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Abstract

This report presents the definition, solution and validation of a
stochastic model of the budding yeast cell cycle, based on Stochastic
Petri Nets. A well-established deterministic model, based on ODEs, is
considered as the basis for the stochastic modeling. A specific class of
Stochastic Petri Nets is selected for building a stochastic version of the
deterministic model, with applying the same abstractions of biological
phenomena as the ones adopted in the deterministic model. We de-
scribe in the report the procedure followed in defining the SPN model
from the deterministic one, a procedure that can be largely automated.
The validation of the SPN model is conducted with respect to both the
results provided by the deterministic one and the results available from
wet-lab experiments. A very good match is obtained for the budding
yeast wild type and for a variety of mutants that have been experi-
mentally constructed in wet-labs. The results of the two models were
compared against experimental data. We show that the stochastic-
ity allows predicting characteristics that cannot be determined with
the deterministic model. Moreover, we also show that the stochastic
model can fine-tune the results of the deterministic model, enriching
the breadth and the quality of the model.



1 Introduction

Cell cycle is the collective name for a complex network of coordinated bio-
chemical phenomena that control the reproduction of the basic living unit,
the cell. Cells reproduce by dividing themselves into daughter cells, each
one endowed with the biochemical machinery that allows them growing and
repeating the process. Before committing themselves to reproduction, cells
must grow to an appropriate size, and have to duplicate DNA and segregate
the two copies so that each sibling receives one complete copy of it. These
tasks are the most delicate ones in the cell cycle, and require the creation of
complex structures that ensure each whole copy of the cell genome is first
pulled and then confined into a distinct area of the cytoplasm where the
daughter nucleus will form.

The cycle of an eukaryotic cell can be split into a sequence of phases,
which are common to all organisms. In each phase, specific tasks are accom-
plished through the activity of biochemical species, among which cyclin de-
pendent kinases (Cdks) play a major role. When bound to a cyclin partner,
Cdks are activated and able to make cells to progress along their cycle. Vari-
ous Cdks and cyclins exist in eukaryotic cells, and each Cdk/cyclin dimer has
specific activity. Changes in the concentration of active Cdk/cyclin dimers
are responsible for causing the transition form one phase to the other in the
cell cycle. By sensing the internal and environmental conditions through
signaling networks, an eukaryotic cell controls the expression of the genes
responsible for activation of Cdks, proceeding to the next phase in the cycle
only when the current one has been successfully completed.

Higher organisms have a variety of Cdks and cyclins that control the
progress of their cell cycle. In the model organism budding yeast Saccha-
romices cerevisiae only one Cdk is present (called CDC28), which can com-
plex with a limited number of cyclins (CLN1-3 and CLB1-6). Though, the
dynamics of the biochemical network controlling the cell cycle of budding
yeast follow the same outline as in more complex eukaryotes [4]. Cell cy-
cle of buddying yeast has been subject to extensive experimental study and
computational models have been developed for it. In particular, the work on
deterministic modeling of budding yeast cell cycle conducted by a research
team headed by John Tyson at Virginia Tech. has led to the formulation of
a comprehensive model, based on ODEs [5]. This model as well as a com-
parative analysis of its results and predictions against experimental data are
available on the Internet at [1].

In recent years, a number of stochastic modeling techniques started to be
applied to model biological phenomena, among which we focus on Stochastic



Petri Nets [11, 19, 20, 14, 15]. This formalism is based on a discrete state-
space modeling approach, hence it has the expressive power to capture the
discrete molecular dynamics of the system at a lower level of abstraction
than deterministic models. When the number of molecules that constitute
a molecular network is low, the stochastic modeling may represent a more
suitable tool to represent and analyze the dynamics of the system. On the
other hand, as the number of molecules grows, abstracting discrete number
of molecules into continuous concentration levels and representing evolution
of dynamics through a system of coupled ODEs provides very accurate rep-
resentations and also has the advantage of not suffering from the state-space
explosion problem that plagues stochastic modeling tools.

One of the objectives of this report is to present the definition of a
stochastic version, based on SPNs, of an existing deterministic model of
budding yeast cell cycle. The deterministic model selected is one produced
by Tyson’s research group and described in [9]. The stochastic model is
built with a constructive approach that can be largely automated. The
second objective of the work we present in the report is the comparative
evaluation of the results provided by the models built with the two differ-
ent approaches, taking into consideration as well the results obtained with
wet-lab experiments. The wild type of budding yeast and various mutants
that have been engineered in the lab are considered as the benchmark for
the validation of the stochastic model, and for comparing the simulation
results provided by the stochastic and the deterministic model. We show
that the stochastic model provides results that support the outcome of the
deterministic one, and also can be used to probe into more precise analysis
of various characteristics of the biological phenomena under consideration.
Such analysis, which is based on the probabilistic nature of the stochastic
model, cannot be performed with the deterministic model, and are found to
better describe results from wet-lab experiments.

