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Abstract

This thesis addresses the problem of domain shift in 3D point cloud per-

ception. In the last decades, there has been tremendous progress in within-

domain training and testing. However, the performance of perception mod-

els is affected when training on a source domain and testing on a target

domain sampled from different data distributions. As a result, a change in

sensor or geo-location can lead to a harmful drop in model performance.

While solutions exist for image perception, addressing this problem in point

clouds remains unresolved. The focus of this thesis is the study and design

of solutions for mitigating domain shift in 3D point cloud perception. We

identify several settings differing in the level of target supervision and the

availability of source data. We conduct a thorough study of each setting

and introduce a new method to solve domain shift in each configuration.

In particular, we study three novel settings in domain adaptation and do-

main generalization and propose five new methods for mitigating domain

shift in 3D point cloud perception. Our methods are used by the research

community, and at the time of writing, some of the proposed approaches

hold the state-of-the-art. In conclusion, this thesis provides a valuable con-

tribution to the computer vision community, setting the groundwork for the

development of future works in cross-domain conditions.
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Unsupervised Learning, Semi-Supervised Learning]





Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 3D point cloud acquisition . . . . . . . . . . . . . . . . . . 4

1.3 Point cloud processing . . . . . . . . . . . . . . . . . . . . 6

1.4 Learning paradigms . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Domain shift in point clouds . . . . . . . . . . . . . . . . . 14

1.6 Handling domain shift in point clouds . . . . . . . . . . . . 16

1.6.1 Setting 1: Semi-supervised target . . . . . . . . . . 17

1.6.2 Setting 2: Unsupervised target . . . . . . . . . . . . 17

1.6.3 Setting 3: Unavailable source . . . . . . . . . . . . 18

1.6.4 Setting 4: Sequential target . . . . . . . . . . . . . 19

1.6.5 Setting 5: Unknown target . . . . . . . . . . . . . . 19

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 State of the art 27

2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Perception in point clouds . . . . . . . . . . . . . . 27

2.1.2 Reducing domain shift in 3D semantic segmentation 31

2.1.3 Reducing domain shift in 3D object detection . . . 35

3 Setting 1&2: Semi-supervised and unsupervised target 39

i



3.1 Compositional Semantic Mix for Domain Adaptation in Point

Cloud Segmentation . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Ablation study . . . . . . . . . . . . . . . . . . . . 58

4 Setting 3: Unavailable source 67

4.1 SF-UDA3D: Source-free unsupervised domain adaptation

for LiDAR-based 3D object detection . . . . . . . . . . . . 67

4.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . 75

4.1.3 Ablation studies . . . . . . . . . . . . . . . . . . . . 81

5 Setting 4: Sequential target 89

5.1 GIPSO: Geometrically informed propagation for online adap-

tation in 3D LiDAR segmentation . . . . . . . . . . . . . . 89

5.1.1 Datasets for synthetic-to-real adaptation . . . . . . 92

5.1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . 99

5.1.4 In-depth analyses . . . . . . . . . . . . . . . . . . . 105

6 Setting 5: Unknown target 113

6.1 Walking your LiDOG: A journey through multiple domains

for LiDAR semantic segmentation . . . . . . . . . . . . . . 113

6.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.2 Why our approach works . . . . . . . . . . . . . . . 120

6.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . 122

6.1.4 Ablation studies . . . . . . . . . . . . . . . . . . . . 130

7 Conclusions 139

ii



7.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 143

iii





List of Tables

1.1 Overview of the settings for handling domain shift in point

clouds and publications in this thesis. The differences among

these settings lie in the availability of source data during

adaptation, the level of supervision on target domains, and

the presence of target data during training. We report the

type of supervision (Sup.) in each setting. Keys: available

(✓), partial or sequential (∼), and unavailable (-). . . . . . 16

2.1 Overview of existing methods for unsupervised (UDA), semi-

supervised (SSDA), and source-free online unsupervised (SF-

OUDA) adaptation in point cloud segmentation. For each

approach, we report the sensor setup (Setup), the archi-

tecture (Input data type and Model), and the source and

target datasets. Then, we classify the adaptation strat-

egy into mixup based, adversarial learning based, alignment

based, generative based, self-training based, and auxiliary

task based. Furthermore, we report whether the implemen-

tation (Code) is publicly available. . . . . . . . . . . . . . 37

v



3.1 Unsupervised adaptation results on SynLiDAR → Seman-

ticPOSS. We denote our reproduced baselines and results

with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond to the

model trained on the source synthetic dataset (lower bound)

and on the target real dataset (upper bound), respectively.

Results are reported in terms of mean Intersection over the

Union (mIoU). . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Unsupervised adaptation results on SynLiDAR → SemanticKITTI.

We denote our reproduced baselines and results with ⋆, e.g.,

Source⋆. Source⋆ and Target⋆ correspond to the model trained

on the source synthetic dataset (lower bound) and on the

target real dataset (upper bound), respectively. Results are

reported in terms of mean Intersection over the Union (mIoU). 54

3.3 Unsupervised adaptation results on SemanticKITTI → nuScenes.

We denote our reproduced baselines and results with ⋆, e.g.,

Source⋆. Source⋆ and Target⋆ correspond to the model trained

on the source real dataset (lower bound) and on the target

real dataset (upper bound), respectively. Results are re-

ported in terms of mean Intersection over the Union (mIoU). 55

3.4 Semi-supervised adaptation results on SynLiDAR → Se-

manticPOSS. We denote our reproduced baselines and re-

sults with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond

to the model trained on the source synthetic dataset (lower

bound) and on the target real dataset (upper bound), re-

spectively. Results are reported in terms of mean Intersec-

tion over the Union (mIoU). . . . . . . . . . . . . . . . . . 57

vi



3.5 Semi-supervised adaptation results on SynLiDAR → Se-

manticKITTI. We denote our reproduced baselines and re-

sults with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond

to the model trained on the source synthetic dataset (lower

bound) and on the target real dataset (upper bound), re-

spectively. Results are reported in terms of mean Intersec-

tion over the Union (mIoU). . . . . . . . . . . . . . . . . . 58

3.6 Semi-supervised adaptation results on SemanticKITTI →
nuScenes. We denote our reproduced baselines and results

with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond to

the model trained on the source real dataset (lower bound)

and on the target real dataset (upper bound), respectively.

Results are reported in terms of mean Intersection over the

Union (mIoU). . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Ablation study of the CoSMix components: mixing strategy

(t → s and s → t), compositional mix augmentations (lo-

cal h and global r), mean teacher update (β) and, weighted

class selection in semantic selection (f). Each combination

is named with a different version (a-h). Source⋆ performance

are added as lower bound and highlighted in gray to facili-

tate the reading. . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Datasets overview. Each dataset is acquired using sensors

with different resolutions and numbers of channels. While

nuScenes uses the original maximum depth, KITTI provides

pre-filtered LiDAR data with a maximum depth of 70 m. . 76

4.2 Adaptation results: nuScenes→KITTI . . . . . . . . . . . 81

4.3 Adaptation results: KITTI→nuScenes . . . . . . . . . . . 82

4.4 Ablation results: different scaling parameters. . . . . . . . 83

vii



4.5 Ablation results: different scoring metrics. . . . . . . . . . 83

4.6 nuScenes→KITTI setting: quality of pseudo-annotations by

using the best 3-scored scaling parameters. The results differ

from Tab. 4.4 since here we measure the quality of pseudo-

annotations before the fine-tuning step. . . . . . . . . . . . 84

5.1 Comparison between public synthetic datasets and Synth4D

in terms of sensor specifications, acquisition areas, number

of scans, number of points, presence of odometry data, and

whether the semantic classes are all or partially shared. . . 92

5.2 Number of annotated points for each adaptation category

for the simulated Velodyne HDL32E and Velodyne HDL64E.

Each sensor setup was acquired in a different run. . . . . . 93

5.3 Synth4D → SemanticKITTI online adaptation. Source: pre-

trained source model (lower bound). We report absolute

mIoU for Source and mIoU relative to Source for the other

methods. Key. SF: Source-Free. UDA: Unsupervised DA.

O: Online. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 SynLiDAR → SemanticKITTI online adaptation. Source:

pre-trained source model (lower bound). We report absolute

mIoU for Source and mIoU relative to Source for the other

methods. Key. SF: Source-Free. UDA: Unsupervised DA.

O: Online. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Synth4D → nuScenes online adaptation. Source: pre-trained

source model (lower bound). We report absolute mIoU for

Source and mIoU relative to Source for the other methods.

Key. SF: Source-Free. UDA: Unsupervised DA. O: Online. 105

5.6 Online adaptation on Synth4D → SemanticKITTI with dif-

ferent propagation size K. . . . . . . . . . . . . . . . . . . 106

viii



5.7 Online adaptation on Synth4D → SemanticKITTI with a

different time window w. . . . . . . . . . . . . . . . . . . . 107

5.8 Synth4D → SemanticKITTI ablation study of GIPSO: (A)

Adaptive thresholding; (A+T) A + Temporal consistency;

(A+T+P) A+T + geometric Propagation. . . . . . . . . . 108

5.9 Oracle study on Synth4D → SemanticKITTI that compares

the accuracy of different pseudo-label selection metrics: Cen-

troid, Confidence and Uncertainty. . . . . . . . . . . . . . 108

5.10 Improvement of state-of-the-art methods by using GIPSO

adaptive selection strategy and propagation strategy on Synth4D

→ SemanticKITTI. . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Synth4D-KITTI→Real, single-source. Our approach (Li-

DOG) improves upon Source model on both real datasets:

+19.49 mIoU for SemanticKITTI and +16.52 mIoU for nuScenes,

outperforming all baselines. Lower bound (red): a model

trained on the source domain without the help of DG tech-

niques. Upper bound (blue): model directly trained on the

target data. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Synth4D-nuScenes→Real, single-source. We train our model

on Synth4D-nuScenes and test on SemanticKITTI and nuScenes.

LiDOG improves over the source models by +15.08 mIoU on

SemanticKITTI and by +9.21 mIoU on nuScenes. LiDOG

outperforms all the compared baselines. Lower bound (red):

a model trained n the source domain without the help of DG

techniques. Upper bound (blue): a model directly trained

on target data. . . . . . . . . . . . . . . . . . . . . . . . . 126

ix



6.3 (Synth4D-nuScenes + Synth4D-KITTI)→Real, multi-source.

Baselines significantly improve performance relative to the

source model. Specifically, with LiDOG we observe +10.62

mIoU improvement on SemanticKITTI and +14.63 mIoU

on nuScenes. Our approach (LiDOG) outperforms all the

compared approaches. Lower bound (red): a model trained

on the source domain without the help of DG techniques.

Upper bound (blue): model directly trained on the target

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 SemanticKITTI→nuScenes, single-source. We train our model

on SemanticKITTI and evaluate it on the nuScenes dataset.

LiDOG improves over the source model by +8.35 mIoU.

Lower bound (red): a model trained on the source domain

with-out the help of DG techniques. Upper bound (blue):

model directly trained on the target data. . . . . . . . . . 129

6.5 nuScenes→SemanticKITTI, single-source. We train our model

on nuScenes and evaluate it on the SemanticKITTI dataset.

LiDOG improves over the source model by +11.67 mIoU.

Lower bound (red): a model trained on the source domain

with-out the help of DG techniques. Upper bound (blue):

model directly trained on the target data. . . . . . . . . . 130

x



List of Figures

1.1 Example of a point cloud acquired with a) photogrammetry,

b) RGB-D cameras, and c) LiDAR sensor. Image credits to

[54, 32, 9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 High-level overview of a LiDAR system. Image credits to

[144]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Examples of a) Range-View image (RV), b) Bird’s Eye View

image (BEV), c) a point cloud (points), d) a voxelized point

cloud (voxel). Image credits to [8, 46]. . . . . . . . . . . . 7

1.4 Overview of the learning paradigms in machine learning.

Image credits to [3]. . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Comparison between point clouds acquired a) with Velo-

dyneHDL64E sensor in Karlsruhe, Germany and b) with a

VelodyneHDL32E sensor in Boston, US. . . . . . . . . . . 14

3.1 CoSMix applied to source and target data. Given (labeled)

source and (pseudo-labeled) target data, we select domain-

specific patches with semantic information to be mixed across

domains. The resulting mixed data are a compositional se-

mantic mix between the two domains, mixing source su-

pervision in the target domain and target self-supervision

(object and scene structure) in the source domain. Aug-

mentations are applied at both local and global levels. . . . 40

xi



3.2 Block diagram of CoSMix detailing the UDA and SSDA set-

tings. The UDA setting uses the top and bottom branches

(red line). The SSDA setting also uses the middle branch in

addition to those used in UDA (gray line). In the top branch,

the input source point cloud X s is mixed with the unsuper-

vised target point cloud X t
U obtaining X t→s. In the bottom

branch, the input target point cloud X t
U is mixed with the

source point cloud X s obtaining X s→t. In the SSDA setting,

the labeled target data X t
L is mixed with the source point

cloud X s and with the unsupervised target point cloud X t
U.

A teacher-student learning architecture is used in both the

UDA and SSDA settings to improve pseudo-label accuracy

while adapting over the target domain. . . . . . . . . . . . 44

3.3 Results on SynLiDAR → SemanticPOSS. Source⋆ predic-

tions are often wrong and mingled in the same region. Af-

ter adaptation, CoSMix-UDA and CoSMix-SSDA improve

segmentation with homogeneous predictions and correctly

assigned classes. The red circles highlight regions with in-

teresting results. . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Results on SynLIDAR → SemanticKITTI. Source⋆ predic-

tions are often wrong and mingled in the same region. Af-

ter adaptation, CoSMix-UDA and CoSMix-SSDA improve

segmentation with homogeneous predictions and correctly

assigned classes. The red circles highlight regions with in-

teresting results. . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Adaptation results on SynLiDAR→SemanticPOSS with dif-

ferent pre-trained models. We compare the adaptation re-

sults of CoSMix (Ours) with ST⋆ starting from different ini-

tialization points (P⋆) indicated with (a-d). . . . . . . . . . 64

xii



3.6 a) Comparison of the adaptation performance with differ-

ent point cloud mix up strategies. Compared to the recent

mixing strategies Mix3D [123], PointCutMix [230] and Po-

larMix [207], our mixing strategy and its variations achieve

superior performance. b) Comparison of the adaptation

performance on confidence threshold values. Adaptation re-

sults show that ζ should be set to achieve a trade-off be-

tween pseudo-label correctness and object completeness. c)

Comparison of the SSDA performance with different mixing

strategies: optimization without mix (naive), single branch

mixing with source point clouds (sup → s), single branch

mixing with unsupervised target point clouds (sup → t).

Each variation is named with a different version (a-c). In

all the experiments, Source⋆ and Target⋆ performance is the

lower and upper bound. . . . . . . . . . . . . . . . . . . . 65

4.1 Existing supervised DA methods for LiDAR-based 3D de-

tection [196] require both source and target data and an-

notations to adapt a pre-trained deep model to a target

domain. Differently, leveraging on pseudo-annotations, re-

versible scale-transformations and motion coherency, SF-

UDA3D adapts a pre-trained source network by using only

unlabeled target data. . . . . . . . . . . . . . . . . . . . . 68

xiii



4.2 Overview of the SF-UDA3D pipeline. Given a scaling so-

lution space Ω, in the first step, detections over target se-

quences are obtained by scaling input data by ω and by re-

scaling predictions by 1/ω. Next, time consistency of each

sequence is used through a tracker to score each solution.

During the third stage, scores are used to identify the best

scaling interval W ∗, and pseudo-annotations are obtained

over multiple iterations with the same procedure of step one

and are merged through NMS. Finally, we obtain the tar-

get adapted model ΦT by fine-tuning the source model over

target data and pseudo-annotations. . . . . . . . . . . . . . 71

4.3 Given multiple possible scales ω, SF-UDA3D selects the best

ω∗ as the one generating the most time consistent detections. 74

4.4 Example of cars from the KITTI and nuScenes datasets. . 77

4.5 Before (top) and after (bottom) adaptation on nuScenes →
KITTI. After adaptation with MS-3, performance improves

and more objects are detected. . . . . . . . . . . . . . . . . 80

4.6 Pseudo-annotations of the KITTI target dataset obtained

by using the multi-scale top-3 pseudo-annotation pipeline

of SF-UDA3D, based on scale transformation, temporal co-

herency, and weighted multi-scale aggregation. . . . . . . . 86

4.7 Pseudo-annotations of the nuScenes target dataset obtained

by using the multi-scale top-3 pseudo-annotation pipeline

of SF-UDA3D, based on scale transformation, temporal co-

herency, and weighted multi-scale aggregation. . . . . . . . 87

xiv



5.1 Existing methods adapt 3D semantic segmentation networks

offline, requiring both source and target data. Differently,

real-world applications urge solutions capable of adapting

to unseen scenes online having access only to a pre-trained

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Example of point clouds from Synth4D using the simulated

Velodyne (a) HDL32E and (b) HDL64E. . . . . . . . . . . 94

5.3 Overview of GIPSO. A source pre-trained model FS se-

lects seed pseudo-labels through our adaptive-selection ap-

proach. An auxiliary model Faux extracts geometric features

to guide pseudo-label propagation. Ldice is minimised over

the pseudo-labels Y t
T . In parallel, semantic smoothness is

enforced with Lreg over time. (�) frozen parameters. ( �)

learnable parameters. . . . . . . . . . . . . . . . . . . . . . 96

5.4 Example of geometric propagation: a) starting from seed

pseudo-labels, b) geometric features are used to expand la-

bels toward geometrically consistent regions. . . . . . . . . 98

5.5 (a) Per-class improvement of GIPSO over time on Synth4D

→ SemanticKITTI. (b) DB-Index over time on Synth4D →
SemanticKITTI. The lower the DB-Index, the better the

class separation of the features. . . . . . . . . . . . . . . . 106

5.6 Results on Synth4D→SemanticKITTI with three different

ranges of mIoU improvements, i.e., large (+27.2), medium

(+10.0) and small (+5.1). . . . . . . . . . . . . . . . . . . 112

xv



6.1 Domain Generalization for LiDAR Semantic Segmentation

(DG-LSS). Left : Existing LSS methods are trained and eval-

uated on point clouds drawn from the same domain. Right :

We focus on studying LSS under domain shifts, where the

test samples are drawn from a different data distribution.

This chapter aims to address the generalization aspect of

this task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 LiDOG overview. We encode our input LiDAR scan Pj using

the 3D backbone g3D to learn the occupied voxels’ feature

representations F 3D. (Upper branch - main task) We apply

a sparse segmentation head on F 3D and supervise with 3D

semantic labels, Y3D
j . (Lower branch - auxiliary task) We

project those features along the height-axis to obtain a dense

2D bird’s-eye (BEV) view features FBEV , and apply several

2D convolutional layers to learn the 2D BEV representation.

We supervise the BEV auxiliary task by using BEV-view of

semantic labels, YBEV
j . We train jointly on both L3D and

LBEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 LiDAR point clouds and their corresponding BEV views:

SemanticKITTI (left) and nuScenes (right). After projec-

tion, BEV images are geometrically more similar. . . . . . 120

6.4 Feature visualization: t-SNE visualization [42] of the point

embeddings for the road class, obtained by training our net-

work without (w/o BEV, left) and with BEV task (BEV,

right). Top: Synth4D-KITTI→SemanticKITTI. Bottom:

Synth4D-KITTI→nuScenes. As shown, projected features

are well-aligned when training the network with the auxil-

iary BEV task. . . . . . . . . . . . . . . . . . . . . . . . . 121

xvi



6.5 Effectiveness of the BEV head: We compare 2D BEV de-

coder (Ours) to simply adding an additional 3D segmenta-

tion head (Double) on SemanticKITTI (left) and nuScenes

(right). Source: Synth4D −KITTI. . . . . . . . . . . . . 131

6.6 BEV prediction area: We study the impact of BEV area size

on SemanticKITTI (top) and nuScenes (bottom). 50x50m

area is consistently the best-performing option on both datasets.

