
Vol.:(0123456789)

Applicable Algebra in Engineering, Communication and Computing (2024) 35:233–251
https://doi.org/10.1007/s00200-022-00548-5

1 3

ORIGINAL PAPER

Multidimensional Byzantine agreement in a synchronous
setting

Andrea Flamini1 · Riccardo Longo1 · Alessio Meneghetti1

Received: 15 July 2021 / Revised: 24 February 2022 / Accepted: 27 February 2022 /
Published online: 29 March 2022
© The Author(s) 2022, corrected publication 2022

Abstract
In this paper we present the Multidimensional Byzantine Agreement (MBA) Proto-
col, a leaderless Byzantine agreement protocol defined for complete and synchro-
nous networks that allows a network of nodes to reach consensus on a vector of
relevant information regarding a set of observed events. The consensus process is
carried out in parallel on each component, and the output is a vector whose compo-
nents are either values with wide agreement in the network (even if no individual
node agrees on every value) or a special value ⊥ that signals irreconcilable disagree-
ment. The MBA Protocol is probabilistic and its execution halts with probability 1,
and the number of steps necessary to halt follows a Bernoulli-like distribution. The
design combines a Multidimensional Graded Consensus and a Multidimensional
Binary Byzantine Agreement, the generalization to the multidimensional case of two
protocols presented by Micali et al. (SIAM J Comput 26(4):873–933, 1997; Byzan-
tine agreement, made trivial, 2016). We prove the correctness and security of the
protocol assuming a synchronous network where less than a third of the nodes are
malicious.

1  Introduction

The notion of Byzantine agreement was introduced for the binary case (i.e. when
the initial value consists of a bit) by Lamport, Shostak, and Pease [9], then quickly
extended to arbitrary initial values (see the survey of Fischer [6]). A (binary)

 *	 Andrea Flamini
	 andrea.flamini.1995@gmail.com

	 Riccardo Longo
	 riccardolongmath@gmail.com

	 Alessio Meneghetti
	 alessio.meneghetti@unitn.it

1	 Department of Mathematics, University of Trento, Via Sommarive 14, 38123 Povo (Trento),
Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00200-022-00548-5&domain=pdf

234	 A. Flamini et al.

1 3

Byzantine agreement protocol or Byzantine Fault Tolerant (BFT) protocol, is a
protocol that allows a set of mutually mistrusting players to reach agreement on an
arbitrary (respectively binary) value. These protocols have been initially developed
to deal with Byzantine faults in distributed computing systems. A Byzantine fault
is a particularly tricky failure where a component, such as a server, can inconsist-
ently appear both failed and functioning, presenting different symptoms to different
observers. The problem then evolved to model malicious behaviour in distributed
and multi-party protocols, with natural applications in distributed ledgers such as
blockchains, alongside Proof of Work and Proof of Stake solutions [10, 11, 13].

Many BFT protocols [1, 2, 15, 16] use the primary-backup model, pioneered in
the Practical Byzantine Fault Tolerance (PBFT) protocol proposed by Castro and
Liskov [2]. These BFT protocols are designed in a way that a single replica is des-
ignated as the primary and is responsible for coordinating the consensus decisions,
while all the other replicas perform the backup role. However, this primary can be
smartly malicious and degrade the performance of the system. For this reason there
have been various efforts to design leaderless BFT protocols [12, 14].

Outline In Sect. 1.1 we formally define a Byzantine agreement protocol and
introduce our assumptions on the network. Then, in Sect. 1.2 we give a motiva-
tion for our generalization work by giving a model that describes interesting real-
world applications and giving an example where existing solutions fall short to
expectations.

In Sect. 2 we proceed to define our protocol components, starting with some use-
ful notation. In Sect. 2.2 we extend to the multidimensional case the Binary Byz-
antine Agreement protocol [12] defining the Multidimensional Binary Byzantine
Agreement (MBBA) Protocol and we prove it satisfies the properties of a Byzantine
agreement protocol. In Sect. 2.3 we extend the notion of (n, t)-Graded Consensus
protocol introduced by Micali [3], then we define the Multidimensional Graded
Consensus (MGC) Protocol, the natural extension of the Graded Consensus Protocol
adopted in Algorand [3], whose definition comes from the Gradecast Protocol pre-
sented by Micali [5].

Then, in Sect. 3 we combine the MGC Protocol and the MBBA Protocol into the
Multidimensional Byzantine Agreement (MBA) Protocol, the extension to the mul-
tidimensional case of the Byzantine agreement Protocol in a synchronous setting
described in Algorand [3], proving that it satisfies the properties of Byzantine agree-
ment protocol. In Sect. 3.1 we introduce a probability game that models how the
consensus is reached during the protocol execution, alongside a probability distribu-
tion. Then, in Sect. 3.2 we prove that this distribution predicts the number of steps
necessary to end the protocol execution.

Finally, in Sect. 4 we draw some conclusions and remarks, and outline future
works to improve the applicability of the MBA protocol in practical settings.

1.1 � BA definition and network assumptions

We now provide the formal definition of Byzantine Agreement protocol:

235

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

Definition 1.1  ((n, t)-Byzantine Agreement protocol) We say that P is an arbitrary-
value (respectively, binary) (n, t)-Byzantine Agreement (BA) protocol with sound-
ness 0 < 𝜎 < 1 if, for every set of values V not containing the special symbol ⊥
(respectively, for V = {0, 1} ), in an execution in which at most t out of the n play-
ers are malicious and every player i starts with an initial value vi ∈ V  , every honest
player j halts with probability 1, outputting a value oj ∈ V ∪ {⊥} so as to satisfy,
with probability at least � , the following two conditions:

1.	 Agreement: there exists o ∈ V ∪ {⊥} such that oj = o for each honest player j.
2.	 Consistency: if, for some value v ∈ V , vj = v for all honest players, then o = v.

