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a b s t r a c t

Against the COVID-19 pandemic, non-pharmaceutical interventions have been widely applied and vacci-
nations have taken off. The upcoming question is how the interplay between vaccinations and social mea-
sures will shape infections and hospitalizations. Hence, we extend the Susceptible-Exposed-Infectious-
Removed (SEIR) model including these elements. We calibrate it to data of Luxembourg, Austria and
Sweden until 15 December 2020. Sweden results having the highest fraction of undetected,
Luxembourg of infected and all three being far from herd immunity in December. We quantify the level
of social interaction, showing that a level around 1/3 of before the pandemic was still required in
December to keep the effective reproduction number Reff tð Þ below 1, for all three countries. Aiming to
vaccinate the whole population within 1 year at constant rate would require on average 1,700 fully vac-
cinated people/day in Luxembourg, 24,000 in Austria and 28,000 in Sweden, and could lead to herd
immunity only by mid summer. Herd immunity might not be reached in 2021 if too slow vaccines rollout
speeds are employed. The model thus estimates which vaccination rates are too low to allow reaching
herd immunity in 2021, depending on social interactions. Vaccination will considerably, but not imme-
diately, help to curb the infection; thus limiting social interactions remains crucial for the months to
come.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

In December 2019, a novel strain of coronavirus SARS-CoV-2
(severe acute respiratory syndrome coronavirus 2) was first
reported in Wuhan, China. In severe cases, it causes an acute respi-
ratory distress syndrome (ARDS), which can lead to respiratory
failure, septic shock, multi-organ failure and death (Mohanty
et al., 2020). By mid December 2020, worldwide 72 million con-
firmed cases and 1,6 million dead people had been identified to
be infected with SARS-CoV-2.

To help mitigating the coronavirus disease 2019 (COVID-19)
pandemic, mathematical modelling has become a major tool in
understanding its diffusion (Currie et al., 2020). As COVID-19 is

currently widely spread across the globe, short- and medium-
term modelling forecasts assess the need for containment strate-
gies. For these purposes, one of the most employed models is the
Susceptible-Exposed-Infectious-Removed (SEIR) model, for which
numerous extensions have been recently developed. Extensions
including compartments for hospitals and deaths have been devel-
oped among others for Italian regions (Reno et al., 2020) and Swe-
den (Sjoedin et al., 2020). An extension to investigate the crucial
role of asymptomatic cases was developed in Emery et al. (2020).
One including a time-varying transmission rate was presented in
Cazelles et al. (2021) for France and Ireland. A network-based ver-
sion of the SEIR model focused on Italian regions (Gatto et al.,
2020) showed that the effects of the employed measures have been
decisive in preventing much worst outcomes. An extension includ-
ing asymptomatic cases showed that the timing of social distanc-
ing is crucial (Gevertz et al., 2021). Various synergies of different
mitigation strategies can lead to similar suppression of the infec-
tion, with different consequences (Proverbio et al., 2021). Models
were developed to investigate the effectiveness of specific
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non-pharmaceutical interventions employed as lockdown-like
measures and universal masking (Yang et al., 2021) or social dis-
tancing and travel restrictions (Parino et al., 2021). Different mea-
sures have different economical consequences, and the
epidemiological and economical aspects of the pandemic strongly
influence each others (Burzynski et al., 2021).

In this study, we extend the SEIR model including a social inter-
action parameter, the presence of undetected cases, vaccination
and the disease progression through hospitals, ICU, recovery and
death. The aim is to understand the different phases of the pan-
demic which occurred in countries employing different policies,
and to investigate how the interplay between vaccination strate-
gies and social interactions might lead towards herd immunity
throughout 2021. We focus on the epidemic dynamics of three
countries: Luxembourg, having the highest fraction of detected
COVID-19 cases per 100,000 inhabitants in Europe in December
2020; Sweden, following different intervention strategies, not
imposing a full lockdown and considered having attempted to
reach herd immunity early on; Austria, showing dynamics compa-
rable to Luxembourg. We calibrate the model separately to pub-
licly available data of each country, and employ it to compare
the epidemic dynamics during infection waves within and
between countries.

The model is further used to investigate dynamical trends asso-
ciated with vaccination. As several vaccines became available at
the end of 2020, systematic vaccination campaigns have taken
off in a number of countries in the first months of 2021. They are
of extreme importance, not only to protect the most vulnerable
people, but also to contribute to eradicate the virus in the popula-
tion through herd immunity (Rashid et al., 2012). Herd immunity is
achieved when a certain fraction of the total population is immune
to the infectious disease (through natural infection or vaccination),
so that the infectious agent can no longer generate large outbreaks
(Fontanet and Cauchemez, 2020). Much remains to be learned
about immunity to SARS-CoV-2 (Poland et al., 2020) and there exist
additional challenges to mass vaccination, associated to supplying
the vaccines and to the logistic of their deployment. A key question
in the current COVID-19 pandemic is thus how and when herd
immunity could be achieved (Fontanet and Cauchemez, 2020).

To tackle this question, we use our model to investigate the
potential impact of various vaccination strategies and their syn-
ergy with social measures for the considered countries. We inves-
tigate when herd immunity might be reached depending on
vaccines rollout speeds in plausible scenarios. The desirable objec-
tive would be to achieve herd immunity primarily by mass vacci-
nation, while avoiding the saturation of healthcare systems and
having as few cases and deaths as possible. In fact, the alternative
to achieve herd immunity primary by infection has been shown to
pose severe risks of overwhelming the health care system and to
lead to high numbers of deaths (Brett and Rohani, 2020).

With our study, we are aligned to a long standing tradition of
using mathematical models in the design of mass immunization
programs (Nokes and Anderson, 1988). Recently, some works pre-
sented results based on simple models and conceptual scenarios
(Good and Hawkes, 2020; Anderson et al., 2020; Saad-Roy et al.,
2021; Deng et al., 2021). Attainability of herd immunity by vacci-
nation in the UK is investigated in Moore et al. (2021). Instead,
the presented model is calibrated on data from multiple countries
and includes compartments for disease progression and unde-
tected cases and has the scope to systematically investigate the
interplay of vaccination strategies and plausible social interaction
scenarios in the pursuit of herd immunity. This model was also
employed during the ongoing pandemic to investigate the impact
of reductions of social interaction and to generate projections to
inform policy-making.

2. Methods

2.1. Mathematical model

We develop a mathematical model of the transmission of
COVID-19 within a country’s population, extending the standard
Susceptible-Exposed-Infectious-Removed (SEIR) model (Kermack
et al., 1927) to include: 1) undetected cases; 2) varying social inter-
action; 3) the progression of severe cases through hospitalization,
intensive care and eventually death or recovery and 4) vaccination.
The model, Fig. 1, is implemented through a set of ordinary differ-
ential equations (Eqs. (A.2) in Appendix). The total population N of
the considered country is streamed at time t into 16 compartmen-
tal variables, Table A.1. An important fraction of infected people is
usually not detected (Li et al., 2020), so we introduce a separation
between detected and undetected cases. One branch (detected
cases) can lead to quarantine and possibly to hospital and/or ICU.
The other (undetected cases, either because they are asymptomatic
(Emery et al., 2020) or simply due to lack of testing) continues
spreading the infection until recovery or death. The probability of
an infected individual to be detected is indicated as p1 and assumes
different values for each country and wave of infections, Table B.2
and Table H.6.

Most model parameters represent either probabilities pi of
going to one compartment or another, or rates si describing how
fast individuals flow through compartments (i is an index over
parameters, their values are listed in Table B.2). Probability param-
eters determine which fraction of population goes to one branch,
which to the other. Rates, representing the inverse of the average
length of stay in a compartment, capture how fast (on average)
individuals flow from one pool to the next. The only parameter
not representing a rate or probability is the social interaction
parameter q tð Þ, which tunes the average contact rate b. It repre-
sents the fraction of social interactions taking place at any given
time, with respect to the one pre-pandemic. Thus, a value of
q tð Þ ¼ 1 means the same level of social interaction as in the begin-
ning of 2020. This parameter incorporates non-pharmaceutical
interventions and changes in population behaviour similarly
affecting the dynamics. It changes whenever new measures or
major updates in social interactions take place (lockdown, schools
opening/closure, summer vacation, etc.).

Mathematical models are necessarily simplifications of reality.
They balance complexity, including the factors crucial to answer
the investigated questions and to learn useful real-world lessons,
with simplicity, as they need to be simple enough to be numeri-
cally and/or computationally tractable. Hence, the present model
relies on a number of assumptions.

As other SEIR models, the present model is deterministic and
mean-field, so it does not describe the stochastic aspects of the epi-
demic, e.g. super-spreading events, but concentrates instead on its
average evolution. Alternative approaches to ODE-based models
have been developed, e.g. agent-based models (Tracy et al.,
2018), recently applied e.g. to Luxembourg (Thompson and
Wattam, 2021), Switzerland (Shattock et al., 2021) or Australia
(Chang et al., 2020). Deviations from mean-field effects are
expected to play an important role in periods of low infections
numbers, where e.g. one or few super-spreading events can make
the difference between starting or not a wave of infections
(Althouse et al., 2020). However, with high case numbers we
expect a deterministic description to be sufficiently accurate, espe-
cially when it comes to the progression of infected individuals into
more severe stages as hospitalisation, ICU and death.

The model does not include an age structure. As COVID-19 case
fatality rates, hospitalization and ICU admission rates vary with
age, the values of our parameters represent an average over age
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groups. Instead of capturing the age-dependent risk of disease pro-
gression, the present model fits and simulates aggregated hospitals
and ICUs occupations and deaths. This allows to compare simu-
lated scenarios for the evolution of aggregated quantities under
different assumptions, for which age structure is not crucial. More-
over, not considering explicitly the age structure reduces the num-
ber of parameters to fit, thus improving calibration and reducing
fitting uncertainties. In addition, while in principle the effective
reproduction number Reff tð Þ can be derived analytically in age-
structured SEIR-like models (Hethcote, 2009; Cao and Zhou,
2012; Diekmann et al., 2010), the absence of age structure here
contributes to make its derivation much more tractable in practice.
Nonetheless, the current assumption could lead our estimates to
represent a pessimistic case, since previous computational studies
have shown that including age-dependent contacts in an agent
based model can reduce the threshold for reaching herd immunity
(Britton et al., 2020).

The other factor contributing to make Reff tð Þ analytically tract-
able is the way we implement vaccination. Vaccination is also
modelled in a simplified manner, namely as individuals flowing
at a constant rate out of the susceptible compartment (see also
Appendix D). This implies four assumptions. First, we assume that
vaccination proceeds at a constant rate. In reality, the rate depends
among other factors on vaccines availability; hence, the vaccina-
tion rate in the model is intended as an average, reference value.
Second, we use the terms ‘‘vaccination” and ‘‘vaccinated people”
referring to individuals who have been fully vaccinated (not those
with half coverage from two-doses vaccines). This should be con-
sidered when comparing real numbers to the vaccination rollout
speeds employed in this paper. Third, we assume 100% vaccine
efficacy in preventing an individual from getting infected, develop-
ing symptoms and infecting others. This is an optimistic approxi-
mation. Fourth, we assume that only susceptible individuals are
vaccinated, while in reality also recovered individuals are. While
the number of recovered individuals is in the countries and scenar-
ios investigated here considerably lower than the number of sus-
ceptible, to some extent supporting this approximation,
removing this assumption would somewhat increase the vaccina-

tion rates needed to obtain the same results with respect to our
estimates. Overall, these assumptions make our vaccination simu-
lations an optimistic limit. However, the absence of age-structure
makes our estimates of the herd immunity threshold a pessimistic
limit, so the two effects might compensate to some extent, which is
difficult to quantify. The impact of the assumptions mentioned
here is discussed in more detail in Section 4.

2.2. Model calibration and fit to public data

The model is fitted to publicly available time-series data (from
February to 15 December 2020), independently for each wave and
country. Detailed methodology, data and dates are discussed in the
Appendices. These data are displayed in Fig. 2 for total detected
cases (A, B, C) and corresponding daily new cases (D, E, F), hospital
occupation (G, H, I), ICU occupation (J, K, L) and deaths (M, N, O).
Subsequent waves of infections have occurred; we refer to them
as 1st and 2nd wave for Austria and Sweden, respectively for those
starting in February and September. Luxembourg had an additional
wave during July (see Fig. 2 D). So, we refer to it as 2nd wave, and
to the rise in September as 3rd wave.

