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ARISING FROM Yu-Qin Chen et al. Na-
ture Machine Intelligence https://doi.org/10.1038/
s42256-022-00446-y (2022).

The AI system AlphaZero [1, 2] famously learned to
play complex and strategic games such as Go and Chess
and achieved super-human performance in these tasks.
AlphaZero uses a combination of searching through the
possible states of a game (Monte Carlo Tree Search) and
a neural network to guide that search. The result is an
algorithm that learns to choose sequences of moves that
lead to a victory. In Ref. [3], authors Chen et al., set
out to employ this same set of techniques to solve a spe-
cific class of combinatorial optimisation problems, the
3-satisfiability (3-SAT) problems.

3-SAT is an NP-hard problem, where the task is to de-
cide whether there exists a choice of n binary variables
bi=1...n that simultaneously satisfy a set of m clauses of
3 variables each. A clause for a 3-SAT problem is of the
form C = (b2 OR not b4 OR b6). The authors focus on
the case of m/n = 3, for which there are always three
times as many clauses as there are variables. This ra-
tio is smaller than the critical value m/n ≈ 4.2, above
which the ratio of satisfiable expressions drops to zero [4],
however, it corresponds to a set of hard instances char-
acterised by a unique solution. The authors provide a
dataset that has one or several of such instances for dif-
ferent sizes of 3-SAT.

A 3-SAT problem of n variables can be encoded into
a Hamiltonian of n qubits, spanning a Hilbert space of
dimension N = 2n, whose groundstate provides the so-
lution. Solving the 3-SAT problem is then equivalent
to finding that groundstate, for which several algorithms
exist. The algorithm of choice here is the technique of
quantum annealing (QA) [5, 6].

In quantum annealing, finding the groundstate is done
by starting in a known (and easily prepared) groundstate
of an initial Hamiltonian H0, and then slowly (adiabati-
cally) interpolating to the desired final Hamiltonian Hf .
That is, we perform

H(t) = (1− s(t))H0 + s(t)Hf ,

for t going from 0 to T , and s(t) satisfying s(0) = 0 and
s(T ) = 1. Finding the optimal annealing path – the ac-
tual form for s(t) – is the central task. Starting from
the groundstate of H0, and changing s(t) adiabatically
will keep the system in the instantaneous groundstate
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Figure 1. Fidelity at the end of the quantum annealing pro-
cess vs annealing time T for 3-SAT instances with n = 11
variables and M = 5 frequency component in the annealing
schedule s(t). We compare a simple linear schedule (orange
triangles), gradient descent with the BFGS algorithm (blue
circles), and MCTS (red squares). Data are averaged over
the 18 instances provided in the GitHub repository; the er-
rorbars are due to the large difference in performance between
individual instances.

of the full H(t). At t = T then, we will have obtained
the groundstate of Hf and hence the solution to our 3-
SAT problem. At the same time, going slowly means the
annealing takes more time, and we thus have an inher-
ent trade-off between speed and accuracy: the perfect
place for an optimisation algorithm to help out. Fol-
lowing the original paper [3], we choose the fidelity as
the figure of merit for the accuracy of the algorithm,
which simply measures the overlap of the solution ob-
tained with the true solution (which for benchmarking
purposes is known). A fidelity of 1 means that the algo-
rithm achieved the perfect solution, whereas a fidelity of
0 is completely off. For more general purposes, when the
ground state is not known and it might be degenerate or
quasi-degenerate, the energy is a better figure of merit.
For the specific problem at hand, however, we checked
that the fidelity and the energy provide equivalent esti-
mates of the algorithm’s accuracy.

The way Chen et al. approach the problem of optimis-
ing s(t), is by expanding it as a Fourier series with M
frequencies ωk = πk/T , and then optimise the choice of
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these M Fourier coefficients:

s(t) = t/T +

M∑
k=1

xk sin(ωkt). (1)

The combination of the fixed linear term t/T and the si-
nusoidal functions ensures that s(0) = 0 and s(1) = 1.
The real-valued coefficients xk were not taken to be con-
tinuous values, but they are rather discretised into 40
steps between −0.2 and +0.2. Finding the right value
for each xk is then a search problem similar to a board
game, where the game consists of just M moves, and each
move means picking one of the 40 possible values. This
formulation sets the problem up for a solution with an
algorithm analogous to AlphaZero. We keep this struc-
ture only for the MCTS optimisation, while for gradient-
descent methods we consider the xk to be continuous and
unbounded.

I. COMPARING ANNEALING METHODS

In Figure 1 we compare different methods for the op-
timisation of s(t): a linear schedule for s(t), a gradient-
based optimiser, and MCTS. The error bars are obtained
as the variance of the optimisation over all 18 provided
instances of n = 11. Because the original codebase [7]
does not allow for easy reusability of the full MCTS +
neural network algorithm, we leave it out of the compar-
isons for the rest of this work.