Source: Synth4D −KITTI. . . . . . . . . . . . . . . . . . 132

6.7 BEV image resolution: We compare the performance while

changing the BEV image resolution on SemanticKITTI (left)

and nuScenes (right), Source: Synth4D-KITTI. . . . . . . 132

6.8 Qualitative results. Top: Synth4D-KITTI→SemanticKITTI,

bottom: Synth4D-KITTI→nuScenes. LiDOG improves con-

sistently improves results over the source model and outper-

forms Mix3D [123] with more homogeneous predictions. . . 133

6.9 Qualitative results. Left: Synth4D-kitti→SemanticKITTI,

right: Synth4D-kitti→nuScenes. . . . . . . . . . . . . . . . 134

6.10 Qualitative results. Left: Synth4D-nuScenes→SemanticKITTI,

right: Synth4D-nuScenes→nuScenes. . . . . . . . . . . . . 135

6.11 Qualitative results. Left: Synth4D-kitti + Synth4D-nuScenes

→ SemanticKITTI, right: Synth4D-kitti + Synth4D-nuScenes

→ nuScenes. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.12 Qualitative results. SemanticKITTI→nuScenes. . . . . . . 137

6.13 Qualitative results. nuScenes→SemanticKITTI. . . . . . . 138

xvii





Chapter 1

Introduction

1.1 Context

As humans, we possess an innate ability to perceive and understand our

surrounding environment, utilizing our sensory inputs [12, 76]. Replicat-

ing this process in machines, such as robots and computers, has long been

a focal point in Artificial Intelligence (AI) research, particularly within

the Computer Vision (CV) field [43, 63]. Whether navigating a vehicle

or walking along a street, our subconscious planning involves a detailed

visual scene analysis. This includes understanding the scene by localizing

objects, analyzing the scene, and tracking moving entities. In computer

vision, these tasks include semantic segmentation, object detection, and

multi-object tracking. Semantic segmentation is the task of assigning a

specific class to each pixel or object within the input image [22, 170]. The

objective is to generate a dense pixel-wise segmentation map where every

pixel is associated with a class or object. For instance, in the context of

an autonomous vehicle, relevant classes might include vehicle, road, pedes-

trian, and sidewalk. Differently, an indoor robot might segment images

into classes such as table, floor, chairs, and wardrobe. Object detection dif-

fers from segmentation as it focuses on detecting and localizing instances

of objects within the input image, disregarding classes associated with the
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scene background [24, 16], such as road and vegetation. This process in-

volves retrieving the boundaries of detected objects and classifying their

respective classes. Multi-Object Tracking (MOT) foresees detecting and

tracking multiple objects within a video sequence [212, 118]. The pri-

mary objective of MOT is to identify and locate objects of interest in each

frame, subsequently associating them across frames to monitor their tem-

poral movements. Critical challenges in MOT include occlusion, motion

blur, and variations in object appearance. Typically, MOT is addressed

through a tracking-by-detection pipeline, leveraging a detector for object

retrieval and a data association module for linking instances between con-

secutive frames.

The tasks mentioned above have traditionally been explored within the

domain of camera-based perception systems. Cameras are passive sensors,

i.e., they absorb and detect natural radiation or emissions from the target

or the environment, such as sunlight or artificial light. They offer advan-

tages in cost-effectiveness, portability, and easy integration into hardware

architectures [148, 38]. However, cameras present two main limitations.

Firstly, they lack precise distance measures [183], posing challenges for

applications where accurately localizing objects in the 3D world is crucial,

e.g., autonomous driving or manufacturing robots. Although distance esti-

mation methods exist, they encounter difficulties when applied to scenarios

involving cross-traffic entities, especially in the context of monocular solu-

tions. Secondly, cameras are susceptible to variations in lighting conditions,

as they do not directly interact with the physical scene. Instead, they op-

erate only on the resulting image, making them more vulnerable to adverse

weather and lighting-related challenges. Issues such as low lighting, rain,

and fog are known challenges in camera-based perception systems [239].

Light Detection and Ranging (LiDAR) sensors present an alternative

to cameras. LiDARs are active sensors, i.e., they interact with the sur-
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rounding environment by emitting laser pulses and recording the reflected

or scattered signals. After the acquisition, these scattered signals are pro-

cessed to generate a 3D point cloud, namely, an unordered set of points that

capture the geometries of the surrounding scene. In contrast to cameras,

LiDAR sensors enable precise range measurements and are not dependent

on lighting conditions [99]. Notably, during the 2007 DARPA Grand Chal-

lenge, a pivotal event in the field of autonomous driving, the top three

winners [179, 128, 186] were mounting LiDAR sensors.

Early point cloud perception systems were model-based, relying on

hand-crafted features [70]. However, their effectiveness and applicability

were constrained by the limited computational capabilities of the hardware.

Recent advances in hardware computational capabilities, the availability of

large-scale datasets, and the improvement of optimization algorithms have

driven a renewed interest in data-driven models, leading to the growth of

deep learning. Deep learning is a sub-field of machine learning using Ar-

tificial Neural Networks (ANNs), algorithms inspired by the structure and

functioning of the human brain. ANNs are composed of interconnected ar-

tificial neural layers that process information, learn, and allow predictions

from data.

Due to their unprecedented performance, ANNs have found extensive

applications in processing point clouds, including semantic segmentation [56,

27], object detection [166, 113], multi-object tracking [201, 79], instance

and panoptic segmentation[6, 162], registration [197, 115], and simultane-

ous localization and mapping [39, 199]. However, the success of ANNs

comes with inherent challenges. ANNs need sufficiently large datasets to

train the network and achieve acceptable performance. Moreover, they re-

quire significant computational resources, often expensive, and have a black

box data-driven nature, making it challenging to interpret predictions. One

major challenge is that ANNs are prone to poor generalization under the
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a) b) c)

Figure 1.1: Example of a point cloud acquired with a) photogrammetry, b) RGB-D cam-

eras, and c) LiDAR sensor. Image credits to [54, 32, 9].

presence of domain shift. The problem of domain shift arises when training

and test data is drawn from different domains, such as different cities, or

by employing different sensors. As a result of domain shift, the network

fits the training domain during training but generalizes poorly to the test

domain. For instance, training a model on point clouds from Europe and

testing it on data from the US may lead to low performance due to vari-

ations in vehicle types or urban contexts [196, 156]. Addressing domain

shift is crucial in real-world applications where annotating data for each

new domain is often unfeasible and expensive.

The following sections will delve into solutions for domain shift. Initially,

we will provide an overview of point cloud acquisition in modern perception

systems. Then, we will detail how 3D data can be processed and the main

learning paradigms. Finally, we will present techniques for mitigating the

domain shift in 3D point cloud perception.

1.2 3D point cloud acquisition

Point cloud acquisition techniques can be grouped into photogrammetry,

RGB-D cameras, and LiDAR sensors, as illustrated in Fig. 1.1. Photogram-

metry (Fig. 1.1a) involves obtaining reliable measurements from images via

acquisition, matching, registration, refinement, and meshing. While suit-

able for topographic mapping, remote sensing, and architecture, its com-
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putational demands and the need for specialized software may limit its use

to some specific applications. RGB-D cameras (Fig. 1.1b) allow the acqui-

sition of RGB images along with a depth map. Akin to standard cameras,

they are lightweight, cost-effective, and easily integrated into hardware.

However, they use infrared sensors for depth map retrieval, making them

suitable mainly for indoor environments with stable lighting conditions. In

contrast, Light Detection and Ranging (LiDAR) sensors are versatile and

applicable in various scenarios, including large-scale acquisitions and in-

door environments. Moreover, they can complement photogrammetry and

RGB-D cameras to enhance the quality of final acquisitions.

A LiDAR sensor, also known as a laser scanner, operates as an ac-

tive sensor, relying on the emission of pulsed light from a laser diode that

travels until received by a sensor (Fig. 1.1c). The emitted signal, in the

near-infrared range, employs the time-of-flight principle for distance mea-

surement between emission and reception. LiDAR sensors are classified

according to the type of point cloud they generate, resulting in 2D or 3D

LiDAR. Alternatively, they can be classified according to their construc-

tion as rotary or solid-state LiDAR. In the case of 2D LiDAR, information

is collected by projecting a single laser beam onto a rotating mirror per-

pendicular to the axis of rotation. On the other hand, 3D LiDAR provides

a highly accurate 3D map of the environment by employing a set of diode

lasers mounted on a rapidly rotating pod. The density of the point cloud

obtained at each rotation is determined by the number of lasers, or laser

beams, with current 3D LiDARs integrating 4 to 128 lasers or channels. For

example, the famous VelodyneHDL64E is equipped with 64 laser beams.

These devices typically offer a horizontal FOV of 360◦ and a vertical

FOV of 20–45 degrees, achieving centimeter-level accuracy. A recent ad-

dition is the solid-state LiDAR, which facilitates obtaining a 3D repre-

sentation of the scene without any mobile parts. In solid-state LiDAR, a
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Figure 1.2: High-level overview of a LiDAR system. Image credits to [144].

micro-mirror circuit synchronizes with a laser beam to scan the horizontal

field of view in multiple lines. The micro-mirror reflects the beam over a

diffuser lens, creating a vertical line interacting with objects. The reflected

light is captured by a lens and sent to a photodetector array, constructing

the first line of a 3D matrix. This process is repeated until a point cloud

of the scene is generated. Solid-state LiDARs have several advantages over

rotary LiDAR: increased durability, reduced maintenance needs, and lower

costs than rotary LiDAR. However, they tend to have a smaller FOV.

This thesis focuses on perception in 3D point clouds when acquired

with 3D rotary LiDARs in driving environments. For this reason, we

leave photogrammetry-based, multi-modal, and indoor perception for fu-

ture works. Moreover, from now on, we will use the expression point cloud

and 3D point cloud interchangeably.

1.3 Point cloud processing

The earlier section introduced point cloud acquisition. This section moves

beyond the acquisition phase, presenting Deep Neural Network (DNN) ar-

chitectures for point cloud processing. However, the main objective is not

an exhaustive review of the DNN literature for point clouds but to offer
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Abstract

In this paper, we propose an anchor-free single-stage
LiDAR-based 3D object detector – RangeDet. The most no-
table difference with previous works is that our method is
purely based on the range view representation. Compared
with the commonly used voxelized or Bird’s Eye View (BEV)
representations, the range view representation is more com-
pact and without quantization error. Although there are
works adopting it for semantic segmentation, its perfor-
mance in object detection is largely behind voxelized or
BEV counterparts. We first analyze the existing range-view-
based methods and find two issues overlooked by previ-
ous works: 1) the scale variation between nearby and far
away objects; 2) the inconsistency between the 2D range
image coordinates used in feature extraction and the 3D
Cartesian coordinates used in output. Then we deliber-
ately design three components to address these issues in
our RangeDet. We test our RangeDet in the large-scale
Waymo Open Dataset (WOD). Our best model achieves
72.9/75.9/65.8 3D AP on vehicle/pedestrian/cyclist. These
results outperform other range-view-based methods by a
large margin, and are overall comparable with the state-of-
the-art multi-view-based methods. Codes will be released at
https://github.com/TuSimple/RangeDet.

1. Introduction
LiDAR-based 3D object detection is an indispensable

technology in the autonomous driving scenario. Though
shared some similarities, object detection in the 3D sparse
point cloud is fundamentally different from its 2D coun-
terpart. The key is to efficiently represent the sparse and
unordered point clouds for subsequent processing. Several

*The first two authors contribute equally to this work and are listed in
the alphabetical order.

Bird’s Eye View Point View

Range View

Figure 1. Different views in LiDAR-based 3D object detection.

popular representations include Bird’s Eye View (BEV) [9,
38, 37], Point View (PV) [25], Range View (RV) [11, 18]
and fusion of them [24, 44, 33], which are shown in Fig.1.
Among them, BEV is the most popular one. However, it in-
troduces quantization error when dividing the space into the
voxels or pillars, which is unfriendly for the distant objects
that may only have few points. To overcome this drawback,
the point view representation is usually incorporated. Point
view operators [22, 23, 34, 31, 35, 30, 17] can extract effec-
tive features from unordered point clouds, but they are dif-
ficult to scale up to large-scale point cloud data efficiently.

The range view is widely adopted in semantic segmen-
tation task [19, 36, 42, 43], but it is rarely used in object
detection individually. However, in this paper, we argue
that the range view itself is the most compact and informa-
tive way for representing the LiDAR point clouds because
it is generated from a single viewpoint. It essentially forms
a 2.5D [7] scene instead of a full 3D point cloud. Conse-
quently, organizing the point cloud in range view misses no
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Figure 1. Qualitative examples of provided annotations from sequence 08. In (a), we show the semantic annotation and the middle
(b) shows the corresponding instance annotation of 50 aggregated scans. We also provide input (not shown) and target voxel grids
aggregated from multiple scans for the semantic scene completion task as shown in the right image (c).

the pixel-level annotation. However, this projection will
never cover all LiDAR points due to the sensor placement
and the resulting different view point. Very recently, the
PandaSet (PandaSet 2020) provides point-wise annotations
of LiDAR point clouds with 42 classes focusing on objects
on the road, such as traffic participants, barriers, and cones,
and more fine-grained distinction between different vehicle
types compared to our annotation. SemanticPOSS (Pan et al.
2020) provides also semantic annotation of point clouds
with focus on scenes with pedestrians captured in a campus
environment. The classes are compatible with our classes and
the authors ensured to provide labels in the same format as
our annotation data. Pan et al. (2020) used our annotation
tool presented in Sec. 3.1, but used tracking information to
extract instances. NuScenes (Caesar et al. 2020) also added
recently annotations for LiDAR point clouds with more
diverse categories for different traffic participants. Together
with the bounding box annotations, this dataset can also be
used for panoptic segmentation. Due to the large number of
different scenes, it provides a highly diverse set of situations.

Table 1 provides an overview of the aforementioned
datasets and their characteristics. Other automotive datasets
might provide more diversity in terms of cities or number of
different scenes. However, our dataset is the only dataset that
combines point-wise semantic annotations directly made in
sequences of three-dimensional point clouds with temporally
consistent instance annotations for both non-moving and
moving traffic participants.

3 Dataset

Our dataset provides point-wise semantic annotations for
the odometry sequences of the KITTI Vision Benchmark
Suite (Geiger et al. 2013), which was the first large-scale
dataset providing data recorded with a platform equipped
with sensors commonly used on self-driving cars since
the DARPA Urban Challenge (Montemerlo et al. 2008).
The recording vehicle was equipped with a stereo camera
covering the frontal field-of-view and a rotating 3D LiDAR
sensor, the Velodyne HDL-64E S2, covering the full 360�

field-of-view. Both modalities are synchronized such that
the cameras are triggered when the spinning LiDAR sensor
faces in forward direction (Geiger et al. 2013). The vehicle
is additionally equipped with an inertial navigation system

Figure 2. Our point cloud labeling application for sequential
point clouds that we provide together with the dataset.

(INS) integrating an automotive-grade inertial measurement
unit (IMU) with GPS providing position measurements.

In case of the odometry benchmark⇤, we use the data
provided that uses point clouds of a single turn of the
LiDAR sensor which are compensated for sensor motion,
i.e., individual points in the point cloud are transformed to
account for the movement of the sensor during a single turn
of the rotating LiDAR sensor.

The odometry dataset comprises 22 sequences: 11 training
sequences (sequences 00-10) with ground truth poses
and 11 testing sequences (sequences 11-21) without pose
information for which an odometry approach should estimate
the poses. The pose error is only locally evaluated and
therefore the provided poses are not loop closed or optimized
to give globally consistent poses, such that already visited
areas would be consistently mapped and old and new point
cloud observations of the same place would be aligned
properly.

3.1 Point Cloud Annotation
Our primary objective is to generate a consistent, accurate
labeling of the sequential point clouds. It is essential to
have consistent and loop-closed poses to facilitate the

⇤See http://www.cvlibs.net/datasets/kitti/eval odometry.php for more infor-
mation and download of the data.
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Figure 1. Qualitative examples of provided annotations from sequence 08. In (a), we show the semantic annotation and the middle
(b) shows the corresponding instance annotation of 50 aggregated scans. We also provide input (not shown) and target voxel grids
aggregated from multiple scans for the semantic scene completion task as shown in the right image (c).

the pixel-level annotation. However, this projection will
never cover all LiDAR points due to the sensor placement
and the resulting different view point. Very recently, the
PandaSet (PandaSet 2020) provides point-wise annotations
of LiDAR point clouds with 42 classes focusing on objects
on the road, such as traffic participants, barriers, and cones,
and more fine-grained distinction between different vehicle
types compared to our annotation. SemanticPOSS (Pan et al.
2020) provides also semantic annotation of point clouds
with focus on scenes with pedestrians captured in a campus
environment. The classes are compatible with our classes and
the authors ensured to provide labels in the same format as
our annotation data. Pan et al. (2020) used our annotation
tool presented in Sec. 3.1, but used tracking information to
extract instances. NuScenes (Caesar et al. 2020) also added
recently annotations for LiDAR point clouds with more
diverse categories for different traffic participants. Together
with the bounding box annotations, this dataset can also be
used for panoptic segmentation. Due to the large number of
different scenes, it provides a highly diverse set of situations.

Table 1 provides an overview of the aforementioned
datasets and their characteristics. Other automotive datasets
might provide more diversity in terms of cities or number of
different scenes. However, our dataset is the only dataset that
combines point-wise semantic annotations directly made in
sequences of three-dimensional point clouds with temporally
consistent instance annotations for both non-moving and
moving traffic participants.

3 Dataset

Our dataset provides point-wise semantic annotations for
the odometry sequences of the KITTI Vision Benchmark
Suite (Geiger et al. 2013), which was the first large-scale
dataset providing data recorded with a platform equipped
with sensors commonly used on self-driving cars since
the DARPA Urban Challenge (Montemerlo et al. 2008).
The recording vehicle was equipped with a stereo camera
covering the frontal field-of-view and a rotating 3D LiDAR
sensor, the Velodyne HDL-64E S2, covering the full 360�

field-of-view. Both modalities are synchronized such that
the cameras are triggered when the spinning LiDAR sensor
faces in forward direction (Geiger et al. 2013). The vehicle
is additionally equipped with an inertial navigation system

Figure 2. Our point cloud labeling application for sequential
point clouds that we provide together with the dataset.

(INS) integrating an automotive-grade inertial measurement
unit (IMU) with GPS providing position measurements.

In case of the odometry benchmark⇤, we use the data
provided that uses point clouds of a single turn of the
LiDAR sensor which are compensated for sensor motion,
i.e., individual points in the point cloud are transformed to
account for the movement of the sensor during a single turn
of the rotating LiDAR sensor.

The odometry dataset comprises 22 sequences: 11 training
sequences (sequences 00-10) with ground truth poses
and 11 testing sequences (sequences 11-21) without pose
information for which an odometry approach should estimate
the poses. The pose error is only locally evaluated and
therefore the provided poses are not loop closed or optimized
to give globally consistent poses, such that already visited
areas would be consistently mapped and old and new point
cloud observations of the same place would be aligned
properly.

