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Abstract

Large-scale mapping of forest Aboveground Biomass (AGB) is a challenging task and

crucial for forest management and planning. The use of Satellite Remote Sensing (SRS)

data has recently increased for AGB prediction due to their large footprint and low cost

availability. There are various limitations and problems with SRS data that require in-

novative and effective solutions for large-scale AGB mapping. This thesis provides three

main contributions in the context of using SRS for AGB prediction.

The first contribution of the thesis involves the use of Satellite Multispectral (SMS)

data characterized by different spectral specifications, spatial resolutions and temporal

availability. A systematic framework involving an adaptive regularization method was

implemented to observe and quantify the response linked to various characteristics of the

SMS data. The second contribution presents a dynamic generative neural network archi-

tecture for modelling AGB using multi-sensor satellite RS data. It proposes a method to

derive AGB-oriented features and provides a seamless multi-sensor feature fusion method

for AGB prediction. The third contribution presents a framework developed from the

combination of a hyperparameter optimization procedure and a meta-learning algorithm

to set up an end-to-end automated pipeline for modelling AGB. The contribution focuses

on automatic development and extraction of features from MS data as well as automatic

stacking of algorithms to compose an optimal ensemble model.

The comprehensive analysis for each contribution was based on quantitative and qual-

itative results from the performed experiments. The first contribution pin-pointed the

strengths and shortcomings of SMS data for AGB prediction in terms of effective spectral

channels, effect of temporal information and role of spatial resolution for AGB predic-

tion. The second contribution demonstrates the effectiveness of the proposed generative

process in producing features that deliver more accurate AGB predictions as compared to

the conventional approaches. Lastly, the third contribution generated automated features

and stacked ensemble of models that outperformed individual models. The systematic

series of experiments and flow of studies confirm that SRS data can be effectively used

for accurately modelling AGB using the advanced methods demonstrated in the thesis.
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Chapter 1

Introduction

1.1 Background

The emission of carbon dioxide that leads to climate change is a compelling

reason for acquiring accurate and large-scale information on forests. The

amount of carbon stored in the trees is directly proportional to the forest

AGB. Human activities have continuously accelerated the release of carbon

dioxide in the atmosphere. As a result, AGB is identified as an essential

climate variable [1, 2]. Moreover, the problem of forest fragmentation that

affects biodiversity can be studied using dynamics of forest AGB [3, 4].

Therefore, a consistent, high resolution and large-scale AGB mapping is

a critical requirement for ecological conservation. AGB mapping is also

important for energy and resource management that directly affects the

economy. Accurate AGB predictions are required to regulate harvesting of

large forest areas. The most typical methods to estimate forest AGB are

in-situ measurements performed by regional or national forest authorities.

These field measurements are valuable for providing accurate estimates

of forest biomass that are based on allometric equations. However, such

measurements are used at the local scale and are costly and difficult to be

acquired over large forest areas. Thus, in-situ measurements have a limited

coverage and cannot provide spatially explicit information on forest AGB.
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Figure 1.1: Cost and Time Effectiveness versus Measurement Uncer-

tainty of various acquistion modes (Field, UAV, Airborne and Satellites)

for Global AGB mapping.

Satellite Remote Sensing (SRS) based Earth Observation (EO) data is

an optimal source for AGB estimation in terms of spatial coverage, cost

effectiveness and temporal availability at the regional or global scale (Fig-

ure 1.1). Airborne Light Detection and Ranging (lidar) data that provides

3D structural information of forest are very reliable for modelling AGB.

However, they are expensive and their acquisition for large forest areas is

restricted to certain countries. The modelling and mapping of AGB at

a regional or global scale requires data that are economically viable with

a comprehensive coverage and availability. A surge in the availability of

satellite EO data has increased the number of studies conducted to analyze

its performance for mapping forest AGB [5, 6, 7, 8]. These attempts focus

on increasing reliability of cheap and extensively available SRS data (e.g.,

MS, SAR) as compared to the expensive and globally limited datasets (e.g.,
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lidar). Many studies have utilized the Landsat archive as a time-series re-

source for monitoring forest carbon stocks [5, 9, 10]. The Sentinel missions

– Sentinel-1 (C-band SAR) and Sentinel-2 multispectral images have also

been used for prediction and quantification of forest AGB [11, 12, 13]. Re-

cently, the private sector has revolutionized the space industry by small

satellite missions (e.g., RapidEye, Dove, Iceye, etc.). The use of small

satellite technology can be effective in developing economical solutions for

ecological problems. The latest developments suggest that small satellite

data can be cost effective and efficient to quantify and map forest AGB at

large scale [14].

Figure 1.2: Multiscale (10, 5 and 3 m) SRS data as compared to Airborne

Lidar Data for Forest Mapping.

Multispectral (MS) data holds a significant share of the recently devel-

oped spaceborne EO data capacity. SMS data are available at various spa-

tial scales with a high temporal coverage of the Earth (Figure 1.2). A high

temporal coverage has provided a greater possibility for collection of cloud-

free images. A long life-span and high repetition rate of satellites enable
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long-term forest monitoring. Apart from the spatio-spectral information,

temporal information can be derived and used for AGB modelling. In liter-

ature, a varying degree of success has been achieved by different studies for

modelling AGB using MS data. Landsat derived indices achieved a 25%

- 30% accuracy for tropical forests of Brazil and 43% - 72% for commer-

cial forests of Africa [15, 16]. There are consistent attempts being made

to develop techniques to improve performance and achieve reliable AGB

predictions with SMS data [17, 18, 19, 20]. With regards to Synthetic Aper-

ture Radar (SAR) data, the interaction of radar waves with tree scattering

elements establishes a physical relation with AGB. The sensitivity of AGB

depends on the radar wavelength. Long wavelength SAR (P, L bands) are

more sensitive to AGB as compared to short wavelength SAR (C band).

In the current scenario, there is no availability of long-wavelength open-

source SAR and the cost of commercial SAR is relatively high. Recent

developments attempt to combine short-wavelength SAR (e.g., Sentinel-1

C-band) with MS data for implementing advanced modelling methods to

improve AGB predictions [21, 22, 23, 24, 25].

The key elements for deriving accurate AGB predictions from SRS data

are the extraction of targeted features and selection of a suitable mod-

elling approach. Spectral bands (especially VNIR and SWIR) hold infor-

mation on forest structure, texture and pigmentation that are correlated

with AGB. Different spectral features (e.g., spectral bands, vegetation in-

dices, transformed images) and spatial features (e.g., textural images) from

MS data are used to model and predict forest AGB [12, 26, 27]. It was

found that vegetation indices formulated using near-infrared wavelengths

are weakly related to AGB as compared to shortwave infrared wavelengths

for forest areas with complex stand structures [6]. The Grey Level Co-

occurence Matrix (GLCM) based texture measures are typically used to

examine the relationships between AGB and textural images [28]. In case
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of SAR data, features such as backscatter amplitudes and phases are com-

monly used for AGB modelling [29, 30]. Many techniques involving SAR

data are relatively complex and do not follow the traditional approach

of modelling. For example, InSAR technique requires collection of co-

herence data over a short time increment from two identical instruments

and the PolInSAR technique combines varying polarization of radar sig-

nals along with analysis of phase differences to produce differential range

for height-based biomass estimation [31]. The traditional modelling ap-

proaches constitute of using parametric and non-parametric algorithms for

modelling AGB. Parametric algorithms require a specific pre-determined

set of parameters of fixed size to predict AGB [32]. The most conventional

parametric algorithms for AGB modelling are correlation coefficient analy-

sis, stepwise regression and spatial co-simulation algorithms [6, 33, 34]. In

contrast, non-parametric algorithms do not explicitly pre-define the model

structure and instead follows a data-driven strategy [35]. The most widely

used non-parametric algorithms for AGB modelling are k-NN, Regression

tree, Random forest, Support vector machines and Artificial neural net-

works [36].

1.2 Motivation

Mapping AGB at large-scale is a challenging task that requires to solve

problems related to data, features and process of modelling. The foremost

requirement is data availability as forests cover a very large area on the

Earth. The recent trends indicate a steady growth in number of launched

EO satellites and promising prospects for the future (Figure 1.3). The

recent participation of private sector and advances in small satellite tech-

nology has created a huge scope for developing frameworks to handle big

satellite data and retain relevant information. It is observed that a signif-
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icant proportion of EO satellites in space are small satellites. According

to a recent survey (Source: pixalytics.com), more than 350 of the 857 EO

satellites are optical or MS imaging satellites. These satellites provide a

daily acquisition capacity at a high spatial and spectral resolution. Thus,

an increased availability, fine specifications and ease of access to the satel-

lite imaging data are prime motivations for using them to map AGB at a

large scale.

Figure 1.3: Increasing Trend in Number of Earth Observation Satellites

launched from 2013 – 2020 (Source: Northern Sky Research).

The economic prospects related to use of satellite EO data are very

promising for natural resources and environmental monitoring. Natural

resource management and environmental monitoring together are expected

to contribute about 18% of the total $98 billion satellite EO economy by

2027 (Figure 1.4). Moreover, the net-zero transition goals present immense

opportunities and hold a very huge economic potential. The market size

related to carbon management are expanding to support low emission by

means of green construction and manufacturing. This presents a great

motivation from an economic perspective for satellite based AGB monitor-
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ing and mapping. This also creates a requirement for automation, devel-

opment and maintenance of models for efficient performance over multi-

source satellite data. The feature extraction and modelling techniques need

to be more accessible and reproducible for large scale AGB mapping. The

traditional approaches should shift from isolated individual experiments

to collaborative scaled up frameworks that are accessible to the scientific

community.

Figure 1.4: Market Share Projections (2021-27) for Satellite Based Earth

Observation in Various Areas (Source: Euroconsult).

At present, there are multiple approaches and methods proposed in lit-

erature for AGB prediction. Some of them are exclusively designed for

certain types of forest, tree distribution or type of tree species. Hence,

there is a growing need to develop methods that are more generalized and

adaptable to wider AGB modelling scenarios. Moreover, instead of isolated

training and evaluation of different models, a common unified framework

can provide better basis for comparison and generalization of models. Do-

main adaptation and similar Aritifial Intelligence (AI) based techniques are
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Figure 1.5: Publication and Citation statistics of studies on use of AI for

Biomass Estimation (Source: Web of Science)

becoming more relevant to resolve AGB modelling problems. Advances in

generative and graph neural networks have provided solutions to many

complicated problems including those in RS of forest. The number of

peer-reviewed scientific publications on application of AI for AGB mod-

elling have steadily increased in the recent years (Figure 1.5). This shows

an exceptional interest of the scientific community to capitalize on the po-

tential of AI and overcome problems in development and deployment of AI

based solutions for AGB mapping. This provides motivation to build cus-

tom AI models and modelling pipelines for delivering advanced solutions to

the AGB modelling problem. There are some notable challenges for using

AI in RS applications that requires efficient solutions. The most promi-

nent among them are data scarcity, high computing power requirements

and complexity. These challenges however provide excellent research av-

enues and encouragement to provide elegant solution to research problems

10



in using AI for forest AGB prediction.

1.3 Research Problems

Absence of structural information in satellite multispectral data

SMS remote sensing uses a passive mechanism and provides two-dimensional

information of forest canopy. Despite the widespread application of SMS

data, the data finds limited usage for AGB estimation due to restricted pen-

etration capacity in forest canopy. Three-dimensional data such as lidar

can capture forest structural features more precisely unlike two-dimensional

SMS data that require empirical solutions for AGB estimation. Although,

the extensive availability and lower cost of SMS data provides creates re-

quirement for development of methods that can resolve the problems re-

lated to the usage of the data. SMS data derived canopy reflectance and

vegetation indices are used to predict forest AGB using empirical models

(regression or machine learning algorithms). Moreover, SMS data (e.g.

Landsat-8, Sentinel-2, MODIS) are sensitive to vegetation density which

relates to AGB. The problems identified in literature are with regards to

the moderate accuracy of the empirical models that vary with the spectral

variables and the local environment. There are observable research gaps

that require rigorous inspection of SMS data to develop robust models

using spectral variables. There are seasonal impacts causing spectral vari-

ation that affect model parameters and thus cause change in response of

the model. Therefore, it is important to identify the spectral channels that

remain stable and consistently correlated with the target AGB. Also, the

radiometric specifications of different satellites may cause certain variation

in response of identical spectral variables from different satellite data. To

sum up, all properties associated with different SMS data requires exam-

ination that can make the empirical modelling strategy more reliable and
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compensate for the lack of structural information in the data.

Data Saturation and Low Prediction Precision

Data saturation is the common problem encountered using SRS data such

as MS and SAR for AGB prediction using empirical modelling strategies.

The AGB prediction precision of the model is compromised due to data

saturation problem with spectral variables. Also, the cloud cover or aerosol

interference obscures MS remote sensing signal creating data unavailabil-

ity or noisy data. SAR data are not affected by clouds and atmospheric

aerosol and penetrate vegetation depending on the radar frequency. How-

ever, as per current scenario, open-source SAR data are only available in

C-band, which is problematic due to high sensitivity to soil conditions,

surface roughness and soil moisture in low vegetation coverage. Also, esti-

mating AGB using its relationship with C-band SAR backscatter results to

saturation at high biomass levels. This creates a requirement of additional

source of information and extraction of target oriented features from the

data. SRS has the advantage of delivering MT data for an area of interest.

The role MT data as additional information source to deal with saturation

needs to be investigated and quantified. Moreover, the features that are

extracted from SMS or SAR data are required to be more sensitive to AGB

at all levels. Therefore, there is a need to build mechanisms to manipu-

late these extracted features that can make them more sensitive and AGB

oriented. Resolving these problems can lead to increase in the modelling

accuracy and deliver precise AGB predictions from the model.

Lack of Robust Modelling Pipeline and Evaluation Strategy

There are multiple features that can be extracted from SRS data and mul-

tiple models that can be experimented to model forest AGB. The task of
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determining suitable features and suitable models from a large collection

is tedious and requires statistically robust strategy. There are a few con-

ventional feature regularization and model selection techniques that can

be used to deal with part of these issues. However, it is challenging to

effectively link the feature extraction and modelling process with an au-

tomated framework to deal with the problem of systematic errors. Also,

there are diverse algorithms based on different mechanisms such as bag-

ging, boosting, neural nets, etc., which are required to be selected, tuned

and parameterized in a robust manner. It is difficult to execute such tasks

using conventional selection and regularization techniques. Manual process

of understanding internal logic of the algorithm and its relation to AGB

is time-consuming and resource-intensive. Thus, there is a need to replace

manual analytics with automated algorithms for regulating elements of the

modelling pipeline such as identifying relevant part of the data or features

and choosing the type of algorithm to make the process more reliable.

Fine-tuning the end-to-end machine learning process or the machine learn-

ing pipeline automatically can increase efficiency at scale. This can increase

the standardization and consistency into the generation of AI models and

provide a way to clearly define when an AI model is good enough to be

deployed.

1.4 Objectives and Novel Aspects of the thesis

The overall goal of the thesis is to develop approaches and methods for

solving the major issues related to the use of SRS data for AGB prediction

such as assessment of feature response from SRS data , targeted feature

generation and automation of AGB modelling pipelines. In particular, the

specific objectives of thesis are defined as follows:

1. Develop a procedure for assessing the effect of temporal, spectral and
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spatial properties of SMS data on spectral features for prediction of

forest AGB and overcoming absence of structural information.

2. Develop a generative deep neural network for target-oriented feature

generation and multi-source feature fusion to counter data saturation

and improve AGB prediction precision.

3. Develop an automated end-to-end pipeline for robust feature genera-

tion, model ensembling and model ranking strategy for prediction of

forest AGB.

The first objective requires deploying an adaptive regularization proce-

dure for performing response assessment of spectral features to the target

parameter (AGB). This provides crucial information on response of data

and saturation of spectral features that are preliminary to extraction and

engineering of target-oriented features for AGB modelling (second objec-

tive). The qualitative and quantitative results provides details regarding

the requirements to refine features and append source of information for

improving the model performance. The second objective aims at the de-

velopment of a deep generative neural network to engineer target oriented

features and feature fusion benefits from the results obtained from the first

objective. The response assessment facilitates better implementation of the

network architecture and fusion mechanism. The third objective attempts

to automate multiple processes such as feature extraction, hyperparameter

optimization, model selection and ensembling that are involved in mod-

elling AGB. This facilitates the modelling process in overcoming drawbacks

observed for previous two objectives with respect to feature generation and

model development to deliver an integrated framework for modelling. The

developed method aims to deliver a more robust ensemble model as com-

pared to single base models developed for the previous two objectives. The

thesis collectively aims at providing contributions for solving the AGB pre-
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diction problem from an “Information Engineering and Computer Science”

perspective. The constituent contributions of the thesis are organized and

addressed from the standpoint of predictive analytics and machine learning

applications. Therefore, the thesis follows a red thread limiting discussions

regarding the advancements provided in the contributions with respect to

statistical tools and data processing pipelines.

The novel aspects that are incorporated to achieve the objectives of the

thesis are briefly stated as follows:

1. Novel aspects in the procedure developed for effect assessment of vari-

ous properties (temporal, spatial and spectral) of SMS data on spectral

features considered for modelling AGB

In order to achieve the first objective, a generalized linear model is de-

ployed with adaptive lasso regularization for evaluating the response

of spectral features with respect to different capacities of SMS data.

The procedure is implemented for its ’oracle’ property. The adap-

tive lasso algorithm has properties to identify the optimal subset of

variables as if the true underlying model were given in advance. The

response of spectral features extracted from SMS data are analyzed

and compared for the spatial, spectral and temporal capacities of MS

data. The adaptive lasso provides consistency in this regard as or-

dinary lasso often includes too many features and the true response

is usually provided by a subset of these features. A secondary stage

regularization of adaptive lasso controls the bias and leads to consis-

tent selection of features (oracle property). Thus, a systematic and

efficient framework was put in place for detailed investigation of each

MS data capacity with regard to spectral features that can be followed

for development of effective tools and techniques to model AGB using

SMS data.
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2. Novel dynamic architecture developed for the extraction and fusion of

target-oriented features from MS and SAR data

In order to achieve the second objective, a novel, dynamic and gener-

ative neural network architecture was proposed for extracting target

oriented features to model forest AGB. The proposed architecture is

an attempt to combine generative model with a variational autoen-

coder neural network. The main difference between an ordinary and

the proposed variational autoencoder is that conventionally the latent

space is generated from a prior Gaussian distribution. Whereas, in

this contribution fine blend of inference and generative parameters

are used to impose a conditional distrubtion of latent representation

based on the target AGB balues . The combination of three loss func-

tions enables the generative features to represent an ordered variation

in the target AGB parameter. These loss function enables the com-

ponent networks of the proposed model to regularize each other and

deliver more accurate AGB predictions. The proposed architecture is

dynamic in the sense that it shrinks and expands depending on the

input dimension to retain the relative ratio with number of model

parameters. Moreover, it provides a platform for seamless fusion of

multi-senor remote sensing data.

3. Novel approach developed based on the concept of automated machine

learning for deploying end-to-end pipeline for AGB prediction

In order to achieve the third objective, the concept of automated ma-

chine learning is employed to automate all sections of the modelling

pipeline for prediction of forest AGB. An end-to-end pipeline is de-

veloped for automatic feature extraction using a hyperparameter op-

timization procedure. Particularly, a Tree-Parzen estimator (TPE) is

used to optimize the features in form of empirical equations and fit the
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best spectral band to compose the feature. This kind of automation

produces target specific features and rejects the notion of predefined

features such as standard spectral indices. Moreover, a meta-learning

algorithm is implemented for automating a large selection of diverse

regression algorithms to model AGB. Particularly, a super-Learner

(SL) algorithm optimizes the machine learning hyperparameters and

performs comparative ranking to point out the best base models. The

algorithm also enables to analyze combinations of different base mod-

els to deduce an optimal combination suitable to best fit the data and

deliver best AGB prediction. This novel procedure based on combi-

nation of TPE and SL algorithm enables deployment of an automated

end-to-end AGB prediction pipeline.

1.5 Structure of the Thesis

The current chapter (Chapter 1) is a brief overview of the background,

motivation and research problems for the work presented in the thesis.

The chapter also briefly discusses the objectives and novel aspects of the

thesis. The rest of the thesis is organized as five additional chapters.

Chapter 2 presents the state-of-the-art for AGB prediction using SRS

data. The analysis of the state-of-the-art of both active (SAR), passive

(MS) and combined (MS and SAR) is covered.

Chapter 3 provides details regarding the methodology proposed to per-

form an extensive analysis of SMS data with diverse specifications and the

effects of each property of the MS data for the prediction of forest AGB.

Chapter 4 provides details regarding the proposed framework and archi-

tecture based on a generative neural network based model for AGB-oriented

feature generation and fusion. Additionally, it provides a quantitative as-

sessment of generated features and a comparison with contemporary fea-
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tures and algorithms to model AGB.

Chapter 5 illustrates the hyperparameter optimization and meta-learning

algorithms used for achieving the third objective of the thesis. The pro-

posed method further discusses the process of combining these algorithms

to establish an end-to-end pipeline for AGB prediction using SMS data.