The rest of this paper is organized as follows. In Section 2 we describe
the cell cycle of buddying yeast, provide some details about the biochemical
network that controls its progress through the various phases and present
the deterministic model that is used as a basis for the stochastic modeling.
Then, in Section 3 we introduce the class of SPNs that are used to build the
stochastic model of the system. This stochastic model is defined in Section
4, and Section 5 is devoted to its validation, through the comparison of its
result with those provided by the deterministic model and against exper-
imental data from wet-lab. Finally, conclusions and directions for future
work are given in Section 6.



2 The cell cycle in S. cerevisiae

2.1 Cell cycle narrative description

Living cells reproduce themselves through division into daughter cells. The
purpose of cell cycle is to coordinate the replication events necessary to pro-
vide the daughter cells with the biochemical cell machinery that is necessary
for them to grow and repeat the process. DNA, proteins, RNA, phospho-
lipids all need to be more or less duplicated and partitioned between the
two cells at division time.

The cell cycle is made up of a precisely coordinated sequence of events
whose phasing is mainly controlled by the activity of cyclin-dependent pro-
tein kinases (Cdks). The activity level of Cdks determines the progress along
the major steps of the cell cycle. For instance, the start of DNA replication,
the assembly of the mitotic spindle as well as the condensation of replicated
chromosomes, are all events triggered by active Cdks. Cdks get activated
when bound with the respective cyclins, and when active are able to regulate
(by phosphorylation) many other proteins that trigger the cell cycle events.
Most organisms keep the concentration of Cdks to a stable value, and their
activity is thus modulated through the variation in the level of cyclins. In
higher eukaryotic organisms, many Cdks and cyclins made up a network of
molecular signals, but it has been found that the same basic mechanisms of
cell cycle control are accomplished in simpler organisms through a limited
number of biochemical species. The budding yeast is a well-studied and
understood example of how the cell cycle can be controlled with only one
Cdk and a few cyclins [4].

The cell cycle of eukaryotes can be divided in four major phases, namely
G1, S, G2, M, where G1 and G2 are two gap phases, S is the synthesis phase
(DNA duplication) and M is the mitosis phase:

G1 : gap phase G1 takes place right after a cell division. The cell is uncom-
mitted to the replication phase process. By sensing the environment
conditions, and after reaching an adequate mass, a cell can commit
itself to start the next phase, a cell cycle transition called Start.

S : in this phase the cell duplicates its genetic material. Once the process
is started at the beginning of the synthesis phase, it goes irreversibly
to completion.

G2 : in gap phase G2 the cell checks again that the environment is favorable
to proceed to the next phase and ensures the duplication of DNA has



completed. If any problems occurred in such duplication, the cell
arrests the cycle in this phase until the problem is solved.

M : the mitosis phase is divided in various subphases. During the prophase,
chromatin in the nucleus begins to condense into chromosomes. Cen-
trioles begin moving to opposite ends of the cell and microtubule fibers
extend from the centromeres. In the prometaphase proteins attach to
the centromeres creating the kinetochores. Microtubules search for
the kinetochores and once found them, the chromosomes begin mov-
ing. During the metaphase, spindle fibers align the chromosomes along
the middle of the cell nucleus. At this point, a second irreversible
transition happens, which commits the cell to proceed in the mito-
sis. When all chromosomes are properly aligned, the cell passes the
so called Spindle checkpoint event, and proceeds into the anaphase,
during which the daughter chromosomes separate pulled at the kine-
tochores and move to opposite sides of the cell. During telophase,
chromatids arrive at opposite poles of the nucleus, and the partition-
ing of the cell is performed, through the contraction of the actin fibers
that cause an elongation of the cytoplasm and ultimately the division
of the cell.

The phases described above are triggered by the active Cdks, and are
additionally controlled by signaling networks that are able to sense the en-
vironment conditions and the completion of the various processes of DNA
replication, condensation and chromosome alignment. We shall focus here-
after on the biochemical machinery that controls Cdks activity in budding
yeast, as described in [9)].