3.1 Point Cloud Annotation
Our primary objective is to generate a consistent, accurate
labeling of the sequential point clouds. It is essential to
have consistent and loop-closed poses to facilitate the

⇤See http://www.cvlibs.net/datasets/kitti/eval odometry.php for more infor-
mation and download of the data.
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d) voxel

Figure 1.3: Examples of a) Range-View image (RV), b) Bird’s Eye View image (BEV),

c) a point cloud (points), d) a voxelized point cloud (voxel). Image credits to [8, 46].

insights into the main representations and network categories employed in

point cloud processing. In contrast to images, where Convolutional Neural

Networks (CNNs) dominate, point cloud processing is challenging due to

the unordered and sparse nature of this data type, with density variations

based on the distance from the sensor. The processing of point clouds

relies on both the input representation and the final task. For example,

in geometric deep learning, points are represented as a graph using Graph

Neural Networks (GNNs) for data processing. Another example is robot

navigation, where inference time is critical. Here, points are often pro-

jected into pseudo-images, enabling processing through lightweight CNN

architectures. Let us move within the domain of 3D perception.

We can find three main types of architectures based on the input rep-

resentation: point-based, projection-based, and voxel-based. Point-based

architectures, one of the earliest network types developed for point cloud
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processing, can learn feature representations directly from raw points with-

out additional pre-processing steps. Early point-based architectures used

point-wise Multi-Layer Perceptrons (MLP). For example, the pioneering

PointNet [133] leveraged permutation-invariant operators such as point-

wise MLP, spatial transformer networks, and pooling operators. Its suc-

cessor, PointNet++[134], introduced a hierarchical spatial structure to en-

hance sensitivity to local geometric layout and incorporated shared 1D

convolutional layers. More recent architectures build upon advances in the

2D field, introducing deformable convolutions [33, 178] and transformer

networks [234, 188] for improved point cloud processing. The main limita-

tion of point-based approaches lies in their computational demands when

processing large-scale scans. Additionally, point-based architectures often

show a slow convergence during training time.

Projection-based architectures involve a mapping step where 3D points

are projected onto a dense 2D grid with specific features. Among the widely

adopted projection-based representations for LiDAR data are Range-View

(RV) and Bird’s Eye View (BEV). RV projection (Fig.1.3a) maps input

points into a spherical coordinate system. Following projection, each col-

umn shares an azimuth, and each row shares an inclination. These values

denote the relative vertical and horizontal angles from the original input

point. Pixel values contain the range (depth) of each corresponding point,

the magnitude of the returned laser pulse (intensity), and other auxiliary

information. In BEV projection (Fig.1.3b), points are top-down projected

onto the horizontal x-z plane. During this projection, the x and z values

of points define the occupancy grid. In BEV images, pixel values cor-

responding to occupied pixels contain the maximum height, laser pulse

intensity, density of neighboring points, and auxiliary information. Follow-

ing projection, these pseudo-images are processed using standard 2D CNN

architectures. Early approaches [160] and [203] projected input points into
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RV images and employed an AlexNet-inspired or a U-Net architecture for

the tasks of 3D pedestrian detection and road-object segmentation, respec-

tively. More recently, a trend has emerged towards enhancing the learning

of better-projected images and leveraging contemporary 2D architectures.

Notably, PointPillars [88] refines the projection strategy by learning a 2D

pseudo-image where pixel values represent features derived from a point-

based architecture. CenterPoint [223] learns a network to project input

points into BEV feature maps, relying on SwinTransformer [107] for 3D

object detection. Another example is PolarNet [232], which learns a BEV

feature map over a polar grid to address the varying sparsity of LiDAR

scans. Projection-based approaches offer the advantage of employing effi-

cient 2D CNN architectures from image literature with fast training and

efficient inference. However, these approaches suffer geometric information

loss during the projection phase. In RV images, occluded objects may col-

lapse into pixels with the same range, e.g., a group of pedestrians. In BEV

images, overlapping objects may collapse to the same pixel, e.g., a tree

and the underlying terrain. Additionally, selecting the correct projection

strategy is crucial for best final performance.

Voxel-based architectures involve a voxelization phase, where 3D points

are mapped into a quantized 3D grid of voxels (Fig.1.3d). Voxels are 3D

base cubical units used to represent 3D structures. The size of a voxel

is adjustable by varying the voxel size, corresponding to the quantization

step size along each axis. During voxelization, the 3D space is partitioned

into equidistant voxels based on the voxel size, and points are grouped

according to the voxel they occupy. Furthermore, voxel values can include

hand-crafted or learned features. Early approaches used 3D convolutional

layers, analogous to 2D CNN, but employing 3D convolutional kernels for

handling 3D data. VoxelNet [227] was the first approach within this cate-

gory. After voxelization, it employed PointNet to learn input voxel features
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and a 3D CNN for the primary task of 3D object detection. However, tra-

ditional 3D convolutions proved computationally and memory-intensive, as

they did not account for the sparsity of a voxelized point cloud, computing

features for occupied and empty regions. A pivotal change was the advent

of 3D sparse convolutions, avoiding the computation of features for empty

regions and reducing memory and computational costs. 3D sparse convolu-

tions first appeared in SECOND [214] and gained popularity with SparseC-

onv [57] and MinkowskiNet [28, 27]. Recent architectures further refine the

voxelization phase and overall structure. For example, Cylinder3D [243]

introduces a cylindrical voxelization strategy specific to LiDAR scans. Al-

ternatively, VoTr [113] introduces the first sparse voxel-based transformer

architecture designed for 3D object detection. Voxel-based architectures

fully exploit the 3D geometric information of the input point cloud. How-

ever, the voxel size is a critical choice influencing the final efficiency and

performance. A high resolution results in high computational and mem-

ory costs, while a low resolution may introduce strong geometric artifacts

during voxelization. Another research direction explores the use of hy-

brid architectures. For example, PointGrid[92] integrates both voxel and

point-based approaches, creating a 3D hybrid representation that combines

discrete points and volumetric voxels. While hybrid architectures present

an interesting direction, it is important to note that they use the strategies

outlined above. Moreover, their application in 3D point cloud perception is

relatively constrained. We recommend referring to [60] for a more in-depth

discussion on hybrid architectures.

1.4 Learning paradigms

This section provides the background on the learning paradigms commonly

used in machine learning (Fig. 1.4). The literature identifies three primary
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Figure 1.4: Overview of the learning paradigms in machine learning. Image credits to [3].

learning paradigms: supervised, unsupervised, and reinforcement learning.

The first and fundamental paradigm is supervised learning. It involves

training a model using data paired with a source of supervision, such as an-

notations corresponding to each training sample. These annotations guide

the learning process, helping to adjust the model parameters to ensure

its output aligns with the provided annotations. The model is fed with

data during training, and the output predictions are compared with the

annotations to calculate the error. This error is then used to iteratively

update the model parameters to minimize the discrepancy between predic-

tions and annotations. This training process is repeated until the model

achieves the desired level of accuracy over new, unseen data. Supervised

learning finds extensive application across various tasks, from image classi-

fication and point cloud registration to audio-visual speech recognition. In
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image classification, the training data consists of labeled images, and the

supervision comes from the associated labels. In point cloud registration,

the data include pairs of point clouds, with annotations representing the

ground truth roto-translation matrices. In audio-visual speech recognition,

the data contain pairs of audio and video, with supervision originating from

text transcriptions.

Unsupervised learning is the second fundamental paradigm in machine

learning, focusing on training a model with unlabeled data to discover la-

tent patterns within the training set. In this paradigm, the model processes

the training data to reconstruct the input data or learn feature represen-

tations that best represent input data. Unlike supervised learning, where

labeled data guide the learning process, unsupervised learning relies on

alternative methods for evaluating the quality of learned representations.

Standard evaluation methods include clustering algorithms and dimension-

ality reduction techniques. Following training, the acquired representations

find utility in diverse downstream tasks, including visualization, compres-

sion, registration, matching, and localization. For example, in point cloud

registration, a model trained with unsupervised loss can identify match-

ing points between different views. Matches are then used to estimate

transformation matrices for the final registration.

Between supervised and unsupervised lies an intermediate paradigm

known as semi-supervised learning. In semi-supervised learning, only a

portion or a few training samples are provided with supervision, while a

large set of data is unsupervised. This paradigm can be further catego-

rized into few-shot and one-shot learning based on the number of labeled

samples. Semi-supervised learning leverages the strengths of both super-

vised and unsupervised paradigms, often offering enhanced performance

over unsupervised approaches with limited annotated data. During train-

ing, labeled data guide the learning of the main task, while unlabeled data

12



CHAPTER 1. INTRODUCTION 1.4. LEARNING PARADIGMS

contribute to robustness by learning an unsupervised objective, such as a

reconstruction objective. Semi-supervised approaches are frequently em-

ployed to mitigate label dependency in various tasks, finding applications

across domains ranging from image classification and clustering to more

complex tasks like 3D point cloud perception.

Reinforcement learning is the third and final learning paradigm. Un-

like the previous paradigms, reinforcement learning trains a model under

an action-reward strategy focusing on learning from experience. In this

paradigm, an agent makes decisions in an environment to maximize the

final reward. The agent (model) parameters are updated with a trial and

error approach, iteratively improving performance while gaining experi-

ence. Reinforcement learning finds extensive application in various robotic

scenarios, including robot navigation, object grasping, and manipulation.

However, it is rarely applied in perception tasks.

The paradigms above are categorized based on data supervision. Alter-

natively, they can be classified according to how data is available during

training, leading to two distinct approaches: offline learning and online

learning. In offline learning, the model is trained offline on data batches.

This traditional paradigm often leads to superior performance and more

stable training than online learning. However, it requires pre-acquired data

before training, demands higher computational resources, and poses chal-

lenges for periodic fine-tuning in dynamic environments. In contrast, online

learning updates model parameters on sequentially received data at each

step. Each incoming sample is a new training sample, and previous data

can be either discarded or stored partially in a queue to monitor training

stability. Online learning is generally faster and requires fewer computa-

tional resources and storage than batch learning. Moreover, it facilitates

dynamic adaptation to evolving environments, such as stock market pre-

diction, weather forecasting, and navigation in dynamic settings. While

13
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a) b)

Figure 1.5: Comparison between point clouds acquired a) with VelodyneHDL64E sensor

in Karlsruhe, Germany and b) with a VelodyneHDL32E sensor in Boston, US.

online learning offers advantages, it has challenges. One notable issue is

the potential for negative drift, making it challenging to prevent and detect

when the model drifts toward trivial solutions.

In conclusion, selecting the most appropriate learning paradigm is con-

nected to the available data, annotations, and the nature of the specific

task. The decision among supervised, semi-supervised, and unsupervised

learning is rooted in data and annotation availability. Reinforcement learn-

ing becomes particularly relevant when tasks necessitate learning through

experience. Additionally, considerations like limited computational re-

sources and a dynamic environment are crucial in choosing online learning

over offline learning. This thesis primarily focuses on solving domain shift

in 3D point cloud perception. This is done for 3D semantic segmenta-

tion and 3D object detection tasks by focusing on solutions following the

unsupervised, semi-supervised, offline, and online paradigms.

1.5 Domain shift in point clouds

In 3D perception, the traditional pipeline involves training and evaluating

a model using supervised data acquired within the same domain, i.e., using

the same sensor. However, a noticeable drop in test performance occurs

when deploying a model trained on a different dataset. This drop is due

14
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to domain shift between training (source domain) and test data (target

domain). Domain shift arises when the source and target data are drawn

from different data distributions. Its main components can be tentatively

categorized into sensor-dependent and location-dependent.

Sensor-dependent components originate from the use of sensors with

different specifications. For instance, consider the VelodyneHDL64E and

VelodyneHLD32E sensors employed in the SemanticKITTI [9] and nuScenes

[15] datasets, respectively. The VelodyneHDL64E (Fig. 1.5a) is equipped

with 64 laser beams, measures a range of up to 120 meters, has a ver-

tical resolution of 0.4◦, and an azimuthal resolution ranging from 0.08◦

to 0.35◦. Differently, the VelodyneHDL32E (Fig. 1.5b), equipped with 32

laser beams, measures a range of up to 100 meters, has a vertical reso-

lution of 1.33◦, and an azimuthal resolution ranging from 0.08◦ to 0.33◦.

A segmentation model trained on SemanticKITTI may show performance

degradation on nuScenes due to the lower point density. Similarly, a de-

tection model may predict inaccurate box sizes or positions due to sparser

points.

Location-dependent components group the causes arising from the ac-

quisition of point clouds in different geo-locations, environments, lighting

and weather conditions, object sizes, and class distributions. For example,

SemanticKITTI, acquired in Karlsruhe, Germany, differs from nuScenes,

acquired in Boston, US. A segmentation model trained in the narrow streets

of Karlsruhe may underperform when segmenting the broader streets in

Boston. Similarly, variations in vehicle sizes between the two locations

could affect the box predictions of a detection model.

In this section, we introduced the domain shift problem in 3D point

clouds, categorizing its components into sensor and location-dependent.

Our examples focused on domain shift between point clouds acquired in

real locations, namely, real-to-real settings. Another important setting is
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Table 1.1: Overview of the settings for handling domain shift in point clouds and publi-

cations in this thesis. The differences among these settings lie in the availability of source

data during adaptation, the level of supervision on target domains, and the presence of

target data during training. We report the type of supervision (Sup.) in each setting.

Keys: available (✓), partial or sequential (∼), and unavailable (-).

Domain Sup.
Setting 1: Setting 2: Setting 3: Setting 4: Setting 5:

Semi-sup. target Unsup. target Unavail. source Sequential target Unknown target

Target
Labels (∼) - - - -

Data ✓ ✓ ✓ (∼) -

Source

Labels ✓ ✓ - - ✓

Data ✓ ✓ - - ✓

Model - - ✓ ✓ -

Publications 1 1 1 1 1

the synthetic-to-real (or synth-to-real). In this context, the training dataset

is acquired with a sensor simulator, like CARLA [44], while the test dataset

comprises real-world acquisitions. This thesis focuses on the domain shift

problem arising in both the real-to-real and synthetic-to-real settings.

1.6 Handling domain shift in point clouds

In the previous section, we introduced the challenge of domain shift in

real-world applications, particularly in the context of 3D point cloud per-

ception. The increasing interest in autonomous driving has highlighted

the critical need to address domain shift, especially concerning point cloud

data. While the issue of domain shift has been extensively explored in

camera-based perception through Domain Adaptation (DA) and Domain

Generalization (DG) research, these approaches often fail or do not apply

when dealing with the sparse and geometric nature of point clouds. As a

result, this research direction still needs to be explored despite its practical

implications.
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This thesis focuses on solutions for the domain shift problem in the 3D

point cloud perception field for autonomous driving scenarios. To address

this, we introduce the concept of Handling domain shift in point clouds,

studying five different settings commonly encountered when mitigating do-

main shift for 3D perception. These settings span from single or multiple

supervised source domains to one or many target domains, each aiming

to alleviate domain shift and enhance performance in the respective tar-

get domain. The differences among these settings lie in the availability of

source data during adaptation, the level of supervision on target domains,

and the presence of target data during training (Tab. 1.1).

1.6.1 Setting 1: Semi-supervised target

In this setting, we are given a supervised source dataset and a partially

(semi-) supervised target dataset. The primary task, e.g., 3D semantic seg-

mentation, relies on guidance from the source supervision. The unlabeled

target data plays a crucial role in addressing domain shift. Available tar-

get labels offer supplementary supervision, aiding the adaptation process

and enhancing overall performance. This setting aligns with the Semi-

Supervised Domain Adaptation (SSDA) task. It is the most straightfor-

ward among those studied in this thesis due to the optimistic assumption

that a few target labels will be available. This introduces a unique and

noise-free supervision from the target domain, simplifying adaptation. De-

spite that, this setting holds practical significance as it allows for exploring

the improvements achievable with a negligible annotation effort.

1.6.2 Setting 2: Unsupervised target

This setting considers the most common situation where we are given a

supervised source dataset and an unsupervised target dataset. Similar to
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Setting 1, the primary perception task, e.g., 3D semantic segmentation, is

guided by source supervision, but the adaptation process has to rely only on

unsupervised target data. This configuration poses additional challenges

as domain shift is mitigated only under the guidance of the noisy and,

often, unreliable target signal. This setting aligns with the Unsupervised

Domain Adaptation (UDA) task, extensively explored in camera-based re-

search. Feature alignment and adversarial training are commonly employed

solutions in the camera-based literature. However, their direct application

to point clouds is often impractical due to image-oriented assumptions and

computational demands, which are often intractable in point clouds. De-

spite its complexity, this setting holds practical significance in real-world

applications, where acquiring large-scale data is feasible, but annotation

costs are often prohibitive.

1.6.3 Setting 3: Unavailable source

Despite being a common situation in many real-world applications, this set-

ting is relatively under-studied in point cloud perception. Furthermore, it

aligns with the Source-Free Unsupervised Domain Adaptation (SF-UDA)

task. In this setting, we are given a pre-trained model over the source

domain and an unlabeled target dataset. Moreover, source data are not

available at adaptation time. The primary objective is to adapt the pre-

trained model to the target domain while preventing degradation in the

performance of the main perception task. This setting holds practical

importance for two main reasons. Firstly, pre-trained models are easily

accessible on the internet, yet their efficacy is affected by domain shift.

Secondly, storing or sharing source data raises crucial challenges regard-

ing memory constraints, security against adversarial attacks, and privacy

issues.
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1.6.4 Setting 4: Sequential target

This setting presents the novel task of Source-Free Online Unsupervised

Domain Adaptation (SF-OUDA). Analogous to Setting 3, a pre-trained

model on the source domain is available, and the source dataset is not ac-

cessible during adaptation. In contrast, the target dataset is a continuous

stream of sequential point clouds. This scenario introduces two additional

challenges compared to previous settings. Firstly, there is the risk of nega-

tive drift, where the network may drift towards representations harmful to

the main task, resulting in the affected performance of the entire percep-

tion system. Secondly, the sequential nature of the target modality poses

a particular challenge, requiring the network to rapidly adapt to new envi-

ronments, scenarios, and dynamics. This configuration is one of the most

challenging we study in this thesis as it emulates an autonomous vehicle

to minimize domain shift while navigating a new, unseen target domain.

1.6.5 Setting 5: Unknown target

In this scenario, we have a single or multiple supervised source datasets

but lack unlabeled data or information about future target domains. This

aligns with the Domain Generalization (DG) task, and like the previous

setting, we explore this for the first time in this thesis. The main chal-

lenges in DG involve the absence of target data and information about

future domains. The model is trained only on the annotated source data,

with generalization strategies to mitigate domain shift and enhance the

model performance on unforeseen target domains. The target datasets are

unavailable during training and are seen only at evaluation time. This is

the most challenging yet practical setting investigated in this thesis. En-

hancing the model generalization a priori, without knowledge of the tar-

get, holds central interest for any perception algorithm. Ideally, if a model
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could generalize to any unseen domain, the need for adaptation would be

precluded, resulting in significant time, cost, and computational resource

savings.

1.7 Contributions

This thesis presents our contributions to 3D point cloud perception, specif-

ically in semi-supervised domain adaptation, unsupervised domain adapta-

tion, source-free unsupervised domain adaptation, source-free online adap-

tation, and domain generalization. Our contributions are listed as fol-

lows:

• The first mixing-based method for unsupervised domain adap-

tation in 3D semantic segmentation [ Setting 2: Unsupervised

target ]: Our first contribution is the first mixing-based method for

unsupervised domain adaptation in 3D LiDAR segmentation. Our

method uses sample mixing, a two-branch symmetric pipeline, and

mean-teacher update to process labeled source and unlabeled target

data simultaneously. The proposed pipeline is simple, effective, and

has the potential to improve and ease model adaptation in the context

of autonomous driving.

