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Highlights:

• Controllable parameters in the binder jetting printing process were determined, and experiments
were designed and performed to investigate their effect on the mechanical properties of the
final products.

• The modulus of rupture (MOR) was modeled as a function of its process parameters, including
particle size, amount of binder, and layer thickness.

• In an SCA-product, there are two types of interfaces: interlayer and intervoxel; blocks printed with
high fluid pressure have stronger interlayer connections than those printed with low pressure,
resulting in higher MOR.

Abstract: Powder-bed binder jet 3D printing is a flexible method for producing magnesium oxychlo-
ride (MOC)-based articles. Despite the great potential of this additive manufacturing technology for
producing free-form MOC cement-based components, the influence of processing factors on final
material performance has not yet been investigated and no general models exist for the selection
of proper parameters with the desired quality. In the present work, the effect of six key manufac-
turing factors on the modulus of rupture of MOC cement-based components was studied, using
an analysis of variance. The parametric analysis revealed that the material’s strength was strongly
influenced by three process inputs: particle size, the amount of binder, and layer thickness. The
amount of binder was determined by the “rate of voxel” and the “powder-bed density” and required
precise control during the printing process. The introduced quadratic regression model can assist
operators in selecting a combination of binder jet process inputs to achieve predetermined final
material performance.

Keywords: analysis of variance (ANOVA); binder jetting; design of experiment (DOE); magnesium
oxychloride cement; particle-bed

1. Introduction

Additive manufacturing (AM), commonly known as 3D printing, is changing the
way products are designed and fabricated [1]. Aerospace, automotive, and biomedical
companies are pioneer industries that have adapted their production line to benefit from
the numerous advantages of this technology [2–7]. Recently, AM has gained popularity
in other fields, such as the construction industry [8]. While extrusion-based 3D printing
technologies are essential for on-site building applications, powder-based 3D printing
processes allow for a much greater degree of precision and enable complex geometries to
be produced off-site [9–12].
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Binder jetting is one of the most flexible powder-based 3D printing technologies, be-
cause a wide variety of materials can be processed, including ceramics, polymers, metals,
and composites, without the need to design support structures required in other AM tech-
nologies [8,13]. Binder jetting reduces material input by means of structural optimization
and the integration of functional details in the designed concrete elements [9]. Two different
particle-bed 3D printing techniques can be used in building applications: selective cement
activation, and cement paste intrusion [9,14]. The binder jetting printing process consists
of three iterative steps: (1) spreading powder over a platform; (2) the selective deposition
of a liquid bonding agent onto the powder, utilizing a printer head; and (3) lowering the
platform or raising the printer head by the layer thickness of the model. In the end, the
non-solidified powders are removed [1,15]. Powder-bed 3D printing enables the produc-
tion of concrete elements with a free-form design, without the requirement of designing
supporting structures or tools [9].

In recent decades, MgO-based cements have been considered potential eco-friendly
materials for construction applications [16–18]. Magnesium oxychloride cement (MOC) is
a non-hydraulic cement that possesses certain advantages over Portland cement [17,18]. It
has high compressive and flexural strength that is achieved in a relatively short time [17,18],
good fire resistance [17,18], low thermal conductivity [18], and low specific density [18]. It is
obtained by mixing magnesium oxide (MgO) powder with a concentrated solution of mag-
nesium chloride (MgCl2) [17]. An exothermic reaction generates magnesium oxychloride
phases, called “5-phase” (5Mg(OH)2.MgCl2.8H2O) and “3-phase” (3Mg(OH)2.MgCl2.8H2O),
which impart important mechanical properties [16,17]. During their room temperature
curing regime, these cements reach their final strength in less than a couple of days [19].

Binder jetting appears to be a suitable method for 3D printing MOC-based material
structures. The aggregate (inert) is mixed with pulverized magnesium oxide (MgO) before
use as the powder bed. The cement is achieved when the oxide reacts with the MgCl2 that
is contained in the water–salt binder that is dispensed from the printer head nozzle [9]. It is
to be noted that MOC is suitable for different aggregates [18].

The parameters in the binder jetting process that influence the properties of the final
product can be classified into five categories: (1) feature design (including CAD parts and
designed optimizations); (2) the formulation of the powder (the selection of the aggregate
and activator, as well as additives for the powder properties, e.g., flowability); (3) the
formulation of the binder (the selection of the binding agent and additives for the solution
rheology); (4) the printing process variables (e.g., the layer thickness and the printing
orientation); and (5) the post-processing procedures (e.g., curing time) [20–22].

The aim of the present article was to study the effect of the process factors on the
modulus of rupture of (MOC)-based 3D printed components. To make our approach clearer,
we considered the fundamental factors that control the binder jetting process and classified
them into three subsets: powder deposition, layer thickness, and binder jetting.

1.1. Deposition of the Powder Bed

The first step in the printing process is the deposition of a thin layer of powder bed
on the build box. There are parameters in this step that affect the final properties of the
product. The dimension, shape, and size distribution are the main characteristics of the
powder particles that influence powder flowability when a homogeneous and sufficiently
dense powder bed needs to be realized [11,22,23]. Spherical and coarse powders have better
relative movement among the neighboring particles or in the container, which is described
as better flowability [23]. In powder-bed AM techniques, the deposited layer has a packing
density that is between the values of loose density and tapped density [24]. Although
bigger particle sizes have better flowability, voids remain, and the powder-bed density is
decreased; hence, a multimodal distribution is recommended, where fine particles can fill
voids between large particles [25]. Powder packing significantly affects binder spreading
and, consequently, the strength of the printed body [20]. The powder spreading speed,
which determines how fast each layer is deposited, affects the powder-bed density [20].
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1.2. Adjusting Layer Thickness

Layer thickness is one of the most important printing parameters in various AM
techniques, as it strongly affects the properties of the printed products. It is defined as the
thickness of a single deposited layer and it is governed by the resolution of the printing part
and particle size [24]. A smaller thickness provides better resolution, surface quality, and
strength; however, it increases the processing and printing times [20,25–28]. The chosen
amount of binder must allow sufficient penetration between layers, but avoid seepage into
other regions of the powder bed [29].