In budding yeast, during the G1 phase, the activity of Cdkl (the only
budding yeast Cdk, also called Cdc28) is low because the cyclin mRNA
transcription is mostly inhibited. Moreover, the produced cyclin proteins
are rapidly degraded by the activity of a set of proteins collectively called
anaphase-promoting complex (APC). The APC consists of several polypep-
tides and two auxiliary proteins, Cdc20 and Cdhl. When active, these two
latter proteins mediate the presentation of various targets (including cyclin)
to the APC for labeling through multi-ubiquitin chains. Ubiquitylated tar-
gets are quickly degraded in proteasomes. In G1 phase, there is abundance
of active Cdhl. Furthermore, during G1 the remaining Cdk1/cyclin dimers
are sequestered by a stoichiometric inhibitor (CKI - Sicl), which forms with
Cdh1/cyclin dimers an inactive heterotrimer.

If the environmental conditions are favorable, as the cell progresses in
the G1 phase the mass of cell grows, and this leads to an increased produc-



tion of a transcription factor (TF - SBF/MBF) that activates genes for the
production of the starter kinase (SK - Cln’s). SK has the effect of mediating
the degradation of both Cdhl and CKI, which allows mitotic cyclins (Clb’s)
to start accumulating in the cell. This change in the biochemical dynamics
of the cell corresponds to the Start event, and the beginning of the S phase.
Cyclin synthesis in induced and cyclin degradation inhibited throughout S,
G2, and M phases. The active Cdk/cyclin complexes drive the cell through
the various stages of the synthesis and mitosis phase. A further increase in
Cdk activity at the Start transition is caused by the ability of the Cdk/cyclin
dimers to phosphorylate CKI molecules. Such phosphorylation labels CKI
molecules for degradation by the proteolytic cell machinery, increasing the
amount of active Cdk/CycB dimers. Such high concentration of active Cdk
also has the effect of causing the degradation of the TF for the starter kinase
SK, which has already accomplished its role in the cell cycle.

Upon entering into the S phase, the Cdc20 protein starts to be synthe-
sized. This synthesis is again driven by the activity of the active Cdk/cyclin.
At the metaphase/anaphase transition, Cdc20 molecules bind at the APC
and activate it through a signal generated by the mitotic process itself, sup-
posedly thorough intermediate enzymes (IE). The active Cdc20 causes the
degradation of the cyclin CycB and activates the other APC protein, Cdhl.
This change in the biochemical activity of the APC regulator proteins cor-
responds to the Finish transition. The activity of the two APC proteins
Cdc20 and Cdhl leads the cell into the anaphase of mitosis. Moreover, their
combined activity leads to a quick degradation of the available cyclins. This
inactivation is the primary responsible for the disassembly of the spindle.
As the Cdk activity reverts to low level, the telophase completes and the
cell divides. The synthesis of the APC related protein Cdc20 stops as the
activity of Cdk is lost, and the newborn cell enters the G1 phase.

2.2  Cell cycle deterministic mathematical model

We shall describe in this section the deterministic model proposed in [9] for
capturing the biochemical dynamics of the cell cycle in budding yeast. The
picture in Figure 1 is a slightly revised one from that shown in [9], on page
270. It shows the biochemical species involved in the cell cycle, and depicts
the main reactions. Dashed lines represent the mediation effect that some
species have on reactions.

It is worthwhile observing that the Cdks are not included in the model,
as their concentration is assumed to be constant throughout the cell cycle
and in excess with respect to the available cyclin partners. Moreover, the



Figure 1: Graphical representation of cell cycle engine

model also assumes that the concentration of Cdk/CycB dimers (the active
Cdks) is always in equilibrium with the CycB and Cdk concentration, and
the same is assumed for the CKI/Cdk/CycB trimers.

The following system of ordinary differential equations (ODEs), pro-
posed in [9] on page 271, provides a deterministic model for the biochemical
processes described in Figure 1.
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In the equations above, [X] indicates the concentration of biochemi-
cal species X. [CycBr] indicates the total concentration of cyclin CycB
(Cdk/Clb complexes), including the one that is bound in the Cdk/CycB
dimers and the one bound in the CKI/Cdk/CycB trimers. Similarly, [CKIp]
denotes the total concentration of the free CKI (Sicl) plus that of the
CKI bound in the trimer. Because it is assumed that the concentration
of Cdk/CycB dimers and CKI/Cdk/CycB trimers is always in equilibrium
with the concentrations of CKI, Cdk and CycB, we can obtain the concen-
tration of the dimers, which is denoted in the model by [CycB], as a function
of [CycBr] and [CKI7], as follows:

Q[CyCBTHOKIT]
S+ /32 — 4[CycBr][CKI7]

[CycB] = [CycBr] — [Trimer] = [CycBr] — (10)
where ¥ = [CycBr] 4+ [CKIr]+ K.!. Equation (1) models cellular growth.
Several terms in the other equations are dependent on the cell mass, to model
the dependence that the dynamics of the system has on cell size. Notice that
this systems of ODEs is not including a mathematical formulation of the cell
division. This event is added to the model as an external action, in a way
that the cell mass is halved when the concentration of active Cdk/CycB falls
below an assigned threshold (0.1, in this model) during telophase (this is a
simplification of the asymmetric division of budding yeast cells). The ODE
model is completed with a set of values for the rate constants, which are not



reported here for the sake of conciseness. The interested reader can obtain
them from [9] on page 273.