• A simple and effective extension to semi-supervised domain

adaptation in 3D semantic segmentation [ Setting 1: Semi-

supervised target ]: Our second contribution is a new method for

semi-supervised domain adaptation in 3D semantic segmentation. The

new method enables our previous mixing-based pipeline to the semi-

supervised settings. The additional target supervision is efficiently

integrated into our double-branch pipeline: firstly, target labels are

injected into the unsupervised target data, and secondly, the target
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modality is mixed with a supervised source. This approach allows

users to introduce a negligible amount of supervision in the adapta-

tion process, further improving the adaptation performance. There-

fore, our approach has the potential to be widely applied in real-world

applications.

• The first study and method for domain adaptation with-

out source data in 3D object detection [ Setting 3: Unavail-

able source ]: Our third contribution is the first method for unsuper-

vised domain adaptation in 3D object detection without source data.

Firstly, we introduce the problem of source-free unsupervised domain

adaptation in the context of 3D object detection. Then, we propose

the first approach in this setting using pseudo-annotations, reversible

scale transformations, and motion coherency. This setting is consid-

ered a common situation for many applications. Therefore, it can

be widely used in 3D perception pipelines starting from pre-trained

models.

• The first study and method for online adaptation in 3D se-

mantic segmentation [ Setting 4: Sequential target ]: Our fourth

contribution is the study of source-free online unsupervised domain

adaptation for 3D semantic segmentation. This setting is challenging

as we aim to adapt a pre-trained source network to a target domain

while navigating the new domain. We propose the first solution to

this problem, using pseudo-labels, geometric propagation, and spatio-

temporal feature consistency. The newly introduced setting is a com-

mon situation for many 3D perception systems. Therefore, our so-

lution can be widely employed or adapted in real-world applications

facing the same situation.

• A new synthetic dataset for 3D semantic segmentation [ Set-
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ting 4: Sequential target ]: Our fifth contribution is a new synthetic

dataset to facilitate the study of domain shift in 3D semantic seg-

mentation between simulated and real LiDAR sensors. Our dataset

includes two splits simulating two widely used real Velodyne sensors.

Our new synthetic dataset can encourage the study of domain shift in

3D semantic segmentation. Moreover, it can be added to real-world

data during training to improve final performance.

• The first study and method for domain generalization in 3D

semantic segmentation [ Setting 5: Unknown target ]: Our sixth

contribution is the first study on domain generalization in 3D semantic

segmentation and introduces the first experimental setup for evaluat-

ing model performance across domains. Results reveal a significant

performance gap between models trained on the source dataset and

evaluated on a different target domain. To address this, we propose a

novel method enhancing a sparse-convolutional 3D segmentation net-

work by incorporating an additional dense 2D convolutional decoder.

Our method enables robust feature learning transferable across do-

mains and has the potential to be widely used in real-world applica-

tions. Moreover, this work aims to inspire cross-domain model devel-

opment and evaluation within the research community.

In conclusion, our extensive exploration focused on handling the domain

shift issue in 3D point cloud perception, covering the tasks of 3D semantic

segmentation and 3D object detection. We have made several contribu-

tions in semi-supervised, unsupervised, source-free, online adaptation, and

domain generalization. Our contributions will have a practical and last-

ing impact on the community, enabling the development of 3D perception

systems with improved performance and robustness under the presence of

domain shift.
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1.8 Publications

This thesis is enclosed with a list of publications highlighting and sup-

porting the contributions made in 3D point cloud perception, particularly

focusing on domain adaptation and domain generalization. The following

is a list of publications discussed in this thesis, ordered in chronological

reverse order:

1. C. Saltori, F. Galasso, G. Fiameni, N. Sebe, F. Poiesi, E. Ricci,

Compositional Semantic Mix for Domain Adaptation in Point Cloud

Segmentation, IEEE Transactions on Pattern Analysis and Machine

Intelligence (T-PAMI), 2023 [152]

2. C. Saltori, A. Osep, E. Ricci, L. Leal-Taixé, Walking Your LiDOG:

A Journey Through Multiple Domains for LiDAR Semantic Segmen-

tation, Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), 2023 [156]

3. C. Saltori, E. Krivosheev, S. Lathuiliére, N. Sebe, F. Galasso, G.

Fiameni, E. Ricci, F. Poiesi, GIPSO: Geometrically Informed Propa-

gation for Online Adaptation in 3D LiDAR Segmentation, European

Conference on Computer Vision (ECCV), 2022 [154]

4. C. Saltori, F. Galasso, G. Fiameni, N. Sebe, E. Ricci, F. Poiesi, CoS-

Mix: Compositional Semantic Mix for Domain Adaptation in 3D Li-

DAR Segmentation, European Conference on Computer Vision (ECCV),

2022 [153]

5. C. Saltori, S. Lathuiliére, N. Sebe, E. Ricci, F. Galasso, SF-UDA3D:

Source-Free Unsupervised Domain Adaptation for LiDAR-Based 3D

Object Detection, IEEE International Conference on 3D Vision (3DV),

2020 [155]
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In addition to the above publications, we report a list of publications that

are not part of the material in support of this thesis. The following is a list

of publications not discussed in this thesis, ordered in chronological reverse

order:

1. L. Riz, C. Saltori, Y. Wang, E. Ricci, F. Poiesi, Novel Class Discovery

Meets Foundation Models for 3D Semantic Segmentation, Under peer-

review, 2023 [141]

2. G. Mei, C. Saltori, F. Poiesi, E. Ricci, Q. Wu, J. Zhang, Unsuper-

vised Point Cloud Representation Learning by Clustering and Neural

Rendering, Under peer-review, 2023 [116]

3. L. Riz, C. Saltori, E. Ricci, F. Poiesi, Novel Class Discovery for 3D

Point Cloud Semantic Segmentation, Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR),

2023 [140]

4. G. Mei, F. Poiesi, C. Saltori, J. Zhang, E. Ricci, N. Sebe, Overlap-

Guided Gaussian Mixture Models for Point Cloud Registration, Pro-

ceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV), 2023 [115]

5. G. Mei, C. Saltori, F. Poiesi, J. Zhang, E. Ricci, N. Sebe, Q. Wu,

Data Augmentation-Free Unsupervised Learning for 3D Point Cloud

Understanding, British Machine Vision Conference (BMVC), 2022 [117]

6. C. Saltori, P. Rota, N. Sebe, J. Almeida, Low-budget Label Query

through Domain Alignment Enforcement, Computer Vision and Image

Understanding (CVIU), 2022 [157]

7. N. Bisagno, C. Saltori, B. Zhang, FGB De Natale, N. Conci, Embed-

ding Group and Obstacle Information in LSTM Networks for Human
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Trajectory Prediction in Crowded Scenes, Computer Vision and Image

Understanding (CVIU), 2022 [11]

8. S. Roy, W. Menapace, S. Oei, B. Luijten, E. Fini, C. Saltori, and

others, Deep Learning for Classification and Localization of COVID-

19 Markers in Point-of-care Lung Ultrasound, IEEE Transactions on

Medical Imaging (T-MI), 2021 [145]

9. F. Marra, C. Saltori, G. Boato, L. Verdoliva, Incremental Learn-

ing for the Detection and Classification of GAN-Generated Images,

IEEE International Workshop on Information Forensics and Security

(WIFS), 2019 [114]

10. C. Saltori, S. Roy, N. Sebe, G. Iacca, Regularized Evolutionary Al-

gorithm for Dynamic Neural Topology Search, Image Analysis and

Processing (ICIAP), 2019 [158]
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Chapter 2

State of the art

2.1 Related work

2.1.1 Perception in point clouds

3D semantic segmentation

Semantic segmentation in point clouds can be performed at point-level

[134], on range views [143], or on voxelized point clouds [227].

Point-level architectures process the input point cloud without interme-

diate representation processing. These architectures include PointNet [133],

based on a multilayer perceptron series. PointNet++ [134] improves on

PointNet by aggregating global and local point features at multiple scales.

RandLA-Net [66] extends PoinNet++ [134] by embedding local spatial

encoding, random sampling, and attentive pooling. KPConv [178] learns

weights in the continuous space and introduces flexible and deformable con-

volutions for point cloud processing. More recent architectures follow ad-

vances from the image field and use transformer architectures. PointTrans-

former [234] is the first to introduce self-attention networks for 3D point

cloud processing, solving a large set of tasks, including 3D point cloud se-

mantic segmentation. PointTransformerV2 [205] improves on PointTrans-

former by grouping vector attention and introducing a partition-based
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pooling method for more efficient sampling. In contrast to transformer-

based architectures, PointNeXt [135] surpasses PointTransformer by im-

proving PointNet++ with an improved training procedure, an inverted

residual bottleneck, and separable MLPs. These methods are computation-

ally inefficient when large-scale point clouds are processed. Computational

efficiency can be improved by projecting 3D points on 2D representations

[120] or using 3D quantization approaches [27]. The former includes 2D

projection-based approaches that use 2D range maps and exploit standard

2D convolution filters [143] to segment these maps prior to a re-projection

in the 3D space. RangeNet++ [120], SqueezeSeg networks [203, 204], 3D-

MiniNet [2], PolarNet [232], and RangeFormer [83] are approaches that

belong to this category. Although efficient, these approaches lose informa-

tion when the input data are projected in 2D and re-projected in 3D. The

latter includes 3D quantization-based approaches that transform the input

point cloud into 3D discrete representations and that employ 3D convolu-

tions [227] or 3D sparse convolutions [57, 27] to predict per-point classes.

VoxelNet [227] maps input points into a voxel grid and processes the in-

put voxel grid with 3D convolutions. SparseConv [57, 56] and Minkowsk-

iNet [27] improves voxel processing and introduce sparse convolutions to

improve efficiency. Cylinder3D [243] further improves voxel processing

for LiDAR data by using cylindrical and asymmetrical 3D convolutions.

SphereFormer [87] introduces sphere-transformer modules and aggregates

information of dense and sparse LiDAR points with a radial window self-

attention. While efficient, 3D quantization-based approaches are sensitive

to the voxel size. A low voxel size can lead to increased computational

demand, while a high voxel size may introduce geometric artifacts.
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3D object detection

Object detection methods for 3D point clouds can be grouped into three

main categories: point, projection, and point-voxel based methods.

Point-based methods use permutation invariant operators to implicitly

capture local structures and fine-grained patterns without quantization,

retaining the original geometry of raw points. F-PointNet [131] applies

PointNet for 3D predictions on frustum points cropped based on 2D image

predictions. PointRCNN [166] uses PointNet-like modules and ROI Pooling

for distinguishing foreground points. A second canonical refinement step

produces the final predictions. Similarly, VoteNet [132] uses PointNet++

on raw points and introduces Hough voting over proposals, which are fur-

ther grouped and processed for the final predictions. 3DSSD [218] intro-

duces a single-stage detector that uses a hybrid feature-distance based far-

thest point sampling strategy on raw points. Differently, Point-GNN [167]

reasons on local neighborhood graphs constructed from the input points,

on which each node iteratively summarizes semantic cues from neighbors.

While point-based methods preserve the irregularity and locality of a point

cloud, they have a higher latency than projection-based methods. This la-

tency may be a challenge in real-time applications such as autonomous

driving.

Projection methods involve projecting 3D points into a 2D representa-

tion for efficient convolution using CNNs. This is usually done with an

intermediate 3D quantization step and by mapping the learned features

into a BEV feature map. VoxelNet [227] is the pioneering in this cat-

egory. Firstly, a voxelization step quantizes the input point cloud and

learns voxel-wise features with a 3D CNN network. The learned represen-

tations are then projected into a 2D BEV-like feature map for the final 3D

predictions. PointPillars [88] projects the input points into a BEV map
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and employs a pillar network to generate fixed-size feature representations

for each pillar. Differently, SECOND [214] uses sparse convolutions to pro-

cess the point cloud data. Then, sparse features are projected into a BEV

feature map, which is further processed for the final predictions. Voxel R-

CNN [41] introduces a two-stage detector. Firstly, it applies voxelization

for 3D feature extraction, then transforms the extracted features into BEV

representation for generating 3D proposals. Finally, voxel features are ex-

tracted by a pooling strategy to refine proposals into the final predictions.

SE-SSD [237] proposes a single-stage detector using the teacher-student

learning paradigm. Teacher predictions supervise the student network,

and shape-aware data augmentations are used to improve predictions fur-

ther with orientation-aware loss. Projection-based methods have proven

computational efficiency thanks to the BEV representation, reducing scale

ambiguity and occlusion. However, they come with the main drawbacks

of information loss of fine-grained patterns and increased computational

overhead and memory usage in methods employing 3D CNNs.

Point-voxel methods are a recent research direction that integrates the

advantage of point-based methods of preserving fine-grained patterns with

the computational advantages of projection-based methods. For example,

STD [219] proposes a two-stage 3D object detection framework. Firstly,

raw points are fed to PointNet and PointNet++ backbones to generate

accurate proposals. Feature pooling and voxelization are introduced for

extracting proposal features. Then, proposals are improved in the second

stage, yielding the final predictions. PV-RCNN [164] and the following

PV-RCNN++ [165] integrate the effectiveness of 3D sparse convolutions

and the flexible receptive fields of PointNet-like modules to learn more

discriminative features. SA-SSD [62] introduces a single-stage detector

interpolating 3D sparse convolution features for raw point clouds, on which

an auxiliary network is applied to enable voxel features with structure-
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aware capability. Differently, BADet [136] exploits long-range interactions

iteratively among detection candidates, constructing local neighborhood

graphs for a boundary-aware receptive field in a coarse-to-fine manner.

Point-voxel methods aim to integrate the strengths of both projection and

point-based approaches. However, they need to carefully address the trade-

offs and potential drawbacks inherited from each approach.

2.1.2 Reducing domain shift in 3D semantic segmentation

Semi-supervised and unsupervised domain adaptation

Unlike domain adaptation for image-based tasks [180, 85], domain adap-

tation for point cloud segmentation still lacks a unified experimental setup

to compare different approaches. Domain adaptation approaches for 3D

semantic segmentation can be grouped into range-view, multi-modal, and

3D-focused methods (Tab. 2.1).

RV-based networks are affected by domain shift, which can be mitigated

by using generative approaches [90, 235], feature alignment [90, 204, 235],

and contrastive learning [142]. RayCast [90] tackles the real-to-real UDA

problem by transferring the sensor pattern of the target domain to the

source domain through ray casting. After training the deep network on

the source data, a minimal-entropy correlation alignment loss is used to re-

duce domain shift [122]. SqueezeSegV2 [204] improves the SqueezeSeg [203]

architecture and reduces domain shift in the synth-to-real setup by align-

ing source and target features with a geodesic correlation alignment [122].

ePointDA [235] addresses domain shift in the synth-to-real UDA setting

at both input and feature levels. At the input level, a generative Cy-

cleGAN [242] is trained to simulate real sensor noise on synthetic source

data. At the feature level, a higher-order momentum loss [21] is used

to learn domain-agnostic features between source and target input data.
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Gated [142] states that domain shift between source and target point clouds

can be mitigated by solving the sparsity shift and introducing domain-

specific parameters. Given an input pair of source and target RV images,

they first solve the sparsity difference through self-supervised completion

and applying a dropout mask. Then, residual gated adapters are added to

the segmentation model to learn target-specific parameters. None of the

RV-based methods tackle the semi-supervised scenario.

Multi-modal models are designed to process the information captured by

multiple input sensors, e.g., RGB cameras and LiDAR sensors are those

typically used. Domain shift is tackled by enforcing prediction consis-

tency among modalities and domains and using target (pseudo) labels.

xMUDA [74] uses cross-modality and cross-domain consistency to learn a

domain-agnostic model in the real-to-real UDA setting. Cross-modal con-

sistency exploits source labels and target pseudo-labels to produce consis-

tent multi-modal predictions in both domains. DeepCORAL feature align-

ment [171] enforces feature alignment between source and target domains.

In [73], xMUDA is extended to SSDA settings, showing that cross-modal

consistency is effective even in semi-supervised settings.

3D methods can process input point clouds with or without prior vox-

elization. UDA approaches for 3D segmentation include voxel-based archi-

tectures such as SparseConv [56] and MinkowskiNet [27]. Domain shift can

be tackled by focusing on the sparsity problem [221, 208, 119] or by employ-

ing mixup strategies [153, 207]. Complete&Label [221] reduces the spar-

sity difference between real domains by formulating the domain adaptation

problem as a point cloud completion problem. A self-supervised comple-

tion network is trained to make the sparse input point cloud denser. The

pre-processed point clouds can be used as intermediate domains to lower

the domain shift. PCT [208] disentangles domain shift between synthetic

and real point clouds into appearance and sparsity. Then, PCT learns an
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appearance translation module and a sparsity translation module. These

modules are used for translating source data in the target modality. Trans-

lated data are then used with ST [246] and APE [81] in the UDA and

SSDA settings, respectively. CoSMix [153] reduces domain shift in point

cloud data by introducing a compositional semantic mixup strategy with

a teacher-student learning scheme. The method obtains domain-invariant

models/features by creating two new intermediate domains of composite

point clouds: a mixed source and a mixed target. CoSMix-SSDA [152] fur-

ther extends CoSMix to the SSDA settings by allowing target labels to be

mixed in the source and target point clouds while improving adaptation.

Similarly, PolarMix [207] crops, edits, and rotates point clouds of different

domains at both scene and instance-level along the azimuthal angle in the

3D polar coordinate system. The mixed point clouds allow PolarMix to

reduce domain shift in the UDA setting, but the method is not employed

for SSDA.

Online domain adaptation

The previous domain adaptation approaches assume adaptation to be per-

formed offline, with source and target data already acquired. Offline adap-

tation has been extensively studied either using source data [65, 108, 151,

245] or without using source data [225, 103, 155, 217]. Unlike these ap-

proaches, Online UDA (OUDA) can adapt a model to an unlabeled contin-

uous target data stream through source domain supervision [190]. OUDA

has been successfully applied in the context of image classification [121],

image semantic segmentation [190], depth estimation [182, 233], robot ma-

nipulation [112], human mesh reconstruction [59], and occupancy mapping

[181]. The assumption of unsupervised target input data can be relaxed

and applied for online adaptation in image classification [95], video-object

segmentation [189], and motion planning [176]. Recently, test-time adap-
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tation methods have been applied to OUDA in classification using supervi-

sion from source data [173, 161, 192]. The only work exploring OUDA for

3D semantic segmentation is GIPSO [154]. GIPSO is the first pioneering

work in this setting and introduces the problem of Source-Free OUDA (SF-

OUDA). GIPSO reduces domain shift while navigating in a new, unseen

scenario. It uses adaptive self-training and geometric-feature propagation

to adapt a pre-trained source model online without requiring target labels,

source data, and pre-recorded target data.

Domain generalization

Beyond domain adaptation, robustness to domain shift can be tackled via

Domain Generalization (DG). In DG, the main goal is to learn domain-

invariant features by training solely on the source domain data [238].