We refer to o as P ’s output, and to each oi as player i’s output. Agreement is reached
on ⊥ when it is not possible to agree on any other meaningful value in V.

We remark that a network of nodes cannot always reach agreement on a meaning-
ful piece of information. In fact, if at the beginning of the protocol execution many
players are in disagreement with each other, then none of the information advertised
by the nodes can prevail. For this reason the protocol must be designed in such a
way that a high disagreement rate is detected, and the players output the symbol ⊥ at
the end of the protocol execution.

We assume that the players of the protocol form a network N  , that is essentially
a graph that models the communication channels. The network is made of n nodes
(the players), out of which less than n

3
 are malicious or faulty. The network graph is

complete, which means that between any two distinct nodes there is a direct and pri-
vate communication channel.

We will also require that the communications are carried out in a synchro-
nous way, i.e. each node can access a common clock which triggers the start of
every protocol step. Finally, we assume that all communications are performed
instantaneously.

Given this communication model, and the fact that honest nodes are supposed to
send the same message to every node, throughout the paper we will use the terms
“send” and “broadcast” interchangeably.

1.2 � Problem description

In order to better motivate the generalization process that led to the design of proto-
col presented in this paper, let us introduce a model that we will show to encompass
various practical problems, and an example situation for which solutions in literature
(to the best of our knowledge) do not give satisfactory results.

Let N be a network, where each node i ∈ N has access to a Random Variable

X
(i) , where X

(i)
= (X

(i)

1
,… ,X(i)

m
) , for all c ∈ {1,… ,m} , where X(i)

c
 takes values in a

discrete set Vc , ℙ(i)
c

 is its probability mass function, and X(i)
c

= X(l)
c

 , for all i, l ∈ N
and for all c. Each node i records O(i) =

(
x
(i)

1
,… , x(i)

m

)
 , the observed values given by

the random variable. The goal of our protocol is to allow the nodes in N to reach
agreement on a vector of observed values.

236	 A. Flamini et al.

1 3

We make a distinction between two kind of components: ambiguous and unam-
biguous. A component c is ambiguous if there exist two honest nodes i, l ∈ N
who observe two distinct values x(i)

c
≠ x(l)

c
 , otherwise we say that the component is

unambiguous.
Essentially, ambiguous events cause disagreement on some vector compo-

nents, even among honest nodes. This means that nodes cannot agree on a vector
as a whole, so we propose a leaderless protocol in which the consensus process
is carried out in parallel on each vector component. By leaderless we mean that
the consensus protocol is not carried on by evaluating the proposal of a single
node (i.e. the proposal of a leader), instead, all nodes participating in the protocol
equally work together.

Our setting is derived from a context in which some events are to be registered
in a distributed ledger and no observer has a privileged point of view, contrary
to the standard use-case in which blocks are proposed to the network by a sin-
gle actor (e.g. by the node that first completes the creation of a block, or by an
elected temporary leader). Of course different point of views may lead to different
observations, so it is necessary to reconcile these differences in order to keep a
common coherent ledger, even more so when taking into account the possibility
of malicious behaviour from some observers. A more specific application could
be the timestamping of events in a permissionless blockchain. In this setting some
users may be required to perform specific tasks within prescribed time limits, so
our consensus protocol may be used to certify their good behaviour. For example
we may consider a blockchain that employs sharding and allocates block creation
to miners in pre-determined time-slots (a technique employed by various existing
platforms, e.g. EOS [8] and Cardano [7]): our BA protocol may be used to certify
that blocks are indeed created during their prescribed time intervals, thus prevent-
ing attacks in which miners either delay block creation or pretend that previous
blocks were late, leading to validation disputes and forks.

We now show, with the help of an example, the reason why in this model our
leaderless and parallel approach allows for desirable outputs not readily attain-
able with existing alternatives. Let N be a complete network with 4 honest
nodes j1, j2, j3 and j4 . Each node ji in N observes (Xji

1
,X

ji
2
,X

ji
3
,X

ji
4
) ∈ ℕ

4 , where
i ∈ {1, 2, 3, 4} . Suppose that:

If we decide to adopt a consensus protocol where a leader proposes to the network a
vector to record, then the other nodes decide whether to accept it or not, a node will
accept the leader’s proposal only if the values it observed are the same as the ones
advertised by the leader.

This can be done in at least two ways:

Oj1 = (9, 2, 8, 4)

Oj2 = (9, 2, 7, 1)

Oj3 = (9, 3, 8, 1)

Oj4 = (0, 2, 8, 1)

237

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

•	 the evaluation is performed on the whole vector: this means that a node accepts
the leader proposal only if the vector observed is the same as the vector the leader
advertises. In this particular context, the validity of the information that must be
recorded translates to an accurate description of all the events observed. Therefore,
it is clear that, in our example, whoever the leader l ∈ {j1, j2, j3, j4} is, the other
nodes are not going to accept its proposal, since the vector observed by the leader
differs from the vector of every other node.

	  This would cause the output of the protocol to be the default vector (⊥,⊥,⊥,⊥) ,
which means that no meaningful data gets recorded.

•	 the evaluation is performed in parallel on each component of the vector: this means
that a node can accept a component c of the leader proposal only if the value it
observes (associated to the c-th component) is the same as the one advertised by the
leader. In our simple example, whoever the leader l ∈ {j1, j2, j3, j4} is, the nodes will
agree on 3 components. In fact, a great majority of the network (3 out of 4 nodes)
agrees on the values advertised by l in 3 components of the vector, discarding the
remaining component. For instance, in our example, if the leader l is the node j1 ,
then agreement will be reached on the vector (9, 2, 8,⊥).

It is clear that the adoption of the second approach remarkably improves the first one.
When the evaluation is performed on the whole vector, it is sufficient that the nodes do
not agree with the leader in only one component to have all the components discarded.
Whereas, the second approach allows the network to reach consensus and write in the
ledger all the values proposed by the leader on which a majority of the nodes in the
network agree. This observation should convince the reader of the advantages given by
the adoption of a consensus protocol which works in parallel on the vector components.

