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Abstract
In this paper we present the Multidimensional Byzantine Agreement (MBA) Proto-
col, a leaderless Byzantine agreement protocol defined for complete and synchro-
nous networks that allows a network of nodes to reach consensus on a vector of 
relevant information regarding a set of observed events. The consensus process is 
carried out in parallel on each component, and the output is a vector whose compo-
nents are either values with wide agreement in the network (even if no individual 
node agrees on every value) or a special value ⊥ that signals irreconcilable disagree-
ment. The MBA Protocol is probabilistic and its execution halts with probability 1, 
and the number of steps necessary to halt follows a Bernoulli-like distribution. The 
design combines a Multidimensional Graded Consensus and a Multidimensional 
Binary Byzantine Agreement, the generalization to the multidimensional case of two 
protocols presented by Micali et al. (SIAM J Comput 26(4):873–933, 1997; Byzan-
tine agreement, made trivial, 2016). We prove the correctness and security of the 
protocol assuming a synchronous network where less than a third of the nodes are 
malicious.

1  Introduction

The notion of Byzantine agreement was introduced for the binary case (i.e. when 
the initial value consists of a bit) by Lamport, Shostak, and Pease [9], then quickly 
extended to arbitrary initial values (see the survey of Fischer [6]). A (binary) 
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Byzantine agreement protocol or Byzantine Fault Tolerant (BFT) protocol, is a 
protocol that allows a set of mutually mistrusting players to reach agreement on an 
arbitrary (respectively binary) value. These protocols have been initially developed 
to deal with Byzantine faults in distributed computing systems. A Byzantine fault 
is a particularly tricky failure where a component, such as a server, can inconsist-
ently appear both failed and functioning, presenting different symptoms to different 
observers. The problem then evolved to model malicious behaviour in distributed 
and multi-party protocols, with natural applications in distributed ledgers such as 
blockchains, alongside Proof of Work and Proof of Stake solutions [10, 11, 13].

Many BFT protocols [1, 2, 15, 16] use the primary-backup model, pioneered in 
the Practical Byzantine Fault Tolerance (PBFT) protocol proposed by Castro and 
Liskov [2]. These BFT protocols are designed in a way that a single replica is des-
ignated as the primary and is responsible for coordinating the consensus decisions, 
while all the other replicas perform the backup role. However, this primary can be 
smartly malicious and degrade the performance of the system. For this reason there 
have been various efforts to design leaderless BFT protocols [12, 14].

Outline In Sect.  1.1 we formally define a Byzantine agreement protocol and 
introduce our assumptions on the network. Then, in Sect.  1.2 we give a motiva-
tion for our generalization work by giving a model that describes interesting real-
world applications and giving an example where existing solutions fall short to 
expectations.

In Sect. 2 we proceed to define our protocol components, starting with some use-
ful notation. In Sect. 2.2 we extend to the multidimensional case the Binary Byz-
antine Agreement protocol [12] defining the Multidimensional Binary Byzantine 
Agreement (MBBA) Protocol and we prove it satisfies the properties of a Byzantine 
agreement protocol. In Sect. 2.3 we extend the notion of (n,  t)-Graded Consensus 
protocol introduced by Micali [3], then we define the Multidimensional Graded 
Consensus (MGC) Protocol, the natural extension of the Graded Consensus Protocol 
adopted in Algorand [3], whose definition comes from the Gradecast Protocol pre-
sented by Micali [5].

Then, in Sect. 3 we combine the MGC Protocol and the MBBA Protocol into the 
Multidimensional Byzantine Agreement (MBA) Protocol, the extension to the mul-
tidimensional case of the Byzantine agreement Protocol in a synchronous setting 
described in Algorand [3], proving that it satisfies the properties of Byzantine agree-
ment protocol. In Sect.  3.1 we introduce a probability game that models how the 
consensus is reached during the protocol execution, alongside a probability distribu-
tion. Then, in Sect. 3.2 we prove that this distribution predicts the number of steps 
necessary to end the protocol execution.

Finally, in Sect.  4 we draw some conclusions and remarks, and outline future 
works to improve the applicability of the MBA protocol in practical settings.

1.1 � BA definition and network assumptions

We now provide the formal definition of Byzantine Agreement protocol:
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Definition 1.1  ((n, t)-Byzantine Agreement protocol) We say that P is an arbitrary-
value (respectively, binary) (n,  t)-Byzantine Agreement (BA) protocol with sound-
ness 0 < 𝜎 < 1 if, for every set of values V not containing the special symbol ⊥ 
(respectively, for V = {0, 1} ), in an execution in which at most t out of the n play-
ers are malicious and every player i starts with an initial value vi ∈ V  , every honest 
player j halts with probability 1, outputting a value oj ∈ V ∪ {⊥} so as to satisfy, 
with probability at least � , the following two conditions: 

1.	 Agreement: there exists o ∈ V ∪ {⊥} such that oj = o for each honest player j.
2.	 Consistency: if, for some value v ∈ V , vj = v for all honest players, then o = v.

We refer to o as P ’s output, and to each oi as player i’s output. Agreement is reached 
on ⊥ when it is not possible to agree on any other meaningful value in V.

We remark that a network of nodes cannot always reach agreement on a meaning-
ful piece of information. In fact, if at the beginning of the protocol execution many 
players are in disagreement with each other, then none of the information advertised 
by the nodes can prevail. For this reason the protocol must be designed in such a 
way that a high disagreement rate is detected, and the players output the symbol ⊥ at 
the end of the protocol execution.