Due to the importance of learning robust representations, DG has been

widely studied in the image domain [26, 238, 236, 125] in both, multi-

[53, 96, 240] and single-source [17, 13, 236, 194, 91] setup. Image-based

DG approaches reduce domain shift via domain alignment [101, 53], meta-

learning [96, 7], data and style augmentations [163, 240, 236], ensembling

techniques [45, 106], disentangled learning [78, 193], self-supervised learn-

ing [17, 13], regularization strategies [194, 68] and, reinforcement learn-

ing [68, 91]. Data augmentations have also been employed in DG for 3D

object detection [93] to learn to detect vehicles damaged in car accidents.

More recently, Robo3D [84] explores out-of-distribution generalization for

3D semantic segmentation and detection in severe weather conditions. In

3D semantic segmentation, DG has been recently studied by three concur-

rent works [80, 156, 159]. In [80], authors tackle single-domain generaliza-

tion between real domains. Their core idea is to use random sub-sampling

to enforce domain shift robustness. Firstly, feature consistency is enforced

between the source domain and the augmented domain based on feature
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affinity. Then, the correlation between class prototypes is constrained to be

similar among point clouds. Differently, 3DLabelProp [159] accumulates

the predictions of consecutive point clouds and propagates the predicted

classes over time to obtain robustness against domain shift. LiDOG [156]

explores DG for 3D semantic segmentation in single and multiple source

domains. A 3D sparse convolutional network is enhanced with an auxil-

iary dense 2D convolutional decoder, trained on a dense BEV auxiliary to

improve feature robustness against domain shift. Interestingly, BEV rea-

soning has also been used in cross-modal 3D semantic segmentation [97]

and in sensor failure for 3D detection and map segmentation [50].

2.1.3 Reducing domain shift in 3D object detection

Solving domain shift in 3D object detection has received a growing inter-

est in the last few years. The pioneering work of Wang et al. [196] studies

domain adaptation in SSDA and weakly supervised settings. The former

setting uses a few-shot set of annotated target samples introduced during

source training. The latter requires weak supervision from object statis-

tics, i.e., average vehicle size, which is used to scale/re-scale annotated 3D

bounding boxes or target (pseudo) annotations for reducing domain shift.

Domain shift can also be solved by bridging sensor specifications and

point cloud densities between source and target domains [139, 200]. For

example, LiDAR distillation [200] introduces an iterative UDA framework

that progressively reduces the point cloud density from a denser source to a

sparser target domain. Adversarial learning is another strategy for bridging

sensor differences [37, 86, 93]. In [86], UDA for BEV vehicle detection is

addressed using a generative network trained for translating source data

into the target domain. Sensor oriented strategies are not used in the

SSDA settings, except for [37] where both source and target supervision is

required. However, generative methods proved additional computational
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challenges that may not be trivially solved.

Self-training [155, 215, 109, 222] and mixing-based [25, 198] approaches

provide a more lightweight alternative in reducing domain shift. Self-

training has been widely studied in image adaptation [184, 206, 149, 210].

The main rationale is using knowledge distillation [64] from a source pre-

trained network to pseudo-annotate target samples. In the context of 3D

detection, SF-UDA3D [155] addresses Source-Free UDA (SF-UDA) by fol-

lowing a self-training pipeline. To improve target pseudo-labels, authors

introduce scale transformations and motion coherency. Scale transforma-

tions are also used in ST3D [215] and ST3D++ [216] during source pre-

training. Then, ST3D [215] iteratively improves pseudo-labels with triplet

box partition, memory ensemble and voting, and curriculum data augmen-

tations. ST3D++ [216] improves over ST3D by denoising pseudo-labels

with quality-aware partitioning. Other approaches introduce multi-level

consistency in a teacher-student self-training pipeline [109] or a contrastive

loss on BEV features during co-training [222].

Mixing-based approaches follow the advances in image segmentation [206,

124], and introduce mixup strategies [229, 230] for domain adaptation in

3D object detection [25, 198]. In [25], authors argue class balance to be

one of the main domain shift causes. To solve this issue, they propose

ReDB, a UDA method that involves a filtering mechanism for cleaning

pseudo-labels and a mixing strategy for balancing classes in the target do-

main. Similarly, SSDA3D [198] reduces domain shift in the SSDA settings

by introducing an inter- and intra-domain mixing strategy, targeting class

balance and domain-agnostic features. Another research branch studies the

domain shifts induced by adverse weather conditions. SPG [211] tackles

UDA by recovering the lost foreground points with a semantic point gen-

eration network. Similarly, Hahnet et al. [61] introduce the first snowfall

LiDAR simulator, enhancing robustness to snowfall weather conditions.

36



CHAPTER 2. STATE OF THE ART 2.1. RELATED WORK

Table 2.1: Overview of existing methods for unsupervised (UDA), semi-supervised

(SSDA), and source-free online unsupervised (SF-OUDA) adaptation in point cloud seg-

mentation. For each approach, we report the sensor setup (Setup), the architecture (Input

data type and Model), and the source and target datasets. Then, we classify the adapta-

tion strategy into mixup based, adversarial learning based, alignment based, generative

based, self-training based, and auxiliary task based. Furthermore, we report whether the

implementation (Code) is publicly available.

Method Setup
Architecture Datasets Settings Adaptation

Code
Input data Model Source Target UDA SSDA SF-OUDA Mixup Adv. Align. Gen. Self-train. Aux. task

RayCast [90] real-to-real RV RangeNet++ [120] Sem.KITTI [9] nuSc. [15] ✓ ✓ ✓

ePointDA [235] synth-to-real RV SqueezeSegV2 [204] GTA-V [204]
KITTI [1]

✓ ✓ ✓ ✓
Sem.KITTI [9]

SqueezeSegV2 [204] synth-to-real RV SqueezeSegV2 [204] GTA-V [204] KITTI [1] ✓ ✓ ✓

Gated [142]

synth-to-real

RV SalsaNext [30]

GTA-V [204]
KITTI [1]

✓ ✓ ✓
real-to-real

nuSc. [15]

KITTI [1] nuSc. [15]

xMUDA [74] real-to-real 2D&3D xMUDA [74]

nuSc. [15] nuSc.[15]

✓ ✓ ✓ ✓KITTI [51] KITTI [51]

A2D2 [52] A2D2 [52]

Cross-modal [73] 2D&3D xMUDA [74]

nuSc. [15]

✓ ✓ ✓ ✓ ✓

real-to-real v.KITTI [14] nuSc. [15]

synth-to-real A2D2 [52] Sem.KITTI [9]

Sem.KITTI [9] Waymo [172]

Waymo [172]

Complete&Label [221] real-to-real 3D SparseConv [57]

KITTI [1] KITTI [1]

✓ ✓Waymo [172] Waymo [172]

nuSc. [15] nuSc. [15]

PCT [208] synth-to-real 3D Minkowski [27] SynLiDAR [208]
Sem.KITTI [9]

✓ ✓ ✓ ✓
Sem.POSS [126]

CoSMix-UDA [153] synth-to-real 3D Minkowski [27] SynLiDAR [208]
Sem.KITTI [9]

✓ ✓ ✓ ✓
Sem.POSS [126]

CoSMix [152]

real-to-real

3D Minkowski [27]

SynLiDAR [208] Sem.KITTI [9]

✓ ✓ ✓ ✓ ✓synth-to-real Sem.KITTI [9] Sem.POSS [126]

nuSc. [15]

PolarMix [207] synth-to-real 3D
SPVCNN [175]

SynLiDAR [208]
Sem.KITTI [9]

✓ ✓ ✓ ✓
Minkowski [27] Sem.POSS [126]

SALUDA [119]

synth-to-real

3D Minkowski [27]

SynLiDAR [208] SemKITTI [9]

✓ ✓ ✓ ✓real-to-real nuSc. [15] Sem.POSS [126]

nuSc. [15]

GIPSO [154] synth-to-real 3D Minkowski [27]
SynLiDAR [208] SemKITTI [9]

✓ ✓ ✓
Synth4D [154] nuSc. [15]
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Chapter 3

Setting 1&2: Semi-supervised and

unsupervised target

In this chapter, we explore the first and second settings for handling do-

main shift in point clouds, specifically, ”Setting 1: Semi-supervised target”

and ”Setting 2: Unsupervised target.” Both settings aim to mitigate do-

main shift in 3D point cloud segmentation, with learning guided by the

source domain supervision. However, they differ in terms of the level of

supervision available for the target domain. This chapter introduces the

first framework to address domain shift in both these settings. This frame-

work consists of two versions of the same novel method. The first version

is designed to handle domain shift with an unsupervised target, while the

second version incorporates a single, one-shot, user-annotated target sam-

ple.

3.1 Compositional Semantic Mix for Domain Adap-

tation in Point Cloud Segmentation

LiDAR is currently the most suitable sensor for capturing accurate 3D

measurements of an environment for autonomous driving [94] and robotic

navigation [241]. Semantic scene understanding is a crucial component for
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Figure 3.1: CoSMix applied to source and target data. Given (labeled) source and

(pseudo-labeled) target data, we select domain-specific patches with semantic informa-

tion to be mixed across domains. The resulting mixed data are a compositional semantic

mix between the two domains, mixing source supervision in the target domain and target

self-supervision (object and scene structure) in the source domain. Augmentations are

applied at both local and global levels.

AI-based perception systems [100]. LiDAR measurements can be analyzed

as 3D point clouds, with point cloud semantic segmentation used to assign

a finite set of semantic labels to the 3D points [27]. To train accurate

deep learning models, large-scale datasets with point-level annotations are

necessary [9, 126, 15]. This involves a costly and labor-intensive data

collection process, as point clouds need to be captured in the real world

and manually annotated. An alternative is to use synthetic data, which

can be conveniently generated with simulators [31]. However, deep neural

networks suffer from domain shift when trained and tested on data from

different domains [31]. Although simulators can reproduce the acquisition

sensor with high fidelity, further research is still required to address such

domain shift [208].

Data augmentation techniques based on combining samples and their
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labels, such as Mixup [229] or CutMix [226], have been proposed to enhance

deep network generalization. The underlying concept involves mixing sam-

ples to expand the training set and reduce overfitting. These methods

were initially applied to image classification tasks and later adapted for do-

main adaptation and domain generalization in image recognition [210, 111].

Similar ideas have also been successfully extended to 2D semantic seg-

mentation [184, 49]. While Unsupervised Domain Adaptation (UDA) for

semantic segmentation in the image domain has been extensively stud-

ied [195, 49, 184, 245, 246], less attention has been devoted to developing

adaptation techniques for point cloud segmentation. Point cloud UDA can

be addressed in the input space [208, 235] with dropout rendering [235] or

adversarial networks [208], or in the feature space through feature align-

ment [204]. A few studies have proposed exploiting sample mixing for point

cloud data [123, 244], but they target different applications than UDA for

semantic segmentation.

In this chapter, we introduce a novel UDA and SSDA framework for

3D LiDAR segmentation, named CoSMix, which can mitigate the domain

shift by creating two new intermediate domains of composite point clouds

obtained by applying a novel mixing strategy at the input level (Fig. 3.1).

CoSMix is designed to mitigate the domain shift by mixing semantically-

informed groups of points (patches) across domains. Specifically, we design

a two-branch symmetric deep neural network pipeline that concurrently

processes point clouds from a source domain (e.g., synthetic or real) and

point clouds from a target domain (e.g., real or real but captured with a

different sensor). Target point clouds can be either unlabeled or partially

labeled if one wants to use CoSMix for UDA or SSDA, respectively. Each

branch is domain specific, i.e., the source branch is in charge of mixing

a source point cloud with selected patches of a target point cloud, and

vice versa for the target branch. We formulate mixing as a composition
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operation, similar to the concatenation operation proposed in [123, 244],

but unlike them, we leverage the semantic information to mix domains.

Patches from the source point cloud are selected based on the semantic

labels of their points. Patches from the target point cloud can be selected

based on the predicted semantic pseudo-labels in the case of UDA and

based on human annotations in the case of SSDA. We will show that only a

handful of manually annotated points can significantly improve the domain

adaptation performance. When patches are mixed across domains, we

apply data augmentation both at local and global semantic levels to boost

the efficacy of the mixing. An additional key difference between our method

and [123, 244] is the teacher-student learning scheme that we implement

to improve the accuracy of the pseudo-labels. We evaluate CoSMix on

large-scale point cloud segmentation benchmarks, featuring both synthetic

and real-world data in several directions, such as synthetic to real and

real to real. Specifically, we use the following datasets: SynLiDAR [208],

SemanticPOSS [126], SemanticKITTI [9], and nuScenes [15]. Our results

show that CoSMix can reduce the domain shift, outperforming state-of-

the-art methods in both UDA and SSDA settings. We perform detailed

analyses of CoSMix and an ablation study of each component, highlighting

its strengths and discussing its limitations.

Our main contributions can be summarised as follows:

• We introduce a novel scheme for mixing point clouds by leveraging

semantic information and data augmentation.

• We show that the proposed mixing strategy can be used for reducing

the domain shift and design CoSMix, the first adaptation framework

for 3D LiDAR semantic segmentation based on point cloud mixing.

• We extend the original CoSMix to tackle the SSDA setup, allowing

a user to input a few annotated points to significantly improve the
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semantic segmentation performance on the target domain.

• We conduct extensive experiments on large-scale point cloud segmen-

tation benchmarks, featuring synthetic and real-world data in several

directions, such as synthetic to real and real to real. Our results

demonstrate the effectiveness of CoSMix, which outperforms state-of-

the-art methods.

3.1.1 Method

Preliminaries and definitions

CoSMix implements a teacher-student learning scheme that exploits the

supervision from the source domain, the self-supervision from the target

domain and, if available, the supervision from a few labeled target samples

to improve the semantic segmentation on the target domain. Our method

is trained on two different mixed point cloud sets. The first is the com-

position of the source point cloud with pseudo-labeled portions of points,

or patches, of the unlabeled target point cloud. Target patches bring the

target modality into the source domain, making the altered source domain

more similar to the target domain. The second is the composition of the

unlabeled target point cloud with randomly selected patches of the source

point cloud. Source patches make the altered target domain more similar

to the source domain, preventing overfitting from noisy pseudo-labels. If

available, labeled points of the target point clouds can also be used in both

the mixed point cloud sets. This target supervision can further reduce

domain shift. The teacher-student learning scheme iteratively improves

pseudo labels, progressively reducing the domain gap. Fig. 3.2 illustrates

the block diagram of CoSMix.

Let S = {(X s,Ys)} be the source dataset that is composed of N s = |S|
labeled point clouds, where X s is a point cloud and Ys is its point-level
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Figure 3.2: Block diagram of CoSMix detailing the UDA and SSDA settings. The UDA

setting uses the top and bottom branches (red line). The SSDA setting also uses the

middle branch in addition to those used in UDA (gray line). In the top branch, the input

source point cloud X s is mixed with the unsupervised target point cloud X t
U obtaining

X t→s. In the bottom branch, the input target point cloud X t
U is mixed with the source

point cloud X s obtaining X s→t. In the SSDA setting, the labeled target data X t
L is

mixed with the source point cloud X s and with the unsupervised target point cloud X t
U.

A teacher-student learning architecture is used in both the UDA and SSDA settings to

improve pseudo-label accuracy while adapting over the target domain.

labels, and |.| is the cardinality of a set. Labels take values from a set of

semantic classes C = {c}, where c is a semantic class. Let TU = {X t
U} be the

unlabeled target dataset composed of N t
U = |TU| unlabeled point clouds.

Let TL = {(X t
L,Y t

L)} be the semi-supervised set of N t
L = |TL| labeled target

point clouds with N t
L ≪ N t

U.

On the upper branch, the source point cloud X s is mixed with selected

patches of the target point cloud X t
U and selected patches of the supervised

point cloud X t
L when available. The unlabeled target patches from X t

U are

subsets of points that correspond to the most confident pseudo-labels Ŷ t
U
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that the teacher network produces during training. The supervised target

patches are subsets of points that are randomly selected based on the class

frequency distribution in the source training set. On the lower branch,

the target point cloud X t
U is mixed with the selected patches of the source

point cloud X s and with the selected patches of X t
L, if available. The

source patches are subsets of points that are randomly selected based on

their class frequency distribution in the training set.

We define the branch that mixes target point cloud patches to the source

point cloud as t → s and the branch that does the vice versa as s → t.

Let X t→s be the mixed point cloud obtained from the upper branch, and

X s→t be the mixed point cloud obtained from the lower branch. Lastly,

let Φθ and Φθ′ be the student and teacher deep networks with learnable

parameters θ and θ′, respectively.

Semantic selection

To train the student networks with balanced data, we perform a selection

of reliable and informative point cloud patches prior to mixing points and

labels across domains. To select patches from the source point cloud, we

use the class frequency distribution by counting the number of points of

each semantic class within S. Unlike DSP [49], which selects long-tail

classes in advance, we exploit the source distribution and the semantic

classes available to dynamically sample classes at each iteration.

Let P s
Y be the class frequency distribution of S. We create a function

f that randomly selects a subset of classes at each iteration based on the

labels Ỹs ⊂ Ys. f performs a weighted random sampling of α classes from

the input point cloud by using 1 − P s
Y as the class weight for each class.

α is a hyperparameter that regulates the ratio of selected classes for each

point cloud. The output of f is a set of point-level labels belonging to the

sampled classes, i.e., Ỹs. The likelihood that f selects a class c is inversely
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proportional to its class frequency in S. Formally we have

Ỹs = f(Ys, 1 − P s
Y , α). (3.1)

Example: with α = 0.5, the algorithm selects a number of patches corre-

sponding to 50% of the available classes, i.e., long-tailed classes are selected

with a higher likelihood.

Let X̃ s be the set of points that correspond to Ỹs, and let X̃ s
c ⊂ X̃ s

be a patch (set of points) that belongs to class c ∈ C. To select patches

from the target point clouds, we apply the same set of operations but use

the pseudo-labels produced by the teacher network based on their predic-

tion confidence. Specifically, we define a function g that selects reliable

pseudo-labels based on their confidence value. The selected pseudo-labels

are defined as

Ỹ t
U = g(Φθ′(X t

U), ζ), (3.2)

where Φθ′ is the teacher network, ζ is the confidence threshold used by the

function g and Ỹ t
U ⊂ Ŷ t

U.

Let X̃ t
U be the set of points that correspond to Ỹ t

U.

In the case of target supervision, we apply f to the target labels Y t
L and

randomly select target patches as

Ỹ t
L = f(Y t

L, 1 − P s
Y , µ), (3.3)

where µ is a hyperparameter that regulates the ratio of selected classes for

each point cloud similarly to α.

Compositional mix

Our compositional mixing module aims to create mixed point clouds based

on the selected semantic patches. The compositional mix involves three

consecutive operations: local random augmentation, where patches are aug-

mented randomly and independently from each other; concatenation, where
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the augmented patches are concatenated to the point cloud of the other do-

main to create the mixed point cloud; global random augmentation, where

the mixed point cloud is randomly augmented. This module is applied

twice, once for the t → s branch (top of Fig. 3.2), where target patches are

mixed within the source point cloud, and once for the s → t branch (bot-

tom of Fig. 3.2), where source patches are mixed within the target point

cloud. Unlike Mix3D [123], our mixing strategy embeds data augmentation

at the local level and global level.

Let δ be the indicator function that we define as

δ(TL) =

1 if TL ̸= ∅
0 otherwise,

(3.4)

which indicates whether the supervised target set TL is empty or not. This

can be interpreted as the user desire or need to use additional target su-

pervision.