In our example, what is still undesirable is that the component that gets discarded is
a component on which the majority of the network does agree. Unluckily, the leader is
part of the minority of the network which observed another value, and for this reason
that component is discarded. This emphasizes a weakness of leader-based consensus
protocols when adopted to solve the consensus problem we are targeting.

With our proposal of a leaderless approach we aim to achieve a consensus proto-
col where the network listens to the opinion of more than a single node, thus agree-
ing on a vector where each component reflects the opinion of the majority.

In our example if all 4 nodes communicate to the other nodes their observed val-
ues, then agreement would be reached on the vector (9, 2, 8, 1), since a great major-
ity of the nodes agrees on such values in each vector component. This is the most
desirable result since it is the outcome that one would expect from a group of nodes
without hierarchy and whose opinions have equal value.

2 � Protocol components

In this section we generalize the Binary Byzantine Agreement protocol of [12] and
the (n, t)-Graded Consensus protocol of [3], extending them to the multidimensional
case. These sub-protocols are the two building blocks that we will use to define our
MBA protocol.

238	 A. Flamini et al.

1 3

2.1 � Notation

In this paper we will use the useful notation #s
i
(v) adopted by Micali [3] (or just #i(v)

when s is clear) to represent the number of players from which i has received the
message v during step s, counting also his own message if he has sent a message v
during step s.

Assuming that in each step s a player i receives exactly one message from each
player j, if the number of players is n, then

∑
v #

s
i
(v) = n ∀i, s . During the proto-

col execution honest players should send only one message per step, so, if player
i receives from player j two contrasting messages, then i discards both so they are
not included in the count when computing #i() . Two identical messages are instead
counted as one, and messages that are not properly formatted are discarded as well,
so only valid messages are considered and counted, and

∑
v #

s
i
(v) ≤ n ∀i, s.

Similarly to #s
i
(v) , when the exchanged message is an m-dimensional vector of

strings � = (v1,… , vm) , we define #s
i
(v, c) , for c ∈ {1, 2,… ,m} (or just #i(v, c) when

s is clear) as the number of players from which i has received during step s a vector
of strings � such that vc = v.

When the messages exchanged by each player j are m-dimensional vectors of
strings �� = (vj,1, vj,2,… , vj,m) ∈ (V ∪ {⊥})m , we also define the concept of c-agree-
ment, where c ∈ {1, 2,… ,m} is a specific component of the vectors. We say that the
players reached c-agreement when there exists v ∈ V ∪ {⊥} such that for every hon-
est player j, vj,c = v.

When c-agreement is reached on all the components of the vector, we have that
for all honest players i, j, �� = �� , hence also agreement is reached.

Finally, we write � and � to represent the vectors with in each component 0 and in
each component 1, respectively.

2.2 � Multidimensional binary Byzantine agreement protocol

We now introduce a multidimensional extension of the binary Byzantine agree-
ment protocol BBA presented by Micali [12] and we will call it Multidimensional
Binary Byzantine Agreement (MBBA). The protocol uses a cryptographic hash func-
tion H modeled as a random oracle, and we order its outputs (which are bit strings)
with a standard lexicographic order. We use also a digital signature algorithm with
unique signature, and we denote with ���i(x) the unique signature on the bit string
x computed by player i. That is, let � be any signature that verifies against x and
the public key of i computed by any party in polynomial time, then the probability
that � ≠ ���i(x) is negligible. Note that this means that even with the private key
it is infeasible to compute a different signature for the same message. We suppose
that the players’ public keys are known by everyone, so every player can verify any
signature.

The protocol is an iterated procedure, where at each iteration three steps are
performed. To track the iterations, it uses a counter � representing how many
times the 3 steps loop has been performed during a single protocol execution. At

239

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

the beginning of an MBBA Protocol execution, � = 0 . Also, the protocol requires
a minimal setup: a common random string r independent of the nodes’ keys.

The symbol ⋆ is applied to each message which must be considered final. That
is, if a player i receives a message v⋆ from a node j, then i must pretend that, in
every following step, j will send the same message v.

Remark 1  When m = 1 the protocol m-Dimensional BBA is exactly the protocol BBA
described in [12].

Theorem 2.1  Whenever n ≥ 3t + 1 , the m-Dimensional BBA protocol is an (n, t)-
Byzantine Agreement Protocol with soundness 1.

The proof of such theorem follows the proof of the analogous theorem related
to the protocol BBA [12]. However, the parallelization required some adjustments
to the protocol itself, therefore the proof must be adapted accordingly.

We first prove some Lemmas which will lead us to a proof of Theorem 2.1.

Lemma 2.2  If, at some step, an honest player i sets fi,c = 1 , then c-agreement will
hold at the end of the step.

240	 A. Flamini et al.

1 3

Proof  First, note that an honest player i can set fi,c = 1 only during a Coin-Fixed-
To-0 Step or a Coin-Fixed-To-1 Step, so STEP 3 is not taken under consideration.

Assume that i fixes bi,c = 0 and fi,c = 1 in a Coin-Fixed-To-0 Step. This means
that #1

i
(0, c) >

2

3
n , so more than 1

3
n honest players have sent 0 at the start of such

step (in fact the malicious players are less than 1
3
n ). Since honest players send to eve-

ryone the same message, then #1
j
(0, c) >

1

3
n for each other honest player j. For such

players two mutually exclusive cases may occur :

1.	 #1
j
(0, c) >

2

3
n : in this case j sets bj,c = 0 (and also fj,c = 1 ) in sub-step 1 of STEP

1.
2.	 1

3
n < #j(0, c) ≤

2

3
n : in this case j must enter the third sub-step of STEP 1 hence

sets bj,c = 0.

In any case we have that every honest player j sets bj,c = 0 , thus c-agreement holds
on 0 at the end the Coin-Fixed-To-0 Step.