1.3. Jetting of the Liquid Binder

Commercial binder jetting printers use drop-on-demand (DOD) printing mechanisms
with piezo elements to dispense drops of binder, after mechanical positioning on the
powder bed [9,30]. The printhead traverses over the powder bed at a given feed rate, while
dispensing droplets of binders form a single line [31]. Spreading, bouncing, or splashing are
possible impacts of a droplet on a porous surface. The interaction between a jetted droplet
and a porous surface depends on printhead velocity and the spacing between successive
printed tracks (lines) [23]. Miyanaji et al. [23] showed that a larger printing speed reduces
the accuracy of the fabricated part. The build orientation has a significant effect on the
modulus of rupture of the printed materials [2,22,31].

In the production of concrete or cement components by powder-bed 3D printing, the
interaction between the deposited powder and the dispensed binder initiates the hardening
chemical reactions. The mechanical properties of the printed material are determined by
the aggregate grain size and the relative amount of binder. It is clear that particle size and
the binder saturation level (i.e., the relative amount of the fluid) have a significant impact
on the mechanical properties of the printed parts [22,25,32–34]. Typically, a reduction in
particle size results in higher mechanical strength because of the larger relative amount of
cement in the body, which is substantially proportional to the specific surface area of the
aggregate [25,35–37].

Although selective binding in a particle bed is a viable method for digitizing con-
struction components, no methodical approaches are available to correlate the process
inputs and the modulus of rupture of the printed parts. Most of the previous research into
binder jetting investigated the optimization of processes in which metal powders were
used. For the “selective binding” of aggregates method that is of interest in this article, two
different techniques are proposed: “cement paste intrusion,” where a cement suspension is
deposited on the powder bed for hardening, and “selective cement activation,” where an
activator binder is dispensed on a cement–aggregate mixture layer [9,15,38]. Unfortunately,
no results are available in the literature about optimizing the properties of binder jet 3D
printing cement-based materials or the modulus of rupture, which could assist engineers
in designing material performance [39]. In the present work, a multi-variable regression
model is established to predict the modulus of rupture as a function of process inputs for
binder jetting 3D printed MOC-porous glass aggregate.

2. Experimental Designs and Methods
2.1. Material

The binder jetting process we used was intended to produce a lightweight concrete
material, made by porous glass aggregate and magnesium oxychloride cement. The
compositions were chosen according to a preliminary activity that aimed to obtain 3D
printed materials with reasonable strength. The liquid binder used in the experiments, as
reported in Table 1, was a deionized water solution of magnesium chloride hexahydrate
(MgCl2.6H2O) (flakes, including 47.2% MgCl2, DEUSA International GmbH, Bleicherode,
Germany) and rice starch (Z.E.U.S. GmbH, Bolzano, Italy) to control the viscosity. The
binder was obtained by mixing the components in a glass container; first stirring the
magnesium chloride hexahydrate in water for 15 min at ambient temperature. The solution
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was heated to 60 ◦C followed by adding rice starch and stirring with a magnetic stirrer for
5 h to obtain a suspension.

Table 1. Chemical composition of the liquid binder.

Composition Content (wt%)

MgCl2.6H2O 49.5
H2O 49.5

Rice starch 1

A blend of commercially available magnesium oxide (MgO) (81% MgO, particle
size < 90 µm, Styromag GmbH, tragöß—St. Katharein, Austria), porous glass (Poraver®,
Dennert Poraver GmbH, Schlüsselfeld, Germany), orthophosphoric acid (H3PO4) (85 wt%
in water, Carlo Erba Reagents, Val-de-Reuil, France), and methylcellulose (Decotric GmbH,
Hann. Münden, Germany) was used for the preparation of the powder bed, as summarized
in Table 2. The porous glass was selected in two ranges of grain size, 0.1 mm to 0.3 mm and
0.25 mm to 0.5 mm. Powder-bed mixtures were prepared by mixing all the components in
a concrete mixer for 3 h.

Table 2. Chemical composition (in weight%) of the powder bed.

Composition Content (wt%)

Porous glass 60.8
MgO 36.5

Methylcellulose 1.5
H3PO4 1.2

2.2. 3D-Printing

The binder jetting process was carried out using the materials described above on a
semi-automatic 3D printing laboratory set-up, which included a motorized XYZ platform
equipped with a hopper and a micro dispensing system (Figure 1). The powder blend
stored in the hopper bin was deposited on the X direction platform and immediately
flattened by a wiper blade. The aqueous binder, stored in a pressurized vessel, was sprayed
by a single nozzle (with a 0.19 mm internal diameter) onto the powder bed, while moving
in the X–Y plane according to the predefined CAD model. In the parts where the binder was
applied, the powder material solidified, while the remaining powder material remained as
a support for the other parts. The printhead was adjusted in the Z direction to generate a
predetermined layer thickness for printing the successive section. The pressure regulated
the binder flow rate, while the signal frequency for the solenoid valve in the nozzle was
kept constant during all experiments. Deposited powders in a layer were confined by
printing a contour in the margin of the related cross-section. The minimum feature size in
the X–Y plane was ~12 mm.

Specimens with nominal dimensions of 150 mm × 40 mm × 40 mm were printed and
tested for flexural strength using the ASTM C293 standard [40]. The printed components
were sufficiently hardened after 24 h to be extracted from the powder bed. Then, they
were subjected to curing in lab air at room temperature for 5 to 7 days to allow the MOC
chemical reactions to finish.