We assume that the players of the protocol form a network N  , that is essentially 
a graph that models the communication channels. The network is made of n nodes 
(the players), out of which less than n

3
 are malicious or faulty. The network graph is 

complete, which means that between any two distinct nodes there is a direct and pri-
vate communication channel.

We will also require that the communications are carried out in a synchro-
nous way, i.e. each node can access a common clock which triggers the start of 
every protocol step. Finally, we assume that all communications are performed 
instantaneously.

Given this communication model, and the fact that honest nodes are supposed to 
send the same message to every node, throughout the paper we will use the terms 
“send” and “broadcast” interchangeably.

1.2 � Problem description

In order to better motivate the generalization process that led to the design of proto-
col presented in this paper, let us introduce a model that we will show to encompass 
various practical problems, and an example situation for which solutions in literature 
(to the best of our knowledge) do not give satisfactory results.

Let N  be a network, where each node i ∈ N  has access to a Random Variable 

X
(i) , where X

(i)
= (X

(i)

1
,… ,X(i)

m
) , for all c ∈ {1,… ,m} , where X(i)

c
 takes values in a 

discrete set Vc , ℙ(i)
c

 is its probability mass function, and X(i)
c

= X(l)
c

 , for all i, l ∈ N  
and for all c. Each node i records O(i) =

(
x
(i)

1
,… , x(i)

m

)
 , the observed values given by 

the random variable. The goal of our protocol is to allow the nodes in N  to reach 
agreement on a vector of observed values.
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We make a distinction between two kind of components: ambiguous and unam-
biguous. A component c is ambiguous if there exist two honest nodes i, l ∈ N  
who observe two distinct values x(i)

c
≠ x(l)

c
 , otherwise we say that the component is 

unambiguous.
Essentially, ambiguous events cause disagreement on some vector compo-

nents, even among honest nodes. This means that nodes cannot agree on a vector 
as a whole, so we propose a leaderless protocol in which the consensus process 
is carried out in parallel on each vector component. By leaderless we mean that 
the consensus protocol is not carried on by evaluating the proposal of a single 
node (i.e. the proposal of a leader), instead, all nodes participating in the protocol 
equally work together.

Our setting is derived from a context in which some events are to be registered 
in a distributed ledger and no observer has a privileged point of view, contrary 
to the standard use-case in which blocks are proposed to the network by a sin-
gle actor (e.g. by the node that first completes the creation of a block, or by an 
elected temporary leader). Of course different point of views may lead to different 
observations, so it is necessary to reconcile these differences in order to keep a 
common coherent ledger, even more so when taking into account the possibility 
of malicious behaviour from some observers. A more specific application could 
be the timestamping of events in a permissionless blockchain. In this setting some 
users may be required to perform specific tasks within prescribed time limits, so 
our consensus protocol may be used to certify their good behaviour. For example 
we may consider a blockchain that employs sharding and allocates block creation 
to miners in pre-determined time-slots (a technique employed by various existing 
platforms, e.g. EOS [8] and Cardano [7]): our BA protocol may be used to certify 
that blocks are indeed created during their prescribed time intervals, thus prevent-
ing attacks in which miners either delay block creation or pretend that previous 
blocks were late, leading to validation disputes and forks.

We now show, with the help of an example, the reason why in this model our 
leaderless and parallel approach allows for desirable outputs not readily attain-
able with existing alternatives. Let N  be a complete network with 4 honest 
nodes j1, j2, j3 and j4 . Each node ji in N  observes (Xji

1
,X

ji
2
,X

ji
3
,X

ji
4
) ∈ ℕ

4 , where 
i ∈ {1, 2, 3, 4} . Suppose that:

If we decide to adopt a consensus protocol where a leader proposes to the network a 
vector to record, then the other nodes decide whether to accept it or not, a node will 
accept the leader’s proposal only if the values it observed are the same as the ones 
advertised by the leader.

This can be done in at least two ways:

Oj1 = (9, 2, 8, 4)

Oj2 = (9, 2, 7, 1)

Oj3 = (9, 3, 8, 1)

Oj4 = (0, 2, 8, 1)
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•	 the evaluation is performed on the whole vector: this means that a node accepts 
the leader proposal only if the vector observed is the same as the vector the leader 
advertises. In this particular context, the validity of the information that must be 
recorded translates to an accurate description of all the events observed. Therefore, 
it is clear that, in our example, whoever the leader l ∈ {j1, j2, j3, j4} is, the other 
nodes are not going to accept its proposal, since the vector observed by the leader 
differs from the vector of every other node.

	   This would cause the output of the protocol to be the default vector (⊥,⊥,⊥,⊥) , 
which means that no meaningful data gets recorded.

•	 the evaluation is performed in parallel on each component of the vector: this means 
that a node can accept a component c of the leader proposal only if the value it 
observes (associated to the c-th component) is the same as the one advertised by the 
leader. In our simple example, whoever the leader l ∈ {j1, j2, j3, j4} is, the nodes will 
agree on 3 components. In fact, a great majority of the network (3 out of 4 nodes) 
agrees on the values advertised by l in 3 components of the vector, discarding the 
remaining component. For instance, in our example, if the leader l is the node j1 , 
then agreement will be reached on the vector (9, 2, 8,⊥).