To conclude our proof, note that a symmetric argument shows that c-agreement
holds on 1 at the end of a Coin-Fixed-To-1 Step in which an honest player i sets
bi,c = 1 and fi,c = 1 . 	� ◻

Lemma 2.3  For each component c ∈ {1, 2,… ,m} , if at some step c-agreement
holds, then it continues to hold in the next steps.

Proof  Assume that, for some component c, the players reached c-agreement at the
end of STEP s. We want to show that in each subsequent step c-agreement still
holds. We assume that c-agreement has been reached on 0. A similar analysis can be
done in case c-agreement is reached on 1.

Let us consider the three possible options for the step s:

•	 s is a STEP 3, so the next step is STEP 1.
	  At the beginning of STEP 1 each honest player i sends its vector �i . Since

agreement has been reached on component c during the previous step, for all
honest i, bi,c = 0 , so #1

i
(0, c) >

2

3
n given that the honest players are more than

2

3
n . This means that in STEP 1, for the component c, each honest player i enters

in the first sub-step, so c-agreement still holds, since the component c is left
unchanged.

•	 s is a STEP 1, so the next step is STEP 2.
	  At the beginning of STEP 2 each honest player i sends its vector �i . As in

the previous case, since agreement has been reached on component c during the
previous step, for all honest i we have that bi,c = 0 and #2

i
(0, c) >

2

3
n . This means

that in STEP 2, for the component c, each honest player i enters in the second
sub-step, so c-agreement still holds since the component c is left unchanged.

•	 s is a STEP 2, so the next step is STEP 3.
	  At the beginning of STEP 3 each honest player i sends its vector �i . Again,

since agreement has been reached on component c during the previous step,
for all honest i we have that bi,c = 0 and #3

i
(0, c) >

2

3
n . This means that in

241

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

STEP 3, for the component c, each honest player i enters in the first sub-step,
so c-agreement still holds since the component c is left unchanged.

Thus, if c-agreement holds at some step, it will keep holding during the next step,
and so on until every player halts. 	� ◻

Lemma 2.4  Let h >
2

3
 be the ratio of honest players in the network. If, at the start of

an execution of STEP 3, no player has halted, i.e. agreement has not been reached
yet on a bit vector, then, being l the number of vector components c on which
c-agreement has not been reached, the players will be in agreement at the end of this
step with probability at least h(1

2
)l >

2

3
(
1

2
)l.

Proof  Let � be the current value of the counter, and let Pi be the set of players
from which i has received a valid message at the beginning of STEP 3. By the
uniqueness property of the underlying digital signature scheme, i can compute
� = H(minj∈Pi

H(���j(r‖�))) , and then k1,… , km are well defined.
Note that the selection of the player p whose hashed digital signature is minimal

is a random selection with uniform distribution, under the assumption that H is a
random oracle. This means that p will be an honest player with probability h >

2

3
 ,

and in this case it will send its message to every player. In particular all the honest
players will receive ���p(r‖�) , from which the same values k1,… , km will be com-
puted by all the honest players who perform sub-step 3 of STEP 3.

Let {ci}i=1,…,l be the set of components of the bit vector on which ci-agreement
does not hold, and let us assume that the player p is honest. For each component
ci of the bit vector, notice that it is impossible that some honest players perform
sub-step 1 and some sub-step 2 of STEP 3. In fact, being t < 1

3
n the number of mali-

cious nodes, if a node i has received more than 2
3
n messages for 1 and a node j has

received more than 2
3
n valid messages for 0, then i has received at least 2

3
n − t >

1

3
n

messages for 1 from honest nodes, and such messages have reached also j. How-
ever, j has received at least 2

3
n valid messages for 0, which is a contradiction since

2

3
n +

2

3
n − t > n , and j cannot receive more than n valid messages from distinct

nodes.
Therefore there are five exhaustive cases that must be considered and may lead

the honest players to ci-agreement:

•	 All honest players update their cith component according to sub-step 1 of STEP 3.
	  In this case ci-agreement hols on 0.
•	 All honest players update their cith component according to sub-step 2 of STEP

3.
	  In this case, ci-agreement holds on 1.
•	 All honest players update their cith component according to sub-step 3 of STEP

3.
	  In this case, at the end of Step 3, ci-agreement holds on kci (we assume p is

honest).
•	 Some honest players update their cith component according to sub-step 1 of

STEP 3 and all the others according to sub-step 3 of STEP 3.

242	 A. Flamini et al.

1 3

	  The honest players updating the value according to sub-step 1 will set the
ci th component of their vector to 0, while the ones updating their ci th compo-
nent according to sub-step 3 will set it to kci which is 0 with probability 1

2
 . This

means that ci-agreement is reached on 0 with probability 1
2
.

•	 Some honest players update their cith component according to sub-step 2 of
step 3 and all the others according to sub-step 3 of STEP 3.

	  The honest players updating the value according to sub-step 1 will set the
ci th component of their vector to 1, while the ones updating their ci th compo-
nent according to sub-step 3 will set it to kci which is 1 with probability 1

2
 . This

means that ci-agreement is reached on 1 with probability 1
2
.

When the player p is honest, we can assume that the values kc are chosen ran-
domly and independently, under the assumption that H is a random oracle.
Hence at the end of STEP 3 the players will reach c-agreement for all values of
c ∈ {1,… ,m} , which means agreement, with probability at least (1

2
)l . Thus, given

that the probability of having the player p honest is h >
2

3
 , we can conclude that,

anytime the players reach STEP 3 of the protocol, before the end of such step they
will be in agreement with probability at least h(1

2
)l >

2

3
(
1

2
)l . 	� ◻

We now can prove Theorem 2.1.

Proof  We prove the following properties that characterize a Byzantine agreement
protocol with soundness � = 1 .