The mechanical strength of binder jetting printed parts can be significantly affected by
the printing parameters. Based on design of experiments (DOE) principles, the experimental
procedure was designed to identify the effect of the inputs [41]. We investigated the effects
of six fundamental process parameters on the modulus of rupture were investigated.
Among all of the variables, the printing process factors that operators can control were
selected, as summarized in Table 3. The designed CAD file of the specimens was sliced to
generate the G-code program for every printing session. The nominal “feed rate”, “velocity
of powder spread”, “layer thickness”, and “hatch distance” were assigned to the G-code
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that was sent to the 3D printer controller. The pressure to provide the required amount
of binder was adjusted by a precise regulator in the system, and a pressure sensor read
the values.

J. Manuf. Mater. Process. 2022, 6, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 1. 3D printer set-up. 

Specimens with nominal dimensions of 150 mm × 40 mm × 40 mm were printed and 
tested for flexural strength using the ASTM C293 standard [40]. The printed components 
were sufficiently hardened after 24 h to be extracted from the powder bed. Then, they 
were subjected to curing in lab air at room temperature for 5 to 7 days to allow the MOC 
chemical reactions to finish. 

The mechanical strength of binder jetting printed parts can be significantly affected 
by the printing parameters. Based on design of experiments (DOE) principles, the 
experimental procedure was designed to identify the effect of the inputs [41]. We 
investigated the effects of six fundamental process parameters on the modulus of rupture 
were investigated. Among all of the variables, the printing process factors that operators 
can control were selected, as summarized in Table 3. The designed CAD file of the 
specimens was sliced to generate the G-code program for every printing session. The 
nominal “feed rate”, “velocity of powder spread”, “layer thickness”, and “hatch distance” 
were assigned to the G-code that was sent to the 3D printer controller. The pressure to 
provide the required amount of binder was adjusted by a precise regulator in the system, 
and a pressure sensor read the values. 

Table 3. Description of the binder jetting process parameters. 

label Factor Abbreviation Unit 
Level 

Description 
Low (−1) 

Center 
Point (0) High (+1) 

A Feed Rate FR 
mm/mi

n 7200 7600 8000 
velocity of the nozzle, installed on printer 

head, as it dispenses binder agent 

B Layer 
Thickness  

L mm 2 2.25 2.5 distance the printer head is raised at the 
start of a new layer 

C Amount of 
Binder Liquid 

AoB wt% 90 95 101 relative amount of binder 

D 
Velocity of 

Powder 
Spread  

V mm/mi
n 

1500 1750 2000 velocity of the hopper when spreading a 
layer powder bed 

E Particle Size PS mm (0.1–0.3) Mix * (0.25–0.5) grain sizes of porous glass aggregates  

F Hatch 
Distance 

H mm 1 1.25 1.5 distance between successive tracks 

Figure 1. 3D printer set-up.

Table 3. Description of the binder jetting process parameters.

Label Factor Abbreviation Unit
Level

Description
Low (−1) Center Point (0) High (+1)

A Feed Rate FR mm/min 7200 7600 8000
velocity of the nozzle, installed on

printer head, as it dispenses
binder agent

B Layer Thickness L mm 2 2.25 2.5 distance the printer head is raised
at the start of a new layer

C Amount of
Binder Liquid AoB wt% 90 95 101 relative amount of binder

D Velocity of
Powder Spread V mm/min 1500 1750 2000 velocity of the hopper when

spreading a layer powder bed

E Particle Size PS mm (0.1–0.3) Mix * (0.25–0.5) grain sizes of porous
glass aggregates

F Hatch Distance H mm 1 1.25 1.5 distance between successive tracks

* Mixed powder was composed of 50% fine and 50% semi-fine aggregates.

Factorial designs are the most efficient method used in experiments where the study
of the interaction effect of several factors on a response is required [41,42]. The industrial
factorial analysis relies on two levels of factorial designs to realize the process, including
identifying the factors that cause a difference in the final properties of the product and the
interaction between the factors [41]. Adding center point runs provides enough information
if the obtained regression model is linear or includes quadratic terms. In the manner of
non-linearity for the model, a higher level of factorial design (e.g., three levels of factorial
design), central composite design (CCD), or Box-Behnken design must be conducted for a
quadratic model regression [41].

Screening of the process was applied by a two-level fractional factorial plane (FFP)
in three treatments, using the generators I = ABCDEF (2(6−1)

VI ). To measure the stability of
the process and to test the curvature of the regression model, six center point runs were
conducted at the end of the experiments. The low and high values of each level were
determined experimentally by observing dimensionally acceptable samples (Table 3). The
whole design and analysis process was performed by RStudio software [43]. The top rows
of the designed plan are shown in Table 4.
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The effect of the selected factors and their interactions on the modulus of rupture was
examined by analysis of variance (ANOVA). The confidence level was considered to be
95% for p-values.

A multivariable regression model can predict the modulus of rupture as a function of
the printing significant inputs. The initial terms of this model can be written as follows:

Y = ϕ0 + ϕaA + ϕbB + ϕabAB +ϕa2A2 +ϕb2B2 + ε (1)

where Y is the predicted modulus of rupture, φ0 is the y-intercept, and φi indicates the
coefficients values. The letters, e.g., A and B, represent factors as inputs for the model [38].

Table 4. Top rows of FFP.

Run Treatment
Factor

A B C D E F

1 1 −1 −1 −1 −1 −1 −1
2 2 −1 −1 −1 −1 −1 −1
3 3 −1 −1 −1 −1 −1 −1
4 1 1 −1 −1 −1 −1 1
5 2 1 −1 −1 −1 −1 1
6 3 1 −1 −1 −1 −1 1
7 1 −1 1 −1 −1 −1 1
8 2 −1 1 −1 −1 −1 1
9 3 −1 1 −1 −1 −1 1

10 1 1 1 −1 −1 −1 −1

The printing factors are provided in coded units, defined as follows:

z =
2
R
(x− xmin)− 1 (2)

where z represents the coded level value for each factor x, R is the range of values for factor
x, and xmin is the minimum value for factor x. By substituting factor levels (x) that were
orthogonally coded, the maximum value is coded as 1, the midpoint as 0, and the minimum
as −1 [44].