It is clear that the adoption of the second approach remarkably improves the first one. 
When the evaluation is performed on the whole vector, it is sufficient that the nodes do 
not agree with the leader in only one component to have all the components discarded. 
Whereas, the second approach allows the network to reach consensus and write in the 
ledger all the values proposed by the leader on which a majority of the nodes in the 
network agree. This observation should convince the reader of the advantages given by 
the adoption of a consensus protocol which works in parallel on the vector components.

In our example, what is still undesirable is that the component that gets discarded is 
a component on which the majority of the network does agree. Unluckily, the leader is 
part of the minority of the network which observed another value, and for this reason 
that component is discarded. This emphasizes a weakness of leader-based consensus 
protocols when adopted to solve the consensus problem we are targeting.

With our proposal of a leaderless approach we aim to achieve a consensus proto-
col where the network listens to the opinion of more than a single node, thus agree-
ing on a vector where each component reflects the opinion of the majority.

In our example if all 4 nodes communicate to the other nodes their observed val-
ues, then agreement would be reached on the vector (9, 2, 8, 1), since a great major-
ity of the nodes agrees on such values in each vector component. This is the most 
desirable result since it is the outcome that one would expect from a group of nodes 
without hierarchy and whose opinions have equal value.

2 � Protocol components

In this section we generalize the Binary Byzantine Agreement protocol of [12] and 
the (n, t)-Graded Consensus protocol of [3], extending them to the multidimensional 
case. These sub-protocols are the two building blocks that we will use to define our 
MBA protocol.
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2.1 � Notation

In this paper we will use the useful notation #s
i
(v) adopted by Micali [3] (or just #i(v) 

when s is clear) to represent the number of players from which i has received the 
message v during step s, counting also his own message if he has sent a message v 
during step s.

Assuming that in each step s a player i receives exactly one message from each 
player j, if the number of players is n, then 

∑
v #

s
i
(v) = n ∀i, s . During the proto-

col execution honest players should send only one message per step, so, if player 
i receives from player j two contrasting messages, then i discards both so they are 
not included in the count when computing #i() . Two identical messages are instead 
counted as one, and messages that are not properly formatted are discarded as well, 
so only valid messages are considered and counted, and 

∑
v #

s
i
(v) ≤ n ∀i, s.

Similarly to #s
i
(v) , when the exchanged message is an m-dimensional vector of 

strings � = (v1,… , vm) , we define #s
i
(v, c) , for c ∈ {1, 2,… ,m} (or just #i(v, c) when 

s is clear) as the number of players from which i has received during step s a vector 
of strings � such that vc = v.

When the messages exchanged by each player j are m-dimensional vectors of 
strings �� = (vj,1, vj,2,… , vj,m) ∈ (V ∪ {⊥})m , we also define the concept of c-agree-
ment, where c ∈ {1, 2,… ,m} is a specific component of the vectors. We say that the 
players reached c-agreement when there exists v ∈ V ∪ {⊥} such that for every hon-
est player j, vj,c = v.

When c-agreement is reached on all the components of the vector, we have that 
for all honest players i, j, �� = �� , hence also agreement is reached.

Finally, we write � and � to represent the vectors with in each component 0 and in 
each component 1, respectively.

2.2 � Multidimensional binary Byzantine agreement protocol

We now introduce a multidimensional extension of the binary Byzantine agree-
ment protocol BBA presented by Micali [12] and we will call it Multidimensional 
Binary Byzantine Agreement (MBBA). The protocol uses a cryptographic hash func-
tion H modeled as a random oracle, and we order its outputs (which are bit strings) 
with a standard lexicographic order. We use also a digital signature algorithm with 
unique signature, and we denote with ���i(x) the unique signature on the bit string 
x computed by player i. That is, let � be any signature that verifies against x and 
the public key of i computed by any party in polynomial time, then the probability 
that � ≠ ���i(x) is negligible. Note that this means that even with the private key 
it is infeasible to compute a different signature for the same message. We suppose 
that the players’ public keys are known by everyone, so every player can verify any 
signature.

The protocol is an iterated procedure, where at each iteration three steps are 
performed. To track the iterations, it uses a counter � representing how many 
times the 3 steps loop has been performed during a single protocol execution. At 
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the beginning of an MBBA Protocol execution, � = 0 . Also, the protocol requires 
a minimal setup: a common random string r independent of the nodes’ keys. 

The symbol ⋆ is applied to each message which must be considered final. That 
is, if a player i receives a message v⋆ from a node j, then i must pretend that, in 
every following step, j will send the same message v.

Remark 1  When m = 1 the protocol m-Dimensional BBA is exactly the protocol BBA 
described in [12].

Theorem  2.1  Whenever n ≥ 3t + 1 , the m-Dimensional BBA protocol is an (n,  t)-
Byzantine Agreement Protocol with soundness 1.

The proof of such theorem follows the proof of the analogous theorem related 
to the protocol BBA [12]. However, the parallelization required some adjustments 
to the protocol itself, therefore the proof must be adapted accordingly.

We first prove some Lemmas which will lead us to a proof of Theorem 2.1.

Lemma 2.2  If, at some step, an honest player i sets fi,c = 1 , then c-agreement will 
hold at the end of the step.
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Proof  First, note that an honest player i can set fi,c = 1 only during a Coin-Fixed-
To-0 Step or a Coin-Fixed-To-1 Step, so STEP 3 is not taken under consideration.