Compared to the original figure (Fig. 3a in [3]), we
replace the authors’ gradient-based optimisation rou-
tine by a more standard implementation. For that,
we choose the scipy.optimize version of the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm [8].
Additionally, for the sake of reusability, we make several
more changes to the codebase provided by the authors [7].
In particular:

• We turn the hard-coded number of frequency com-
ponents M = 5 into a parameter.

• The convergence criterion for MCTS was set to a
fidelity of 0.7, which we change to either 0.99 or
to whenever the optimisation does not produce a
change in the fidelity of more than 1% over 20 steps.

For the rest of this report, we will not include the neu-
ral network addition to the MCTS. In its current form,
the codebase does not easily allow such re-use of the full
QuantumZero algorithm.

The gradient-based algorithm shown in Fig. 1 per-
forms significantly better than the original stochastic de-
scent (SD). The author’s version of SD evaluates gradi-
ents and update xk sequentially, moving in orthogonal
directions in the loss-landscape. BFGS evaluates gra-
dients for all xk and then moves in the direction that
minimises the overall cost function. Even though on av-
erage, the BFGS algorithm leads to better fidelities than

MCTS, we observed that is more prone to remain trapped
in low-quality local minima when the annealing time is
large. On individual 3-SAT instances, it can happen that
MCTS converges to a better result than BFGS; we ob-
served this for 2 out of 18 instances of the n = 11 dataset,
corresponding to the cases where the linear annealing
performs the worst. Moreover, there is a second merit
to using MCTS, which becomes more apparent when we
consider metrics such as the number of function evalu-
ations and the achieved fidelity for different numbers of
frequency components.

II. FREQUENCY COMPONENT DEPENDENCE

We now investigate the dependence of the achieved fi-
nal fidelity on the number of frequency components used
in the expansion of s(t) (see Eq. 1). We show this result
for both the BFGS and MCTS algorithms in Fig. 2(a)-
(b). The dependence on M for the BFGS optimisation
method is only very minimal, whereas for MCTS having
more frequency components leads to lower accuracy for a
given annealing time T . Importantly, however, for MCTS
the overall fidelity seems to keep increasing for increas-
ing T , whereas BFGS tends to get stuck in local minima
that prevent it from finding the highest fidelity (c.f. the
M = 3 data for BFGS). A better minimum can be found
by adding some small noise to the frequency component
of the initial guess and repeating the local optimisation to
facilitate the exploration of the cost function landscape.
In these results, the MCTS runs ran until convergence
was achieved (see above for the code modifications that
highlight the convergence criteria). To improve its per-
formance at large M , one can choose a more stringent
convergence condition, at the likely cost of running the
algorithm for a longer time.

III. COMPARING EVALUATION NUMBERS

Next, we investigate the required number of evalua-
tions of the annealing schedule. This number is a more
fair comparison for practical implementations because it
dictates how often an annealing experiment would have
to be run. Figure 2(c)-(d) shows this metric for BFGS
and MCTS again for 3-SAT problems with size n = 11.
In the former, the number of function evaluations per
repetition increases monotonically with both the anneal-
ing time and the number of frequency components. For
large T it seems that Nfev is reaching a plateau, suggest-
ing that the optimisation process has reached a “glassy”
phase where the fidelity landscape has a large number
of local maxima with small performance difference, with
some similarity to the result presented in Ref. [9]. The in-
crease of Nfev with the number of frequency components
is instead due both to the increasing dimensionality of
the parameter space and the computational cost of eval-
uating numerically the gradient of the fidelity.
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Figure 2. (a)-(b): Fidelity vs annealing time T for different numbers of frequency component M of the annealing schedule.
BFGS data are obtained by taking the best result out of 10 local optimisations starting from a noisy linear schedule. Notice that
the BFGS fidelity is almost independent of M while for MCTS optimisation the performance slightly decreases for increasing
values of M . (c)-(d) Number of function evaluations required for the schedule optimisation as a function of the annealing time
T for different numbers of frequency components M . BFGS and MCTS have markedly different behaviours: the former requires
an increasing number of queries to the quantum annealer as the annealing time and the cardinality of the parameter space M
increases; MCTS instead has a resource requirement that seems independent from T and M , beside the data for M = 3 that
reaches convergence much faster.

Interestingly, MCTS shows very little dependence on
both T and M of the number of queries to the annealer
required for convergence, with the exception of the data
for M = 3. This can be linked to an inherent property
of the discretised energy landscape, which might smooth
out some of the fine structures present in the contin-
uous space used for BFGS, as well as a better stabil-
ity of MCTS for large search spaces. Overall, with the
chosen convergence condition, MCTS still require more
function evaluations than a single BFGS local minimum
search, even though it might reach an advantage over
gradient descent for larger system sizes, where large an-
nealing time and schedule optimisation are fundamental
for reaching good accuracy.