2.3. Binder Liquid Flow Rate

Primitive units in the powder-bed binder jetting process can be determined by mul-
tiplying layer thickness (L), hatch distance (H), and feed rate (FR). The “rate of voxel”
(rV) is a practical definition for expressing the minimum printable features, instead of the
voxel. A meshed powder bed with rV elements is shown schematically in Figure 2. The
binder solidifies the desired rVs based on the CAD file, leaving the rest free. The cement
reaction stoichiometry, the aggregate to cement ratio, and the powder-bed density are
used to quantify the required binder for each rV. The binder mass flow rate is calculated
as follows:

β = rV ρpb α s (3)

where rV is the rate of voxel and is the volume of the powder per unit time (a combination of
layer thickness (Z), feed rate (X), and hatch distance (Y) in the Cartesian coordinate system).

ρpb is the powder density (a variable of the aggregate size),
α is the weight ratio of MgO to the powder blend (equal to 0.32 as experimentally

determined and a reference number for MOC cements), and
s (0.60) is the stoichiometric ratio of MgCl2 and water to MgO ( Binder

MgO ) in the following
5MOC chemical reaction:

5MgO + MgCl2 + 13H2O → 5 Mg(OH)2·MgCl2·8H2O (4)
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In the DOE table, each set of “feed rate”, “layer thickness”, and “hatch distance”
formed a rate of voxel; then, a corresponding binder mass flow rate according to the
equation was calculated. Densities of 0.65 and 0.58 kg.m−3 were measured experimentally
as the densities for the powder bed formed with fine and semi-fine aggregates, respectively.
Low and high levels of 10% less and 1% more than the calculated β were selected to study
the effects of the “amount of binder”.
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2.4. Tests

Rectangular beam specimens were printed and tested in three-point bending to deter-
mine the modulus of rupture 5 to 7 days after printing (Figure 3) [40]. For the anisotropic
properties of the printed material, flexural tests were carried out in normal (Z axis) and par-
allel (Y axis) directions with respect to the top surface of specimens, and the corresponding
strengths were labeled as Y0 and Y90, respectively. Mechanical tests were carried out using
a universal mechanical testing machine (model 810, MTS Systems, Minneapolis, MN, USA)
and the modulus of rupture was calculated as follow:

R =
3 P L
2bd2 (5)

where P is the maximum applied load, L is the span, and b and d are the specimen width
and thickness, respectively.
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Portions of the sample were collected and prepared in the form of powder for X-ray
diffraction (XRD) analysis, using CuKa radiation at 40 kV and 30 mA (Geiger Flex Dmax
III, Rigaku Inc., Tokyo, Japan). The samples were scanned in the interval of 10◦ to 100◦

(2theta) with a 0.05◦ sampling interval and a 5 s counting time. A qualitative analysis
of the phases detected in the samples as a function of curing time was carried out using
MAUD software [45], a modified Rietveld method for the evaluation of the content of
amorphous and crystalline phases in ceramic samples [46]. The broken samples were used
for microstructural analysis by scanning electron microscopy (SEM), and EDS analyses
were carried out using a JEOL IXRF SYSTEMS 500 with Iridium Ultra software (JSM-5500,
Jeol Inc., Tokyo, Japan).

3. Results and Discussions

All samples were successfully printed and tested (as an example, Figure 4 shows
sample # 11 from screening experiments). The manufacturing process followed a layer-by-
layer deposition of material with jetting of the binder onto the spread powder. Compared to
the traditional cast-in-place concrete technique, a hardened 3D printed part had two types
of interfaces [47]. The first type of interface was related to the joint between single line
primitives or inter-rV (intervoxel) connections, and the second type of interface was between
successive printed layers (Figure 4e). Due to the manufacturing parameters and the
variation in bond strength between the two types of interfaces, an anisotropic behavior in
the mechanical properties of printed parts was observed.

Figure 5 depicts the mean values of the modulus of rupture (MOR) for the Y0 and
Y90 directions; the mechanical behavior differs with respect to the three orthogonal axes,
as defined by the direction of the jetting of the binder. It is possible to conclude that
printed materials have orthotropic behavior. Apart from the samples with run numbers
of 11 and 26, the MOR in the Z direction was always higher. The average values of all
treatments for each set of parameters are shown in Table 5.
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3.1. Statistical Analysis

Using analysis of variance (ANOVA), the screening design revealed the effect of
each factor on the final modulus of rupture. Among all input factors, layer thickness
(p-value = 0.014), the amount of binder (p-value = 0.041), and particle size
(p-value = 6.2 × 10−6) were significant. The augmented factorial plan with central point
runs (p-value = 4 × 10−13) suggested quadratic effects for regression models; hence, a
three-level full factorial design in three treatments was adopted to model product behavior
(Table 6). For the new experiments, all samples were printed with a velocity of spread
equal to 7500 mm/min, a hatch distance of 1.5 mm, and a feed rate of 7200 mm/min. The
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powder-bed density for samples with particle sizes in the midpoint level was determined
to be 0.59 kg.m−3.
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Table 5. Modulus of rupture for all printed samples in both loading directions.