Assume that i fixes bi,c = 0 and fi,c = 1 in a Coin-Fixed-To-0 Step. This means 
that #1

i
(0, c) >

2

3
n , so more than 1

3
n honest players have sent 0 at the start of such 

step (in fact the malicious players are less than 1
3
n ). Since honest players send to eve-

ryone the same message, then #1
j
(0, c) >

1

3
n for each other honest player j. For such 

players two mutually exclusive cases may occur : 

1.	 #1
j
(0, c) >

2

3
n : in this case j sets bj,c = 0 (and also fj,c = 1 ) in sub-step 1 of STEP 

1.
2.	 1

3
n < #j(0, c) ≤

2

3
n : in this case j must enter the third sub-step of STEP 1 hence 

sets bj,c = 0.

In any case we have that every honest player j sets bj,c = 0 , thus c-agreement holds 
on 0 at the end the Coin-Fixed-To-0 Step.

To conclude our proof, note that a symmetric argument shows that c-agreement 
holds on 1 at the end of a Coin-Fixed-To-1 Step in which an honest player i sets 
bi,c = 1 and fi,c = 1 . 	�  ◻

Lemma 2.3  For each component c ∈ {1, 2,… ,m} , if at some step c-agreement 
holds, then it continues to hold in the next steps.

Proof  Assume that, for some component c, the players reached c-agreement at the 
end of STEP s. We want to show that in each subsequent step c-agreement still 
holds. We assume that c-agreement has been reached on 0. A similar analysis can be 
done in case c-agreement is reached on 1.

Let us consider the three possible options for the step s:

•	 s is a STEP 3, so the next step is STEP 1.
	   At the beginning of STEP 1 each honest player i sends its vector �i . Since 

agreement has been reached on component c during the previous step, for all 
honest i, bi,c = 0 , so #1

i
(0, c) >

2

3
n given that the honest players are more than 

2

3
n . This means that in STEP 1, for the component c, each honest player i enters 

in the first sub-step, so c-agreement still holds, since the component c is left 
unchanged.

•	 s is a STEP 1, so the next step is STEP 2.
	   At the beginning of STEP 2 each honest player i sends its vector �i . As in 

the previous case, since agreement has been reached on component c during the 
previous step, for all honest i we have that bi,c = 0 and #2

i
(0, c) >

2

3
n . This means 

that in STEP 2, for the component c, each honest player i enters in the second 
sub-step, so c-agreement still holds since the component c is left unchanged.

•	 s is a STEP 2, so the next step is STEP 3.
	   At the beginning of STEP 3 each honest player i sends its vector �i . Again, 

since agreement has been reached on component c during the previous step, 
for all honest i we have that bi,c = 0 and #3

i
(0, c) >

2

3
n . This means that in 
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STEP 3, for the component c, each honest player i enters in the first sub-step, 
so c-agreement still holds since the component c is left unchanged.

Thus, if c-agreement holds at some step, it will keep holding during the next step, 
and so on until every player halts. 	�  ◻

Lemma 2.4  Let h >
2

3
 be the ratio of honest players in the network. If, at the start of 

an execution of STEP 3, no player has halted, i.e. agreement has not been reached 
yet on a bit vector, then, being l the number of vector components c on which 
c-agreement has not been reached, the players will be in agreement at the end of this 
step with probability at least h( 1

2
)l >

2

3
(
1

2
)l.

Proof  Let � be the current value of the counter, and let Pi be the set of players 
from which i has received a valid message at the beginning of STEP 3. By the 
uniqueness property of the underlying digital signature scheme, i can compute 
� = H(minj∈Pi

H(���j(r‖�))) , and then k1,… , km are well defined.
Note that the selection of the player p whose hashed digital signature is minimal 

is a random selection with uniform distribution, under the assumption that H is a 
random oracle. This means that p will be an honest player with probability h >

2

3
 , 

and in this case it will send its message to every player. In particular all the honest 
players will receive ���p(r‖�) , from which the same values k1,… , km will be com-
puted by all the honest players who perform sub-step 3 of STEP 3.

Let {ci}i=1,…,l be the set of components of the bit vector on which ci-agreement 
does not hold, and let us assume that the player p is honest. For each component 
ci of the bit vector, notice that it is impossible that some honest players perform 
sub-step 1 and some sub-step 2 of STEP 3. In fact, being t < 1

3
n the number of mali-

cious nodes, if a node i has received more than 2
3
n messages for 1 and a node j has 

received more than 2
3
n valid messages for 0, then i has received at least 2

3
n − t >

1

3
n 

messages for 1 from honest nodes, and such messages have reached also j. How-
ever, j has received at least 2

3
n valid messages for 0, which is a contradiction since 

2

3
n +

2

3
n − t > n , and j cannot receive more than n valid messages from distinct 

nodes.
Therefore there are five exhaustive cases that must be considered and may lead 

the honest players to ci-agreement:

•	 All honest players update their cith component according to sub-step 1 of STEP 3.
	   In this case ci-agreement hols on 0.
•	 All honest players update their cith component according to sub-step 2 of STEP 

3.
	   In this case, ci-agreement holds on 1.
•	 All honest players update their cith component according to sub-step 3 of STEP 

3.
	   In this case, at the end of Step 3, ci-agreement holds on kci (we assume p is 

honest).
•	 Some honest players update their cith component according to sub-step 1 of 

STEP 3 and all the others according to sub-step 3 of STEP 3.
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	   The honest players updating the value according to sub-step 1 will set the 
ci th component of their vector to 0, while the ones updating their ci th compo-
nent according to sub-step 3 will set it to kci which is 0 with probability 1

2
 . This 

means that ci-agreement is reached on 0 with probability 1
2
.

