the discontinuity, and t is the time. Afterwards that the
actual qirarR corresponding to the found AirarR is

qirarR(AirarR) = qR +
∫ AirarR

AR

c(A)dA. (5.126)

Regarding the last variable

ϕirarR =
AR

AirarR
ϕR. (5.127)

Proof. As in the proof for the left part, looking for a similarity solution as in (5.115), and consider-
ing (5.121), we are looking for (5.124) s.t.

X

t
= λP3(QirarR) = c(AirarR). (5.128)

We find the actual AirarR corresponding to the given
X

t
, solving (5.128), i.e. solving for the

unknown x, (5.125). Regarding the last variable, the result is straightforward due to the third of
(5.1).

Please note that for (5.63) and (5.121), the actual boudaries of the right rarefaction are in the
half-plane (x, t)

X

t
= λP3(Q

∗
PR), left border,

X

t
= λP3(QR), right border.

(5.129)

5.3.4 The complete exact solution of the Riemann problem

for the pressure system in arteries

In this Section we present the sampling of the complete exact solution of the Riemann problem for
the pressure system (5.1) in case of arteries. The initial data in this case are specified as follows

QL =




AL

ALuL

ALϕL


 , QR =




AR

ARuR

ARϕR


 . (5.130)
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Being as before X = x − xd, where x is the specific place of the domain (vessel) in which we are
calculating the desired values, xd is the vessel spatial coordinate of the discontinuity, and t is the
time, thanks to Theorems 5.3.1, 5.3.2 the complete solution is

• if A∗ ≤ AL (left rarefaction):

Q(x, t) =





QL if X < −c(AL)t,

QirarL if − c(AL)t ≤ X ≤ −c(A∗)t,

Q∗
PL if − c(A∗)t < X ≤ 0,

(5.131)

• if A∗ > AL (left shock):

Q(x, t) =

{
QL if X ≤ SLt,

Q∗
PL if SLt < X ≤ 0.

(5.132)

Similarly on the right side the complete solution is

• if A∗ ≤ AR (right rarefaction):

Q(x, t) =





Q∗
PR if 0 < X < c(A∗)t,

QirarR if c(A)∗t ≤ X ≤ c(AR)t,

QR if X > c(AR)t,

(5.133)

• if A∗ > AR (right shock):

Q(x, t) =

{
Q∗
PR if 0 < X ≤ SRt,

QR if X > SRt.
(5.134)

Q∗
PL and Q∗

PR are defined in Proposition 5.3.5, QirarL is defined in Proposition 5.3.6, QirarR in
Proposition 5.3.7, c is described in (5.2). SL and SR are the left and the right shock speeds and are
defined according to the Rankine-Hugoniot condition, from Propositions 5.3.2, 5.3.3.

SL =
qL − q∗

AL − A∗ , SR =
qR − q∗

AR − A∗ . (5.135)

5.3.5 Results

Here we show and further validate the results of the exact solution of the Riemann problem for the
pressure system presented in Section 5.3.4 by comparing them with numerical mesh-independent
solutions obtained with a centred second order extension of FORCE numerical scheme, FORCEII
(Appendix A.2), with a mesh of I = 5000 computational cells and a Courant–Friedrichs–Lewy
number (Cc f l) of 0.9. We propose three tests in which we cover all the possibilities given by the
genuinely non-linear fields, i.e. rarefactions and shocks. Initial data are reported in Tables 5.1,
5.2, results are depicted in Figs. 5.3, 5.4, 5.5. In Table 5.3 we present the values of the exact
solution in the Star Region for the pressure system in arteries for the unknowns A, q, ϕ. It is
worth noting Test 2 whose data lead to a transonic rarefaction in case of Riemann problem for the
complete system of 1D blood flow, while in case of the pressure system reduces to a left subsonic
rarefaction and a right shock. Overall a strong correspondence is observed between the exact
solution and the one obtained through the numerical method. In addition we propose, for each
test, the plots of the admissible rarefaction and shock curves presented in Section 5.3.
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Table 5.1: Initial conditions for Tests from 1 to 3. The wave patterns are: R=rarefaction,
C=contact discontinuity, S=shock. The units of measures used for this Thesis are:
m, s, Kg, Pa.

Test AL[m
2] uL[m/s] ϕL AR[m

2] uR[m/s] ϕR Wave pattern

1 3.5 · 10−4 0.00 1.00 3.0 · 10−4 0.00 0.50 RCS
2 10.00 · 10−4 0.00 1.00 1.0 · 10−4 0.00 0.50 RCS
3 3.10 · 10−4 −0.50 1.00 3.14 · 10−4 0.50 0.50 RCR

Table 5.2: Parameters used for Tests from 1 to 3: domain length ℓ, blood density ρ, vessel
wall stiffness K, reference cross-sectional area A0, external pressure pe, location of
the initial discontinuity xd and output time tEnd.

Test Vessel ℓ[m] ρ K[Pa] A0[m
2] pe[Pa] xd[m] tEnd[s]

1 Artery 0.50 1000.00 20005.00 3.14 · 10−4 0.00 0.50ℓ 0.05
2 Artery 0.50 1000.00 20005.00 3.14 · 10−4 0.00 0.50ℓ 0.04
3 Artery 0.50 1000.00 20005.00 3.14 · 10−4 0.00 0.50ℓ 0.05

Table 5.3: Exact solution of the Riemann problem for the pressure system in
the Star Region for arteries.

Test A∗[m2] q∗[m/s] ϕ∗
L ϕ∗

R

1 3.2524 10−4 7.973610−5 1.0761 0.4611
2 5.9862 10−4 1.6002410−3 1.6704 0.0835
3 2.6153 10−4 −5.315210−6 1.1853 0.6003

5.4 Exact solution of the Riemann problem for the

pressure system in veins

The model is that presented in Section 5.2, now we will describe how to calculate the exact
solution of the Riemann problem in case of veins.

5.4.1 Wave relations

The λP2- wave is associated with a linearly degenerate field and is a contact discontinuity, so the
relations across this wave are those in Proposition 5.2.2. Regarding the λP1- and λP3- waves, in
case of veins there is a loss of genuine non-linearity that leads to the formation of smooth waves
(rarefactions), discontinuous waves (shocks) or compound (mixed) waves [49].

5.4.1.1 λP1 and λP3- wave relations. Case of rarefactions

The generalized Riemann invariants in Proposition 5.2.1, still hold ∀A ̸= Ac ∈ R
+. The third

equation in (5.1) is not affecting the others so variable ϕ can be treated separately. (5.47) and
(5.48) hold with c in (5.2) but with the parameters for veins in (5.3) and (5.4). Solving them for
A ∈ R

+, results in the construction of the two integral curves, one for each wave (see Fig. 5.6)

qrarL(A) and qrarR(A) with A ∈ R
+. (5.136)

Theorem 5.4.1. If the λPk-th, k = 1 or 3, field of system (5.1) is nongenuinely non-linear then
λPk(Qrarj(A)), with Qrarj(A) = (A, qrarj(A)), j = L or R, the corresponding integral curve and
A ∈ R

+, has a global maximum (minimum) in Ac defined in (5.12).
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Test 1. Rarefaction - Contact - Shock
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(a) Exact solution vs. FORCEII scheme.
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Figure 5.3: Exact solution of the Riemann problem for the pressure system in an artery with data of Test 1

vs. FORCEII scheme. This Riemann problem shows a left rarefaction, a contact discontinuity for
the passive scalar and a right shock. Initial data in Tables 5.1, 5.2.

Proof. From (5.47) (5.48)

dQrarj

dA
(A) =




1
dqrarj

dA
(A)


 = Rk(Qrarj(A)), (5.137)

so
dλk(Qrarj(A))

dA
= ∇λk(Qrarj(A)) · Rk(Qrarj(A)), (5.138)

finally from Proposition 5.1.2

dλP1(QrarL(A))

dA





> 0 for A < Ac,

= 0 for A = Ac,

< 0 for A > Ac;

dλP3(QrarR(A))

dA





< 0 for A < Ac,

= 0 for A = Ac,

> 0 for A > Ac.

(5.139)

We recall this definition
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Test 2. Rarefaction - Contact - Shock
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(a) Exact solution vs. FORCEII scheme.
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Figure 5.4: Exact solution of the Riemann problem for the pressure system in an artery with data of Test 2 vs.
FORCEII scheme. This Riemann problem shows a left rarefaction, a contact discontinuity for the
passive scalar and a right shock. This test for the complete system of 1D blood flow equations
leads to a left transonic rarefaction. Initial data in Tables 5.1, 5.2.

Definition 5.4.1 (Rarefaction in a wave associated with a nongenuinely non-linear field [17]).
Having as initial state the left state QL̂, the L̂−rarefaction curve qrarL̂(A) is the integral curve
results of the ODEs (5.47), (5.48) and passing through QL̂. Its admissible part denoted by qa

rarL̂
(A)

is the part such that
λk(AL̂) ≤ λk(A), A ∈ R

+, (5.140)

with λk the related eigenvalue and the λk(A) function monotonic in A.

Having as initial state a right state, the valid condition is clearly

λk(A) ≤ λk(AR̂), A ∈ R
+. (5.141)

We now construct the admissible rarefaction curves in the same manner as in case of arteries.

Proposition 5.4.1 (Physically admissible rarefaction curves).
If the λP1-wave, associated with a nongenuinely non-linear field, is a smooth wave (i.e. is a physically
admissible rarefaction), the related admissible rarefaction curve is

qa
rarL(A) = {[A, qrarL(A)]T , s.t. c(A) ≤ c(AL), A ∈ R

+, A ∈ IL = [min(AL, Ac), max(AL, Ac)]},
(5.142)

with qrarL(A) in (5.136). In particular c(A∗) ≤ c(AL).
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Test 3. Rarefaction - Contact - Rarefaction
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Figure 5.5: Exact solution of the Riemann problem for the pressure system in an artery with data of Test 4

vs. FORCEII scheme. This Riemann problem shows a left rarefaction, a contact discontinuity for
the passive scalar and a right rarefaction. Initial data in Tables 5.1, 5.2.

If the λP3-wave associated with a nongenuinely non-linear field, is a smooth wave (i.e. is a physically
admissible rarefaction), the related admissible rarefaction curve is

qa
rarR(A) = {[A, qrarR(A)]T , s.t. c(A) ≤ c(AR), A ∈ R

+, A ∈ IR = [min(AR, Ac), max(AR, Ac)]},
(5.143)

with qrarR(A) in (5.136). In particular c(A∗) ≤ c(AR).

Proof. The proof is similar to the case of arteries, in fact due to Def. 5.4.1 a rarefaction in a
nongenuinely non-linear filed can occur in a part of the domain I ⊂ R

+ where the related
λPk(A) function is monotonic. In other words, considering (5.139), the left admissible rarefaction
curve having as initial (left) state, AL, is bounded by Ac and the right one, having as initial (right)
state AR, by Ac indeed. This is the reason for the interval Ij = [min(Aj, Ac), max(Aj, Ac)] in the
statement. It is worth noting that the boundary Ac should not be included in the interval, in fact

the equation denoting a characteristic inside a rarefaction λk =
X

t
, already presented in Section

5.3.3, can not be derived if
dλk

dA
= 0 [33]. In addition it is worth noting that, differently from the

case of arteries, the conditions of admissibility of the rarefaction curves in case of veins can not
be related to the particular position of A with respect to Aj anymore, due to the curvature of the
λPk function.
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in (5.148), (5.167) for data of Test 4.
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(c) The admissible rarefaction and shock curves for data of
Test 4. It is worth noting that differently from the case of
arteries the admissible curves are not longer continuous.

Figure 5.6: Integral and shock curves for the Riemann problem in case of veins with data of Test 4 in Tables
5.4, 5.5. This test does not present compound waves, for which more admissible shock curves
have to be added, as explained in Section 5.4.6. It is worth noting that differently from the case
of arteries the integral and shock curves are not convex or concave anymore and the admissible
ones are not longer continuous.

5.4.1.2 λP1 and λP3- wave relations. Case of shocks

In nongenuinely non-linear fields if a discontinuity propagating with speed S has constant values
QL̂ and QR̂ on either side of it, then the Rankine-Hugoniot jump condition

P(QR̂)−P(QL̂) = S(QR̂ − QL̂), (5.144)

where P is deifined in (5.6) must hold [49]. A shock, to be entropy-satisfying must fulfill the
so-called Oleinik-Liu condition [49]:

S(QL̂, QR̂) ≤ S(Q, QL̂) ∀Q ∈ qshock(A) s.t. A ∈ I = [min(AL̂, AR̂), max(AL̂, AR̂)], (5.145)

where S is the shock speed and qshock(A) is the related shock curve. The Oleinik-Liu condition
(5.145) implies

λk(QL̂) ≥ S(QL̂, QR̂) ≥ λk(QR̂), (5.146)

[49]. In case of genuinely non-linear fields (5.146) reduces to the Lax-Entropy condition [42]

λk(QL̂) > S(QL̂, QR̂) > λk(QR̂). (5.147)
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Proposition 5.4.2 (Admissibility of left shock curves - case of veins).
If the λP1 - wave, associated with a nongenuinely non-linear field, is an entropy satisfying shock, the
admissible shock curve is

qa
shockL(A) = {[A, qshockL(A)]T , being A ∈ R

+ s.t. S(QL, QshockL(A)) ≤ S(QshockL(Ã), QL),

∀Ã ∈ [min(A, AL), max(A, AL)],

(5.148)

where

qshockL(A) =

{
qL + fL(A) for A ≤ AL,

qL − fL(A) for A > AL

with fL(A) =

√
(A − AL)

∫ A

AL

c2(σ)dσ. (5.149)

In particular Q∗
PL is s.t.

• for A∗ > AL 



q∗ = qL − fL(A∗),

ϕ∗
L =

AL

A∗ ϕL.
(5.150)

• for A∗ ≤ AL 



q∗ = qL + fL(A∗),

ϕ∗
L =

AL

A∗ ϕL.
(5.151)

and
c(A∗) > c(AL). (5.152)

Proof. As in the case of arteries, if a discontinuity propagating with speed S has constant values
Q̂, Q̃ on either side of it, then the Rankine-Hugoniot jump condition

P(Q̃)−P(Q̂) = S(Q̃ − Q̂), (5.153)

where P is defined in (5.6), must hold [49]. Now substituting Q̃ = QshockL, Q̂ = QL and S = SL;
attempting to determine the set of all states QshockL(A) = [A, qshockL(A)]T that can be connected
to QL by a discontinuity satisfying (5.153) for some SL, the so-called Hugoniot Locus of QL ∈ R

3,
we obtain a system of 3 equations in 3 + 1 unknowns: the 3 components of QshockL and SL





qshockL(A)− qL = SL(A − AL),
∫ A

AL

c2(σ)dσ = SL(qshockL(A)− qL),

0 = SL(AϕL(A)− ALϕL),

(5.154)

with SL the left shock speed.

We first analyze the first two variables A and q. With some calculations we obtain from the first
and the second equation in (5.154)

(qshockL(A)− qL)
2 − (A − AL)

∫ A

AL

c2(σ)dσ = 0, (5.155)

so

qshockL(A)− qL = ±
√
(A − AL)

∫ A

AL

c2(σ)dσ. (5.156)
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As result

qshockL(A) = qL ± fL(A), with fL(A) =

√
(A − AL)

∫ A

AL

c2(σ)dσ. (5.157)

To choose the correct sign we consider that for the first of (5.154)

SL =
qshockL(A)− qL

A − AL
=

± fL(A)

A − AL
=

±
√
(A − AL)

∫ A
AL

c2(σ)dσ

A − AL
, (5.158)

a shock, to be entropy-satisfying, must fulfill the Oleinik-Liu condition (5.145) that implies (5.146),
i.e.

λP1(QL) ≥ SL ≥ λP1(QshockL(A)) =⇒ −c(AL) ≥ SL ≥ −c(A). (5.159)

It follows that SL < 0, being c > 0 by hypothesis in (5.2). This leads to two possibilities:

SL =





+ fL(A)

A − AL
for A < AL,

− fL(A)

A − AL
for A > AL,

(5.160)

i.e

qshockL(A) =

{
qL + fL(A) for A ≤ AL,

qL − fL(A) for A > AL,
(5.161)

extended to A = AL by continuity. This curve is locally at least C1 in a neighbourhood of AL as it
is easy to prove, and it belongs to the Hugoniot Locus of QL (please see [33]). We must notice that

dλP1(QshockL(A))

dA
= ∇λP1(QshockL(A)) · dQshockL(A)

dA
= − ∂c

∂A
, (5.162)

i.e.
dλP1(QshockL(A))

dA
=

dλP1(QrarL(A))

dA
. (5.163)

so the sign of
dλP1(QshockL(A))

dA
changes from positive to negative, according to Proposition 5.1.2

i.e. the function λP1(QshockL(A)) is a concave function w.r.t. variable A ∈ R
+. On the other hand

the concavity of the λP1(A) function prevents us to choose one branck of the (5.161) function as
we did in the case of arteries. In particular, considering Q∗

PL, which, when admissible, belongs by
definition to the entropy-satisfying subset of the Hugoniot Locus of QL, (5.161) becomes

q∗ =

{
qL + fL(A∗) for A∗

< AL,

qL − fL(A∗) for A∗
> AL.

(5.164)

and from (5.159) we obtain

λP1(QL) = λP1(QshockL(AL)) ≥ SL ≥ λP1(QshockL(A∗)) =⇒ −c(AL) > −c(A∗), (5.165)

in fact
λP1(QL) = SL = λP1(QshockL(A∗)), (5.166)

and consequently c(AL) = c(A∗), is not a possibility that we encounter.

The proof for the passive scalar is the same as in the case of arteries.
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Proposition 5.4.3 (Admissibility of right shock curves - case of veins).
If the λP3 - wave, associated with a nongenuinely non-linear field, is an entropy satisfying shock, the
admissible shock curve is

qa
shockR(A) = {[A, qshockR(A)]T , being A ∈ R

+ s.t. S(QR, QshockR(A)) ≥ S(QshockR(Ã), QR)

∀Ã ∈ [min(A, AR), max(A, AR)],

(5.167)

where

qshockR(A) =

{
qR − fR(A) for A ≤ AR,

qR + fR(A) for A > AR.
with fR(A) =

√
(A − AR)

∫ A

AR

c2(σ)dσ. (5.168)

In particular Q∗
PR is s.t.

• for A∗ > AR 



q∗ = qR + fR(A∗),

ϕ∗
R =

AR

A∗ ϕR,
(5.169)

• for A∗ < AR 



q∗ = qR − fR(A∗),

ϕ∗
R =

AR

A∗ ϕR.
(5.170)

with
c(A∗) > c(AR). (5.171)

Proof. With a proof similar to that of Proposition 5.4.2 the statement is straightforward.

5.4.2 Solution in the Star Region for veins in absence of

compound waves

Differently from the case of arteries, a wave associated with a nongenuinely non-linear field can
present shocks, rarefactions and also compound waves: these latter being composed by shocks
and rarefactions together.

Nevertheless, as a first step, considering Propositions 5.4.1, 5.4.2, 5.4.3 in the following Theorems
we calculate the exact solution of the Riemann problem for the pressure system in the Star Region,
only in presence of rarefactions and shocks.

Theorem 5.4.2. Given the Riemann problem (5.30), and ignoring the existence of the compound waves,
the λP1-wave is a physically admissible (left) rarefaction if and only if

c(A∗) ≤ c(AL). (5.172)

The λP3-wave is a physically admissible (right) rarefaction if and only if

c(A∗) ≤ c(AR). (5.173)

Proof.
(=⇒)In Proposition 5.4.1 we have proved this part.
(⇐=)In Propositions 5.4.2 5.4.3 we have proved this part.
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Theorem 5.4.3. Given the Riemann problem (5.30), and ignoring the existence of the compound waves,
the λP1-wave is an entropy-satisfying (left) shock if and only if

c(A∗) > c(AL). (5.174)

The λP3-wave is an entropy-satisfying (right) shock if and only if

c(A∗) > c(AR). (5.175)

Proof.
(=⇒)In Propositions 5.4.2 5.4.3 we have proved this part.
(⇐=)In Proposition 5.4.1 we have proved this part.