Run Number
Printing Input Parameters * Modulus of Rupture (MPa)

FR L AoB V PS H Y0 Y90

1 7200 2 0.9 1500 P013 1 0.78 0.64
2 8000 2 0.9 1500 P013 1.5 1.28 1.14
3 7200 2.5 0.9 1500 P013 1.5 1.34 1.30
4 8000 2.5 0.9 1500 P013 1 1.51 1.33
5 7200 2 1.01 1500 P013 1.5 1.40 1.28
6 8000 2 1.01 1500 P013 1 1.23 1.06
7 7200 2.5 1.01 1500 P013 1 1.13 1.16
8 8000 2.5 1.01 1500 P013 1.5 1.18 1.16
9 7200 2 0.9 2000 P013 1.5 1.47 1.43

10 8000 2 0.9 2000 P013 1 1.53 1.35
11 7200 2.5 0.9 2000 P013 1 1.56 1.62
12 8000 2.5 0.9 2000 P013 1.5 1.66 1.52
13 7200 2 1.01 2000 P013 1 1.15 1.07
14 8000 2 1.01 2000 P013 1.5 1.28 1.18
15 7200 2.5 1.01 2000 P013 1.5 1.48 1.45
16 8000 2.5 1.01 2000 P013 1 1.22 1.04
17 7200 2 0.9 1500 P255 1.5 1.25 1.11
18 8000 2 0.9 1500 P255 1 0.93 0.81
19 7200 2.5 0.9 1500 P255 1 1.33 1.21
20 8000 2.5 0.9 1500 P255 1.5 1.13 1.07
21 7200 2 1.01 1500 P255 1 0.99 0.99
22 8000 2 1.01 1500 P255 1.5 0.88 0.85
23 7200 2.5 1.01 1500 P255 1.5 1.03 0.98
24 8000 2.5 1.01 1500 P255 1 1.10 0.99
25 7200 2 0.9 2000 P255 1 0.69 0.58
26 8000 2 0.9 2000 P255 1.5 1.18 1.19
27 7200 2.5 0.9 2000 P255 1.5 1.27 1.27
28 8000 2.5 0.9 2000 P255 1 1.19 1.06
29 7200 2 1.01 2000 P255 1.5 1.12 1.00
30 8000 2 1.01 2000 P255 1 1.12 0.98
31 7200 2.5 1.01 2000 P255 1 1.16 1.07
32 8000 2.5 1.01 2000 P255 1.5 0.98 0.90

Center point 7600 2.25 1 1750 Mix 1.25 1.56 1.74
Center point 7600 2.25 1 1750 Mix 1.25 1.74 1.88
Center point 7600 2.25 1 1750 Mix 1.25 1.67 1.70
Center point 7600 2.25 1 1750 Mix 1.25 1.71 1.84
Center point 7600 2.25 1 1750 Mix 1.25 1.58 1.85
Center point 7600 2.25 1 1750 Mix 1.25 1.68 1.75

* abbreviation of printing input parameter are described.
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Table 6. Three-levels DOE table for significant factors.

Label Factor Abbreviation Unit
Level

Low (−1) Midpoint (0) High (+1)

B Layer Thickness L mm 1.5 2 2.5
C Amount of Binder Liquid AoB wt% 90 95 101
E Particle Size PS mm (0.1–0.3) Mix (0.25–0.5)

For each response, separate models are provided, as follows:

Y0 = ϕi0 +ϕbB +ϕcC +ϕeE +ϕbcBC +ϕbeBE +ϕbceBCE +ϕb2B2 (6)

Y90 = ϕi0 +ϕbB +ϕcC +ϕeE +ϕb2B2 (7)

These models were obtained from their full model by excluding non-significant factors
from the ANOVA. The corresponding ANOVA results are reported in Tables 7 and 8. The
Box-Cox range for Y0 and Y90 showed that there was no need for transformation and,
therefore, only significant factors and interactions were considered for the regression model.
The coefficients for each model are presented in the ANOVA, Tables 9 and 10.

Table 7. ANOVA table for Y0 model.

Factor Degree of Freedom Sum of Square F-Value Pr (>F)

B2 1 1.08 14.5443 0.0003
B 1 2.02 27.0476 1.7 × 10−6

C 1 0.48 6.4546 0.0131
E 1 3.52 47.1907 1.8 × 10−9

B:C 1 0.36 4.7974 0.0317
B:E 1 0.40 5.4034 0.0229

B:C:E 1 0.40 5.3312 0.0238
Residuals 73 5.45

Table 8. ANOVA table for Y90 model.

Factor Degree of Freedom Sum of Square F-Value Pr (>F)

B2 1 1.5 17.2056 0.0001
B 1 0.85 9.7881 7.8 × 10−8

C 1 0.72 8.2915 0.0056
E 1 3.29 37.7698 0.0027

Residuals 58

Table 9. Coefficients of Y0 model.

Coefficients Estimate

ϕi0 2.38593
ϕb 0.19333
ϕc 0.09444
ϕe −0.25537
ϕbc −0.09972
ϕbe 0.10583
ϕbce 0.12875
ϕb2 −0.24556
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Table 10. Coefficients of Y90 model.

Coefficients Estimate

ϕi0 2.3796
ϕb 0.2496
ϕc 0.1312
ϕe −0.2800
ϕb2 −0.3333

The substitution of the level of factors (−1, 0, 1) into the regression models provided a
prediction value for the modulus of rupture for any set of printing parameters. To assess
the accuracy of these models, quantile–quantile plots (QQ-plots) were considered (Figure 6).
Because both sets of theoretical and sample quantiles came from the same distribution for
Y0 and Y90 models, a scatter plot of points for each model formed a line that was roughly
straight [48].
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The differences between the predicted and measured values for an input set of printing
parameters were defined as the model residuals; a standard method to evaluate model
adequacy is the analysis of the model residuals [44]. Each model’s standardized residuals
were plotted against the fitted values by the linear model (Figure 7). There was no pattern
in the residuals for both models, and the distributed residuals were about zero.
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3.2. XRD Results