•	 Some honest players update their cith component according to sub-step 2 of 
step 3 and all the others according to sub-step 3 of STEP 3.

	   The honest players updating the value according to sub-step 1 will set the 
ci th component of their vector to 1, while the ones updating their ci th compo-
nent according to sub-step 3 will set it to kci which is 1 with probability 1

2
 . This 

means that ci-agreement is reached on 1 with probability 1
2
.

When the player p is honest, we can assume that the values kc are chosen ran-
domly and independently, under the assumption that H is a random oracle. 
Hence at the end of STEP 3 the players will reach c-agreement for all values of 
c ∈ {1,… ,m} , which means agreement, with probability at least ( 1

2
)l . Thus, given 

that the probability of having the player p honest is h >
2

3
 , we can conclude that, 

anytime the players reach STEP 3 of the protocol, before the end of such step they 
will be in agreement with probability at least h( 1

2
)l >

2

3
(
1

2
)l . 	�  ◻

We now can prove Theorem 2.1.

Proof  We prove the following properties that characterize a Byzantine agreement 
protocol with soundness � = 1 . 

1.	 All honest players HALT with probability 1.
	   If at the beginning of STEP 3 the players are not in c-agreement over l compo-

nents, with probability at least 2
3
(
1

2
)l > 0 they will be in agreement at the end of 

that step, hence with the growing of the number of STEP 3 executions the prob-
ability to reach agreement converges to 1. Note that, at every STEP 3 execution, 
the number of components not agreed upon can not increase, so the probability 
to end the protocol in the next STEP 3 execution does not decrease.

	   Once agreement is reached, the honest players will HALT in the following 2 
steps since it will finalize the zeroes in STEP 1 and the ones in STEP 2 (updating 
the locally saved vector � with ones corresponding to the finalized components).

2.	 oi = oj for all honest players i and j.
	   This is true because by point 1 all honest players HALT, thus they have � = � 

and by applying Lemma 2.2 to every component we can conclude that they are 
in agreement, so oi = oj.

3.	 If the initial value of every honest player i is a vector �i = � , then oi = � for every 
honest player i.

	   Note that c-agreement holds at the start of the protocol for every c, and by 
Lemma 2.2 it will continue to hold. So every honest player sends the same vector 
� at the beginning of each round, so #i(bc, c) >

2

3
n for every c and for every honest 

i. It is exhaustive to consider the following two cases:
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•	 if � is the vector of all zeros, then all honest players enter sub-step 1 of STEP 
1 and when they verify the EXIT CHECK, once they have updated all their 
components, they will halt setting oi = �.

•	 Otherwise during STEP 1, for all c ∈ {1, 2,… ,m} if bi,c = 0 they will set 
bi,c = 0 , and update �i by setting fi,c = 1 , but will not halt since for some c 
we have bi,c = 1 , thus fi,c = 0 . Each of these components c will be finalized 
during STEP 2 when it will be set bi,c = 1 and fi,c = 1 . In this case, once 
the last coordinate is updated the EXIT CHECK will be verified, and every 
honest player i will output oi = �.

	�  ◻

2.3 � Multidimensional graded consensus protocol

The notion of Graded Consensus protocol, introduced by Micali [3], is much 
weaker than Byzantine agreement but allows the protocol players to gain some 
information about the distribution of the input values possessed by the network 
participants.

We now provide the definition of an extension of the concept of (n,  t)-Graded 
Consensus to the multidimensional case.

Definition 2.1  (m-Dimensional (n,  t)-Graded Consensus Protocol) Let P be a pro-
tocol in which the set of all players is common knowledge, and each player i pri-
vately knows an arbitrary initial vector of messages ��

�
= (v�

i,1
, v�

i,2
,… , v�

i,m
) where 

v�
i,h

∈ V ∪ {⊥}.
We say that P is an m-dimensional (n,  t)-graded consensus proto-

col if, in every execution with n players of which at most t are mali-
cious, every honest player i halts outputting a vector of value-grade pairs 
oi = (�i, �i) = ((vi,1, gi,1), (vi,2, gi,2),… , (vi,m, gi,m)) where gi,c ∈ {0, 1, 2} and 
vi,c ∈ V ∪ {⊥} for every i and c, so as to satisfy the following three conditions: 

1.	 For all honest players i and j, for all c ∈ {1,… ,m} , we have that |gi,c − gj,c| ≤ 1.
2.	 For all honest players i and j, for all c ∈ {1,… ,m} and for all positive gi,c, gj,c we 

have vi,c = vj,c ≠ ⊥.
3.	 If v�

1,c
= v�

2,c
= ⋯ = v�

n,c
= vc for some value vc ∈ V ∪ {⊥} , then for all honest 

players the output component c is (vi,c, gi,c) = (vc, 2) if vc ≠ ⊥ , (vi,c, gi,c) = (⊥, 0) 
if vc = ⊥ .

Remark 2  A 1-dimensional (n, t)-graded consensus protocol is an (n, t)-graded con-
sensus protocol according to the definition in [3].

Remark 3  An immediate consequence of condition 3 is that if the initial vec-
tors of the players are equal ��

1
= ⋯ = ��

n
= � = (v1,… , vm) ∈ (V ∪ {⊥})m then 

also the outputs will be the same, where (vi,c, gi,c) = (v�
i,c
, 2) when vi,c ≠ ⊥ and 

(vi,c, gi,c) = (⊥, 0) when v�
i,c

= ⊥.
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In the same way we described the m-Dimensional BBA we define a multidimen-
sional extension of the GC protocol, Multidimensional Graded Consensus (MGC). 