It is important to notice the different levels of abstraction at which the
various reactions are modeled. For instance, the last term in equation (4)
models the degradation of Cdc20, and is easily recognized as the determin-
istic model of a first order reaction. In that same equation, the second
term in modeling in quite an abstract way (by the so-called Hill function)
the dependence of Cdc20 production on cell mass and [CycB]. This vari-
able level of abstraction has important implications on the selection of the
modeling formalism that can be applied to define a stochastic model of this
same biological system. Indeed, the deterministic model will be much easier
translated into a modeling formalism that allows representing those same
different levels of abstraction therein adopted.

3 Stochastic Petri nets modeling formalism

In this section we shall present the stochastic Petri net formalism that we
adopt as the tool to build a stochastic cell cycle model. Many variants of
modeling notations exist for SPNs (a comprehensive list can be found at the
web site [2] maintained by the University of Hamburg), therefore we shall
first describe in this section the precise notation we will be using, to make
sure that no ambiguities exist in the interpretation of the models. Various
families of SPNs exist that match the features of the modeling formalism
described in this section, e.g., [7, 6]. Before entering into the details of the
modeled examples we shall also briefly recall the classical interpretation of
Petri net modeling elements in biology.

We shall use the basic elements of Petri nets, i.e. places, transitions,
arcs and tokens with following the standard graphical notation reported in
Figure 2. The rules to compose correct SPN models from the basic modeling

O - — .

place transition arc token

Figure 2: Basic Petri net modeling elements

elements are the following ones:

e tokens are only contained into places;



e arcs can only connect a place to a transitions or a transition to a place,
i.e., the graph that represents the structure of the net is a bipartite
one.

The number of tokens inside a place defines the marking of the place. The
marking of the Petri net model is the vector that collects all the markings
of the places in the model. A transition is said to be enabled if each of its
input places, i.e. the places from which an arc exists going from the place to
the transition, contain at least one token. An enabled transition fires in a
random time. We shall stick to a limited set of distributions of the random
variables representing the firing time:

e the negative exponential, completely described by a single parameter
A, called the rate;

e the deterministic distribution with constant firing time equal to 0
(transitions with such firing time distribution are depicted as thin
bars and called instantaneous transitions).

We shall allow transition having rates whose value are mathematically
expressed through arbitrary functions of the model marking. Hence, every
exponential transition t; of the model will have associated a rate function
ri(-) : N — R, where h is the number of places in the model. For every
marking of the net 7, 7 € N, the value of rate function r;(7) returns the
rate of the exponential distribution that models the occurrence time of the
event represented by the transition.

Furthermore, the enabling of transitions can be controlled through as-
sociated guards, i.e., logic predicates that are defined as marking-dependent
functions. Guards provide a very compact way of modeling complex condi-
tions that apply on the occurrence of events.

The firing of a transition atomically removes one token from each input
place of the transition and deposits one token in each of the output places of
the transition, i.e. those places for which an arc exists going from the transi-
tion to the place. Conflicts among enabled transitions, i.e. those situations
in which multiple transitions are enabled and these transitions share some
input places, are resolved by using a race policy, i.e. the shortest random
time among those of all enabled transitions is the one that determines which
transition will fire. After the firing, the marking of the net is changed, a new
set of transitions may be enabled for firing and if conflict still exist, a new
race will occur. If an enabled transition gets disabled from a conflicting one,
the memory of the elapsed time it has been enabled is lost, and at the next



enabling a new random firing time will be sampled from the negative expo-
nential distribution of the transition. However, notice that this rule, albeit
useful for understanding the rules of concurrent firing, is unessential because
of the memoryless property of the negative exponential distributions.

Moreover, we allow arcs having assigned positive integer weights func-
tions, (defaulted to the constant function 1, not indicated) which enrich the
possibility of controlling the token flow after transition firing. Weight func-
tions on arcs can be defined as marking-dependent functions. A transition
will be enabled if all the input places contain at least as many tokens as the
current weight of the connecting arc. When a transition fires, it removes
from each input place as many tokens as the weight of the connecting arc,
and puts as many tokens as the weight of the connecting arc inside each
output place.