Chapter 6 presents the collective conclusions drawn from the results of

the three main contributions of the thesis and provides a scope regarding

the possible future work.
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Chapter 2

State of the Art

The modelling of forest AGB using remote sensing data can be performed

based on individual tree based methods and area based methods. Individ-

ual tree based methods operate on individual tree statistics extracted from

a very high resolution or three-dimensional remote sensing data. The cost

of data acquisition for implementing individual tree based techniques is

higher but the extracted statistical attributes carry more detailed and ac-

curate information. Whereas, the area based methods operate on statistics

extracted over an area or a plot consisting multiple trees that are prefer-

able for coarse resolution remote sensing data. Area based methods are

usually recommended for SRS data and are efficient in terms of scale of

estimation. Area based methods require a considerably larger number of

field samples for model calibration in order to achieve acceptable modelling

accuracy. This thesis concentrates on using SRS data and therefore, on de-

veloping area based methods for modelling AGB. Satellite based MS (in

passive remote sensing) and SAR (in active remote sensing) data are com-

paratively more accessible than other modes and thus used for the studies

conducted in this thesis. The following sub-sections discusses the state-of-

the-art approaches using MS, SAR and combined MS-SAR data for AGB

prediction.
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2.1 State-of-the-art for AGB prediction using SMS

data

Spectral indices extracted from SMS data are sensitive to the photosyn-

thetic properties of forest vegetation. These spectral indices are indirectly

related to forest AGB by means of an empirical relationship between foliage

and total AGB. Thus, the signals captured by MS sensors are sensitive to

variations in canopy structure and several methods use this relationship

to model AGB [6, 9, 10]. A recent surge in the capacity of MS satellites

has increased availability of MS data and led to the development of novel

methods for AGB prediction [19, 69, 37]. Studies indicated that a few spec-

tral predictors were observed to saturate at higher AGB values typically

greater than 150 Mg/ha [38]. The variation of saturation levels are also

dependent on the forest types. Landsat data evaluated for different forest

types observed saturation at 123 Mg/ha for broadleaf forest, 143 Mg/ha

for Fir and 152 Mg/ha for mixed forest. Since then, the capability of

spectral predictors has been gradually enhanced with new freely available

MS products such as Sentinel-2 MSI (at 10 m against 30 m of Landsat-8).

The three Sentinel-2 red-edge bands are potentially effective in increasing

sensitivity of spectral features to map AGB with a good accuracy. The

assessment of Sentinel-2 data has accounted for improved AGB prediction

accuracy as compared to Landsat data in multiple studies [113, 78]. The

RMSE of predicted AGB for Sentinel-2 ranged from 65 - 95 Mg/ha, which

is significantly better compared to Landsat with RMSE = 85-100 Mg/ha

[113]. Similar studies have attempted to assess the saturation limits of

different MS satellite data for estimating forest AGB [40, 25, 41]. These

studies collectively indicate better results achieved with recent MS data

with enhanced spectral and radiometric properties. However, the assess-

ment of potential for Sentinel-2 and other recent MS satellite missions may
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require a more thorough investigation. Also, the implementation of specific

advanced modelling algorithms can further minimize the retained levels of

saturation for predicting AGB.

There are several algorithms that have been tested for modelling for-

est AGB using SMS data. Most popular among them are multiple linear

regression, Random Forest (RF), Support Vector Machine (SVM) and Ar-

tificial Neural Network (ANN) [32, 37]. The multiple linear regression

models are used in identifying appropriate spectral variables and analysis

of various properties of MS data to predict AGB [32, 114, 116]. Multiple

linear regression also allows to determine the relative contribution of each

of the independent variables to the total explained variance of the model.

Alternately, machine learning algorithms such as RF, SVM and ANN are

more flexible and create complex models for capturing non-linearity in

the AGB. These models are non-structured and data-driven, thus deemed

more reliable for predicting AGB using MS data. RF, SVM and ANN

models were compared in a recent study [37] to model AGB using MODIS

data. RF model delivered accurate AGB predictions (R2 = 0.938 and

RMSE = 19.88%) due to less sensitivity to noise in the training samples

yet prone to overfitting. SVM models produced better generalization but

saturated for large AGB values (R2 = 0.629 and RMSE = 40.56%). The

ANN model performed least accurately (R2 = 0.334 and RMSE = 53.01%)

among the three models as the network quickly plunges into a local mini-

mum. In spite of achieving good performance, RF models are less reliable

for unbalanced datasets and cause overfitting. eXtreme Gradient Boost-

ing Machine (XGBoost) is a better replacement for RF in the category of

decision tree models as its builds one tree at a time by considering gradi-

ent of the data. The study in [25] showed that XGBoost (R2 = 0.66 and

RMSE = 42.29%) model outperformed RF model (R2 = 0.21 and RMSE =

60.68%) on Landsat-8 data for AGB modelling. However, gradient boost-
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ing is sensitive to outliers and unable to extrapolate target values beyond

limits for regression problems. In summary, all these individual algorithms

have certain drawbacks for accurately modelling AGB depending on the

specifications of training data, underlying non-linearity or distribution of

samples. To overcome the drawbacks of individual algorithms, the most

recent methods have been focused on developing stacked ensemble models

for accurate AGB modelling [161]. The results proved that stacked ensem-

ble models reduced the bias and achieved better accuracy in estimating

AGB as compared to other individual base models.

2.2 State-of-the-art for AGB prediction using satel-

lite SAR data

SAR backscatter is sensitive to forest AGB and its correlation with AGB

has been studied for a few decades theoretically and experimentally [42,

43, 44]. SAR based AGB measurements are influenced by the structure of

vegetation, the surface topography and the environmental conditions. The

sensitivity of SAR signal to forest AGB changes depending on the wave-

length and geometry of radar measurements. Space-based SAR data acqui-

sition is currently limited to X-, C- and L-band frequencies for observation

of forest ecosystem. Among the past and current SAR missions, ALOS-

1 (L-band, non-operational) and Sentinel-1 (C-band, operational) provide

free and open-source data. Few studies that used Sentinel-1 data reported

varying degree of AGB prediction accuracy (R2 = 0.3 - 0.7) [45, 46, 47, 48].

These results indicated that singular polarization components (VV or VH)

saturated in accurately capturing the underlying relationship with AGB.

A better accuracy was achieved with Dual Polarization SAR Vegetation

Index (DPSVI) - a combination of polarization components [45] as com-

pared to singular polarization components of Sentinel-1 data. The addition
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of grey-level co-occurence matrix (GLCM) textural features and Princi-

pal components to polarization components and their derivatives (such as

DPSVI) delivered a significant improvement and the best accuracy among

the other cited approaches [46].

The future SAR missions such as NISAR (L-band) and BIOMASS (P-

band) will operate at frequencies that can penetrate deep into forest canopy.

Both these missions will provide free and open-source data that presents

immense opportunities for modelling forest AGB. There are several AGB

modelling studies using ALOS-2 PALSAR-2 (L-band) commercial data

that can serve as precursor for using NISAR data [49, 50, 51, 52]. The

models developed in these studies using PALSAR-2 data performed bet-

ter as compared to the Sentinel-1 based models. The model accuracy

varied depending on the extracted features and modelling algorithm used

for the prediction of AGB. A recent study [51] that used only PALSAR-

2 backscatter coefficients (HV, HH) to predict AGB reported low model

accuracy and rapid model saturation (RMSE = 89.9 -97.9 Mg/ha, Satura-

tion point : 160 Mg/ha) on single-time images. Although, multitemporal

PALSAR-2 images produced better prediction accuracy with an RMSE =

62.8 - 66.4 Mg/ha and raised the saturation point to 240 - 280 Mg/ha.

However, the best results were achieved for the studies that used terrain

factors, decomposition parameters and covariance matrix elements in addi-

tion to backscatter coefficients. Particularly in [49], the model provided the

best results (adjusted R2 = 0.90, RMSE = 14.24 t/ha) with backscatter-

ing coefficients, polarization decomposition variables, and terrain factors

as predictors using a RF model. The achievement of such accurate results

were attributed to the synergy among L-band predictors. P-band SAR

that penetrates through the canopy to interact with the ground presents

possibilities for the development of novel AGB modelling approaches. Cur-

rently, there are no operational P-band spaceborne SAR missions but a few
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studies were conducted using airborne acquired data [53, 54, 55]. These

studies are focused on tomographic processing of multiple P-band SAR

images (TomoSAR) that extracts information on vertical backscatter dis-

tribution. The studies conducted with airborne P-band data acquired as

part of the BioSAR campaign [53, 54] produced high AGB prediction accu-

racy with TomoSAR approach with a power law AGB model (RMSE = 27 -

33 t/ha) and linear/logarithmic models (RMSE = 20 t/ha). Similar results

were also obtained using P-band data from TropiSAR campaign [55] that

collectively present a very high potential for accurately mapping global

biomass with future spaceborne P-band SAR missions using TomoSAR

techniques.

2.3 State-of-the-art for AGB prediction using com-

bined MS and SAR data

A vast majority of studies seek to derive information from a single type of

spaceborne data at a time to model forest AGB. A single type of space-

borne data refers to a specific window of the electromagnetic spectrum

or a single acquisition method. Single data type based AGB modelling

is more common because co-located and nearly simultaneous spaceborne

multi-mode data acquisitions are often not available. The recent devel-

opments in small satellite technology created a surge in the number of

MS and SAR satellite constellation (e.g. PlanetScope, Iceye). This facil-

itates the availability of multi-mode coherent data both in terms of time

and position. MS and SAR frequencies contains independent information

for modelling forest AGB and multiple studies indicate that their com-

bination improved the AGB estimates by reducing uncertainty of single

sensor data [21, 56, 57, 58, 25, 59, 60]. Sentinel-1 and 2 are the most

frequently used combination of SAR and MS data for prediction of forest
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AGB [21, 56, 57, 58]. They have coherent revisit time and spatial resolution

that render them more suitable for synergistic use for modelling AGB. A

fusion model developed with a simple predictor based on the combination

of backscatter intensity ratio from Sentinel-1 and NDVI from Sentinel-2

yielded superior AGB prediction results (R2 = 0.86, RMSE = 0.109) as

compared to exclusive Sentinel-2 data (R2 = 0.72, RMSE = 0.158) [21]. A

few other studies that used machine learning approaches with the identical

predictors yielded similar results for SVM and RF models [56, 57]. The

RF model elevated the AGB saturation point to 200 t/ha with an RMSE

of 60 t/ha. However, the best performance was secured with SVM with a

linear kernel that obtained highest correlation (r = 0.85) for the Sentinel-1

(VV+VH) and Sentinel-2 (NDVI) fusion model. Apart from Sentinel-1 and

2, there are few studies that considered combination of other sensors for

modelling AGB [25, 59, 60]. Landsat-8 (texture and vegetation indices) and

Sentinel-1 (texture and backscatter) were combined to model AGB using

linear, RF and XGBoost machine learning algorithms [25]. A better model

agreement score was achieved for Landsat-8 models (R2 = 0.21 - 0.66) as

compared to Sentinel-1 models (R2 = 0.03 - 0.38) . Overall, the best agree-

ment score was achieved for a combination model (Landsat-8 + Sentinel-1)

using the XGBoost algorithm (R2 = 0.75). Among the commercial and re-

strained sources, few studies combined ALOS-2 data with Sentinel-2 and

Worldview-2 with ALOS PALSAR for AGB estimation [59, 60]. The best

model performance was obtained for the XGBoost algorithm on ALOS-2

and Sentinel-2 (R2 = 0.8, RMSE = 28.1) whereas multilinear regression

obtained the best performance on Worldview-2 and ALOS PALSAR (R2 =

0.89, RMSE = 24.4). A comprehensive analysis of all these studies suggests

that combined MS-SAR data reduces uncertainty of single data and signif-

icantly improves the AGB modelling accuracy especially using advanced

machine learning algorithms such as XGBoost.
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Chapter 3

Multitemporal Multispectral

Satellite Remote Sensing Data for

AGB Prediction

3.1 Introduction

SMS remote sensing is frequently noted as a potential alternative for replac-

ing tedious field sampling based AGB estimation over large areas due to its

coverage, repetitiveness and cost-effectiveness [61, 62]. MS data are avail-

able with different spectral, spatial and temporal specifications. Quickbird,

IKONOS, WorldView, GeoEye, PlanetScope etc. are some of the space-

borne missions that provide high-spatial resolution (< 5m) MS data. These

data enhance the vegetation assessment capability with greater spatial de-

tails of the forest.The medium and coarse resolution products from missions

such as Sentinel-2, Landsat-8 and MODIS provide low spatial resolution

data but its enhanced radiometric and spectral capacities are critical for

modelling forest AGB.

Part of the chapter appears in:

P. Naik, M. Dalponte, and L. Bruzzone, “Prediction of Forest Aboveground Biomass Using Multitemporal

Multispectral Remote Sensing Data,” Remote Sensing, vol. 13, no. 7. MDPI AG, p. 1282, Mar. 27,

2021. DOI: 10.3390/rs13071282
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The effect of different characteristics (spatial, spectral, temporal and

radiometric) for modelling forest AGB requires careful evaluation. The

different spectral bands of the MS data have varying degree of correlation

with the range of AGB values [63]. Moreover, higher number of spectral

bands i.e. greater spectral information can reduce the data saturation ef-

fects for AGB prediction. Data saturation was previously studied for MS

data from Landsat-8 and MODIS but less studied for recent MS data from

Sentinel-2, PlanetScope and other small-satellites [64, 65, 66]. The tempo-

ral information can also potentially reduce the problem of data saturation

that restricts the prediction of large AGB values. The response of spec-

tral indices derived from MS data vary with seasons. Thus Multitemporal

(MT) data can be an additional source of information for modelling forest

AGB [9, 67]. A high temporal resolution can also increase the probabil-

ity of capturing cloud-free images of the forest. Also, the spatial details

of the forest are dependent upon the spatial resolution of the MS images.

High spatial resolution MS image pixels cover smaller areas of the forest

with greater spatial details. However, high spatial resolution MS data need

large data storage space and more processing time. These factors influence

the application of high spatial resolution images for AGB estimation over

broad areas. Overall, it is important to investigate all capabilities of the

recent spaceborne MS sensors for accurate prediction of AGB. Such inves-

tigative studies can serve as a feedback mechanism for the ongoing missions

for improving the quality of the MS data.

There are various image processing techniques in literature that have

been applied for AGB estimation with MS remote sensing data [68, 15, 69,

70]. The most frequently used approaches are k-nearest neighbor (kNN),

multiple linear regression, machine learning regression and neural networks

[71, 72, 73, 25]. These methods use MS remote sensing data to determine

tree canopy parameters (e.g. crown diameter) or develop canopy reflectance
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models. The methods for AGB prediction based on high resolution MS

data involve modelling of tree parameters or forest canopy structures. The

study in [74] estimated tree crown size from Quickbird images and [75]

used IKONOS for estimating parameters such as crown area and DBH for

AGB modelling. The approaches for medium and coarse spatial resolution

are relatively different as compared to that of high spatial resolution MS

data. For example [76] used canopy reflectance model inversion to estimate

forest AGB from SPOT 5 data. Recently, multiple studies used Sentinel-2

data with linear regression and other machine learning algorithms (RF,

XGBoost etc.) for modelling forest AGB with derived vegetation indices

[77, 78, 79]. Several studies have also used Landsat TM using k-nearest

neighbor method and direct radiometric relationships to map AGB [80].

A few other studies have used coarser data such as MODIS using simi-

lar methods and vegetation indices for modelling forest AGB [81, 82, 83].

Overall, these approaches involving SMS data are found suitable with cer-

tain limitations such as data saturation and variance in response of features

and requires proper quantification.

The objective of this contribution is to quantify and analyze the re-

sponse of spectral features extracted from different MS satellites with dif-

ferent properties (temporal, spectral and spatial) for the prediction of for-

est AGB. Spectral features from MT and single-time data are considered

to evaluate quantitative improvements in model predictions delivered by

multi-seasonal data as compared to individual season data. The regular-

ized and selected spectral features are split into three groups depending

on the considered of bands. The response of key spectral features are ana-

lyzed at three different spatial resolutions (10, 5 and 3 m) to observe their

correlation at various spatial scales. Experiments are conducted for two

different study areas with different forest compositions and densities.
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3.2 Study Area and Datasets

3.2.1 Study Area

The study area includes two sites - Lavarone and Pellizzano, both located in

the Southern Italian Alps. The forest in Lavarone is an uneven aged forest

located at an altitude ranging from 1200 to 1600 m with species such as

Norway spruce (Picea abies (L.) Karst.) and silver fir (Abies alba Mill.)

accounting for 80% of the tree population (in terms of the number of trees).

European beech (Fagus sylvatica L.), European larch (Larix decidua Mill.),

and Scots pine (Pinus sylvestris L.) accounts for the remaining 20% of the

population. The forest of Pellizzano is spread over an altitude from 900 to

2200 m and has a dominant presence of Norway spruce and subdominant

presence of some coniferous species (e.g., Abies alba Mill., Larix decidua

Mill., Pinus cembra L., Pinus sylvestris L., and Pinus nigra J., Arnold)

and broadleaves species (Populus tremula L., Betula spp.). The forest

is multilayered, more mixed, and structurally complex at lower altitudes

and sparse at higher altitudes. The study was conducted in two areas to

consider different species and the density of the forest. The geographical

locations of both the study areas are shown using detailed maps in Figure

3.1.

3.2.2 Field Data

The field data for the Lavarone area were collected on multiple days from

summer of 2016 for 41 circular plots of 30 m diameter and from summer of

2014 for 47 circular plots of 30 m diameter for the Pellizzano area. The plot

coordinates were recorded using a survey grade Global Positioning System

unit. The field plots were distributed randomly across the forest area

to be statistically significant. The positions were measured with a Laser

criterion 400, while the DBH was measured with a caliper in two orthogonal
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Figure 3.1: Map of the selected study areas - Pellizzano and Lavarone in

Trentino Alto-Adige, Italy (Satellite images—Sentinel2)

directions and the average of the two measurements was considered as DBH

value. The height was measured with a vertex hypsometer and for the trees

where the height was difficult to measure, it was estimated using species

specific allometric equations [158]. The DBH threshold was kept at 3 cm

(i.e., all trees above 3 cm were measured). The dead trees were included in

the plot measurements but their presence was scarce. The AGB of each tree

was computed using the allometric equations stated in [84] (see Appendix)

and then aggregated for each plot to obtain plot level AGB per hectare.

The field plot AGB of the Lavarone area ranged from 69.42 to 412.34 Mg

ha-1 and the of the Pellizzano area ranged from 0.9 to 545.3 Mg ha-1. The

mean tree height, mean tree DBH, and number of trees per plot for both

the study areas are stated in Table 3.1.
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Table 3.1: Field Estimated Mean tree height (m), mean tree DBH (cm),

and number of trees per plot for Lavarone and Pellizzano

Lavarone Pellizzano

Mean tree height per plot (m)

Minimum 7.43 5.94

Maximum 27.29 37.9

Mean 16.85 20.58

Mean tree DBH per plot (cm)

Minimum 10.71 8.78

Maximum 37.83 57.17

Mean 21.24 31.68

Number of trees

Minimum 17 2

Maximum 192 147

Mean 76.1 40.15

3.2.3 Remote Sensing Data

The Sentinel-2 data are acquired by twin satellites under ESA’s Copernicus

program with a revisit capacity of 5 days. Sentinel-2 images are charac-

terized by 13 spectral bands with four bands at 10 m, six bands at 20 m,

and three bands at 60 m spatial resolution. In this study, 4 spectral bands

at 10 m and 6 spectral bands at 20 m resampled to 10 m were used in the

Blue, Green, Red, Red-edge, Near-Infrared (NIR) and Short-wave Infrared

(SWIR) region.

The RapidEye data are acquired by a constellation of five satellites

operated by the Planet Labs Inc., with a MS push-broom imager capturing

five spectral bands: Red, Green, Blue, NIR, and Red-Edge. The RapidEye

satellites are identically calibrated so that the images acquired by the five

satellites are indistinguishable from each other. All the acquired RapidEye

data have a view angle smaller than 20 degrees. The ground sampling

distance (nadir) is 6.5 m, and the orthorectified pixel size is of 5 m. The

constellation of satellites acquires data with a daily revisit capacity (off-

nadir) and 5.5 days at nadir.
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The Dove data are acquired by a constellation of 120 Nano-satellites

operated by Planet Labs Inc. with a daily revisit capacity. The satellites

are deployed at the International space station orbit at an inclination of

52 degrees and Sun synchronous orbit with an inclination of 98 degrees.

The MS data are acquired using a Bayer-masked Charge-Coupled Device

camera with ground sampling distance (nadir) of 2.7–3.2 m in the ISS orbit

and 3.7–4.9 m in the SS orbit. The orthorectified pixel size of the acquired

images is 3 m with 4 spectral bands: Red, Green, Blue, and NIR.

The dates of acquisition of MS data considered for the study are stated

in Table 3.2. The time gap between the field sampling and remotely sensed

data exists for maintaining consistency of temporal acquisitions of different

satellite data. The field estimated annual increment in the DBH was 2.8%

[85]. Therefore, the increment of AGB sampled forest plots during the time

gap can be considered as negligible and hence, admissible for the conducted

experiments.

Table 3.2: Acquisition dates (YYYY-MM-DD) of the multi-scale SMS

data used for the study (Sentinel-2 at 10m, RapidEye at 5m and Dove at

3m)

Seasons
Dates of Acquisition (Lavarone) Dates of Acquisition (Pellizzano)

Sentinel-2 RapidEye Dove Sentinel-2 RapidEye Dove

Summer 2016-07-18 2016-07-29 2016-07-11 2016-07-18 2016-07-17 2016-08-22

Autumn 2016-10-16 2016-10-16 2016-10-20 2016-10-16 2016-10-21 2016-10-07

Winter 2017-01-07 2017-01-16 2017-01-23 2017-01-24 2017-01-16 2017-01-24

Spring 2017-04-07 2017-04-30 2017-04-23 2017-04-14 2017-04-22 2017-04-10
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3.3 Methodology

The methodological flowchart for this contribution of the thesis is shown

in Figure 3.2. In the following sections, each step of the methodology is

described in detail.

The general idea supporting the development of this methodology is

based on the fact that spectral features are mathematical transformations

of original spectral reflectance that can be used for interpreting forest AGB.

The main interpretations are derived from the divergent responses pro-

duced by spectral features that are capable of explaining the physiological

properties of forest vegetation. A high near-infrared reflectance can be ob-

served due to scattering by leaf mesophyll cells and a low red reflectance

due to absorption by chlorophyll pigments. Thus, the adopted methodol-

ogy focuses on developing models that leverage the difference between the

strong absorption of red electromagnetic radiation and the strong scatter

of near infrared radiation.