Theorem 2.5  If t = ⌊ n−1

3
⌋ then MGC is an m-Dimensional (n,  t)-graded consensus 

protocol.

We have extended the Graded Consensus protocol GC introduced in [3] executing 
simultaneously m instances of GC protocol.

The protocol GC is derived by the Gradecast Protocol whose properties are 
proved in [5]. An explicit proof for the properties of the GC protocol would be 
enough to be sufficiently assured that the properties of MGC hold. However an 
explicit proof of GC properties is not provided in [3], therefore, for sake of clarity, 
we will prove Theorem 2.5.

Proof of Theorem 2.5  The analysis is performed on a generic component c, and the 
final result is a consequence of the properties holding on every component. 

1.	 We first prove that it is impossible for two honest players i and j to end the proto-
col with c-th output components (vi,c, gi,c) and (vj,c, gj,c) such that |gi,c − gj,c| = 2.

	   Let us assume gi,c = 0 (hence vi,c = ⊥ ) and gj,c = 2 (hence vj,c ≠ ⊥ ). This means 
that, at the end of STEP 2, #2

j
(vj, c) ≥ ⌊ 2n

3
⌋ + 1 . Out of these messages, the honest 

players have sent at least ⌊ 2n

3
⌋ + 1 − ⌊ n−1

3
⌋ > 2n

3
−

n

3
=

n

3
 of them. Note that ⌊ n

3
⌋ + 1 

is the smallest integer strictly greater than n
3
 , so the honest players have sent at 

least ⌊ n

3
⌋ + 1 messages. Since the messages sent by honest players are received 

both by j and by i, #2
i
(vj, c) ≥ ⌊ n

3
⌋ + 1 hence gi,c cannot be 0.

2.	 We now prove that if i, j are honest players and gi,c, gj,c > 0 , then vi,c = vj,c.
	   Assume that gi,c, gj,c > 0 and vi,c ≠ vj,c . This means that #2

i
(vi, c) ≥ ⌊ n

3
⌋ + 1 and 

#2
j
(vj, c) ≥ ⌊ n

3
⌋ + 1 . Since there are at most ⌊ n−1

3
⌋ malicious players, at least one 
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of each of these sets of messages comes from an honest player. This means that, 
at the beginning of STEP 2, at least two distinct honest players h, k have received 
#1
h
(vi, c) ≥ ⌊ 2n

3
⌋ + 1 and #1

k
(vj, c) ≥ ⌊ 2n

3
⌋ + 1 messages. This is impossible since 

honest players sent the same messages both to h and k, and the number of mali-
cious players is t̂ ≤ t <

n

3
 . The malicious players may have sent different messages 

to h and k, but they can have sent no more than t = ⌊ n−1

3
⌋ messages to each of the 

honest players. Considering all the distinct messages received by either h or k at 
the end of STEP 2, we have that at most n − t̂ of them have been sent by honest 
players, and at most 2t̂ by malicious players, so there are at most n + t̂ ≤ n + t 
distinct messages. However, considering the messages received for the values vi 
and  vj  ,  we  have  t ha t  h  and  k  have  r ece ived  a t  l e a s t 
2(⌊ 2n

3
⌋ + 1) > 2(

2n

3
) = n +

n

3
> n + ⌊ n−1

3
⌋ ≥ n + t messages, which contradicts 

the fact that the number of messages received by h and k cannot exceed n + t.

3.	 (a)	 We now prove that if v�
i,c

= vc ≠ ⊥ ∀i ∈ {1,… , n} for some value 
vc , then for all honest players the output is (vi,c, gi,c) = (vc, 2).

	   This is true because at the end of STEP 1 each honest player broadcasts 
vc . Note that the honest players are at least n − ⌊ n−1

3
⌋ > n −

n

3
=

2n

3
 , and 

since there are an integral number of them they are at least ⌊ 2n

3
⌋ + 1 . This 

means that for each honest player i, #1
i
(vc, c) ≥ ⌊ 2n

3
⌋ + 1 thus each honest 

player in STEP 2 broadcasts vc . Again for each honest player i must be 
#2
i
(vc, c) ≥ ⌊ 2n

3
⌋ + 1 , and this implies (vi,c, gi,c) = (vc, 2).

(b)	 Finally, we prove that if v�
i,c

= ⊥ ∀i ∈ {1,… , n} , then all honest players 
output (vi,c, gi,c) = (⊥, 0).

	   In this case at the end of STEP 1 each honest player broadcasts ⊥ . This 
means that for each honest player i, #1

i
(⊥, c) ≥ ⌊ 2n

3
⌋ + 1 thus there cannot 

exist a value vc ≠ ⊥ such that #1
i
(vc, c) ≥ ⌊ 2n

3
⌋ + 1 (otherwise the number of 

messages considered by the honest player i would exceed n). Hence i will 
send the message with ⊥ in the c-th component at the end of STEP 2. Again, 
for each honest player i, #2

i
(⊥, c) ≥ ⌊ 2n

3
⌋ + 1 thus there cannot exist a value 

vc ≠ ⊥ such that #2
i
(vc, c) ≥ ⌊ n

3
⌋ + 1 and this implies (vi,c, gi,c) = (⊥, 0).

	�  ◻

Remark 4  Note that, if for some honest player i we have that gi,c = 2 , then, by Prop-
erty 1 of Definition 2.1, for each honest player j we have that gj,c ≥ 1 . Therefore, by 
Property 2 of Definition 2.1, since gk,c ≥ 1 for each honest player k, we have that 
vk,c = vc ≠ ⊥.