For each country and epidemic wave, we initially manually cal-
ibrate a set of parameters that allow the simulations to fit the data
while incorporating literature knowledge (see Appendix H). In the
rest of the paper, we will refer to this parameter set as ‘‘manual fit”
or ‘‘manual calibration”. In particular, these parameters are
obtained from non-country-specific literature (Rees et al., 2020;
Liu et al., 2020; Wu et al., 2020), or from country-specific literature
or data (Böhning et al., 2020; Snoeck et al., 2020; Folkhal-
somyndigheten 1; folkhalsomyndigheten 2), or from assumptions.
Details are provided in Appendix H: rates and probabilities used
are listed in Appendix Table H.6; social interaction parameter val-
ues and their changes over time are displayed in Fig. 3 (main text)
and listed in Appendix Table F.3 (Luxembourg), Table F.4 (Austria)
and Table F.5 (Sweden). Values of the social interaction parameter
employed for a given time-period (between two changes in mea-
sures) are obtained by best fitting the simulation of new cases to
the moving average of the corresponding data. This method

Fig. 1. Scheme of the mathematical model. The model construction is described in Section 2.1. Each compartment is associated to a variable, see Appendix Table A.1 and Eqs.
(A.2). Each variable represents the fraction of individuals in that state at a given time. Arrows represent flow of individuals between states, with associated probabilities and
rates reported in Table B.2. Their values for each country and wave are summarized in Table H.6. Vaccination is assumed to occur at a constant rate, to have 100% efficacy and
to be administered to susceptible individuals only. These assumptions lead to the projections involving vaccination to be optimistic, see Sections 2.1 and 4.
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already returns good agreement between simulations and data
from several time-series data (cf. Fig. 2), thus supporting our choice
of parameters.

We further cross-validate the calibration of our model by Baye-
sian inference and Markov Chain Monte Carlo (MCMC) methods (cf.

Appendix I). Such methods have been widely applied in the frame-
work of the pandemic to infer epidemiological parameters from
SEIR-based or other models, e.g. for Spain (Castro et al., 2020), Ger-
many (Dehning et al., 2020) and in a comparison of 11 countries,
including Austria and Sweden (Bryant and Elofsson, 2020). Most

Fig. 2. Data, model simulations and projections of total cases, daily cases, hospital and ICU occupation and dead, for each country. Reported are: total cases (A, B, C), daily new cases
(D, E, F), hospital occupation (G, H, I), ICU occupation (J, K, L) and deaths (M, N, O). Such values are respectively estimated from Appendix Eqs. I.2–I.6, for each country (see
columns). In addition to model simulation, raw data are shown (red stars), together with their weekly moving average (gray dots). Panels A, B, C also report (in violet) the
cumulative number of estimated undetected cases, obtained as the sum of undetected cases being either infectious, recovering, recovered or dead, see Appendices. Entries of
panel A’s legend hold for each panel, except the one for undetected cases, displayed only in panels A, B and C. Projections for several months after the last data point illustrate
the potential simulated scenarios explained in the main text.
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of these studies did not include hospitalisations, ICU, deaths and
undetected cases and all of them focus on one country, except
(Bryant and Elofsson, 2020) which focuses on the basic reproduc-
tion number. The set of MCMC simulations is performed to obtain
an estimate of the parameters and to quantify their uncertainties.
The choice of prior probability distributions for the parameters is
specified in Appendix I.2; chains are verified to converge in
Appendix I.5. The values of the manual fit are usually included
within the Bayesian credible intervals and are thus consistent (cf.
Appendix Fig. J.3). We observe high degeneracy between parame-
ters, with combinations (e.g. ratios) of parameters being often bet-
ter constrained than individual ones (cf. Appendix, Figs. J.4–J.10
and corresponding sections). The MCMC is extremely useful to esti-
mate the uncertainty that affects our estimate of parameters and
their potential ranges of values, but it does not provide a unique
parameter set due to poor identifiability, common to SEIR models
(Roda et al., 2020). In fact, the two parameter sets obtained respec-
tively from the maxima of the posteriors (maximum a posteriori

estimate) and from the means of the posteriors are rather different
from each other due to asymmetric posteriors. Moreover, certain
parameters are poorly constrained by the data, resulting in rather
flat posterior probability distributions. For the simulations, we
thus employ the manually calibrated parameter set, which is
unique, consistent with the results of the MCMC, and incorporates
domain knowledge from literature as explained in Appendix H.

3. Results

3.1. The model accounts for undetected cases and projects potential

scenarios

The model (Fig. 1) is developed and calibrated so that it fits
available time-series data from considered countries (cf. Sec-
tion 2.1). To improve the identification of the model parameters,
we cross-validate the manual calibration, used in model
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Fig. 3. Social interaction parameter q tð Þ and effective reproduction number Reff tð Þ for each country. Panels A, C, E: social interaction parameter q tð Þ, manual and Bayesian
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simulations, with a Bayesian fit (cf. Appendices H, I, J and Fig. J.3).
Data evolution and model simulations are reported in Fig. 2.

The model also accounts for undetected cases, through a dedi-
cated compartment. In particular, the probability p1 of being
detected is estimated for each country and wave from available
prevalence data, see Appendix Table H.6. These undetected cases
are reported in panels A, B and C of Fig. 2 as cumulative numbers.
Over time, this number (violet dashed curve) is approximately
between one and two times the number of detected cases for Lux-
embourg and Austria, while it is up to three to four times for Swe-
den. The percentage of undetected is in all three countries higher
than that of detected, which is in line with estimates like Bicher
et al., 2021. Nevertheless, for Austria and Sweden the sum of
detected cases and the estimated number of undetected cases until
December remains more than an order of magnitude smaller than
the population of the country, while for Luxembourg it is higher. In
fact, our model shows that, until 15 December 2020, the percent-
age of population having been infected by SARS-CoV-2 in Luxem-
bourg is about 18.3% (7.2% detected and 11.1% undetected); in
Austria 9% (3.7% detected and 5.3% undetected) and in Sweden
14.5% (3.5% detected and 11% undetected). For all three countries,
this made herd immunity still far from being reached in December
2020.

On top of reproducing the historical development, the model is
employed to simulate potential future scenarios of the epidemic
in each country. In Fig. 2 (dashed lines), we simulate the possible
progression of the epidemic in the early months of 2021 until
spring. Three scenarios are considered: one corresponds to no
changes in social interaction w.r.t. mid December; an optimistic
scenario where social interaction becomes as low as during the
lockdown in March; a pessimistic scenario where it becomes as
high as in October. These three scenarios are meant to represent
an average outcome and two extreme, but plausible cases. While
instructive, projections might be accurate for few weeks, but less
so on longer time periods as small changes in e.g. social interac-
tion and corresponding parameter can lead to large changes in
the simulated outcome. Consequently, their goal is mainly to
investigate potential scenarios that might unfold from the current
situation (Castro et al., 2020) and compare them between each
other.

3.2. Social interactions drive epidemic dynamics

The parameter q tð Þ tunes social interactions, and changes when
new measures or major behavioural changes occur. It is thus
implemented as a piece-wise constant function of time. Its value
changes at specific dates tn when modifications in non-
pharmaceutical measures took place. A mean constant value qn is
estimated from fitting model simulations to data, and assumed
over the subsequent period of time. The evolution of qn is reported
in Fig. 3 for Luxembourg, Austria and Sweden, respectively in pan-
els A, C and E. Measures, dates and qn values are summarized in
Appendix Table F.3 (Luxembourg), Table F.4 (Austria) and
Table F.5 (Sweden). When interpreting the results for q tð Þ, it
should be recalled that it lumps both population-wide non-
pharmaceutical interventions and targeted ones. This choice con-
tributes to make the calculation of Reff tð Þ analytically tractable,
dramatically reduces the number of free parameters, reduces their
estimated uncertainties and does not require additional data strat-
ified over population groups. In turn, this description does not cap-
ture the effects of heterogeneous measures across population
groups (e.g. working sector, etc.). This aspect was instead investi-
gated for Luxembourg in Burzynski et al. (2021). As a result, q tð Þ

corresponds to an estimate of the average social interaction across
all groups of the population.

Panels in Fig. 3 show values of qn from both manual calibration
and Bayesian inference, which are both proportional to daily cases
number. Manually calibrated social interaction values are consis-
tent with the Bayesian estimates, falling within the 50% or 90%
credible intervals (respectively, dark green or light green bands).
This supports the validity of manually calibrated q tð Þ values, which
yield very good model fit to data of detected cases, see Fig. 2, pan-
els A, B, C. This identifies social interaction as an essential model
parameter, in turn underlying the importance of social interaction
management for epidemic control.

Directly proportional to q tð Þ and to the susceptible population
fraction is the effective reproduction number Reff tð Þ. Its time evolu-
tion (analytical derivation in Appendix C, see Eq. C.2) for each
country is displayed in Fig. 3, panels B, D and F. Step-wise changes
in Reff tð Þ arise from changes of q tð Þ, while gradual changes are
instead due to depletion of the pool of susceptible individuals.
The value of Reff tð Þ at the pandemic beginning provides the basic

reproduction number R0¼
:
Reff t ¼ 0ð Þ. We estimate RLUX

0 � 3:38 for

Luxembourg, RAUT
0 � 3:16 for Austria and RSWE

0 � 4:00 for Sweden.
Such values are consistent with those of independent studies. In
general, estimates of R0 from Western Europe vary between 2 ad
6 (Yuan et al., 2020; Ke et al., 2021; Locatelli et al., 2021), depend-
ing on country, study, method and associated uncertainties. Bryant
and Elofsson, 2020 estimates R0 ¼ 3:11 for Austria and 2.89 for
Sweden, with posterior probability distributions extending from
2 to 4 (see Fig. 2 therein). In Luxembourg, Thompson and
Wattam, 2021, provide a value of R0 ¼ 2:45 with their baseline

SEIR model. Our full estimates of RLUX
eff tð Þ is also consistent with that

reported in the official Luxembourg government website (https:
275//covid19.public.lu/fr/graph.html, last accessed on
26/07/2021), estimated with independent methods. There, R0 is
estimated to be around 3.3.

From Fig. 3 we can evince the value of Reff at the last data-point,
namely 15 December 2020, which is 1:07 for Luxembourg, 0:97 for
Austria and 1:01 for Sweden, all very close to Reff � 1. The percent-
age of social interaction (w.r.t. before the pandemic and corre-
sponding measures) needed at that date to have Reff tð Þ � 1 was
similar across countries: 36% in Luxembourg and 34% in both Aus-
tria and Sweden.

3.3. Parameter fitting reveals probability of hospitalization decreases

between waves

The social interaction parameter q tð Þ changes a limited number
of times to represent changes in non-pharmaceutical interventions
or population behaviour. To fit the first waves of Luxembourg and
Austria, all other parameters are constant (though slightly different
between the two countries), as the time evolution of daily new
cases, hospital and ICU occupation are alike, although scaled and
delayed. However, the same parameters from the first wave over-
estimate the hospital progression during the second wave.

Fig. 4 reports the parameter fold-changes (FCs) between one
wave and the subsequent. There, we display the changes observed
by different fitting methods, to discuss how stable such results are.
In the manually calibrated parameter sets (green circles) the prob-
ability of being hospitalized when detected positive, p2, needs to be
decreased between each wave and the subsequent, both in Luxem-
bourg and Austria (among other parameter changes). The same
trend in the parameter p2, which decreases considerably, is also
observed in the maximum a posteriori estimate (blue dots) from
the Bayesian estimate both between the 2nd and 3rd waves of Lux-
embourg (panel B), and between the 1st and 2nd waves of Austria
(panel C). Only from the 1st to 2nd wave of Luxembourg the Baye-
sian estimate shows a slight decrease for the maximum of the p2

estimate, but conversely a slight increase in the mean (red
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squares). Notice that different parameters appear on the horizontal
axes of different panels. For Sweden, instead of a step-wise change,
we assume a continuous decrease in p2 tð Þ from 0.9 in March 2020
to 0.1 from June 2020 onward. This is based on data of new daily
cases and hospital admissions; further analysis is reported in
Appendix G and Fig. G.2 (panel D). These findings underline that,
overall, the probability of being hospitalized when detected (p2)
decreased for subsequent waves of each investigated country. This
likely reflects the improvement and up-scaling of testing strategies
over time, leading to an increased capacity to detect asymptomatic
or non-severe cases. In fact, p2 represents the probability of being
hospitalized if tested positive. So, more effective or widespread
testing combined with similar severity of the disease would result
in a decrease of p2. Supporting this interpretation is the fact that in
Luxembourg and Sweden we estimated p1, the probability of being
detected positive if infected, to be higher (or constant at most) at
subsequent times (see Appendix Table H.6 and corresponding
sections).