1.	 All honest players HALT with probability 1.
	  If at the beginning of STEP 3 the players are not in c-agreement over l compo-

nents, with probability at least 2
3
(
1

2
)l > 0 they will be in agreement at the end of

that step, hence with the growing of the number of STEP 3 executions the prob-
ability to reach agreement converges to 1. Note that, at every STEP 3 execution,
the number of components not agreed upon can not increase, so the probability
to end the protocol in the next STEP 3 execution does not decrease.

	  Once agreement is reached, the honest players will HALT in the following 2
steps since it will finalize the zeroes in STEP 1 and the ones in STEP 2 (updating
the locally saved vector � with ones corresponding to the finalized components).

2.	 oi = oj for all honest players i and j.
	  This is true because by point 1 all honest players HALT, thus they have � = �

and by applying Lemma 2.2 to every component we can conclude that they are
in agreement, so oi = oj.

3.	 If the initial value of every honest player i is a vector �i = � , then oi = � for every
honest player i.

	  Note that c-agreement holds at the start of the protocol for every c, and by
Lemma 2.2 it will continue to hold. So every honest player sends the same vector
� at the beginning of each round, so #i(bc, c) >

2

3
n for every c and for every honest

i. It is exhaustive to consider the following two cases:

243

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

•	 if � is the vector of all zeros, then all honest players enter sub-step 1 of STEP
1 and when they verify the EXIT CHECK, once they have updated all their
components, they will halt setting oi = �.

•	 Otherwise during STEP 1, for all c ∈ {1, 2,… ,m} if bi,c = 0 they will set
bi,c = 0 , and update �i by setting fi,c = 1 , but will not halt since for some c
we have bi,c = 1 , thus fi,c = 0 . Each of these components c will be finalized
during STEP 2 when it will be set bi,c = 1 and fi,c = 1 . In this case, once
the last coordinate is updated the EXIT CHECK will be verified, and every
honest player i will output oi = �.

	� ◻

2.3 � Multidimensional graded consensus protocol

The notion of Graded Consensus protocol, introduced by Micali [3], is much
weaker than Byzantine agreement but allows the protocol players to gain some
information about the distribution of the input values possessed by the network
participants.

We now provide the definition of an extension of the concept of (n, t)-Graded
Consensus to the multidimensional case.

Definition 2.1  (m-Dimensional (n, t)-Graded Consensus Protocol) Let P be a pro-
tocol in which the set of all players is common knowledge, and each player i pri-
vately knows an arbitrary initial vector of messages ��

�
= (v�

i,1
, v�

i,2
,… , v�

i,m
) where

v�
i,h

∈ V ∪ {⊥}.
We say that P is an m-dimensional (n, t)-graded consensus proto-

col if, in every execution with n players of which at most t are mali-
cious, every honest player i halts outputting a vector of value-grade pairs
oi = (�i, �i) = ((vi,1, gi,1), (vi,2, gi,2),… , (vi,m, gi,m)) where gi,c ∈ {0, 1, 2} and
vi,c ∈ V ∪ {⊥} for every i and c, so as to satisfy the following three conditions:

1.	 For all honest players i and j, for all c ∈ {1,… ,m} , we have that |gi,c − gj,c| ≤ 1.
2.	 For all honest players i and j, for all c ∈ {1,… ,m} and for all positive gi,c, gj,c we

have vi,c = vj,c ≠ ⊥.
3.	 If v�

1,c
= v�

2,c
= ⋯ = v�

n,c
= vc for some value vc ∈ V ∪ {⊥} , then for all honest

players the output component c is (vi,c, gi,c) = (vc, 2) if vc ≠ ⊥ , (vi,c, gi,c) = (⊥, 0)
if vc = ⊥ .

Remark 2  A 1-dimensional (n, t)-graded consensus protocol is an (n, t)-graded con-
sensus protocol according to the definition in [3].

Remark 3  An immediate consequence of condition 3 is that if the initial vec-
tors of the players are equal ��

1
= ⋯ = ��

n
= � = (v1,… , vm) ∈ (V ∪ {⊥})m then

also the outputs will be the same, where (vi,c, gi,c) = (v�
i,c
, 2) when vi,c ≠ ⊥ and

(vi,c, gi,c) = (⊥, 0) when v�
i,c

= ⊥.

244	 A. Flamini et al.

1 3

In the same way we described the m-Dimensional BBA we define a multidimen-
sional extension of the GC protocol, Multidimensional Graded Consensus (MGC).

Theorem 2.5  If t = ⌊ n−1

3
⌋ then MGC is an m-Dimensional (n, t)-graded consensus

protocol.

We have extended the Graded Consensus protocol GC introduced in [3] executing
simultaneously m instances of GC protocol.

The protocol GC is derived by the Gradecast Protocol whose properties are
proved in [5]. An explicit proof for the properties of the GC protocol would be
enough to be sufficiently assured that the properties of MGC hold. However an
explicit proof of GC properties is not provided in [3], therefore, for sake of clarity,
we will prove Theorem 2.5.

Proof of Theorem 2.5  The analysis is performed on a generic component c, and the
final result is a consequence of the properties holding on every component.

1.	 We first prove that it is impossible for two honest players i and j to end the proto-
col with c-th output components (vi,c, gi,c) and (vj,c, gj,c) such that |gi,c − gj,c| = 2.

	  Let us assume gi,c = 0 (hence vi,c = ⊥ ) and gj,c = 2 (hence vj,c ≠ ⊥ ). This means
that, at the end of STEP 2, #2

j
(vj, c) ≥ ⌊ 2n

3
⌋ + 1 . Out of these messages, the honest

players have sent at least ⌊ 2n

3
⌋ + 1 − ⌊ n−1

3
⌋ > 2n

3
−

n

3
=

n

3
 of them. Note that ⌊ n

3
⌋ + 1

is the smallest integer strictly greater than n
3
 , so the honest players have sent at

least ⌊ n

3
⌋ + 1 messages. Since the messages sent by honest players are received

both by j and by i, #2
i
(vj, c) ≥ ⌊ n

3
⌋ + 1 hence gi,c cannot be 0.