3.3.1 Data Pre-processing

Level-1C data for Sentinel-2 data were acquired from the Copernicus open

hub platform and converted to Level-2A (Bottom-of-atmosphere) that were

atmospheric and terrain corrected using Sen2cor plugin. The spectral

bands at 20 m spatial resolution were resampled at 10 m using nearest

neighbor sampling to adjust the pixel size to have a uniform band stack and

simplified computation. Level-3A (orthorectified, geometrically corrected,

and radiometrically calibrated) RapidEye and Dove images were gathered

from the data access portal of Planet Labs (https://www.planet.com/

explorer/). The individual data bands for each dataset were mosaicked

and stacked for producing a single data frame for both satellite images for

all seasons.
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3.3.2 Feature Extraction

Two set of spectral features were considered for each MS dataset: the

original band reflectances and the derived vegetation indices. The band

reflectances of Sentinel-2 from B2 to B8 represent Blue, Green, Red, Veg-

etation red edge – 1, 2, 3, and NIR, respectively; B8A represents narrow

NIR, and B11 to B12 represent SWIR-1, 2 channels respectively. The spec-

tral reflectances of RapidEye from B1 to B5 represent Blue, Green, Red,

Red edge and NIR channels respectively. The spectral reflectances of Dove

from B1 to B4 represent Blue, Green, Red, and NIR channels respectively.

Numerous vegetation indices have been defined for specific applications in

the literature [90, 91, 92]. To limit the number of predictor features from

the large number of existing vegetation indices, 25 robust indices identified

in literature for forestry applications were selected [86, 87, 26]. These 25

indices are stated in Table 3.3 along with their respective equations.

All these features were extracted for each circular ground plot of 30 m

diameter. In order to match the ground sample plots with remote sensing

data at different spatial resolutions, mean aggregation of the pixels (at

3, 5, and 10 m according to the satellite considered) belonging to each

plot was performed. The “gBuffer” function of the “rgeos” library in R

was particularly used for the mean aggregation operation. A round cap

style with 15 m radial size was used for the inclusion of pixels and the

overlapping pixels with the plot size on the ground were considered.

3.3.3 Adapative Lasso and Generalized Linear Modelling

Feature regularization and Model selection are important to statistically

exclude features consequently reducing model complexity and overfitting.

A total of 25 vegetation indices and available band reflectances were con-

sidered as predictor features for modelling AGB. The objectives of this

35



Table 3.3: Vegetation indices extracted from SMS data used as features

for modelling and their equations

Vegetation Indices Equations

Canopy Chlorophyll Content Index CCCI =
NIR− RedEdge
NIR + RedEdge

NIR−R
NIR+R

Chlorophyll Index Red Edge CIRE = NIR
RedEdge

− 1

Chlorophyll Vegetation Index CVI = NIR R
G2

Green Atmospherically Resistant Vegetation Index GARI = NIR−(G−(B−R))
NIR−(G+(B−R))

Green Leaf Index GLI = 2G−R−B
2G+R+B

Log Ratio logR = log NIR
R

Normalized Difference Vegetation Index NDVI = NIR−R
NIR+R

Normalized Burn Ratio NBR = NIR−SWIR
NIR+SWIR

Green Blue NDVI GBNDVI = NIR−(G+B)
NIR+G+B

Green Red NDVI GRNDVI = NIR−(G+R)
NIR+G+R

Red Blue NDVI RBNDVI = NIR−(R+B)
NIR+R+B

Green NDVI GNDVI = NIR−G
NIR+G

Red Edge NDVI NDVIre = NIR − RedEdge
NIR + RedEdge

Pan NDVI PNDVI = NIR−(R+G+B)
NIR+R+G+B

Visible Index Green VIgreen = G−R
G+R

Norm of X (X = R, G, NIR) NormX = X∑
X

Blue-Wide Dynamic Range Vegetation Index BWDRVI = 0.1∗NIR−B
0.1∗NIR+B

Chlrophyll Index Green CIgreen = NIR
G

− 1

Green Difference Vegetation Index GDVI = NIR−G

Blue Normalized Vegetation Index BNDVI = NIR−B
NIR+B

Redness Index RI = R−G
R+G

Vegetation Index Number VIN = NIR
R

Modified Simple Ratio MSR =
NIR
R√

NIR
R

+1

Specific Leaf Area Vegetation Index SLAVI = NIR
R+ SWIR

R = Red; G = Green; B = Blue; NIR = Near Infrared; RedEdge = Red Edge; SWIR =

Short-wave infrared; NDVI = Normalized Difference Vegetation Index.
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contribution requires the method to produce an unbiased solution. The

adaptive lasso technique is characterized with ”oracle” properties so that

the features are selected as if the true underlying model are given in ad-

vance.

The adaptive lasso estimator β̂LS [88] can shrink some coefficients to

exactly zero performing selection of features along with regularization. It

is an evolution of the lasso algorithm with an adaptive weight vector ωj that

adjusts the penalty differently for each coefficient. The objective function

of adaptive lasso can be stated as equation (3.1) and the adaptive weight

vector can be stated as equation (3.2):

β̂LS = argmin
β∈Rp

n∑
i=1

(
Yi −XT

i β
)2

+ λ

p∑
j=1

ωj |βj| (3.1)

ωj =
1(∣∣∣β̂ini
j

∣∣∣)γ (3.2)

Here, λ > 0 is the tuning parameter (penalty parameter) and β̂ini
j is

the initial estimate of the coefficients obtained by ridge regression and

γ represents a positive constant for adjustment of the adaptive weights

vector. The term (Yi − XT
i ) represents a random sample with identical

independent distribution associated with regression coefficients β. Thus,

the adaptive lasso penalizes coefficients with lower initial estimates to a

greater proportion.

The process of implementing generalized linear model with adaptive

lasso regularization is initiated with ridge regression used for computing

the best ridge coefficients at a minimum value of ′λ′ parameter. The penalty

factor is calculated using the best ridge coefficients. The generalized lin-

ear model is implemented with lasso penalty accounting for the computed

penalty factor. The penalty factor was used to tune the ′λ′ parameter for

a differential shrinkage. The penalty factor can be ‘0’ for some predictor
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variables with the lasso penalty that implies no shrinkage and inclusion of

that particular predictor variable in the model. The adaptive lasso uses

lasso penalty to push the coefficient of predictor variables to absolute ’0’

which improves the model by selecting the most consistent variables and

automates the process of variable selection.

A generalized linear modelling [89] approach was used for associating se-

lected variables with the target AGB values. The modeling algorithm uses

cyclical coordinate descent to optimize the objective function over each

parameter successively for convergence. Moreover, the generalized linear

model uses a ”gamma” link function (power = 0.5) to map the non-linear

relationship of dependent variable to a linear relation. To achieve the ob-

jective of this contribution, six metrics were computed for assessing the

precision, the agreement and the overfitting of the models. The cross vali-

dation metrics, their equations and the related assessment aspect are stated

in Table 2.4. A Leave-one-out Cross-validation (LOOCV) cross validation

approach was used for the modelling process to determine stable parame-

ter and assess model overfitting. The R-packages – ‘tidyverse’, ‘magrittr’,

‘glmnet’, ‘pROC’, ‘mgcv’, and ‘ggplot2’ were used for implementing the

entire process of regularization, selection, modelling, validation and visu-

alization.

3.3.4 Design of Experiments

The designed experiments were aimed at analyzing the effect of temporal,

spectral, and spatial capacities of MS satellite data for the prediction of

AGB. The temporal analysis was carried out using the proposed approach

on feature subset of common spectral channels (FS2) of the three sensors

i.e., features computed using only using R, G, B and NIR bands of each

satellite data. The (FS2) subset was considered for temporal analysis to

remove the effects of additional spectral bands. The process was imple-
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Figure 3.2: Methodology Flowchart describing steps for adaptive regu-

larization and modelling using MS satellite data

mented for each single-time image to produce one model per season. In

addition, a model for MT data (i.e., considering all season images) was

developed to analyze the effect of temporal information on the AGB pre-

diction. The effects of temporal information were assessed based on the

metrics defined in the Table 3.4.

The spectral analysis was carried out using the proposed approach on

feature subset including all spectral channels (FS1) i.e., features computed

using all available spectral bands with each sensor. The effect of spectral

channels was assessed for the features selected by the adaptive lasso opera-

tor and the agreement of selected variables with AGB using the coefficient

of determination. Features were divided into three groups according to the

part of the spectrum i.e., Group 1 that consists features from the common

(R, G, B and NIR) bands, Group 2 that consists features Group 1 and

Red-edge bands, and Group 3 that consists features from Group 1 and

SWIR bands.

The spatial analysis was carried out by analyzing AGB correlation scat-
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Table 3.4: Assessment metrics for assessment of Precision, Agreement and

Overfitting of the models computed using Leave-One-Out Cross-Validation

(LOOCV)

Assessment Metrics Equations Assessment Role

Mean absolute difference MAD =
∑n

i=1

∣∣preCV
i − obsi

∣∣ /n Precision

Root mean squared differences RMSD =
√

SSCV

n Precision

Coefficient of determination (residuals) R2
fit = 1 − SSfit/SStot Agreement

Coefficient of determination (cross validation) R2
CV = 1 − SSCV /SStot Agreement

R-squared Ratio R2R = R2
fit/R

2
CV Overfitting

Sum of Squares Ratio SSR =
√
SSCV√
SSfit

Overfitting

n: total number of samples; preCV
i : prediction value of sample ′i′ obtained by cross validation; obsi:

observed value of sample ’i’; SSCV : sum of squared differences between observed and predicted values

by cross validation; SSfit: sum of squares of model residuals; SStot: sum of squared differences of each

observation from the overall mean

ter plots of the most recurrent selected features computed computed at 3,

5, and 10 m spatial resolution. A Pearson correlation coefficient (R) was

computed to observe the change in the correlation between the key selected

variables at different spatial scales with the AGB.

3.4 Results and Discussion

3.4.1 Temporal Analysis

The effect of temporal information was analyzed using box plot visualiza-

tion depicting the variation of precision, agreement, and overfitting on FS2

subset models using six metrics stated in Table 3.4.

The precision box plots (MAD%,RMSD%) shown in Figure 3.3 in-

dicates that MT models have higher prediction precision compared to all

single-time models. It further shows improved prediction precision by using

MT information for both the study areas and for all sensors. The addi-

tion of MT information showed more significant improvement for Dove and

RapidEye data characterized with higher spatial resolution. Overall, the
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best precision was observed for Dove data in Lavarone area and RapidEye

for Pellizzano area. A high variance was observed in the prediction pre-

cision of all single-time models. This indicates a significant influence of

seasons (i.e. time of data acquisition) on the AGB modelling results.

The agreement box plots (R2
fit, R

2
CV ) shown in Figure 3.4 indicates that

all MT models have a better agreement compared to single-time models.

MT information improved agreement of all models for both the study ar-

eas. A significant improvement was observed for Dove and RapidEye data

for the Pellizzano area with a greater sample size. The highest agreement

(R2
CV ) was observed for MT RapidEye models for both the study areas.

The MT models provides a significant advantage over the single-time mod-

els that are subject to high variance in the model agreement.

The overfitting box plots (R2R, SSR) are shown in Figure 3.5. The

desirable values of R2R and SSR should be less than 1.1 wherein the

real (cross-validated) precision exceeded 10% of the model residual vari-

ance. Most MT models have a magnitude of overfitting close to 1.1 and

belonged to the lower quartile of single-time models. Single-time models

showed greater variance in the overfitting. This indicates that the level of

model overfitting is dependent on the time of data acquisition. The highest

level of overfitting was observed for single-time Sentinel-2 models for both

the study areas. Overall, the overfitting metrics for Pellizzano were lower

compared to Lavarone. It shows that overfitting can be influenced by the

distribution and number of reference plots used for modelling.

3.4.2 Spectral Analysis

The spectral analysis was carried out for MT models using adaptive lasso

feature regularization and selection applied to FS1 feature subset. Ta-

ble 3.5 represents the features selected for all the three satellite data for

both the study areas. The corresponding values in the bracket show the
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Figure 3.3: Precision Box Plots based on assessment metrics - MAD%

and RMSD% computed for single-time and multitemporal models

frequency of occurrence. Table 3.5 offers a clear visualization of the se-

lected features divided in three groups depending on the involved spectral

bands. Additionally, Figures 3.6 and 3.7 show the regression plots (Field

estimated AGB vs. Predicted AGB) with a cross validated coefficient of

determination for Lavarone and Pellizzano area respectively.

Four features were primarily selected to develop the Dove MT models for

both the study areas. The GLI feature was the most frequently (four times)

selected among all features. The second most frequently selected features

were VIgreen (two times) and RI (two times). Note that, GLI, VIgreen

and RI - the three most frequently selected features for the Dove data were

formulated without the NIR band. The agreement in terms of coefficient of

determination were 0.37 and 0.33 for Lavarone and Pellizzano respectively.

A total of eight features were selected for the RapidEye MT models. GLI,

NDVIre and CCCI were the three most frequently selected features, two

among which belonged to Group 2 that involve red-edge bands. The Group

2 significantly contributed to the better agreement of RapidEye models as

compared to Dove models. The agreement for RapidEye MT models were
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Figure 3.4: Agreement Box Plots based on assessment metrics - R2cv

and R2fit computed for single-time and multitemporal models

0.51 and 0.44 for Lavarone and Pellizzano respectively. NDVIre (selected

thrice) was the most frequently selected feature for Sentinel-2 MT model.

CCCI and CIRE (selected twice) were the other two features frequently

selected from Group 2 and GLI from Group 1. NBR was the only fea-

ture from Group 3 selected twice that involve SWIR bands. Group 2 and

Group 3 features contributed for more than 50% of the total selected fea-

tures. This delivered more significant improvement in the agreement for

RapidEye and Dove models. The coefficient of determination for Sentinel-2

MT models were 0.53 and 0.51 for Lavarone and Pellizzano respectively.

To sum up, GLI was consistently selected feature from all the groups.

Sentinel-2 MT models achieved highest modelling agreement as compared

to RapidEye and Dove. Moreover, Red-edge and SWIR bands significantly

improved the modeling accuracy for the prediction of AGB.

3.4.3 Spatial Analysis and Mapping AGB

The effects of spatial resolution on AGB prediction were analyzed by ob-

serving the change in the correlation of key spectral features at different
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Figure 3.5: Overfitting Box Plots based on assessment metrics - R2R and

SSR computed for single-time and multitemporal models

spatial scales. GLI and VIgreen from Group 1 and CCCI and NDVIre

from Group 2 were used as key spectral features for the analysis. Figure

3.8 shows the scatter plots of GLI vs. AGB for the Lavarone area and

Figure 3.9 shows the scatter plots of VIgreen vs. AGB for the Pellizzano

area at 3, 5, and 10 m. Figure 3.10 shows scatterplots of CCCI vs. AGB

and Figure 3.11 shows scatterplots of NDVIre vs. AGB at 5 and 10 m for

Lavarone and Pellizzano respectively. An identical trend was observed for

key spectral features in the Group 1 and Group 2 with the highest correla-

tion observed at 10 m spatial resolution. The highest Group 1 correlation

(Pearson coefficient) for GLI and VIgreen are 0.44 and -0.43 respectively

at 10 m. The highest Group 2 correlation observed for CCCI was 0.58

and for NDVIre was -0.48 at 10 m. There was no significant difference

in correlation for CCCI at 5 m and 10 m but a significant difference was

observed for NDVIre.

The spatial distribution of the predicted AGB over the selected areas

was mapped to perform the qualitative analysis. The best performing MT

Sentinel-2 models for both study areas were used for predictive mapping.
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Table 3.5: Selected features using adaptive least absolute shrinkage and

selection operator for Group 1, 2 and 3.

DOVE RAPID-EYE SENTINEL-2

Group 1

GLI (4)

VIgreen (2)

RI (2)

normR (1)

GLI (2)

VIgreen (1)

RI (1)

normR (1)

normG (1)

BWDRVI (1)

GLI (2)

normR (1)

normG (1)

VIgreen (1)

RI (1)

Group 2 -
NDVIre (2)

CCCI (2)

NDVIre (3)

CCCI (2)

CIRE (2)

Group 3 - - NBR (2)

The AGB maps for Lavarone and Pellizzano are shown in Figure 3.12 and

Figure 3.13 respectively. The non-forested areas were masked from the

maps.

3.4.4 Discussion

In this thesis contribution, spectral features extracted from MS satellite

data were used to predict AGB at various spatial scales from medium to

high spatial resolution data. The results were analyzed with respect to

temporal, spectral, and spatial capacities of different MS satellite data to

assess their potential for AGB prediction. The results presented from the

experiments can be used as guidelines to frame a viable strategy for the

use of SMS data for the prediction of AGB.

Spectral features were used to predict AGB in several studies with vary-

ing degree of effectiveness. The study presented in [11] demonstrated

single-time spectral bands and spectral indices from the Sentinel-2 data

used to predict forest stock volume. A higher prediction error was observed

for forest stock volume greater than 300m3 ha−1 for all single-time models.

This thesis contribution observed similar limitation of single-time models
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Figure 3.6: Multitemporal Regression Plots representing Field Estimated

Versus RS Predicted AGB using FS1 Feature Subset —Lavarone area

with greater prediction errors and high variance in precision, agreement,

and overfitting. The experiments with MT data served as a solution to

overcome these limitations. MT data provided supplementary information

to the models on seasonal variations for all spectral features. MT models

for all datasets (Dove, RapidEye, and Sentinel-2) achieved better modelling

accuracy than their respective single-time models. Thus, the MT informa-

tion complemented the spectral features at all spatial scales for both the

study areas characterized by different forest compositions. Despite the het-

erogeneous and complex forest ecosystem, the MT models delivered better

modelling accuracy as compared to single-time models. Also, the annual

growth of the stem diameter (hence the AGB) is dependent on factors such

as rainfall, temperature, humidity, day length, species, etc. [93] directly af-
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Figure 3.7: Multitemporal Regression Plots representing Field Estimated

Versus RS Predicted AGB using FS1 Feature Subset —Pellizzano area

fects the seasonal patterns of vegetation. Therefore, the seasonal variation

in spectral reflectance of the forest plots captured using MT spectral fea-

tures can be related to the structural measures of the forest, and hence the

AGB. Based on such assumptions, multiple studies such as [94, 9, 5] were

performed using Landsat MT data for the prediction of forest AGB. This

thesis contribution provided a few improvements in methodology and ana-

lytical approach to quantify the key aspects (i.e., precision, agreement, and

overfitting observed in time) for better analysis and prediction of AGB. In

addition, the analysis was carried out by experimenting at various spatial

scales (3, 5, and 10 m) of MS data that provided greater understanding of

the effect of spatio-temporal information on AGB prediction.

The feature selection process is crucial for accurate AGB modelling with
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Figure 3.8: Scatterplots of AGB Versus Green Leaf Index (GLI) com-

puted at different spatial scales (10, 5 and 3 m) using FS2 subset for

Lavarone area

spectral features from SMS data. A few studies [95, 11, 96, 12, 97] bypass

feature selection and produce models with overfitting and prediction errors

due to less important or redundant features. For instance, the study in [96]

predicted stand volume by using Landsat data and evaluated the effective-

ness of additional feature variables. Spectral features were added to a basic

model one at a time to determine an optimum combination without any

appropriate feature selection resulting to only minor improvement in the

estimation accuracy. Similarly, [95] used the individual band reflectances

and vegetation indices as features for estimating AGB without feature se-

lection or elimination procedure. In this thesis contribution, a generalized

linear model was developed using an adaptive lasso feature regularization
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Figure 3.9: Scatterplots of AGB Versus Visible Index Green (VIgreen)

computed at different spatial scales (10, 5 and 3 m) using FS2 subset for

Pellizzano area

and selection method that possessed oracle properties. Different capacities

of SMS data were individually and systematically analyzed providing a

better examination of relationship between features and AGB. The study

conducted in [11] supported the findings of this thesis contribution and

confirmed the importance of SWIR and red-edge bands of Sentinel-2. This

thesis contribution provided an additional correlation analysis of such key

features quantified by Pearson correlation coefficient across various spatial

scales. Moreover, all experiments and analysis were conducted for two dif-

ferent study areas in order to account for the diversity and distribution of

forests that can affect the spectral features.

A few studies have used Sentinel-2 data with different AGB modelling
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Figure 3.10: Scatterplots of AGB Versus Canopy Chlorophyll Content

Index (CCCI) computed at different spatial scales (10, 5 and 3 m) using

FS2 subset for Lavarone area

approaches [12, 97, 98]. The study in [98] extracted spectral features from

Sentinel-2 and Landsat-8 for the prediction of forest variables. The study

concluded that there was no significant difference in the systematic er-

ror between the two sensors. Although, it was noted that there was no

improvement in the prediction accuracy for the combination spectral fea-

tures from Sentinel-2 and Landsat-8. This outcome remained unexplained

from the analysis conducted in the study and was deemed “surprising”.

However, it can be explained from analysis performed in this thesis contri-

bution. The correlation of selected key features were analyzed for different

spectral ranges at different spatial resolutions. The significant variation in

a correlation of the same key variables at different spatial scales pointed

out an instrumental role of spatial resolution in the prediction of AGB.

But the spatial analysis showed that there was no significant increase in

the correlation of most key spectral features with the spatial resolution

(especially between 5 m and 10 m data). This caused no significant im-

provement in prediction accuracy on combination of spectral features of

different spatial resolution (Sentinel-2 and Landsat-8) as observed in [98].

Therefore, a higher spatial resolution of MS data may be less relevant for
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Figure 3.11: Scatterplots of AGB Versus Red Edge NDVI (NDVIre)

computed at different spatial scales (10, 5 and 3 m) using FS2 subset for

Pellizzano area.

a prediction method based on spectral features. This contribution consid-

ered spectral features exclusively (and not the other derivable features) to

suit the objectives and design of the experiments. The temporal proper-

ties of MS data over different seasons, the spectral properties over different

spectral bands and the spatial properties over different resolution were in-

vestigated using the extracted spectral features. With regard to alternate

feature extraction mechanisms (For e.g. deep features, textural features,

principal components etc.) or modelling procedures (e.g. object oriented

or patch-level modelling), the deductions from the results can be consid-

ered limited to this particular experimental setup that was deployed for

strategically achieving objectives of this contribution. It is also worth not-

ing that the role of high spatial resolution of the MS images may be more

relevant for textural features or object-oriented modelling.