Being an abstract modeling formalism, Petri nets by themselves do not
refer to any specific aspect of the biological domain, but rather a meaning
has to be associated by to modeler to places, tokens and transitions. In
the context of biological phenomena, the classical interpretation of Petri net
elements is the following one:

e Places represent chemical species or more complex biological entities
as well, such as as ribosomes, receptors, genes.

e Tokens inside a place (the marking of the place) model the number
of molecules of the species or of the entity represented by the place.
Notice that tokens are anonymous entities that do not carry any qual-
ifying information, and thus the molecule or the biological entity they
represent changes as they move from a place to another!'. Notice that
tokens are not always graphically depicted, apart from the cases in
which there are a few of them, but rather they are associated to places
when providing the initial state of the models.

e Transitions represent biochemical reactions. The exponential rate as-
sociated to a transition expresses the speed at which a reaction oc-
curs. The infinite server semantics of the firing is the one commonly
adopted, meaning that, if the number of tokens in the input places
allows for multiple reactions to proceed concurrently, the rate of the
reaction is multiplied by the number of the reactions, which is indeed
quite a simple way of modeling chemical reactions obeying the mass-
action law.

!Some Petri net modeling formalisms (for instance Colored Petri Nets [12]) allow for
tokens having attributes
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4 SPN modeling of S. cerevisiae cell cycle

In this section, we shall use the Stochastic Petri Nets formalism described
above to define a stochastic version of the cell cycle deterministic model
described in Section 2.2. The SPN model has one place for each of the
biochemical species considered in the deterministic model, and one transition
for each possible reaction. The complete SPN model for the cell cycle,
which we obtained with the constructive approach defined below, is shown
in Figure 3.

division t, tr
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s

CKIT N\

o
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Figure 3: SPN model of budding yeast cell cycle

Let us consider for instance the ordinary differential equation (3). This
equation is describing the time-dependent evolution of the concentration of
active molecules of species Cdhl. Therefore, the SPN model will have one
place, named C'dhl 4, containing tokens that represent the active molecules
of Cdhl, and one place named C'dhl containing tokens that represent the
inactive molecules of Cdhl. Differential equation (3) is describing 4 possi-
ble reactions; out of them, 2 transform inactive molecules into active ones,
and 2 model the opposite transformation. Hence, the SPN model will have
four reactions that move tokens between the C'dhl4 and the C'dhl places.
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The first reaction in equation (3) is occurring with a rate constant given
by ky(1 — [Cdh14])/(J3 4+ 1 — [Cdh14]). Notice that 1 — [Cdh14] is equiv-
alent to [C'dhl] because there is neither creation nor degradation of Cdhl
molecules. Therefore, in the deterministic model this transformation is mod-
eled through a first order reaction that only depends on the concentration of
the inactive Cdhl through the mass-action law. A transition t5 is included
in the SPN to model this reaction, and its rate function is defined as follows:

rs(#Cdhl) = 7@%@?2%1 (11)
where #X denotes the number of tokens contained in place X and « is a
constant scaling factor that accounts for mapping a concentration into an
equivalent number of molecules, for a given volume in which the reaction
takes place [10].

Let us now consider the second term in equation (3), whose rate constant
in the deterministic model is given by ky [Cdc204](1 — [Cdh14])/(J3 + 1 —
[Cdh1.4)), or equivalently, ky [Cdc204][Cdhl1]/(J5+[Cdh1]). This expression
tells that the a reaction of activation exists for Cdhl, which is driven by the
active molecules of species Cdc20. A transition tg is included in the SPN
model to represent this reaction, and its firing rate is defined as follows:

kg a#Cdc20 4 #Cdhl

re(#Cdc204, #Cdh1) = J3 + a#tCdhl

(12)

Similarly, we can model all the reactions that are described in the de-
terministic model provided by the differential equation (2),(3),...,(9). It is
important to remark the fact that such a simple one-to-one translation, from
the terms of the differential equations into the transitions of the stochastic
model, is made possible because of the expressive power of the specific class
of selected SPNs. The possibility of defining general rate functions of transi-
tions allows building a stochastic model at an analogous level of abstraction
as the one adopted in the deterministic one.