The MCMC estimates do not fully reflect the changes in some
parameters that we performed between one wave and the next
in the manually calibrated parameter set (see Fig. 4 and Appendix
Table H.6). These discrepancies could indicate that, due to the large
uncertainty in parameter identification in our Bayesian inference,
multiple parameter sets could provide equally good fit between
model and data (see Appendices I and J for further discussion about
system identifiability). Supposedly, means provide more robust
information than maxima, which are representative of the poste-
rior distribution only when the posterior has a clear peak and is
not almost flat. This results in some of the FCs obtained from the
maxima (large blue dots) having extreme values, in particular
those associated with s4; s5; s6 and s7, i.e. the rates involved in
the patient progression through hospital and ICU.

3.4. Social interactions strongly impact infection in early 2021, along

with vaccination

The model includes fully protective vaccination and investi-
gates the interplay between its dynamics and social interaction
Three potential vaccination strategies (corresponding to three vac-
cines rollout speeds) are simulated, starting from 1 January 2021:
vaccinating all the country population within the first 6 months of
2021, within 1 year, or within 1.5 years. These would correspond to
fast, average and slow rollout, respectively, and represent potential
timelines that countries might attempt to implement.

For comparison, we consider the baseline case where no vacci-
nation is performed. The results are displayed in Fig. 5. Panels A, B,
C report people fully vaccinated over time for various scenarios,
panels D, E, F display Reff tð Þ, panels G, H, I the number of total
detected cases and panels J, K and L show the number of new daily
detected cases. Dashed curves represent the four different vaccines
rollout strategies. To investigate the interplay between social mea-
sures and vaccination strategies, we simulate combinations of the
two. We consider two alternative values of social interactions: a
value corresponding to the pessimistic scenario of Fig. 2 (going
back to the levels of October 2020, shown in red), and a value cor-
responding to the average scenario (no change in social interaction
w.r.t. December 2020, shown in blue). The optimistic scenario for
social interaction is not included, because it corresponds to full
lockdown, unlikely to happen for several months consecutively.

Panels A, B and C in Fig. 5 show that, for high social interaction
levels, a smaller number of people will need vaccination, since
more people already got infected naturally. Slower vaccination
strategies will also result in less people to be vaccinated as more
people will by then have acquired immunity naturally. These
observations are consistent across considered countries.

D Sweden, 2nd vs 1st WaveC Austria, 2nd vs 1st Wave

A Luxembourg, 2nd vs 1st Wave B Luxembourg, 3rd vs 2nd Wave

Fig. 4. Fold-changes (FC) of the estimates of each parameter, between a wave and the subsequent, for each country. A: 2nd wave versus 1st wave, Luxembourg. B: 3rd wave versus
2nd wave, Luxembourg. C: 2nd wave versus 1st wave, Austria. D: 2nd wave versus 1st wave, Sweden. The values for the parameters employed are displayed in Appendix
Fig. J.3 for both manual and Bayesian fit, and summarized in Table H.6 for the manually calibrated parameter set. The vertical axes indicate log2 FCð Þ, with FC¼

: s2ndWave=s1stWave

for each parameter, generically indicated as s. A value of 0 corresponds to no change, 1 to doubling from the previous wave to the next, �1 to halving from the previous wave
to the next, and so on. The green small dots depict the fold changes for the manually calibrated parameter sets. Errors on the means were computed by the standard error of
the mean, but are too small to be noticeable in the figure.
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Panels D, E and F report the simultaneous effects of social inter-
action and shrinking of the pool of susceptible, due to both infec-
tion and vaccination, on Reff tð Þ. In each country, for any
vaccination strategy as well as for no vaccination, the pessimistic
scenario (red) starts with a higher Reff tð Þ than the ‘‘no change” sce-
nario (blue). However, the situation is eventually inverted due to
larger shrinking of the susceptible pool associated with higher
social interactions. This suggests that the interplay between social
interactions and vaccination is non-trivial; it is deeper investigated
in the next section.

Panels G, H and I illustrate the changes in dynamics of total
detected cases for the same scenarios and strategies. We observe
that the faster the vaccines rollout, the fewer total detected cases
are reached asymptotically. Any vaccination strategy considered
leads to considerable reduction of the detected cases number w.r.
t. no vaccination. This discrepancy is larger than the difference in
cases between the three strategies. For all three countries, the
number of total cases is impacted more, or with similar magnitude,

by the different social interaction scenarios (compare red and blue
groups) than by vaccination (different dashed curves for the same
group color). The corresponding new daily cases plots are dis-
played in panels J, K and L.

Thus, we can conclude based on this analysis that, at least until
spring 2021, social interaction measures are expected to still play
an important and dominant role.

3.5. Vaccinating whole population in a year, herd immunity not before

mid summer

Expanding what considered above, we tackle the following
question: when might herd immunity be reached, depending on
combinations of social interaction and vaccination strategies? In
mean field SEIR-like models with homogeneous mixing of the indi-
viduals, the population fraction needing to be immune, in order to
reach herd immunity in the absence of measures, is estimated as
pc ¼ 1� 1=R0 (Fontanet and Cauchemez, 2020). To answer the
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Fig. 5. Simulations of different vaccination strategies: projections of number of fully vaccinated people, Reff tð Þ, total detected cases and daily new cases for each country. Panels A, B
and C show the number of fully vaccinated people as a function of time. Panels D, E and F show Reff tð Þ. Panels G, H and I show the number of total detected cases. Panels J, K
and L show the number of new daily detected cases. Luxembourg (A, D, G, J), Austria (B, E, H, K) and Sweden (C, F, I, L) are reported. Projections for several months after the
last data point illustrate potential simulated scenarios, for three alternative vaccination strategies and for no vaccination, both in the case of the ‘‘pessimistic” scenario (red,
corresponding to social interaction as high as in October) and the ‘‘no change” scenario (blue, corresponding to no change in the social interaction) from Fig. 2 and Fig. 3. For
each social interaction scenario, we show the curves for no vaccination and for three alternative vaccination strategies (each corresponding to a different vaccines rollout
speed), which correspond to vaccinating all the population of a country in, respectively, 6 months, 1 year or 1.5 years, starting from 1 January 2021. Scientific notation is used
in panels A, B and C, such that 1e5 in panel A and 1e7 in panels B and C stand respectively for one hundred thousand and ten million people. Assumptions on vaccination are
summarised and discussed in Sections 2.1 and 4.
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above question, we compute this quantity for the three countries.
Using the values of R0 previously estimated, we obtain:
pc;Lux ¼ 1� 1=3:38 � 0:70 ¼ 70% for Luxembourg, pc;Aus ¼ 1�
1=3:16 � 0:68 ¼ 68% for Austria and pc;Swe ¼ 1� 1=4:00 � 0:75 ¼

75% for Sweden, with the pool of susceptible left given by the
remaining population. When additional complexities are included
in the model, the formula above might not perfectly hold. Hence,
we confirmed its results by numerically analysing the model out-
puts, as described in Appendix E. Briefly, the procedure involves
finding the fraction of susceptible, in the measures-free model, that
corresponds to the maximum of the infectious curve, which corre-
sponds to herd immunity by definition. The herd immunity thresh-
olds estimated computationally in our model are
pc;Lux � pc;Aus � 73% for Luxembourg and for Austria, pc;Swe � 76%
for Sweden. These values are similar to the ones obtained analyti-
cally and potentially more representative; so, they will be
employed in the remaining of the analysis. As reference, Manaus
(Brazil) registered a 76% of infected population and a catastrophic
losses of lives, before the epidemic naturally slowed down, without
relevant interventions (from antibody tests performed in October
2020 (Buss et al., 2021)). Hence, similar values for the herd immu-
nity threshold might occur in reality, and there is consensus (De la
Sen and Alonso-Quesada, 2011; Fontanet and Cauchemez, 2020) in
aiming for herd immunity primarily by vaccination, instead of nat-
ural infection, as the latter could yield symptoms of various sever-
ity, occupation of health care facilities and, in a fraction of cases,
death. Nevertheless, Manaus also witnessed a major surge in cases
in early 2021 (Sabino et al., 2021), leaving open the question if herd
immunity against COVID-19 can be reached in real settings.

Fig. 6 addresses specifically how we could aim at herd immu-
nity primarily by vaccination, displaying the time at which herd
immunity might be reached for all possible social interaction val-
ues and vaccines rollout speed. Average social interaction values
are assumed to apply from 16 December 2020 onward; the con-
stant number of fully vaccinated people per day is assumed to
apply from 1 January 2021, and it should be intended as an average
value over time. By requiring the percentage of people still suscep-
tible to be less or equal than pc , we identify when herd immunity
would be reached for each combination of parameters. Herd
immunity can be either reached purely by natural infection (by
moving along the vertical axis), or purely by vaccination (by mov-
ing along the horizontal axes), or by a combination of the two. The
three vertical lines in the panels of Fig. 6 show the number of full

vaccinations/day required to vaccinate the country’s whole popu-
lation respectively within 6 months, 1 year or 1.5 years. The corre-
sponding vaccination rates are derived in Appendix D. A vaccines
rollout strategy aiming to fully vaccinate the whole country’s pop-
ulation in a year would require approximately 1,700 full vaccina-
tions/day in Luxembourg, 24,000 in Austria and 28,000 in
Sweden, and could potentially lead to achieve herd immunity dur-
ing July 2021 in Luxembourg and during August 2021 in Austria
and Sweden. In all three countries, herd immunity cannot be
achieved within 2021 with the typical levels of social interactions
that were observed so far, without vaccination nor with too low
vaccination rates.

For Luxembourg, all three vaccination strategies considered in
this study might well obtain herd immunity within 2021; for Aus-
tria and Sweden the 1.5 years strategy is only borderline sufficient
to reach herd immunity by the end of 2021, while the other two
are enough for each country. It remains to be seen if the actual
availability of vaccines will make possible any of these example
strategies; in the end of this section and in the discussion we com-
pare them with real vaccines rollout speeds recorded until July
2021. If herd immunity had to be reached purely by vaccination
(or at low levels of social interaction), the 6 months strategy would
take approximately until April 2021 for Luxembourg, and May for
Austria and Sweden, and the 1 year strategy until July 2021 for
Luxembourg and August for Austria and Sweden. Higher values
of social interactions might anticipate it, but with undesired conse-
quences on the healthcare. Several factors not included in the
model might influence these estimates, making herd immunity
more difficult or easier to achieve, e.g. reinfections and age struc-
ture of the population, discussed at the end of the paper.

As COVID-19 is anongoing situation,we further estimate the vac-
cine rollout speeds taking place in reality and which can be com-
pared with the three reference strategies of Fig. 6. Based on the
model’s assumptions, we hence consider the number of individuals
fully vaccinated, averaged over time. In Luxembourg, 248995people
havebeen fully vaccinated in200days, from27December2020until
15 July 2021; inAustria 3937701and in Sweden3716260. In Luxem-
bourg, this corresponds to around 42% of the total resident popula-
tion being fully vaccinated, in Austria 44% and in Sweden 36.3%.
These numbers would correspond to an average of 1245 fully vacci-
nated people/day in Luxembourg, 19689 people/day in Austria and
18581 people/day in Sweden. We display these estimates in each
panel of Fig. 6 as a dashed red vertical line.

Fig. 6. Systematic investigation of the interplay between vaccination strategies and social interaction scenarios, to estimate the time by which herd immunity might be reached.

Luxembourg (A), Austria (B) and Sweden (C). Panels A, B and C: indicative dates at which herd immunity might be reached, depending on combinations of social interaction
parameter and number of fully vaccinated people/day. The black grid indicates the combinations of social interaction and vaccination speed that would not allow to achieve
herd immunity before 2022. In all panels, vertical lines indicate the three alternative vaccination strategies described in the main text. Depending on measures and
population behaviour, estimated levels of social interaction since the beginning of the pandemic have been mostly between 0:15 and 0:5 (i.e. 15% to 50% of social interactions
w.r.t. before the pandemic). Assumptions of vaccination, like 100% efficacy, are summarised and discussed in Section 2.1 and Section 4. The red dashed line represents an
estimate of the number of fully vaccinated people per day for each country, averaged over time from 27 December , 2020 to 15 July , 2021.
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4. Discussion

This work consists of two main analysis. First, we calibrated our
model to fit time series data of quantities of epidemiological inter-
est, for three countries. By doing so, we tackled the problem of
identifiability of complex model parameters, we demonstrated
the valuable use of mean field models to describe epidemiological
trends in different countries and we obtained a reliable baseline
model. Next, we used the knowledge about the epidemiological sit-
uation to infer the impact of vaccination campaigns in the pursuit
of herd immunity. This provides data-based estimations of the
interplay between social measures and vaccination rollouts.