This thesis contribution involved use of Copernicus and Planet MS data

and can benefit public space agencies such as ESA and private sector en-

terprises such as Planet Labs for upgrading instrumentation for forest ap-

plications. In addition, this contribution can prove relevant and useful

for the development of more efficient tools and techniques based on auto-
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Figure 3.12: Spatial Map of AGB predicted using the best MT Sentinel-2

model for Lavarone area

matic feature extraction and feature selection with more advanced model-

ing methods using MS data. However, the data saturation problem is not

completely resolved and requires more explanatory features from alternate

source of data for the prediction of AGB. Also, the limited field plot sam-

ples restricted model performance up to some extent and could be further

improved with more samples. The spectral features are required to be en-

gineered so that they capture AGB-specific variation. This could increase

the effectiveness of the spectral features and improve the modelling accu-

racy. The results from the conducted experiments and analysis indicated

a good potential of MS data for AGB prediction.

3.5 Conclusion

In this thesis contribution, different MS satellite data were used to char-

acterize the effects of temporal, spectral and spatial capacities of the data

for predicting forest AGB. The results showed that each characteristic of

the MS data distinctly affects the process of prediction of AGB. The MS

data with red-edge and SWIR bands improved the modelling accuracy and
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Figure 3.13: Spatial Map of AGB predicted using the best MT Sentinel-2

model for Pellizzano area

decreased the saturation of models. The large AGB values were predicted

with greater accuracy as compared to models based on MS data without

red-edge and SWIR bands. The seasonal spectral features generated vari-

ation in the predictions in terms of precision, agreement and overfitting.

The MT data models delivered better accuracy results as compared to

the single-time models. The correlation of key features at different spatial

scales show better correlation at coarser spatial resolution and no signifi-

cant difference for RapidEye and Sentinel-2. This indicates that spectral

features are less affected by spatial resolution of the MS data for modelling

AGB.
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Chapter 4

Generative Features from

Multi-source Satellite Remote

Sensing Data for AGB Prediction

4.1 Introduction

The extraction of effective features and producing precise training data

from Remote Sensing (RS) images is crucial for accurately quantifying

and mapping various ecological parameters including the carbon stored in

forests [99, 100, 101, 102, 103]. The quality of these extracted features di-

rectly affects the response of the modelling algorithm to predict the target

parameter [104, 105, 106]. Conventional features from RS data are pri-

marily based on specific indices derived from analytical formulations (i.e.

arithmetic operations performed on spectral bands, radar backscatters or

elevation statistics of lidar point clouds) [107, 18, 108]. In the literature,

these analytical features are frequently used for different applications like

Part of the chapter appears in:

P. Naik, M. Dalponte, and L. Bruzzone, “Generative Feature Extraction From Sentinel 1 and 2 Data

for Prediction of Forest Aboveground Biomass in the Italian Alps,” IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, vol. 15. Institute of Electrical and Electronics

Engineers (IEEE), pp. 4755–4771, 2022. DOI: 10.1109/JSTARS.2022.3179027
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analysis of vegetation, crops and soil properties [26]. Their effectiveness is

found to be highly data dependent [23, 109]. 3D airborne lidar data are

very effective in modelling forest parameters. Features such as height and

intensity percentiles, height bins and density metrics are used for the pre-

diction of forest AGB with lidar [110]. However, the effectiveness of such

analytical features depends on the point density and the footprint of the

laser pulse [111, 112]. Moreover, the limited availability of lidar data and

the high cost for finer specifications discourages its use in many operational

scenarios. In this context, SRS data proves to be a more feasible choice for

the forest applications.

Studies performed with SMS and SAR data used vegetation indices

(e.g., NDVI, SAVI), vegetation biophysical features (e.g., leaf area index,

chlorophyll concentration), textural features (e.g., entropy, variance) and

SAR polarimetric indices for the prediction of forest AGB [113, 114, 115].

A prominent limitation identified with MS data was a high variation in

response of the extracted features that depended on the time of acquisi-

tion and the spatio-spectral specifications [114, 116]. The main causes of

low AGB prediction accuracy are linked to the seasonal variation of the

spectral responses from the forest. Moreover, the radiometric characteris-

tics of different satellite sensors also affects the performance of the models.

In [114], it was observed that MS sensors with different radiometric spec-

ifications for an identical spectral range produce non-identical responses.

A few other studies that used Sentinel-2, RapidEye and PlanetScope data

on different forest types also indicated such prediction precision problems

that can be traced back to variations in spectral responses and radiomet-

ric specifications of sensors [20, 63]. Despite these identified challenges, a

dedicated attention on extracting target-oriented features from SMS and

SAR data can greatly increase the prediction precision and provide an

economical source for forest parameter estimation.
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Different Machine Learning (ML) algorithms (such as RF, ANN, Gaus-

sian processes, SVM etc.) have been used in the literature to model forest

AGB using various multi-sensor RS data [128, 129, 69]. Some of these

ML algorithms (RF, ANN and SVM) have also been used in combination

via ensemble learning for further improving AGB prediction accuracy as

compared to single ML algorithms [130, 19]. The recent advances in ML

and AI introduced generative and reinforcement learning based methods

to extract and engineer target-oriented features [125, 126, 127]. Deep neu-

ral networks are capable of extracting high level abstract features from

complex distribution underlying various RS data [131, 132] by generating

an optimal feature space for modelling a given problem. Such abstract

features have delivered improved performances in various RS applications

[103, 133, 134, 135]. However, the use of such abstract features for regres-

sion problems has been less studied as compared to other applications in

the field of RS [136, 137, 138]. In recent papers, several effective generative

approaches using Generative Adversarial Networks (GAN) and Conditional

GAN have been developed to learn and productively engineer features from

the data [139, 140, 141, 142, 143, 144]. This has led to the use of generative

neural networks to effectively disentangle the latent space of the network

to explain specific factors of variation in a target variable, thus showing a

high potential to solve regression problems [145, 146, 147, 148, 149]. Unlike

traditional approaches that used a conventional multi-layer perceptron or

stacked sparse autoencoder [150, 151, 152], a generative neural network can

be used to conditionally distribute the feature space on a target variable,

consequently improving the accuracy and generalization of a regression

model.

The objective of this contribution is to develop a dynamic generative

neural network architecture to model forest AGB using multi-source (MS

and SAR) SRS data. The dynamic framework of the generative neural
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network is based on variational autoencoding that can extract abstract

target-oriented features from the data. The network aims to generate a

high-ordered feature space that can potentially minimize the problem of

variability of features for AGB prediction. The network also aims to re-

duce the input dimensionality to produce a low dimensional feature space

for reducing the model complexity. This contribution also aims to design

the network architecture such that it can adjust the number of network

parameters as per the dimension of the input data to quickly optimize the

network and learn effectively. The objective to develop such a network

is aimed at performing target-oriented feature engineering and modelling

AGB using a single dynamic neural network architecture.

4.2 Study Area and Datasets

4.2.1 Study Area Description and Field Data

The study area consists of three sites – Lavarone, Pellizzano and Cembra.

These sites are diverse in terms of species, distribution and density of for-

est located in the Province of Trento, Italy. The 32 km2 Pellizzano area

is located in the municipality of Pellizzano (46°17’22”N,10°46’05”E), the 26
km2 Lavarone area is located in the municipality of Lavarone (45◦57’30.09”N,
11◦16’25.17”E) and 16 km2 Cembra area is located in the municipality of

Cembra Lisignago (46°10’29” N, 11°13’18” E) in the Italian Alps. The

detailed description of forest species and population for Lavarone and Pel-

lizzano sites are described in Chapter 3 (Study area sub-section). The

forest in Cembra mainly consists of broadleaves species such as European

beech (Fagus sylvatica L.) and few coniferous species. The geographical

locations of the study area sites are shown using detailed maps in Figure

4.1.

The field data consist of 115 circular plots with fixed radius of 15 m
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Table 4.1: Acquisition Dates (YYY-MM-DD) of the four Sentinel-2 and

Sentinel-1 Images acquired over different seasons

Seasons
Dates of Acquisition (YYYY-MM-DD)

Sentinel-2 Sentinel-1

Spring 2016− 03− 10 2016− 03− 04

Summer 2016− 06− 28 2016− 06− 28

Autumn 2016− 09− 06 2016− 09− 08

Winter 2016− 12− 28 2016− 12− 29

(Figure 4.1). A total of 47 plots in Pellizzano, 48 plots in Lavarone and

20 plots in Cembra were measured using a random sampling design. The

plot samples were measured on field in summer of 2014 for Pellizzano area

and summer of 2016 for Lavarone and Cembra areas. The details of survey

devices, measurement parameters and species specific allometric equations

is given in Chapter 3 (Field data sub-section). The field estimated plot

level AGB values ranged from 1.07 Mg ha−1 to 655.14 Mg ha−1. The

independent validation of the proposed model was performed using 55 ad-

ditional plots surveyed over different sites in the Autonomous Province of

Trento. The AGB values of these plots used for independent validation

ranged from 11.30 Mg ha−1 – 711.41 Mg ha−1.

4.2.2 Remote Sensing Data

The study was performed using MT images acquired by ESA’s Sentinel-2

and Sentinel-1 satellite constellations. Four images per satellite constella-

tion were considered, one for each season (Table 4.1). The specifications

of Sentinel-2 images are stated in Chapter 3 (Remote sensing data sub-

section). The Sentinel-1 data was acquired from the NASA’s Earth Data

portal (https://urs.earthdata.nasa.gov/). Level-1 Single Look Com-

plex (SLC) data comprising complex imagery with amplitude and phase

captured in the IW mode were used. The resolution of the data (range X
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Figure 4.1: Location of the three study sites (Pellizzano, Lavarone and

Cembra) and the plot locations of field estimated AGB (yellow dots) on

Google Earth images

azimuth) ranges from 2.7 X 22 m to 3.5 X 22 m and the pixel spacing (range

X azimuth) is 2.4 X 14.1 m with 1 X 1 number of looks. The acquired SLC

product has all bursts in all sub-swaths and resampled to a common pixel

spacing grid in range and azimuth. The Sentinel-2 and Sentinel-1 images

of the study area for the summer season are shown in Figure 4.2.

4.3 Proposed Generative Model

4.3.1 Generative Model Framework

The proposed generative model adopts a variational autoencoder based

modelling framework with a dynamic architecture. A traditional varia-
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Figure 4.2: Standard False color composite of Sentinel-2 image (left) and

Polarimetric matrix element (C11) of Sentinel-1 image (right) of the study

area acquired in the summer season

tional autoencoder consists of two main component networks – an encoder

and a decoder. The additional two networks added to this traditional archi-

tecture are - a latent generator and a regressor network. Unlike traditional

approaches that independently trains the regressor, the proposed approach

has an integrated regressor network connected to the reparametrized latent

space via a latent generator network. All networks are inter-associated with

a combination of three loss functions as shown in Figure 4.3.

The probabilistic encoder network (q(s | i)) learns the distribution from

the input data (i) and generates a reparametrized latent space (s) using a

conditional prior of the target parameter (t) instead of a traditional Gaus-

sian prior. The dimension of the input data is compressed by the encoder

network to the dimension of the latent space and the latent generator

(p(s | t)) captures the target specific prior of the latent representations. In
this process, the decoder network (p(i

′ | s)) captures the non-linearity of

the latent generator via the generated latent representations and attempts

to reconstruct the input. The reconstructed form of the input data is given

as (i
′
). The conjoined feed-forward neural network (q(t | i)) is a proba-

bilistic regressor which predicts outputs along with the standard deviation
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in the predicted values.

All the four networks are regularized by a loss mechanism that optimizes

the model to learn targeted representations from the data and accurately

predicts the target parameter. The latent generator with the decoder net-

work accounts for the ‘generative parameters’ and the encoder network

with the regressor network accounts for the ‘inference parameters’. This is

because the reconstructed data is assumed to be generated from its latent

representation that depends on the target parameter. Therefore, the latent

generator and the decoder network function as a ‘generative model’. The

‘inference model’ consists of the probabilistic encoder that determines the

latent representation from the data and a probabilistic regressor that pre-

dicts the target parameter using the latent features. The total loss L(i) of
the proposed generative neural network can be stated as shown in equation

(4.1),

L(i) =−DKL(q(t | i)||p(t))

+ Eq(s|i)[log p(i | s)]

− Eq(t|i) [DKL(q(s | i)||p(s | t))]

(4.1)

In the given equation (4.1), the total loss L(i) is a sum of three dif-

ferent loss terms associated with regularizing the inference and generative

parameters of the proposed network. Particularly, q(t | i) is a conventional

feed forward regression network that produces bias (standard deviation) as

an additional output (therefore a probabilistic regressor). The first term

represents the Kullback-Leibler (KL) loss that regularizes the prediction

of target with a prior. The second term represents reconstruction loss that

emphasizes the reconstructed data to resemble to the input data and the

third term represents the label loss that emphasizes the encoder (posterior

- q(s | i) to resemble to the target-specific prior p(s | t).
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Figure 4.3: Framework of the Proposed Generative Model demonstrating

the triple loss mechanism to regulate inference and generative parameters

of the network

4.3.2 Generative Network Architecture

The dynamic architecture of the generative neural network shown in Figure

4.4 consists of an encoder network with an input layer of dimension ‘n’

connected to two intermediate hidden layers of dimensions n-2 and n-4 with

‘tanh’ activation function where ‘n’ is the number of input features. The

resultant features from the hidden layers were independently connected

to two other dense layers of same dimensions (n-6, n-6) that characterize

the mean and diagonal covariance of the latent space. The probabilistic

regressor network shared the two hidden layers of the encoder network and

consisted of a simple dense layer to produce predicted mean and standard

deviation of the target parameter. A standard reparametrization trick was

applied to use the mean and variance as arguments to return sampled
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vectors (z and r) enabling backpropagation through the network. A latent

generator of dimension ‘n-6’ was used to condition ‘z’ on ‘r’ by the means

of KL divergence loss function. Finally, the decoder network was built with

an exact inverse structure of the encoder network for the reconstruction of

data from the reparametrized latent space.

Figure 4.4: Dynamic architecture of the proposed generative network

with variable layer dimensions

Rn: Network layer of dimension ‘n’; D: Dense network connection; λ:

Reparametrization function; (z, r): Sampled latent vectors; (µz, σz): mean

and variance of ‘z’; (µr, σr): mean and variance of ‘r’
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4.4 Proposed Approach for AGB Prediction

The flowchart of the AGB prediction approach is shown in Figure 4.5.

In the following sub-sections each part of the flowchart is described in

detail. The data pre-processing of MS and SAR data is described in sub-

section 4.4.1. The process of computing analytical features from both

pre-processed data and the steps for suitable data preparation as model

input are stated in sub-section 4.4.2. Lastly, the implementation of the

developed generative model and performed experiments are described in

sub-section 4.4.3.

The general idea supporting the development of this methodology from

an application (AGB) perspective is based on the results achieved in Chap-

ter 3. The spectral features used for interpretation of biophysical property

of forests such as AGB are based on passive systems. The sun view an-

gles, soil background and atmospheric conditions may affect the reflectance

measurements from forests. Thus, while dealing with spectral features, it

is necessary to ensure that the developed models are more responsive to ac-

tual data rather than noise. Although, spectral features such as vegetation

indices remove such variations in spectral reflectance, they are unable to

sufficiently capture the variance of forest AGB. The proposed method was

developed with an intent of using a generative process to produce features

that can sufficiently capture the variance and exhibit properties of target

parameter i.e. AGB. The SAR data was included to compensate for the

drawbacks of passive system and providing additional features to explain

AGB.

4.4.1 Data Pre-processing

The Sentinel-2 images were acquired in Level-1C (Top of the atmosphere

reflectance) format and converted to Level-2A (Bottom of the atmosphere
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Figure 4.5: Flowchart of the Proposed Approach showing steps for Data

Pre-processing, Feature computation and Model Implementation

BOA: Bottom of Atmosphere; ARD: Analysis Ready Data; GLM: Gener-

alized Linear Modelling; MLP: Multilayer Perceptron Regressor; RF: Ran-

dom Forest; XGBoost: Extreme Gradient Boosting; M: Proposed Gener-

ative Model; i: Input; i’: reconstructed; l: latent space; t: target; RL:

Reconstruction loss; KL: KL loss; LL: Label

reflectance) format including atmospheric and terrain correction using the

Sen2cor processor [153]. The spectral bands at spatial resolution 10 m
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and 20 m were used in this study and those at 20 m spatial resolution were

resampled at 10 m for spatial consistency and for performing computations.

The acquired Sentinel-1 SLC product swath was split with selected

bursts into a separate product. The orbit file was acquired and precise or-

bits are applied to the split Sentinel-1 product. The resultant product was

radiometrically corrected and the calibrated SAR images were produced

with pixel values that represent the radar backscatter of the reflecting sur-

face. The bursts of the product were merged in the azimuth direction for

a seamless image and the debursted split products of different sub-swaths

were merged to form a single image. A subset was clipped from the single

merged image of the area of interest (study area). In order to produce a

polarimetric Analysis Ready Data (ARD), a C2 polarimetric matrix was

generated that is an incoherent polarimetric representation of second order

partial polarimetric scattering matrix elements. Multilooking and speckle

filtering were performed on the resultant ARD product to reduce speckle

noise and generate ground range square pixels. Finally, the range doppler

terrain correction was performed to geocode and produce a final product

of 10 X 10 m spatial resolution. The entire Sentinel-1 data pre-processing

was performed using Sentinel Application Platform version 8.0 software

(https://step.esa.int/).

4.4.2 Computed Features and Input Data Preparation

The pre-processed data for each season were used to compute analytical

features, i.e. 25 vegetation indices from Sentinel-2 (Table 3.3) data and

four radar vegetation indices from Sentinel-1 data (Table 4.2). The nu-

merous vegetation indices consist of discrete information from the spectral

and backscatter data. These vegetation indices reduce the effect of environ-

mental conditions and compensate for atmospheric distortions. Moreover,

they maximize the sensitivity to biophysical properties and minimizes to-
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Table 4.2: Analytical Features From Sentinel-1 SAR Data extracted us-

ing First and Second Order Scattering Information with their respective

Equations

Analytical SAR Features Equations

Radar Vegetation Index RVI =
4σ0

VH

σ0
VV+σ0

VH

Degree of Polarization DOP =
√
1− 4|C2|

(Tr(C2))
2

Dual-pol Radar Vegetation Index DpRVI = (1−DOP) ∗ λ1

λ1+λ2

Polarimetric Radar Vegetation Index PRVI = (1−DOP) ∗ σ0
VH

σ0
VH: Cross-polarized backscattering coefficient; σ0

VV: Co-polarized backscattering

coefficients; C2: Covariance matrix; Tr: Matrix Trace Operator; λ1, λ2: Eigen values of

Covariance Matrix C2

pographical effects. Therefore, they can be used as input for engineering

target-oriented generative features with the proposed framework.

The analytical features from Sentinel-1 data were computed using a

QGIS plugin - PolSAR Tools [154]. In addition to the stated analyti-

cal features, ten reflectance bands of Sentinel-2 data and four polarimetric

matrix elements (C11,C12,C21,C22) of the Sentinel-1 data were also consid-

ered for the input dataset. These polarimetric matrix elements are second

order scattering information generated from the spatial averaging of the

scattering vector “k ” as stated in equation (4.2). All these computed ana-

lytical features, reflectance bands and polarimetric matrix elements acted

as a pre-cursor for engineering abstract and target specific features using

the proposed generative neural network.

C2 =

[
C11 C12

C21 C22

]
=

 〈
|SV V |2

〉
⟨SV V S

∗
V H⟩

⟨SV HS
∗
V V ⟩

〈
|SV H |2

〉  (4.2)

Reference plot sized buffers of radius 15 m from the center of the plot

were applied at each plot location to extract mean value from the com-

puted analytical features and a plot level training dataset is prepared. The
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missing values (if any) in the dataset were replaced using the median oper-

ator and the range of observations in each dataset were standardized using

a standard scaler that subtracts the mean and scales to unit variance. The

prepared dataset was exported to standard binary file format that stores

the shape and information necessary for performing operations with the

proposed generative neural network model. In order to reduce the model

complexity, Adaptive L1 (A-L1) regularization was applied to the prepared

dataset to limit the number of input variables. The entire process was car-

ried out to prepare three separate sets of data based on the data source

i.e. MS dataset, SAR dataset and Dual-source (DS) dataset. Finally, a

clean, standardized and regularized input dataset was fed to the developed

generative neural network.

4.4.3 Model Implementation and Experiments

The developed architecture of the proposed generative neural network is

dynamic and depends on the number of analytical features selected post

A-L1 regularization. Therefore, the number of network filters for each layer

change for each of the three datasets based on the schema of the dynamic

architecture shown in Figure 4.4. The developed generative neural network

was trained with a batch size of 10 and a total of 500 epochs. The dense

layers of the network were L2 regularized to keep the weights and biases

small and reduce the likelihood of overfitting. The network was trained

by using a K-fold stratified cross-validation method with five folds. The

model was implemented using open-source software library “TensorFlow”

on a Python API. The training of the network was performed on a 128 GB

RAM NVIDIA GeForce RTX 3090 GPU on a Linux based OS.