2.	 We now prove that if i, j are honest players and gi,c, gj,c > 0 , then vi,c = vj,c.
	  Assume that gi,c, gj,c > 0 and vi,c ≠ vj,c . This means that #2

i
(vi, c) ≥ ⌊ n

3
⌋ + 1 and

#2
j
(vj, c) ≥ ⌊ n

3
⌋ + 1 . Since there are at most ⌊ n−1

3
⌋ malicious players, at least one

245

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

of each of these sets of messages comes from an honest player. This means that,
at the beginning of STEP 2, at least two distinct honest players h, k have received
#1
h
(vi, c) ≥ ⌊ 2n

3
⌋ + 1 and #1

k
(vj, c) ≥ ⌊ 2n

3
⌋ + 1 messages. This is impossible since

honest players sent the same messages both to h and k, and the number of mali-
cious players is t̂ ≤ t <

n

3
 . The malicious players may have sent different messages

to h and k, but they can have sent no more than t = ⌊ n−1

3
⌋ messages to each of the

honest players. Considering all the distinct messages received by either h or k at
the end of STEP 2, we have that at most n − t̂ of them have been sent by honest
players, and at most 2t̂ by malicious players, so there are at most n + t̂ ≤ n + t
distinct messages. However, considering the messages received for the values vi
and vj  , we have t ha t h and k have r ece ived a t l e a s t
2(⌊ 2n

3
⌋ + 1) > 2(

2n

3
) = n +

n

3
> n + ⌊ n−1

3
⌋ ≥ n + t messages, which contradicts

the fact that the number of messages received by h and k cannot exceed n + t.

3.	 (a)	 We now prove that if v�
i,c

= vc ≠ ⊥ ∀i ∈ {1,… , n} for some value
vc , then for all honest players the output is (vi,c, gi,c) = (vc, 2).

	  This is true because at the end of STEP 1 each honest player broadcasts
vc . Note that the honest players are at least n − ⌊ n−1

3
⌋ > n −

n

3
=

2n

3
 , and

since there are an integral number of them they are at least ⌊ 2n

3
⌋ + 1 . This

means that for each honest player i, #1
i
(vc, c) ≥ ⌊ 2n

3
⌋ + 1 thus each honest

player in STEP 2 broadcasts vc . Again for each honest player i must be
#2
i
(vc, c) ≥ ⌊ 2n

3
⌋ + 1 , and this implies (vi,c, gi,c) = (vc, 2).

(b)	 Finally, we prove that if v�
i,c

= ⊥ ∀i ∈ {1,… , n} , then all honest players
output (vi,c, gi,c) = (⊥, 0).

	  In this case at the end of STEP 1 each honest player broadcasts ⊥ . This
means that for each honest player i, #1

i
(⊥, c) ≥ ⌊ 2n

3
⌋ + 1 thus there cannot

exist a value vc ≠ ⊥ such that #1
i
(vc, c) ≥ ⌊ 2n

3
⌋ + 1 (otherwise the number of

messages considered by the honest player i would exceed n). Hence i will
send the message with ⊥ in the c-th component at the end of STEP 2. Again,
for each honest player i, #2

i
(⊥, c) ≥ ⌊ 2n

3
⌋ + 1 thus there cannot exist a value

vc ≠ ⊥ such that #2
i
(vc, c) ≥ ⌊ n

3
⌋ + 1 and this implies (vi,c, gi,c) = (⊥, 0).

	� ◻

Remark 4  Note that, if for some honest player i we have that gi,c = 2 , then, by Prop-
erty 1 of Definition 2.1, for each honest player j we have that gj,c ≥ 1 . Therefore, by
Property 2 of Definition 2.1, since gk,c ≥ 1 for each honest player k, we have that
vk,c = vc ≠ ⊥.

3 � Multidimensional Byzantine agreement

We now combine the MGC and MBBA protocols to create a Multidimensional
Byzantine agreement protocol MBA that allows the players in a synchronous net-
work to reach agreement on an arbitrary vector of values.

246	 A. Flamini et al.

1 3

Let us now prove that the MBA protocol is indeed a Byzantine Agreement proto-
col, starting with a useful lemma.

Lemma 3.1  If, for some component c of the output � of STEP 3, the honest players
get bc = 0 , then they reach c-agreement on a value v ≠ ⊥ in the c-th component of
the output of MBA.

Proof  At the end of STEP 3, before determining the output of the protocol MBA, if
each honest player j gets bc = 0 ( � is common to all honest players since m-dimen-
sional BBA is a Byzantine Agreement protocol), then it means that at the beginning
of STEP 3 at least one honest player i had bi,c = 0 (otherwise by the consistency
property of Byzantine Agreement protocols they would output 1). This means that at
the end of STEP 2 gi,c = 2.

By Properties 1 and 2 of Definition 2.1, for any other honest player j we respec-
tively get gj,c ≥ 1 and vj,c = vi,c . Then when j computes the c component of output of
STEP 3, since bc = 0 we have that j sets oj,c = vi,c , as all the other honest players will
do. Thus c-agreement is reached. 	� ◻

Theorem 3.2  Whenever n ≥ 3t + 1 MBA is an (n, t)-Byzantine Agreement protocol
with soundness 1.

Proof  We have already proven that MBBA halts with probability 1. Since MGC is
not an iterative protocol, after its 2 steps it will halt with probability 1. Therefore,
MBA halts with probability 1 as well. We must prove the Consistency and Agree-
ment properties.

•	 Consistency: we assume that, for each player i, the initial vector is
��
�
= � ∈ (V ∪ {⊥})m . By Property 3 of m-dimensional Graded Con-

sensus, at the end of the second step of protocol MBA the output
(�i, �i) = ((vi,1, gi,1),… , (vi,m, gi,m)) of any honest player i has, for all
c ∈ {1,… ,m} , (vi,c, gi,c) = (v�

i,c
, 2) if v′

i,c
≠ ⊥ and (vi,c, gi,c) = (⊥, 0) if v�

i,c
= ⊥ .