To obtain a reliable dynamical model, we estimated its param-
eters. Complex epidemiological models might suffer from poor
identifiability of their parameters (Roda et al., 2020) often associ-
ated with data quality, quantity and fitting methods. To address
this and provide consistent estimates, the parameter set was ini-
tially manually calibrated and then cross-validated by Bayesian
inference, which elucidates parameters uncertainties. Out of such
analysis, three remarks are particularly relevant. First: the uncer-
tainties associated to each parameter are non-negligible, and
sometimes rather large (e.g. Fig. J.3), possibly due to a large num-
ber of parameters. Second: several parameter combinations are
better constrained than the corresponding individual parameters
(e.g. Fig. J.4 and subsequent). Third: the manual calibration is com-
patible with the Bayesian estimate (Fig. J.3), but its set of parame-
ters correspond to one possible choice and shouldn’t be considered
fully exhaustive. These characteristics are common to any epi-
demiological model. Here, we carefully investigate them, and
where possible we incorporate domain knowledge from literature.

The main parameter controlling the model behaviour is the
social interactions parameter q tð Þ, which represents bothmeasures
applied by policy-makers and population behaviour. This confirms
the well-established fact (e.g. Vrugt et al., 2020) that social interac-
tions are a major driver of epidemic dynamics and of the reproduc-
tion number Reff tð Þ. Changes in Reff tð Þ are also driven by the
depletion of the pool of susceptible that only starts having notice-
able effects in fall 2020. So far the effect of S tð Þ on Reff tð Þ is more pro-
nounced for Luxembourg, where a larger fraction of total
population has been infected, than for Austria and Sweden. How-
ever, its impact is predicted to become visibly more relevant with
subsequent months across 2021 as more people get infected. This
is evident from the stronger gradual bending of the curves in winter
and spring 2021, especially for the pessimistic scenario, in Fig. 3.

For the model to fit the data, other parameters can be kept con-
stant within single waves in Luxembourg and Austria. However,
their value change between waves. This aspect can be explained
by reduced probabilities of being hospitalized, as we tested with
the manually calibrated parameter set. For Luxembourg (see
Fig. 4 and Appendix Table H.6), p2 decreases from 15:3% in the
1st wave to 8:0% in the 2nd to 4:2% in the 3rd. For Austria, from
16:2% in the 1st to 6:5% in the 2nd. These changes where also sup-
ported by similar changes in the maxima of the Bayesian estimates
for 3rd versus 2nd wave in Luxembourg and 2nd versus 1st wave in
Austria. This is most likely driven by testing strategies which
improved over time, and it might also reflect changes in treatment
capacities, in the influenced age categories, and in other factors. For
Sweden, considering a different set of parameter values is not
enough to fit its data with the same model structure. Instead,
time-dependent probabilities of being detected and hospitalized
when tested positive, dramatically decreasing from March to June
2020, need to be introduced within the first wave. This does not
reflect a rise in infections, but rather a major change in testing
strategy and a better prognosis linked to younger patients
(Kavaliunas et al., 2020; Ludvigsson, 2020).

The model also allows to estimate the fraction of undetected
cases from prevalence data. Luxembourg and Austria display (see
Fig. 2) similar fractions of undetected, while Sweden has more,
accumulated mostly during the first wave. Until December 15, in
Luxembourg about 18.3% (7.2% detected and 11.1% undetected)
of the population had SARS-CoV-2; in Austria 9% (3.7% detected
and 5.3% undetected) while in Sweden 14.5% (3.5% detected and
11% undetected). Despite the different policies, Sweden was actu-
ally not only far from herd immunity, but also further than Luxem-
bourg as of December 2020.

Once calibrated, the model allows to inspect future scenarios to
inform data-driven decisions. The epidemic time evolution is sim-
ulated in three alternative scenarios for each country (Fig. 2): no
change in social interaction w.r.t. mid December 2020; social inter-
action as low as during lockdown/March 2020 (optimistic); social
interaction as high as in October (pessimistic). Infection curves
for the three scenarios are well separated from each other, indicat-
ing that they could be further reduced by decreases of social inter-
actions (by measures or changes in population behaviour) to
values close to those during the first lockdown. In Luxembourg
and Austria, the level of social interactions of December 2020
seems to be sufficient to maintain a sub-linear growth of number
of total cases in the subsequent months. However, for any of the
three countries, an increase of the social interaction parameter to
the levels of October would likely trigger a considerable rebound
of the infection curve. This would be associated with a rebound
in hospital and ICU occupations, thus calling for the maximum cau-
tion by population and policymakers alike. In addition, the number
of deaths is proportional to the area under the daily infections
curve. Thus, keeping daily cases contained to avoid hospitals and
ICU saturation does not fully prevent a steady growth of the cumu-
lative number of dead, in particular in the pessimistic scenario.

After calibration, we extended the model with a vaccination
compartment and we quantified how long it would take to reach
herd immunity. First, we considered the same scenarios as above
(cf. Fig. 5). The difference between the detected cases curves of
the two considered social interaction scenarios is larger than the
difference between the different vaccination strategies. This indi-
cates that during the vaccination process, reduced social interac-
tions are still going to be crucial to keep the number of cases
under control, to avoid saturation of hospitals and ICUs and to
reduce the number of deaths.

Considering herd immunity by vaccination only (Fig. 6) the
strategy of vaccinating everyone in 6 months, alone, would have
provided herd immunity by April 2021 for Luxembourg and May
2021 for Austria and Sweden. Slower strategies will lead to herd
immunity later on, depending on social interaction values. With
an average value of social interactions compared to March-
December 2020, aiming to vaccinate the whole population within
1 year at a constant rate could lead to herd immunity by mid sum-
mer 2021, in particular by July in Luxembourg and August in Aus-
tria and Sweden. Vaccines rollout slower than approximately 1,000
full vaccinations/day in Luxembourg, 16,000 in Austria and 18,000
in Sweden would not allow to reach herd immunity within 2021 in
the country, except with high levels of social interaction, which
would come with their undesired consequences.

We also compared the simulated strategies to an estimate of the
average number of fully vaccinated people per day recorded until
15 July 2021 (cf. Section 3.5). So far and for all three countries,
the estimated average vaccine rollout speed has been very close
to the simulated scenario labelled ‘‘Strategy: 1.5 years”, which
was the slowest of the three considered and aimed at vaccinating
all of the country’s population within 1.5 years (Fig. 6). This esti-
mate overlaps with the 1.5 years strategy for Sweden, it is slightly
faster for Austria and a bit faster for Luxembourg. Simulations

Françoise Kemp, D. Proverbio, A. Aalto et al. Journal of Theoretical Biology 530 (2021) 110874

10



indicate that, if vaccination would continue with this same average
value in the coming months, and for moderate values of social
interaction (below or around 0.4), Luxembourg would still not
obtain herd immunity until beginning of the autumn, Austria and
Sweden not until end of the year. We can thus conclude that,
despite the current advancement status of the vaccination cam-
paign in these three countries, herd immunity has not been
reached so far as of 15 July 2021 and thus keeping social interac-
tion contained within a reasonable extent is still crucial until a lar-
ger fraction of the population will be fully vaccinated.

What just discussed depends on the interplay with the social
interaction q. Having q 6 0:4 would be roughly consistent with
the estimates for most of 2020 and possibly until spring 2021. Nev-
ertheless, with the widespread relaxation of measures starting
from end of spring and beginning of summer 2021, higher values
of qmight occur. Moreover, variants with increased infectiousness
such as Alpha (B.1.1.7) and Delta (B.1.617) have become wide-
spread. The increased infectiousness of such variants can be mod-
eled as an additional factor v (greater than 1) multiplying v � q � b,
thus the increased infectiousness of the variants would have a sim-
ilar effect as a higher q. Together with actual vaccine efficacy and
its variability w.r.t. different virus variants, these factors modify
the potential to reach herd immunity. Additional research would
be needed to further investigate this. Moreover, it still remain to
be seen if herd immunity against COVID-19 will be eventually
obtained because the disease might anyway become endemic,
depending on circulation within groups of not vaccinated people
or due to fading immunity, insufficient vaccine efficacy or insuffi-
cient overall number of people getting vaccinated. Overall, while
vaccination is extremely helpful in protecting the vulnerable, lim-
iting social interactions will still play a major role until the vacci-
nation effects become dominant by far.

As any modelling effort, the current model comes with limita-
tions. To begin with, it does not include an age structure. Age dis-
tribution can influence hospital admission rates and fatality rates,
and has been suggested to play a role in lowering the herd immu-
nity fraction potentially down to 30–50% (Britton et al., 2020;
Ragonnet et al., 2020; Thompson and Wattam, 2021). The age dis-
tribution should be considered when designing vaccination cam-
paigns, as literature studies agree that vaccinating the elderly
first would reduce the hospital burden and death toll (Bubar
et al., 2021; Jahn et al., 2021; MacIntyre et al., 2021). As a conse-
quence, our model was primarily used to investigate the aggre-
gated dynamics and to project reasonable scenarios with
homogeneous interventions in pursuit of overall herd immunity,
but it does not cover the design of age-dependent measures.

As for standard SEIR-like models, we assumed that recovered
people are immune and cannot be reinfected. It has been shown
that individuals who were infected with SARS-CoV-2 develop some
level of immunity to the disease for a certain time (Poland et al.,
2020), but the duration is not yet clear. Cases of reinfection by
SARS-CoV-2 have been reported but there is still low statistics
and consensus (Fontanet and Cauchemez, 2020; Tillett et al.,
2021; Edridge et al., 2020; Simmonds et al., 2020). On our consid-
ered time scale (up to end 2021), reinfection is likely to play a neg-
ligible role, but might become relevant over years, potentially
challenging herd immunity. The model simulations are to be con-
sidered reasonable for time periods that do not exceed consider-
ably the duration of the acquired immunity.

Similarly, the quality and duration of immunity by vaccination
is still unclear. Despite their higher or lower efficacy, none of the
available vaccine protect at 100% (Polack et al., 2020; Baden
et al., 2021) and it is not yet assessed to what extent current vac-
cines prevent individuals not only from developing the disease, but
also to be infectious (as assumed in the model). Moreover, evolving
variant strains of the virus might present increased resistance to

vaccines (Kennedy and Read, 2020). These effects could contribute
to challenge herd immunity (Anderson et al., 2020), contrasting the
effect of age distribution. Conceptual models (Saad-Roy et al.,
2021) have been developed to investigate the interplay between
naturally achieved individual immunity, immunity by vaccination
and waning immunity, but much still need to be done with more
supporting data. Finally, the evolving impact of new variants —
e.g. escaping antibodies (Starr et al., 2021) or causing longer infec-
tions (Kissler et al., 2021) – is not fully clear and thus not consid-
ered in the model. However, it can be easily incorporated after
changing the appropriate parameters once additional evidence is
collected. Finally the case of Manaus, Brazil, which was though to
have obtained herd immunity by October 2020 (Buss et al.,
2021), but witnessed a major surge in cases in early 2021
(Sabino et al., 2021) leave open the question if it will be possible
to reach herd immunity against COVID-19 in reality.

5. Conclusions

Our comprehensive model describes the past epidemic dynam-
ics and make reasonable projections. Despite some modelling
assumptions, its basic structure allows to control the calibration
uncertainties and to investigate and compare different scenarios.
In particular, we estimated that herd immunity could be within
reach in 2021, but rather towards the last part of the year (begin-
ning of fall for Luxembourg and end of the year for Austria and
Sweden) or longer, depending on how fast countries continue to
vaccinate their population. As discussed above, the current projec-
tions for herd immunity are to be considered optimistic. Hence, the
challenge over this year will be for governments and populations
to obtain and use COVID-19 vaccines efficiently, while still contain-
ing social interaction. Limiting social interactions will still be a
major driver to control the pandemic in the coming months, until
vaccination effects become strongly dominant in curbing the
pandemic.

6. Data availability
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Appendix A. Mathematical model

In this Appendix we illustrate the model, the considered data
from Luxembourg, Austria and Sweden, a computational approach
to estimate herd immunity and the procedures to provide an esti-
mate of the parameters and their uncertainties.

In this study, we developed a mathematical model of the trans-
mission of COVID-19 within a population, building upon the stan-
dard SEIR model (Kermack et al., 1927). Our extension of the SEIR
model is described by Fig. 1 in the main text. The total population
N of the modelled country at time t is divided into 16 compart-
ments. First, we introduce a separation between detected and
undetected cases; in fact, a non-negligible fraction of infected peo-
ple is usually not detected (Li et al., 2020), e.g. for lack of testing or
because asymptomatic. Next, we include compartments to model
the progression of the disease to more severe states, requiring hos-
pitalisation, intensive care (ICU) or leading to death. Finally, we
include compartments for recovered people. The model variables
are summarized in Table A.1 and represent the number of individ-
uals in different stages, normalized by the total population of the
considered country.