The experiments were designed to quantify the improvement in AGB

predictions and the refinement in the quality of feature space achieved

using the proposed model. Multiple models were developed based on dif-
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Table 4.3: Validation Statistics for Assessment of Prediction Accuracy,

Precision, Agreement and Overfitting of Models

Validation statistics Equations Validation Aspect

Mean Absolute Error MAE =
∑n

i=1

∣∣preCV
i − obsi

∣∣ /n Prediction Accuracy

Root Mean Squared Differences RMSD =
√

SSCV

n Prediction Precision

Coefficient of determination (cross-validation) R2
CV = 1 − SSCV /SStot Prediction Agreement

R2 Ratio R2R = R2
fit/R

2
CV Overfitting

n: total number of samples; preCV
i : prediction value of sample ‘i′ obtained by cross validation; obsi:

observed value of sample ‘i′; SSCV : sum of squared differences between observed and predicted values

by cross validation; SStot : sum of squared differences of each observation from overall mean; R2
CV :

Coefficient of determination via Cross-Validation; R2R: Ratio of coefficient of determination via

residual to cross-validation; R2
fit: Coefficient of Determination via Residuals (without cross validation)

ferent techniques such as linear, bagging, boosting and neural networks to

compare the results with the proposed model. In particular, Generalized

Linear Model (GLM), Random Forest (RF), Extreme Gradient Boosting

(XGBoost), and a Multi-layer Perceptron (MLP) are used for comparing

model performance. The structure of the MLP model was same as struc-

ture of the regressor unit used with the proposed model to quantify the

improvement delivered by the generative process in model performance (i.e.

improvement achieved by the probabilistic regressor network as compared

to the MLP regressor network with same structure). All the comparative

models were fine-tuned for optimal performance according to respective re-

quirements using random hyperparameter search (for RF), early stopping

(for XGBoost, MLP) and adaptive moment optimization (for MLP). All

the comparative models were 5-fold cross validated and trained using A-L1

regularized features.

The model agreement was evaluated using cross validated R-squared

score (R2
cv), prediction precision using the Root Mean Squared Percentage

Difference (RMSD), model overfitting using the R-squared Ratio (R2R)

and scale-depended prediction accuracy using the Mean Absolute Error
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(MAE). The equations of these statistical performance metrics and the

respective validation aspect are given in Table 4.3. In order to compare

the quality of the feature space, the t-distributed Stochastic Neighbor Em-

bedding (t-SNE) technique was used to visualize the A-L1 regularized an-

alytical features (input for GLM, RF, XGBoost, MLP) and the generative

features from latent space (input for the probabilistic regressor of the pro-

posed model) on a 2D plane color-coded with field estimated AGB. The

t-SNE visualization were used to analyze the orientation of the latent space

with respect to the field estimated AGB. These analytical and generative

features were scored using feature importance derived from an independent

Gradient Boosting Machine (GBM) algorithm for quantitative assessment

of their feature contribution. The GBM based feature importance scores

were computed using a standard Permutation Feature Importance algo-

rithm. Finally, we also generated an AGB map of the Trentino region

using the best proposed model and performed correlation analysis using 55

additional reference AGB plots for independent site validation.

4.5 Results and Discussion

4.5.1 Analytical Features Selected Post A-L1 Regularization

The list of the selected analytical features post A-L1 regularization is given

in Table 4.4. The regularized datasets consisted of 26 features for MS, 11

features for SAR and 33 features for the DS dataset. The 26 features of the

regularized MS dataset consisted of 10 features from the spring season, 6

features from the summer season, 7 features from the autumn season and 3

features from the winter season. Thus, the regularization showed different

degree of relevance for different seasons for the MS dataset. A major

contribution of the red-edge spectrum (9 features) and SWIR spectrum

(4 features) was observed in the regularized MS dataset. The 11 features
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of the regularized SAR dataset mainly consisted of polarimetric matrix

elements (C12,C21) from all seasons, C11 from the winter season and PRVI

from summer and autumn season. The 33 features of the regularized DS

dataset consist of 17 MS features and 16 SAR features.

4.5.2 Predictive Analysis Using Developed Models

The regression scatterplots for the Proposed, MLP, GLM, XGBoost and

RF model representing field estimated AGB versus the predicted AGB

are shown in Figures 4.6 - 4.10 respectively. The 5-fold cross-validated

model performance metrics for model agreement (R2
cv ), prediction precision

(RMSD%), overfitting (R2R), and prediction bias (MAE) for all developed

models and different datasets are given in Table 4.5.

The proposed model delivered best results with respect to all considered

performance metrics for all the three datasets. Particularly, the proposed

model obtained the best performance on DS data with an agreement score

R2
cv = 0.63 and least overfitting score R2R = 1.3. The proposed model also

delivered the best prediction precision RMSD% = 34.6 and least prediction

bias MAE = 73.6 Mg/ha. The proposed model achieved better prediction

precision (RMSD% = 34.6 – 38.9) and less overfitting (R2R = 1.3 – 1.4) as

compared to MLP (RMSD% = 72.9 – 75.4 and R2R = 1.8 – 1.9) in spite

of an identical neural structure of the regressor unit of the proposed model

and the MLP. Also, the analytical features had a higher dimensionality (n)

compared to the generative features (n-6) but the latter improved model

performance metrics for all the three datasets.

With respect to the datasets considered, all examined models performed

least accurately on SAR data (RMSD = 38.9 – 75.4 and MAE = 87.1 –

172.7). This result was anticipated as C-band data are characterized by low

canopy penetration. However, the proposed model assisted in improving

the model predictions with SAR data (RMSD% = 38.9 and MAE = 87.1).
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Table 4.4: List of Selected Analytical Features from MS, SAR and DS

data post A-L1 Regularization

Selected MS features Selected SAR features Selected DS features

1. BWDRVI march 1. C11 december 1. BWDRVI march

2. GLI march 2. C12 december 2. GLI march

3. normG march 3. C21 december 3. normG march

4. VIgreen march 4. C12 june 4. CIRE3 march

5. CIRE3 march 5. C21 june 5. NDVIre1 march

6. NDVIre1 march 6. PRVI june 6. NBR2 march

7. NDVIre2 march 7. C12 march 7. GLI june

8. NDVIre3 march 8. C21 march 8. normG june

9. NBR1 march 9. PRVI march 9. VIgreen june

10. NBR2 march 10. C12 september 10. CCCI1 june

11. GLI june 11. C21 september 11. NBR2 june

12. normG june 12. VIgreen september

13. VIgreen june 13. RI september

14. CCCI1 june 14. CCCI1 septemeber

15. CCCI2 june 15. NDVIre1 september

16. NBR2 june 16. NBR2 september

17. GLI september 17. CIRE3 december

18. normG september 18. C11 december

19. VIgreen september 19. C12 december

20. RI september 20. C21 december

21. CCCI1 september 21. PRVI december

22. NDVIre1 september 22. C12 june

23. NBR2 september 23. C21 june

24. normR december 24. PRVI june

25. VIgreen december 25. C11 march

26. CIRE3 december 26. C12 march

27. C21 march

28. C22 march

29. PRVI march

30. C12 september

31. C21 september

32. DOP september

33. PRVI september
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Table 4.5: Results of Performance Metrics computed for Proposed Model

and Conventional Models (GLM, MLP, RF and XGBoost) developed using

MS, SAR and DS data

MS SAR DS

Models R2
cv RMSD% R2R MAE R2

cv RMSD% R2R MAE R2
cv RMSD% R2R MAE

Proposed 0.53 37.8 1.3 83.1 0.37 38.9 1.4 87.1 0.63 34.6 1.3 73.6

MLP 0.15 72.9 1.9 162.5 0.08 75.4 1.8 172.7 0.21 74.6 1.9 165.7

GLM 0.44 46.7 1.4 80.9 0.19 51.7 1.8 117.6 0.45 36.9 1.5 82.7

XGBoost 0.34 39.6 2.5 88.2 0.18 53.1 4.3 117.3 0.36 39.6 2.6 91.9

RF 0.44 39.7 1.8 85.3 0.1 47.66 12.4 107.9 0.45 37.16 1.8 83.5

The prediction bias was reduced by the proposed model (MAE = 87.1)

as compared to the conventional models despite the intrinsic wavelength

dependent limitations of the SAR data. All models performed better with

MS data as compared to SAR data but the combined DS data delivered

highest model performances in terms of precision (R2
cv = 0.63, RMSD% =

34.6, R2R = 1.3 and MAE = 73.6). Thus, the proposed model demon-

strated a successful and more effective approach for seamless data fusion

for modelling AGB.

Among the considered tree based models (RF and XGBoost), the RF

model achieved better overall agreement (R2
cv = 0.45) than XGBoost (R2

cv

= 0.36). Also, XGBoost produced higher overall prediction bias (MAE

= 91.9) than RF (MAE = 83.5) for all datasets. Overall, RF model per-

formed better than XGBoost in the tree based model category. Lastly, in

the neural network category, the MLP model delivered inaccurate predic-

tions and showed higher overfitting compared to the GLM and the proposed

model. The MLP model produced the least agreement for SAR data (R2
cv

= 0.08) with overall high prediction errors (MAE > 160). Although, the

proposed model provided an improved model performance as compared to

the conventional neural network model (MLP) with respect to all assess-

ment metrics. Overall, the proposed generative neural network performed
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better than considered conventional models such as GLM and tree-based

algorithms.

Figure 4.12 shows the AGB map obtained by the proposed model on

the analyzed area. A strong correlation can be observed between the pre-

dictions of the proposed model and 55 independent reference data plots

(locations shown in Figure 4.12). Figure 4.13 shows the correlation scatter

plot and the computed Pearson correlation coefficient (R). The Pearson

correlation coefficient for the 55 reference plots and the mapped AGB val-

ues was R = 0.66. Thus, a high correlation achieved for these independent

reference plots (not used for training/testing models) indicated a robust-

ness of the proposed model on new data or potentially on different sites.

Figure 4.6: Regression scatterplots of the Field Estimated versus Model

Predicted AGB for the proposed model using single source and DS data
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Figure 4.7: Regression scatterplots of the Field Estimated versus Model

Predicted AGB for the MLP model using single source and DS data

4.5.3 Two dimensional t-SNE Visualization of Latent Space

The t-SNE scatterplots of generative features and analytical features for

MS, SAR and DS datasets are shown in Figures 4.11. The t-SNE scatter-

plots for all three datasets indicated that the latent space of the proposed

model depicting generative features is highly ordered as compared to the

input feature space depicting analytical features. The two-dimensional t-

SNE visualization of a higher dimensional latent space indicated that the

arrangement of the generative features was directional and oriented to-

wards the target AGB. However, the two-dimensional t-SNE visualization

of input feature space was non-directional and showed no specific orienta-
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Figure 4.8: Regression scatterplots of the Field Estimated versus Model

Predicted AGB for the GLM model using single source and DS data

tion towards AGB. The directional orientation of generative features with

respect to target AGB values improved the generalization of the proposed

model by decreasing model overfitting and prediction bias simultaneously

(R2R = 1.3 – 1.4 and MAE = 73.6 – 83.1).

The t-SNE scatterplots of the input feature space for all datasets (Fig-

ures 4.11 – Right) show an un-ordered distribution and produced no AGB

associated variations. Although, the t-SNE scatterplots of latent space for

all datasets (Figure 4.11 – Left) have one dimension clearly associated with

variability of target AGB. Also, a greater degree of target association was

observed for MS and DS latent space as compared to SAR latent space.

A few observations from the SAR latent space from the range of 0 to 100
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Figure 4.9: Regression scatterplots of the Field Estimated versus Model

Predicted AGB for the XGB model using single source and DS data

Mg/ha were at the point (x, y) = (0,0) that had higher frequency of ob-

servations from mid-range AGB (300 to 400 Mg/ha). These disassociated

observations explained the inferior results for SAR data as compared to

the other data using the proposed model.

The plots of scaled feature importance versus the ten most important

analytical and generative features are shown in Figure 4.14. The slope of

the feature importance trend line for analytical features is greater than that

for generative features. The relative feature importance of analytical fea-

tures scaled down at higher rate as compared to generative features. This

is because only a few among all the analytical features significantly con-

tributed to the accurate prediction of AGB. However, in case of generative
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Figure 4.10: Regression scatterplots of the Field Estimated versus Model

Predicted AGB for the RF model using single source and DS data

features, a greater number of features provided significant contribution (see

Figure 4.14) for an accurate AGB prediction as compared to the analytical

features. This indicated that the overall feature importance of genera-

tive features was higher as compared to that of analytical features. This

also explains the role of generative features in delivering better prediction

results from the performed experiments.

4.5.4 Discussion

In this thesis contribution,a generative neural network was proposed with a

dynamic architecture that has been used on SMS and SAR remote sensing
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Figure 4.11: Color-coded t-SNE plots of reduced dimensionality latent

space and input feature space of MS, SAR and DS data

data for modelling plot level forest AGB. The key elements of modelling

consisted of operationalizing the triple loss mechanism, generating target

oriented features and using a probabilistic regressor to deliver predictions.

This framework was proposed for dealing with the various issues identified

in the literature related to the use of satellite remote sensing data for forest

AGB mapping. The results achieved from the performed experiments have
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Figure 4.12: AGB Map of the study area produced using the Best Pro-

posed Model and location of the independent reference plots

been analyzed with respect to the contemporary literature in this section.

Studies that used satellite remote sensing data for AGB prediction high-

lighted a common drawback in terms of data saturation and low prediction

precision [113, 25, 155]. This contribution analyzed multiple models for

different datasets and found two effective ways to reduce the bias and data

saturation. The first proposed way is fusion of multi-sensor data as this

increases the number of features (and hence the information) that can re-

duce saturation for predicting higher AGB values. The second proposed

way is by extracting targeted features. In case the multi-sensor data are

not available, engineering features to induce targeted properties in the fea-

ture space can also reduce the saturation and increase prediction precision

with satellite remote sensing data. In this contribution, it was quantita-

tively proven that the two stated ways are effective for increasing prediction

precision and reducing saturation. The metric RMSD% was significantly

better for the proposed approach indicating the increased prediction preci-
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Figure 4.13: Correlation assessment of the AGB predicted using the Best

Proposed Model and Field Estimated AGB for independent reference plots

sion. Moreover, a better concurrence achieved by the proposed model for

a higher range of AGB values indicated reduced model saturation. This

was quantitatively reflected by a higher r-squared score and can be graph-

ically observed with regression scatterplots that show greater agreement

for higher AGB values.

The analysis performed in [113] suggested calibration of the model

within the range of AGB values to minimize the risk of induced prediction

bias. Forest are diverse in terms of species, density, type and distribution.

Thus, developing a method that can effectively learn from multi-modal

data and engineer features to orient with respect to the AGB values is one

of the viable solution. This aspect was presented in the form of a prob-

abilistic regressor network that tracks the label loss and coordinates with

the latent generator to produce AGB-oriented features reducing the need
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Figure 4.14: Feature Importance graph computed using an independent

Gradient Boosting Machine algorithm for Generative and Analytical fea-

tures

for AGB-oriented sensors. In addition to regularization and dimensionality

reduction of the data, this contribution showcased a disentanglement pro-

cedure that orients one dimension of the features to display target specific

variance and thereby improving the performance of the model. Moreover,

the fusion of optical and SAR data for modelling forest AGB is also a chal-

lenging task to achieve the desirable modelling results. A simple additive

combination of dual-source data (used for the four conventional models
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- GLM, MLP, RF and XGBoost used for comparison) delivered inferior

results as the models utilize only primary level information to learn two

different properties. The proposed model extracts high-level information

and transforms the feature space such that it exhibits target oriented prop-

erties.

The regression algorithm used for modelling predominantly affects the

prediction accuracy of the model. Multiple comparative studies that used

different machine learning regression algorithms for the prediction of forest

AGB from satellite RS data produced diverse results [25, 151, 156]. The

comparison of these studies in literature for determining the best suitable

regression algorithm is difficult due to different initial conditions (data,

samples, features). The number of samples used and the type of features

selected can also affect the performance of a model. Thus, the same model

can perform differently by changing the initial conditions. Accordingly, the

identification of the baseline model remains an issue for AGB modelling.

In simple terms, it is difficult to have one baseline model that can perform

best for all initial conditions. Also, the study in [151] compared a few stan-

dard machine learning algorithms and a stacked sparse autoencoder (feed

forward neural network) to prove the superiority of the latter. However,

the study had used random splitting of dataset (3:1) and our study that

used stratified cross-validation found that feed forward neural networks

are highly prone to overfitting. This problem was resolved by the idea of a

robust and integrated probabilistic regressor that encourages the posterior

to resemble to the AGB specific prior that can reduce the prediction bias

induced by the initial conditions. This can be specifically observed from

Figure 3.13, where the model was applied to additional field plot samples

that were not used during training of the model. The correlation plot

showed that prediction bias slightly increases for extreme values of AGB

but the model overall retained a strong correlation between the predicted
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and field estimated AGB. This shows that the proposed approach can be

effectively replicated on new data or potentially new sites.

Another important aspect of this contribution has been to automate the

process of balancing the bias-variance trade-off of the prediction algorithm.

In the study [157], eight machine learning models were evaluated for the

prediction of forest AGB using satellite remote sensing data. It outlined

the problem of stabilizing the prediction bias with change in the forest

types, sampling methods and dependence of feature importance on the

deployed model. It used thirteen features for modelling and observed a

high variance in the importance of the same feature for different models.

It also highlighted that the process of hyperparameter optimization for

each model and selection of the best model was time consuming. In this

contribution of the thesis, the entire process was automated for achieving

optimal results with a less complex and time efficient computations.

Overall, this contribution effectively deals with various problems iden-

tified in the literature by providing a robust solution in form of a genera-

tive modelling architecture. However, a prime limitation of the proposed

model is that it used a neural network based regressor unit that cannot

be replaced by any other contemporary regression algorithm (e.g. RF or

XGBoost). The generative architecture requires a neural network unit to

update weights and produce targeted generative features. Thus, it reduces

the scope of testing other regression algorithms with the proposed archi-

tecture. Moreover, the architecture of the proposed model is complex with

separate inference and generative parameters. Therefore, it is difficult to

use a neural architecture search algorithm to optimize the number of filters

and layers of the model. This limits the strategy of determining the most

optimal architecture of the proposed model.
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4.6 Conclusion

This contribution of the thesis has proposed a generative approach for

modelling forest AGB using satellite RS data. The results demonstrated

the superiority of generative features over conventional analytical features

extracted from satellite RS data for AGB prediction. The proposed dy-

namic architecture and the triple loss mechanism generate target specific

features that showed improvement for all prediction metrics (agreement,

precision, overfitting and accuracy) in the conducted experiments. More-

over, the proposed model also demonstrated its effectiveness for efficient

feature fusion and compression. It was conclusive from experiments that

it is difficult to completely eliminate the factor of data saturation but the

proposed model substantially reduced it thereby increasing the reliability

of satellite RS data for AGB prediction. The extended work requires test-

ing the proposed framework to predict other forest biophysical variables

and parameters from a different RS application. Moreover, the aspect of

model saturation can be studied in more detail for all such biophysical vari-

ables including AGB using the proposed features. The proposed framework

could also be modified and used for classification tasks such as tree species

or land-use land-cover classification.
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Chapter 5

Automated Machine Learning for

Stacked Ensemble Model

Development for Forest AGB

Prediction

5.1 Introduction

The selection of suitable ML algorithms to solve the forest AGB problem re-

quires domain expertise for improving and regulating model performances

[16, 15, 160, 28, 34]. The task of creating an optimized ML pipeline for

AGB prediction is complex and time-consuming due to diversity in forest

type, distribution and species. The traditional approaches proposed for the

development of ML pipelines use a trial and error mechanism for stacking

and selection of models for AGB prediction [161, 162, 130]. In practice, the

human element cannot be completely eliminated from the pipeline develop-

ment process for performing model checks and deriving model explanation

Part of the chapter appears in:

P. Naik, M. Dalponte, and L. Bruzzone, “Automated Machine Learning Driven Stacked Ensemble Mod-

elling for Forest Aboveground Biomass Prediction Using Multitemporal Sentinel-2 Data,” IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing. Institute of Electrical and Elec-

tronics Engineers (IEEE), pp. 1–14, 2022. DOI: 10.1109/JSTARS.2022.3232583
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with respect to the target parameter i.e. AGB. However, the human inter-

vention can be reduced and replaced with efficient hyperparameter search

and importance learning algorithms. This minimizes the number of user

regulated parameters and achieve faster and efficient modelling with re-

duced systematic error [163, 164, 165, 166]. In this regard, the concept of

Automated Machine Learning (AutoML) can be very instrumental in gain-

ing better machine learning performance with the available computational

budget and reduced human assistance to model forest AGB. AutoML au-

tomates knowledge intensive tasks such as configuring learning tools for

feature engineering, architecture search and algorithm selection using an

optimization-evaluation mechanism [167]. In a general architecture, the

AutoML controller consists of an evaluator and an optimizer. The eval-

uator measures the performance of learning tools and provides feedback

to the optimizer in order to update configurations for better performance.

The optimizer generates configurations based on a search space that is

determined by a process of targeted learning [168]. For example, if the

learning process is “feature engineering”, the learning tools to be config-

ured are the “classifiers” and the search space would consist of “feature

sets, feature enhancing methods (dimension reduction, feature generation,

feature encoding) and related hyperparameters”.

There are a wide ranging applications of AutoML such as medical im-

age recognition [169, 170], object detection [171, 172, 173], super resolution

[174, 175, 176], language modelling [177], text classification [178], semantic

segmentation [179], etc. AutoML has delivered quality performance for var-

ious tasks but scarcely experimented for developing a ML pipeline for AGB

prediction. A ML pipeline is a directed graph of learning elements that

can be automated by using search of estimators/predictors, search of learn-

ing algorithms and search of ensemble-models [180, 181, 182]. In literature,

there are various algorithms developed for automation of these learning ele-
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ments of a ML pipeline [183]. The evolutionary algorithms such as Particle

Swarm Model Selection (PSMS) use Particle Swarm Optimization (PSO)

to automate the full model selection problem [184]. Such evolutionary

algorithms inspired Ensemble PSMS [185] which is the pre-cursor to the

development of the latest AutoML systems [186]. Recent AutoML systems

are capable of building regression/classification pipelines, full model selec-

tion, multi-objective optimization and best architecture/hyperparameter

search for deep learning models [187]. Auto-WEKA [188] system uses the

Sequential Model-Based Algorithm Configuration (SMAC) method [189]

which is a robust stochastic optimization framework under noisy function

evaluations for lowest cross-validation misclassification. AutoSklearn [190]

which is a system similar to Sequential Model Based Optimization (SMBO)

has a distinctive search process initialization that exploits a meta-learner

delivered best performance in many AutoML challenges. The Tree-Based

Pipeline Optimization Tool (TPOT) [191] is an open source genetic Au-

toML system that optimizes a series of ML models for high-accuracy and

compact pipelines for supervised classification. The recent surge in the ap-

plication of deep neural networks led to the development of AutoML sys-

tems like Auto-Net [192] and Neural Architecture Search (NAS) [193, 194]

which are built on combination of Bayesian optimization and Hyperband

to automatically tune deep neural networks without human intervention.