247

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

Accordingly, the honest players will agree on the initial bit vector of STEP 3
of MBA: in particular they will set bi,c = 0 if vi,c ≠ ⊥ , bi,c = 1 if vi,c = ⊥ . By
the Agreement property of m-dimensional BBA we obtain that the agreed upon
bit vector of STEP 3 will be the same for all honest players and equal to the ini-
tial vector of m-dimensional BBA. Hence, by the MBA protocol definition, the
output of the protocol MBA of each honest player i will be �i = � , the common
initial vector.

•	 Agreement: since m-dimensional BBA is a Byzantine Agreement protocol, all the
honest players will end STEP 3 with the same bit vector � . Each honest player i
will compute �i in the following way for each component c of � :

1.	 either bc = 0 for all honest players: in this case c-agreement on the outputs
holds thanks to Lemma 3.1;

2.	 otherwise bc = 1 for all honest players: in this case all players will set
outi,c = ⊥ , so c-agreement on the output still holds.

	  Since c-agreement holds for every component c, we can state that Agreement
holds.

	� ◻

Note that the protocol MBA is the multidimensional version of the protocol BA*
described in [4].

3.1 � A probability game

We consider the following game that will be used to model the evolution of the com-
ponent finalization process in the MBBA protocol, and thus the MBA protocol.

In particular we want compute the probability distribution associated to the num-
ber of steps necessary to win this game. From that, we retrieve the probability dis-
tribution associated to the number of MBBA iterations necessary to end the MBA
Protocol.

The game is the following: we have n coins which flip heads with probability
� , at each step we flip the coins and discard the ones which flipped heads, then we
carry on with the others until there are no coins left. So, in the first step we flip all
n coins, then we discard the h1 coins which flipped heads, in the second step we flip
the remaining n − h1 coins and so on.

We now compute the probability distribution associated to the number �n,� of
steps required to end the game.

The probability that a coin flips heads at least once in w steps is 1 − (1 − �)w ,
hence, being the coin flips independent, the probability that all coins flip heads at
least once is (1 − (1 − �)w)n . This means that

and from that we can compute

P(𝜒n,𝜋 > w) = 1 − (1 − (1 − 𝜋)w)n,

248	 A. Flamini et al.

1 3

This defines the probability distribution associated to the number of steps to end
this game played with n coins.

Note that in the Coin-Genuinely-Flipped step of the MBBA protocol the bits in
the ambiguous components (i.e. the ones where some honest player has less than 2

3
n

confirmations) are randomly flipped, while the components in agreement are left
untouched. Moreover note that these flips cause the value of the ambiguous compo-
nents to match the one held by the other honest players (thus reaching agreement)
with probability greater than h ⋅ 2−l (see Lemma 2.4), and that we end the protocol
when all components are in agreement, so the probability distribution �n,

h

2

 gives an
upper bound on the distribution of the number of Coin-Genuinely-Flipped steps nec-
essary to end the MBBA protocol. To connect more directly with the analysis of
Lemma 2.4, note that the game above ends in one step with probability �n and that
(
h

2
)l ≤ h ⋅ 2−l , so this lower bound in the probability translates in an upper bound in

the number of steps necessary to conclude the protocol.

3.2 � Number of steps

Theorem 3.3  The distribution of the number of MBBA iterations required to end the
MBA protocol run is upper bounded by the random variable 1 + �l,

h

2

 where

•	 l is the number of ambiguous components;
•	 h is the ratio of honest nodes in the network;
•	 �l,

h

2

 is the random variable described in Sect. 3.1.

Proof  We recall that by Lemma 2.3 if at some step c-agreement holds on some com-
ponent c then c-agreement will keep holding for the whole protocol run. But also, if
c-agreement holds on some bit b ∈ {0, 1} , then in the next Coin-Fixed-To-b step all
the honest nodes will finalize the c-th component, in fact the honest nodes are more
than 2

3
n by the assumption in Sect. 1.1.

This means that, for the unambiguous components, the honest nodes are already
in c-agreement, therefore they will finalize such components in the first Coin-Fixed-
To-0 and Coin-Fixed-To-1, i.e. by the first MBBA iteration.

The consensus evolution is much more complex for the ambiguous events. In fact
agreement may not be reached in the first MBBA iteration and it might occur that a
Coin-Genuinely-Flipped step is triggered. In such case, by applying Lemma 2.4 to
the case in which there is a single component c on which agreement is not reached
(hence l = 1 ), we get that with probability at least h

2
 c-agreement will be reached.

Once again we recall that once c-agreement is reached it will keep holding.
Let {c1,… , cl} be the components associated to the ambiguous events, we have

that at every Coin-Genuinely-Flipped step ci-agreement, for i ∈ {1,… , l} , is reached

P(𝜒n,𝜋 = w) = P(𝜒n,𝜋 > w − 1) − P(𝜒n,𝜋 > w)

= (1 − (1 − 𝜋)w)n − (1 − (1 − 𝜋)w−1)n.

249

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

with probability at least h
2
 , so we can say that the number of Coin-Genuinely-Flipped

steps required to end the protocol is upper bounded by the distribution �l,
h

2

 described
in Sect. 3.1. Since once c-agreement is reached two more steps might be required to
finalize the component, we can say that the operations required to end the protocol is
at most:

•	 3 steps of MGC;
•	 �l,

h

2

 iterations of MBBA;
•	 2 steps of the next iteration necessary to finalize the last components on which

c-agreement is reached.

Therefore the distribution of the number of MBBA iterations required to end the
DTSL Protocol run is upper bounded by 1 + �l,

h

2

 . 	� ◻

Corollary 3.4  (Number of Communication Steps) The distribution of the number of
communication steps required to end the MBA protocol run is upper bounded by the
random variable 5 + 3�l,

h

2

.