Susceptible (S) and exposed (E) compartments are in common
with the standard SEIR model. An exposed person might be
detected (via a PCR test), thus entering the ‘‘infectious and
detected” (II) compartment, and subsequently the ‘‘quarantined”
(Q) compartment, from where the person cannot infect others
any further. At this point, a person might (or not) become ‘‘hospi-
talized” (H), and then either simply ‘‘require longer hospitaliza-
tion” (Hl) or require ‘‘intensive care treatment” (ICU). If the
health improves, the individual can return to ‘‘regular hospital
treatment after ICU” (AICU). At any of these hospitalization stages,
the person can ‘‘die in hospitals or ICUs” (DI;hos), or ‘‘recover from
hospital or ICUs” (RII). People who are either recovered or dead
are the equivalent of the removed compartment of a standard SEIR
model, and thus do not get reinfected a second time in the model.
Most detected people are not hospitalized, so they recover at home
(NI), or alternatively they can die at home (DI;hom). Finally, the frac-
tion of people who got infected but do not get detected are repre-
sented by the infectious and undetected compartment (A). Being
unaware of their state, they can continue to spread the infection
without constraints. These people spend some time recovering
outside hospitals (NII), and eventually they end up either recovered
undetected (RA), or dead undetected (DA). The total number of
undetected cases in Fig. 2 of the main text is obtained as the
sum of the variables Aþ NII þ DA þ RA.

We assume conservation of the total population N (people can
die, thus entering the dedicated compartments, but there is no
removal of individuals from the system, and we neglect birth), such
that for each country:

1 ¼ Sþ Eþ I þ Q þ H þ Hl þ ICU þ AICU þ NI þ DI;hos þ DI;hom

þ RI þ Aþ NII þ DA þ RA; ð1Þ

where the variables have been normalized by N to represent the
fraction of the total population being in the corresponding state.
The dynamics of our model is described by the following system
of ordinary differential equations:

dS

dt
¼ �qb Aþ IIð ÞS; ðA:2aÞ

dE

dt
¼ qbS Aþ IIð Þ � aE; ðA:2bÞ

dI

dt
¼ ap1E� s1I; ðA:2cÞ

dQ

dt
¼ s1I � Qs2p2 � 1� p2ð Þs2Q ; ðA:2dÞ

dH

dt
¼ p2s2Q � p3Hs3 � 1� p3ð ÞHs3; ðA:2eÞ

dHl

dt
¼ p3Hs3 � Hls5 1� p5ð Þ � s5p5Hl; ðA:2fÞ

dICU

dt
¼ 1� p3ð ÞHs3 � p4s4ICU � 1� p4ð ÞICUs4; ðA:2gÞ

dAICU

dt
¼ s4p4ICU � p6AICUs6 � AICU 1� p6ð Þs6; ðA:2hÞ

dRI

dt
¼ p6s6AICU þ p5s5Hl; ðA:2iÞ

dRI1

dt
¼ p7s7NI; ðA:2jÞ

dNI

dt
¼ 1� p2ð Þs2Q � s7 1� p7ð ÞNI � p7s7NI; ðA:2kÞ

dDI;hom

dt
¼ 1� p7ð Þs7NI; ðA:2lÞ

dDI;hos

dt
¼ 1� p6ð Þs6AICU þ 1� p5ð Þs5Hlþ s4 1� p4ð ÞICU; ðA:2mÞ

dA

dt
¼ 1� p1ð ÞaE� s8A; ðA:2nÞ

dNII

dt
¼ s8A� s9 1� p9ð ÞNII � p9s9NII; ðA:2oÞ

dDA

dt
¼ s9 1� p9ð ÞNII; ðA:2pÞ

RA

dt
¼ s9p9NII: ðA:2qÞ

We initialise every simulation with the initial conditions
detailed in Table A.1. For any simulation in this work (except those
involving vaccination, see Appendix D) to numerically solve the set
of ordinary differential equations we employ the python (version
3.6.1) solver odeint from the package scipy (version 1.5.2), which
uses the LSODA method for numerical integration.

Appendix B. Model parameters

The parameters of the model and their interpretation are
detailed in Table B.2. The parameters can be divided in three cate-
gories, based on what type of physical quantity they describe:
rates, probabilities and social interaction.

When individuals can move from one compartment to one of
two different compartments, the probability pi controls which frac-
tion of people will go to one compartment, the remaining fraction
1� pi going to the other. Their value is bounded between 0 and 1.
The parameters pi are indexed with i ¼ 1; . . . ;9.

The parameters a; b and si represent rates. The parameters si
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are indexed with i ¼ 1; . . . ;9. Each rate represents the inverse of
the average time that takes for an individual to move from one
compartment to the next. Of particular relevance are the rates a
and b, which have the same meaning as the corresponding param-
eters of a standard SEIR model: a represents the inverse of the
mean incubation period of the disease, and b represents the aver-
age contact rate.

The average contact rate b is then multiplied by the additional
parameter q, in order to model any measure or change in people’s
behaviour that can lead to a change (decrease or increase) in the
average contact rate. Thus, b is a constant and it represents the

‘‘natural” average contact rate, while q tð Þb represents an effective
average contact rate which considers the measures or social beha-
viours in place. We assume q0 ¼ 1 for any country, before any
measure was implemented at the beginning of the pandemic in
February 2020. Afterwards, we assume q ¼ q tð Þ to be a piece-
wise constant function of time, where each value is indicated by
qn, with n ¼ 0; . . . ;13 for Luxembourg and Sweden and
n ¼ 0; . . . ;16 for Austria. We assume that changes in q occur when-
ever a major new measure is implemented or lifted by the author-
ities of a country, or in case of a major happening (e.g. schools
starting in September in Luxembourg). The dates employed for
every country, and which measures where taken/lifted on that
date, are summarized in Table F.3 for Luxembourg, Table F.4 for
Austria and Table F.5 for Sweden.

Appendix C. Analytical derivation of the effective reproduction

number Reff tð Þ

To obtain Reff tð Þ from the current model we used the next gen-
eration matrix method (Diekmann et al., 2010; van den Driessche,
2017; Blackwood and Childs, 2018). From the next generation
matrix, we find its eigenvalues R0 and 0. In our case, R0 is given by:

R0 ¼ b
1� p1ð Þ

s8
þ
p1

s1

� �

: ðC:1Þ

From R0, we can deduce Reff tð Þ, given by

Reff tð Þ ¼ bq tð Þ
1� p1ð Þ

s8
þ
p1

s1

� �

S tð Þ

N
: ðC:2Þ

By substituting the values of the parameters for each country
and scenario, we obtain the Reff tð Þ curves depicted in Fig. 3 of the
main text, panels B, D, F.

Appendix D. Incorporating vaccination in the model

To include vaccination, we add one additional compartment
V tð Þ representing the fraction of vaccinated population. We assume
that a fixed number of people will be vaccinated every day. Thus,
the equation for the number of people vaccinated reads:

dV

dt
¼ svac; ðD:1Þ

with svac being the parameter representing how many people will
be vaccinated per day. Correspondingly, the equation for the sus-
ceptible compartment becomes:

dS

dt
¼ �qb Aþ IIð ÞS� svac; ðD:2Þ

since we assume that only people who did not already naturally
develop antibodies by being infected will be vaccinated.

In order to simulate three potential vaccination strategies, i.e. 3
vaccines rollout speeds, at which countries might manage to per-
form vaccination, we fix the parameter svac to three values that,
if all the population would still be susceptible, would lead to vac-
cinating all the population of a country within respectively
6 months, 1 year and 1.5 years. These are typical timescales poten-
tially envisaged by different countries. Thus, we consider the three

values svac ¼ 1= 365=2ð Þ days
�1
; svac ¼ 1=365 days

�1 and

svac ¼ 1= 1:5 � 365ð Þ days
�1 (recall that model variables are normal-

ized by the total country population N, so they sum up to 1). These
three values of svac correspond, respectively, to perform approxi-
mately 3415, 1707 and 1138 full vaccinations/day in Luxembourg,
48773, 24386 and 16258 full vaccinations/day in Austria and
56055, 28027 and 18685 full vaccinations/day in Sweden. Luxem-
bourg numbers are an order of magnitude smaller than those for

Table A.1

Variables employed in the model and their initial conditions. The 16 variables represent
the fraction of population of a country being in each of the compartments. The initial
conditions are the standard ones usually employed for SEIR-like models, with all the
population susceptible except one person already exposed to the virus. They are the
same for every simulation and country, except for the country’s population being
N ¼ 623180 individuals for Luxembourg, N ¼ 8901064 for Austria and N ¼ 10230000
for Sweden.

Variable Representing fraction of people Value at t ¼ 0 days

S(t) Susceptible 1–1/N
E(t) Exposed 1/N
I(t) Infectious (Detected) 0
Q(t) Quarantined 0
H(t) Hospitalized 0
Hl(t) Hospitalized – Longer 0
ICU(t) in ICU 0
AICU(t) Hospitalized after ICU 0
NI(t) Recovering at Home (Detected) 0
DI,hos(t) Dead in hospitals (Detected) 0
DI,hom(t) Dead at home (Detected) 0
RI(t) Recovered (Detected) 0
A(t) Infectious (Undetected) 0
NII(t) Recovering at Home (Undetected) 0
DA(t) Dead at home (Undetected) 0
RA(t) Recovered (Undetected) 0

Table B.2

Parameters of the model. The parameters of the model with their description and unit
of measure. For each country and wave, the following assumptions have been made:
s8 ¼ 1=s1 þ 1=s2ð Þ�1 ; p9 ¼ p7; s9 ¼ s7 . This is motivated by the fact that these
parameters are relative to the undetected branch, and thus cannot be inferred from
data. Thus, we assumed that undetected cases would evolve with the same parameter
values as detected cases not entering hospitals/ICUs. N represents the number of
times that the social interaction parameter changes: N ¼ 13 for Luxembourg and
Sweden and N ¼ 16 for Austria. The values of the manual fit of all the rates and
probabilities for each country and wave are summarized in Table H.6. The values and
dates of change for the social interaction parameter qn are reported in Table F.3 for
Luxembourg, in Table F.4 for Austria and in Table F.5 for Sweden.

Parameter Description Units

qn social interaction n ¼ 0;1; . . . ;Nð Þ adim.

b average contact rate days�1

a (mean incubation period)�1 days�1

s1 (mean time in I)�1 days�1

s2 (mean time in Q)�1 days�1

s3 (mean time in H)�1 days�1

s4 (mean time in ICU)�1 days�1

s5 (mean time in Hl)�1 days�1

s6 (mean time in AICU)�1 days�1

s7 (mean time in NI)�1 days�1

s8 (mean time in A)�1 days�1

s9 (mean time in NII)�1 days�1

p1 probability of E ! I adim.
p2 probability of Q ! H adim.
p3 probability of H ! Hl adim.
p4 probability of ICU ! AICU adim.
p5 probability of Hl ! RII adim.
p6 probability of AICU ! RII adim.
p7 probability of NI ! RII adim.
p9 probability of NII ! RA adim.
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Austria and Sweden, proportionally to their total populations. It is
in fact reasonable that vaccination capability would scale with
country population (for European countries with comparable stan-
dards of living), i.e. that the more populated a country, the higher
its capacity to perform vaccinations. Thus e.g. performing 56055
full vaccinations/day in Sweden might be as challenging as per-
forming 3415 full vaccinations/day in Luxembourg.

When numerically integrating the system of ordinary differen-
tial equations from Eq. (A.2) with the addition of vaccination
(Eqs. (D.1) and (D.2)), we consider an additional constraint to pre-
vent the variable S tð Þ to decrease below 0, which would happen
otherwise due to Eq. (D.2). Interrupting the odeint routine when
the condition S ¼ 0 is met is not possible; hence, in all the simula-
tions involving vaccination, we instead perform numerical integra-
tion by means of the forward Euler method with svac ¼ 0 if S � 0.
We used an integration time-step dt ¼ 0:01days and verified
beforehand that further decreasing it would not lead to any signif-
icant change in the integration result, while significantly increas-
ing computation time.

Appendix E. Herd immunity

Section 3.5 of the main text described how to analytically derive
the fraction of susceptibles pc who needs to be fully immune in
order to reach herd immunity; we complement that analysis with
numerical inspection of the model. Herd immunity by definition
occurs when the pandemic is not spreading anymore within a pop-
ulation, without the need of any measure. Hence, pc is given by 1
minus the fraction of S that yields the maximum of infectious I,
when no measure is in place (after the maximum, the epidemic
curve decreases on its own with no need of measures). This is a
typical approach to numerically estimate the herd immunity
threshold pc in SEIR-like models. Hence, we simulate the time evo-
lution of the baseline model and we plot the results on the phase
plane I vs S, obtaining the curve I Sð Þ. We then identify the value
Sc of S such that the curve I Sð Þ reaches its maximum. Sc is the frac-
tion of susceptible when the number of I naturally starts to
decrease, corresponding by definition to Reff tð Þ < 1, i.e. herd immu-
nity. The phase planes are shown in Appendix Fig. E.1, panel A for
Luxembourg, B for Austria and C for Sweden. To fully investigate
the complexity of the model, we consider both the baseline model
(no measures from the beginning, blue curve) and the next-to-
baseline case (all measures lifted after the last available data point,
red curve).