Theorem 5.4.4 (Solution in the Star Region - Veins - No compound waves). The exact solution of
the Riemann problem for the pressure system in the Star Region for veins in absence of compound waves is

Q∗
NComL =




A∗
NCom

A∗
NComu∗

NCom = q∗NCom
A∗

NComϕ∗
NComL


 , Q∗

NComR =




A∗
NCom

A∗
NComu∗

NCom = q∗NCom
A∗

NComϕ∗
NComR


 , (5.176)

found as follows: A∗
NCom is the root x of the non-linear algebraic equation

fL(x) + fR(x) + qR − qL = 0, (5.177)

where

fL(x) =





∫
x

AL

c(σ)dσ if c(x) ≤ c(AL) (left rarefaction),

√
(x− AL)

∫
x

AL

c2(σ)dσ if

{
x > AL

c(x) > c(AL)
(left shock),

−
√
(x− AL)

∫
x

AL

c2(σ)dσ if

{
x ≤ AL

c(x) > c(AL)
(left shock),

(5.178)

fR(x) =





∫
x

AR

c(σ)dσ if c(x) ≤ c(AR) (right rarefaction),

√
(x− AR)

∫
x

AR

c2(σ)dσ if

{
x > AR

c(x) > c(AR)
(right shock),

−
√
(x− AR)

∫
x

AR

c2(σ)dσ if

{
x ≤ AR

c(x) > c(AR)
(right shock),

(5.179)

while c is the wave speed (5.2). Once A∗
NCom is known from (5.177) the solution q∗NCom = (Au)∗NCom is

q∗NCom =
1

2
(qL + qR) +

1

2
[ fR(A∗

NCom)− fL(A∗
NCom)]. (5.180)

Regarding the concentration of the passive scalar

ϕ∗
NComL =

AL

A∗
NCom

ϕL, ϕ∗
NComR =

AR

A∗
NCom

ϕR. (5.181)

Proof. We put together the relations stated in Propositions 5.4.1, 5.4.2, 5.4.3, and Theorems 5.4.2
and 5.4.3.
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The integrals in case of veins are calculated with a three-point Gauss quadrature rule. Equation
(5.177) is solved with a globally convergent Newton-Raphson method (see Appendix B.2).

In other words Theorem 5.4.4 gives the exact solution of the Riemann problem for the pressure
system in the Star Region in the following cases

Theorem 5.4.5 (Conditions for the absence of compound waves). The solution of Theorem 5.4.4
is the exact solution of the Riemann problem for the pressure system in veins in the Star Region, i.e.
Q∗

NComL = Q∗
PL and Q∗

NComR = Q∗
PR, if and only if in each left and right wave, associated with

a nongenuinely non-linear field, being INC = [min(Aj, A∗
NCom), max(Aj, A∗

NCom)], with j = L, R
according to the side of the wave, is verified one of the following:

1. Ac ̸∈ INC (rarefactions or shocks),

2. Ac ∈ INC and λPk(QL̂) ≥ S(QL̂, QR̂) ≥ λPk(QR̂) (shocks).

Proof. In Def. 5.4.1 we stated that a rarefaction in a wave associated with a nongenuinely non-
linear field can occur only in a part of the domain where the λPk(A) function is locally monotonic
in A, i.e. and in proof of Proposition 5.4.1 we have explained why Ac should be excluded from
the rarefaction domain. On the other hand, being the rarefaction domain Ij defined in (5.142) and
(5.143), for a rarefaction, the case Aj = Ac is not admissible, due to the particular curvature of
the λP j functions j = L, R (Fig. 5.7 for example), instead the case A∗ = Ac is a limiting case that
can be treated also as a compound wave (Section 5.4.3).

If Ac ̸∈ INC and a rarefaction is not admissible, only a shock can occur, being, in that part of
the domain, the related characteristic field locally genuinely non-linear.

If Ac ∈ INC a rarefaction is not admissible and a shock can occur only if (5.146) holds
(Propositions 5.4.2 and 5.4.3).

5.4.3 Solution in the Star Region for veins in presence of

compound waves

Theorem 5.4.6 (Necessary condition for a compound wave). The waves associated with the nongenuine
non-linear fields of the Riemann problem for the pressure system in case of veins (5.30), are compound
waves only if Ac ∈ I = [min(Aj, A∗), max(Aj, A∗)], j = L, R.

Proof. This statement means that if Ac ̸∈ I there are no compound waves, in fact the function λPk(A)
in I in this case is monotonic, so we can have rarefactions or shocks, while if Ac ∈ I there may

be shocks (Theorem 5.4.5) or compound waves . In other words Ac ∈ I is a necessary condition
for compound waves, but not a sufficient one.

Compound waves are composed of the rarefactions and shock described in Sections 5.4.1.1,
5.4.1.2. In this section we will describe how we built them without extensively exploring the
theoretical aspects.

We consider as example Test 8 in Tables 5.4, 5.5. The λP1 and λP3 waves related to these
test data are depicted in Fig. 5.7. Regarding the left wave, λP1(AL) > λP1(A∗). Unfortunately
none of the conditions of Theorem 5.4.5 holds. It follows that this can not be a rarefaction
nor a shock wave. We must proceed from λP1(AL) to λP1(A∗) in Fig. 5.7. We can notice that
λP1(AL) ≤ λP1(A) ∀ A ∈ [Ac, AL]. Clearly with these conditions only a rarefaction can occur.
The sought rarefaction can not surpass Ac (Def. 5.4.1). In particular it must end in ÂL belonging
to its admissible rarefaction curve qa

rarL(A) built in (5.142), such that an entropy-satisfying shock

can occur with left side Q̂L = [ÂL, q̂L]
T and right side the sought Q∗

PL.
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The λ functions for Test 8

ALA * Ac AL
A 

0
1

1
1(AL)
1(A * )
1(Ac)
1(AL)

ARA * Ac AR
A 

0

3

3
3(AR)
3(A * )
3(Ac)
3(AR)

Figure 5.7: The λ functions for data of Test 8 in Tables 5.4, 5.5, with the positions of the principal states
studied in the construction of the compound waves.

The characteristics of the left and right compound waves for Test 8

t

xx = xd

X

t
= λP1(QL)

X

t
= λP1(bQL) = S(bQL, Q∗

PL)

Q∗

PL

QL

t

xx = xd

X

t
= λP3(QR)

X

t
= λP3(bQR) = S(bQR, Q∗

PR)

Q∗

PR

QR

Figure 5.8: The characteristics of the left and right compound waves for data of Test 8 in Tables 5.4, 5.5. The
colors used are the same as the related states in Fig. 5.7.

Drawing the characteristics (Fig. 5.8) it is straightforward to see that the only way to have a
rarefaction with buondaries λP1(AL) and λP1(ÂL) followed by a shock with sides Q̂L and Q∗

PL

avoiding superimpositions, is to have a semi-characteristic shock i.e. a shock such that

λP1(Q̂L) = S(Q̂L, Q∗
PL) > λP1(Q

∗
PL), (5.182)

[70, 98]. The shock speed clearly is

S =
q∗ − q̂L

A∗ − ÂL

. (5.183)

being the sought shock built in the same manner as in Proposition 5.4.2, i.e. with Rankine-
Hugoniot condition and the Oleinik-Liu condition.

The discussion concerning the right wave is similar, in this case λP3(AR) > λP3(A∗) (Fig. 5.7)
but Ac ∈ I, so again none of the conditions of Theorem 5.4.5 holds. It follows that this is again
a compound wave. We must proceed from λP3(AR) (the initial data) to λP3(A∗), following the
same procedure described for the left wave. In particular the semi-characteristic shock in this
case must satisfy

λP3(Q
∗
PR) > S(Q̂R, Q∗

PR) = λP3(Q̂R). (5.184)

In Fig. 5.8 there are the final results.
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From (5.182) and (5.184) the fundamental equation to be solved for the numerical construction
of a compound wave turns out to be

λPk(Q̂j) = S(Q̂j, Q∗). (5.185)

Remark 5.4.1. Eq. (5.185) can be written as

λPk(Â)− S(Qrarj(Â), Q∗) = 0, (5.186)

and in this form will be used in the next Sections.

5.4.4 Numerical procedure

Now we give a global overview of the numerical procedure to compute the exact solution in the
Star Region in case of veins, starting from the beginning.

1. Calculate Q∗
NComj, j = L, R, as described in Section 5.4.2.

2. Check if one of the conditions of Theorem 5.4.5 is satisfied in both nongenuinely non-linear
waves. If this is the case, the sought solution is found. Q∗

NComj = Q∗
P j, j = L, R. The

Riemann problem is solved. Otherwise go to point 3.

3. If both conditions of Theorem 5.4.5 are not satisfied in one or both nongenuinely non-linear
waves, we are in presence of one or both compound waves. In case of one compound wave
check Section 5.4.4.1, otherwise check Section 5.4.4.2

4. Having obtained the required results (Q∗
P j, possible Q̂j , j = L, R) do the sampling in Section

5.4.5.

5.4.4.1 One compound wave

This is the case in which one of the two waves associated with the nongenuinely non-linear fields
is a compound wave and the other is not. The found Q∗

NComj, j = L, R in Section 5.4.2, are not our
sought solutions but can be used as initial guesses to find the correct solution that will be called
Q∗

Comj. This result is given as empirically valid and is not proved in this work.

To calculate the sought Q∗
Comj, having executed steps 1 and 2 we apply the scheme reported in

Fig. 5.9

5.4.4.2 Two compound waves

This is the case in which both of the two waves associated with the nongenuinely non-linear fields
are compound waves. The found Q∗

NComj, j = L, R in Section 5.4.2, are not our sought solutions

but again can be used as initial guess to find the correct Q∗
Comj one. To calculate the sought Q∗

Comj,
having executed steps 1 and 2 we executed the scheme reported in Fig. 5.10.

5.4.5 The complete exact solution of the Riemann problem

for the pressure system in veins

In this Section we present the sampling of the complete exact solution of the Riemann problem
for the pressure system for veins (5.1). Being as before X = x − xd, x is the specific place of the
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START

The compound wave is on the j side (j = L OR j = R).

Choose an initial point Q̂j

inside the rarefaction

i.e. s.t. Â ∈ [min(Aj, Ac), max(Aj, Ac)]
j = L or R

apply the Newton-Raphson
method to (5.186)

w.r.t. variable Â
:

calculate Q∗
NCom

as in Theorem. 5.4.4
with init. data:

left compound:

left ini. data: Q̂L,
right ini. data: QR

right compound.:
left ini. data: QL,

right ini. data: Q̂R

Does (5.186) hold? YES STOP

NO

advance Q̂
along the

admiss. rar. curve
qa

rarj in Proposition5.4.1.

Q̂j found!

Q∗
Com found!

Figure 5.9: The method to calculate the exact Q∗ in case of compound wave on one side. Please note that we
focused on Q∗

Com = [A∗
Com, q∗Com], being the passive scalar ϕ easy to calculate at the end of the

process thanks to formulas ϕ∗
ComL =

AL

A∗
Com

ϕL and ϕ∗
ComR =

AR

A∗
Com

ϕR

domain (vessel) in which we are calculating the desired values, xd is the vessel spatial coordinate
of the initial discontinuity, and t is the time, we put together all the relations proved in Section
5.4. Initial data

QL =




AL

ALuL

ALϕL


 , QR =




AR

ARuR

ARϕR


 . (5.187)

The complete solution is

• if c(A∗) ≤ c(AL) and Ac ̸∈ [min(AL, Ac), max(AL, Ac)] (left rarefaction):

Q(x, t) =





QL if X < −c(AL)t,

QirarL if − c(AL)t ≤ X ≤ −c(A∗)t,

Q∗
PL if − c(A∗)t < X ≤ 0,

(5.188)
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START

Choose an initial point Q̂
(0)
L

inside the left rarefaction

i.e. s.t. Â ∈ [min(AL, Ac), max(AL, Ac)]

Choose an initial point Q̂
(0)
R

inside the right rarefaction

i.e. s.t. Â ∈ [min(AR, Ac), max(AR, Ac)]

For n=0 to NMAX:

apply method in Fig.5.9 for the left compound

with init. data Q̂
(n)
L and Q̂

(n)
R

Q̂
(n+1)
L and Q

∗(n+1)
Com

obtained!

apply method in Fig.5.9 for the right compound

with init. data Q̂
(n+1)
L and Q̂

(n)
R

Q̂
(n+1)
R and Q

∗(n+2)
Com

obtained!

Does (5.186)
hold for
BOTH

L and R?

YES STOP

NO

Q̂L found!

Q̂R found!
Q∗

Com found!

Figure 5.10: The method to calculate the exact Q∗ in case of compound waves in both sides. Please note that
we focused on Q∗

Com = [A∗
Com, q∗Com], being the passive scalar ϕ easy to calculate at the end of

the process thanks to formulas ϕ∗
ComL =

AL

A∗
Com

ϕL and ϕ∗
ComR =

AR

A∗
Com

ϕR.

• if c(A∗) > c(AL) and λP1(QL) ≥ S(QL, Q∗
PL) ≥ λP1(Q

∗
PL) (left shock):

Q(x, t) =

{
QL if X ≤ SLt,

Q∗
PL if SLt < X ≤ 0.

(5.189)
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• if no one of the previous i.e.

{
−c(AL) ≤ −c(A∗),

Ac ∈ [min(AL, Ac), max(AL, Ac)],
OR





−c(AL) > −c(A∗),

Ac ∈ [min(AL, Ac), max(AL, Ac)],

NOT λP1(QL) ≥ S(QL, Q∗
PL) ≥ λP1(Q

∗
PL)

(5.190)
(left compound wave):

Q(x, t) =





QL if X < −c(AL)t,

QirarL if − c(AL)t ≤ X ≤ −c(ÂL)t,

Q∗
PL if − c(ÂL)t < X ≤ 0,

(5.191)

Similarly on the right side the complete solution is

• if c(A∗) ≤ c(AR) and Ac ̸∈ [min(AR, Ac), max(AR, Ac)] (right rarefaction):

Q(x, t) =





Q∗
PR if 0 < X < c(A∗)t,

QirarR if c(A)∗t ≤ X ≤ c(AR)t,

QR if X > c(AR)t,

(5.192)

• if c(A∗) > c(AR) and λP3(Q
∗
PR) ≥ S(Q∗

PR, QR) ≥ λP3(QR) (right shock):

Q(x, t) =

{
Q∗
PR if 0 < X ≤ SRt,

QR if X > SRt.
(5.193)

• if no one of the previous i.e.

{
c(A∗) ≤ c(AR),

Ac ∈ [min(AR, Ac), max(AR, Ac)],
OR





c(A∗) > c(AR),

Ac ∈ [min(AL, Ac), max(AL, Ac)],

NOT λP3(Q
∗
PR) ≥ S(Q∗

PR, QR) ≥ λP3(QR)
(5.194)

(right compound wave):

Q(x, t) =





Q∗
PR if 0 < X < c(ÂR)t,

QirarR if c(ÂR)t ≤ X ≤ c(AR)t,

QR if X > c(AR)t,

(5.195)

QirarL is defined in Proposition 5.3.6, QirarR in Proposition 5.3.7, c is in (5.2). SL and SR are the
left and the right shock speeds and are defined according to the Rankine-Hugoniot condition

SL =
q∗ − qL

A∗ − AL
, SR =

q∗ − qR

A∗ − AR
. (5.196)

Q̂j = [Âj, q̂j, Âjϕ̂j]
T , j = L, R, are found in Sections 5.4.4.1, 5.4.4.2. Q∗

PL and Q∗
PR are defined in

Theorem. 5.4.4 and Sections 5.4.4.1, 5.4.4.2, i.e.

Q∗
P j(x, t) =

{
Q∗

NComj if there are no compound waves,

Q∗
Comj if there is at least a compound wave.

(5.197)
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Table 5.4: Initial conditions for Tests from 4 to 8. The wave patterns are: R=rarefaction,
C=contact discontinuity, S=shock, CW=compound wave. The units of measures
used for this Thesis are: m, s, Kg, Pa.

Test AL[m
2] uL[m/s] ϕL AR[m

2] uR[m/s] ϕR Wave pattern

4 2.1 · 10−4 0.00 1.00 1.4 · 10−4 0.00 0.50 SCR
5 2.30 · 10−4 −0.80 1.00 2.50 · 10−4 −0.50 0.50 SCS
6 1.00 · 10−4 0.40 0.50 3.70 · 10−4 −0.50 1.00 CWCR
7 2.10 · 10−4 −1.50 1.00 2.90 · 10−4 0.00 0.50 SCCW
8 3.10 · 10−4 −1.00 1.00 3.60 · 10−4 1.50 0.50 CWCCW

Table 5.5: Parameters used for Tests from 4 to 8: domain length ℓ, blood density ρ, vessel
wall stiffness K, reference cross-sectional area A0, external pressure pe, location of
the initial discontinuity xd and output time tEnd.

Test Vessel ℓ[m] ρ K[Pa] A0[m
2] pe[Pa] xd[m] tEnd[s]

4 Vein 0.50 1000.00 333.00 3.14 · 10−4 10.00 0.50ℓ 0.12
5 Vein 0.50 1000.00 33.00 3.14 · 10−4 0.00 0.50ℓ 0.2
6 Vein 0.50 1000.00 333.00 3.14 · 10−4 0.00 0.50ℓ 0.05
7 Vein 0.50 1000.00 333.00 3.14 · 10−4 0.00 0.50ℓ 0.07
8 Vein 0.50 1000.00 333.00 3.14 · 10−4 0.00 0.30ℓ 0.05

Table 5.6: Exact solution of the Riemann problem for the pressure system in the Star
Region for veins.

Test A∗[m2] q∗[m/s] ϕ∗
L ϕ∗

R

4 1.725510−4 3.897710−5 1.2169 0.4056
5 1.5101 10−4 −1.576210−4 1.5230 0.8277
6 3.3813 10−4 −2.937110−4 0.1478 1.0942
7 1.1489 10−4 2.012110−4 1.8277 1.2620
8 5.6277 10−5 4.847010−5 5.5084 3.1984

5.4.6 Results

Here we show the results of the exact solution of the Riemann problem for the pressure system
presented in Section 5.4.5. These solutions are compared against mesh-independent numerical
ones obtained with a second order extension of FORCE centred numerical scheme: FORCEII
(Appendix A.2), with a mesh of I = 5000 computational cells and a Courant–Friedrichs–Lewy
number (Cc f l) of 0.9.

We propose five tests in which we cover all the possible waveforms arising in waves associated
with nongenuinely non-linear fields, i.e. rarefactions, shocks, and compound waves. Plus a study
of the admissible shocks and rarefaction curves is proposed for each test. Initial data are in Tables
5.4, 5.5, results in Figs. 5.11, 5.12, 5.13, 5.14, 5.15. In Table 5.6 the exact solution of the Riemann
problem for the pressure system in case of veins is reported for the considered variables.

Test 4: Shock - Contact - Rarefaction This test presents a left shock, a central contact
discontinuity, and a right rarefaction wave. Ac in (5.12) is not included in the range depicted by
the test results, thus no compound waves are present (Theorem 5.4.5). From Fig. 5.11a we can
observe the exact solutions plotted against FORCEII scheme, both for variable A and for variable q
and for variable ϕ. In Fig. 5.11b we can appreciate the admissible entropy satisfying shock curves
qa

shockL(A) and qa
shockR(A) defined in Propositions 5.4.2, 5.4.3, the Hugoniot Loci respectively of

QL and QR and the admissible rarefaction curves qa
rarL and qa

rarR defined in Proposition 5.4.1.
From AL the left admissible rarefaction curve develops to Ac. From AR the right admissible
rarefaction curve develops to Ac. The sought Q∗

NCom is the actual intersection of the right broken
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Test 4. Shock- Contact - Rarefaction
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(a) Exact solution vs. FORCEII scheme.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
A [m2] 1e 4

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

q
[m

3 /s
]

1e 3

qararL
qararR
qashockL
qashockR
QL

QR

Q *
NCom

Ac

(b) The integral and shock curves in the phase-
plane

2.0 2.2 2.4 2.6 2.8 3.0
x [m] 1e 1

58.75

59.00

59.25

59.50

59.75

60.00

60.25

60.50

A
[m

2 ]

1e 9+1.725e 4
FORCEII
Exact sol.