3 � Multidimensional Byzantine agreement

We now combine the MGC and MBBA protocols to create a Multidimensional 
Byzantine agreement protocol MBA that allows the players in a synchronous net-
work to reach agreement on an arbitrary vector of values. 
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Let us now prove that the MBA protocol is indeed a Byzantine Agreement proto-
col, starting with a useful lemma.

Lemma 3.1  If, for some component c of the output � of STEP 3, the honest players 
get bc = 0 , then they reach c-agreement on a value v ≠ ⊥ in the c-th component of 
the output of MBA.

Proof  At the end of STEP 3, before determining the output of the protocol MBA, if 
each honest player j gets bc = 0 ( � is common to all honest players since m-dimen-
sional BBA is a Byzantine Agreement protocol), then it means that at the beginning 
of STEP 3 at least one honest player i had bi,c = 0 (otherwise by the consistency 
property of Byzantine Agreement protocols they would output 1). This means that at 
the end of STEP 2 gi,c = 2.

By Properties 1 and 2 of Definition 2.1, for any other honest player j we respec-
tively get gj,c ≥ 1 and vj,c = vi,c . Then when j computes the c component of output of 
STEP 3, since bc = 0 we have that j sets oj,c = vi,c , as all the other honest players will 
do. Thus c-agreement is reached. 	�  ◻

Theorem 3.2  Whenever n ≥ 3t + 1 MBA is an (n,  t)-Byzantine Agreement protocol 
with soundness 1.

Proof  We have already proven that MBBA halts with probability 1. Since MGC is 
not an iterative protocol, after its 2 steps it will halt with probability 1. Therefore, 
MBA halts with probability 1 as well. We must prove the Consistency and Agree-
ment properties.

•	 Consistency: we assume that, for each player i, the initial vector is 
��
�
= � ∈ (V ∪ {⊥})m . By Property 3 of m-dimensional Graded Con-

sensus, at the end of the second step of protocol MBA the output 
(�i, �i) = ((vi,1, gi,1),… , (vi,m, gi,m)) of any honest player i has, for all 
c ∈ {1,… ,m} , (vi,c, gi,c) = (v�

i,c
, 2) if v′

i,c
≠ ⊥ and (vi,c, gi,c) = (⊥, 0) if v�

i,c
= ⊥ . 
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Accordingly, the honest players will agree on the initial bit vector of STEP 3 
of MBA: in particular they will set bi,c = 0 if vi,c ≠ ⊥ , bi,c = 1 if vi,c = ⊥ . By 
the Agreement property of m-dimensional BBA we obtain that the agreed upon 
bit vector of STEP 3 will be the same for all honest players and equal to the ini-
tial vector of m-dimensional BBA. Hence, by the MBA protocol definition, the 
output of the protocol MBA of each honest player i will be �i = � , the common 
initial vector.

•	 Agreement: since m-dimensional BBA is a Byzantine Agreement protocol, all the 
honest players will end STEP 3 with the same bit vector � . Each honest player i 
will compute �i in the following way for each component c of � : 

1.	 either bc = 0 for all honest players: in this case c-agreement on the outputs 
holds thanks to Lemma 3.1;

2.	 otherwise bc = 1 for all honest players: in this case all players will set 
outi,c = ⊥ , so c-agreement on the output still holds.

	    Since c-agreement holds for every component c, we can state that Agreement 
holds.

	�  ◻

Note that the protocol MBA is the multidimensional version of the protocol BA* 
described in [4].

3.1 � A probability game

We consider the following game that will be used to model the evolution of the com-
ponent finalization process in the MBBA protocol, and thus the MBA protocol.

In particular we want compute the probability distribution associated to the num-
ber of steps necessary to win this game. From that, we retrieve the probability dis-
tribution associated to the number of MBBA iterations necessary to end the MBA 
Protocol.

The game is the following: we have n coins which flip heads with probability 
� , at each step we flip the coins and discard the ones which flipped heads, then we 
carry on with the others until there are no coins left. So, in the first step we flip all 
n coins, then we discard the h1 coins which flipped heads, in the second step we flip 
the remaining n − h1 coins and so on.

We now compute the probability distribution associated to the number �n,� of 
steps required to end the game.

The probability that a coin flips heads at least once in w steps is 1 − (1 − �)w , 
hence, being the coin flips independent, the probability that all coins flip heads at 
least once is (1 − (1 − �)w)n . This means that

and from that we can compute

P(𝜒n,𝜋 > w) = 1 − (1 − (1 − 𝜋)w)n,
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This defines the probability distribution associated to the number of steps to end 
this game played with n coins.

Note that in the Coin-Genuinely-Flipped step of the MBBA protocol the bits in 
the ambiguous components (i.e. the ones where some honest player has less than 2

3
n 

confirmations) are randomly flipped, while the components in agreement are left 
untouched. Moreover note that these flips cause the value of the ambiguous compo-
nents to match the one held by the other honest players (thus reaching agreement) 
with probability greater than h ⋅ 2−l (see Lemma 2.4), and that we end the protocol 
when all components are in agreement, so the probability distribution �n,

h

2

 gives an 
upper bound on the distribution of the number of Coin-Genuinely-Flipped steps nec-
essary to end the MBBA protocol. To connect more directly with the analysis of 
Lemma 2.4, note that the game above ends in one step with probability �n and that 
(
h

2
)l ≤ h ⋅ 2−l , so this lower bound in the probability translates in an upper bound in 

the number of steps necessary to conclude the protocol.