For both blue and red curves, the maxima occur at around 0:27
for Luxembourg and for Austria and 0:24 for Sweden. Since
pc ¼ 1� Sc , we obtain that the computationally estimated values
of the herd immunity threshold are 73%;73% and 76%, respec-
tively. We compare themwith the analytic values from the formula

pc ¼ 1� 1=R0, i.e. 70%;68% and 75% (cf. Section 3.5): the values
are extremely close, with small differences of 3%;5% and 1%.
The threshold values estimated computationally are higher than
their counterpart for all countries, possibly due to the additional
complexities of our model w.r.t. a standard SEIR model. We thus
employ these computationally obtained ones, both because they
account for any additional model complexity and in order to pro-
vide a more conservative estimate of when herd immunity might
be reached.

Appendix F. Data and analyzed countries

We consider three different countries: Luxembourg, Austria and
Sweden. The model structure described above is maintained
unchanged across the three countries. For consistency, we change
the value of the total country population N and the parameter val-
ues so that the model fits the data of the corresponding country.
We use data of total detected cases, hospitalized people, people
in ICUs and dead people. We gathered these data from https://
www.acaps.org/covid19-government-measures-dataset, a public
independent database recognised by the WHO (last accessed on
03/12/2020) as well as from the public repositories listed below.
Moreover, for each country we allow the social interaction param-
eter q to change when major changes in measures took place. We
list below also the sources of information for the changes in
measures.

F.1. Luxembourg

For Luxembourg, we obtained the dates at which major changes
in policy took place in Luxembourg from https://covid19.public.lu/
fr/mesures-sanitaires-en-vigueur.html (last accessed 15/12/2020),
and summarize them in Table F.3. The time-series data of total cases,
hospitalised people, people in ICU and dead people for Luxembourg
are publicly available on Fig. 2 of the main text, along with their 7-
days moving average. The moving average smooths detection and
intrinsic noise and filters out the effects of considerable weekend
under-testing, consistently observed and confirmed by the consider-
ably lower number of total tests performed over weekend days. The
moving average is centered on the day of interest to not induce shifts
of the features (like the peaks) of the time-series.

According to the public data mentioned above, the first positive
case was detected in Luxembourg on February 29, 2020. Consider-
ing the lag between being susceptible, being exposed and being
detected, we initialize the model at its initial conditions reported
in Table A.1 with time t ¼ 0 on February 24. Data about the
COVID-19 prevalence in the population were obtained from the
CON-VINCE study (Snoeck et al., 2020).

Fig. E.1. Phase plane for numerical estimation of the herd immunity threshold. In each panel, the maximum of the curve represents the value of the fraction of susceptible people
that would yield herd immunity. Panel A for Luxembourg, panel B for Austria and panel C for Sweden.
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Each country in this study is modelled as a closed system, which
might be a limitation for Luxembourg, due to the small size of the
country and the high cross-border mobility. The publicly available
data employed for Luxembourg and mentioned in this section only
include cases that are detected and resident in Luxembourg. For
considerations about cross-border workers in Luxembourg and
interplay with economical features, refer to Burzynski et al.,
2021. Our model was used to regularly monitor the progression
of the epidemic in Luxembourg and to produce short- and mid-
term projections during the crisis. It aimed to promptly deliver
preliminary results and then increasingly more refined results
and projections as available data increased over time. Hence, some
of our parameters have been updated multiple times throughout
the course of the crisis, to incorporate new knowledge. In this
manuscript, our model is reporter in its state in December 2020,
but it has been, overall, a continuously evolving tool.

F.2. Austria

We obtained the dates at which major changes in policy took
place in Austria from https://de.wikipedia.org/wiki/COVID-19-
Pandemie_in_Österreich (collection of various sources, last
accessed on 15/12/2020). Table F.4 summarizes dates and associ-
ated policies. The time-series data of total cases, hospitalised peo-
ple, people in ICU and dead people for Austria come from
https://covid19-dashboard.ages.at/dashboard_Hosp.html (last
accessed on 15/12/2020). They are reported in Fig. 2 of the main
text, where we also report their 7-days moving average.

According to the data mentioned above, the first positive case
was detected in Austria on February 26, 2020. Considering the
lag between being susceptible, being exposed and being detected,
we initialize the model at its initial conditions reported in
Table A.1 on February 21. Similar starting dates for modelling the
epidemic in Austria have been used elsewhere, e.g. February 22
in Bryant and Elofsson, 2020 (see Table 1 therein). Data about
COVID-19 prevalence were obtained from https://www.sora.at/
nc/news-presse/news/news-einzelansicht/news/COVID-19-prae-
valenz-1006.html (last accessed on 15/12/2020).

F.3. Sweden

We obtained the dates at which major changes in policy took
place in Sweden from Ludvigsson, 2020 until August and from
https://www.krisinformation.se/en/news (last accessed on
15/12/2020) later on, and we summarize them in Table F.5. The
time-series data of total cases, hospitalised people, people in ICU
and dead people for Sweden are available on https://www.folkhal-
somyndigheten.se/smittskydd-beredskap/utbrott/aktuella-utbrott/
covid-19/statistik-och-analyser/bekraftade-fall-i-sverige/, https://
www.icuregswe.org/en/data-results/covid-19-in-swedish-inten-
sive-care/, https://c19.se (last accessed on 15/12/2020). They are
displayed in Fig. 2 in main text, where we also report their
7-days moving average.

Swedish policy has been analysed e.g. in Larsson et al., 2021;
Kavaliunas et al., 2020; Rees et al., 2020. While the very first case
detected was on 31st January, no other case was detected until
February 26. It is likely that the first case was isolated and did

Table F.3

Changes in the piece-wise constant social interaction parameter q tð Þ of the model for Luxembourg.

qn Starting Date Measure or change in social activities Manual Calibration Which Wave

q0 – No restrictions 1 –
q1 16.03 Lockdown 0.4902 1st
q2 23.03 Measures fully effective 0.1984 1st
q3 20.04 Opening construction sector 0.1918 1st
q4 04.05 Opening high schools 0.2507 1st
q5 10.06 Relaxation of measures 0.5298 2nd
q6 29.06 End of classes splitting 0.4804 2nd
q7 13.07 School holidays 0.3101 2nd
q8 31.07 Start holidays 0.2203 2nd
q9 12.08 Change mobility (Google mobility data) 0.3457 2nd
q10 23.08 End holidays of construction sector 0.3351 2nd
q11 14.09 Opening schools 0.4333 3rd
q12 01.11 Restrictions, including curfew (11 p.m.) 0.341 3rd
q13 26.11 Stricter measures, HORESCA closure 0.39 3rd

Table F.4

Changes in the piece-wise constant social interaction parameter q tð Þ of the model for Austria.

qn Starting Date Measure or change in social activities Manual Calibration Which Wave

q0 – No restrictions 1 –
q1 16.03 Closure schools/universities, limitations in shops/restaurants 0.52 1st
q2 30.03 Wearing masks 0.155 1st
q3 14.04 Opening small shops 0.22 1st
q4 01.05 Opening malls and hairdressers 0.27 1st
q5 15.05 Opening certain school classes 0.31 1st
q6 29.05 Opening additional schools 0.33 2nd
q7 15.06 Mask obligation in public area, no mask in shops/schools 0.38 2nd
q8 11.07 School holidays 0.36 2nd
q9 21.07 Mask obligation everywhere 0.32 2nd
q10 13.08 Increase of infections due to people returning from holidays 0.385 2nd
q11 14.09 Opening schools 0.415 2nd
q12 21.09 Extended mask obligation/ 10 people invitations 0.405 2nd
q13 25.09 Curfew (10 p.m.) Salzburg, Voralberg and Tirol 0.395 2nd
q14 23.10 Private gatherings limited to 6 people inside, 12 outside 0.385 2nd
q15 03.11 Lockdown 0.27 2nd
q16 07.12 Relief of lockdown 0.34 2nd
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not infect others, otherwise most likely a second case would have
been detected earlier; in addition, the first case was reported from
a woman who had traveled to Wuhan and was isolated upon
detection. On the other hand, following the second detected case
on February 26, 9 more cases were detected in the next 2 days.
To account for potential further lag in the uncertain starting time
of the epidemic in Sweden, we initialise the model at its initial con-
ditions reported in Table A.1 on February 16. Similar starting dates
for modelling the epidemic in Sweden have been used elsewhere,
with Bryant and Elofsson, 2020 starting their modelling on Febru-
ary 18 (see Table A.1 therein).

Appendix G. To fit Sweden, the model needs time-dependent

probabilities of detection and hospitalisation, unlike for

Luxembourg or Austria

Extending our model to Sweden is to gain insight on a country
which applied different policies than Luxembourg and Austria
(which adopted similar policies). To fit Swedish data with the same
model structure as the other countries, it was not sufficient to con-
sider a different set of parameter values. Instead, it was necessary
to introduce time-dependent probabilities of being detected
p1Swe tð Þ and of being hospitalized p2Swe tð Þ, within an epidemic
wave.

The parameter p1 corresponds to the probability of an infected
individual being detected. To obtain an estimate of this parameter
for Sweden, we considered prevalence data estimated weekly
through antibody tests for 8 consecutive weeks between mid April
and mid June 2020, obtained from (Folkhalsomyndigheten 1;
folkhalsomyndigheten 2) and shown in Fig. G.2 panel A. The preva-
lence went from about 4% to 6%, growing over the course of these
two months, likely resulting from more infections. Due to the large
error bars, multiple functional forms could be considered a reason-
able fit, so we chose the simplest, a linear fit.

Prevalence represents the total percentage of the country’s pop-
ulation that is estimated to have contracted the virus, including
detected and undetected individuals. We obtain an estimate of
p1Swe tð Þ as the ratio between the measured detected cases and
the total cases estimated from the prevalence. We do so in
Fig. G.2, panel B, which reports the number of detected cases
divided by the number of total cases inferred based on prevalence,
as a function of time, for the three fits to prevalence of panel A. In
green, we report our final assumption for the functional form for
p1Swe tð Þ, i.e. the probability of being detected if infected, which is
time-dependent for Sweden. We assumed p1Swe tð Þ to be piece-
wise linear, approximately following the behaviour of the linear
fit to prevalence, and saturating after the last available data point
(to avoid introducing further assumptions).

Furthermore, we incorporated an additional information: dur-
ing the early phases of the pandemic in Sweden, the majority of
the detected cases were people needing hospitalization. This can
be seen from Fig. G.2, panel C, which shows data for daily new
detected cases, people entering hospital and people entering ICU
(not to be confused with the number of people currently occupying
hospitals and ICUs). The data of people entering hospital and ICU
are publicly available on Socialstyrelsen and https://www.icur-
egswe.org/en/data-results/COVID-19-in-swedish-intensive-care/.
In March and April, the daily number of people entering hospital
was more than half of the daily number of detected cases. This
ratio is shown in panel D (in blue, the ratio of people entering hos-
pitals divided by new daily detected cases two days earlier). This is
used to build the piece-wise linear function (in green), which was
assumed as a proxy for P2Swe tð Þ, i.e. the probability of being hospi-
talized when detected positive. This is between approximately 50%
and 100% during March and April, as can be seen in both panels C
and D, meaning that, during the early weeks/months of the epi-
demic, Sweden mostly detected those people that required hospi-
tal treatment. This clearly changed in May and June, likely due to
the change in testing strategy ordered by the government on
May the 3rd (Ludvigsson, 2020). As observed in Kavaliunas et al.,
2020, the peak recorded at the end of June reflects an extension
of the testing strategy to everyone with COVID-19 symptoms and
to contact tracing.

Appendix H. Manual calibration of model parameters

We determine the values of the model parameters that provide
a good fit to the available data, while having reasonable values w.r.
t. the literature. In this section we explain the initial manual cali-
bration, later on we will cross-validate it with Markov Chain Monte
Carlo methods in Appendix I.

The following methodology was applied similarly for Luxem-
bourg and Austria, while to Sweden with some differences
described in Appendices G and F.3. We recall that most of the
parameters have values 2 0;1½ � due to their interpretation as rates
or probabilities. Rates are in fact defined as the inverse of the aver-
age time individuals spend in a compartment; hence, a rate smaller

than 1 day
�1 means an average time in that compartment of 1 day

or more, which is a reasonable value given the interpretations of
the compartments, e.g. hospital and ICU, where people are very
likely staying on average for at least 1 day or more.