2.0 2.2 2.4 2.6 2.8 3.0
x [m] 1e 1

6.75

7.00

7.25

7.50

7.75

8.00

8.25

8.50

Au
[m

3 /s
]

1e 9+3.897e 5
FORCEII
Exact sol.

(c) A detail of the Q∗ for A and q

Figure 5.11: Exact solution of the Riemann problem for the pressure system for Test 4 vs. FORCEII scheme.
This Riemann problem shows a left shock, a contact discontinuity for the passive scalar and
a right rarefaction. No compound waves are present here infact Ac in (5.12) is above the test
results. Initial data are in Tables 5.4, 5.5.

line and the left broken line given by the admissible rarefaction and shock curves described before.
Fig. 5.11c shows a detail of the Q∗ region regarding variables A and q.

Test 5: Shock - Contact - Shock This test presents a left shock, a contact discontinuity
and a right shock waves. Ac is included in the range described by the test results, neverthless
no compound waves are depicted (Theorem 5.4.5). From Fig. 5.12a we can observe the exact
solutions plotted against FORCEII scheme, both for variable A and for variable q and for variable
ϕ. In Fig. 5.12b we can appreciate the admissible entropy satisfying shock curves qa

shockL(A) and
qa

shockR(A) defined in Propositions 5.4.2, 5.4.3 the Hugoniot Loci respectively of QL and QR and
the admissible rarefaction curves qa

rarL and qa
rarR as defined in Proposition 5.4.1. From AL the left

admissible rarefaction curve develops right before Ac (the left rarefaction curve is very short and
is not clearly visible in the plot). From AR the right admissible rarefaction curve develops right
before Ac. The sought Q∗

NCom is the actual intersection of the right broken line and the left broken
line given by the admissible rarefaction and shock curves described before. Fig. 5.12c shows a
detail of the Q∗ region regarding variables A and q.

Test 6: Compound - Contact - Rarefaction This test presents a left compound wave, a
contact discontinuity and a right rarefaction wave. Ac is included in the results range described
by the left wave and no one of the conditions of Theorem 5.4.5 is satisfied. From Fig. 5.13a we
can observe from the left to the right of the left wave a rarefaction and then a shock both for
variable A and for variable q and for variable ϕ. In Fig. 5.13b we can appreciate the admissible
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Test 5. Shock - Contact - Shock
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
A [m2] 1e 4

5

4

3

2

1

0

1

q
[m

3 /s
]

1e 4

qararL
qararR
qashockL
qashockR
QL

QR

Q *
NCom

Ac

(b) The integral and shock curves in the phase-
plane

2.3 2.4 2.5 2.6 2.7
x [m] 1e 1

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

A
[m

2 ]

1e 8+1.51e 4
FORCEII
Exact sol.

2.3 2.4 2.5 2.6 2.7
x [m] 1e 1

3.25

3.00

2.75

2.50

2.25

2.00

1.75

1.50

Au
[m

3 /s
]

1e 8 1.576e 4
FORCEII
Exact sol.

(c) A detail of the Q∗ for A and q

Figure 5.12: Exact solution of the Riemann problem for the pressure system for Test 5 vs. FORCEII scheme.
This Riemann problem shows a left shock, a contact discontinuity for the passive scalar and a
right shock. No compound waves are present here. it is worth noting that Ac in (5.12) is inside
both shocks. Initial data are in Tables 5.4, 5.5.

rarefaction curves qa
rarL(A) as defined in Proposition 5.4.1 starting from AL and ending right

before Ac. Before this latter Q̂L belonging to the same rarefaction curve (i.e. to qa
rarL) is found: this

is the left side of the shock inside the left compound wave (the right side is Q∗
Com). The entropy

satisfying shock curve qa
shockL̂

(A) that is the entropy-satisfying Hugoniot Locus of Q̂L is shown.

The admissible rarefaction curve qa
rarR(A) as defined in Proposition 5.4.1 is also depicted, starting

from AR and ending right before Ac. Q∗
NCom and Q∗

Com are both represented in the plot. They are
close but not superimposed. The sought Q∗

Com is the actual intersection of the right broken line and
the left broken line given by the admissible rarefaction and shock curves described before. Fig.
5.13c shows a detail of the Q∗ region regarding variables A and q.

Test 7: Shock - Contact - Compound This test presents a left shock, a contact discontinuity
and a right compound wave. Ac is included in the results depicted by the right wave and in
that case no one of the conditions of Theorem 5.4.5 is satisfied. From Fig. 5.14a we can observe
from the right to the left a small rarefaction and then a shock in the right compound, that are
visible both for variable A and for variable q and for variable ϕ. in Fig. 5.14b we can appreciate
the admissible rarefaction curves qa

rarL and qa
rarR as defined in Proposition 5.4.1 and the entropy

satisfying shock curves qa
shockL defined in Proposition 5.4.2 and qa

shockR̂
the entropy-satisfying

Hugoniot Locus of Q̂R. From QR the admissible rarefaction curve develops to Ac. Before this
latter Q̂R belonging to the same rarefaction curve (i.e. to qa

rarR) is found: this is the right side of the
shock inside the compound wave (the left side is Q∗

Com). Q∗
NCom and Q∗

Com are both represented
in the plot. They are close but not superimposed. The sought Q∗

Com is the actual intersection of the
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Test 6. Compound - Contact - Rarefaction
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Figure 5.13: Exact solution of the Riemann problem for the pressure system for Test 6 vs. FORCEII scheme.
This Riemann problem shows a left compound, a contact discontinuity for the passive scalar
and a right rarefaction. it is worth noting that Ac in (5.12) is inside the left compound. Initial
data are in Tables 5.4, 5.5.

right broken line and the left broken line given by the admissible rarefaction and shock curves
described before. Fig. 5.14c shows a detail of the Q∗ region regarding variables A and q.

Test 8: Compound - Contact - Compound This test presents a left compound wave and
a right compound wave. Ac is inside the results depicted by both waves and no one of the
conditions of Theorem 5.4.5 is verified. From Fig. 5.15a we can observe from the outside to the
inside a rarefaction and then a shock, that are visible both for variable A and for variable q and
for variable ϕ, being the left rarefaction inside the compound wave remarkably smaller than the
right one. In Fig. 5.15b we can appreciate the entropy satisfying shock curves qa

shockL̂
(A) and

qa
shockR̂

(A), , i.e. the Hugoniot Loci of Q̂L and Q̂R. In addition the admissible rarefaction curve

qa
rarL(A) is represented as defined in Proposition 5.4.1 starting from AL and ending right before

Ac. Before this latter Q̂L belonging to the same rarefaction curve (i.e. to qa
rarL) is found: this is

the left side of the shock inside the left compound wave (the right side is Q∗
Com). Is also shown

the admissible rarefaction curve qa
rarR(A) as defined in Proposition 5.4.1 starting from AR and

ending right before Ac. Before this latter Q̂R belonging to the same rarefaction curve (i.e. to
qa

rarR(A)) is found: this is the right side of the shock inside the right compound wave (the left side
is Q∗

Com). Q∗
NCom and Q∗

Com are both represented in the plot. They are close but not superimposed.
The sought Q∗

Com is the actual intersection of the right broken line and the left broken line given
by the admissible rarefaction and shock curves described before. Fig. 5.15c shows a detail of the
Q∗ region regarding variables A and q.
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Test 7. Shock - Contact - Compound
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(a) Exact solution vs. FORCEII scheme.
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(c) A detail of the Q∗ for A and q

Figure 5.14: Exact solution of the Riemann problem for the pressure system for Test 7 vs. FORCEII scheme.
This Riemann problem shows a left shock, a contact discontinuity for the passive scalar and a
right compound. it is worth noting that Ac in (5.12) is inside the right compound, Initial data
are in Tables 5.4, 5.5.

In general the exact solution here proposed is well validated by the chosen second order
numerical scheme.

5.4.7 Further remarks

In this section we further examine a few theoretical aspects covered in Section 5.4.

5.4.7.1 First remark

As described in Section 5.4.1.2. the Oleinik-Liu condition is

S(QL̂, QR̂) ≤ S(Q, QL̂) ∀Q ∈ qshock(A) s.t. A ∈ I = [min(AL̂, AR̂), max(AL̂, AR̂)]. (5.198)

So for a left shock (5.198) is (5.148), i.e.

S(QL, QshockL(A)) ≤ S(QshockL(Ã), QL), ∀Ã ∈ [min(A, AL), max(A, AL)]. (5.199)

For a right shock (5.198) should have been

S(QshockR(A), QR) ≤ S(QshockR(Ã), QshockR(A)) ∀Ã ∈ [min(A, AR), max(A, AR)]. (5.200)
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Test 8. Compound - Contact - Compound

0 1 2 3 4 5
x [m] 1e 1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
[m

2 ]

1e 4

Exact sol.
FORCEII
Ac

0 1 2 3 4 5
x [m] 1e 1

2

0

2

4

Au
[m

3 /s
]

1e 4
Exact sol.
FORCEII

0 1 2 3 4 5
x [m] 1e 1

1

2

3

4

5

[
]

Exact sol.
FORCEII

(a) Exact solution vs. FORCEII scheme.
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(c) A detail of the Q∗ for A and q

Figure 5.15: Exact solution of the Riemann problem for the pressure system for Test 7 vs. FORCEII scheme.
This Riemann problem shows a left compound, a contact discontinuity for the passive scalar
and a right compound. it is worth noting that Ac in (5.12) is inside both compound. Initial data
are in Tables 5.4, 5.5.

However to simplify the computations we instead proposed (5.167), i.e.

S(QR, QshockR(A)) ≥ S(QshockR(Ã), QR) ∀Ã ∈ [min(A, AR), max(A, AR)], (5.201)

that is actually equivalent, due to the particular curvature of the shock curves. A detailed proof
for this result is not provided.

5.4.7.2 Second remark

As described in Section 5.4.1.2, the Oleinik-Liu condition (5.145) implies (5.146) [49]. The contrary
has not been stated. Despite that in Theor. 5.4.5 we use (5.146) instead of the Oleinik-Liu condition
(5.145). This proves to be correct in our case. In this work we do not go further into this topic
that needs to be developed properly. In general conditions (5.145) and (5.146), are not equivalent,
in our case on the contrary, they prove to be.

5.5 Conclusions

In this Chapter we have presented the exact solution of the Riemann problem for the pressure
system arising from the advection-pressure splitting for the conservative 1D blood flow model
with transport for arteries and veins described in Chapter 3.1.
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For the case of arteries the characteristic fields can be genuinely non-linear or linearly degen-
erate, leading to the formation of rarefactions, shocks, and contact discontinuities. A detailed
mathematical analysis has been depicted with the description of the admissible rarefaction and
shock curves and a numerical procedure to compute it is introduced.

For the case of veins the loss of genuine non-linearity can lead to the formation of compound
waves. An accurate theoretical analysis of all the wave relations has been carried out also in this
case, for all the possible waveforms, and a simple numerical procedure has been proposed to
compute the exact solution also in this case.



Part II

Numerical schemes





Chapter6

Flux vector splitting schemes

applied to a conservative 1D blood flow

model with transport for arteries and

veins

In this Chapter we present novel flux splitting-based numerical schemes for the conservative
1D blood flow equations with an advection equation for a passive scalar transport, considering
tube laws that allow to model blood flow in arteries and veins (Chapter 2.1). Our schemes are
inspired by the original flux vector splitting approach of Toro and Vázquez [92] and represent
an extension of the work proposed by Toro et al. [91], which addressed tube laws suitable for
describing blood flow in arteries. Our schemes separate advection terms and pressure terms,
generating two different systems of PDEs: the advection system and the pressure system, both of
which have a very simple eigenstructure compared to that of the full system (Chapters 3, 4, 5). We
propose discretization schemes of the Godunov type that are simple and efficient. These qualities
are evaluated on a suite of test problems with exact solution (Chapter 2.1). A detailed efficiency
analysis is performed in order to illustrate situations in which the proposed methodology results
advantageous with respect to standard approaches.

The Chapter is organized as follows: having presented the complete conservative 1D blood
flow equations (Chapter 2.1), their splitting at the level of PDEs (Chapter 3.1), the pressure system
resulting from it and its exact solution of the Riemann problem (Chapter 5), and acknowledging
its computational complexity, in order to obtain efficient numerical methods in Section 6.1 we
present two approximate Riemann solvers for the aforementioned pressure system. The numerical
flux splitting schemes are presented in Section 6.2, the numerical results are given in Section 6.3,
while in Section 6.3.2 the efficiency analysis is performed. The conclusions are drawn in Section
6.4.

This Chapter has been published in Spilimbergo et al. [83].

6.1 Approximate Riemann solvers for the pressure

system

Having introduced the generalized Riemann invariants for the λP1, λP2 and λP3-characteristic
fields (Propositions 5.2.1, 5.2.2), we can introduce two approximate Riemann solvers for the
pressure system (5.1). For the purposes of this work, we restrict ourselves to the presentation of
the solution in the Star Region (i.e., the unknowns Q∗

PL and Q∗
PR).

155
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Remark 6.1.1. Note that in this Chapter we refer to the flow rate as Au or q = Au, and also refer to c in
(5.2) in this way: for example, we write cL for c(AL), cR for c(AR), c∗ for c(A∗), and so on.

6.1.1 A two-rarefaction approximate Riemann solver for the

pressure system

The two-rarefaction approximate Riemann solver operates under the assumption of two rarefaction
waves, disregarding the shock wave relations. The solution in the Star Region in this case is

Q∗
TR,L =




A∗
TR

q∗TR
A∗

TRϕ∗
TR,L


 , Q∗

TR,R =




A∗
TR

q∗TR
A∗

TRϕ∗
TR,R


 . (6.1)

Given the wave relations described in Proposition 5.2.1

q∗TR = qL −
∫ A∗

TR

AL

c(A)dA,

q∗TR = qR +
∫ A∗

TR

AR

c(A)dA,

(6.2)

with c the wave speed (5.2), in case of left and right rarefactions

q∗TR =
1

2
(qL + qR) +

1

2

(∫ A∗
TR

AR

c(A)dA −
∫ A∗

TR

AL

c(A)dA

)
=

1

2
(qL + qR)−

1

2

∫ AR

AL

c(A)dA. (6.3)

Having found q∗TR, we obtain A∗
TR solving one of (6.2), for example

q∗TR = qL −
∫ A∗

TR

AL

c(A)dA, (6.4)

where the integrals in case of veins are calculated with a six-point Gauss quadrature rule thanks
to the Python function scipy.integrate.fixed quad, and equation (6.4) is solved with a globally
convergent Newton-Raphson method ( Appendix B.3) (for arteries with m = 0.5 and n = 0 in
(5.4), the solution is explicit).

Regarding the last variable, considering Propositions 5.2.1 and 5.2.2

ϕ∗
TR,L =

AL

A∗
TR

ϕL, ϕ∗
TR,R =

AR

A∗
TR

ϕR. (6.5)

6.1.2 A linearized two-rarefaction approximate Riemann

solver for the pressure system

Now we proceed as in the case of the two-rarefaction Riemann solver and additionally approxi-
mate the relations (6.2). In this case, the solution in the Star Region is

Q∗
LTR,L =




A∗
LTR

q∗LTR
A∗

LTRϕ∗
LTR,L


 , Q∗

LTR,R =




A∗
LTR

q∗LTR
A∗

LTRϕ∗
LTR,R


 . (6.6)
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Given the wave relations from Proposition 5.2.1 described in (6.2), we approximate the integrals
in this way ∫ A∗

LTR

AL

c(A)dA ≈ cL(A∗
LTR − AL), (6.7)

∫ A∗
LTR

AR

c(A)dA ≈ cR(A∗
LTR − AR). (6.8)

Solving the system {
q∗LTR = qL − cL(A∗

LTR − AL),

q∗LTR = qR + cR(A∗
LTR − AR),

(6.9)

we obtain

q∗LTR =
cR(ALcL − ARcL + qL) + cLqR

cL + cR
,

A∗
LTR =

ALcL + ARcR + qL − qR

cL + cR
.

(6.10)

For the definition of cL and cR we refer again to Remark 6.1.1.

Regarding the last variable, as before

ϕ∗
LTR,L =

AL

A∗
LTR

ϕL, ϕ∗
LTR,R =

AR

A∗
LTR

ϕR. (6.11)

6.2 Advection-pressure numerical splitting schemes

for the complete conservative 1D blood flow

model with transport

To numerically solve the complete system of conservative 1D blood flow equations (2.1), we
employ a conservative method following the approach outlined in [92]. The numerical scheme is

Qn+1
i = Qn

i −
∆t

∆x
(Fi+ 1

2
− Fi− 1

2
), (6.12)

where

Qn
i ≈ 1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx, (6.13)

with ∆x = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn. As anticipated in Section 3.1, the aim is to compute a

numerical flux
Fi+ 1

2
= Ai+ 1

2
+ Pi+ 1

2
, (6.14)

where Ai+ 1
2

and Pi+ 1
2

are obtained from appropriate Cauchy problems for the advection (3.3)

and pressure (3.4) systems, respectively.

We define
Pi+ 1

2
= P(Qi+ 1

2
(0)), (6.15)
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where P is in (3.5) and Qi+ 1
2
(0) denotes the Godunov state, i.e. the value Qi+ 1

2

(
x − xi+ 1

2

t

)

calculated at
x − xi+ 1

2

t
= 0, i.e. the solution of the following Riemann problem





∂tQ + ∂xP(Q) = 0, x ∈ R, t > tn,

Q(x, tn) =





QL = Qn
i , if x < xi+ 1

2
,

QR = Qn
i+1, if x > xi+ 1

2
,

(6.16)

evaluated at the interface xi+ 1
2
, for each cell i. Due to the fact that the wave configuration of the

solution of the Riemann problem for the pressure system (6.16) will always result in two subsonic
waves, Qi+ 1

2
(0) = Q∗

Press,i+ 1
2
= [A∗

Press,i+ 1
2

, q∗
Press,i+ 1

2

, A∗
Press,i+ 1

2

ϕ∗
Press,i+ 1

2

]T , the solution in the

Star Region of the Riemann problem (6.16) for each cell i.

Ai+ 1
2

is computed as proposed in [89], which represents a modification of the original splitting

presented in [92] namely,

Ai+ 1
2
=




0
q∗

Press,i+ 1
2

uk

q∗
Press,i+ 1

2

ϕk


 , (6.17)

where

uk =





uL if q∗
Press,i+ 1

2
> 0,

uR if q∗
Press,i+ 1

2
≤ 0,

ϕk =





ϕL if q∗
Press,i+ 1

2
> 0,

ϕR if q∗
Press,i+ 1

2
≤ 0.

(6.18)

To compute Q∗
Press,i+ 1

2
we use two different methods

1. (TV+TR) Q∗
Press,i+ 1

2
= Q∗

TR,i+ 1
2
, with Q∗

TR,i+ 1
2
= [A∗

TR,i+ 1
2

, q∗
TR,i+ 1

2

, 0]T the (modified) ap-

proximate two rarefaction solution of the Riemann problem for the pressure system (6.16)
in the Star Region presented in Section 6.1.1, for each cell i.

2. (TV+Lin.TR) Q∗
Press,i+ 1

2
= Q∗

LTR,i+ 1
2
, with Q∗

LTR,i+ 1
2
= [A∗

LTR,i+ 1
2

, q∗
LTR,i+ 1

2

, 0]T the (modified)

approximate linearized two rarefaction solution of the Riemann problem for the pressure
system (6.16) in the Star Region presented in Section 6.1.2, for each cell i.