XRD analysis was carried out on five random samples during the experimental pro-
cedure to evaluate the effect of ambient conditions (temperature and humidity) on the
chemical reaction product. As expected, XRD analysis (Figure 8) pointed out the presence of
only three phases: MgO-Periclase (COD ID: 1000053); MOC-Phase 3, corresponding to the
mineral phase Mg2(OH)3Cl.4H2O (COD ID: 9010975); and MOC-Phase 5, corresponding to
the mineral phase Mg3(OH)5Cl.4H2O (COD ID: 2103035 [18]. Poraver is made of glass and
therefore no clear peaks could be identified, apart from a wide band centered at about 30◦.
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3.3. Main Effect and ANOVA for Printing Inputs
3.3.1. Powder-Binder Interaction (PBI)

There was a physical interpretation for each printing parameter in the regression
model. The effects of the significant factors and their interactions are discussed in this
section. Understanding the distribution of binder inside the powder bed is beneficial,
because it is a fundamental aspect of forming homogenous and monolithic rVs [15,49,50].

The nozzle movement over the powder-bed jets multiple droplets; the instant
binder droplets impact the powder and the cement reaction initiates to bond aggregates.
Three recognized granule formation mechanisms are tunneling, spreading, and crater
formation, which are determined by droplet kinetic energy, aggregate particle sizes, and
powder-bed density [51,52]. For substrates with a similar powder-bed density, a spreading
mechanism (Figure 9a) is dominant for low-pressure fluids, and the crater formation
(Figure 9b) is activated if the printing parameter requires a high-pressure jet stream to
solidify target rVs [53].
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(c) binder liquid distribution in the powder bed [54].

Following the initial impact, the fluid penetrates and spreads in all three directions,
known as the imbibition phase, due to capillary forces associated with fluid migration
in the space between the aggregates and the gravity forces of the droplet [24,34,51,55].
Fluid flow in the deposited powder bed, including macro-voids, differs from a well-packed
substrate [56]. As the liquid penetrates into powders containing large macro-voids, the
liquid front tends to halt when the pore radius suddenly increases [56]. Depending on
pore size and surface chemistry of the particles, four possible paths for the binder fluid
penetration can be identified: (1) no liquid absorption by the powder bed, (2) trapping of
liquid on the top of the deposited layer, (3) liquid descending to the bottom of each layer,
and (4) liquid spreading through the powder bed (Figure 9c) [15,54,56].

The migration of drops into the powder bed continues until there is no binder on the
deposited layer surface [50]; the fluid migration continues throughout the drainage phase.
In drainage, liquid migrates from the saturated region (the initial region penetrated by the
droplet) to the surrounding dry aggregates, and this process continues until the driving
forces in both regions are equal [24,34,51,55].

Merging solidified rVs provides the single-line primitives [53,57]. The cross-section of
the part is formed by single-line coalescence; the hardened object is produced by interlayer
bonding between consecutive layers [53,57]. The final mechanical strength of the printed
blocks depends on the bonding between single-line primitives (inter-rV connection) and
layers (interlayer connection).

The flow rate could be adjusted as a function of the control signal duration for the
solenoid valve or the fluid pressure. The signal frequency was kept constant at 110 Hz in
this study, and the flow rate was a function of the set pressure. The specific kinetic energy
of the jetted droplets depended on the drop size/speed and drop spacing/frequency [49].
Higher pressure increased the droplet speed, droplets with larger kinetic energy had higher
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penetration depth inside the powder bed, and their impact rearranged particles of the
top surface.

3.3.2. Main Effects

The main effects plots for the process inputs are plotted in Figures 10 and 11. A larger
difference between average values indicated a stronger influence by the specific input.
A similar effect was observed for the Y0 and Y90 outcomes when the factor level was
changed. Increased AoB and PS levels resulted in enhanced mechanical characteristics.
The best results were seen in the mid-level of layer thickness changes. Below is a detailed
explanation of the rationale behind these changes.
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Effect of Particle Size and Velocity of Powder Spread

The effect of “particle size” and “velocity of powder spread” on the mechanical
properties of the printed parts are primarily attributed to their direct effect on the powder-
bed density (ρpb), which is defined as the in situ ratio of the mass of the powder to its
occupied volume [20,24,58]. Furthermore, “aggregate size” determines the volume of
cementitious bonding to improve mechanical strength, as explained below.

Figure 12 shows a SEM image of bonded particles and a schematic of particle–bond
interaction. Based on this observation, an annular binder bridge (yellow meshed parts
in Figure 12a) connects two particles. This kind of connection resembles the sintering
process [32]. If the binder bridge is small with respect to the particle radius (h = constant),
the volume of the bond or the liquid quantity is determined as follows:

Vb =
4
3

π a2 h (8)
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where a and h are the radius and height of the cylinder, respectively. The mechanical
strength can be considered to be proportional to the printed volume of the bond [32]:

σmax ∼ Vb (9)
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Figure 12. (a) Particle–bond model; (b) SEM image of MOC bond between two particles.

An increase in spread layer density increases the mechanical strength of the products;
therefore, if the printing parameters are adjusted so that the powder-bed density improves,
more cementitious bonds are formed, leading to better mechanical properties.

A wiper blade with a super-elliptic edge profile was mounted to the machine’s hopper
to compress and level the dispersed powders in each layer (Figure 13). Since there was no
other compaction mechanism in the system, such as a roller or a vibrator, the two discussed
factors were the sole variables that affected the powder-bed density.
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Figure 13. Schematic of powder deposition mechanism, hopper and wiper blade attached to
the hopper.

Two stepper motors connected by trapezoidal screws provided the necessary speed
for powder deposition. Faster powder deposition rates amplified system vibrations, which
rattled the hopper’s bin and enhanced powder flowability, leading to slightly improved
powder-bed density. The ANOVA outcomes from the screening experiment revealed a
p-value equal to 0.0522 for the “velocity of powder spread” factor, which indicated the
non-significance of V on the modulus of rupture yields.