The only exception is b, for which we considered values
between 0 and 2 (minimum average time of half a day). We ini-
tially set a and b following literature values (Liu et al., 2020; Wu
et al., 2020). When possible, we chose for the other parameters a
tentative initial value based on domain knowledge. For example,

Table F.5

Changes in the piece-wise constant social interaction parameter q tð Þ of the model for Sweden.

qn Starting Date Measure or change in social activities Manual Calibration Which Wave

q0 - No restrictions 1 -
q1 11.03 Gatherings of more than 500 people forbidden 0.52 1st
q2 16.03 Home office, school above 17 initiate distance learning 0.3 1st
q3 27.03 Gatherings of more than 50 people forbidden 0.25 1st
q4 30.03 Visits to the elderly care are banned 0.2 1st
q5 02.04 Certain students aged >17 allowed back to classroom 0.277 1st
q6 10.06 Starting holidays 0.265 1st
q7 13.06 Ease of travel restriction 0.28 1st
q8 01.07 Further ease of travel restriction 0.23 1st
q9 17.08 Opening of schools for children 0.37 1st
q10 01.10 Visit ban lifted 0.395 1st
q11 27.10 Stricter guidelines in Skåne 0.41 2nd
q12 03.11 Stricter guidelines in Jönköping, Halland, Örebro 0.375 2nd
q13 16.11 Stricter guidelines in Gävleborg, Västernorrland 0.345 2nd
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observed average length of stay in hospitals or ICUs (Rees et al.,
2020) are typically several days, leading to correspondingly low
initial values of the rates for exiting these compartments. For the
remaining parameters, e.g. those concerning non–hospitalized
individuals, an initial educated guess was made based on the infor-
mation available and what seemed reasonable at the time.

Next, we manually tuned the parameter values in order for the
simulated model output to fit the available data. It must be
stressed that, due to the model structure, individuals can only flow
in one direction in the model, i.e. from being initially in the suscep-
tible compartment, to eventually end up in either one of the recov-
ered or dead compartments. Due to this structure, several of the
parameters only influence the variables appearing downstream
in the flow, not upstream. For instance, while a; b and q influence
all compartments, the probabilities of being hospitalised or the
probability of entering ICU do not influence the total detected
cases. Thus, we start the manual fit by fixing those parameters that
influence the total detected cases, so that the simulated curve fits
the moving average of the available data. Unlike all the others, the
parameter q changes value every time that a new measure is
implemented. Each value is thus fixed in order to improve the
model fit to the data of total detected cases (averaged over a week)
until the next change, before moving to the next value. Eventually,
parameters downstream in the flow of individuals are also changed
in order for the model to fit the data of the corresponding boxes. In
particular, first parameters impacting total cases, then parameters
impacting hospitalisations, than parameters impacting ICU and
eventually those impacting death. The procedure was repeated
until a satisfactory fit was achieved. The final values of parameters
from our manual fit, for each country and wave of infection, are
reported in Table H.6.

We performed this procedure for Luxembourg and for the first
wave, which we conventionally assume to end with the minimum
of the moving average of new daily cases occurring on June 4. Fit-
ting the cases of the second wave with the parameter set from the
first wave lead to a significant over-prediction of the number of
people in hospital and ICU for the second wave, with respect to
what is observed in the data. Thus, some of the parameter values
need to be changed in order for the model to fit the data of the sec-
ond wave. Similarly for the third wave. For both, we repeat the pro-
cedure of manual parameter calibration described above starting
from the values of the parameters for the previous wave, and incor-

porating any further domain knowledge about average length of
stay in hospitals and so on that become available in the meantime.

Most parameters were initially tuned for Luxembourg, and then
employed for Austria and Sweden with the necessary changes to
achieve a reasonably good fit to the data, or where literature was
available reporting a country-specific estimate, as it is the case
for the probability of being detected p1, inferred from country-
specific prevalence studies as detailed below. While this procedure
is repeated for Austria with only changes in parameter values, it is
not sufficient to fit Sweden. For Sweden, we further need to derive
time-dependent probabilities of detection p1;Swe tð Þ and of hospital-
izations p2;Swe tð Þ, as described in detail in Appendix G. These two
functions are reported in Fig. G.2.

Similarly to Luxembourg, we assume the 1st wave to end with
the minimum of the moving average of new daily cases on June 12
for Austria and on August 31 for Sweden. We further assume the
3rd wave in Luxembourg to start from the re-opening of schools
on September 15 . We do not split Austria or Sweden data in a third
wave as only the data for Luxembourg show clearly three waves of
infections, see Fig. 2 in main text. The final values of parameters
from our manual fit, for each country and wave of infection, are
reported in Table H.6.

A key parameter for each country is the probability of being
detected if infected, which has been derived from prevalence stud-
ies. For Luxembourg we consider this probability to be p1 ¼ 0:31 in
the first wave thanks to the CON-VINCE study (Snoeck et al., 2020),
and we assume it to be p10 ¼ 0:4 for the second and third wave
based on internal communication. These numbers correspond to
values for total cases over detected cases of respectively
1/0.31 = 3.2 and 1/0.4 = 2.5, which are close to the value 2.3
reported as an approximated estimate for several countries by
Böhning et al., 2020. For Austria, p1 � 0:41 has been as well derived
from prevalence data https://www.sora.at/nc/news-presse/news/
news-einzelansicht/news/covid-19-praevalenz-1006.html (last
accessed on 15/12/2020). For Sweden, we describe how we obtain
p1;Swe tð Þ and p2;Swe tð Þ in Appendix G. This estimate is also based on
the prevalence data from Folkhalsomyndigheten 1; folkhalsomyn-
digheten 2 displayed in Fig. G.2, panel A. As shown in Fig. G.2, panel
B, we assume a time-dependent p1Swe tð Þ which increases from an
estimated value of 0:02 in March to an estimated value of 0:27
from June onward.

Table H.6

Parameter values for manual calibration of each wave and country. All rates (a;b and each s) are expressed in days
�1 , the other parameters are dimensionless. The symbol ‘‘–” means

the parameter is not changed w.r.t. the value to its left in the table. The quantities p1Swe tð Þ and p2Swe tð Þ are depicted in Fig. G.2 and their derivation is described in the
corresponding section.

Parameter Manual fit Luxembourg Manual fit Austria Manual fit Sweden

1st wave 2nd 3rd 1st wave 2nd 1st wave 2nd

b 1.287 – – 1.287 – 1.287 –
a 0.4433 – – 0.4433 – 0.4433 –

s1 0.6808 – – 0.6808 – 0.6808 –
s2 0.5979 – – 0.5979 – 0.5979 –
s3 0.5246 – – 0.5246 0.5246 0.5246 0.5246
s4 0.0513 0.1050 0.106 0.0991 0.0948 0.1875 0.0933
s5 0.0617 0.1514 0.1605 0.1047 0.1240 0.2383 0.1247
s6 0.0853 0.1514 0.1590 0.1073 0.0856 0.1093 0.0838
s7 0.1084 0.1084 – 0.1084 0.1084 0.1084 0.1084

p1 0.31 0.41 – 0.41245 – p1Swe tð Þ 0.27389
p2 0.1534 0.08 0.042 0.162 0.065 p2Swe tð Þ 0.1
p3 0.7906 0.86 0.78 0.72 0.82 0.72 0.88
p4 0.7906 0.9048 0.8868 0.6972 0.8345 0.6667 0.8965
p5 0.8717 0.9814 0.8692 0.8499 0.9275 0.9021 0.9820
p6 0.9072 0.9816 0.8868 0.8292 0.8946 0.7866 0.9731
p7 0.9876 0.9979 0.997 0.99 0.992 0.99 0.992
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Appendix I. Bayesian inference for cross-validation of

parameters and evaluation of uncertainties

The parameter sets obtained by manual calibration are used in
the manuscript to illustrate a number of qualitative and quantita-
tive results. Nevertheless, the next question naturally arising is
‘‘how unique is each of these parameter sets, given the available
data?”. We thus want to investigate to what extent the available
data constrain the parameters of the model, and to which extent
these parameter values can change, i.e. to quantify the uncertain-
ties in the estimation of these parameters, given the data. A Baye-
sian framework provides a natural perspective to explore this
uncertainty. For this purpose, we apply Bayesian Inference, and
in particular Markov Chain Monte Carlo (MCMC) methods to I)
quantify the uncertainty (via credible intervals) of the estimates
of each parameter given the data, and to II) assess uncertainties
on combinations of parameters (credible regions), often better
identifiable than the corresponding individual parameters. In order
to apply Bayesian inference and MCMC methods, we employ the
dedicated python library pymcmcstat (Miles, 2019), version 1.9.0.

I.1. Sum of square residuals for the likelihood function

To perform Bayesian inference by MCMC, we need to construct
a likelihood function of parameter values given the available data
and to provide prior probability distributions for each parameter,
which allows us to incorporate our prior knowledge. The vector
of parameters, which will be specific for each country and wave,
is here indicated as s.

The pymcmcstat package employs for the Likelihood L sjdatað Þ

function the sum of square residuals (SSR), such that the minimum
of the SSR corresponds to the maximum of the Likelihood. This
choice of the likelihood function corresponds to assuming that
deviations of data from the model are due to Gaussian errors,
which is the simplest assumption to make without additional
knowledge of the potential sources of errors.

The SSR for Luxembourg is:

SSR sjdatað Þ ¼
X

T f

i¼T0

Cdata tið Þ � Cmodel ti; sð Þ
h i2

þ
XTf

i¼T0
Hdata tið Þ � Hmodel ti; sð Þ
h i2

þ
XTf

i¼T0
ICUdata tið Þ � ICUmodel ti; sð Þ
h i2

þ
XTf

i¼T0
Ddata

home tið Þ � Dmodel
home ti; sð Þ

h i2

þ
XTf

i¼T0
Ddata

hosp tið Þ � Dmodel
hosp ti; sð Þ

h i2
; ðI:1Þ

where s is the array of parameters, ti ¼ T0; T0 þ 1; . . . ; T f � 1; T f indi-
cates the number of days from the beginning of the epidemic (as-
sumed for that country), T0 and T f are respectively the first and
last day of the wave under investigation (1st wave, 2nd wave or,
for Luxembourg, 3rd wave), C is the cumulative total number of
detected cases, H is the number of people in hospital, ICU is the
number of people in ICU, Dhosp and Dhome are respectively the num-
ber of people dead in hospital (including ICU) or outside hospital
(Dhome includes also nursing houses). The same SSR was employed

Fig. G.2. Derivation of the time-dependent probabilities of detection p1Swe tð Þ and hospitalization p2Swe tð Þ, for Sweden. A: prevalence data for Sweden from Folkhalsomyndigheten 1;
folkhalsomyndigheten 2, with three alternative fits: a linear, a Gompertz and an exponential (for comparison). B: number of detected cases over total cases on time, inferred
from prevalence, for the three fits to prevalence of panel A. The final functional form for p1Swe tð Þ (the probability of being detected if infected) is in green. C: data for daily new
detected cases, people entering hospital and people entering ICU (not to be confused with the numbers of people occupying hospitals and ICUs displayed in Fig. 2 of the main
text). D: in blue the ratio of people entering hospitals divided by new daily detected cases two days earlier, which we employ to build the piece-wise linear function (in
green). This is assumed for p2Swe tð Þ, i.e. the probability of being hospitalized when detected positive.
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for Austria and Sweden (with the corresponding data and model
variables), except that the two compartments for deaths were
merged into one compartment due to lack of more fine-grained
data.

The quantities in Eq. (I.1) derived from the model, omitting the
dependencies on time and parameters for ease of notation, in
terms of the model variables (Table A.1) are given by:

Cmodel¼
:
Rþ II þ Q þ DI;hos þ DI;hom þ H þ Hlþ ICU þ AIUC þ NI;

ðI:2Þ

Hmodel¼
:
H þ Hlþ AICU; ðI:3Þ

ICUmodel¼
:
ICU; ðI:4Þ

Dmodel
home ¼

:
DI;hom; ðI:5Þ

Dmodel
hosp ¼

:
DI;hos: ðI:6Þ

The sum of square residuals Eq. (I.1) attributes the same weight
to all time-series data. While this choice is the simplest, it is worth
noticing that it is not unique and more complex weighting
approaches could represent valid choices as well.