It is worth remarking that the third component of any solution just presented is set equal to 0
because the variable ϕ has no value due to the contact discontinuity λP2 at the interface. In fact,
there are two values ϕ∗

L and ϕ∗
R for each solution type, one to the left and one to the right of the

interface, but we do not actually need them because the pressure flux in (3.5) has 0 as its third
component.

6.3 Numerical results

In this Section, we design test problems and assess the performance of the numerical splitting
methods of type TV presented in this Chapter.

We propose six test problems; these tests have been chosen to represent the different admissible
solutions of the 1D blood flow equations in the case of arteries (Tests 1 and 2) and veins (Tests 3,
4, 5, 6), namely smooth solutions (rarefactions), elastic jumps (shocks), and contact discontinuities.
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Table 6.1: Initial conditions for Tests from 1 to 6. The wave patterns are: R=rarefaction,
C=contact discontinuity, S=shock. The units of measures used for this Thesis are:
m, s, Kg, Pa.

Test AL[m
2] uL[m/s] ϕL AR[m

2] uR[m/s] ϕR Wave pattern

1 3.50 · 10−4 0.00 1.00 3.00 · 10−4 0.00 0.00 RCS
2 10.00 · 10−4 0.00 1.00 1.00 · 10−4 0.00 0.00 R(sonic)CS
3 2.80 · 10−4 −0.50 1.00 2.80 · 10−4 0.50 0.00 RCR
4 2.90 · 10−4 0.00 1.00 2.40 · 10−4 0.00 0.00 RCS
5 2.34 · 10−4 0.10 0.00 2.74 · 10−4 0.20 1.00 SCR
6 1.90 · 10−4 1.00 1.00 2.20 · 10−4 0.50 0.00 SCS

Table 6.2: Parameters used for Tests from 1 to 6: domain length ℓ, blood density ρ, wessel
wall stiffness K, reference cross-sectional area A0, external pressure pe, location of
the initial discontinuity xd and output time tEnd.

Test Vessel ℓ[m] ρ K[Pa] A0[m
2] pe[Pa] xd[m] tEnd[s]

1 Artery 0.50 1000.00 20005.00 3.14 · 10−4 0.00 0.50ℓ 0.05
2 Artery 0.50 1000.00 20005.00 3.14 · 10−4 0.00 0.50ℓ 0.04
3 Vein 0.50 1000.00 333.00 3.14 · 10−4 0.00 0.50ℓ 0.09
4 Vein 0.50 1000.00 333.00 3.14 · 10−4 0.00 0.50ℓ 0.10
5 Vein 0.50 1000.00 333.00 3.14 · 10−4 0.00 0.50ℓ 0.10
6 Vein 0.50 1000.00 333.00 3.14 · 10−4 0.00 0.30ℓ 0.15

Test 1. Numerical results
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Figure 6.1: Test 1. Artery. RCS. Numerical results of methods 1, 2 vs. the classic Godunov method with
Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem for the complete system
presented in Chapter 2.1. Initial conditions and parameters are given in Tables 6.1, 6.2.

Of the three waves, the contact discontinuity is usually the one that presents a greater challenge,
especially for linearized or incomplete solvers, since excessive numerical diffusion occurs in the
form of smearing of the contact discontinuity. In the case of veins, the tests are constructed to
explore different positions of Ac in (5.12) with respect to the tests data. This value is of critical
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Test 2. Numerical results
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Figure 6.2: Test 2. Artery. R(sonic)CS. Numerical results of methods 1, 2 vs. the classic Godunov method
with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem for the complete
system presented in Chapter 2.1. Initial conditions and parameters are given in Tables 6.1, 6.2.

importance for the wave pattern of the pressure system (see Chapter 5). In this Chapter we
will restrict ourselves to showing that the presented schemes work properly even in cases when
genuine non-linearity of the λP1- and λP3-characteristic fields of the pressure system is lost. The
numerical results of the methods 1 and 2 are compared with the exact solution of the Riemann
problem for the full 1D blood flow equations and some competing methods in the literature. The
initial data, expressed in terms of the physical variables A, u, and ϕ, can be found in Table 6.1.
Meanwhile, the model parameters are provided in Table 6.2. The discussion of the numerical
results is covered in Section 6.3.1, while an efficiency test is performed in Section 6.3.2.

6.3.1 Results discussion

Numerical results for both methods 1 and 2 are shown and plotted against the exact solution
of the Riemann problem for the full conservative 1D blood flow equations (2.1) presented in
Chapter 2.1 and the results of the Godunov method [34] used in conjunction with the exact
Riemann solver for the complete 1D system (fully described in [87]). For all tests, we use a
Courant–Friedrichs–Lewy number Cc f l = 0.9 and a mesh of I = 50 computational cells (Figs. 6.1,
6.2, 6.3, 6.4, 6.5, 6.6). In this work the Courant–Friedrichs–Lewy number Cc f l is defined as follows

Definition 6.3.1.

Cc f l =
∆t

∆x
Sn

max, (6.19)

where
Sn

max = maxi

{
maxk

∣∣∣λn
k,i

∣∣∣
}

, k = 1, ...N, i = 1, ..., I; (6.20)
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Test 3. Numerical results
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Figure 6.3: Test 3. Vein. RCR. Numerical results of methods 1, 2 vs. the classic Godunov method with
Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem for the complete system
presented in Chapter 2.1. Initial conditions and parameters are given in Tables 6.1, 6.2. Ac in
(5.12) is located inside both rarefactions.

where λn
k,i is the k-th eigenvalue of the complete system (2.1) evaluated in cell i at time tn, and N is the

number of eigenvalues of the considered system.

Test 1 (Artery): RCS The solution of Test 1 consists of three waves, namely a left-facing
rarefaction wave, a middle contact discontinuity, visible for the tracer ϕ, and a right-facing elastic
jump, or shock (RCS). The left rarefaction wave carries smooth transitions of cross-sectional area
A and velocity u, while the right shock carries discontinuous jumps in these quantities. The
numerical results of the two new methods presented are comparable to those of the Godunov
scheme: all approximations are accurate and very similar among themselves for the rarefaction
wave, the contact and the shock wave, we can appreciate monotone shocks, i.e. there are no
spurious oscillations in the vicinity of shocks and also the contact discontinuity presents a minimal
smearing and its speed of propagation is correct.

Test 2 (Artery): R(sonic)CS Test 2 contains the same wave pattern as Test 1, that is a
left rarefaction, a middle contact and a right shock (RCS). However, there are two important
differences. First, the strength of the waves; this may pose a challenge to the robustness of the
methods. Second, the left rarefaction in Test 2 is transonic; i.e. the associated left eigenvalue
λ1 = u − c transits monotonically from negative values to positive values, passing through a
critical point at which u = c. Even though the wave is smooth, the correct approximation of
the sonic point is challenging for all numerical methods. Some schemes will present a jump
(shock) instead of a smooth transition across the sonic point; this is sometimes referred to as the
entropy glitch and arises only in the presence of sonic rarefaction waves. Such a shock is entropy
violating and therefore unphysical. This problem was overcome by the two new schemes, which
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Test 4. Numerical results
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Figure 6.4: Test 4. Vein. RCS. Numerical results of methods 1, 2 vs. the classic Godunov method with
Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem for the complete system
presented in Chapter 2.1. Initial conditions and parameters are given in Tables 6.1, 6.2. Ac in
(5.12) is located below the range covered by the Riemann problem results.

present smooth transitions for the area A and the velocity u. On the other hand, the results for
both splitting schemes show a small overshoot for the velocity u in agreement with the shock
front. The results for the contact discontinuity follow the path of the Godunov scheme and show
a higher numerical diffusion. However, the propagation velocity and average position remain
correct.

Test 3 (Vein): RCR The solution of Test 3 consists of a left rarefaction, a middle contact discon-
tinuity for ϕ and a right rarefaction (RCR), in this problem Ac is located inside the rarefactions;
we can appreciate that the accuracy of the methods is not affected by this particular position of
Ac, and the results of the new schemes are comparable with those of the Godunov method: in
particular, the contact discontinuity is well described without smearing.

Test 4 (Vein): RCS The solution of Test 4 consists of a left rarefaction, a middle contact
discontinuity, and a right shock (RCS), Ac is outside the range covered by the exact solution
and its numerical approximations. The comments are similar to those of Test 3, with minimal
diffusion in the approximation of the contact discontinuity.

Test 5 (Vein): SCR With the same position of Ac as in Test 4, this test scenario features a left
shock, a middle contact discontinuity, and a right rarefaction (SCR) problem. Once again, the
results obtained from the two new methods are comparable to those of the Godunov scheme.
Notably, the left shock exhibits some smoothing in all of these schemes, while the contact
discontinuity experiences minimal diffusion.
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Test 5. Numerical results
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Figure 6.5: Test 5. Vein. SCR. Numerical results of methods 1, 2 vs. the classic Godunov method with
Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem for the complete system
presented in Chapter 2.1. Initial conditions and parameters are given in Tables 6.1, 6.2. Ac in
(5.12) is located below the range covered by the Riemann problem results.

Test 6 (Vein): SCS Finally, the solution of Test 6 shows a left shock, a middle contact discontinu-
ity, and a right shock (SCS) with Ac inside both shocks. While for the concentration of the passive
scalar the results of the two new methods are comparable to those of the Godunov scheme, which
describes the contact discontinuity with some diffusion, the left shock is smeared in the case of A
and u, unlike in the Godunov scheme. We think that this difference could be due to the strength
of the left shock and the non-linear behavior of the veins, and not to the particular position of Ac,
because the latter is the same as that of the right shock.

6.3.2 Efficiency: error against CPU time

Efficiency is determined by the CPU time required by a method to achieve a specified error E.
To assess the efficiency of the TV-type methods presented in this study (methods 1 and 2), we
compare the results with those obtained with standard and well known numerical methods. We
consider two non-linear and complete solvers: the Godunov method with the exact Riemann
solver (Section 6.3.1), the DOT Riemann solver [23, 24] (Appendix A.5) and a centred, and
thus incomplete, scheme: the FORCE scheme [88, 87] (Appendix A.1). Here we calculate the
CPU cost and the L1 error for each method cited above, for variables A, u and ϕ, with meshes
I = [50, 100, 200, 400] and a Cc f l = 0.95. L1 error defined

Lerr
1 (tEnd, ∆xj) = ∆xj

Ij

∑
i=1

|qtEnd
k,i − qe

k,i|, k = 1, 2, 3; (6.21)
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Test 6. Numerical results
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Figure 6.6: Test 6. Vein. SCS. Numerical results of methods 1, 2 vs. the classic Godunov method with
Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem for the complete system
presented in Chapter 2.1. Initial conditions and parameters are given in Tables 6.1, 6.2. Ac in
(5.12) is located inside both shocks.

being tEnd the output time, q
tEnd
k,i the k-th component of Qn

i at time tEnd, qe
k,i the corresponding

exact solution and ∆xj = ℓ/Ij, with ℓ the vessel length and Ij the actual mesh. The tests are
carried out in Python language. Results are depicted in Figs. 6.7, 6.8, 6.9.

It is worth noting that for this efficiency test, the exact solution of the conservative complete 1D
blood flow equations presented in Chapter 2.1, proved to be not adequate due to the numerical
construction of the integral curves there performed. Being these tests carried out only for a
momentum correction coefficient α = 1, we use the classic exact Riemann solver presented for
example in [90, 81], being the continuous parameters case here trated, a particular variant of the
discontinuous parameters case there discussed.

In case of arteries, the two new methods prove to be the most efficient numerical methods (Figs.
6.7, 6.9). For the test in subsonic regime (Test 1) concerning the first two variables A and u, the
new methods reach an accuracy comparable with that of the three classical numerical schemes
(Godunov, FORCE, DOT) but with less computational effort. Regarding the concentration of the
passive scalar, all methods reach the same level of accuracy with the exception of FORCE, due
to its expected excessive numerical diffusion in the description of the intermediate wave (Fig.
6.7). In Test 2, where a left transonic rarefaction is depicted, the accuracy of the solution obtained
with the new schemes is lower than the one of the solutions obtained with DOT and Godunov,
regarding variables A and u (Fig. 6.7); however, the so-called entropy glitch must be taken into
account. The two new methods in fact prove to reproduce this rarefaction in a smooth way.

As for veins, the method TV+Lin.TR proves to be the most efficient of the two new methods
and for Tests 3, 4, 5 the most efficient of all the methods under analysis, achieving the same
accuracy as the others, but in a lower CPU time. Also, the description of the concentration of the
passive scalar ϕ is very accurate, a situation where instead FORCE usually fails, due to a high
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Efficiency plots for Arteries
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Figure 6.7: Efficiency plots for Tests 1, 2, in Tables 6.1, 6.2, calculated for meshes I = [50, 100, 200, 400]. The
lines represent the least square approximation (where possible) of the data.

numerical diffusion (Figs. 6.8, 6.9). Test 6, on the other hand (left shock-middle contact-right
shock in a vein), shows a remarkable decrease in accuracy for the two new methods, for variables
A and u, with respect to the Godunov method and the DOT one, due to a higher diffusion in the
description of the left shock (Fig. 6.8). In this case, the accuracy of the new methods is comparable
to that of FORCE, on the contrary, the efficiency in describing the concentration ϕ is very good. In
particular, the new methods exhibit a small diffusion in the description of ϕ, which, in contrast, is
not present in Test 3. For this reason, the concentration plot for this test is the result of round-off
errors and the results in Fig. 6.9 are omitted.

It is worth noting that the FORCE scheme for the passive scalar ϕ generally does not achieve
the chosen reference error with the given meshes, but the CPU time is calculated using an
extrapolation of the observed convergence pattern. Furthermore, regarding both arteries and
veins, we can conclude that the two TV methods here proposed proved to be as accurate as
Godunov’s scheme in describing the contact discontinuity.

6.4 Conclusions

In this work, after having presented a flux splitting method at PDEs level for the original
hyperbolic system of 1D blood flow equations with continuous parameters and an advection
equation for a passive scalar transport, for both arteries and veins described in Chapter 3.1,
separating the given system in advection system and pressure one, in this Chapter we have
presented two approximated Riemann problem solvers for the obtained pressure system, and
after, two final numerical flux splitting schemes for the complete conservative 1D blood flow
model described in Chapter 2.1 have been built. These latter have been compared with the classic
Godunov scheme and the exact solution of the Riemann problem for the complete system, in
various test problems for arteries and veins, both in subsonic and transonic regime, proving
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Figure 6.8: Efficiency plots for Tests 3, 4, 5, 6 in Tables 6.1, 6.2, calculated for meshes I = [50, 100, 200, 400].
The lines represent the least square approximation (where possible) of the data.

that the issues faced with the lack of genuine non-linearity of two characteristic fields of the
pressure system do not prevent the final splitting schemes from working properly. Finally an
efficiency analysis has been carried out. The two proposed methods have proved to be in general
considerably more efficient than the original Godunov method, the FORCE centred numerical
scheme and the DOT Riemann solver, and can be considered as competitive methods to solve the
Riemann problems under study. In the forthcoming research, the proposed techniques will be
implemented to solve networks of 1D blood flow models.
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Figure 6.9: Efficiency bar plots for Tests 1, 2, 3, 4, 5, 6 in Tables 6.1, 6.2 representing the actual time each
method takes to reach errors given in Figs. 6.7, 6.8, for each variable.





Chapter7

Advection-pressure splitting

schemes applied to a non-conservative 1D

blood flow model with transport for

arteries and veins

In this Chapter we introduce innovative, splitting-based, numerical schemes for the non-conservative
one-dimensional (1D) blood flow equations that incorporate an advection equation for a passive
scalar transport, are designed to model blood flow in arteries and veins and take into account a
general constant momentum correction coefficient (Chapter 2.2).

Our schemes are inspired by the original flux vector splitting approach of Toro and Vázquez-
Cendón [92] designed for the Euler equations, and represent an improvement of the work
proposed by Toro et al. [91] regarding non-conservative systems, which considered a tube law
describing only arteries, a momentum correction coefficient equal to one, no passive scalar
transport equation and involves a minor number of discontinuous mechanical and geometrical
parameters. Our schemes separate advection terms and pressure terms, generating two different
systems of PDEs: the advection system in conservative form, and the pressure system in non-
conservative form, both of which have a very simple eigenstructure compared to that of the
full system (Chapter 3.2). The splitting schemes of this Chapter are systematically assessed
on a carefully designed suite of test problems with exact solution and compared with several
existing mainstream methods. A detailed efficiency analysis is performed in order to showcase
the advantages of the proposed methodology in comparison to standard approaches.

The Chapter is organized as follows: having presented the complete non-conservative 1D blood
flow equations (Chapter 2.2) their splitting at the level of PDEs (Chapter 3.2), we briefly present
some theoretical aspects of the pressure system resulting from the aforementioned splitting
(Section 7.1), introducing the associated Riemann problem (Section 7.1.1), and two approximate
Riemann solvers for the aforementioned system (Section 7.1.2). Finally, the numerical splitting
schemes are presented in Section 7.2, the numerical results are given in Section 7.3, with an
efficiency analysis performed in Section 7.3.2. The conclusions are drawn in Section 7.4.

This research work is in preparation.
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7.1 The non-conservative pressure system

7.1.1 Theoretical notions

The pressure system resulting from the splitting of the non-conservative 1D blood flow equations
is presented in Chapter 3.2, and will be here briefly recalled. The pressure system is

∂tQ +P(Q)∂xQ = 0, (7.1)

where

Q =




A
Au
K
A0

pe

Aϕ




, P(Q) =




0 1 0 0 0 0

c2 0
A

ρ
ψK

A

ρ
ψA0

A

ρ
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (7.2)

where c is the wave speed (2.183) and ρ, ψK, ψA0
are defined in Chapter 2.2. The eigenvalues of

matrix P(Q) in (7.2) are all real for parameters in (2.177), and given by

λP1 = −c, λP2 = λP3 = λP4 = λP5 = 0, λP6 = c, (7.3)

and a possible choice of right eigenvectors corresponding to eigenvalues (7.3) is

RP1 =




1
−c
0
0
0
0




, RP2 =




0
0
1
0

−ψk

0




, RP3 =




0
0
0
1

−ψA0

0




, RP4 =




1
0
0
0

− ρ

A
c2

0




,

RP5 =




0
0
0
0
0
1




, RP6 =




1
c
0
0
0
0




,

(7.4)

where c is the wave speed (2.183).

Proposition 7.1.1 (Hyperbolicity). System (7.1) is hyperbolic under the following hypotheses:

1. the set of admissible solutions is restricted to Q ∈ Ω = [R+ × R × ΩP × R
+
0 ] ⊂ R

6;

2. the tube law is a monotonically increasing function of the cross-sectional area A, i.e.
∂p

∂A
> 0.

Proof. This can be clearly seen from the definition of wave speed given in (2.183). Under the
conditions considered in this proposition c ∈ R

+ ∀Q ∈ Ω, which results in λP1 ∈ R
−, λP6 ∈ R

+,
∀Q ∈ Ω. In particular this is true for the parameters given in (2.176), (2.177).
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Proposition 7.1.2 (Nature of the λP1- and λP6-characteristic fields). Under the hypotheses of Propo-
sition 7.1.1, in case of arteries (parameters are given in (2.176),(2.177)) the λP1- and λP6-characteristic
fields are genuinely non-linear with

∇λP1(Q) · RP1(Q) < 0, ∀Q ∈ Ω,

∇λP6(Q) · RP6(Q) > 0, ∀Q ∈ Ω,
(7.5)

instead in case of veins, they are not. In fact

∇λP1(Q) · RP1(Q)





> 0 for A < AcL,

= 0 for A = AcL,

< 0 for A > AcL,

∇λP6(Q) · RP6(Q)





< 0 for A < AcR,

= 0 for A = AcR,

> 0 for A > AcR,

(7.6)

where AcL, AcR, for parameters in (2.177), are

AcL ≈ 0.7190 A0L, AcR ≈ 0.7190 A0R. (7.7)

Proof. Omitted.The proof is analogous to the corresponding one presented in Chapter 5.

Proposition 7.1.3 (Nature of the λP2,P3,P4,P5-characteristic fields). Under the hypotheses of Proposi-
tion 7.1.1, the λP2,P3,P4,P5-characteristic fields are linearly degenerate.