The powder-bed density (ρpb) was affected by aggregate particle size. Finer particles
had a higher compaction ratio than semi-fine particles in each deposited layer, due to the
fewer spaces between them; as a result, the volume of cementitious bonds that could form
was increased to support beams with flexural strength.

Aside from the influence of the P.S. factor on the powder-bed density, the powder beds
with P013 finer aggregates had a higher surface area per unit volume [59] and created a
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greater volume of bonds. Considering the effects of P.S. on the volume of formable cement
for both Y0 and Y90 outcomes, a smaller particle size led to a greater modulus of rupture.

Effect of Layer Thickness and Hatch Distance

The layer thickness, as determined by the product’s resolution and the size of available
aggregates, is a significant parameter in all AM techniques [24]. The effect of layer thickness
on the mechanical properties should be evaluated in the context of how it alters powder–
binder interaction to form interlayer and inter-rV (intervoxel) connections.

The binder flow rate varied with the “rate of voxel”, and the fluid pressure was
adjusted accordingly. Each constitutive element for the rate of voxel was considered an
independent parameter in the current investigation. One component of the rV was L; as a
more thickness of the layer was designed, a higher fluid pressure was applied.

In accordance with SEM images and EDS analysis, printed samples with a low layer
thickness demonstrated a homogeneous distribution of cementitious bonds among the
aggregates, but the printed blocks with larger layer thickness revealed inhomogeneity
within the layers. In addition, the inhomogeneity was visible with the layered region
phenomena. As an example, in sample #11 (Figure 4c), visible layers on the Y–Z plane were
highlighted and characterized by a height equal to the layer thickness (L). The information
from micrographic observations was in accordance with the PBI mechanisms.

Higher fluid pressure had a double effect on the powder-binder interaction. On the
one hand, a higher pressure increased the kinetic energy of droplets, and binder fluid
penetrated deeper inside the powder bed down to the bottom of the deposited layer. On
the other hand, higher pressure rearranged the aggregates on the surface of each deposited
layer, created a net shape channel, and increased the total porosity within a block.

Figure 14a shows the macro-voids and binder migration channels for sample #12.
Two sides of the distinct bright color (dense material) were marked with silver paste to be
detected by SEM observations, to analyze the microstructure between the layered regions.
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Figure 14. (a) Red boxes inside yellow frame mesh illustrate the locations of macro voids; (b) pattern
of fabricated channels.

In micrographs of the successive printed layers labeled as n and n−1, the visible
layered region (layer n) could be distinguished by two white lines (Figure 15). The following
findings were obtained from the SEM micrographs. First, longer lengths of MOC crystals
were formed within the highlighted band (Figure 15c), while cementitious bonds between
particles in other regions were limited (Figure 15b). Moreover, macro-porosities were at
the top of each layer’s highlighted band (Figure 15a); for samples with L = 2 mm, the
macro-voids were not observed in SEM images.
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Figure 15. Sample #15, L = 2.5: (a) visible layering effect band is specified from surrounding, and
bonded aggregates; (b) outside the light band; (c) inside the light band.

The pronounced inhomogeneity in samples with larger layer thickness was illustrated
by composition variation through EDS line scan fluctuations (Figure 16). The main chemical
element in the printed sample was the Si (related to the aggregate from Poraver glass).
Hence, the Mg/Si and Cl/Si ratios were plotted along the z direction (between two deter-
mined blue lines) to investigate the amount of cement material over thickness. Obviously,
composition variation can be pointed out in a visible layered region that was marked with
silver paste. For samples #15 and #11 (from the screening step) with the layer thickness
of 2.5 mm (Figure 16), it was understood that a larger amount of cement was formed in
the visible layered region. Therefore, with reference to Figure 4c and the visible layered
phenomena, dark and bright bands depict dense and loose materials with voids.
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Figure 16. EDS line scan analysis of Mg/Si and Cl/Si ratios in the determined blue region. The
horizontal scale on the right hand of each plot shows the different intensity. Results are depicted for
(a) sample #15, and (b) sample #11 (as in Table 5).

A low level of L led to more homogenous distribution of bonds and stronger inter-rV
connections. However, a high level of this parameter provided a stronger interlayer connec-
tion with porosities inside a printed layer. According to the obtained results, the positive
effect of a higher level of L overcame the negative effect of macro-voids in the mid-level of
the DOE studies. For a high level of L, macro-voids were dominant, rather than midpoints,
but adjusting higher pressure, correlated to the L values, led to better mechanical prop-
erties due to the stronger interlayer joints. Nevertheless, samples with larger thicknesses
were mechanically stronger than samples with lower thicknesses, indicating that interlayer
bonds were more critical in determining flexural strength.

In addition to the layer thickness, the hatch distance was a constitutive element of the
rV, in which fluid pressure was increased with larger hatch sizes. Following ANOVA from
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the screening experiments, this factor did not show a significant effect (p-value = 0.1018) on
the MOR in Y0, but for Y90 it was effective (p-value = 0.0155). When the force was normal to
the x-z plane (Y90), the “hatch distance” acted as “layer thickness” in the Y0 state, increasing
H reinforced interlayer connections to tolerate higher flexural tensions.

Effect of Amount of Binder

The amount of binder can be identified as the water-to-cement ratio in the conventional
concrete production process [11]. In order to produce high mechanical resistance samples,
the optimal composition for MOC cement should fall approximately in the middle of the
compatibility triangle, MgO–P3–P5 (Figure 17) [18].
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As illustrated in Figure 17, in order to maintain the initial stoichiometric condition
of printing within the demanded zone, the interval of the AoB factor was kept limited.
The recorded p-values for Y0 and Y90 were 0.01 and 0.005, respectively, indicating that
the variations of this factor on the modulus of rupture were significant. A higher level of
this factor contributed to a larger modulus of rupture. The impact of AoB on MOR may
be assessed from two perspectives. First, a high AoB level increased the required fluid
pressure to adjust the flow rate, resulting in improved interlayer interactions. Second, the
quantity of binder added to the powder bed was increased, which aided fluid migration in
the imbibition and drainage phases to form more cementitious bonds for inter-rV interfaces.