In the s → t branch, we apply the local random augmentation h to all

the points X̃ s
c ⊂ X̃ s. We repeat this operation for all c ∈ Ỹs. Note that h

is a local and random augmentation that produces a different result each

time it is applied to a set of points. We define the result of this operation

as

h(X̃ s) =
{
h(X̃ s

c ),∀c ∈ Ỹs
}
. (3.5)

If δ(TL) = 1 we can apply h also to X̃ t
L and obtain

h(X̃ t
L) =

{
h(X̃ t

L),∀c ∈ Ỹ t
L

}
. (3.6)

Then, we concatenate the locally augmented patches with the target

point cloud X t
L and we apply the global random augmentation, such as

X s→t =


r(h(X̃ s) ∪ h(X̃ t

L) ∪ X t
U) if δ(TL) = 1,

r(h(X̃ s) ∪ X t
U) otherwise

(3.7)
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Their respective labels are concatenated accordingly as

Ys→t =


r(h(Ỹs) ∪ h(Ỹ t

L) ∪ Y t
U) if δ(TL) = 1,

r(h(Ỹs) ∪ Y t
U) otherwise,

(3.8)

where r is the global augmentation function.

The same operations of Eq. 3.7-3.8 are also performed in the t → s

branch by mixing target patches within the source point cloud. Instead of

using source labels, we use the teacher network to generate pseudo-labels

from the target data. Additionally, we use target supervision if δ(TL) =

1. Then, we concatenate them with the labels of the source data. This

results in X t→s and Y t→s. Note that TL may be used without compositional

mix and without double branched mixing. We implement h and r by

using typical augmentation strategies for point clouds [27], i.e., random

rotation, scaling, and translation. We report additional information in the

Implementation Details.

Network update

We leverage the teacher-student learning scheme to facilitate the transfer of

knowledge acquired during the course of the training with mixed domains.

We use the teacher network Φθ′ to produce target pseudo-labels Ŷ t
U for the

student network Φθ, and train Φθ to segment target point clouds by using

the mixed point clouds X s→t and X t→s based on their mixed labels and

pseudo-labels.

At each batch iteration, we update the student parameters Φθ to mini-

mize a total objective loss Ltot defined as

Ltot = Ls→t + Lt→s, (3.9)
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where Ls→t and Lt→s are the s → t and t → s branch losses, respectively.

Given X s→t and Ys→t, we define the segmentation loss for the s → t branch

as

Ls→t = Lseg(Φθ(X s→t),Ys→t), (3.10)

the objective of which is to minimize the segmentation error over X s→t,

thus learning to segment source patches in the target domain. Similarly,

given X t→s and Y t→s, we define the segmentation loss for the t → s branch

as

Lt→s = Lseg(Φθ(X t→s),Y t→s), (3.11)

whose objective is to minimize the segmentation error over X t→s where

target patches are composed with source data. We implement Lseg as the

Dice segmentation loss [71], which we found effective for the segmentation

of large-scale point clouds as it can cope with long-tail classes well.

Lastly, we update the teacher parameters θ′ every γ iterations following

the exponential moving average (EMA)[177] approach

θ′i = βθ′i−1 + (1 − β)θ, (3.12)

where i indicates the training iteration and β is a smoothing coefficient

hyperparamenter.

3.1.2 Experiments

We evaluate our method in both synthetic-to-real and real-to-real UDA

and SSDA settings. We use SynLiDAR [208] as synthetic dataset, and

SemanticKITTI [9, 51, 1], SemanticPOSS [126], and nuScenes [15] as real-

world datasets. We compare CoSMix with five state-of-the-art UDA meth-

ods: two general purpose adaptation methods (ADDA [185], Ent-Min [191]),

one image segmentation method (ST [246]), and two point cloud segmen-

tation methods (PCT [208], ST-PCT [208]). Then, we compare CoSMix
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with five state-of-the-art SSDA methods: three general purpose adapta-

tion methods (MMD [185], MME [150], APE [81]), and two point cloud

segmentation methods (PCT [208], APE-PCT [208]). We refer to CoSMix-

UDA and CoSMix-SSDA to indicate the version of CoSMix for UDA and

SSDA, respectively. We use CoSMix to refer to our method in general

otherwise. PCT, ST-PCT and APE-PCT are the only three state-of-the-

art methods developed for 360◦ LiDAR point clouds and have only been

applied for synthetic-to-real UDA and SSDA settings. We re-implemented

the comparison methods and adapted them to the same backbone network

as that of CoSMix. We refer to these methods as EntMin⋆ [191], ST⋆ [246],

MME⋆ [150], MMD⋆ [185], Source⋆, Target⋆ and Fine-tuned⋆. Moreover,

we extended EntMin [191] and ST [246] to the SSDA setting, and refer to

them as EntMin-SSDA⋆ and ST-SSDA⋆. For completeness, we also include

the results of these methods as they are reported in [208].

Datasets and metrics

SynLiDAR [208] is a large-scale synthetic dataset that is created with the

Unreal Engine [44]. It is composed of 198,396 annotated point clouds with

32 semantic classes. We use 19,840 point clouds for training and 1,976

point clouds for validation [208].

SemanticPOSS [126] is composed of 2,988 annotated real-world point clouds

with 14 semantic classes. We use the sequence 03 for validation and the re-

maining sequences for training [126]. For the SSDA settings, we follow [208]

and use the point cloud 172 of sequence 02 as the semi-supervised target

set.

SemanticKITTI [9] is a large-scale segmentation dataset consisting of Li-

DAR acquisitions of the popular KITTI dataset [51, 1]. It is composed

of 43,552 annotated real-world point clouds with more than 19 semantic

classes. We use sequence 08 for validation and the remaining sequences
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for training [9]. For the SSDA settings, we follow [208] and use the point

cloud 848 from sequence 06 and the point cloud 940 from sequence 02 as

semi-supervised target set.

nuScenes [15] is a large-scale segmentation dataset. It is composed of real-

world 850 sequences (700 for training and 150 for validation), for a total of

34, 000 annotated point clouds with 32 semantic classes. We use the official

training and validation splits in all our experiments. For the SSDA settings,

we follow the same selection protocol used in [208] and use the point cloud

with token n015-2018-07-24-11-13-19+0800 LIDAR TOP 1532402013

197655 as semi-supervised target set. We make source and target labels

compatible across our datasets, i.e., SynLiDAR → SemanticPOSS, Syn-

LiDAR → SemanticKITTI and, Semantic KITTI → nuScenes. In Syn-

LiDAR → SemanticPOSS and SynLiDAR → SemanticKITTI, we follow

[208] and map labels into 14 segmentation classes and 19 segmentation

classes, respectively. In SemanticKITTI → nuScenes, we map source and

target labels into 7 common segmentation classes as in [154]. We evaluate

the semantic segmentation performance before and after domain adapta-

tion [208] by using the Intersection over the Union (IoU) [138] for each

segmentation class and report the per-class IoU. We average the IoU over

all the segmented classes and report the mean Intersection over the Union

(mIoU).

Implementation details

We implemented CoSMix in PyTorch and ran our experiments on 4 NVIDIA

A100 (40GB SXM4). We use MinkowskiNet as our point cloud segmen-

tation network [27]. In particular, we use MinkUNet32 as in [208]. We

pre-train our network on the source domain with Dice loss [71] starting

from randomly initialized weights. In SSDA, we start from the pre-trained

source model and finetune on both source and labeled target for two ad-
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ditional epochs. The finetuned model is used as pre-trained model in

semi-supervised settings. In UDA, we initialize student and teacher net-

works with the parameters obtained after pre-training. The pre-training

and adaptation stages share the same hyperparameters. In both the pre-

training and adaptation steps, we use Stochastic Gradient Descent with a

learning rate of 0.001.

We set the value of α by examining the long-tailed classes present in

the source domain during the adaptation process. Similarly, we set the

parameter µ to the same value. We assign the values of α and µ based

on our prior experience rather than optimizing these parameters through a

systematic process. In the target semantic selection function g, we establish

the value of ζ based on a qualitative assessment of a few target frames, with

the aim of producing spatially compact predictions. This approach yields

approximately 80% of pseudo-labeled points per scene.

On SynLiDAR → SemanticPOSS, we use a batch size of 12 and perform

adaptation for 10 epochs. We set source and supervised target semantic

selection (f) with α = 0.5 and µ = 0.5 while we set target semantic

selection (g) with a confidence threshold ζ = 0.85. On SynLiDAR →
SemanticKITTI, we use a batch size of 16, adapting for 3 epochs. During

source and supervised target semantic selection (f), we set α = 0.5 and µ =

0.5, while in target semantic selection (g), we use a confidence threshold of

ζ = 0.90. We use these last same hyperparameters also on SemanticKITTI

→ nuScenes and SynLiDAR → nuScenes.

Our local augmentations h and global augmentations r are based on

data augmentation strategies that are typical in the LiDAR segmentation

literature [27]. h involves rigid rotation around the z-axis, scaling along

all the axes and random point downsampling. We remove xy rotation

to produce co-planar and concentric mixed point clouds, and to preserve

point ranges. For the same reason, we remove rigid translations. We
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Table 3.1: Unsupervised adaptation results on SynLiDAR → SemanticPOSS. We denote

our reproduced baselines and results with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond

to the model trained on the source synthetic dataset (lower bound) and on the target real

dataset (upper bound), respectively. Results are reported in terms of mean Intersection

over the Union (mIoU).
Model pers. rider car trunk plants traf. pole garb. buil. cone. fence bike grou. mIoU

Source 3.7 25.1 12.0 10.8 53.4 0.0 19.4 12.9 49.1 3.1 20.3 0.0 59.6 20.7

Source⋆ 21.7 20.1 9.7 3.4 56.8 4.8 24.1 6.1 39.9 0.3 15.3 5.3 73.4 21.6

Target⋆ 61.8 54.7 33.0 19.3 73.9 26.7 30.9 11.0 71.3 32.5 44.6 43.2 78.5 44.7

ADDA [185] 27.5 35.1 18.8 12.4 53.4 2.8 27.0 12.2 64.7 1.3 6.3 6.8 55.3 24.9

Ent-Min [191] 24.2 32.2 21.4 18.9 61.0 2.5 36.3 8.3 56.7 3.1 5.3 4.8 57.1 25.5

Ent-Min⋆ [191] 24.8 28.0 13.4 4.1 59.6 2.0 23.3 5.8 47.0 0.0 16.1 5.8 71.6 23.2

ST [246] 23.5 31.8 22.0 18.9 63.2 1.9 41.6 13.5 58.2 1.0 9.1 6.8 60.3 27.1

ST⋆ [246] 47.7 42.6 24.4 13.8 62.5 3.3 36.1 23.5 50.9 18.8 14.6 4.0 68.9 31.6

PCT [208] 13.0 35.4 13.7 10.2 53.1 1.4 23.8 12.7 52.9 0.8 13.7 1.1 66.2 22.9

ST-PCT [208] 28.9 34.8 27.8 18.6 63.7 4.9 41.0 16.6 64.1 1.6 12.1 6.6 63.9 29.6

CoSMix-UDA 55.8 51.4 36.2 23.5 71.3 22.5 34.2 28.9 66.2 20.4 24.9 10.6 78.7 40.4

bound rotations between [−π/2, π/2] and scaling between [0.95, 1.05], and

perform random downsampling for 50% of the patch points. r involves

rigid rotation, translation, and scaling along all three axes. We set the

parameters of r the same as those used in [27]. During the network update

step, we update the teacher parameters θ′i with β = 0.99. On SynLiDAR

→ SemanticPOSS, we set γ = 1 and do not perform parameter tuning. On

SynLiDAR → SemanticKITTI, we increase γ to γ = 500 to obtain a stable

teacher behavior, i.e., stable source performance, high average confidence

of pseudo-labels, and ∼ 80% of pseudo-labeled points. We use these same

hyperparameters also on SemanticKITTI → nuScenes, and SynLiDAR →
nuScenes.

Quantitative comparisons for UDA

Synthetic-to-real. Tabs. 3.1&3.2 report the results in the UDA settings on

SynLiDAR → SemanticPOSS, and on SynLiDAR → SemanticKITTI, re-

spectively. The Source⋆ model is the lower bound of each scenario with

21.6 mIoU on SynLiDAR → SemanticPOSS and 23.8 mIoU on SynLiDAR
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Table 3.2: Unsupervised adaptation results on SynLiDAR → SemanticKITTI. We denote

our reproduced baselines and results with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond

to the model trained on the source synthetic dataset (lower bound) and on the target real

dataset (upper bound), respectively. Results are reported in terms of mean Intersection

over the Union (mIoU).
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Source 42.0 5.0 4.8 0.4 2.5 12.4 43.3 1.8 48.7 4.5 31.0 0.0 18.6 11.5 60.2 30.0 48.3 19.3 3.0 20.4

Source⋆ 60.7 1.9 22.0 10.3 8.0 16.7 11.3 20.3 70.4 6.4 40.4 0.0 25.6 8.6 59.5 18.4 29.1 29.0 13.9 23.8

Target⋆ 90.0 6.3 20.3 63.0 18.1 31.1 39.6 5.8 90.9 29.0 74.7 4.0 85.4 23.3 83.9 46.2 62.2 40.7 20.6 44.0

ADDA [185] 52.5 4.5 11.9 0.3 3.9 9.4 27.9 0.5 52.8 4.9 27.4 0.0 61.0 17.0 57.4 34.5 42.9 23.2 4.5 23.0

Ent-Min [191] 58.3 5.1 14.3 0.3 1.8 14.3 44.5 0.5 50.4 4.3 34.8 0.0 48.3 19.7 67.5 34.8 52.0 33.0 6.1 25.8

Ent-Min⋆ [191] 63.8 8.5 23.0 15.9 5.0 17.2 33.3 22.8 61.6 3.1 34.4 0.2 52.2 6.2 63.3 16.9 19.9 27.5 9.4 25.5

ST [246] 62.0 5.0 12.4 1.3 9.2 16.7 44.2 0.4 53.0 2.5 28.4 0.0 57.1 18.7 69.8 35.0 48.7 32.5 6.9 26.5

ST⋆ [246] 69.7 6.4 18.3 4.4 5.8 14.8 23.3 20.2 54.2 5.3 34.1 0.1 44.3 5.1 63.5 16.8 26.9 30.6 12.2 24.0

PCT [208] 53.4 5.4 7.4 0.8 10.9 12.0 43.2 0.3 50.8 3.7 29.4 0.0 48.0 10.4 68.2 33.1 40.0 29.5 6.9 23.9

ST-PCT [208] 70.8 7.3 13.1 1.9 8.4 12.6 44.0 0.6 56.4 4.5 31.8 0.0 66.7 23.7 73.3 34.6 48.4 39.4 11.7 28.9

CoSMix-UDA 75.1 6.8 29.4 27.1 11.1 22.1 25.0 24.7 79.3 14.9 46.7 0.1 53.4 13.0 67.7 31.4 32.1 37.9 13.4 32.2

→ SemanticKITTI. The Target⋆ model is the upper bound of each scenario

with 44.7 mIoU on SynLiDAR → SemanticPOSS and 44.0 mIoU on Syn-

LiDAR → SemanticKITTI. Note that Source⋆ models always outperform

Source. This may be due to a better parameter choice that leads an im-

proved generalization ability. In SynLiDAR → SemanticPOSS (Tab. 3.1),

CoSMix-UDA outperforms the other methods on all the classes, except on

pole where ST achieves a better result. On average, we achieve 40.4 mIoU,

surpassing ST-PCT by +10.8 mIoU and improving over the Source⋆ of

+18.8 mIoU. CoSMix-UDA improves also on difficult classes as person,

traffic-sign, cone, and bike, whose performance are rather low before do-

main adaptation. ST⋆ and EntMin⋆ improve over Source⋆. ST⋆ improves

over ST while EntMin⋆ achieves lower performance. Tab. 3.2 reports the

results of SynLiDAR → SemanticKITTI. SemanticKITTI is challenging as

the validation sequence includes a wide range of different scenarios with a

large number of semantic classes. CoSMix-UDA improves all the classes

when compared to Source⋆, except for traffic-cone. We believe this is due

to the noise introduced by the pseudo labels on these classes and in related
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Table 3.3: Unsupervised adaptation results on SemanticKITTI → nuScenes. We denote

our reproduced baselines and results with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond

to the model trained on the source real dataset (lower bound) and on the target real

dataset (upper bound), respectively. Results are reported in terms of mean Intersection

over the Union (mIoU).
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Source⋆ 29.4 15.6 73.2 29.1 14.7 58.5 59.9 40.1

Target⋆ 35.8 43.2 93.6 62.1 49.0 76.4 73.9 62.0

EntMin⋆[191] 33.3 12.6 78.3 35.7 18.4 63.1 62.4 43.4

ST⋆[246] 30.6 20.6 79.1 34.4 18.9 62.4 59.3 43.6

CoSMix-UDA 32.1 26.3 78.1 35.1 20.2 66.4 65.2 46.2

classes such as road. CoSMix-UDA improves on 10 out of 19 classes, with

a large margin in the classes car, motorcycle, truck, person, road, parking

and sidewalk. On average, we achieve state-of-the-art performance with

a 32.2 mIoU, outperforming ST-PCT by +3.3 mIoU and improving over

Source⋆ of about +8.4 mIoU.

Real-to-real. Tab. 3.3 reports the results on SemanticKITTI → nuScenes

in the UDA setting. SemanticKITTI → nuScenes is a more challenging

direction as source and target sensors are different, and nuScenes has rather

sparse point clouds. Source⋆ and Target⋆ models achieve 40.1 mIoU and

62.0 mIoU, respectively. CoSMix-UDA outperforms the compared methods

on 4 out of 7 classes, with the largest margin on the class person. On

average, EntMin⋆ and ST⋆ achieve 43.4 mIoU and 43.6 mIoU, showing a

limited improvement over Source⋆. CoSMix-UDA achieves the best results

of 46.2 mIoU, outperforming all the compared methods.

Quantitative comparison for SSDA

Synthetic-to-real. Tabs. 3.4&3.5 report the results in the SSDA settings

on SynLiDAR → SemanticPOSS, and on SynLiDAR → SemanticKITTI,
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respectively. Source⋆ and Target⋆ models are the lower and upper bound

of the UDA settings. The Fine-tuned⋆ model is obtained by fine-tuning

Source⋆ with the semi-supervised target samples. It shows the highest

possible bound without any adaptation approach. Fine-tuned⋆ always

outperforms Fine-tuned from [208]. Similarly, the discrepancy between

MMD⋆ and MME⋆, and the results reported in [208] may be due to a

different parameter choice. In SynLiDAR → SemanticPOSS (Tab. 3.4),

CoSMix-SSDA outperforms all the comparison methods on all the classes,

except on plants, fence and bike where MME and MME⋆ achieve better

results. On average, we reach 41.0 mIoU, outperforming APE-PCT by

+9.8 mIoU and improving over Source⋆ by +19.4 and over Fine-tuned⋆ by

+15.5. Compared to CoSMix-UDA, CoSMix-SSDA achieves a +0.6 mIoU,

getting closer to the Target upper bound. In SynLiDAR → SemanticKITTI

(Tab. 3.5), CoSMix-SSDA brings a significant improvement on 12 out 19,

especially on car, truck, motorcyclist, road, parking, and pole. On average,

CoSMix-SSDA achieves 34.3 mIoU, outperforming the best baseline APE-

PCT by +7.3 mIoU and improving over Source⋆ of +10.5 mIoU and over

Fine-tuned⋆ of +9.8 mIoU. Compared to our UDA pipeline, CoSMix-SSDA

improves by +2.1 mIoU, showing that the additional target supervision is

beneficial for further reducing the domain gap.