I.2. Prior probability distributions

For each country and wave, we assume flat prior probability
distributions on each parameter over a reasonable parameter
space. The reasons in doing so are mainly two. First, flat priors
are the simplest choice which does not require any additional
knowledge – except the intervals over which these priors should
be extended. Second, flat priors are the less informative choice
we can make, without introducing bias toward a particular param-
eter set. This allows to cross-validate the manually calibrated
parameter set, as the result only depend on the public time-
series data and on a reasonable limitation of the available param-
eter space by means of the priors.

The social interaction parameter qn ranges from 0 to 1. Each

rate parameter ranges from 0 days�1 to 1 days�1, except for beta

that ranges from 0 days�1 to 2 days�1. Each probability parameter
is from 0 to 0:5 or 0:5 to 1 depending what the probability repre-
sents. We opt for these somewhat reduced parameter spaces rather
than the full intervals from 0 to 1 because, without loss of general-
ity (we do not expect probabilities of dying being above 0.5, i.e.
50%, and so on), they are less demanding in terms of time and
computational resources needed for the MCMC chains to converge.
Similarly, we further restricted the priors between 0 and 0.5 for
those rates associated to an average length of stay which is known
to be considerably larger than a day, e.g. for the rate of exiting ICU.
These flat prior probability distributions are reported for each
country and wave as the light gray area in Fig. J.3, where we
observe that the posterior probability distributions are indeed nar-
rower than the priors. The posteriors are depicted via their 50%
and 90% credible intervals, respectively in blue and cyan.

I.3. Markov Chain Monte Carlo (MCMC) method

After defining the likelihood function and the priors, we calcu-
lated the posterior probability distribution over the parameter
space (for each country and wave separately) by means of Markov
Chain Monte Carlo (MCMC) methods available via the dedicated
python library pymcmcstat.

Among the different Metropolis based sampling techniques, we
employ the Delayed Rejection Adaptive Metropolis (DRAM) algo-
rithm. It is a combination of the Delayed-Rejection (DR) algorithm,

which delays rejection by sampling from a narrower distribution,
and the Adaptive-Metropolis (AM) algorithm, which adapts the
covariance matrix of the proposal Gaussian distribution at speci-
fied intervals.

To increase the speed of our sampling, we run 8 chains in par-
allel. Each chain is initialized at random initial conditions extracted
from the flat prior distribution for each parameter. The multiple
chains will also be useful to assess convergence of the chains
(see next section). Each chain is run for 500000 iterations to ensure
chain convergence (measured by the method described in the next
sections). The first half of each chain is automatically discarded as
burn-in (default settings of the package), while the second half is
employed to determine the posterior probability distributions.

I.4. Thinning of the chains only for visualization

We did not employ the thinning of chains (only considering one
sample every several) as it is not usually appropriate when the goal
is precision of estimates from an MCMC sample (Link and Eaton,
2012). Nevertheless, thinning can be useful for other reasons, such
as memory or time constraints in post-chain processing. It was
thus used to generate the figures with estimates of the posteriors,
e.g. Fig. J.4. To generate these figures, we thinned the chains keep-
ing only every 100th sample. For the posteriors, rather than thin-
ning we monitored the convergence of the MCMC estimates by
comparing the outputs of multiple independent chains (Link and
Eaton, 2012). We thus considered the variation among these inde-
pendent chains to implement the Gelman-Rubin diagnostic
(Gelman and Rubin, 1992; Brooks and Gelman, 1998).

I.5. Ensuring convergence of MCMC chains through Gelman-Rubin

diagnostic

By visual inspection of the posterior probability distributions
derived by each independent chain (a simple approach also per-
formed in Mbuvha and Marwala, 2020), it seems that all the chains
have converged to about the same distribution (with the exception
of very few parameters where one or few chains lead to slightly
different posteriors). We nevertheless further used a more quanti-
tative approach.

There are many diagnostics available for assessing chain con-
vergence. As suggested by Link and Eaton, 2012, a robust approach
is to use the Gelman-Rubin diagnostic (Gelman and Rubin, 1992;
Brooks and Gelman, 1998), which requires several sets of chains
for comparison. The Gelman-Rubin approach essentially performs
an analysis of the variances within each chain set and between
each chain set. The same diagnostic was used for the same purpose
in the framework of MCMC convergence in modelling COVID-19 in
e.g. Bryant and Elofsson, 2020; Dehning et al., 2020. The Gelman-
Rubin diagnostics for the full chains returns values of R, the so-
called ‘‘Potential Scale Reduction Factor (PSRF)”, that are extremely
close to 1 for most parameters, which indicates that the chains
have converged (Gelman and Rubin, 1992; Brooks and Gelman,
1998).

Appendix J. Results from the MCMC

In order to confirm the viability of the choice of parameter val-
ues from the manual calibration, we show in the Results section of
the main text that the simulations generated by our model fit the
available data for these countries. Additionally, we show in Appen-
dix J.1 that the manually calibrated sets are consistent with the
Markov Chain Monte Carlo estimates. This, in turn, shows that
the available data constrain the parameters only to some extent,
leaving considerable uncertainties. When possible, we had
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informed our manually calibrated parameter set with values
obtained from literature or from domain knowledge, e.g. length
of stay of patients in ICUs and hospitals. Instead, the MCMC was
let free to reproduce the raw time-series data. This induces larger
uncertainties and yields some degeneracy between parameters,
with combinations (e.g. ratios) of parameters being better con-
strained by the data than individual parameters (see Appendix J.2).

J.1. Manually calibrated parameter sets are compatible with Bayesian

inference estimate, which underlines wide uncertainties in parameter

values

The parameter sets from the manual calibration of the model
discussed in Appendix H are summarized in Tables H.6, F.3–F.5
and are employed through the manuscript. Fig. J.3 shows the

F GSweden, 1st wave Sweden, 2nd wave

E Austria, 2nd wave

C Luxembourg, 3rd wave

Austria, 1st waveD

Luxembourg, 2nd waveB

A Luxembourg, 1st wave

Fig. J.3. Posterior probability distributions from MCMC for each parameter, compared with priors and with manual fits, for each country and wave. Luxembourg (A: 1st wave, B: 2nd
wave, C: 3rd wave), Austria (D: 1st wave, E: 2nd wave) and Sweden (F: 1st wave, G: 2nd wave). For each parameter, prior probability distributions are reported as gray areas,
while the posteriors are reported by means of their 50% (blue) and 90% (cyan) credible intervals, with their maxima reported as large blue dots and their means as red
squares. The parameter values for the manual fit (Table H.6 for probabilities and rates, Tables F.3, F.4 and F.5 for qn) are reported as green small circles.
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Bayesian estimates of these parameters given the time series data,
obtained by MCMC (credible intervals) and employed to cross-
validate them.

Posteriors are indicated by their 50% (blue) and 90% (cyan)
credible intervals, and are usually considerably narrower than
the corresponding assumed flat prior distributions (from Appendix
I.2). Nevertheless, this is not the case for some parameters, for
which the posteriors are almost flat and as wide as the priors. This
means that some parameters are not well identified by the avail-
able data and model structure. Fig. J.3 reports the point-
estimates from the MCMC, i.e. mean and maximum a posteriori
estimate of the posterior of each parameter. For rather symmetric
distributions the two values tend to correspond, while they differ
considerably for very skewed distributions. Moreover, for almost
flat posterior distributions (like e.g. those for most of the parame-
ters si with i ¼ 4;5;6) the maximum is not very representative of
the distribution.

Fig. J.3 shows that, for all countries and waves, the values of the
manual fit (green) are mostly very close to either the maximum or
the mean a posteriori estimate. It is usually within the 50% credi-
ble interval of the posterior, or at least inside the 90% credible
interval, with only a couple of exceptions. Thus, our manually cal-
ibrated sets of parameters are fully consistent with the Bayesian
estimate based on MCMC. However, credible intervals are rela-
tively wide, which indicates that the estimated uncertainties of
these parameters, based on the data alone, are rather large. In par-
ticular, at a qualitative level, the values of the social interaction
parameter qn are in general better constrained than the other
parameters, with the probabilities pi being slightly better con-
strained than the rates si. These are in general poorly identified,
except for a and b which are affected by smaller uncertainties w.
r.t. other rates. In turn, the probability p7 (out of ‘‘recovery at
home”) is extremely well constrained (to values close to 1) in most
of the waves and countries.

Fig. J.4. Posterior probability distribution from MCMC projected over each pair of parameters, for the 1st wave of Luxembourg. On each square, the 2D projection of the posterior
probability distribution estimated (cf. Appendix I) corresponds to the 1D projections of Fig. J.3. For visual clarity, the parameters’ names and scales are reported only at the
margins of the figure and on the diagonal, but they apply to all subplots. As the figure is symmetric along the diagonal, each projection is only reported once (hence the white
squares). The heatmap colors represent posterior probability values: red equals high and blue low probability. Dark blue represents a probability close to 0. The three black
contours reported in each panel represent 25%;50% and 90% Bayesian credible regions. Correlations, anti-correlations and more complex degeneracy between parameter
pairs are visible.
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J.2. Quantifying uncertainties on estimates of parameters by MCMC:

wide uncertainties and degeneracy in parameter estimations

The domain of the posterior probability distribution obtained
via the MCMC, Appendix I, has the same number of dimensions
as the number of parameters considered, i.e. 19 for the 1st wave
of Luxembourg. When we are interested in one parameter at a
time, we project the chains on one dimension (which, if we had
an analytic form for the posterior, would be done by integrating
over all parameters except the one of interest, thus obtaining the
marginal posterior distribution for that parameter). This is how
the 1D posteriors in Fig. J.3 were obtained.

The next question is: are the wide uncertainties affecting some
parameters an effect of having projected to a lower dimensional
space, or are certain parameters poorly identified? We anticipate
that both types of situations arise, depending on the parameter.

To investigate this, we project the posterior distribution over
two parameters at a time, for each couple of parameters in

Fig. J.4 for the MCMC run of the 1st Wave of Luxembourg, and in
Fig. J.5–J.10 for the other waves and countries. While certain
parameter pairs are very well constrained, others are not; certain
parameter pairs appear to be correlated or anti-correlated. We
hence observe a degree of degeneracy between parameters: there
is not a unique combination of parameters that allows a good fit
of the model to the data, but many of them.

Moreover, certain combinations (e.g. ratios) of parameters are
better constrained than the individual parameters. Consider e.g.
the parameters a and b, which come from the standard SEIR model.

Their credible intervals are displayed in Fig. J.3. The joint poste-
rior over the two parameters (close to the center of Fig. J.4 for Lux-
embourg, Fig. J.7 for Austria and Fig. J.9 for Sweden) is narrow and
rotated toward the diagonal direction, showing anti-correlation
between the estimates of the two parameters. This means that
low values of b can only be considered together with high values
of a, and the other way around. These patterns occur for other
parameters as well, and they are conserved to some extent across

Fig. J.5. Posterior probability distribution from MCMC projected over each couple of parameters, for the 2nd wave of Luxembourg. This figure is constructed in the same way
described in the caption of Fig. J.4.
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countries. So, they are likely specific to the model’s structure and
parameters rather than to the country. Other interesting patterns
are visible, e.g. anti-correlation between each qn and the sub-
segiquent in time in the 2nd and 3rd waves of Luxembourg, the
2nd wave of Sweden and to some extent in the 1st and 2nd waves
of Austria. This can easily be understood in terms of the model:
lowering the social interaction one time-period and increasing it
the next, or doing the converse, can both lead to a similarly good
agreement with data. While certain couples of parameters seem
to be well constrained, other parameters have projected posteriors

that are still close to flat, resulting in squares that are predomi-
nantly red in Fig. J.4 e subsequent. This effect is weaker for certain
waves and countries (3rd wave of Luxembourg and the 2nd wave
of Sweden), but stronger for others (1st wave of Sweden, where
parameters seem to be very poorly identified). This could be
related to the dimension of the domain of the posterior (the higher
the number of parameters, the less constrained), as the 3rd
wave of Luxembourg and the 2nd wave of Sweden both have
indeed ‘‘only” 14 parameters each, while the 1st wave of Sweden
has 26 of them.

Fig. J.6. Posterior probability distribution from MCMC projected over each couple of parameters, for the 3rd wave of Luxembourg. This figure is constructed in the same way
described in the caption of Fig. J.4.
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Fig. J.7. Posterior probability distribution from MCMC projected over each couple of parameters, for the 1st wave of Austria. This figure is constructed in the same way described in
the caption of Fig. J.4.
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Fig. J.8. Posterior probability distribution fromMCMC projected over each couple of parameters, for the 2nd wave of Austria. This figure is constructed in the same way described in
the caption of Fig. J.4.
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Fig. J.9. Posterior probability distribution from MCMC projected over each couple of parameters, for the 1st wave of Sweden. This figure is constructed in the same way described in
the caption of Fig. J.4.
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