The concept of meta-learning is integral to AutoML systems and enables

them to learn from the meta-data of the learning elements [195]. AutoML

systems perform faster and efficiently on a new task with meta-learning

techniques that replace human-engineered ML pipelines with data-driven

pipelines [196]. Meta-learning techniques have been successfully imple-

mented in literature to automate various learning elements (feature engi-

neering, architecture search, hyperparameter optimization) of the AutoML

systems [180, 197, 198, 199, 200, 201]. In this context, there are many stud-
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ies conducted using meta-learning techniques to execute various ML tasks

in remote sensing applications. A trivial problem in deploying advanced

ML algorithms in the RS domain is few-shot (low training samples) learn-

ing for which meta-learning techniques have provided some significant so-

lutions [202, 203, 204, 205]. Meta-learning techniques can efficiently handle

multi-scale RS data and provide efficient solutions to inversion modelling

problems [206, 207]. These techniques have been used to solve more specific

RS problems such as the study in [208] specifically focused on deep neural

network model for semantic segmentation of circular objects in satellite

images. Apart from such specific problems, meta-learning techniques are

capable of dealing with combination of such problems to solve larger prob-

lems in RS. For example, a recent study [209] aimed at generating captions

for RS images using meta-learning – a task that requires dealing with a

combination of problems based on visual and textual features to generate

RS image captions. Thus, meta-learning approaches have a significant con-

tribution in solving complex RS problems and holds a great potential for

improving AGB modelling in diverse scenarios such as mixed tree species,

forest types and varying density of forests.

The possibility is unlikely for a single modelling algorithm to perform

effectively on most types of AGB modelling scenarios. Ensemble models

are a combination of base models built on the hypothesis that the combi-

nation of multiple (weak) models can produce a more reliable and accurate

model as compared to the individual base models [210]. Ensemble models

are developed based on techniques such as Bagging, Boosting and Stack-

ing. The bagging and boosting models both involve homogeneous weak

learners that are combined by a deterministic strategy. The difference

is bagging algorithms follow a parallel learning strategy (e.g. RF) and

boosting algorithms follow a sequential learning strategy (e.g. AdaBoost,

XGBoost). Differently, stacking involves heterogeneous weak learners that
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are combined using a meta-model with a parallel learning strategy. Ensem-

ble models have been used for AGB modelling and prediction by various

studies in literature [130, 69, 25]. However, developing a stacked ensem-

ble with manual trial and error approaches to model AGB is an inefficient

and time-consuming task. Meta-learning driven AutoML systems can be

adequately used for developing optimal stacked ensemble models for AGB

prediction [211]. AutoML systems use a collection of base models with

hyperparameter tuning algorithms for producing stacked ensemble models

[212]. The AutoGluon system [213] uses a multi-layer stacked ensembling

with K-fold bagging that stacks models in multiple layers and trains in

layer-wise manner. The AutoSklearn system [214] employs a Bayesian op-

timization algorithm for searching through the hyperparameter space and

meta-learning for warm-starting of the search procedure. The AutoSklearn

2.0 [190] which is an improvement upon Autosklearn, uses portfolio learning

after performing Bayesian optimization. Among the most recent AutoML

systems, “H2O” AutoML [215] performs stacked ensembling with random

forest, gradient boosting machines, linear models and deep learning models

using a super learner algorithm.

The primary objective of this contribution is the prediction of AGB us-

ing Multitemporal-Multispectral (MT-MS) satellite remote sensing data.

Prediction of AGB using SRS data requires a robust ML pipeline to deal

with outliers in the training data and increase the generalization ability

of the model. Moreover, SRS is generally used for large-scale AGB map-

ping and may require testing multiple models due to the spatially varying

characteristics of forest. Thus, it is required to have a comprehensive evalu-

ation framework for the multiple models that are considered. Therefore, an

AutoML system is proposed for the prediction of forest AGB that enables

training and evaluation of models within a single framework. In particular,

a meta-learning driven AutoML system is used that automates selection
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and stacking of candidate base learners for modelling AGB. Additionally,

a SMBO procedure is incorporated to automatically extract features from

the MT-MS satellite data to minimizes systematic error in the proposed

ML pipeline.

5.2 Study Area and Datasets

5.2.1 Study Area Description and Field Data

The study area is the province of Trento (6216 km2) situated in the north-

eastern Italy in the southern part of the Alps. The area is mountainous

and has a 60% of forest cover mostly owned by public institutions that are

subject to broad goals of forest management (i.e. forest protection, species

biodiversity, carbon storage etc.). The area has mountains with high el-

evations and landlocked valleys. The details regarding the tree species in

the area are described in Chapters 3 and 4 (Study area section). The geo-

graphical location of the study area and the distribution of the field plots

in the study area are shown in Figure 5.1. The field data consists of 315

circular plots with a fixed radius of 15 m (Figure 5.1). These data include

98 broadleaf plots, 152 coniferous plots and 65 mixed plots. The total 315

plots were divided into three categories (broadleaf, coniferous and mixed

plot) such that more than 80% of the plot AGB should be derived from

one particular tree-type (broadleaf or coniferous), otherwise the plot was

considered as a mixed plot. The details of survey devices, measurement

parameters and species specific allometric equations is given in Chapter 3

(Field data sub-section). The field estimated plot level AGB values ranged

from 1.07 Mg ha−1 to 711.41 Mg ha−1.
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Figure 5.1: Map of the Study Area with locations of the reference AGB

plots indicated as red dots

5.2.2 Remote Sensing Data

The study was performed using MT-MS Sentinel-2 images. The acquisition

dates of the Sentinel-2 images are stated in Table 5.1. The specifications

of Sentinel-2 images are given in from Chapter 3 (Remote sensing data

sub-section).

5.3 Description of Algorithms

The developed mechanism for achieving the proposed objectives was based

on coupling two algorithms: 1) Tree structured Parzen Estimator (TPE)

[216] which is a hyperparameter optimization algorithm based on an iter-

ative search process on a dynamic search space and 2) Super Learner (SL)

[217] which is a V-fold cross validation based meta-learning algorithm that
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Table 5.1: Acquisition dates (YYYY-MM-DD) of the Sentinel-2 images

acquired over the four different seasons

Seasons Sentinel-2

Spring 2016-03-20

Summer 2016-07-18

Autumn 2016-10-16

Winter 2016-12-15

selects weights for combining candidate models. The following sub-sections

(5.3.1 and 5.3.2) provide a description of the two algorithms.

5.3.1 Tree Structured Parzen Estimator Algorithm for Auto-

mated Feature Extraction

The TPE algorithm is based on a SMBO approach that overcomes the

limitations of computationally expensive and inefficient random search and

grid search algorithms. The inputs required by the TPE algorithm are

parameters (x) and loss (y) based on the prior search history to deduce

hyperparameters for the next trial. The input pair (parameters and loss)

is split into two densities (ℓ(x) and g(x)) based on the loss of the historical

data by a γ quantile (Equation 5.1 and 5.2) of the search result. The TPE

defines this split p(x | y) using the two densities according to the following

equations:

p(x | y) =

ℓ(x) if y < y∗

g(x) if y ≥ y∗
(5.1)

and

γ = p (y < y∗) =

∫ y∗

−∞
p(y)dy (5.2)
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where, ℓ(x) should be maximized as it represents the density formed

from the observations x(i) that correspond to the loss (y) smaller than the

target performance (y∗), whereas g(x) should be minimized as it represents

the density formed by using the remaining observations. Therefore, the

output of the TPE algorithm can be simply characterized as the ratio

between g(x) and ℓ(x).

The idea of the TPE algorithm is based on maximizing the Expected

Improvement EIy∗(x) computed by (Equation 5.3) based on convergence

of loss (y) and target performance (y∗) in subsequent trials:

EIy∗(x) =

∫ y∗

−∞
max (y∗ − y, 0) p(y | x)dy =

∫ y∗

−∞
(y∗ − y)

p(x | y)p(y)
p(x)

dy

(5.3)

Where, p(x) can be written as:

p(x) =

∫
R

p(x | y)p(y)dy = γℓ(x) + (1− γ)g(x) (5.4)

Therefore, we can deduce:

EIy∗(x) =

∫ y∗

−∞
(y∗ − y) p(x | y)p(y)dy

= ℓ(x)

∫ y∗

−∞
(y∗ − y) p(y)dy

= γy∗ℓ(x)− ℓ(x)

∫ y∗

−∞
p(y)dy

(5.5)

Finally combining (5.4) and (5.5) we obtain:

EIy∗(x) =

(
γ +

g(x)

ℓ(x)
(1− γ)

)−1

·
(
γy∗ −

∫ y∗

−∞
p(y)ydy

)
∝

(
γ +

g(x)

ℓ(x)
(1− γ)

)−1

(5.6)

The expression in equation (5.6) is a product of two terms of which

the second term is independent of ‘x’ and hence the expression is directly

proportional to the first term and implies that to maximize improvement
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points ‘x’ with high probability under ℓ(x) and low probability under g(x)

are desirable. Also, this expression shows that the ratio (g(x)
ℓ(x) should me

minimized in order to increase the expected improvement.

5.3.2 Super Learner Algorithm for Automated Ensemble Mod-

elling

The SL algorithm can be used for ensemble modelling by considering a set

of diverse modelling algorithms as base learners and selecting an optimal

ensemble through V-fold cross-validation. A library L of ‘K’ modelling

algorithms is defined to solve a regression problem of estimating the ex-

pectation of target ‘B’ given the observed variable ‘A’. The optimal value

of the parameter of interest ‘ψ0(A)’ that is required to be estimated and

the related loss function ‘L(O,ψ)’ that indicates the difference between the

observed and the predicted value (squared error loss) can be written as,

ψ0(A) = E(B | A) (5.7)

L(O,ψ) = (B − ψ(A))2 (5.8)

Thus, the optimal values of the parameter of interest for the ‘K’ in-

dividual algorithms included in library L can be written as ‘ψ̂k(A)’where

k = 1, 2,. . . ..,K. The number of algorithms ‘K’ to be considered in the

library is dependent on the sample size of the data. Note that all the

considered algorithms estimate the same parameter ‘ψ̂k(A)’ but may use

different subsets of ‘A’, different basis function, estimation procedures and

range of tuning parameters. The identification of the best predicting al-

gorithm from the library over the data distribution (Po) is determined by

minimizing the expected risk difference ‘dn’, i.e.,
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dn

(
ψ̂k, ψ0

)
=

∫ {
L
(
B, ψ̂k

)
− L (B,ψ0)

}
dPo (5.9)

k̃n = argmin
k

{
dn

(
ψ̂k, ψ0

)}
(5.10)

The use of the same data to estimate ‘ψ̂k(A)’ and ‘dn

(
ψ̂k, ψ0

)
’ generates

bias in the estimation of the true risk to determine the best algorithm.

Thus a V-fold cross-validation selector is used for an unbiased estimation

of the risk. Therefore, given the empirical distributions for the training and

validation sets for each V-fold, the cross-validation selector can be defined

as k̂,

k̂ = argmin
k

ECn

∑
i:Cn(i)=1

L
(
Bi, ψ̂k

(
Ai | P 0

n,Cn

)) (5.11)

where, P 0
n,Cn

and P 1
n,Cn

are the distributions of training set (Cn(i) = 0) and

validation set (Cn(i) = 1) respectively.

5.4 Proposed Approach

The flowchart of the proposed approach given in Figure 5.2 shows the

process of integrated implementation of TPE and SL algorithms to create

a ML pipeline for AGB prediction. In the following sub-sections, the pre-

processing of Sentinel-2 data, implementation of TPE and SL algorithms

and model explanation parameters are described in detail.

5.4.1 Data Pre-Processing

The Sentinel-2 images were acquired in Level-1C (Top of the atmosphere re-

flectance) format and converted to Level-2A (Bottom of the atmosphere re-

flectance) format with atmospheric and terrain correction using the Sen2cor
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Figure 5.2: A flowchart of the Proposed Approach demonstrating sequen-

tial implementation of the TPE and SL algorithms for AGB prediction

processor [218]. The spectral bands at 20 m spatial resolution were re-

sampled at 10 m for spatial consistency and performing computations.

The resampled data were used for extracting plot reflectances to produce

season-wise analysis ready data frames using ‘rgeos’ and ‘rgdal’ packages

of R software. Particularly, the ’readOGR’ and ’rgeos’ functions were used

for reading the plot points and creating a buffer of 30 m diameter around

plot points, respectively. The analysis ready data frames were prepared

using ’extract’ function (Raster package of R) with ’mean’ argument to

compute average of pixels covered by the buffer around plot points. The

pixels are included by the function if and only if the plot boundary covers

the centroid of the pixels. This procedure was carried out uniformly on all

seasonal images. The analysis ready data frames of each season consisted
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of plot reflectance values for each spectral band for all sample plots.

5.4.2 Implementation of Algorithms

The two core frameworks of the proposed approach are based on TPE and

SL algorithms implemented sequentially to produce a robust ML pipeline

for AGB prediction. Firstly, the TPE algorithm generates automatically

optimized features from the pre-processed analysis ready data frames. These

optimized features and the response variable are used for training the SL

algorithm that automates the process of training a large number of base

models and performs stacked ensembling to produce a leaderboard of mod-

els. The TPE algorithm was implemented using “Optuna” framework that

was developed in [219] and the Super Learner algorithm was implemented

using “H2O-3” framework that was developed in [215]. The sequential im-

plementation of the two frameworks is explained in detail in the following

paragraphs.

The implementation of the TPE algorithm to extract features from the

input spectral bands requires a model, i.e. an empirical equation for which

it can generate a set of parameters and select a combination of optimal

spectral bands to accurately predict the target variable. The considered

empirical equations are given in Table 5.2. The library of 33 empirical

equations (indexed as In) framed from an exhaustive database of 500+

spectral indices [220] were availed from [221]. The TPE randomly selects

an empirical equation and generates parameters depending on the number

of spectral bands (NSB) and the coefficients (CF = α, β, γ, ρ and σ) in

the equation. A generalized linear regression model is fitted to select the

optimal spectral bands and coefficient values to maximize the coefficient

of determination (objective function). The coefficient of determination en-

ables to quantify the proportion of the variance in extracted optimized

feature with respect to the target AGB values. The coefficient of determi-
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Table 5.2: List of 33 Empirical Equations of spectral indices categorized

depending on the number of spectral bands used for the TPE algorithm

Number of Spectral Bands

(NSB = 2-6)

Index No.

(In = 1-33)
Empirical Equations

Two

1 (B1 −B2)/(B1 + B2)

2 (B1/B2)

3 B1 −B2

4 α + β(B1 −B2)/(B1 + B2)

5 (B1/B2) − α

6 log(1/B1) − log(1/B2)

7 log(1/B1) + log(1/B2)

8
α[(B1 − α ∗B2 − β)/

(α ∗B1 + B2 − α + ρ)]

9 B1 − α[B2/(B1 + β ∗B2)]

10 [(B1/B2) − 1]/sqrt[(B1/B2) + 1]

Three

11 (B1 −B2)/(B3 −B2)

12 α(β(B1 + B2)–B3)

13 B1(B2/B32)

14 2 ∗B1 −B2 −B3)/(2 ∗B1 + B2 + B3)

15 [(B1 −B2)/(B1 + B2)]/[(B1 −B3)/(B1 + B3)]

16 (B1 −B2 − α(B2 −B3))/(B1 + B2 − α(B2 −B3))

17 (B1 −B2)/B3

18 (B1 −B2 + B3)/(B1 + B2 + B3)

19 B1/(B1 + B2 + B3)

20 arctan([(α ∗B1 −B2 −B3)/β][B2 −B3])

21
α[β(B1 −B2) − ρ(B3 −B2)]/

sqrt[(2 ∗B1 + 1)2 − (γ ∗B1 − σ ∗ sqrt(B3)) − α/3]

Four

22 (B1/B2)/[(B3 −B4)/(B3 + B4)]

23 B1/(B2 + B3 + B4)

24 [(B1 + B2) −B3]/(B4 −B3)

25
[(B1 −B2) − α(B1 −B3)(B1/B2)]/

[(1 + α)(B4 −B2)/(B4 + B2 + α)]

Five

26

[(B1 −B2) − α(B1 −B3)(B1/B2)]/

[α[β(B4 −B3) − ρ(B2 −B3)/

sqrt((B4 + 1)2 − (B5 − ρ ∗ 2 ∗ sqrt(B2)) − 0.5)]]

27 B1/(B2 + B3 + B4 + B5)

28 (B1 −B2)/(B2 + B3 + B4 + B5)

29 (B1 + B2) −B3)/(B4 −B5)

Six

30 (B1 ∗B2 ∗B3)/(B4 ∗B5 ∗B6)

31 B1/(B2 + B3 + B4 + B5 + B6)

32 (B1 −B2)/(B2 + B3 + B4 + B5 + B6)

33
[(B1 −B2) − α(B1 −B3)(B1/B2)]/

[(1 + α)(B4 −B2)/(B4 + B2 + B5 + B6 + α)]
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Table 5.3: List of Base models considered for the SL algorithm provided

by H2O AI Cloud Platform

Models Count Type

eXtreme Gradient Boosting Machine (XGBoost) 3 Pre-specified

Generalized Linear Model (GLM) 1 Fixed Grid

Distributed Random Forest (DRF) 1 Default

Gradient Boosting Machine (GBM) 5 Pre-specified

Deep Neural Net (DNN) 1 Near-default

eXtreme Gradient Boosting Machine (XGBoost) 1 Random Grid

Gradient Boosting Machine (GBM) 1 Random Grid

Deep Neural Net (DNN) 1 Random Grid

nation should be maximized to determine the best fit in terms of spectral

bands and coefficient values for the empirical equations. The TPE initial-

ization provides a pair of parameters and loss as stated in sub-section 5.3.1

that are split into two densities (l(x) and g(x)) as per equations (5.1) and

(5.2). The ratio of the two densities should be minimized (thus maximiz-

ing the objective function (R2) in our case) through an iterative process

and the best empirical equation is determined with the related optimum

set of parameters (spectral bands, coefficient value). However, the random

initialization creates a selection bias in the TPE algorithm that favors the

empirical equations with less number of parameters i.e. empirical equations

involving less spectral bands. This selection bias problem was resolved us-

ing a meta-learning strategy by performing optimization process in groups.

In total, the empirical equations were divided in five groups based on the

number of spectral bands (NSB = 2, 3, 4, 5, 6) and 1000 iterations were

performed for each group. The best empirical equation in each group was

identified and after performing three repetitions of this process, the overall

best empirical equation was identified. The selected empirical equation,

optimal spectral bands and coefficient values were used to compute the

features and directed to the subsequent framework.
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The SL framework receives the computed TPE optimized features and

the target response variable as input training frame. As previously men-

tioned, we used the H2O-3 platform to deploy the SL algorithm which

consists of a library of base models stated in Table 5.3. Additional details

regarding the specifications of the base models and model parameters can

be accessed from H2O.ai documentation (https://docs.h2o.ai/). The

SL algorithm exploits the base models and derives an optimal Stacked En-

semble Model (SEM) that minimizes the expected risk difference as per

equations (5.10) and (5.11). In order to achieve the defined objective of

this contribution, all the available base models were used in the library (Ta-

ble 5.3). All base models were trained until their convergence with 5-fold

cross validation on a 134 GB NVIDIA GeForce GTX 3090 GPU and Linux

based operating system. However, the maximum number of models and

maximum runtime for models can be specified before the training process

depending on the available computational budget and time restrictions.

5.4.3 Model Explanations

The process of sequential deployment of TPE and SL frameworks followed

in the proposed approach results in TPE optimized features, model rank-

ings, model predictions and prediction assessment metrics. Model explana-

tions such as model rankings, evaluation statistics, regression scatterplots

and feature importance chart are provided as results. The performance

of the base models and the SEM were evaluated on the basis of differ-

ent evaluation metrics and ranked according to the model agreement score

(coefficient of determination). All models were cross-validated using 5-fold

cross-validation method. The metrics used to evaluate these models are

coefficient of determination (R2
cv), Root Mean Squared Error (RMSE),

Root Mean Squared Log Error (RMSLE), Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE) and Relative Absolute Error
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(RAE). The R2
cv shows the goodness-of-fit of the regression model, the

RMSE shows the standard deviation of the residuals, RMSLE shows the

log-transformed standard deviation of residuals, MAE shows the mean of

absolute values of residuals, MAPE shows the accuracy of prediction as

a percentage and RAE shows accuracy of measurements relative to the

range of the observed variable.

5.5 Results and Discussion

5.5.1 TPE Optimized Features and Feature Importance

The features for the SL framework were extracted based on the hyperpa-

rameter optimization results of the TPE algorithm. The empirical equa-

tions with respective spectral bands and coefficient values for each season

that were selected post TPE optimization procedure are given in Table

5.4. The selected empirical equations have been referenced using Index

numbers (In) mentioned in Table 5.2. The spectral bands selected for

the respective equations have been referenced with respect to their cen-

tral wavelengths (in nm). The corresponding Sentinel-2 spectral band for

each central wavelength can be identified from Copernicus website (https:

//sentinels.copernicus.eu/). The empirical equations that had mul-

tiple selected combinations of spectral bands were referenced as “a”, “b”

and “c”.