Translating equation (1) into the stochastic model requires a different
process. Indeed, that equation does not have a discrete counterpart in terms
of a discrete number of molecules. Therefore, it is included in the SPN
model with a transition growth whose firings represent an increase in the
mass of the cell. The mass itself is represented by the number of tokens
contained in place Mass. The condition for which the cell divides has to
occur is a marking-dependent guard assigned to transition division. When
the condition is satisfied, division fires immediately, and its firing removes all
the tokens contained in place mass (through a marking-dependent weight on
the connecting arc) and puts half of them back into mass (through another

12



marking-dependent arc). In the SPN model in Figure 3, we denoted arcs
having associated marking-dependent weights as having a small mark along
them (see the arcs connecting transition division to Mass place).

The specification of the SPN model is to be completed with all the rate
functions of transitions, the weight functions of arcs and the guards added
to transitions to control their enabling. As we have already described in
detail how the rates are obtained from the terms of the ODEs composing
the deterministic model, and presented the specific aspects of the modeling
for the equation ruling mass evolution, we omit this part of SPN definition.

The SPN model has been implemented into one tool that supports the
adopted modeling formalism, i.e., the Mobius tool [7], which allows for
graphical model definition and for solution via simulation.

5 Stochastic model validation

In this section we shall present the result of SPN model solution and will
compare them with the results provided by the deterministic model and
with those obtained via wet experiments with the purpose of validating the
stochastic version. To this, we solve the SPN model (via simulation) and
the system of ODEs (numerical integration) for the wild type budding yeast
and for a set of mutants that can be easily modeled with simple changes
to the two models. A vast repertoire of budding yeast mutant strains has
been generated in the lab, by deletion of the genes that code for some of the
proteins involved in the cell cycle. The results of such experimental work is
described in detail in the budding yeast cell cycle Internet page [1].

5.1 Wild type

We compare in this section the results provided by the SPN model and the
deterministic one for the wild type of budding yeast. We show in Figure 4 the
curves for the time courses of the cell mass, the total concentration of cyclin
[CycBr| and the concentration of the active form of APC protein activator
[Cdhl,4], as obtained from the system of ODEs defining the deterministic
model. The WPP software (available for download on [3]) has been used for
numerical integration over the time interval [0-400] (time unit is minute).
The results obtained from the simulation of the SPN model for an anal-
ogous interval [0-400] of simulated time are shown in Figure 5. For visual
purposes the protein numbers have been rescaled to concentrations for all
plots. The model simulation was performed with the Mébius tool [7]. A
single run of simulation results is shown in Figure 5, which was started
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Figure 4: Deterministic model results for the wild type

with the same initial state as the one applied to the ODE system of equa-
tions. The simulation was repeated mutiple times with different seeds of the
pseudo-random number generator, and the only difference among runs was
the stochastic fluctuation in cell cycle duration, also appreciable in Figure
5 for the single run.
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Figure 5: Stochastic model results for the wild type

We conducted a simulation experiment consisting of 1000 runs, each
using a disjoint sequence of pseudo-random numbers, to evaluate the average
cycle time duration and the average mass at cell division time in the SPN
model. We compare the obtained result against the value obtained from
the deterministic model in Figure 6. For the results computed through the
simulation of the SPN model, Figure 6 also shows the confidence interval
computed from the observations. The confidence intervals were computed
at the 95% level of confidence. For both results, the relative width of the
confidence interval is less than 1%. As it can be observed, there is a close
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match between the results of the two models, and the ODE results falls
within the confidence interval obtained via simulation.
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Figure 6: Comparison of cycle time and mass statistics

5.2 Mutant with SK deleted - cinlA, cin2A, cin3A

Let us now consider the mutant of budding yeast that is obtained with
inhibiting the production of the all the starter kinases - SK in the model.
Because in our models SK is responsible for starting the series of biochemical
processes that let the cell to Start event and enter into the S phase, we expect
the mutants cell not to be able to start DNA duplication and block in G1
phase.

Allowing for such a mutation in the ODE and SPN models is quite
straightforward: simply setting to 0 a few parameters and appropriately
changing the initial conditions leads to the definition of the model of the
mutant.

We show in Figure 7 a [0-400] minutes time course as computed by
solving the deterministic model. As expected, the mutant is not viable.It is
indeed able to complete mitosis once, because the initial condition sets the
state of the model after the S phase, when the SK has already accomplished
its role and it is not necessary anymore. However, in the subsequent cell
cycle, the lack of SK blocks the mutant into G1, as nothing can inhibit
the accumulation of the Cdk/CycB stoichiometric inhibitor CKI and of the
active Cdhl. Consequently, the total concentration of CycB stays very low
and what is available in the cell is bound with CKI and thus inactive, the
typical condition of the G1 phase.