IV. MAX-CUT

To study the flexibility and universality of the method,
we extend the performance analysis on another common
classical optimisation problem, namely Max-Cut [10, 11]
on an unweighted 3-regular graph. Given a regular graph
G = (V,E), where V = {1, 2, . . . , N} is the set of vertices
and E = {〈i, j〉} is the set of edges, the Max-Cut problem
Hamiltonian reads

Hf =
∑

〈i,j〉∈E

(1 + σz
i σ

z
j ) , (2)

which corresponds to an antiferromagnetic Ising model
on the graph G. Since Hf is diagonal in the compu-
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Figure 3. Fidelity at the end of the annealing process vs
annealing time T for unweighted MaxCut problems on 3-
regular graphs with n = 12 vertices. The annealing schedule
has been optimised over M = 5 frequency components. We
compare a linear schedule (orange triangles), gradient descent
with BFGS algorithm (blue circles), and MCTS (red squares).
Data are averaged over the 19 possible connected graphs with
the specified geometry.

tational basis, the initial (driving) Hamiltonian can be
chosen to be H0 =

∑
j σ

x
j as in the 3-SAT problem inves-

tigated in the original paper and in the previous sections
of this Reusability Report.

In Fig. 3, we report the fidelity as a function of the
annealing time obtained with a single gradient-based
optimisation of the schedule s(t) (circles), a single run
of MCTS run unitl convergence (squares), and a linear
schedule s(t) = t/T (triangles). The number of vertices
in the graph, i.e. the number of qubits, is n = 12 and
each vertex has three neighbors, introducing frustration
in the model; the fidelity is averaged over all possible
connected graphs with this geometry. The number of fre-
quency components in the optimised annealing schedule
is M = 5. We obtain results similar to those presented in
Fig. 1: the BFGS optimisation in a continuous variable
space leads to better fidelity than MCTS, which, how-
ever, shows an improvement over the simple linear sched-
ule. As observed for the 3-SAT problem, MCTS requires
also a larger number of function evaluations to reach con-
vergence: on average, the data reported in Fig. 3 required
Nnfev ∼ 200 for BFGS and Nnfev ∼ 1000 for MCTS, even
though this difference might partially depend on the de-
tails of the MCTS algorithm implementation.

V. CONCLUSION AND DISCUSSION

In this report, we compared two strategies to optimise
the annealing schedule on 3-SAT instances, following the
original paper [3]. We considered a ratio between the
number of clauses and the number of variables m/n = 3
and focused on hard instances characterised by a unique

solution to the combinatorial problem. We found that
a gradient-based optimisation in a continuous variable
space is, in general, preferable over MCTS, both in terms
of accuracy and number of calls to the quantum annealer.
This result is in contrast with the original claim and sug-
gests that restricting the optimisation of the frequency
components on a discrete set of points limits the accuracy
that can be reached for given computational resources.
However, MCTS displays remarkable independence from
both T and M of the number of function evaluations re-
quired for convergence. Hence, MCTS might have an
advantage in large parameter space with complex cost-
function landscapes, where gradient-descent optimisation
tends to get trapped in local extremes.

VI. FUTURE DIRECTIONS

Our data suggest that MCTS could become systemat-
ically better than gradient descent optimisation when a
large annealing time T and a number of frequency com-
ponents M are needed. Typically, this would be the case
when the system size n is also large and adiabatic evo-
lution is hindered by vanishing energy gaps. Hence, a
careful scaling analysis of the performance with N can
lead to a better understanding of the possible advantages
of MCTS as an annealing schedule optimiser.

Furthermore, an overall improvement could be gained
by a different decomposition of the annealing schedule.
Our data in Fig. 2 indicates that increasing M leads to
very little performance gain; a different basis set might
lead to a clearer advantage of MCTS in the large M
regime.

Finally, the apparent stability of MCTS when the op-
timisation problem is “hard” (large T and M), sug-
gests that it might be a good candidate as the clas-
sical optimiser in variational quantum algorithms [12],
where gradient-based methods suffer from the appear-
ance of so-called barren plateaus[13]. Recent results [14]
showed that this problem can be overcome by transfer-
ring smooth optimal schedules. The neural network-
aided schedule transfer implemented in the original
QuantumZero algorithm might therefore be useful to
tackle such issues. The current status of the original
codebase [7] does not easily allow for such an inves-
tigation unfortunately, due to the missing neural net-
work, several hard-coded parameters, and sparsity of
comments. For that reason we did not cover this in this
reusability report.

The modifications and additions we made to the code-
base can be found in a separate repository [15], which
includes a more modular problem setup, more modular
annealing methods, the BFGS method, and the code for
running the MaxCut optimisation problem.
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CODE AND DATA REPOSITORY

The code (and link to the associated data)
can be found at https://github.com/condensedAI/
quantumzero (see ref. [15]).
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