In total, 24 extracted features were selected for training the base mod-

els for AGB prediction following the TPE based optimization procedure.

Particularly, there were six features from autumn, seven from spring, six

from summer and five from winter seasons. Interestingly, all extracted

features consisted of spectral bands from the Vegetation Red-Edge (VRE)

and SWIR spectrum of the Sentinel-2 data. The TPE algorithm that was

conditional on the target variable for the optimization process suggested an
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Table 5.4: TPE Optimized Features for each season computed as per

Empirical Equations Indexed as In stated in Table 5.2

Index

(In)

Spectral Band

(Central Wavelength (λc) in nm)

Season

(aut, spr, sum, win)

17 842, 1610, 740 autumn (aut)

23 842, 1610 740, 2190 autumn

28

a = 1610, 842, 665, 740, 740

b = 1610, 842, 705, 740, 740

c = 1610, 842, 740, 2190, 665

autumn

32 842, 1610, 665, 740, 783, 740 autumn

16

a = 705, 842, 2190 (α = 1)

b= 2190, 842, 705 (α = 1)

spring (spr)

23

a = 842, 705, 665, 1610

b = 842, 665, 1610, 740

spring

27 842, 665, 1610, 705, 740 spring

26 842, 1610, 665, 705, 705 spring

32 842, 705, 2190, 1610, 665, 1610 spring

7 1610, 705 summer (sum)

8

a = 705, 1610 (α = 0.4, β = 0.7, ρ = 0.9)

b = 665, 1610 (α = 0.6, β = 0.6, ρ = 0.9)

summer

12

a = 705, 490, 665 (α = 0.8, β = 1)

b = 865, 665, 1610 (α = 0.03, β = 0.1)

summer

33 1610, 665, 490, 865, 560, 560 (α = 0.01) summer

23 842, 705, 1610, 1610 winter (win)

27 842, 1610, 1610, 1610, 705 winter

28

a = 842, 1610, 2190, 665, 1610

b = 842, 1610, 705, 665, 1610

winter

32 842, 1610, 665, 1610, 705, 1610 winter
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important role of the VRE and SWIR spectral bands for modelling forest

AGB. Precisely, the SWIR band at λc = 1610 were selected for 21 out of

the 24 extracted features and the contribution of VRE was distributed at

λc = 705, 740 and 865. The season-wise analysis indicated that VRE at λc

= 740 and SWIR at λc = 1610 was selected for all autumn features. The

spring features were extracted using VRE at λc = 705 selected for six and

out of the total seven features. Also, SWIR at λc = 1610 was selected for

five features and λc = 2190 for the remaining two features. For the sum-

mer season, VRE at λc = 705 and 865 were selected for five out of total six

features and SWIR at λc = 1610 for all features. The winter features had

VRE at λc = 705 and SWIR at λc = 1610 selected for all extracted features.

Thus, the clear observable pattern in the specific spectral contributions of

the extracted features account for their target-oriented properties.

The stacked bar chart in Figure 5.3 shows the computed feature impor-

tance for all the considered base models. The features have been referenced

as ‘index season’ and the scaled feature importance values of the base mod-

els have been color coded for analyzing the percentage contributions. The

highest average feature importance was observed for ‘12a sum’ (79%) that

was extracted with λc = 705, 490 and 665. The feature achieved specific

feature importance of 74% for DNN, 24% for DRF and 100% for GBM,

XGBoost and GLM. This indicated that feature ‘12 sum’ contributed sig-

nificantly for most of the base models and has a dominant role in modelling

AGB. A total of five features for DNN (26 spr, 12a sum, 8b sum, 8a sum,

12b sum), two features for DRF (28c aut, 33 sum), five features for GBM

(12a sum, 32 aut, 23 aut, 28b aut, 7 sum), three features for XGBoost

(12a sum, 7 sum, 12b sum) and five features for GLM (12a sum, 7 sum,

33 sum, 23 aut, 17 aut) were characterized by feature importance score

greater than 50%. The feature ‘12a sum’ achieved highest feature impor-

tance for three (GBM, XGBoost and GLM) out of the five base models and
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Figure 5.3: Stacked Bar Chart of Scaled Feature Importance computed

for TPE Optimized Features for all Base Models

the features ‘26 spr’ and ‘28b aut’ achieved highest feature importance for

DNN and DRF respectively. All these features were associated with either

summer, autumn or spring season indicating comparatively low importance

of winter features in predicting AGB. Overall, the summer features were

the most dominant with a total of 12 out of 20 features with a feature

importance greater than 50%.

5.5.2 AutoML Leaderboard and Predictive Analysis

The H2O-3 based AutoML framework used to implement the SL algorithm

trains all the base models (Table 5.3) and also produces an optimal SEM

for predicting AGB.

The model ranking results and computed assessment metrics indicated
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Table 5.5: Model Leaderboard rankings for SEM and Base Models with

six Assessment Metrics

Models Rank R2cv
RMSE

(Mgha−1)
RMSLE

MAE

(Mgha−1)
MAPE RAE

SEM 1 0.71 74.44 0.56 48.58 0.30 0.43

DNN 2 0.66 81.27 0.56 48.48 0.30 0.43

DRF 3 0.65 82.01 0.56 51.17 0.36 0.45

GBM 4 0.50 98.49 0.65 74.28 0.38 0.66

XGBoost 5 0.48 99.95 0.64 73.70 0.39 0.65

GLM 6 0.38 109.44 0.72 84.94 0.42 0.75

that SEM achieved the best overall performance for predicting forest AGB.

The SEM model achieved highest agreement of R2
cv = 0.71 and best pre-

diction precision RMSE = 74.44 Mg ha-1. The RMSLE = 0.56 was

equal for the top three ranked models despite a significant difference in

the RMSE indicated the existence of outliers in the data. This explained

the slightly higherMAE of the SEM despite achieving better model agree-

ment as compared to DNN and DRF. The same explanation is applicable

to the DNN and DRF that have a significant difference in the MAE and

MAPE despite of an identical RMSLE score. This suggests that SEM is

more robust to outliers and the meta-learning process enabled the model

to achieve better model fitting. The DNN model achieved the second best

performance on the leaderboard and the overall results suggested DNN to

be more prone to outliers as compared to SEM. The bagging based DRF

model achieved third position on the leaderboard with R2
cv = 0.65 and

RMSE = 82.01Mg ha-1. The next two positions were achieved by boost-

ing based GBM and XGBoost models. Both GBM and XGBoost had an

identical performance and GBM outperformed XGBoost by a small mar-

gin. The GBM and XGBoost model achieved R2
cv = 0.5, 0.48 and RMSE

= 98.49, 99.95 Mg ha-1 respectively. The GLM model achieved the last

position on leaderboard withR2
cv = 0.38 and RMSE = 109.44 Mg ha-1.
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Figure 5.4: Regression scatterplots of Field Estimated AGB versus Pre-

dicted AGB for SEM and Base Models

The RAE score for SEM model was 0.43 and successively increased to

0.75 for other models on the leaderboard. This indicated lowest saturation

from SEM and successive increment in saturation for other models to pre-

dict AGB. The low RAE score for SEM and DNN models show that these

models can predict greater AGB values with better accuracy as compared

to the other models. This is also evident from the scatterplots of the re-

gression models shown in Figure 5.4. The scatterplots clearly indicate that

SEM, DNN and DRF models efficiently predicted large values of AGB as

compared to GBM, XGBoost and GLM models. Thus, the proposed au-

tomated ML pipeline yielded SEM that outperformed single base models

and efficiently modelled AGB. The results also pointed out a crucial role
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of meta-learning process in modelling AGB for eliminating uncertainties

associated with the data and producing robust models.

The forest plot-type based analysis of model performance was carried

out by independently computing RMSE for broadleaves, coniferous and

mixed plots. The results (shown in Table 5.6) indicate that the SEM model

(which showed best overall performance) was sensitive to the type of forest

plot. Overall, the least RMSE errors were observed for the mixed-type

plots and highest RMSE errors were recorded for broadleaf plots. This

type of a behavior was consistent with the results from previous studies

that obtained more accurate AGB estimations results for conifers as com-

pared to the broadleaves using spectral data [228, 229]. Broadleaves have

multiple canopy layers and a more complex structure that possess a chal-

lenge at a fundamental level with passive spectral data. Therefore, the

SEM model showed least RMSE error for coniferous type plot. It also

delivered a comparable performance for the mixed type plots (RMSE =

48.38 Mg ha-1), where the DRF model achieved RMSE score of 47.75 Mg

ha-1. All base models secured better RMSE scores as compared to SEM

for broadleaf type. But, it is important to note that all these models were

not trained independently on each distinct type of plot separately. This

showed that the SEM model is capable of learning critical features and

generalizing them for training data with multiple types of plots. This en-

abled SEM to achieve best overall performance in spite of underperforming

for a particular type of plot (i.e. broadleaf).

5.5.3 Discussion

In this thesis contribution, an automated ML pipeline for developing a

SEM was proposed for prediction of forest AGB using MT Sentinel-2 data.

The key elements of the ML pipeline were the TPE and SL algorithms that

automated the process of feature extraction from the data and training a
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Table 5.6: Forest plot-type (Broadleaves, Coniferous and Mixed) based

Prediction RMSE for developed models

Models
Broadleaves

RMSE (Mgha−1)

Coniferous

RMSE (Mgha−1)

Mixed

RMSE (Mgha−1)

SEM 112.55 58.59 48.38

DNN 121.21 63.26 57.22

DRF 118.34 69.71 47.75

GBM 111.41 101.04 66.11

XGBoost 113.00 103.77 61.19

GLM 105.72 119.85 76.25

library of base models leading to development of a stacked ensemble for

modelling AGB. The automated ML pipeline was proposed for dealing with

various issues identified in the literature related to the systematic error in

AGB modelling and systematic evaluation of models. In this section, an

extensive analysis of the results with respect to the contemporary literature

is provided by precisely identifying the advancements delivered by this

contribution for AGB modelling using SRS data.

The choice of features is very crucial in any modelling process and the

performance of the models is highly dependent on their quality. The use

of MS data for AGB modelling has led to the development and testing

of various features. Practically, there are numerous combination of spec-

tral bands that could be used for extracting a feature from MS data for

modelling AGB. Studies in literature use a few standard vegetation indices

as features for modelling and mapping forest AGB [113, 222, 63, 114]. A

comparative analysis of these studies indicates an unstable response of veg-

etation indices depending upon the spatial resolution, sensor specifications

and available spectral bands of the data. To state simply, a vegetation

index identified as effective for a particular area or a certain radiometric

specification may not be as effective for other study areas or radiometric

specifications. Thus, the human-intelligence based selection of these vege-
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tation indices can be highly inefficient and ambiguous for AGB modelling.

In order to overcome this issue, this contribution proposed an automated

mechanism for extracting such features. The TPE algorithm based opti-

mization procedure extracts features that are highly target-oriented and

involves less human intervention. It is capable of overcoming the short-

comings identified in the literature with regard to extraction and selection

of effective features from SMS data for AGB modelling. The reduction of

systematic error from the process enables the development of more robust

and reliable features. Moreover, it performs necessary changes in compos-

ing the features based on the specifications of the data such as spatial,

spectral and radiometric resolution. Thus, this contribution demonstrated

the success of the proposed automated approach that led to consistent and

accurate modelling results.

The second component of the modelling process after developing robust

features is the choice of a modelling algorithm. The type of modelling al-

gorithm substantially affects the precision and accuracy of the predictions.

As per literature, there are several studies that use different ML models for

predicting forest AGB [162, 69, 25] and provides a comparative assessment

of the models in order to identify the best modelling algorithm for AGB

prediction. Apart from the range of ML models that can be used, each

model has associated hyperparameters that require tuning. A faulty hy-

perparameter tuning can adversely affect the performance of an ML model

and restrict its generalization capability. Moreover, studies that use same

ML models but with a different combination of hyperparameters or archi-

tecture sometimes lead to contrasting performance on an identical task.

For example, the study in [25] identified XGBoost to deliver best perfor-

mance as compared to the other competing models. However, the XGBoost

model has multiple associated hyperparameters that were defined manually

for finding the best combination of hyperparameters using a grid search.
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This introduces a systematic error in the process and reduces the chances

for reproducing the results for other data or scenarios. To deal with this

problem, this contribution proposed the use of an AutoML approach that

effectively automates the iterative tasks associated with the development

of a model. Precisely, it automates the process of hyperparameter selec-

tion and a range of ML models are trained in the same pipeline for effective

comparison and reproducible results.

Studies have identified that a combination of models (stacked ensemble)

can produce more efficient results as compared to a single model [223, 224].

There are only a few studies that focused on using SEM’s for remote sens-

ing based forest applications [161, 225]. These studies used a manual or

semi-automatic approach for identifying an optimal combination of models

for AGB prediction. An optimal SEM requires a library of diverse models

and a systematic algorithm to evaluate the combination of models with

optimized hyperparameters and generate meaningful explanation of mod-

els. The solution for this complex problem was provided by the proposed

use of SL algorithm implemented using H2O-3 framework that produced

a stacked ensemble of base models. The developed SEM model delivered

the best performance as compared to the individual base models. More-

over, it limited the required number of user-defined parameters reducing

systematic error in the ensemble selection. Thus, a reliable and automated

pipeline for robust stacked ensembling and model training was established

in this study.

5.6 Conclusion

This contribution proposed an end-to-end ML pipeline for modelling forest

AGB using MT-MS satellite remote sensing data. The results demon-

strated that by reducing the systematic error from the modelling process
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and deploying a comprehensive model evaluation strategy under a single

framework can provide better model explanations. The derived model ex-

planations can be instrumental to frame effective schemes for accurately

mapping AGB on large areas with diverse forest characteristics. Moreover,

instead of using pre-defined features for modelling, an automated optimiza-

tion procedure can produce more effective features by weighting more on

the spectrum of the data that holds greater importance in explaining the

target AGB. The future developments can possibly aim at improving the

robustness of the proposed pipeline by addition of optimization elements

and by replacing or improving the deployed meta-learning strategies. The

advances in latest AutoML systems can be possibly incorporated to derive

additional model explanations for framing better modelling schemes for

large scale AGB mapping.

113



114



Chapter 6

Conclusion and Future

Developments

The thesis presents systematic series of experiments and advanced meth-

ods developed for prediction of forest AGB using SRS data. The developed

methods and performed experiments for AGB prediction are categorized

into the three distinct contributions. The first contribution of the thesis

consists of the development of a procedure based on spectral features from

MS images to perform evaluation of their response to AGB considering

their different temporal, spectral and spatial properties. Oracle procedures

were used for simultaneous estimation, regularization and feature selection

for assessment of temporal, spectral and spatial properties of the data. The

second contribution focused on generation of robust features from SRS data

for modelling forest AGB. A variational autoencoder based model archi-

tecture was proposed for generating AGB oriented features from SMS and

SAR data and dual-source feature fusion was demonstrated. Lastly, the

third contribution dealt with selection and optimization of meta-algorithm

and automatic model ensembling using the concept of AutoML for mod-

elling AGB. A combination of hyperparameter optimization algorithms

and meta-learning procedures were implemented to create an end-to-end

pipeline for AGB modelling. The proposed methods and experiments suc-
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cessfully achieved the three main objectives of the thesis presented as three

main contributions for resolving the stated research problems.

The first contribution showed that the spectral features used for mod-

elling AGB are influenced by each distinct property of the MS data. The

Red-Edge and SWIR bands have a disproportionate contribution as com-

pared to other bands in increasing the confidence of spectral features ex-

tracted from the MS data. Thus, Sentinel-2 features (with Red-edge and

SWIR capacity) induced least model saturation, whereas the Dove features

(w/o Red-edge and SWIR capacity) resulted in highest model saturation.

With respect to the temporal property, the single-time FS-2 spectral fea-

tures had significant disparity in agreement and prediction precision de-

pending on the season of data acquisition. On the contrary, the MT FS-2

spectral features produced better model agreement and delivered greater

prediction precisions for all MS data. This indicate that the temporal

property of the MS data has a significant role for reliable AGB modelling.

The Pearson correlation of key spectral features determined using adaptive

regularization were analyzed across all available spatial resolutions (i.e. at

10, 5 and 3 m). The marginally higher correlation of key spectral fea-

tures at 10 m as compared to 3 m may be a result of overlapping pixels

at border with the plot boundary. This difference in Pearson correlation

of key spectral variables is not significant for 10 m and 5 m. Overall, the

temporal properties of SRS data and the extended spectral properties of

Sentinel-2 above NIR wavelength contributed to significant improvements

in AGB prediction by restricting saturation. It would be worth noting that

the achieved model performance can be further enhanced by considering

an additional source of data for fusion with MS source. Also, developing

a procedure that can improve the quality of the extracted features and

induce AGB oriented properties can further enhance model performance.

The second contribution of the thesis generated target oriented features
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for modelling AGB using the developed generative neural network. The

t-SNE plot of generative features was highly directional and ordered, i.e.

there is an association between a particular range of generative features

and a particular range of AGB values. This process resulted in a proposed

model with superior results compared to the other tested models (MLP,

GLM, XGBoost and RF) that used conventional analytical features. The

generative network fused MS and SAR features at the bottle-neck of the

network (latent space). The fused generative features provided the best

modelling results in terms of agreement, precision, accuracy and overfit-

ting. The fused generative features were more effective compared to the

combined analytical features as a result of their highly ordered nature.

However, the developed generative model requires an integral regressor

network and it cannot be replaced with other type of regression algorithms

(e.g., tree-based or kernel based) as it requires backpropagation of weights.

Further, there is a requirement of automation that deploys a search algo-

rithm to optimize the architecture and network parameters.

The third contribution of the thesis presents an automated machine

learning pipeline that performs auto-feature generation and auto-ensemble

selection of base models. The stacked ensemble model produced from the

developed pipeline delivered best AGB modelling results on the scale of all

assessment metrics. This supported the notion that a single algorithm may

be inefficient for modelling on complex and diverse features. The produced

SEM pointed out that an ensemble of models is more effective in scenar-

ios that involved trees of different species and data acquired in different

seasons. Moreover, the automated procedure (TPE and SL algorithms)

assured derivation of features and regulation of model parameters with

minimum systematic error. The effect of seasonal data and the dominant

spectral bands could be more effectively determined from the developed

pipeline.
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All three contributions were sequentially organized to achieve the over-

all aim of effective and robust modelling of AGB. The contributions were

linked to overcome certain limitations of the previous contribution and

thus improved the qualitative and quantitative results. The results from

first contribution indicated that all characteristics of the MS data have a

distinct impact on the model performance. The statistical evaluation con-

cluded that spectral features based on VRE and SWIR bands were more

effective in improving the overall modelling accuracy. A coherent conclu-

sion was deduced from the third contribution that derived greater number

of spectral features with VRE and SWIR bands using an automated TPE

framework. The first contribution used pre-defined features from literature

based on the Red-edge and SWIR bands such NDVIre, CCCI, CIRE and

NBR that delivered improved results for all assessment metrics. The third

contribution used an automated framework for defining features observed

greater contribution of bands with central wavelength of 705, 740, 783,

1610 and 2190 nm. Both the contributions mutually assert that VRE and

SWIR based spectral features had an instrumental role in AGB predic-

tion. The seasonal effects were prominent and produced high variance in

the model performance. MT information served as an acceptable solution

to deal with the variance and saturation problem of the single-time mod-

els and the approach was extended for the other two contributions. The

third contribution identified dominant role of summer, autumn and spring

seasons in providing adequate MT information to explain the variance in

AGB. The first contribution shows that spectral features are both posi-

tively and negatively correlated with AGB. The magnitude of correlation

had certain variance with respect to the spatial resolution. This produced

a un-ordered feature space that limits the performance of model in pre-

dicting AGB. This problem was resolved in the second contribution that

proposes a network to produce a highly ordered feature space delivering
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better modelling results as compared to models developed on un-ordered

feature space. In the second contribution, a MS-SAR feature fusion mech-

anism was proposed that reduced the data saturation level (observed in

first contribution) to further improve overall accuracy of AGB prediction.

The model developed in the second contribution was tested on indepen-

dent reference samples distributed across different geographical areas that

delivered accurate AGB predictions. These results provide a positive de-

velopment with respect to the findings in the first contribution that showed

inconsistent results for the two different study areas and diverse charac-

teristics of forest. Thus, the generative process resulted in increasing the

robustness of models delivering consistent performance for diverse terrain

and target properties. The training of model parameters and hyperpa-

rameter tuning of ML models are critical for obtaining optimal prediction

results. The second contribution considered four different ML models for

comparison with the proposed model. However, a uniform framework for

training model parameters and tuning hyperparameters can alter the per-

formance and ranking of the models. The AutoML driven framework and

ensemble learning approach proposed in the third contribution provided

more reliable comparison and evaluation mechanism for different models.

Thus, all contributions effectively achieved the stated objectives of the the-

sis with sequential and systematic design of experiments to overcome the

existing research problems for AGB prediction using SRS data.

The increasing trend of small satellites and forestry focused missions

will increase the availability of spaceborne remote sensing data. ESA’s 7th

Earth Explorer mission ”BIMOASS” [226] aims to determine the global dis-

tribution of forest biomass by reducing the uncertainty in the calculation

of carbon stocks and fluxes associated with the terrestrial biosphere. This

future mission will consist of a ’P-band’ SAR instrument with high capac-

bilty to penetrate through the forest canopy. Indeed, the lower frequency
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signals are more sensitive to the forest vertical structure compared to -X,

-C and -L bands. However, P-band SAR alone does not guarantee more

accurate AGB models and certainly requires effective feature extraction

mechanisms. The mechanism for extraction of effective secondary infor-

mation from -C band SAR for AGB prediction demonstrated in Chapter

4 can be easily extended to the data from the ”BIOMASS” mission to

reduce uncertainty in calculation of AGB using target-oriented features

from the data. In the passive EO category, the ”HORUS” satellite mission

[227] aims to develop a low-cost CubeSat constellation to acquire a com-

bination of multispectral and multiangle data. This provides an upgrade

over the traditional MS data acquisition systems with continuous multi-

angle coverage of forest ecosystems. The MS data based models developed

in the thesis can be reformulated to incorporate multi-angle information

and deliver more accurate AGB predictions by further reducing the uncer-

tainty with MS data. For example, the acquisitions at nadir can offer less

distorted images with minimal influence of atmospheric scattering, which

are the main sources of noise in the data. Such images can be used as

reference to navigate the calibration of other off-nadir images that can im-

prove the minor irregularities observed in the data samples from the MS

images used for modelling. This will result in producing more reliable MS

data based AGB models and promote the use of SRS for mapping AGB.