Proof. It can be easily verified that

∇λPk(Q) · RPk(Q) = 0, k = 2, 3, 4, 5, ∀Q ∈ Ω. (7.8)

Proposition 7.1.4 (Generalized Riemann invariants for the λP1- and λP6-characteristic fields). The
Riemann invariants are given by

q +
∫

c(A)dA = const, K = const, A0 = const, pe = const, Aϕ = const, (7.9)

for the λP1-characteristic field,

q −
∫

c(A)dA = const, K = const, A0 = const, pe = const, Aϕ = const, (7.10)

for the λP6-characteristic field.

Proof. The problem can be solved applying the generalized Riemann invariants method (for
example see [90]), i.e for a given hyperbolic system of n unknowns [w1, w2, . . . , wn]T , for any
λPk-characteristic field with right eigenvector RPk =[r1,k, r2,k, . . . , rn,k]

T the generalized Riemann
invariants are solutions of the following n − 1 ordinary differential equations in phase-plane

dw1

r1,k
=

dw2

r2,k
= · · · = dwn

rn,k
. (7.11)

For the λP1-characteristic field we have

dA

1
=

dq

−c
=

dK

0
=

dA0

0
=

dpe

0
=

d(Aϕ)

0
, (7.12)
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i.e. from the first and the second term

(−c)dA = dq, (7.13)

from which integrating we obtain the statement. From the others

K = const, A0 = const, pe = const, Aϕ = const. (7.14)

An analougue proof for the λP6-characteristic field.

Proposition 7.1.5 (Jump conditions across the stationary contact discontinuities associated with
eigenvalues λP2 = λP3 = λP4 = λP5 = 0). Across the four superimposed contact discontinuities the
following relations hold

q = Au = const, ψ + pe = const. (7.15)

Proof. Following the method presented in [81], we consider matrix P(Q) in (7.2) i.e

P(Q) =




0 1 0 0 0 0

c2 0
A

ρ
ψK

A

ρ
ψA0

A

ρ
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (7.16)

For an arbitrary eigenvector R = [r1, r2, r3, r4, r5, r6]
T we have

PR = λR, (7.17)

which gives the algebraic system





r2 = λr1,

c2r1 +
A

ρ
ψKr3 +

A

ρ
ψA0

r4 +
A

ρ
r5 = λr2,

0 = λr3,

0 = λr4,

0 = λr5,

0 = λr6,

(7.18)

Putting λ = 0 in (7.18) we notice that from the first of (7.18) r2 = 0. Posing r1 = β, r3 = γ, r4 = ϵ,
r6 = δ, for β, γ, ϵ, δ ∈ R, arbitrary constants, we obtain

R0 =




β
0
γ
ϵ[

−c2β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A
δ




. (7.19)
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This is a general form of a vector belonging to the subspace associated with λP = 0 for every
choice of β, γ, ϵ, δ, ∈ R. We then apply the generalized Riemann invariants method to this vector

dA

β
=

dq

0
=

dK

γ
=

dA0

ϵ
=

dpe[
−c2β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A

=
d(Aϕ)

δ
; (7.20)

from the second of (7.20) we have
q = const, (7.21)

from the first and the fifth of (7.20) we have

dA

β
=

dpe[
−c2β − A

ρ
ψKγ − A

ρ
ψA0

ϵ

]
ρ

A

→ −c2 ρ

A
dA − ψK

γ

β
dA − ψA0

ϵ

β
dA = dpe, (7.22)

considering the first and the third of (7.20) coupled together and then the first and the fourth of
(7.20), we have that

γdA = βdK, ϵdA = βdA0. (7.23)

Being c defined in (2.183), we have

−c2 ρ

A
dA = −ψAdA, (7.24)

so (7.22) becomes
−ψAdA − ψKdK − ψA0

dA0 − dpe = 0. (7.25)

Considering that
dψ = ψAdA + ψKdK + ψA0

dA0, (7.26)

we have that (7.25) becomes
−dψ − dpe = 0, (7.27)

from that, integrating, we obtain the second of (7.15). From the first and the sixth of (7.20) we
have

dA

β
=

d(Aϕ)

δ
, (7.28)

that leads to
dA

A
=

(
β

δ − βϕ

)
dϕ. (7.29)

Unfortunately β and δ are arbitrary, so from (7.28) and (7.29) the only thing we can say is that

Aϕ ̸= const, ϕ ̸= const. (7.30)

The Riemann problem for system (7.1) is





∂tQ +P(Q)∂x(Q) = 0, x ∈ R, t > 0,

Q(x, 0) =

{
QL, if x < xd,

QR if x > xd,

(7.31)
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t

xx = xd

λP6 = c

λP2 = λP3 = λP4 = λP5 = 0

λP1 = −c Q∗

PL Q∗

PR

QL QR

Figure 7.1: The configuration of the exact solution of the Riemann problem for the pressure system (7.31).
The green solid lines, in case of arteries, represent waves associated with genuinely non-linear
fields, while in case of veins this property is lost. The purple dashed line represents the contact
discontinuity for the passive scalar and is associated with a linearly degenerate field, the indigo
dotted line represents the three superimposed contact discontinuities for the parameters and is
associated with linearly degenerate fields.

where xd ∈ R is the spatial location of the discontinuity at t = 0. The initial data are QL and QR.
The unknowns are Q∗

PL and Q∗
PR defined as

Q∗
PL =




A∗
L

q∗L
KL

A0L

peL

A∗
Lϕ∗

L




, Q∗
PR =




A∗
R

q∗R
KR

A0R

peR

A∗
Rϕ∗

R




, (7.32)

thanks to Propositions (7.1.4), (7.1.5) explaining that the λP2 = λP3 = λP4-contact discontinuities
are the only discontinuities for parameters K, A0 and pe that are only space-dependent.

Fig. 7.1 depicts the structure of the exact solution of the Riemann problem (7.31) for the
pressure system (7.1): the waves related to the λP2 = λP3 = λP4 = λP5-characteristic fields are
associated with linearly degenerate fields and are contact discontinuities, while the waves related
to the λP1- and λP6-characteristic fields, in case of arteries, are associated with genuine non-linear
fields (Proposition 7.1.2) and can be either shocks (elastic jumps) or rarefactions [80]; in case of
veins, the loss of genuine non-linearity can lead to a formation of compound waves [49].

Remark 7.1.1. In is worth noting that for the pressure system, the waves associated with the λP1-
and λP6-characteristic fields will always be subsonic, since

λP1(Q) < 0 and λP6(Q) > 0, i.e. c > 0, ∀Q ∈ Ω. (7.33)

Remark 7.1.2. The purpose of this Chapter is not to provide a comprehensive account of the
exact solution of the Riemann problem for the pressure system (7.31). A complete analysis of
the analogous exact solution for the conservative case was presented in Chapter 5, the related
discussion regarding the non-conservative counterpart is in progress. Our assumption, for this
research, is that the waves associated with the λP1- and λP6-characteristic fields are always
rarefaction waves, while still recognizing the existence of the contact discontinuities associated
with the λP2 = λP3 = λP4 = λP5-characteristic fields. This decision is based on the proposed
numerical schemes and the complexity of the mathematical analysis of the solution in case of
veins, due to the loss of genuine non-linearity of the λP1- and λP6-characteristic fields (Proposition
7.1.2). The current work solely focuses on observing the behavior of the splitting schemes in
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scenarios where the genuine non-linearity is lost for the λP1- and λP6-characteristic fields of the
pressure system.

7.1.2 Approximate Riemann solvers for the pressure system

Having introduced the relations across the waves (Propositions 7.1.4, 7.1.5), we can introduce two
approximate Riemann solvers for the pressure system (7.1). For the purposes of this Thesis, we
restrict ourselves to the presentation of the solution in the Star Region, that is the region in the
(x, t) plane in Fig. 7.1 included between the waves associated with the two nongenuine non-linear
fields (i.e., the unknowns Q∗

PL and Q∗
PR).

7.1.2.1 A two-rarefaction approximate Riemann solver for the pressure

system

The two-rarefaction approximate Riemann solver operates under the assumption that the wave
associated with the λP1 and λP5-characteristic fields, are rarefaction waves, disregarding the
shock waves relations (and also the compound waves relations). The solution in the Star Region
in this case is

Q∗
TR,L =




A∗
TR,L

q∗TR
KL

A0L

peL

A∗
TR,Lϕ∗

TR,L




, Q∗
TR,R =




A∗
TR,R

q∗TR
KR

A0R

peR

A∗
TR,Rϕ∗

TR,R




. (7.34)

To calculate (7.34) we must solve the system of the relations across the waves obtained in
Section 7.1.1 (see [90, 81, 82]):





f1(x1, x2) = x2 − qL + fL(x1) = 0,

f2(x3, x4) = x4 − qR − fR(x3) = 0,

f3(x2, x4) = x2 − x4 = 0,

f4(x1, x3) = KL

[(
x1

A0L

)m

−
(

x1

A0L

)n]
− KR

[(
x3

A0R

)m

−
(

x3

A0R

)n]
+ (peL − peR) = 0,

(7.35)
where

fL(x1) =
∫

x1

AL

c(σ, KL, A0L)dσ (left rarefaction), (7.36)

fR(x3) =
∫

x3

AR

c(σ, KR, A0R)dσ (right rarefaction), (7.37)

while c is the wave speed (2.183) and

X =




x1

x2

x3

x4


 =




A∗
TR,L

q∗TR,L

A∗
TR,R

q∗TR,R,


 . (7.38)

KL and KR are evaluated on data from (2.176). System (7.35) is solved with a globally convergent
Newton-Raphson method with initial guesses AL, qL, AR, qR (see Appendix B.4). Moreover,
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integrals in (7.36) and (7.37) in case of veins are calculated with a three-points Gauss quadrature
rule, while in case of arteries (with m = 0.5 and n = 0 in (2.177)) the solution is explicit.

ϕ∗
TR,L and ϕ∗

TR,R are calculated from Proposition 7.1.4, i.e.

ϕ∗
TR,L =

AL

A∗
TR,L

ϕL, ϕ∗
TR,R =

AR

A∗
TR,R

ϕR. (7.39)

7.1.2.2 A linearized two-rarefaction approximate Riemann solver for

the pressure system

We proceed as in the case of the two-rarefaction Riemann solver and additionally approximate
the relations (7.36), (7.37). The solution in the Star Region in this case is

Q∗
LTR,L =




A∗
LTR,L

q∗LTR
KL

A0L

peL

A∗
LTR,Lϕ∗

LTR,L




, Q∗
LTR,R =




A∗
LTR,R

q∗LTR
KR

A0R

peR

A∗
LTR,Rϕ∗

LTR,R




. (7.40)

To obtain (7.40) we must solve





f1(x1, x2) = x2 − qL + fL(x1) = 0,

f2(x3, x4) = x4 − qR − fR(x3) = 0,

f3(x2, x4) = x2 − x4 = 0,

f4(x1, x3) = KL

[(
x1

A0L

)m

−
(

x1

A0L

)n]
− KR

[(
x3

A0R

)m

−
(

x3

A0R

)n]
+ (peL − peR) = 0,

(7.41)
where we approximate (7.36), (7.37) with

fL(x1) =
∫

x1

AL

c(σ, KL, A0L)dσ ≈ cL(x1 − AL) (left rarefaction), (7.42)

fR(x3) =
∫

x3

AR

c(σ, KR, A0R)dσ ≈ cR(x3 − AR) (right rarefaction), (7.43)

while cL = c(AL, KL, A0L) and cR = c(AR, KR, A0R) are the wave speeds (2.183) and

X =




x1

x2

x3

x4


 =




A∗
LTR,L

q∗LTR,L

A∗
LTR,R

q∗LTR,R,


 . (7.44)

KL and KR are evaluated on the data from (2.176). System (7.41) reduces to





f5(x1, x3) = −qL + cL(x1 − AL) + qR + cR(x3 − AR) = 0,

f4(x1, x3) = KL

[(
x1

A0L

)m

−
(

x1

A0L

)n]
− KR

[(
x3

A0R

)m

−
(

x3

A0R

)n]
+ (peL − peR) = 0,

(7.45)
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from the first of (7.45) we obtain

x1 =
qL − qR − cRx3 + cR AR + cL AL

cL
, (7.46)

so the second becomes

f4(x3) = KL

[(
qL − qR − cRx3 + cR AR + cL AL

cL A0L

)m

−
(

qL − qR − cRx3 + cR AR + cL AL

cL A0L

)n]
−

− KR

[(
x3

A0R

)m

−
(

x3

A0R

)n]
+ (peL − peR) = 0,

(7.47)

(7.47) is solved with a globally convergent Newton-Raphson method of initial point AR. Having
found x3 = A∗

LTR,R from (7.47), we calculate x1 = A∗
LTR,L from (7.46) and after that, we calculate

x2 = x4 = q∗LTR,L = q∗LTR,R from the first or the second of (7.41).

ϕ∗
LTR,L and ϕ∗

LTR,R are calculated from Proposition 7.1.4, i.e.

ϕ∗
LTR,L =

AL

A∗
LTR,L

ϕL, ϕ∗
LTR,R =

AR

A∗
LTR,R

ϕR. (7.48)

7.2 Advection-pressure numerical splitting schemes

for the complete non-conservative 1D blood

flow model with transport

To solve numerically system (7.1), we employ a path-conservative method [64]

Qn+1
i = Qn

i −
∆t

∆x
(D+

i− 1
2

+ D−
i+ 1

2

), (7.49)

where

Qn
i ≈ 1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx, (7.50)

with ∆x = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn. The aim is to compute the fluctuations

D±
i+ 1

2

= A±
i+ 1

2

+P±
i+ 1

2

, (7.51)

where A±
i+ 1

2

are the fluctuations related to the advection system and P±
i+ 1

2

are the fluctuations

related to the pressure system. From [64, 23], we know that in case of a conservative system, we
have

D+
i− 1

2

= F(Q+
i− 1

2

)− Fi− 1
2
, D−

i+ 1
2

= Fi+ 1
2
− F(Q−

i+ 1
2

), (7.52)

where F is the physical conservative flux and Fi+ 1
2

is the numerical conservative flux of the model.

For a first order method, regarding the pressure system, (7.52) is adapted into

P+
i− 1

2

= FP(Qi)− FP(Q
∗
PressR,i− 1

2
), P−

i+ 1
2

= FP(Q
∗
PressL,i+ 1

2
)− FP(Qi), (7.53)
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where FP(Q) is the physical conservative flux of the pressure system, found acting as if system
(7.1) could be written in conservative form (i.e. if it had constant parameters), i.e.

FP(Q) =




Au
∫

c(A)2 dA

0
0
0
0




=




Au

KA

ρ

(
m

m + 1

(
A

A0

)m

− n

n + 1

(
A

A0

)n)

0
0
0
0




, (7.54)

and

Q∗
PressL,i+ 1

2
=




A∗
PressL,i+ 1

2

q∗
PressL,i+ 1

2

KL,i+ 1
2

A0L,i+ 1
2

peL,i+ 1
2

A∗
PressL,i+ 1

2

ϕ∗
PressL,i+ 1

2




, Q∗
PressR,i+ 1

2
=




A∗
PressR,i+ 1

2

q∗
PressR,i+ 1

2

KR,i+ 1
2

A0R,i+ 1
2

peR,i+ 1
2

A∗
PressR,i+ 1

2

ϕ∗
PressR,i+ 1

2




,

(7.55)

are the solutions in the Star Region of the Riemann problem for the pressure system





∂tQ +P(Q)∂xQ = 0, x ∈ R, t > tn,

Q(x, tn) =





QL = Qn
i if x < xi+ 1

2
,

QR = Qn
i+1 if x > xi+ 1

2
,

(7.56)

for each cell i, with P(Q) defined in (7.2). The motivation for (7.53) is straightforward: the
pressure system can be written in conservative form if the parameters K, A0 and pe are actually
constants, i.e. the unknowns of the system are only A, Au and Aϕ. We can notice that for each
cell i, Qi, Q∗

PressL,i+ 1
2

and Q∗
PressR,i− 1

2
share the same values of the parameters K, A0 and pe, thus

the pressure system (7.1) is locally conservative. The motivation for (7.54) is indeed thus clear: in
case of conservative 1D blood flow, and consequently a conservative pressure system (Chapters
3.1, 5, 6), the pressure term of the second equation in (7.1) becomes

A

ρ
∂x p =

A

ρ

∂p

∂A
∂x A = c(A)2∂x A = ∂x

∫
c(A)2dA, (7.57)

being c the wave speed in (2.183).

Similarly, for the advection system, for a first order method, (7.52) is adapted into

A+
i− 1

2

= FA(Qi)−Ai− 1
2
, A−

i+ 1
2

= Ai+ 1
2
− FA(Qi). (7.58)

It is worth noting that the advection system (3.9) is actually conservative, i.e it can be written as

∂tQ + ∂xFA(Q) = 0, (7.59)
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with the physical flux

FA(Q) =




0
αAu2

0
0
0

Auϕ




. (7.60)

The numerical flux Ai+ 1
2

is a modification of the TV-advection flux defined in Chapter 6 for the

conservative blood flow model and is defined as

Ai+ 1
2
=




0
αq∗

Press,i+ 1
2

ui+ 1
2

0
0
0

q∗
Press,i+ 1

2

ϕi+ 1
2




, (7.61)

where, recalling Proposition 7.1.5

q∗
Press,i+ 1

2
= q∗

PressL,i+ 1
2
= q∗

PressR,i+ 1
2
. (7.62)

It is worth noting that although the advection system is conservative, and thus the Godunov state
calculated at xi+ 1

2
, for each cell i, does exist, in our case we are using the solution of the Riemann

problem for the pressure system, this latter lacking this particular state; thus (7.62) is defined by
continuity (Proposition 7.1.5). Also ui+ 1

2
and ϕi+ 1

2
are defined by approximation. The ones that

yield the best results are

ui+ 1
2
=





uL if q∗
Press,i+ 1

2
> 0 and





KL,i+ 1
2
= KR,i+ 1

2
,

A0L,i+ 1
2
= A0R,i+ 1

2
,

peL,i+ 1
2
= peR,i+ 1

2
,

uR if q∗
Press,i+ 1

2
≤ 0 and





KL,i+ 1
2
= KR,i+ 1

2
,

A0L,i+ 1
2
= A0R,i+ 1

2
,

peL,i+ 1
2
= peR,i+ 1

2
,

u∗
PressL,i+ 1

2

+ u∗
PressR,i+ 1

2

2
if





KL,i+ 1
2
̸= KR,i+ 1

2
,

A0L,i+ 1
2
̸= A0R,i+ 1

2
,

peL,i+ 1
2
̸= peR,i+ 1

2
,

(7.63)

ϕi+ 1
2
=





ϕL if q∗
Press,i+ 1

2
> 0,

ϕR if q∗
Press,i+ 1

2
≤ 0.

(7.64)

Finally scheme (7.49) results

Qn+1
i = Qn

i −
∆t

∆x
(A+

i− 1
2

+A−
i+ 1

2

)− ∆t

∆x
(P+

i− 1
2

+P−
i+ 1

2

), (7.65)
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that with some calculations becomes

Qn+1
i =Qn

i −
∆t

∆x
(FA(Qi)−Ai− 1

2
+Ai+ 1

2
− FA(Qi))−

∆t

∆x
(FP(Qi)− FP(Q

∗
PressR,i− 1

2
) + FP(Q

∗
PressL,i+ 1

2
)− FP(Qi)),

(7.66)

that reduces to

Qn+1
i = Qn

i −
∆t

∆x
(Ai+ 1

2
−Ai− 1

2
)− ∆t

∆x
(FP(Q

∗
PressL,i+ 1

2
)− FP(Q

∗
PressR,i− 1

2
)). (7.67)

Considering (7.67) we present two possibilities for Q∗
PressJ,i+ 1

2
, J = L, R; that consequently lead

to two different final numerical schemes

1. (TVM+TR) in which Q∗
PressL,i+ 1

2
= Q∗

TR,L,i+ 1
2

and Q∗
PressR,i+ 1

2
= Q∗

TR,R,i+ 1
2
, the approximate

two rarefaction solution of the Riemann problem for the pressure system (7.31) in the Star
Region presented in Section 7.1.2.1, for each cell i,

2. (TVM+Lin.TR) in which Q∗
PressL,i+ 1

2
= Q∗

LTR,L,i+ 1
2

and Q∗
PressR,i+ 1

2
= QLTR,R,i+ 1

2
, the approx-

imate linearized two rarefaction solution of the Riemann problem for the pressure system
(7.31) in the Star Region presented in Section 7.1.2.2, for each cell i,

where TVM stands for Toro-Vázquez Modified.
Method (7.67) circumvents the necessity to use any path, reducing effectively the computational

cost as it will be shown in Section 7.3.