3.2 � Number of steps

Theorem 3.3  The distribution of the number of MBBA iterations required to end the 
MBA protocol run is upper bounded by the random variable 1 + �l,

h

2

 where

•	 l is the number of ambiguous components;
•	 h is the ratio of honest nodes in the network;
•	 �l,

h

2

 is the random variable described in Sect. 3.1.

Proof  We recall that by Lemma 2.3 if at some step c-agreement holds on some com-
ponent c then c-agreement will keep holding for the whole protocol run. But also, if 
c-agreement holds on some bit b ∈ {0, 1} , then in the next Coin-Fixed-To-b step all 
the honest nodes will finalize the c-th component, in fact the honest nodes are more 
than 2

3
n by the assumption in Sect. 1.1.

This means that, for the unambiguous components, the honest nodes are already 
in c-agreement, therefore they will finalize such components in the first Coin-Fixed-
To-0 and Coin-Fixed-To-1, i.e. by the first MBBA iteration.

The consensus evolution is much more complex for the ambiguous events. In fact 
agreement may not be reached in the first MBBA iteration and it might occur that a 
Coin-Genuinely-Flipped step is triggered. In such case, by applying Lemma 2.4 to 
the case in which there is a single component c on which agreement is not reached 
(hence l = 1 ), we get that with probability at least h

2
 c-agreement will be reached. 

Once again we recall that once c-agreement is reached it will keep holding.
Let {c1,… , cl} be the components associated to the ambiguous events, we have 

that at every Coin-Genuinely-Flipped step ci-agreement, for i ∈ {1,… , l} , is reached 

P(𝜒n,𝜋 = w) = P(𝜒n,𝜋 > w − 1) − P(𝜒n,𝜋 > w)

= (1 − (1 − 𝜋)w)n − (1 − (1 − 𝜋)w−1)n.
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with probability at least h
2
 , so we can say that the number of Coin-Genuinely-Flipped 

steps required to end the protocol is upper bounded by the distribution �l,
h

2

 described 
in Sect. 3.1. Since once c-agreement is reached two more steps might be required to 
finalize the component, we can say that the operations required to end the protocol is 
at most:

•	 3 steps of MGC;
•	 �l,

h

2

 iterations of MBBA;
•	 2 steps of the next iteration necessary to finalize the last components on which 

c-agreement is reached.

Therefore the distribution of the number of MBBA iterations required to end the 
DTSL Protocol run is upper bounded by 1 + �l,

h

2

 . 	�  ◻

Corollary 3.4  (Number of Communication Steps) The distribution of the number of 
communication steps required to end the MBA protocol run is upper bounded by the 
random variable 5 + 3�l,

h

2

.

4 � Conclusions

We presented the MBA protocol, a Byzantine agreement protocol for synchronous 
and complete networks which allows the nodes to reach consensus on a vector of 
arbitrary values, working in parallel on each component.

The protocol we have designed is based on the extension to the multidimensional 
case of the protocols presented by Micali [5, 12], and we have presented in the anal-
ysis a probabilistic upper bound to the number of steps to be executed before the 
protocol halts.

We believe that the MBA Protocol would find many applications in decentralized 
environments, in particular in contexts in which it is required coordination between 
various entities that simultaneously modify the state of a decentralized system. In 
particular its leaderless approach allows to widen the agreement by taking account 
of multiple points of view, resulting in a more democratic approach that is valued in 
permissionless distributed settings and also thwarts attacks from malicious leaders, 
which other approaches can only mitigate.

The parallel approach that tackles all components at once enhances efficiency in 
comparison to multiple executions of the monodimensional protocol we generalized. 
In our description the identification of the messages’ senders is implicit, so the advan-
tage of the multidimensional protocol is clear only in the Coin-Genuinely-Flipped 
step, where just the one signature is enough to derive all the coin flips. However, in 
practical settings messages are authenticated through digital signatures, and with our 
protocol the parallel messages are neatly organized into one, which then requires just 
one communication session and digital signature, further enhancing the efficiency.
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4.1 � Future works

The network assumptions we have used allow to describe the protocol and prove 
its properties in a clean and intuitive way, however they are quite unrealistic in 
practical applications. So the MBA protocol should be extended for usage in 
asynchronous and incomplete networks, that model more closely real-life com-
munication channels. This would obviously allow to apply the protocol to a vari-
ety of practical problems, such as blockchain platforms implementing sharding. 
In fact, the MBA Protocol, if designed for asynchronous networks, would allow 
the nodes working on different shards to synchronize their operations creating an 
extremely regulated environment, which gives the right conditions for a practical 
reconciliation of the transactions recorded on the shards.

Another research direction could focus on extending the protocol by introduc-
ing some termination steps, which allow to conclude the protocol execution in a 
predetermined number of steps if it does not halt by a certain limit. In fact, many 
concrete applications benefit from an upper bound on the protocol execution time 
that this extension would give. However, it is quite tricky to reconcile an execu-
tion bound with the goal to preserve as much meaningful agreement as possible: 
the trivial solution is to collapse the still-ambiguous components to ⊥ so that con-
sensus is reached in a bounded number of steps. More advanced termination steps 
would be preferable, however non-trivial solutions may cause a variety of issues, 
especially in the setting of asynchronous incomplete networks where malicious 
players have a widened array of attacks at their disposal.
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