The other future developments of this work should be focused to handle

such “Big data” for maximum exploitation of its potential and achieving

state-of-the-art performance. The adaptive lasso algorithm is a popular

technique used in data mining for model selection and feature regulariza-

tion. However, it is challenging to apply massive data samples with high

dimensional features that are effective for achieving desirable AGB predic-

tion results. A possible future work must be focused to extend such tech-

nique using parallel solvers to run on multiple cores on shared memory to
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deal with high dimensionality and perform faster computation on big data.

There are encouraging possibilities in representation learning for deriving

AGB-oriented features from satellite remote sensing data. The second con-

tribution used supervised generative neural network based representation

learning that can be further modified to learn in semi-supervised mode.

The process of collecting reference field data from forest is expensive and

time consuming. Generative neural networks can be successfully extended

for semi-supervised learning and boost the modelling results with limited

reference data. Moreover, advanced methods based on ensemble learning

used for automatic ensemble selection of base models require high compu-

tational capacity. The requirement of computational capacity will increase

for better optimization of the ensemble and to operate with more number

of base models. The future developments in this area should be focused on

increasing the computational efficiency of ensemble learning algorithms to

achieve superior results with limited computational requirements. A global

level deployment of such advanced models can improve the current global

AGB estimates. The models can be developed to be portable and orches-

trated across various machines using cloud environments in the future.
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for Multispectral Reconstruction in Remote Sensing,” Remote Sensing, vol. 14, no. 4. MDPI

AG, p. 816, Feb. 09, 2022. doi: 10.3390/rs14040816.

[145] Y. Yoo, S. Yun, H. J. Chang, Y. Demiris, and J. Y. Choi, “Variational Autoencoded

Regression: High Dimensional Regression of Visual Data on Complex Manifold,” 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jul. 2017. doi:

10.1109/cvpr.2017.314.

[146] X. Li, X. Jin, J. Lin, T. Yu, S. Liu, Y. Wu, W. Zhou, and Z. Chen, “Learning Disen-

tangled Feature Representation for Hybrid-distorted Image Restoration.” arXiv, 2020. doi:

10.48550/ARXIV.2007.11430.

140



[147] Y. Liu, F. Wei, J. Shao, L. Sheng, J. Yan, and X. Wang, “Exploring Disentangled Fea-

ture Representation Beyond Face Identification,” 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition. IEEE, Jun. 2018. doi: 10.1109/cvpr.2018.00222.

[148] C. T. Marx, R. L. Phillips, S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian,

“Disentangling Influence: Using Disentangled Representations to Audit Model Predictions.”

arXiv, 2019. doi: 10.48550/ARXIV.1906.08652.

[149] A. H. Liu, Y.-C. Liu, Y.-Y. Yeh, and Y.-C. F. Wang, “A Unified Feature Dis-

entangler for Multi-Domain Image Translation and Manipulation.” arXiv, 2018. doi:

10.48550/ARXIV.1809.01361.

[150] F. Del Frate and D. Solimini, “On Neural Network Algorithms for Retrieving Forest

Biomass From SAR Data,” IEEE Transactions on Geoscience and Remote Sensing, vol.

42, no. 1. Institute of Electrical and Electronics Engineers (IEEE), pp. 24–34, Jan. 2004.

doi: 10.1109/tgrs.2003.817220.

[151] L. Zhang, Z. Shao, J. Liu, and Q. Cheng, “Deep Learning Based Retrieval of Forest

Aboveground Biomass from Combined LiDAR and Landsat 8 Data,” Remote Sensing, vol.

11, no. 12. MDPI AG, p. 1459, Jun. 20, 2019. doi: 10.3390/rs11121459.

[152] Z. Shao, L. Zhang, and L. Wang, “Stacked Sparse Autoencoder Modeling Using the Syn-

ergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground

Biomass,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sens-

ing, vol. 10, no. 12. Institute of Electrical and Electronics Engineers (IEEE), pp. 5569–5582,

Dec. 2017. doi: 10.1109/jstars.2017.2748341.

[153] M. Main-Knorn, B. Pflug, J. Louis, V. Debaecker, U. Müller-Wilm, and F. Gascon,

“Sen2Cor for Sentinel-2,” Image and Signal Processing for Remote Sensing XXIII. SPIE,

Oct. 04, 2017. doi: 10.1117/12.2278218.

[154] N. Bhogapurapu, S. Dey, D. Mandal, A. Bhattacharya, and Y. Rao, “PolSAR tools: A

QGIS plugin for generating SAR descriptors,” Journal of Open Source Software, vol. 6, no.

60. The Open Journal, p. 2970, Apr. 08, 2021. doi: 10.21105/joss.02970.

[155] T. D. Nguyen and M. Kappas, “Estimating the Aboveground Biomass of an Evergreen

Broadleaf Forest in Xuan Lien Nature Reserve, Thanh Hoa, Vietnam, Using SPOT-6 Data

and the Random Forest Algorithm,” International Journal of Forestry Research, vol. 2020.

Hindawi Limited, pp. 1–13, Aug. 27, 2020. doi: 10.1155/2020/4216160.

[156] C. Wu, H. Shen, A. Shen, J. Deng, M. Gan, J. Zhu, H. Xu, and K. Wang, “Comparison of

machine-learning methods for above-ground biomass estimation based on Landsat imagery,”

141



Journal of Applied Remote Sensing, vol. 10, no. 3. SPIE-Intl Soc Optical Eng, p. 035010,

08-Aug-2016. doi: 10.1117/1.jrs.10.035010.

[157] Y. Zhang, J. Ma, S. Liang, X. Li, and M. Li, “An Evaluation of Eight Machine Learning

Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite

Data Products,” Remote Sensing, vol. 12, no. 24. MDPI AG, p. 4015, Dec. 08, 2020. doi:

10.3390/rs12244015.

[158] Scrinzi, G.; Galvagni, D.; Marzullo, L. I Nuovi Modelli Dendrometrici per la Stima Delle

Masse Assestamentali in Provincia di Trento;Provincia Autonoma di Trento-Servizio Foreste

e fauna: Trento, Italy, 2010; ISBN 978-88-7702-271-4.

[159] IPCC. (2003). Good Practice Guidance for Land Use , Land-Use Change and Forestry

(eds J. Penman, M. Gytarsky, T. Hiraishi, T. Krug , D. Kruger , R. Pipatti, L. Buendia , K.

Miwa , T. Ngara , K. Tanabe Fabian Wagner). IPCC National Greenhouse Gas Inventories

Programme, Kanagawa, Japan.

[160] N. Ghasemi, M. R. Sahebi, and A. Mohammadzadeh, “A review on biomass estimation

methods using synthetic aperture radar data,” International journal of Geomatics and Geo-

sciences, vol. 1, no. 4, pp. 776–788, 2011.

[161] Y. Zhang, J. Ma, S. Liang, X. Li, and J. Liu, “A stacking ensemble algorithm for im-

proving the biases of forest aboveground biomass estimations from multiple remotely sensed

datasets,” GIScience amp; Remote Sensing, vol. 59, no. 1. Informa UK Limited, pp. 234–249,

Jan. 02, 2022. doi: 10.1080/15481603.2021.2023842.

[162] L. Chen, Y. Wang, C. Ren, B. Zhang, and Z. Wang, “Optimal Combination of Predictors

and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data,”

Remote Sensing, vol. 11, no. 4. MDPI AG, p. 414, Feb. 18, 2019. doi: 10.3390/rs11040414.

[163] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,

J. Huang, and K. Murphy, “Progressive Neural Architecture Search.” arXiv, 2017. doi:

10.48550/ARXIV.1712.00559.

[164] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1. Institute of Electrical and Elec-

tronics Engineers (IEEE), pp. 67–82, Apr. 1997. doi: 10.1109/4235.585893.

[165] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,

N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D.

Hassabis, “Mastering the game of Go with deep neural networks and tree search,” Nature,

142



vol. 529, no. 7587. Springer Science and Business Media LLC, pp. 484–489, 27-Jan-2016. doi:

10.1038/nature16961.

[166] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based Hyperparameter Opti-

mization through Reversible Learning.” arXiv, 2015. doi: 10.48550/ARXIV.1502.03492.

[167] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,”

Knowledge-Based Systems, vol. 212. Elsevier BV, p. 106622, Jan. 2021. doi:

10.1016/j.knosys.2020.106622.

[168] Q. Yao, M. Wang, Y. Chen, W. Dai, Y.-F. Li, W.-W. Tu, Q. Yang, and Y. Yu, “Taking

Human out of Learning Applications: A Survey on Automated Machine Learning.” arXiv,

2018. doi: 10.48550/ARXIV.1810.13306.

[169] X. He, S. Wang, X. Chu, S. Shi, J. Tang, X. Liu, C. Yan, J. Zhang, and G. Ding, “Auto-

mated Model Design and Benchmarking of 3D Deep Learning Models for COVID-19 Detec-

tion with Chest CT Scans.” arXiv, 2021. doi: 10.48550/ARXIV.2101.05442.

[170] L. Faes, S. K. Wagner, D. J. Fu, X. Liu, E. Korot, J. R. Ledsam, T. Back, R. Chopra, N.

Pontikos, C. Kern, G. Moraes, M. K. Schmid, D. Sim, K. Balaskas, L. M. Bachmann, A. K.

Denniston, and P. A. Keane, “Automated deep learning design for medical image classifica-

tion by health-care professionals with no coding experience: a feasibility study,” The Lancet

Digital Health, vol. 1, no. 5. Elsevier BV, pp. e232–e242, Sep-2019. doi: 10.1016/s2589-

7500(19)30108-6.

[171] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun, “DetNAS: Backbone Search

for Object Detection.” arXiv, 2019. doi: 10.48550/ARXIV.1903.10979.

[172] H. Xu, L. Yao, Z. Li, X. Liang, and W. Zhang, “Auto-FPN: Automatic Network Architec-

ture Adaptation for Object Detection Beyond Classification,” 2019 IEEE/CVF International

Conference on Computer Vision (ICCV). IEEE, Oct. 2019. doi: 10.1109/iccv.2019.00675.

[173] J. Guo, K. Han, Y. Wang, C. Zhang, Z. Yang, H. Wu, X. Chen, and C. Xu, “Hit-

Detector: Hierarchical Trinity Architecture Search for Object Detection,” 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun-2020. doi:

10.1109/cvpr42600.2020.01142.

[174] X. Chu, B. Zhang, H. Ma, R. Xu, and Q. Li, “Fast, Accurate and Lightweight Super-

Resolution with Neural Architecture Search,” 2020 25th International Conference on Pattern

Recognition (ICPR). IEEE, Jan. 10, 2021. doi: 10.1109/icpr48806.2021.9413080.

[175] D. Song, C. Xu, X. Jia, Y. Chen, C. Xu, and Y. Wang, “Efficient Residual Dense Block

Search for Image Super-Resolution,” Proceedings of the AAAI Conference on Artificial In-

143



telligence, vol. 34, no. 07. Association for the Advancement of Artificial Intelligence (AAAI),

pp. 12007–12014, Apr. 03, 2020. doi: 10.1609/aaai.v34i07.6877.

[176] Y. Guo, Y. Luo, Z. He, J. Huang, and J. Chen, “Hierarchical Neural Architec-

ture Search for Single Image Super-Resolution,” IEEE Signal Processing Letters, vol.

27. Institute of Electrical and Electronics Engineers (IEEE), pp. 1255–1259, 2020. doi:

10.1109/lsp.2020.3003517.

[177] Y. Jiang, C. Hu, T. Xiao, C. Zhang, and J. Zhu, “Improved Differentiable Architecture

Search for Language Modeling and Named Entity Recognition,” Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association

for Computational Linguistics, 2019. doi: 10.18653/v1/d19-1367.

[178] J. Chen, K. Chen, X. Chen, X. Qiu, and X. Huang, “Exploring Shared Structures and

Hierarchies for Multiple NLP Tasks.” arXiv, 2018. doi: 10.48550/ARXIV.1808.07658.

[179] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei, “Auto-

DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation,” 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Jun-

2019. doi: 10.1109/cvpr.2019.00017.

[180] C. Yang, J. Fan, Z. Wu, and M. Udell, “AutoML Pipeline Selection: Efficiently Navigating

the Combinatorial Space,” Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery; Data Mining. ACM, Aug. 20, 2020. doi: 10.1145/3394486.3403197.

[181] H. J. Escalante, W.-W. Tu, I. Guyon, D. L. Silver, E. Viegas, Y. Chen, W. Dai, and Q.

Yang, “AutoML @ NeurIPS 2018 Challenge: Design and Results,” The NeurIPS ’18 Com-

petition. Springer International Publishing, pp. 209–229, 30-Nov-2019. doi: 10.1007/978-3-

030-29135-88.

[182] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter, “Effi-

cient and robust automated machine learning,” Advances in Neural Information Processing

Systems,2015.

[183] N. Pillay and R. Qu, “Automated Design of Machine Learning and Search Algorithms.”

Springer International Publishing, 2021. doi: 10.1007/978-3-030-72069-8.

[184] H. J. Escalante, M. Montes, L. E. Sucar, ‘Particle Swarm Model Selection’, The Journal

of Machine Learning Research,vol. 10, pp. 405–440, 2009.

[185] H. J. Escalante, M. Montes, and E. Sucar, “Ensemble particle swarm model selection,”

The 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, Jul. 2010. doi:

10.1109/ijcnn.2010.5596915.

144



[186] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, ‘Efficient and

Robust Automated Machine Learning’, Advances in Neural Information Processing Systems,

vol. 2, pp. 2755–2763, 2015.

[187] D. A. Masood, Automated Machine Learning: Hyperparameter optimization, neural ar-

chitecture search, and algorithm selection with cloud platforms. Packt Publishing Ltd, 2021.

[188] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-WEKA,” Proceedings

of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM, Aug. 11, 2013. doi: 10.1145/2487575.2487629.

[189] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential Model-Based Optimization

for General Algorithm Configuration,” Lecture Notes in Computer Science. Springer Berlin

Heidelberg, pp. 507–523, 2011. doi: 10.1007/978-3-642-25566-340.

[190] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, “Auto-Sklearn 2.0:

Hands-free AutoML via Meta-Learning.” arXiv, 2020. doi: 10.48550/ARXIV.2007.04074.

[191] R. S. Olson and J. H. Moore, “TPOT: A Tree-Based Pipeline Optimization Tool for

Automating Machine Learning,” Automated Machine Learning. Springer International Pub-

lishing, pp. 151–160, 2019. doi: 10.1007/978-3-030-05318-58.

[192] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, M. Urban, M. Burkart, M. Dip-

pel, M. Lindauer, and F. Hutter, “Towards Automatically-Tuned Deep Neural Networks,”

Automated Machine Learning. Springer International Publishing, pp. 135–149, 2019. doi:

10.1007/978-3-030-05318-57.

[193] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement Learning.” arXiv,

2016. doi: 10.48550/ARXIV.1611.01578.

[194] H. Jin, Q. Song, and X. Hu, “Auto-Keras: An Efficient Neural Architecture Search Sys-

tem,” Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Dis-

covery amp; Data Mining. ACM, Jul. 25, 2019. doi: 10.1145/3292500.3330648.

[195] Joaquin Vanschoren, AutoML Book - Meta-Learning. 2018.

[196] J. P. Monteiro, D. Ramos, D. Carneiro, F. Duarte, J. M. Fernandes, and P. Novais, “Meta-

learning and the new challenges of machine learning,” International Journal of Intelligent

Systems, vol. 36, no. 11. Wiley, pp. 6240–6272, Jun. 30, 2021. doi: 10.1002/int.22549.

[197] K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning for algorithm se-

lection,” ACM Computing Surveys, vol. 41, no. 1. Association for Computing Machinery

(ACM), pp. 1–25, Jan. 15, 2009. doi: 10.1145/1456650.1456656.

145



[198] M. Maher and S. Sakr, “SmartML: A Meta Learning-Based Framework for Automated

Selection and Hyperparameter Tuning for Machine Learning Algorithms.” OpenProceed-

ings.org, 2019. doi: 10.5441/002/EDBT.2019.54.

[199] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, “OBOE,” Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery amp; Data Mining. ACM, Jul.

25, 2019. doi: 10.1145/3292500.3330909.

[200] K. Li and J. Malik, “Learning to Optimize.” arXiv, 2016. doi:

10.48550/ARXIV.1606.01885.

[201] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. Turaga, “Learning Feature

Engineering for Classification,” Proceedings of the Twenty-Sixth International Joint Con-

ference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence

Organization, Aug. 2017. doi: 10.24963/ijcai.2017/352.

[202] H. Li, Z. Cui, Z. Zhu, L. Chen, J. Zhu, H. Huang, and C. Tao, “RS-MetaNet: Deep

Metametric Learning for Few-Shot Remote Sensing Scene Classification,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 59, no. 8. Institute of Electrical and Electronics

Engineers (IEEE), pp. 6983–6994, Aug-2021., doi: 10.1109/TGRS.2020.3027387.

[203] L. Benrais and N. Baha, “High level visual scene classification using background knowledge

of objects,” Multimedia Tools and Applications, vol. 81, no. 3. Springer Science and Business

Media LLC, pp. 3663–3692, Nov. 18, 2021. doi: 10.1007/s11042-021-11701-6.

[204] P. Zhang, Y. Bai, D. Wang, B. Bai, and Y. Li, “Few-Shot Classification of Aerial Scene

Images via Meta-Learning,” Remote Sensing, vol. 13, no. 1. MDPI AG, p. 108, Dec. 31, 2020.

doi: 10.3390/rs13010108.

[205] M. Ruswurm, S. Wang, M. Korner, and D. Lobell, “Meta-Learning for Few-Shot Land

Cover Classification,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition Workshops (CVPRW). IEEE, Jun. 2020. doi: 10.1109/cvprw50498.2020.00108.

[206] M. Werther, E. Spyrakos, S. G. H. Simis, D. Odermatt, K. Stelzer, H. Krawczyk,

O. Berlage, P. Hunter, and A. Tyler, “Meta-classification of remote sensing reflectance

to estimate trophic status of inland and nearshore waters,” ISPRS Journal of Pho-

togrammetry and Remote Sensing, vol. 176. Elsevier BV, pp. 109–126, Jun-2021. doi:

10.1016/j.isprsjprs.2021.04.003.

[207] X. Tang, W. Lin, C. Liu, X. Han, W. Wang, J. Ma, and L. Jiao, “Multi-Scale Meta-

Learning-Based Networks for High-Resolution Remote Sensing Scene Classification,” 2021

IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 11-Jul-

2021. doi: 10.1109/IGARSS47720.2021.9555134.

146



[208] A. Méndez, ‘Meta-Learning for Instance Segmentation on Satellite Imagery’, 2020.

[209] Q. Yang, Z. Ni, and P. Ren, “Meta captioning: A meta learning based remote sensing

image captioning framework,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.

186. Elsevier BV, pp. 190–200, Apr. 2022. doi: 10.1016/j.isprsjprs.2022.02.001.

[210] L. Rokach, Pattern Classification Using Ensemble Methods, Vol. 75. Singapore: World

Scientific Publishing Co. Pte. Ltd., 2018.

[211] K. T. Ngo, “Stacking Ensemble for auto ml,” Virginia Polytechnic Institute and State

University, 2018.

[212] J. Yoo, T. Joseph, D. Yung, S. A. Nasseri, and F. Wood, “Ensemble Squared: A Meta

AutoML System.” arXiv, 2020. doi: 10.48550/ARXIV.2012.05390.

[213] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola,

“AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data.” arXiv, 2020.

doi: 10.48550/ARXIV.2003.06505.

[214] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, ‘Efficient and

Robust Automated Machine Learning’, Advances in Neural Information Processing Systems,

vol.2, pp. 2755–2763, 2015.

[215] E. LeDell, ‘H2O AutoML: Scalable Automatic Machine Learning’, 2020.

[216] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, ‘Algorithms for Hyper-Parameter Optimiza-
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Appendix

The allometric equations used for the estimation of the AGB of each tree in the field (ÂGBTREE)

were based on the stem volume equations published in [158] multiplied by the wood density (WD)

of each species (IPCC 2003). The stem volume equations of [158] were developed for the region

where our study areas are located. The equation for estimating ÂGBTREE is in the following

form:

ÂGBTREE = WD ∗ α ∗ (DBH − d0)
γ ∗Hδ (6.1)

where DBH is the diameter in centimeters, H the height in meters, and ÂGBTREE is the

estimated aboveground biomass in kilograms. The coefficients used for the different species are

in Table 6.1.

Table 6.1: Coefficients of the allometric equations of Scrinzi et al. (2010)

and wood densities (WD) from (IPCC 2003). The wood density (WD) is

expressed in kg/m3

WD α γ δ d0

Abies alba Mill. 400 0.000163 1.70656 0.941905 3.69465

Broadleaves 580 0.000055 1.942089 1.00642 4.0091

Larix decidua Mill. 460 0.000108 1.407756 1.341377 3.69465

Picea abies (L.) Karst. 400 0.000177 1.564254 1.051565 3.69465

Pinus cembra L. 420 0.000188 1.613713 0.985266 3.69465

Pinus nigra J.F.Arnold 420 0.000129 1.763086 0.938445 3.69465

Pinus sylvestris L. 420 0.000102 1.918184 0.830164 3.69465
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