Real-to-real. Tab. 3.6 reports the results on SemanticKITTI → nuScenes

in the SSDA settings. Source⋆ and Target⋆ models achieve 40.1 mIoU and

62.0 mIoU, respectively. The Fine-tuned⋆ model improves over Source⋆ and

achieves 43.5 mIoU. CoSMix-SSDA achieves the best results on 3 out of 7

classes, with the largest margin on the class pedestrian. On average, MMD⋆

is the best performing method among the comparison methods with 47.0

mIoU. CoSMix-SSDA achieves 48.9 mIoU, outperforms all the comparison

methods, and further improves over CoSMix-UDA.
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Table 3.4: Semi-supervised adaptation results on SynLiDAR → SemanticPOSS. We de-

note our reproduced baselines and results with ⋆, e.g., Source⋆. Source⋆ and Target⋆

correspond to the model trained on the source synthetic dataset (lower bound) and on

the target real dataset (upper bound), respectively. Results are reported in terms of mean

Intersection over the Union (mIoU).
Model pers. rider car trunk plants traf. pole garb. buil. cone. fence bike grou. mIoU

Source 3.7 25.1 12.0 10.8 53.4 0.0 19.4 12.9 49.1 3.1 20.3 0.0 59.6 20.7

Source⋆ 21.7 20.1 9.7 3.4 56.8 4.8 24.1 6.1 39.9 0.3 15.3 5.3 73.4 21.6

Fine-tuned 25.2 36.1 18.2 12.8 58.6 1.7 30.5 5.6 25.7 3.0 12.0 10.6 75.6 24.3

Fine-tuned⋆ 25.2 27.2 21.6 9.6 60.4 0.7 16.2 10.8 44.5 12.0 24.1 2.5 76.7 25.5

Target⋆ 61.8 54.7 33.0 19.3 73.9 26.7 30.9 11.0 71.3 32.5 44.6 43.2 78.5 44.7

MMD [185] 25.5 35.7 28.9 6.7 64.3 1.7 23.2 5.6 53.3 3.3 30.2 13.9 70.4 27.9

MMD⋆[185] 28.1 12.2 18.8 11.4 71.5 10.0 14.7 0.0 64.6 0.0 28.1 25.1 78.6 27.9

MME [150] 33.2 40.2 25.0 11.0 61.9 0.4 31.2 7.3 56.1 5.7 37.1 6.7 71.2 29.8

MME⋆[150] 35.8 16.1 21.4 7.9 73.7 7.9 24.2 1.5 67.6 0.0 32.8 32.0 77.0 30.6

APE [81] 34.3 40.1 21.5 16.3 62.6 0.9 31.1 2.3 55.9 13.3 34.3 9.6 71.6 30.3

EntMin-SSDA⋆ 24.7 9.4 16.5 10.7 69.9 6.7 11.7 0.0 62.6 0.0 25.2 22.5 78.9 26.1

ST-SSDA⋆ 40.1 24.3 22.5 7.9 70.2 13.4 21.7 1.4 66.9 0.1 34.7 32.0 78.1 31.8

PCT [208] 25.8 36.8 27.8 11.3 62.2 1.9 31.2 5.2 58.7 2.6 34.3 8.5 68.7 28.8

APE-PCT [208] 34.7 36.3 27.2 15.8 62.9 0.8 31.6 8.7 62.3 9.8 35.1 9.3 70.9 31.2

CoSMix-SSDA 54.9 50.6 33.4 22.5 73.0 13.6 38.4 26.4 68.5 16.2 29.6 27.4 79.0 41.0

Qualitative results

Fig. 3.3 shows some domain adaptation results on SynLiDAR → Semantic-

POSS. Predictions of Source⋆ are often incorrect. CoSMix-UDA improves

the segmentation results with more homogeneous regions and correctly

assigned classes, and CoSMix-SSDA further improves the segmentation

quality. Fig. 3.4 shows the results on SynLiDAR → SemanticKITTI that

follows the same result pattern as in Fig. 3.3. Some classes (e.g., car,

vegetation, pole) greatly improve when CoSMix-SSDA is used. An evident

increment of performance can be observed from Source⋆ to CoSMix-UDA to

CoSMix-SSDA in both the studied domains. Although the limited amount

of target supervision used in CoSMix-SSDA, these experiments show evi-

dence of the benefits of our SSDA method.
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Table 3.5: Semi-supervised adaptation results on SynLiDAR → SemanticKITTI. We

denote our reproduced baselines and results with ⋆, e.g., Source⋆. Source⋆ and Target⋆

correspond to the model trained on the source synthetic dataset (lower bound) and on the

target real dataset (upper bound), respectively. Results are reported in terms of mean

Intersection over the Union (mIoU).
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Source 42.0 5.0 4.8 0.4 2.5 12.4 43.3 1.8 48.7 4.5 31.0 0.0 18.6 11.5 60.2 30.0 48.3 19.3 3.0 20.4

Source⋆ 60.7 1.9 22.0 10.3 8.0 16.7 11.3 20.3 70.4 6.4 40.4 0.0 25.6 8.6 59.5 18.4 29.1 29.0 13.9 23.8

Fine-tuned 56.2 3.0 15.1 1.0 5.0 20.2 42.1 2.8 52.1 0.7 19.8 0.0 41.3 5.8 62.1 34.0 42.0 24.6 1.4 22.6

Fine-tuned⋆ 61.8 2.8 21.7 10.8 4.2 14.5 18.0 15.9 65.6 6.4 40.2 0.0 34.2 7.0 60.6 22.1 39.8 32.2 8.4 24.5

Target⋆ 90.0 6.3 20.3 63.0 18.1 31.1 39.6 5.8 90.9 29.0 74.7 4.0 85.4 23.3 83.9 46.2 62.2 40.7 20.6 44.0

MMD [185] 56.4 3.3 13.3 1.5 6.1 21.4 34.6 1.6 54.3 0.4 21.4 0.0 50.2 5.8 61.2 37.0 44.9 31.6 2.2 23.5

MMD⋆[185] 46.5 3.2 6.3 12.1 3.3 8.8 21.7 13.4 47.2 4.6 29.9 0.0 50.6 5.9 62.2 16.2 23.3 19.4 4.7 20.0

MME [150] 51.0 5.6 13.1 1.3 7.3 15.1 54.4 4.4 43.1 0.2 28.3 0.0 60.7 13.3 66.1 30.1 39.9 24.8 6.6 24.5

MME⋆[150] 28.7 0.2 1.0 1.8 0.9 2.0 1.6 3.5 53.6 1.8 31.1 0.0 40.6 7.2 57.6 12.1 26.7 14.4 0.1 15.0

APE [81] 58.6 6.2 16.6 3.1 11.3 14.2 35.8 3.7 61.5 1.7 30.3 0.0 54.7 15.4 64.6 20.0 45.5 23.9 9.1 25.1

EntMin-SSDA⋆ 52.0 2.6 7.8 10.3 3.5 8.4 20.9 13.2 42.1 3.5 31.2 0.0 44.1 5.8 62.5 15.2 22.7 18.2 5.8 19.5

ST-SSDA⋆ 60.0 2.8 10.6 14.6 5.0 10.4 19.2 20.8 63.9 4.5 35.7 0.1 43.4 7.1 62.2 13.3 26.9 24.8 10.4 22.9

PCT [208] 56.0 7.0 17.1 2.8 9.9 23.7 43.7 5.6 55.3 0.8 22.9 0.0 50.1 8.4 65.3 23.1 43.5 28.8 7.5 24.8

APE-PCT [208] 58.1 7.3 17.8 2.6 13.9 24.7 46.5 5.1 60.5 1.9 31.3 0.0 56.8 14.6 67.9 23.7 44.3 26.1 9.3 27.0

CoSMix-SSDA 76.9 10.4 27.1 23.1 13.4 24.0 21.7 27.9 75.8 17.9 49.7 0.1 60.3 14.7 69.8 36.8 40.9 45.6 16.2 34.3

3.1.3 Ablation study

We investigate the performance of CoSMix in its UDA and SSDA variants

using the SynLiDAR → SemanticPOSS setup. The first three experiments

are designed to study CoSMix in the UDA setting. Firstly, we analyze

CoSMix-UDA components. Secondly, we compare our mixing approach

with three recent point cloud mixing strategies, namely, Mix3D [123],

PointCutMix [230] and PolarMix [207]. Then, we investigate the robust-

ness of CoSMix to noisy pseudo-labels by changing the confidence threshold

ζ and with different pre-trained models. In the last experiment, we ana-

lyze CoSMix in the SSDA setting, comparing our semi-supervised mixing

approach with three variations of our approach.
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Table 3.6: Semi-supervised adaptation results on SemanticKITTI → nuScenes. We denote

our reproduced baselines and results with ⋆, e.g., Source⋆. Source⋆ and Target⋆ correspond

to the model trained on the source real dataset (lower bound) and on the target real

dataset (upper bound), respectively. Results are reported in terms of mean Intersection

over the Union (mIoU).

Model ca
r

p
e
rs
.

ro
a
d

si
d
e
.

te
rr
.

m
a
n
m
.

v
e
g
e
.

mIoU

Source⋆ 29.4 15.6 73.2 29.1 14.7 58.5 59.9 40.1

Fine-tuned⋆ 47.0 22.9 75.1 28.6 15.3 61.8 53.7 43.5

Target⋆ 35.8 43.2 93.6 62.1 49.0 76.4 73.9 62.0

MMD⋆ [185] 38.3 14.1 83.2 32.4 33.9 63.7 63.2 47.0

MME⋆ [150] 41.0 9.5 83.9 31.7 32.9 63.3 57.8 45.7

EntMin-SSDA⋆ 31.8 13.6 81.8 35.5 30.7 66.2 65.7 46.5

ST-SSDA⋆ 44.9 13.9 71.9 22.6 34.1 68.0 67.7 46.2

CoSMix-SSDA 45.3 26.9 80.1 34.5 20.8 68.0 67.0 48.9

Method components

We analyze CoSMix by organizing its components into three groups: mix-

ing strategies (mix ), augmentations (augs), and other components (oth-

ers). In the mix group, we assess the importance of the mixing strategies

used in our compositional mix after semantic selection. In the augs group,

we assess the importance of the local h and global r augmentations used

in the compositional mix. In the others group, we assess the importance

of the mean teacher update (β) and of the long-tail weighted sampling

f . When the t → s branch is active, also the pseudo-label filtering g is

utilized, while when f is not active, α = 0.5 source classes are selected

randomly. With different combinations of components, we obtain different

versions of CoSMix, which we name CoSMix (a-h). The complete version

of our method is named Full, where all the components are activated. The

Source⋆ performance is also added as a reference for the lower bound. See

Tab. 3.7 for the definition of these different versions.

When the t → s branch is used, CoSMix (a) achieves an initial 31.6
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Source⋆ CoSMix-UDA CoSMix-SSDA GT

Figure 3.3: Results on SynLiDAR → SemanticPOSS. Source⋆ predictions are often wrong

and mingled in the same region. After adaptation, CoSMix-UDA and CoSMix-SSDA

improve segmentation with homogeneous predictions and correctly assigned classes. The

red circles highlight regions with interesting results.

mIoU, showing that the t → s branch provides a significant adaptation

contribution over the Source⋆. When we also use the s → t branch and

the mean teacher β, CoSMix (b-d) further improve performance, achieving

a 35.4 mIoU. By introducing local and global augmentations in CoSMix

(e-h), we can improve performance up to 39.1 mIoU. The best performance

of 40.4 mIoU is achieved with CoSMix Full where all the components are

activated.

Point cloud mix

We compare CoSMix with Mix3D [123], PointCutMix [230], and PolarMix

[207] to show the effectiveness of the different mixing designs. As per our

knowledge, Mix3D and PolarMix are the only mixup strategies designed

for 3D semantic segmentation, while PointCutMix and PolarMix are the

only strategies for mixing portions of different point clouds. We implement
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Source⋆ CoSMix-UDA CoSMix-SSDA GT

Figure 3.4: Results on SynLIDAR → SemanticKITTI. Source⋆ predictions are often wrong

and mingled in the same region. After adaptation, CoSMix-UDA and CoSMix-SSDA

improve segmentation with homogeneous predictions and correctly assigned classes. The

red circles highlight regions with interesting results.

Mix3D and PointCutMix based on authors descriptions: we concatenate

point clouds (random crops for PointCutMix) of the two domains, i.e., X s

and X t, as well as their labels and pseudo-labels, i.e., Ys and Ŷ t, respec-

tively. PolarMix [207] uses our same experimental settings and backbone

therefore, we consider the results reported in their manuscript. We refer to

these mixing strategies as Mix3D⋆, PointCutMix⋆, and PolarMix†. CoSMix

double is our two-branch network with sample mixing. We deactivate the

weighted sampling and the mean teacher update for a fair comparison. We

keep local and global augmentations activated.

Fig. 3.6a shows that Mix3D⋆ outperforms the Source⋆ model, achieving

28.5 mIoU, followed by PolarMix† which achieves 30.4 mIoU. PointCutMix⋆

reaches 31.6 mIoU, outperforming the previous strategies. When we use

the t → s branch alone, we can achieve 32.9 mIoU and when we use the

s → t branch alone, CoSMix can further improve the results, achieving
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Table 3.7: Ablation study of the CoSMix components: mixing strategy (t → s and s → t),

compositional mix augmentations (local h and global r), mean teacher update (β) and,

weighted class selection in semantic selection (f). Each combination is named with a

different version (a-h). Source⋆ performance are added as lower bound and highlighted in

gray to facilitate the reading.

CoSMix mix augs others

version t → s s → t h r β f mIoU

Source⋆ - - - - - - 21.6

(a) ✓ 31.6

(b) ✓ ✓ 31.9

(c) ✓ ✓ 35.0

(d) ✓ ✓ ✓ 35.4

(e) ✓ ✓ ✓ ✓ 36.8

(f) ✓ ✓ ✓ ✓ 37.3

(g) ✓ ✓ ✓ ✓ ✓ 39.0

(h) ✓ ✓ ✓ ✓ ✓ 39.1

Full ✓ ✓ ✓ ✓ ✓ ✓ 40.4

34.8 mIoU. This shows that the supervision from the source to the target

is effective for adaptation on the target domain. When we use the con-

tribution from both branches simultaneously, CoSMix achieves the best

result with 38.9 mIoU.

Robustness to noisy pseudo-labels

We investigate the robustness of CoSMix to increasingly noisier pseudo-

labels. Firstly, we study the effect of different confidence thresholds ζ.

Secondly, we evaluate different versions of pre-trained models that we use

for generating pseudo-labels.

Confidence threshold. We study the importance of setting the correct con-

fidence threshold ζ for pseudo-label distillation in g. We repeat the experi-

ments with a confidence threshold from 0.65 to 0.95 and report the obtained

adaptation performance in Fig. 3.6b. CoSMix is robust to noisy pseudo-
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labels reaching a 40.2 mIoU with the low threshold of 0.65. The best

adaptation performance of 40.4 mIoU is achieved with a confidence thresh-

old of 0.85. By using a high confidence threshold of 0.95, performance is

affected reaching 39.2 mIoU. With this configuration, too few pseudo-labels

are selected to provide an effective contribution for the adaptation.

Model pre-training. We quantify the robustness of CoSMix and ST⋆ [246]

in response to pseudo-labels generated with different pre-trained models on

SynLiDAR and tested on SemanticPOSS. In this experiment, we only uti-

lize ST⋆ as it is the sole method from those we benchmarked that is based

on pseudo-labels. We denote the pre-trained model as P⋆. Fig. 3.5 displays

its performance at different epochs: (a) 1, (b) 2, (c) 4, and (d) 9. Unlike

CoSMix, ST⋆ proves sensitive to pseudo-labels as it underperforms P⋆ in

three out of the four cases. A plausible explanation for this is that ST⋆ re-

fines the pre-trained model using filtered pseudo-labels during adaptation,

depending on the quality of pseudo-labels. This dependency may cause

ST⋆ to drift during the adaptation process, thus impacting performance.

Differently, CoSMix blends source and target (pseudo) labels, producing

two intermediate domains with mixed labels. In the mixed point clouds,

pseudo-labels are integrated with (noise-free) source labels (t → s) or noise-

free selections (s → t), thus mitigating the negative effects of noisy and

imprecise regions. Furthermore, applying a teacher-based approach allows

us to rely on progressively more precise pseudo-labels, thereby minimizing

undesirable drift effects.

Mixing target supervision

We compare CoSMix-SSDA to three alternative mixing strategies: naive,

sup → s and sup → t. In Fig. 3.6c, we name each strategy as CoSMix-

SSDA (a-c). In version CoSMix-SSDA (a), we apply CoSMix-UDA with-

out mixing TL in X s→t and X t→s. Dice segmentation loss is applied sep-
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Figure 3.5: Adaptation results on SynLiDAR→SemanticPOSS with different pre-trained

models. We compare the adaptation results of CoSMix (Ours) with ST⋆ starting from

different initialization points (P⋆) indicated with (a-d).

arately on TL and averaged with our total objective loss in Eq. 3.9. In

the single branch mixing with source point clouds (sup → s) and with

target point clouds (sup → t), versions (b-c), we apply only the upper or

lower branch of CoSMix-SSDA, respectively. Full is our proposed double

branched CoSMix-SSDA.

CoSMix-SSDA (a) approach reaches 33.7 mIoU, which shows that tra-

ditional training by using labeled target points as is leads to inferior per-

formance than using our SSDA approach. Both the single branch mixing

strategies achieve better performance with 38.9 mIoU and 40.5 mIoU for

sup → s and sup → t, respectively. Version (b) shows that the mixed tar-

get modality with noise-free annotations helps in reducing the domain shift.

Version (c) suggests that the addition of target noise-free labels helps us

achieve higher performance. However, both the single branch approaches

are not sufficient to outperform the Full mixing strategy.
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Source? Mix3D? PolarMix†
PointCutMix?

CoSMix t→ s
CoSMix s→ t

CoSMix double

15

20

25

30

35

40

m
Io

U

21.6

28.5
30.4

31.6
32.9

34.8

38.9

a) b) c)

0.65 0.75 0.85 0.95
Confidence threshold ζ

39.0

39.5

40.0

40.5

41.0

m
Io

U

40.2 40.2

40.4

39.2

Source? naive(a) sup→s (b) sup→t (c) Target?

20

25

30

35

40

m
Io

U

21.6

33.7

38.9
40.5 41.0

Figure 3.6: a) Comparison of the adaptation performance with different point cloud mix

up strategies. Compared to the recent mixing strategies Mix3D [123], PointCutMix [230]

and PolarMix [207], our mixing strategy and its variations achieve superior performance.

b) Comparison of the adaptation performance on confidence threshold values. Adaptation

results show that ζ should be set to achieve a trade-off between pseudo-label correctness

and object completeness. c) Comparison of the SSDA performance with different mixing

strategies: optimization without mix (naive), single branch mixing with source point

clouds (sup → s), single branch mixing with unsupervised target point clouds (sup → t).

Each variation is named with a different version (a-c). In all the experiments, Source⋆

and Target⋆ performance is the lower and upper bound.
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Chapter 4

Setting 3: Unavailable source

This chapter explores the third setting, ”Setting 3: Unavailable source”.

Similar to the previous, the main objective remains mitigating domain

shift on an unlabeled target domain. However, the additional challenge is

the absence of the source domain after model pre-training. This translates

into addressing domain shift solely under the guidance of the target domain

and under the learned task of a pre-trained model. Within this chapter,

we introduce the first source-free adaptation method tailored for 3D ob-

ject detection in LiDAR point clouds. This setting is of practical interest

since pre-trained perception models are readily available online. However,

acquiring source data often entails difficulties related to retrieval, storage,

and concerns about security and privacy.