4 � Conclusions

We presented the MBA protocol, a Byzantine agreement protocol for synchronous
and complete networks which allows the nodes to reach consensus on a vector of
arbitrary values, working in parallel on each component.

The protocol we have designed is based on the extension to the multidimensional
case of the protocols presented by Micali [5, 12], and we have presented in the anal-
ysis a probabilistic upper bound to the number of steps to be executed before the
protocol halts.

We believe that the MBA Protocol would find many applications in decentralized
environments, in particular in contexts in which it is required coordination between
various entities that simultaneously modify the state of a decentralized system. In
particular its leaderless approach allows to widen the agreement by taking account
of multiple points of view, resulting in a more democratic approach that is valued in
permissionless distributed settings and also thwarts attacks from malicious leaders,
which other approaches can only mitigate.

The parallel approach that tackles all components at once enhances efficiency in
comparison to multiple executions of the monodimensional protocol we generalized.
In our description the identification of the messages’ senders is implicit, so the advan-
tage of the multidimensional protocol is clear only in the Coin-Genuinely-Flipped
step, where just the one signature is enough to derive all the coin flips. However, in
practical settings messages are authenticated through digital signatures, and with our
protocol the parallel messages are neatly organized into one, which then requires just
one communication session and digital signature, further enhancing the efficiency.

250	 A. Flamini et al.

1 3

4.1 � Future works

The network assumptions we have used allow to describe the protocol and prove
its properties in a clean and intuitive way, however they are quite unrealistic in
practical applications. So the MBA protocol should be extended for usage in
asynchronous and incomplete networks, that model more closely real-life com-
munication channels. This would obviously allow to apply the protocol to a vari-
ety of practical problems, such as blockchain platforms implementing sharding.
In fact, the MBA Protocol, if designed for asynchronous networks, would allow
the nodes working on different shards to synchronize their operations creating an
extremely regulated environment, which gives the right conditions for a practical
reconciliation of the transactions recorded on the shards.

Another research direction could focus on extending the protocol by introduc-
ing some termination steps, which allow to conclude the protocol execution in a
predetermined number of steps if it does not halt by a certain limit. In fact, many
concrete applications benefit from an upper bound on the protocol execution time
that this extension would give. However, it is quite tricky to reconcile an execu-
tion bound with the goal to preserve as much meaningful agreement as possible:
the trivial solution is to collapse the still-ambiguous components to ⊥ so that con-
sensus is reached in a bounded number of steps. More advanced termination steps
would be preferable, however non-trivial solutions may cause a variety of issues,
especially in the setting of asynchronous incomplete networks where malicious
players have a widened array of attacks at their disposal.

Acknowledgements  The core of this work is contained in the first author’s MSC thesis. Part of the results
presented here have been carried on within the EU-ESF activities, call PON Ricerca e Innovazione 2014–
2020, project Distributed Ledgers for Secure Open Communities. The second and third authors are mem-
bers of the INdAM Research group GNSAGA. We would like to thank the Quadrans Foundation for their
support.

Funding  Open access funding provided by Università degli Studi di Trento within the CRUI-CARE
Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint arXiv:​1710.​09437
(2017)

	 2.	 Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. OSDI 99, 173–186 (1999)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1710.09437

251

1 3

Multidimensional Byzantine agreement in a synchronous setting﻿	

	 3.	 Chen, J., Micali, S.: Algorand. arXiv preprint arXiv:​1607.​01341 (2016)
	 4.	 Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret. Comput. Sci. 777,

155–183 (2019)
	 5.	 Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agreement.

SIAM J. Comput. 26(4), 873–933 (1997)
	 6.	 Fischer, M.J.: The consensus problem in unreliable distributed systems (a brief survey). In: Interna-

tional Conference on Fundamentals of Computation Theory. Springer, pp. 127–140 (1983)
	 7.	 Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake

blockchain protocol. In: Annual International Cryptology Conference. Springer, pp. 357–388 (2017)
	 8.	 Larimer, D., et al.: Eos.io technical white paper v2. https://​github.​com/​EOSIO/​Docum​entat​ion/​blob/​

master/​Techn​icalW​hiteP​aper.​md (2017)
	 9.	 Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. In: Concurrency: The Works

of Leslie Lamport, pp. 203–226 (2019)
	10.	 Longo, R., Podda, A.S., Saia, R.: Analysis of a consensus protocol for extending consistent

subchains on the bitcoin blockchain. Computation 8(3), 67 (2020)
	11.	 Meneghetti, A., Sala, M., Taufer, D.: A survey on pow-based consensus. Ann. Emerg. Technol.

Comput. (AETiC) 4(1) (2020)
	12.	 Micali, S.: Byzantine agreement, made trivial (2016)
	13.	 Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz, E.: Proof-of-

stake consensus mechanisms for future blockchain networks: fundamentals, applications and oppor-
tunities. IEEE Access 7, 85727–85745 (2019)

	14.	 Rocket, T.: Snowflake to avalanche: a novel metastable consensus protocol family for cryptocurren-
cies (2018). Accessed 4 Dec 2018

	15.	 Team, Z., et al.: The zilliqa technical whitepaper. Retrieved Sept 16:2019 (2017)
	16.	 Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consensus in the lens of

blockchain. arXiv preprint arXiv:​1803.​05069 (2018)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1607.01341
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
http://arxiv.org/abs/1803.05069

	Multidimensional Byzantine agreement in a synchronous setting
	Abstract
	1 Introduction
	1.1 BA definition and network assumptions
	1.2 Problem description

	2 Protocol components
	2.1 Notation
	2.2 Multidimensional binary Byzantine agreement protocol
	2.3 Multidimensional graded consensus protocol

	3 Multidimensional Byzantine agreement
	3.1 A probability game
	3.2 Number of steps

	4 Conclusions
	4.1 Future works

	Acknowledgements
	References