7.3 Numerical results

Within this section, we present test problems and evaluate the effectiveness of the numerical
splitting methods of type TV introduced in this Chapter. We propose seven test problems; these
tests have been chosen to represent the different admissible solutions of the 1D blood flow
equations in the case of arteries (Tests 1, 2, 3) and veins (Tests 4, 5, 6, 7), namely smooth solutions
(rarefactions), elastic jumps (shocks), and contact discontinuities. The contact discontinuity, out
of the three waves, typically proves to be the most challenging. This is particularly true for
linearized or incomplete solvers, as they encounter excessive numerical diffusion resulting in the
smearing of the contact discontinuity. The two new methods will prove to be able to depict also
these waves.

Tests are constructed to provide an explanation of the necessity to modify the TV-advection flux
already presented in Chapter 6 for the conservative 1D blood flow, to handle non-conservative
systems. Recalling the original TV-advection flux

ATV,i+ 1
2
=




0
αq∗

Press,i+ 1
2

uTV,i+ 1
2

0
0
0

q∗
Press,i+ 1

2

ϕi+ 1
2




, (7.68)

where

uTV,i+ 1
2
=





uL if q∗
Press,i+ 1

2
> 0,

uR if q∗
Press,i+ 1

2
≤ 0,

(7.69)
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Table 7.1: Left and right initial conditions for Tests from 1 to 7. The units of measures used for
this Thesis are: m, s, kg, Pa.

Left data

Test AL[m
2] uL[m/s] KL[Pa] A0L[m

2] peL[Pa] ϕL

1 1.0228A0L 0.0 Kre f 2.0A0,re f 9999.15 1.0
2 1.6A0L 1.0 Kre f 0.5A0,re f 3999.66 1.0
3 1.1A0L 1.0 Kre f 0.5A0,re f 3999.66 0.5

4 1.8 · 10−5 0.5 Kre f A0,re f 60.0 0.5
5 A0L 0.1 60.0Kre f A0,re f 100.0 0.5

6 1.3 · 10−5 0.0 Kre f 1.5A0,re f 40.0 0.5

7 1.5 · 10−5 −0.3 8.0Kre f A0,re f 0.0 0.5

Right data

Test AR[m
2] uR[m/s] KR[Pa] A0R[m

2] peR[Pa] ϕR

1 0.9977A0R 0.0 10.0Kre f A0,re f 11340.56820743433 0.5
2 1.05A0R 0.0 10.0Kre f A0,re f 0.0 0.5
3 0.7A0R −0.5 10.0Kre f 0.2A0,re f 0.0 1.0

4 1.8 · 10−5 −0.2 0.7Kre f 1.2A0,re f 10.0 1.0
5 A0R 0.2 Kre f 1.1A0,re f 60.0 1.0

6 1.9 · 10−5 0.0 10.0Kre f A0,re f 0.0 1.0

7 2.0 · 10−5 0.6 Kre f 1.5A0,re f 10.0 1.0

Table 7.2: Parameters used for Tests 1 to 7: blood density ρ; reference vessel wall stiffness Kre f ;
reference cross-sectional area A0,re f ; domain length ℓ; location of the initial discontinuity
xd and output time tEnd. Regarding the resulting wave pattern, R=rarefaction, S=shock,
Cu=contact discontinuity associated with λ = u, C0=contact discontinuity associated with
λ = 0.

Test Vessel Wave pattern ρ[kg/m3] Kre f [Pa] A0,re f [m
2] ℓ[m] xd[m] tEnd[s]

1 Artery Stationary 1000.0 58725.0 3.1353 · 10−4 0.2 0.5ℓ 0.007
2 Artery SC0CuS 1000.0 58725.0 3.1353 · 10−4 0.2 0.3ℓ 0.007
3 Artery RC0CuS 1050.0 50000.0 3.1353 · 10−4 0.2 0.3ℓ 0.007
4 Vein SC0CuS 1050.0 300.0 2.8274 · 10−5 0.5 0.5ℓ 0.2
5 Vein RC0CuR 1000.0 33.0 2.8274 · 10−5 1.1 0.75ℓ 0.11
6 Vein RC0CuS 1050.0 30.0 2.8274 · 10−5 0.5 0.4ℓ 0.25
7 Vein SCuC0R 1050.0 300.0 2.8274 · 10−5 0.8 0.6ℓ 0.12

while ϕi+ 1
2

is as in (7.64). This option has been discarded due to its lack of accuracy in the results

of certain tests as it will be shown in the next Sections. In addition, in case of veins, the tests
are designed to explore different placements of AcL and AcR in (7.7) with respect to the range
depicted by the test results. These values are of crucial importance in determining the wave
pattern of the pressure system, however, it is worth noting that this specific matter will not be
addressed in this Thesis (for the related issue in the conservative case, see Chapter 5), instead, the
focus is on demonstrating the effectiveness of the presented schemes, even in cases where the
genuine non-linearity of the λP1- and λP6-characteristic fields of the pressure system is lost.

The numerical results of methods 1 and 2 are compared with the exact solution of the Riemann
problem for the full non-conservative 1D blood flow equations and some classic methods in
literature. The initial data, expressed in terms of the physical variables A, u, and ϕ, can be found
in Table 7.1. Meanwhile, the model parameters are provided in Table 7.2. The discussion of the
numerical results is covered in Section 7.3.1, while an efficiency test is performed in Section 7.3.2.

7.3.1 Results discussion

Numerical results for both methods 1 and 2 are shown and plotted against the exact solution of
the Riemann problem for the full 1D blood flow equations (Chapter 2.2) and the results of the
following numerical methods
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1. DOT+WB: the well-balanced version of DOT solver that combines the DOT solver for the full
system presented in [23] with the path described in [56], modified for a generic momentum
correction coefficient (see Appendix A.5) for a detailed presentation);

2. TV+PMG+TR: combines the TV-splitting at the level of PDE presented in this Chapter,
the Parés-Muñoz-Godunov scheme [66] applied to the pressure system and described in
Appendix A.4, in conjunction with the approximate two-rarefaction Riemann solver for
the pressure system described in Section 7.1.2.1, and the original TV-advection flux (7.68).
This scheme is a generalization of the TV+PMG+Ex.RS scheme depicted in [91] for non
conservative systems: in fact this latter is presented for a single discontinuous parameter
without transport added and includes an exact Riemann solver for the pressure system,
considered only for the case of arteries. We extend the method to three discontinuous
parameters and a passive scalar transport equation added, using the original TV-advection
flux reported in (7.68) and substituting the exact Riemann solver with the approximate
two-rarefaction one. This latter choice is necessary as we extend the discussion to veins,
being the exact solution of the Riemann problem for the pressure system in case of veins
not trivial, due to the loss of genuine non-linearity.

All results are finally proposed for two different values of the momentum correction coefficient α
in (2.3), i.e. α = 1 corresponding to a flat velocity profile, regards an inviscid fluid and α = 4/3
that concerns a parabolic velocity profile; and are calculated with a mesh of I = 50 computational
cells (Figs. 7.2, 7.3, 7.4,7.5, 7.6, 7.7, 7.8) and a Courant–Friedrichs–Lewy number Cc f l = 0.9 defined
as follows

Definition 7.3.1.

Cc f l =
∆t

∆x
Sn

max, (7.70)

where
Sn

max = maxi

{
maxk

∣∣∣λn
k,i

∣∣∣
}

, k = 1, ...N, i = 1, ..., I; (7.71)

with λn
k,i the k-th eigenvalue of the complete system (2.180) evaluated in cell i at time tn, and N is the

number of eigenvalues of the considered system.

Test 1 (Artery): Stationary The solution of Test 1 consists of a stationary solution. The results
of the two new splitting method proposed in this Chapter perfectly describe the type of problem
and in particular the contact discontinuity for the passive scalar is flawlessly portrayed as shown
in Fig. 7.2.

Test 2 (Artery): SC0CuS The solution of Test 2 contains a left shock, a middle stationary
contact discontinuity associated with the eigenvalue λ = 0, a contact discontinuity associated
with the eigenvalue λ = u and a right shock (SC0CuS). This test does not present any particular
trouble, and all the three methods give similar outcomes. We can appreciate monotone shocks, i.e.
there are no spurious oscillantions in the vicinity of shocks and also the contact discontinuity for
the passive scalar presents a minimal smearing and its speed of propagation is correct (Fig. 7.3).

Test 3 (Artery): RC0CuS The solution of Test 3 shows a left rarefaction, a middle stationary
contact discontinuity associated with the eigenvalue λ = 0, a contact discontinuity associated
with the eigenvalue λ = u and a right shock (RC0CuS). The TVM-methods and the DOT+PM
one result to be more accurate than the TV+PMG+TR scheme on reaching the exact value of the
solution in the Star Region regarding variables A and u. On the contrary the computation of the
passive scalar ϕ is unchanged in all the three TV-type methods, presents a little diffusion but is
analogous to that of DOT+WB method (Fig. 7.4).
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Test 4 (Vein): SC0CuS The Test 4 scenario features a left shock, a middle stationary contact
discontinuity associated with the eigenvalue λ = 0, a contact discontinuity associated with the
eigenvalue λ = u and a right shock (SC0CuS). The test was formulated and designed in order
to evaluate the effectiveness of the TVM-methods when AcL and AcR in (7.7) are located inside
the range depicted by the test results. Reported results suggest that the TVM-methods are not
affected by the loss of genuine non-linearity that occurs for the pressure system, with minimal
diffusion in the approximation of the contact discontinuity for the passive scalar (Fig. 7.5).

Test 5 (Vein): RC0CuR The solution of Test 5 consists of a left rarefaction, a middle stationary
contact discontinuity associated with the eigenvalue λ = 0, a contact discontinuity associated
with the eigenvalue λ = u and a right rarefaction (RC0CuR). In this case AcL and AcR in (7.7)
are located below the range depicted by the test results. Reported results suggest that the TVM-
methods act in an appropriate manner also for this particular position of the critical area values.
Finally the contact discontinuity for the passive scalar is depicted with minimal diffusion. (Fig.
7.6).

Test 6 (Vein): RC0CuS The solution of Test 6 contains a left rarefaction, a middle stationary
contact discontinuity associated with the eigenvalue λ = 0, a contact discontinuity associated
with the eigenvalue λ = u and a right shock (RC0CuS). The TVM-methods prove to be more
accurate than the TV+PMG+TR and also DOT+WB method fails on reaching the exact value of
the solution in the Star Region regarding variables A and u. On the contrary the computation
of the passive scalar ϕ is unchanged in all the three TV-type methods. In this test AcL is located
above the test results and AcR is located inside the results range depicted by the right wave (Fig.
7.7).

Test 7 (Vein): SCuC0R The solution of Test 6 shows a left shock, a middle stationary contact
discontinuity associated with the eigenvalue λ = u, a contact discontinuity associated with the
eigenvalue λ = 0 and a right rarefaction (SCuC0R). Similarly to Test 6, we face a lack of accuracy
of the TV+PMG+TR method and the DOT+WB one with respect to the TVM-schemes. As usual
the computation of the passive scalar ϕ is comparable and presents a little diffusion. In this test
AcL and AcR in (7.7) are located above the test results (Fig. 7.8).

Remark 7.3.1. It is worth noting that although the flow rate q is costant across the initial disconti-
nuity of the parameters as described in Propositions 2.2.4, 2.2.6 in some cases (in this Chapter in
Tests 3, 6, 7) the numerical schemes 1, 2 can present a jump describing this variable, while facing
the initial discontinuity xd of the parameters. This issue is due to the particular approximation
of the advection flux. In other words considering only the pressure system approximation in
scheme (7.67), the final numerical scheme does not present any jump.

7.3.2 Efficiency: error against CPU time

Efficiency is determined by the CPU time required by a method to provide a numerical solution
with a specified error E. In order to evaluate the efficiency of the TVM-methods 1 and 2 discussed
in this research, we compare their results to those obtained from well-known numerical methods
in literature. We consider the DOT+WB solver already treated, the TV+PMG+TR solver discussed
in Section 7.3.1, and the TV+TR solver constructed applying the original TV-advection flux in
(7.68) to the numerical method presented in (7.67). This choice is made to prove that the increase
of accuracy of the TVM-methods here presented is actually due to the modification applied to
the original TV-advection flux in (7.68) that leads to the TVM-advection flux in (7.61). Here we
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Test 1. Numerical results for different α
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(a) TVM+TR vs. DOT+WB vs. TV+PMG+TR. α = 1.
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(b) TVM+TR vs. DOT+WB vs. TV+PMG+TR. α = 4/3.
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(c) TVM+Lin.TR vs. DOT+WB vs. TV+PMG+TR. α = 1.
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(d) TVM+Lin.TR vs. DOT+WB vs. TV+PMG+TR. α = 4/3.

Figure 7.2: Test 1. Artery. Stationary. Numerical results of methods 1, 2 vs. the DOT+WB solver, the
TV+PMG+TR solver with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem
for the complete 1D non-conservative blood flow equations with momentum correction coefficient
α = 1, 4/3. Initial conditions and parameters are given in Tables 7.1, 7.2.
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Test 2. Numerical results for different α
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(a) TVM+TR vs. DOT+WB vs. TV+PMG+TR. α = 1
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Figure 7.3: Test 2. Artery. SC0CuS. Numerical results of methods 1, 2 vs. the DOT+WB solver, the
TV+PMG+TR solver with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem
for the complete 1D non-conservative blood flow equations with momentum correction coefficient
α = 1, 4/3. Initial conditions and parameters are given in Tables 7.1, 7.2.
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(d) TVM+Lin.TR vs. DOT+WB vs. TV+PMG+TR. α = 4/3

Figure 7.4: Test 3. Artery. RC0CuS. Numerical results of methods 1, 2 vs. the DOT+WB solver, the
TV+PMG+TR solver with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem
for the complete 1D non-conservative blood flow equations with momentum correction coefficient
α = 1, 4/3. Initial conditions and parameters are given in Tables 7.1, 7.2.
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Figure 7.5: Test 4. Vein. SC0CuS. Numerical results of methods 1, 2 vs. the DOT+WB solver, the TV+PMG+TR
solver with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann problem for the
complete 1D non-conservative blood flow equations with momentum correction coefficient
α = 1, 4/3. Initial conditions and parameters are given in Tables 7.1, 7.2.
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Figure 7.6: Test 5. Vein. RC0CuR. Numerical results of methods 1, 2 vs. the DOT+WB solver, the
TV+PMG+TR solver with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann
problem for the complete 1D non-conservative blood flow equations with momentum correction
coefficient α = 1, 4/3. Initial conditions and parameters are given in Tables 7.1, 7.2.
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(d) TVM+Lin.TR vs. DOT+WB vs. TV+PMG+TR. α = 4/3

Figure 7.7: Test 6. Vein- RC0CuS. Numerical results of methods 1, 2 vs. the DOT+WB solver, the
TV+PMG+TR solver with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann
problem for the complete 1D non-conservative blood flow equations with momentum correction
coefficient α = 1, 4/3. Initial conditions and parameters are given in Tables 7.1, 7.2.
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(d) TVM+Lin.TR vs. DOT+WB vs. TV+PMG+TR. α = 4/3

Figure 7.8: Test 7. Vein. SCuC0R. Numerical results of methods 1, 2 vs. the DOT+WB solver, the
TV+PMG+TR solver with Cc f l = 0.9, I = 50 cells, and the exact solution of the Riemann
problem for the complete 1D non-conservative blood flow equations with momentum correction
coefficient α = 1, 4/3. Initial conditions and parameters are given in Tables 7.1, 7.2.
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Figure 7.9: Efficiency plots for Tests 2, 3 in Tables 7.1, 7.2, calculated for meshes I = [50, 100, 200, 400] and for
momentum correction coefficient α = 1, 4/3. The lines represent the least square approximation
(where possible) of the data.

calculate the CPU cost and the L1 error for each method cited above, for variables A, u and ϕ,
with meshes I = [50, 100, 200, 400] and a Cc f l = 0.9. L1 error defined

Lerr
1 (tEnd, ∆xj) = ∆xj

Ij

∑
i=1

|qtEnd
k,i − qe

k,i|, k = 1, 2, 3; (7.72)
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Figure 7.10: Efficiency plots for Tests 4, 5 in Tables 7.1, 7.2, calculated for meshes I = [50, 100, 200, 400]
and for momentum correction coefficient α = 1, 4/3. The lines represent the least square
approximation (where possible) of the data.

being tEnd the output time, q
tEnd
k,i the k-th component of Qn

i at time tEnd, qe
k,i the corresponding

exact solution and ∆xj = ℓ/Ij, with ℓ the vessel length and Ij the actual mesh. The tests are
carried out in Python language. Results are depicted in Figs. 7.9, 7.10, 7.11, 7.12.

In case of arteries, the two new methods prove to be the most efficient numerical methods
(Figs. 7.9, 7.12). Test 1 depicts a stationary solution and the efficiency test was not performed.
Regarding Test 2 all methods reach the same accuracy but in a different CPU times, among them
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Figure 7.11: Efficiency plots for Tests 6, 7 in Tables 7.1, 7.2, calculated for meshes I = [50, 100, 200, 400]
and for momentum correction coefficient α = 1, 4/3. The lines represent the least square
approximation (where possible) of the data.

the new TVM-methods prove to be the more efficient, expecially the TVM+Lin.TR solver for both
the values of the momentum correction coefficient analysed. Test 3 on the other hand shows a
remarkable improvement of the accuracy in the two TVM-methods in describing variables A and
u for both values of the momentum correction coefficient, with respect to the other considered
methods. In describing the concentration ϕ the accuracy is comparable but the CPU time prove
to be minor in the TVM+Lin.TR method.
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Figure 7.12: Efficiency bar plots for Tests 2, 3, 4, 5, 6, 7 in Tables 7.1, 7.2 representing the actual time each
method takes to reach errors given in Figs. 7.9, 7.10, 7.11 for each variable.

Regarding veins, Test 4 shows the remarkable saving of CPU time of TVM+Lin.TR that reaches
however the same accuracy of the other TV-type methods, the DOT+WB solver proves to be the
most accurate but with higher CPU time with respect to the new TVM-solver. This is revealed for
both the values of the momentum correction coefficient (Figs.7.10, 7.12). Test 5 depicts again the
higher efficiency of the two new TVM-methods in describing the three unknowns A, u and ϕ,
with respect to all the methods considered, that however reaches a comparable accuracy, for both
values of α, as already described in Test 2 (Figs.7.10 7.12). A similar scenario of Test 3 instead, is
faced in Tests 6 and 7 where the level of both accuracy and CPU time saving is really improved
by the two new TVM-methods with respect to the others, for variables A and u. Regarding the
concentration ϕ, the efficiency of the two TVM-methods is still the best one, however the accuracy
attained is comparable with the one of the other methods (Figs.7.11, 7.12).

Furthermore it is worth noting that for particular Riemann problems (here Tests, 3, 6, 7) the
jump in the vicinity of the intitial discontinuity of the parameters does not affect the overall
accuracy of the two new methods. In addition it is of utmost significance to recognize the CPU
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time saving that characterizes the TV,TVM-methods using (7.67) with respect to the TV+PMG
ones, circumventing the computations of path and matrices (Fig. 7.12). Finally it can be observed
that in general the particular position of AcL and AcR in (7.7), with respect to the problem
outcomes, does not affect the accuracy of the results of the new TVM-splitting methods presented
in this Chapter, however it should be kept in mind that the TVM+Lin.TR method, although being
really efficient, is build from a linearized solver that is not a robust method, in fact it may lead
the TVM+Lin.TR scheme to crush due to the heavy approximation applied to the wave relations
(Section 7.1.2.2). However, when possibile, it proves to be a very efficient alternative to the robust
TVM+TR solver.