Feed Rate

The feed rate of droplets in the horizontal direction, or the travel speed of the printhead,
was the printing speed. In this study, the feed rate did not significantly affect the final
yields (p-value = 0.774 from screening runs). The velocity of droplets had two horizontal
and vertical components that were related to the printing speed and the jetting of binder
liquid, respectively.

To study the behavior of a jetted binder on the powder bed, the dimensionless Weber
number can be used to characterize fluid interaction with a porous media [23]:

We = ρrv2/γ (10)

where ρ is the density of the binder material, r and v are the radius and velocity of the
droplet, respectively, and γ is the surface tension of the liquid binder. The Weber number
describes the droplet-powder interaction that result in higher values of We in a larger
wetted area.
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Although the experimental results showed that the horizontal component of droplet
velocity was not a significant printing factor on the MOR in the x and y directions, the feed
rate at high printing speeds could not be ignored.

Increasing the printing speed increased the inertial forces and facilitated the spread of
droplets in the printing direction [23]. The horizontal component of droplet velocity had a
less noticeable effect than the vertical component (the vertical component of velocity as a
function of fluid pressure) on the final strength of the printed blocks. The quality of the
blocks was unaffected by the FR, which could be selected freely.

3.4. Interactions

The printing procedure in the selective cement activation binder jetting method began
with the designing of a rate of voxel (FR × L × H) and the calculation of the corresponding
quantity of binder (β). The manufacturing process was started by spreading a layer of
the powder bed (L) with specified particle sizes (PS) and deposition rates (V), followed by
jetting droplets in designed tracks (H) for various printing speeds. A correlation between
the significant factors was generated to understand the optimized process parameters, as
discussed below.

Based on the statistical analysis, contour plots are reported in Figures 18 and 19. The
diagrams can be used as a reference for selecting printing parameters. Considering the
plotted contours for both Y0 and Y90 outcomes, the maximum modulus of rupture values
were obtained by the finer aggregate particles (E = −1). Greater powder-bed densities
achieved by using smaller aggregate sizes could contribute to better mechanical properties.
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In the binder jetting process, the feed rate, the layer thickness, and the hatch distance
comprised a componential element known as rV. Designing an rV with various rates alters
the volume of cementitious bonds in inter-rV and interlayer interfaces; larger layer thickness
values were preferred for acceptable mechanical qualities and a reduction in printing time,
as long as the porosities did not become prominent.

A remarkable interaction was the one between layer thickness and the amount of
binder, which was related to the binder flow rate calculation. Considering the contour
plots, we concluded that samples with a higher layer thickness and a higher level of AoB
with finer particle size resulted in better mechanical properties.

4. Conclusions

In this paper, we addressed binder jetting 3D printing by selective cement activation,
a powder-bed method of producing precast concrete elements for the construction industry.
Our focus was on identifying the significant printing parameters. A design of experiments
approach was used to study the effect of six key printing factors on the modulus of rupture
of MOC cement-based components. Prior to the manufacturing process, and based on the
printing parameters, the binder flow rate (β) should be determined, formulated as: “β = rV
ρpb α s”. A 25

VI DOE with center point runs was performed to screen the process parameters
on the MOR, and according to the ANOVA of screening results, a three-level full factorial
design in three treatments was adopted to model the MOR’s printing parameters. Based
on the statistical analysis carried out in the experimental work, the following conclusions
were drawn.

• The modulus of rupture (MOR) was determined by the layer thickness, the amount of
binder, the particle size, and the interaction between these factors. When the aim was
to print better mechanical strength blocks, the feed rate and the velocity of powder
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spread were not significant factors. These parameters were selected freely, on the basis
that the binder amount and the rate of voxel (rV) were kept constant.

• The powder binder interaction (PBI), i.e., the interaction between jetted binder droplets
and the deposited powder bed, determined the quality of the printed blocks. A
sample was formed by merging rVs as single-line primitives, followed by connecting
successive cross-sections; hence, inter-rV and interlayer connections were two types of
interfaces in each printed component. The final products were orthotropic materials
whose properties depended on the binder’s deposition direction.

• Under high fluid pressure, single-line primitives were created through a crater forma-
tion mechanism, where the binder went deeper into the powder bed, but each layer
was formed with macro porosities. At low fluid pressures, on the other hand, the
spreading mechanism was dominant and the cement was distributed homogeneously
throughout the printed part.

• The mechanical strength of SCA-produced products with an inorganic binder was pro-
portional to the volume of the cementitious bonds ( σmax ∼ Vb among the aggregates.
Finer particles generated a more compacted layer with more active surface area to
form cementitious bonds. As a result, they ended up with a higher MOR. Furthermore,
increasing the density of the powder bed with finer aggregates demanded higher flow
rates, activating the crater mechanism and reinforcing the interlayer connections.

• In the SCA process, the AoB operated in a manner similar to that of the water-to-
cement ratio in traditional concrete manufacturing. When this factor increased, the
flow rate increased and, as a result, the fluid pressure rose, resulting in the formation
of stronger interlayer connections.

• Statistical models were developed to predict MOR in three levels: as a function of
layer thickness, the amount of binder, and particle size. The aim was to print the most
robust products; hence, fine particle size combined with a high level of AoB factor,
with the layer thickness maintained in mid-level, provided the best results for both Y0
and Y90 outcomes.
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