Figure 8 shows one time course over [0-400] minutes for the SK deleted
mutant, as obtained from a single simulation run of the stochastic model.
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Figure 7: Deterministic model results for the SK deleted mutant
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Figure 8: Stochastic model results for the SK deleted mutant

The match with the result provided by the deterministic one is very accurate.
The first mitosis is completed and then the cell blocks in G1. Additional
runs of simulation performed using different sequences of pseudo-random
numbers provided exactly the same chart.

These simulation outcomes match the experimental result that this mu-
tant is not viable as it arrests in G1 phase [16].

5.3 Mutant with Cdc20 deleted - cdc20A

This mutation removes the APC mediator Cdc20 from the cell. Because
Cdc20 activity is responsible for the activation of the APC at the metaphase
to anaphase transition (Finish), the mutant is not to be able to complete
mitosis and blocks in the metaphase [18]. The results of the deterministic
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model shown in Figure 9 match this observation.

0 40 80 120 160 200 240 280 320 360 400

Figure 9: Deterministic model results for the Cdc20 deleted mutant

The same result is obtained with simulation ofr the SPN model, as shown
in Figure 10.

0 40 80 120 160 200 240 280 320 360 400

Figure 10: Stochastic model results for the Cdc20 deleted mutant

5.4 Mutant with SK and CKI deleted - cinlA,cin2A, cin3A,
siclA

Because one of the main consequences of SK activity is to cause the degra-
dation of the Cdk/CycB stoichiometric inhibitor CKI, it is interesting to
look at a double mutant in which both SK and CKI are deleted. Indeed, in
this case it is not obvious whether the cell would stop in G1 phase, or the
active CycB cyclin may raise to a level that overrides the activity of Cdhl
and enter into S phase.
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We show in Figure 11 a [0-1000] minutes time course of model results,
as provided by the ODE model. The ODE model shows the viability of this
double mutant, which matches the experimental observations [21].
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Figure 11: Deterministic model results for the SK and CKI deleted mutant

Figure 12 shows the results obtained with one simulation run of the SPN
model, over a time window of [0-1000] minutes of simulated time. The results
of the stochastic model also suggest the viability of this double mutant, with
an appreciable increase in the variability of the cell cycle duration.
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Figure 12: Stochastic model results for the SK and CKI deleted mutant

5.5 Mutant with CKI deleted - siclA

In this section we consider the mutant deprived of the stoichiometric in-
hibitor of the Cdk, modeled by species CKI.

We shown in Figure 13 the results provided by the deterministic model
of the mutant, over a [0-1000] minutes time window. The ODE results shows
the viability of the mutant, which fits the experimental observations [17].

The simulation output of the SPN model resembles the results of the
deterministic one, as it can be observed from Figure 14. It can be observed
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Figure 13: Deterministic model results for the CKI deleted mutant

from the simulated time course that the cell cycle in this mutant shows rele-
vant irregularities, with high variability in its length. Moreover, the mutant
appears to have problems in degrading CycB, which leads to a prolonged M
phase. On the other hand, some other cycles show a very regular pattern of
oscillations, perfectly matching the one returned by the deterministic model
in Figure 13. It is important to mention that delayed cell cycles have been
experimentally observed for this mutant, giving a nick name to siclA cells
as "sick” cells [13].
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Figure 14: Stochastic model results for the CKI deleted mutant

We conducted a simulation experiments to compute a few statistics for
the cell cycle of CKI deleted cells. We computed first of all the average values
of cell cycle duration and of the cell mass, and compared them against the
deterministic results provided by the ODEs, as shown in Figure 15. Steady
state simulation (1000 runs) was used to compute the statistics, with 95%
confidence level of results. As it can be observed, the results provided by
the two models are in agreement at this level.

Then, we looked at the spread of the observations. We plot in Figure
16 the relative frequencies of occurrence of the cycle time durations over a
time interval [80-200] minutes, for CKI deleted mutant and for the wild type
cell simulations. As it can be observed, the cycle time duration of the mu-
tant exhibits a much higher variability, in agreement with the experimental
observations [13]. Thus, the stochastic model could reveals the ”sick” non
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Figure 15: Comparison of deterministic and stochastic average values
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Figure 16: Distribution of cell cycle time for wild type and mutant

5.6 Mutant with Clb2 destruction box deleted and Clb5
deleted - Clb2dbA, clb5A

We consider in this section the mutant obtained with the deletion of the de-
struction box of cyclin Clb2 (which mutation reduces its degradation rates),
and with the deletion of cyclin Clb5 (which reduces the overall CycB level).
These two cyclins are collectively modeled by species CycB, both in the ODE
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and in the SPN model. We can represent these two mutations as follows:

e the deletion of cyclin Clb2 destruction box is modeled by removing the
activity of active Cdc20 to degrade CycB and by reducing the degra-
dation rate of CycB by active Cdhl (residual Cdhl activity remains
because of the KEN box on Clb2) [22];

e the deletion of cyclin Clbb is modeled by reducing the production rate
of CycB.