7.4 Conclusions

In this Chapter we have presented an advection-pressure splitting method at PDEs level for the
complete hyperbolic system of 1D blood flow equations with discontinuous parameters and an
advection equation for a passive scalar transport, for both arteries and veins, separating the given
system in advection system and pressure one. Consequently we have presented two approximated
Riemann problem solvers for the obtained pressure system, and after, two final simple, finite
volume, first order, numerical advection-pressure splitting schemes for the complete 1D blood flow
model have been built. They have been derived from a conservative form of the path-conservative
schemes for the pressure system, obviating the use of any path and the implementation of the
matrices necessary for the path-conservative methods. Regarding the advection numerical flux
a modification with respect to the one described in [83, 91] is presented, to adequately address
a greater number of discontinuous parameters. These schemes have been compared with the
classic DOT well-balanced Riemann solver, the TV+PMG+TR scheme, a splitting scheme obtained
from the Parés-Muñoz-Godunov scheme for the pressure system and the original TV-advection
flux for the advection system and the exact solution of the Riemann problem for the complete
system, in various test problems for arteries and veins, in subsonic regime, proving that the final
splitting schemes continue to operate effectively despite the lack of genuine non-linearity in two
characteristic fields of the pressure system. Finally an efficiency analysis has been carried out.
The two proposed methods, built from a modification of the original TV-advection flux, have
proved to be in general considerably more efficient than the considered reference methods and
can be contemplated as competitive methods to solve the Riemann problems under study.

The upcoming study will utilise the methods presented in this work to address 1D blood flow
model networks. Furthermore, a thorough examination of the entire solution to the Riemann
problem for the pressure system will be carried out, with emphasis on inspecting the consequences
of the absence of genuine non-linearity.





Conclusions

This Thesis has focuses on investigating splitting techniques for the 1D blood flow equations with
a passive scalar transport equation added, both from a theoretical and a numerical point of view.

Our analysis has adopted a two-step framework that encompasses splitting at the level of partial
differential equations (PDEs) and numerical methods for discretizing the ensuing problems. We
have extended the principles of the flux splitting approach introduced by Toro and Vázquez [92],
referred to, hereafter, as TV splitting. Initially designed for the conservative Euler equations
governing compressible gas dynamics, this approach involves the division of the flux vector into
advection and pressure terms. Consequently, two distinct systems of partial differential equations
emerge: the advection system and the pressure one. In this framework, the wave relations that
must be enforced when employing a Riemann solver are simplified. This simplification not only
positively impacts the numerical method employed to solve blood flow equations within vessels
but also influences the determination of coupling conditions between one-dimensional domains
[27, 73].

The dissertation has been divided into two parts: in the first part we have introduced the
systems of PDEs and theoretically studied the exact solutions of the Riemann problems associated
with them. In the second part we have developed first-order, finite volume-type, numerical
methods to numerically solve the aforementioned problems.

In this Chapter we discuss the achievements reached through the results presented in this
Thesis. Furthermore, we suggest possible topics to be considered in a future work.

i Part 1

i.i Exact solution of the Riemann problem for the complete

1D blood flow equations with general constant momen-

tum correction coefficient and transport

The mathematical model presented in this Thesis is well known and widely treated in literature
([40, 28, 90, 84, 71, 81] and others), in particular its derivation has been presented in [28].

The momentum correction coefficient in the 1D blood flow equations is related to the assumed
velocity profile. The derivation of this term has been presented in [28] and in this Thesis we
consider the velocity profile function proposed in [77].

The exact solution of the Riemann problem has been widely treated in literature, but only
for a momentum correction coefficient equal to one [90, 38, 39, 71, 81] corresponding to a flat
velocity profile, i.e. an inviscid fluid. In addition, there is still a significant amount of research
that remains to be carried out on veins, these latter presenting a highly non-linear behaviour.

In this Thesis we have presented the complete exact solution of the Riemann problem for
the 1D blood flow equations with an advection equation for a passive scalar transport and a

197
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general constant momentum correction coefficient α ∈ [1, 2]. This latter includes velocity profiles
as the parabolic and blunt ones, widely treated in literature (for example see [41]). For tube
laws describing arteries and veins with continuous mechanical and geometrical parameters we
have explored both the subcritical and the supercritical cases. For tube laws describing arteries
and veins with discontinuous parameters we have explored only the subcritical case. The exact
solution, presented with a complete mathematical analysis and a simple procedure to compute it,
has been also compared with a numerical mesh-independent solution obtained with first order
classical numerical schemes.

This research study, without considering the passive scalar transport equation, has been
published in [82].

Future work The exact solution of the Riemann problem in supersonic regime in case of veins
with discontinuous mechanical and geometrical properties remains to be studied, as well as the
entire exact solution for the 1D blood flow equations with a momentum correction coefficient
not constant. Furthermore the exact solution of the Riemann problem for the 1D blood flow
equations in case of junctions of three and more vessels represents a critical issue to describe
coupling conditions in case of junctions and can be an interesting challenge for a future research.

i.ii Exact solution of the Riemann problem for the 1D advec-

tion system with general constant momentum correction

coefficient and without transport

In this Thesis we have presented the exact solution of the Riemann problem for the advection
system arising from the splitting at the level of PDEs of the complete 1D blood flow equations
with general constant momentum correction coefficient. This splitting is a modification of the
TV splitting presented in Toro and Vázquez [92] for the 1D Euler equations and has been used
as a building technique for new computationally efficient numerical schemes. The resulting
system can be incorporated to the so-called pressureless systems of PDEs, generally developed
for the Euler equations. A complete mathematical analysis has been carried out and the exact
solution has been finally further validated by the comparison with numerical, mesh-independent,
solutions, obtained with a second order, centred, extension of FORCE scheme.

Future work The advection system analyzed in this Thesis does not include the passive scalar
transport equation. Further work is necessary to complete the analysis.

i.iii Exact solution of the Riemann problem for the conser-

vative 1D pressure system with transport

In this Thesis we have solved exactly the Riemann problem for the 1D pressure system arising
from the aforementioned splitting at the level of PDEs of the complete conservative 1D blood flow
equations with an advection equation for a passive scalar transport. A complete mathematical
analysis has been carried out for both arteries and veins. In the latter case the loss of genuine
non-linearity of the characteristic fields has been discussed, introducing a particular waveform not
presented in the models already treated in this Thesis, the compound wave. A simple procedure
to compute the resulting exact solution has been proposed and the latter has been also compared
with numerical mesh-independent solutions obtained with a second order, centred, extension of
FORCE numerical scheme.
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Future work The exact solution of the Riemann problem for the pressure system here depicted,
regards only the system arising from the splitting of the conservative 1D blood flow equations.
The solution concerning the non-conservative counterpart remains to be developed. These
exact solutions of the Riemann problem are significant not only to validate advection-pressure
numerical schemes, but also to create coupling conditions between vessels in large networks,
being these latter exact solutions simpler to implement with respect to the one of the complete
1D blood flow equations, expecially for momentum correction coefficient different from one.

ii Part 2

ii.i Flux vector splitting schemes applied to a conservative

1D blood flow model with transport for arteries and

veins

In this study, two finite volume, first order, flux splitting, numerical schemes have been introduced
for the original hyperbolic system of 1D blood flow equations with continuous parameters and an
advection equation for a passive scalar transport. The methods have been applied to both arteries
and veins. By separating the given system into an advection system and a pressure system, two
approximated Riemann problem solvers have been developed for the pressure system.

To evaluate the performance of these schemes, they have been compared with the classic
Godunov scheme and the exact solution of the Riemann problem for the complete system.
Various test problems for arteries and veins, including subsonic and transonic regimes, have
been considered. The results have demonstrated that despite the lack of genuine non-linearity
in two characteristic fields of the pressure system in case of veins, the final splitting schemes
have performed effectively. Furthermore, an efficiency analysis has been conducted to assess
the performance of the proposed methods. The findings have revealed that the two proposed
methods have been generally more efficient than the original Godunov method, the FORCE
centred numerical scheme, and the DOT Riemann solver. Therefore, these methods can be
considered as competitive alternatives for solving the Riemann problems under investigation.

Future work In a future research, the proposed techniques will be implemented to solve
networks of 1D blood flow models. This will further enhance our understanding and ability to
analyze complex blood flow phenomena. Furthermore extending this topic to viscoelastic vessels,
for both arteries and veins with a passive scalar transport equation added, and after, to networks,
would be of paramount importance for simulations more consistent with the reality of the human
body.

ii.ii Advection-pressure splitting schemes applied to a non-

conservative 1D blood flow model with transport for

arteries and veins

In this study, we have introduced a novel advection-pressure splitting technique for the complete
hyperbolic system of 1D blood flow equations. This method is specifically designed to handle
discontinuous parameters and a passive scalar transport equation in both arteries and veins.
By separating the given system into an advection system and a pressure system, we have
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developed two approximate solvers for the pressure system. Subsequently, we have constructed
two numerical advection-pressure splitting schemes for the complete 1D blood flow model.

To evaluate the performance of these schemes, we have compared them with some classic
first order numerical schemes suitable for handling non-conservative models. Additionally, we
have considered the exact solution of the Riemann problem for the complete system. These
comparisons have been conducted in various test problems for arteries and veins under subsonic
conditions. Remarkably, our findings demonstrate that the final splitting schemes continue to
operate effectively despite the absence of genuine non-linearity in two characteristic fields of
the pressure system in case of veins. Furthermore, we have performed an efficiency analysis
to assess the computational performance of the proposed methods. Our results indicate that
the modified TV-advection flux-based methods are generally more efficient than the reference
methods considered in this study. Therefore, these methods can be regarded as competitive
alternatives for solving the Riemann problems under investigation.

Future work In a forthcoming study, the suggested methods will be applied to address 1D
blood flow model networks, and also viscoelastic vessels, as in the conservative counterpart.



ChapterA

Reference methods

In this Appendix we describe the numerical schemes applied in this Thesis as reference numerical
solutions to compare and validate our new presented schemes or exact solutions.

a.1 FORCE numerical scheme

The centred, monotone, finite volume, FORCE scheme [88], was originally derived [86] as a
deterministic version of the stochastic Random Choice Method [32]. The resulting FORCE flux
turns out to be the arithmetic mean of the Lax-Friedrichs and Lax-Wendroff ones. Given the
conservative hyperbolic system

∂tQ + ∂xF(Q) = 0, (A.1)

a finite volume scheme may be constructed by integrating (A.1) in space and time in the control
volume [xi− 1
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are the states at cell interface xi+ 1

2
and F is the

physical flux of the system. Please note that LW stands for Lax-Wendroff, while LF stands for
Lax-Friedrichs.
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a.2 A second order extension of FORCE

A second order, finite volume, extension of FORCE scheme presented in Appendix A.1 can be
obtained in the following manner (for further details see [87]). Given the conservative hyperbolic
system

∂tQ + ∂xF(Q) = 0, (A.9)

integrating (A.9) in space and time in the control volume [xi− 1
2
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2
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2
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2
and F is the

physical flux of the system. Please note that LW stands for Lax-Wendroff, while LF stands for
Lax-Friedrichs.

To compute QL
i and QR

i we perform the following steps

1. Data reconstruction and boundary extrapolated values
From the polynomial vector

Pi(x) = Qn
i + (x − xi)∆VAi, (A.18)

where: ∆i is the associated slope of its reconstruction polynomial Pi(x). To choose these
slopes we use VASLIC criterion.

Definition A.2.1. VASLIC (Van-Albada Slope Limiter Centred) criterion reads as follows: consider-
ing

qk,i − qk,i−1 =

{
tol ∗ sgn(qk,i − qk,i−1) i f |qk,i − qk,i−1| ≤ tol and sgn(qk,i − qk,i−1) ̸= 0

tol i f |qk,i − qk,i−1| ≤ tol and sgn(qk,i − qk,i−1) = 0

(A.19)
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qk,i+1 − qk,i =

{
tol ∗ sgn(qk,i+1 − qk,i) i f |qk,i+1 − qk,i| ≤ tol and sgn(qk,i+1 − qk,i) ̸= 0

tol i f |qk,i+1 − qk,i| ≤ tol and sgn(qk,i+1 − qk,i) = 0

(A.20)
we define
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In each cell i we obtain two boundary extrapolated values
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2. Evolution
For each cell i, the boundary extrapolated values QL
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In this scheme the boundary conditions are set as transmissive.

a.3 A brief overview of the path-conservative ap-

proach

a.3.1 Path-conservative numerical schemes

We consider a general N × N quasi-linear hyperbolic system

∂tQ + M(Q)∂xQ = 0, (A.27)

with the vectors of variables denoted as

Q = [q1, q2, ..., qN ]
T ∈ Ωq. (A.28)

Here, Ωq is the so-called domain of definition of PDE (A.27) and is supposed to be a convex set.

Definition A.3.1 (Path). Ψ(QL, QR, s) with 0 ≤ s ≤ 1, is a Lipschitz continuous function that connects
the left state QL to the right state QR in phase space, satisfying

Ψ(QL, QR, 0) = QL, Ψ(QL, QR, 1) = QR. (A.29)
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Parés [64] proposed a simple straight-line segment path

Ψ(QL, QR, s) = QL + s(QR − QL), with with 0 ≤ s ≤ 1, (A.30)

to connect the two states.

Definition A.3.2 (Path-conservative scheme [64]). Given a family of paths Ψ, a numerical scheme is
said to be Ψ-conservative (path-conservative) if it can be written under the form

Qn+1
i = Qn

i −
∆t

∆x
(D+

i− 1
2

+ D−
i+ 1

2

), (A.31)

with
D±

i+ 1
2

= D±(QL, QR), (A.32)

where QL and QR are the left and right state with respect to xi+ 1
2
, D− and D+ are two continuous

functions satisfying
D±(Q, Q) = 0, ∀Q ∈ Ωq, (A.33)

and

D−(QL, QR) + D+(QL, QR) = D−
i+ 1

2

+ D+
i+ 1

2

=
∫ 1

0
M(Ψ(QL, QR, s))

∂Ψ

∂s
(QL, QR, s)ds, (A.34)

for every QL, QR ∈ Ωq.

See [64] to gain more information concerning the characteristics of a path-conservative scheme.

a.3.2 Well-balanced numerical schemes

Well-balanced schemes were originally motivated by the need to find numerical approximations
to hyperbolic equations with source terms, to achieve equilibrium between flux spatial gradient
and geometric source terms near the steady state. The present work is concerned with a numerical
scheme in a class of methods in which the source term is considered by reformulating the original
system into an augmented hyperbolic system with a modified eigenstructure (see Chapter 2.2).

Definition A.3.3 (Integral curve). Let γp(s) be a curve in phase space parametrized by a scalar parameter
s. We define this curve to be an integral curve of the vector field Rp of system

∂tQ + M(Q)∂xQ = 0, (A.35)

if at each point γp(s) , the tangent vector γ
′
p(s) to the curve is an eigenvector of M(γp(s)) corresponding

to the eigenvalue λp(γp(s)).

Furthermore, the expression for the integral curve gives rise to generalized Riemann invariants,
which are functions of Q whose values are invariant along the integral curve γp(s); see [44] for
background.

Considering system (A.35), we have that steady state solutions are related to linearly degenerate
fields marked with ”λ = 0”: as explained in [64], let in fact Qst(x) be a regular steady state
solution, we have that (A.35) becomes

A(Qst(x)) · ∂xQst(x) = 0 ∀x ∈ R. (A.36)

If ∂xQst(x) ̸= 0, then 0 is an eigenvalue of A(Qst(x)) (i.e eigenvalues are λ such that AR = λR,
with A a N × N matrix and R an arbitrary right eigenvector) and ∂xQst(x) is an associated
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eigenvector. Therefore, x → Qst(x) can be interpreted as a parametrization of an integral curve
of a linearly degenerate characteristic field whose corresponding eigenvalue takes the value 0
through the curve.

Let us also introduce the set ΥLD of all integral curves γLD, associated with the LD field of A

marked with ”λ = 0”.

Definition A.3.4 (Well-balanced numerical scheme [65]). A numerical scheme of the form (A.31)
for system (A.27) is said to be exactly well-balanced for γLD ∈ ΥLD if, given any steady solution
Qst(x) ∈ γLD ∀x ∈ (xl , xr) ⊂ R and initial conditions such that Qn

i ∈ γLD ∀i ∈ [1, ...., I], where I is
the number of cells used to discretize the spatial domain (xl , xr), then

D−
i+ 1

2

+ D+
i− 1

2

= 0, ∀i ∈ [1, ..., I]. (A.37)

The well-balanced property is also necessary for the correct numerical solution of unsteady
problems.

a.4 The Parés-Muñoz-Godunov scheme

This method is presented in [66] and applied to non-conservative systems.

a.4.1 Path-conservative approach

This is a path-conservative scheme [64]. The path-conservative approach is already described in
Appendix A.3 and is here briefly recalled.

The finite volume-type scheme for the non-conservative hyperbolic system

∂tQ + M(Q)∂xQ = 0, (A.38)

is

Qn+1
i = Qn

i −
∆t

∆x
(D+

i− 1
2

+ D−
i+ 1

2

); (A.39)

where

Qn
i ≈ 1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx, (A.40)

and

D±
i+ 1

2

=
1

∆t

∫ tn+1

tn
D±

(
Q−

i+ 1
2

(t), Q+
i+ 1

2

(t)

)
dt. (A.41)

Here ∆x = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn, Q±

i+ 1
2

are limiting data states from left and right at cell

interface xi+ 1
2
.

The fluctuations D−
i+ 1

2

and D+
i+ 1

2

are expected to satisfy the consistency condition

D−
i+ 1

2

(Q, . . . , Q) = 0 , D+
i+ 1

2

(Q, . . . , Q) = 0 (A.42)

and the compatibility condition

D−
i+ 1

2

+ D+
i+ 1

2

=
∫ 1

0
M(Q(Ψ(s; Qn

i , Qn
i+1))

∂

∂s
Ψ(s; Qn

i , Qn
i+1)ds . (A.43)
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The path function Ψ(s; Qn
i , Qn

i+1), with s ∈ [0, 1], joins Qn
i to Qn

i+1 and

Ψ(0; Qn
i , Qn

i+1) = Qn
i , Ψ(1; Qn

i , Qn
i+1) = Qn

i+1 . (A.44)

While many choices for the path Ψ(s; Qn
i , Qn

i+1) are available, here we assume the canonical path

Ψ(s; Qn
i , Qn

i+1) = Qn
i + s(Qn

i+1 − Qn
i ) . (A.45)

In analogy to conservative methods, which require an intercell numerical flux Fi+ 1
2

to be deter-

mined, path-conservative methods are defined once the path Ψ(s; Qn
i , Qn

i+1) is specified and the
fluctuations D−

i+ 1
2

, D+
i+ 1

2

are determined.

a.4.2 The scheme

Parés and Muñoz [66] proposed a Godunov-type, path-conservative method that results from the
following definitions for the fluctuations

D−
i+ 1

2

=
∫ 1

0
M(Ψ(s; Qn

i , Qi+ 1
2
(0)))

∂

∂s
Ψ(s, Qn

i , Qi+ 1
2
(0))ds ,

D+
i+ 1

2

=
∫ 1

0
M(Ψ(s; Qi+ 1

2
(0), Qn

i+1))
∂

∂s
Ψ(s, Qi+ 1

2
(0), Qn

i+1)ds .





(A.46)

Here Qi+ 1
2
(x/t) denotes the solution of the local Riemann problem

∂tQ + M(Q)∂xQ = 0 ,

Q(x, 0) =

{
Qn

i if x < 0 ,

Qn
i+1 if x < 0 .