Experimental results show that this mutant is viable, but only under
those circumstances that slow down its growth rate [8]. This is the case,
for instance, when the mutant uses galactose as a source of energy. There-
fore, to simulate the growth in the galactose medium, we reduce the rate
constant of growth speed from 0.005 (the default value in all of the other
models, supposed the cells grow on glucose there) to 0.004. The determin-
istic model results for such mutant are shown in Figure 17, and correctly
show its viability.
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Figure 17: Deterministic model results for the Clb2 destruction box deleted
and Clbb deleted mutant

Figure 18 shows the results obtained from the SPN model of the mutant.
As it can be observed, the time courses returned by the two models match
very well.

It is interesting to observe that the deterministic model is able to fit
the lethality of the mutation in glucose (growth rate p7=0.005) and its
viability in galactose (growth rate uz = 0.0041) but cannot predict the
intermediate situations. It is reasonable to expect a continuous transitions
as the growth rate varies in the interval [y, — pr], with some mutant cells
having a limited survivability for values of the growth rate inside the interval.
If in population of mutant cells each of them are able to complete, with a
certain probability, a sufficient number of cells cycles before dying, a colony
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Figure 18: Stochastic model results for the CKI deleted mutant

may develop, even if its overall growth would be slow. Such small colonies
have been experimentally observed for various types of mutants.

We show in Figure 19 the results provided by the stochastic model for
a run using the growth rate value p = 0.0047, in which the cell was able to
complete two cycles before reaching a state that does not allow it to survive
further.
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Figure 19: A mutant cell completing two cell cycles before dying

We conducted an in-silico experiment to evaluate the probability that
a single mutant cell would be able to divide at least 10 times before dying
(forming a small colony), with varying the growth rate within the interval
[ur, — pr). The results of the simulation are shown in the chart in Figure
20, together with their confidence intervals. Also, that same probability is
shown for the result provided ODE, obvioulsy jumping from zero to one as
the critical value pr, is reached. For each value of the growth rate, we run
100 batches, each one using different a different sequence of pseudo-random
numbers.

The results in Figure 20 clearly show that colonies of the mutant may
exist for values of the growth rate higher than the threshold value pr,, which
sets the upper limit for the viability of the mutant in the ODE model.
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Figure 20: Probability of having at least 10 replications of a mutant

Thus we present that stochastic simulations can be important to check the
"partial” viability of some mutants that are at the border of life and death.

6 Conclusions and future work

This report presents the results of a modeling activity for the cell cycle of
budding yeast cells. A well established deterministic model, based on ODEs,
has been taken as the starting point for constructing an SPN model of the
cell cycle biochemical machinery. The SPN model was built with adopting
the same abstraction level captured by the deterministic model. A simple
and largely automatable procedure for mapping ODEs into SPN constructs
has been presented through its application to the process of model definition.

The resulting SPN model has been described, and then its validation
conducted, with a comparison of the results obtained via simulation against
the results provided by the deterministic model as well as with reference to
experimental results. The validation encompassed the wild type and various
mutants of budding yeast.

The validation showed a general agreement between the results of the
two models. We demonstrated how the stochastic version of the model
can however provide deeper insights about the cell cycle of the modeled
organisms, as it allows a statistic characterization of cell cycle parameters
such as duration and average cellular mass, and also provides a more precise
solution in some circumstances under which the viability of mutant cells is
probabilistic and cells may die after completing a few cell cycles.

More detailed deterministic models of the cell cycle in budding yeast
are available in the literature, which include molecules other than the ones
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we considered in this report. In our future work we plan to extend the
stochastic modeling by looking at the information contained in these mod-
els, starting with the model in [5]. Furthermore, we can enrich the model
with the explicit modeling of the various checkpoints. These checkpoints are
controlled by a number of signaling pathways that ensure the completion of
various step of the cell cycle, such as DNA replication, complete formation
of the mitotic spindle, alignment of chromosomes. Hence, the explicit mod-
eling of checkpoints provides the interface points in the cell cycle to include
detailed models of those pathways, an activity that we shall tackle in our
future work.
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