(A.47)

Qi+ 1
2
(0) is the Godunov state, the determination of which requires solving the Riemann problem

(A.47) to determine Qi+ 1
2
(x/t) and a solution sampling procedure to find Qi+ 1

2
(0).

A Riemann solver for (A.47) is now required. The scheme just described will be denoted as the
PMG scheme, for Parés, Muñoz and Godunov.

Implementing the PMG scheme. On the assumption that the Godunov state Qi+ 1
2
(0) is known,

the implementation of the scheme proceeds as follows. Assuming the canonical paths (A.45) in
(A.46) we have

Ψ(s; Qn
i , Qi+ 1

2
(0)) = Qn

i + s[Qi+ 1
2
(0)− Qn

i ] ,

Ψ(s; Qi+ 1
2
(0), Qn

i+1) = Qi+ 1
2
(0) + s[Qn

i+1 − Qi+ 1
2
(0)] .



 (A.48)

Then, from (A.46) and (A.48) we have

D−
i+ 1

2

= M̂
−
i+ 1

2
[Qi+ 1

2
(0)− Qn

i ] ; D+
i+ 1

2

= M̂
+
i+ 1

2
[Qn

i+1 − Qi+ 1
2
(0)] . (A.49)
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Here M̂
−
i+ 1

2
and M̂

+
i+ 1

2
are numerical approximations to respective integrals in (A.46), that is

M̂
−
i+ 1

2
≈

∫ 1

0
M(Ψ(s; Qn

i , Qi+ 1
2
(0)))ds ,

M̂
+
i+ 1

2
≈

∫ 1

0
M(Ψ(s; Qi+ 1

2
(0), Qn

i+1))ds .





(A.50)

Using a Gaussian-Legendre rule to evaluate the integrals in (A.50) numerically we obtain

M̂
−
i+ 1

2
=

G

∑
j=1

ωjM
(

Ψ(sj; Qn
i , Qi+ 1

2
(0))

)
,

M̂
+
i+ 1

2
=

G

∑
j=1

ωjM
(

Ψ(sj; Qi+ 1
2
(0), Qn

i+1)
)

.





(A.51)

For the integration points and weights, recommended choices are

s1 =
1

2
−

√
15

10
, s2 =

1

2
, s3 =

1

2
+

√
15

10
, ω1 =

5

18
, ω2 =

8

18
, ω3 =

5

18
. (A.52)

The scheme, as formulated, is rather general. The specificity of the problem of interest will
enter in resolving the pending task, namely finding a Riemann solver to determine the Godunov
state Qi+ 1

2
(0) for use in (A.49) and (A.51). In particular, we use the two-rarefaction and the

linearized two-rarefaction solvers presented in Section 7.1.2.

a.5 Well balanced path-conservative DOT Riemann

solver

The DOT Riemann solver was put forward in [24] as a modified version of the Osher–Solomon
Riemann solver [63] for a conservative hyperbolic system. The DOT scheme has also been
extended in [23] to deal with non-conservative hyperbolic systems. Here we recall the finite
volume, path-conservative, DOT solver for non-conservative systems presented in [56, 81], adapted
for a general constant momentum correction coefficient as presented in [82]. The path-conservative
approach is already described in Appendix A.3.

The scheme for the non-conservative hyperbolic system

∂tQ + M(Q)∂xQ = 0, (A.53)

is

Qn+1
i = Qn

i −
∆t

∆x
(D+

i− 1
2

+ D−
i+ 1

2

); (A.54)

where

Qn
i ≈ 1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx, (A.55)

and

D±
i+ 1

2

=
1

∆t

∫ tn+1

tn
D±

(
Q−

i+ 1
2

(t), Q+
i+ 1

2

(t)

)
dt. (A.56)
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Here ∆x = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn, Q±

i+ 1
2

are limiting data states from left and right at cell

interface xi+ 1
2
.

Numerical fluctuations

Fluctuations in the DOT scheme, as proposed in [23] are computed as

D±
(

Q−
i+ 1

2

(t), Q+
i+ 1

2

(t)

)
=

=
1

2

∫ 1

0

[
M(Ψ(Q−

i+ 1
2

(t), Q+
i+ 1

2

(t), s))±
∣∣∣∣M(Ψ(Q−

i+ 1
2

(t), Q+
i+ 1

2

(t), s))

∣∣∣∣
]

∂Ψ

∂s
ds,

(A.57)

with the absolute value of a matrix defined as

|M| = R|Λ|R−1, |Λ| = diag(|λ1|, |λ2|, ...|λN |), (A.58)

where R is the matrix of right eigenvectors of M, and R−1 is its inverse.
Fluctuations in the DOT solver using the 3-points Gauss quadrature rule proposed in [23] are

D±
(

Q−
i+ 1

2

(t), Q+
i+ 1

2

(t)

)
=

=
1

2

(
3

∑
j=1

ωj

{
M(Ψ(Q−

i+ 1
2

(t), Q+
i+ 1

2

(t), sj))± | M(Ψ(Q−
i+ 1

2

(t), Q+
i+ 1

2

(t), sj)) |
∂Ψ

∂s

∣∣∣∣
sj

})
,

(A.59)

in which wj and sj are the j-th weight and Gaussian point coordinate of a quadrature rule with 3

points.

Integration path in phase-plane

The segment path

Ψ(QL, QR, s) = QL + s(QR − QL), with 0 ≤ s ≤ 1, (A.60)

proposed in [64], has been widely used in the numerical solution of several physical problems
involving both conservative and non-conservative hyperbolic systems. Early numerical exper-
iments on the application of the DOT scheme to system (A.53) using the segment path (A.60),
showed the inability of the scheme to preserve stationary solutions, that is, solutions for which
u(x, t) = 0. The reason can be deduced from the analysis of the Riemann invariants associated
with the linearly degenerate (LD) characteristic field marked with ”λ = 0” in case of u(x, t) = 0,
∀x ∈ R, ∀t > 0 [56, 81].

Proposition A.5.1 (Jump conditions across the stationary contact discontinuity associated with
eigenvalues λ2 = λ3 = λ4 = 0, in case of stationary solutions (u = 0)). Across the stationary contact
discontinuity the following relations hold

Au = 0, ψ + pe = constant. (A.61)
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Proof. Following the method presented in [81], we consider matrix M in (2.182) for the case
u(x, t) = 0, i.e

M =




0 1 0 0 0 0

c2 0
A

ρ
ψK

A

ρ
ψA0

A

ρ
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ϕ 0 0 0 0




. (A.62)

The proof from now on is the same as that of Proposition 2.2.6.

As just presented, through the linearly degenerate (LD) field associated with ”λ = 0” eigenvalue
of M in (2.182), in case of stationary solutions u(x, t) = 0, ∀ x ∈ R, ∀t > 0, we have

p = ψ + pe = Γ̄LD
1 , 0 = q = Γ̄LD

2 , (A.63)

where Γ̄LD
1,2 are constant values of total pressure and volumetric flow rate (q = Au). There is a

non-linear dependence between K and A. In order to accommodate changes in K, A0 or pe, while
preserving constancy of the right-hand side in the first equation of (A.63), the cross-sectional area
A will have to change non-linearly. In other words, the use of the segment path (A.60) is not
adequate for the first variable A. In this Chapter, we adopt the path proposed by Müller and Toro
[56]. Such path only preserves stationary solutions exactly. This choice is justified by the fact that
exact well-balanced schemes for stationary solutions solve unsteady problems in a satisfactory
manner.

Ψ(Q−
i+ 1

2

(t), Q+
i+ 1

2

(t), s) =




A(s)
q(s)
K(s)
A0(s)
pe(s)
Aϕ(s)



=




ψK(s)
−1

q−
i+ 1

2

+ s(q+
i+ 1

2

− q−
i+ 1

2

)

K−
i+ 1

2

+ s(K+
i+ 1

2

− K−
i+ 1

2

)

A−
0,i+ 1

2

+ s(A+
0,i+ 1

2

− A−
0,i+ 1

2

)

p−
e,i+ 1

2

+ s(p+
e,i+ 1

2

− p−
e,i+ 1

2

)

Aϕ−
i+ 1

2

+ s(Aϕ+
i+ 1

2

− Aϕ−
i+ 1

2

)




, (A.64)

where ψK is defined as

ψK(s) =
Γ(s)− pe(s)

K(s)
, (A.65)

and Γ(s) is

Γ(s) = Γ1,−
LD,i+ 1

2

+ s

(
Γ1,+

LD,i+ 1
2

− Γ1,−
LD,i+ 1

2

)
. (A.66)

Once that ψK(s) is known, we compute A(s) from the second of (2.179) using a globally convergent
Newton-Raphson method for n ̸= 0. It is possible to verify that a solution always exists for A > 0
and is unique. When n = 0 the solution is explicit.

Regarding
∂Ψ

∂s
, derivatives for most variables are easily computed, besides that for Ā(s) is

computed as

∂A

∂s
(sj) =

(
∂ψ̄K

∂s
(sj)−

∂ψK

∂Ā0

∣∣∣∣
s=sj

∂Ā0

∂s
(sj)

)(
∂ψK

∂Ā

∣∣∣∣
s=sj

)−1

. (A.67)
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Well-balanced properties

Well-balanced schemes were originally motivated by the need to find numerical approximations
to hyperbolic equations with source terms, to achieve equilibrium between flux spatial gradient
and geometric source terms near the steady state.

Definition A.5.1 (Well-balanced numerical scheme [65]). Being ΥLD the set of all integral curves γLD,
associated with the linearly degenerate (LD) field of matrix M marked with ”λ = 0” (see [81] for further
explanations), a numerical scheme of the form (A.54) for system (A.53) is said to be exactly well-balanced
for γLD ∈ ΥLD if, given any steady solution Qst(x) ∈ γLD ∀x ∈ (xl , xr) ⊂ R and initial conditions such
that Qn

i ∈ γLD ∀i ∈ [1, ...., I], where I is the number of cells used to discretize the spatial domain (xl , xr),
then

D−
i+ 1

2

+ D+
i− 1

2

= 0, ∀i ∈ [1, ..., I]. (A.68)

The well-balanced property is also necessary for the correct numerical solution of unsteady
problems.

Proposition A.5.2. The numerical scheme (A.54) with fluctuations (A.59) and path (A.64) fulfils well-
balanced property (A.68) for stationary solutions, i.e. when u(x, t) = 0.

Proof. The proof is similar to the analogue in [81] considering that now, matrix M(Ψ) is a 5 × 5
matrix.

For a first order method we have that

D±
i+ 1

2

= D± (Qn
i , Qn

i+1

)
. (A.69)

a.6 A conservative version of path-conservative

DOT Riemann solver

This scheme was presented in [24] and will be here briefly recalled. The path-conservative
approach is already described in Appendix A.3.

Given the conservative hyperbolic system

∂tQ + ∂xF(Q) = 0, (A.70)

integrating (A.70) in space and time in the control volume [xi− 1
2
, xi+ 1

2
]× [tn, tn+1], leads to

Qn+1
i = Qn

i −
∆t

∆x
(Fi+ 1

2
− Fi− 1

2
); (A.71)

where

Qn
i ≈ 1

∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx, (A.72)

and

Fi+ 1
2
=

1

∆t

∫ tn+1

tn
F(Q(xi+ 1

2
, t))dt. (A.73)

In our case (A.73) is

Fi+ 1
2
=

1

2
(F(Qi) + F(Qi+1))−

1

2

∫ 1

0
|J(Ψ(Qi(t), Qi+1(t), s))| ∂Ψ

∂s
ds, (A.74)
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with the absolute value of a matrix defined as

|J| = R|Λ|R−1, |Λ| = diag(|λ1|, |λ2|, ...|λN |), (A.75)

where J is the Jacobian of the system, R is the matrix of right eigenvectors of J, and R−1 is its
inverse, while λk are the eigenvalues of J.

(A.74) with the segment path

Ψ(QL, QR, s) = QL + s(QR − QL), with 0 ≤ s ≤ 1, (A.76)

becomes

Fi+ 1
2
=

1

2
(F(Qi) + F(Qi+1))−

1

2

(∫ 1

0
|J(Ψ(Qi(t), Qi+1(t), s))| ds

)
(Qi+1 − Qi), (A.77)

in which wj and sj are the j-th weight and Gaussian point coordinate of a quadrature rule with 3

points.





ChapterB

Newton-Raphson methods

In this Appendix we report the Newton-Raphson schemes applied in this Thesis to compute both
the numerical schemes and the exact solutions here presented.

b.1 Newton-Raphson method for the numerical

computation of the exact solution of the Rie-

mann problem for the non-conservative 1D

blood flow equations

Here we present the Newton-Raphson method used to solve (2.254). The others are similar in
structure, with the same tolerances. This method is written in Python language.

# ######################################################################
# Newton−Raphson method
# ######################################################################

# i n i t i a l v a l u e f o r Xs tar :
AsL=AL
uSL=0

AsR=AR
uSR=0

Xstar=np . array ( [ AsL , uSL , AsR , uSR ] )
for i in range ( 5 0 ) :

# c a l c u l a t e fun=np . a r r a y ( [ f1 , f2 . f3 , f4 ] ) and t h e j a c o b i a n o f fun
fun= s e l f . funct ( Xstar , QL,QR)
j a c = s e l f . j a c f u n c t ( Xstar , QL,QR)
eps i = 1 .
for i 2 in range ( 5 0 ) :

XstarA = Xstar − eps i * sc ipy . l i n a l g . so lve ( j ac , fun )
i f XstarA [0]>0 and XstarA [2] >0 :

fAux= s e l f . funct ( XstarA , QL,QR)
i f np . l i n a l g . norm ( fAux , np . i n f )<=np . l i n a l g . norm ( fun , np . i n f ) :

break
else :

eps i *= 0 . 8

e lse :
eps i *= 0 . 8

XstarOld=np . copy ( Xstar )
Xstar = Xstar − eps i * sc ipy . l i n a l g . so lve ( j ac , fun )
i f ( np . abs ( Xstar [0 ] − XstarOld [ 0 ] ) / ( ( Xstar [ 0 ] + XstarOld [ 0 ] ) / 2 . ) ) <1 e−8 and
( np . abs ( Xstar [2 ] − XstarOld [ 2 ] ) / ( ( Xstar [ 2 ] + XstarOld [ 2 ] ) / 2 . ) ) <1 e −8 :

break
i f i ==(50 −1 ) :

print ( ’ no convergence ’ )
e x i t ( −1 )

return Xstar

213
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b.2 Newton-Raphson method for the numerical

computation of the exact solution of the Rie-

mann problem for the pressure system

Here we present the Newton-Raphson method used to solve (5.105) and (5.177). This method is
written in Python language.

# ######################################################################
# Newton−Raphson method
# ######################################################################

# c i s t h e wave s p e e d ( 2 . 1 4 )
cL=c (AL)
cR=c (AR)
eps i = 1 . e −13

# c h o o s e an i n i t i a l p o i n t f o r As be tween t h e two− r a r and t h e mean
aS0 =(AL* cL + AR* cR + qL − qR) / ( cL + cR )
i f aS0>0:

aS=aS0

e lse :
aS =(aL+aR ) / 2 .

fun =100 .
for i in range ( 5 0 ) :

fun = s e l f . ExactRPpressFunction ( aS , aL , aR , qL , qR)
fp = s e l f . ExactRPpressFunction ( aS+epsi , aL , aR , qL , qR)
fm = s e l f . ExactRPpressFunction ( aS−epsi , aL , aR , qL , qR)
df = ( fp −fm ) / ( 2 . * s e l f . eps i )
alpha = 1 .
for i 2 in range ( 5 0 ) :

aAux = aS − alpha * fun/df
i f aAux > 0 . :

fAux = s e l f . ExactRPpressFunction ( aAux , aL , aR , qL , qR)
i f np . abs ( fAux ) <= np . abs ( fun ) :

break
else :

alpha *= 0 . 8

e lse :
alpha *= 0 . 8

aSOld=aS
aS = aS − alpha * fun/df
i f np . abs ( np . abs ( aS−aSOld ) / ( ( aS+aSOld )/2 . ) ) <1 e −7 :

break
# computing fL and fR
fL = s e l f . fK ( aS , aL , x )
fR = s e l f . fK ( aS , aR , x )
qS = ( qL+qR+fR−fL ) / 2 .

return [ aS , qS ]

b.3 Newton-Raphson method for the splitting schemes

for the conservative 1D blood flow model

Here we present the Newton-Raphson method used to solve (6.4). The others are similar in
structure, with the same tolerances. This method is written in the Python language.

# ################################################
# Newton−Raphson method
# ################################################

# i n i t i a l v a l u e f o r As :
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As=AL
for i in range ( 5 0 ) :

# functTR i s d e s c r i b e d in ( 6 . 4 )
# c i s t h e wave s p e e d ( 2 . 1 4 )
fun= s e l f . functTR ( As , AL, qS , qL )
df= s e l f . c ( As )
alpha = 1 .
for i 2 in range ( 5 0 ) :

aAux = As − alpha * fun/df
i f aAux > 0 . :

fAux= s e l f . functTR ( aAux , AL, qS , qL )
i f np . abs ( fAux ) <= np . abs ( fun ) :

break
else :

alpha *= 0 . 8

e lse :
alpha *= 0 . 8

AsOld=As
As = As − alpha * fun/df
i f np . abs ( np . abs ( As−AsOld ) / ( ( As+AsOld)/2 . ) ) <1 e −7 :

break
i f i ==(50 −1 ) :

print ( ’ No convergence ’ )
e x i t ( −1 )

return [ As , qS ]

b.4 Newton-Raphson method for the splitting schemes

for the non-conservative 1D blood flow model

Here we present the Newton–Raphson method used to solve (7.35). The others are similar in
structure, with the same tolerances. This method is written in the Python language.

# ################################################
# Newton−Raphson method
# ################################################
# i n i t i a l v a l u e s
Xstar=np . zeros ( 4 )
Xstar [ 0 ] = aL
Xstar [ 1 ] = qL
Xstar [ 2 ] = aR
Xstar [ 3 ] =qR

for i in range ( 5 0 ) :
# fun=np . a r r a y ( [ f1 , f2 , f3 , f4 ] ) i s d e s c r i b e d in ( 7 . 3 5 )
fun= s e l f . FuncStar ( Xstar [ 0 ] , Xstar [ 1 ] , Xstar [ 2 ] , Xstar [ 3 ] ,QL,QR)
# j f i s t h e j a c o b i a n o f f
j f = s e l f . JacobFuncStar ( Xstar [ 0 ] , Xstar [ 1 ] , Xstar [ 2 ] , Xstar [ 3 ] ,QL,QR)

alpha = 1 .
for i 2 in range ( 5 0 ) :

XstarA= Xstar − alpha * ( sc ipy . l i n a l g . so lve ( j f , fun ) )
i f XstarA [0]>0 and XstarA [2] >0 :

fAux= s e l f . FuncStar ( XstarA [ 0 ] , XstarA [ 1 ] , XstarA [ 2 ] , XstarA [ 3 ] ,QL,QR)
i f ( np . l i n a l g . norm ( fAux , np . i n f )<np . l i n a l g . norm ( fun , np . i n f ) ) :

break
else :

alpha *= 0 . 8

e lse :
alpha *= 0 . 8

XstarOld= np . copy ( Xstar )
Xstar= Xstar − alpha * ( sc ipy . l i n a l g . so lve ( j f , fun ) )
i f ( np . abs ( Xstar [0 ] − XstarOld [ 0 ] ) / ( ( Xstar [ 0 ] + XstarOld [ 0 ] ) / 2 . ) ) <1 e−6 and
( np . abs ( Xstar [2 ] − XstarOld [ 2 ] ) / ( ( Xstar [ 2 ] + XstarOld [ 2 ] ) / 2 . ) ) <1 e −6 :

break
i f i = = ( 4 9 ) :

print ( ’Newton does not converge ’ )
e x i t ( −1 )

aSL=Xstar [ 0 ]
qSL=Xstar [ 1 ]
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aSR=Xstar [ 2 ]
qSR=Xstar [ 3 ]
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