4.1 SF-UDA3D: Source-free unsupervised domain

adaptation for LiDAR-based 3D object detection

LiDAR is one of the key sensors for the longer-term autonomy of cars [72].

It is a native 3D sensor, which reads up to hundreds of meters, provid-

ing point clouds. Further to the proliferation of LiDAR companies, the

efficacy of LiDAR is proven by the fact that LiDAR-only-based detectors
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Source model

Source data Source annotations

Target annotationsTarget data
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Adaptation

Supervised DA

SF-UDA 3D

Source model

Target data

Target model

Scale 
and 

detect
Scoring Pseudo-

annotation Fine-tuning

Adaptation

Figure 4.1: Existing supervised DA methods for LiDAR-based 3D detection [196] require

both source and target data and annotations to adapt a pre-trained deep model to a target

domain. Differently, leveraging on pseudo-annotations, reversible scale-transformations

and motion coherency, SF-UDA3D adapts a pre-trained source network by using only

unlabeled target data.

are robust and accurate [214, 166, 34, 88] and provide state-of-the-art per-

formance, currently held by PointRCNN [166]. LiDAR-based detectors,

however, are prone to domain shift issues that may be more serious than

for their RGB counterparts [196]. As in the RGB case, domain shift may

be due to environmental changes (e.g., data collected in different cities and

weather conditions) or to appearance variations of specific objects (e.g., car

shapes and sizes may vary among different countries). Additionally, the

performance of LiDAR-based models significantly depends on the density

of the LiDAR point cloud, spatial resolution, and ranges.

To address this problem, in this chapter, we propose SF-UDA3D, the
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first Source-Free Unsupervised Domain Adaptation framework for LiDAR-

based 3D detection. The proposed technique features the case where the

3D detector is applied, e.g., in a different country, with differences in the

local cars and roads, as well as to imagery acquired with different LiDAR

sensors. Our approach is an unsupervised DA method because it does not

require any annotation in the target domain, and it is source-free because

we assume that only the 3D detector trained on source data is available,

while we do not have access to the source annotations and data (see Fig.

4.1). Both aspects are novel. To the best of our knowledge, despite its

practical relevance, the problem of building LiDAR-based 3D detectors

which are robust to domain shift has only recently been addressed in [196].

However, the method proposed in [196] assumes the availability of both

source and target domain data and annotations. In this section, we argue

that this assumption is rarely satisfied in many real-world applications,

where we may have only access to a pre-trained detector and it may be

hard or even impossible to acquire target data annotations.

SF-UDA3D considers the PointRCNN [166] architecture and is based

on the pseudo-annotation of the target unlabelled dataset by means of re-

versible scale-transformations and motion coherency. In detail, SF-UDA3D

annotates the unlabelled target data at multiple scales by a PointRCNN

model pre-trained on the unavailable source dataset. Then, it assesses

the quality of the annotations by scoring the resulting detection tracks

by means of an unsupervised coherency metric (Mean Volume Variation).

Subsequently, it reverses the scale-transformations, aggregates the best de-

tection labels by confidence, and finally fine-tunes Point RCNN. In spite

of its simplicity, SF-UDA3D surpasses in performance state-of-the-art do-

main adaptation methods for 3D object detection, which require target

data annotations or annotation statistics [196]. Our algorithm also out-

performs previous source-free general purpose unsupervised domain adap-
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tation methods [102] by 30%. Overall, we fill in 66% of the gap between

the source and target 3D detector when adapting from nuScenes to KITTI

and 30% in the much harder case of KITTI to nuScenes.

To summarize, our main contributions are as follows:

• We propose to study a novel problem, i.e., how to build LiDAR-based

3D detectors robust to domain shift when (i) we do not have access to

source data and annotations and only a source pre-trained model is

available, and (ii) no annotations are provided in the target domain,

i.e., we are in an unsupervised domain adaptation setting.

• We propose SF-UDA3D, a novel approach for source-free unsuper-

vised domain adaptation that empowers the state-of-the-art PointR-

CNN [166] architecture by means of pseudo-annotations, reversible

scale-transformations, and motion coherency.

• We evaluate the proposed SF-UDA3D against relevant approaches

and we show that our method outperforms both previous source-free

feature-based domain adaptation methods [102] and, notably, state-

of-the-art adaptation approaches for LiDAR-based 3D detection, al-

though they additionally use few-shot target annotations or target

annotation statistics [196].

4.1.1 Method

In this section, we introduce a four-stage pipeline for adaptation, detailed in

the next sections and illustrated in Fig. 4.2. Firstly, we introduce the pre-

liminary definitions. Then, the following sections introduce our proposed

approach, named SF-UDA3D, which foresees four consecutive steps: scale

and detect, scale scoring with temporal consistency, pseudo-annotation,

and fine-tuning.
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ỸT

Pseudo- 
annotations

XT

ΦS

ΦT

3
Pseudo-annotation

2
Scoring

1
Scale and detect

ΦSXT

ΦS

ω−1

ω−1

˜Y ω1
T

˜Y ωL
T

Target 
data ω1

Ω

ωL

f (ω1)

f (ωL)

˜Y ωl
T

Tracker

ℒ

Figure 4.2: Overview of the SF-UDA3D pipeline. Given a scaling solution space Ω, in the

first step, detections over target sequences are obtained by scaling input data by ω and

by re-scaling predictions by 1/ω. Next, time consistency of each sequence is used through

a tracker to score each solution. During the third stage, scores are used to identify the

best scaling interval W ∗, and pseudo-annotations are obtained over multiple iterations

with the same procedure of step one and are merged through NMS. Finally, we obtain the

target adapted model ΦT by fine-tuning the source model over target data and pseudo-

annotations.

Preliminaries and definitions

Given a 3D detection model ΦS trained on a source dataset XS = {xnS}1<n<N

with source annotations YS = {ynS}1<n<N , the goal of UDA in 3D detection

is to obtain a target adapted 3D detector ΦT by exploiting a target dataset

XT = {xmT }1<m<M without ground-truth annotations YT = {ymT }1<m<M .

In this work, we consider the challenging scenario of Source-Free Unsu-

pervised Domain Adaptation (SF-UDA), where the source data XS , the

source annotations YS and the target annotations YT are not available at

adaption time, namely, when training the target model ΦT . When the Li-

DAR sensors differ across source and target domains, the geometries of the

point clouds are different. Assume that the source and target point clouds

are sampled by respective generating probability distributions P (X ), i.e.,

P (XS) ̸= P (XT ). We illustrate in Sec. 4.1.2 that this is especially the
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case for point could densities in the nuScenes [15] and KITTI [51] datasets

considered in this work. When the source and target datasets are acquired

across different domains, e.g., countries, the ground-truth annotations also

differ, e.g., since the shapes of cars are also different. Assuming that anno-

tations are sampled from generating probability distributions, these would

differ, i.e., P (YS) ̸= P (YT ). This is the case of the nuScenes [15] and

KITTI [51] datasets, acquired respectively in USA/Singapore and Ger-

many. The same discrepancy should be reflected in the 3D detector out-

put spaces, trained to mimic the ground-truth annotations. In this work,

we propose to align the annotation-scale distributions P (YS) and P (YT )

by scale-transformation parameters, which we estimate by temporal co-

herency. Furthermore, we account for the misalignment of the point cloud

distributions P (XS) and P (XT ) by fine-tuning the source model ΦS on the

pseudo-annotated target point cloud.

Scale and detect

In the Scale-and-detect stage, we consider a set of L scaling parameters Ω =

[ω1, ..., ωL] where each ωl = (ωx, ωy, ωz) ∈ R+3 parametrizes the scaling

transformation along the 3D axes. To specify Ω, we use a regular grid over

the intervals centered around 1: [1 − ϵ, 1 + ϵ]3 with ϵ > 0. For each ωl,

we generate a transformed version of the dataset X ωl

T by re-scaling each

sample in XT . Then, we employ the source object detector ΦS on every

sample of X ωl

T obtaining detections Ỹωl

T . Finally, to have detections Ỹωl

T
in the original target 3D space, we re-scale the detections by multiplying

the position and dimension values by (1/ωx, 1/ωy, 1/ωz). Besides, we note

that this re-scaling step is required to obtain detections in the same 3D

space and to allow a fair temporal consistency comparison. In all our

experiments, we employ the PointRCNN detector [166] since it recently

obtained state-of-the-art performance in object detection benchmarks.
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Scale scoring with temporal consistency

To identify the quality of the estimated detections Ỹωl

T , we leverage the

temporal consistency of detections between sequential frames (see Fig.

4.3). We propose to use a tracker and to evaluate the stability of its

prediction to score the detection quality. More specifically, we run a state-

of-the-art tracking-by-detection pipeline [202]. For a given sequence V , we

assume to obtain J tracks. Considering the tracked object with the index

j < J , its track can be defined as lists of Tj consecutive bounding-boxes

Bj = [btj , ..., btj+Tj
], where tj denotes the frame index where the object

appears, and each bt is the 3D bounding-box dimensions and locations at

time t. Inspired by [209], we employ the Mean Volume Variation (MVV)

between consecutive detections as scoring function:

MV V (V ) =
1

J

J∑
j=1

√√√√∑tj+Tj

t=tj (vtj − v̄j)2

Tj − 1
(4.1)

where vtj is the bounding box volume of the j-th track at time t and v̄j

is the mean volume of the bounding boxes in Bj. Assuming an optimal

detector and rigid objects, the intuition behind this scoring function is that

the bounding-box volume would be constant. Therefore, a good detector

would predict detections with a stable volume leading to a small MVV

value. Importantly, we observed that tracks that last less than 5 frames

may be false positives, and therefore, we propose to treat these tracks

differently. More precisely, we introduce a penalty term H∗ in the MVV

score for every sequence without tracks longer than 5 frames. Our robust

version of the MVV score can be written as:

MV V ∗(V ) =

MV V (V ), J ̸= 0

H∗, if no tracks
(4.2)
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Finally, as previously mentioned, we are interested in scoring each scal-

ing solution over all the target training sequences, therefore we consider

as the scoring function f(ωi) for ωi the mean of MV V ∗ over all the target

sequences.

ω*
ω*

ω1

ω2

ω2
ω1

t1

t2

t3

Figure 4.3: Given multiple possible scales ω, SF-UDA3D selects the best ω∗ as the one

generating the most time consistent detections.

Pseudo-annotation and fine-tuning

Once each scaling parameter in Ω is scored, we proceed with Pseudo-

annotation. In a first single-scale (SS ) approach, we only consider the

scaling parameter corresponding to the lowest MVV∗, i.e., the best scale,

referred to as ω∗ (see Fig. 4.3). In this approach, the detections Ỹω∗
T

at scale ω∗ from the first stage of our pipeline are considered as pseudo-

annotations. We confirm in Sec. 4.1.2 that the identified best scale provides

the best single-scale results. We also propose a multi-scale (MS ) approach,

which combines the top-K best scaling parameters to improve the pseudo-

annotations. We name Ω∗ this set of best scales, and we use it to determine

the best scaling interval W ∗ = W ∗
x ×W ∗

y ×W ∗
z , as follows:

∀a ∈ [x, y, z],W ∗
a = [min

ω∈Ω∗
(ωa),max

ω∈Ω∗
(ωa)] (4.3)
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Given W ∗, for every frame of the target dataset, we sample a random ω

in W ∗. The point cloud is scaled using ω. Then, we use the source model

ΦS to obtain 3D detections. Finally, we re-scale the predictions with 1/ω

similarly to the scale-and-detect stage, to obtain bounding boxes in the

original point-cloud space.

Sampling scales is repeated several times, and the resulting 3D detec-

tions are collected and aggregated by non-maximal-suppression (NMS),

yielding the final pseudo-labels ỸT . Sampling the scales multiple times

is beneficial, possibly for two reasons: (i) cars within a point cloud oc-

cur at multiple scales, and multiple sampling may find more of them; (ii)

PointRCNN randomly sub-samples the input point cloud to obtain a con-

stant number of input points and having multiple scale samples ensures

more robustness against this randomness. Note that PointRCNN provides

detections with confidence scores, which we find beneficial to threshold

increasingly from low to high values. In other words, at early steps, we

use a low threshold to increase recall and include also low confidence de-

tections. Later, we raise the threshold and only consider detections with

a higher confidence. Finally, we merge pseudo-annotations from different

steps through NMS and fine-tune the source model ΦS by using ỸT as

annotations.

4.1.2 Experiments

In this section, we present the experimental evaluation of SF-UDA3D on

two modern large-scale benchmarks of KITTI [51, 1] and nuScenes [15]

against state-of-the-art methods, albeit none of them is source-free and

unsupervised. Then, we conduct a thorough ablation study of the proposed

framework. In the following, we introduce benchmarks and metrics.
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Table 4.1: Datasets overview. Each dataset is acquired using sensors with different res-

olutions and numbers of channels. While nuScenes uses the original maximum depth,

KITTI provides pre-filtered LiDAR data with a maximum depth of 70 m.

Dataset Samples Max depth Sensor Channels Resolution Mean points Classes

KITTI [51] 15k 70 m HDL64E 64 0.08◦ × 0.4◦ 16384 8

nuScenes [15] 34k 100 m HDL32E 32 0.08◦ × 1.33◦ 3808 23

Datasets

The KITTI object detection benchmark dataset [51, 1] has been acquired

in Karlsruhe, Germany, and is composed of 7481 training images, divided

into 3712 training samples, 3769 validation samples, and 7518 test images.

The nuScenes dataset [15], acquired in Boston (USA) and Singapore, is

∼ 2.3 times larger, composed of 1000 driving sequences, for a total of 34149

images, divided into 28130 training samples and 6019 validation samples

(which we treat as test samples), and it has both LiDAR scans and RGB

images. The datasets differ under three main aspects:

• Sensors. Different sensors were used for data acquisition, as summa-

rized in Tab. 4.1. These sensors sample points differently in terms of

density (i.e., number of points), temporal frequency, spatial resolu-

tions and ranges. Fig. 4.4 illustrates example differences, which affect

the performances of the 3D object detectors.

• Environmental conditions. Being acquired in diverse countries, the

datasets depict objects of different shapes and sizes. Cars, which we

target in this work, change much in these two aspects due to the

differences between Germany and USA.

• Dataset pre-processing. The authors of the datasets made different

choices for data collection, annotation, and filtering. For instance, in

KITTI, only objects within 70m are annotated, while in nuScenes ob-

jects up to 100m have ground truth annotations. Another difference
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a) KITTI [1] b) nuScenes [15]

Figure 4.4: Example of cars from the KITTI and nuScenes datasets.

is the range where objects are annotated. Indeed, in KITTI, only ob-

jects visible in the front camera view are annotated, while in nuScenes

also objects are annotated in the entire 360◦ surrounding space. In

all our experiments, we consider the points which are visible from the

frontal RGB-camera viewpoint (e.g., the CAM-FRONT in nuScenes

and the rectified camera space for KITTI).

Metrics

For KITTI, we adopt the official metrics of [51, 1] and the classification

into easy/moderate/hard detections, according to the visibility of the ob-

jects. In more detail, we report the Average Precision (AP) over the 3D

Intersection over the union (IoU) with an IoU threshold of 0.7. The final

average (Avg) AP is obtained by averaging over the three difficulty cate-

gories.

For nuScenes, we consider the official metrics [15]. In our experiments, we

consider the center-based definition of AP as used in the official nuScenes

benchmark [15] and report both the AP at each of the four different dis-

tance thresholds of [0.5, 1.0, 2.0, 4.0] meters and the final average (Avg)

over the four thresholds.
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Implementation details

Our method is implemented in PyTorch, building upon the publicly-available

PointRCNN 3D detector. For training and evaluating our method, we ran

all our experiments on a DGX-1 server (8 Nvidia Tesla V-100 GPUs) and on

a Lambda Blade server (8 NVidia Quadro RTX 6000 GPUs). The source

training is performed with the ADAM optimization algorithm and one-

cycle policy for 200 and 70 epochs for the RPN and RCNN, respectively,

with a batch size of 64 and 32, respectively, and with a maximum learning

rate of 0.02 as in [166]. Similarly, during the target fine-tuning we keep the

same training setup with the only difference that we train the RPN for 100

epochs with a maximum learning rate of 0.002. During the scale search, we

use a grid size parameter ϵ = 0.3, and we employ a stride s = 0.075 along

each axis. We thus obtain a solution space of dimension of L = 125. As

for the tracking-by-detection module, we use the publicly-available code

of [202] and change the tracker hyper-parameters as follows: both the

initialization and death thresholds are set to 2 matched detections and

missed detections, respectively. Finally, regarding the pseudo-annotation

procedure, we annotate four times the target dataset for each confidence

threshold in the list [0.05, 0.1, 0.2, 0.3] and use an NMS IoU threshold of

0.1 to merge pseudo-annotations.

Comparison with the state-of-the-art

Our work is the first to tackle SF-UDA for 3D detection. For the sake

of evaluation against state-of-the-art methods, we still compare with the

following methods:

• AdaBN [102]: This is a state-of-the-art UDA method originally pro-

posed for the classification tasks. We chose it because it is one of the

few to operate in the source-free setting, differently from most previ-
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ous approaches in UDA [31, 146, 18]. Here, we adapted AdaBN to

the detection task by updating the batch normalization (BN) source-

model mean and variance statistics of the PointRCNN features to the

target validation set.

• Few-Shot (FS) fine-tuning [196]: This method proposes to adapt the

detector to the target domain by fine-tuning on a set of 10 randomly

sampled annotated target data. Following [196], we ran it 5 times and

reported the average performance.

• Output Transformation (OT) [196]: This is a weakly-supervised DA

technique. It uses average sizes of objects in both the source and

target domain to transform the predictions of the source model at

test time over to the target data.

We compare SF-UDA3D in both the single-scale (SS) and top-K multi-

scale (MS-K) approaches. We consider two settings: (i) nuScenes as source

and KITTI as target (nuScenes→KITTI) and (ii) KITTI as source and

nuScenes as target (KITTI→nuScenes). In order to be comparable with

the literature on 3D object detection, we performed the experiments in the

nuScenes→KITTI setting by using the same split as in [166] and in the

KITTI→nuScenes setting by using the official nuScenes splits [15]. Note

that in [196], results are evaluated on different data splits which are not

the official ones.

The results on the nuScenes→KITTI task are reported in Tab. 4.2; those

on the KITTI→nuScenes are shown in Tab. 4.3. In both cases, SF-UDA3D

outperforms both OS [196] and FS [196], although both of them use infor-

mation from the target domain annotations. Analyzing the performance of

different variations of our method, we observe that in the nuScenes→KITTI

task (Tab. 4.2), the MS-3 version of SF-UDA3D is the best-performing

method, gaining a +0.08 Avg-AP over SF-UDA3D (SS). Similarly, in the
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Figure 4.5: Before (top) and after (bottom) adaptation on nuScenes → KITTI. After

adaptation with MS-3, performance improves and more objects are detected.

KITTI→nuScenes task (Tab. 4.3) SF-UDA3D (MS-5) leads to an improve-

ment of +0.019 Avg-AP compared to SF-UDA3D (SS). These results con-

firm the effectiveness of our scale-based pseudo-annotation approach and

the importance of the combination of the top-K solutions in the annotation

procedure. Notably, AdaBN [102] is not effective on either the adaptation

tasks. This may indicate that geometry-based methods are better suited

than feature-based methods for 3D LiDAR-based detection adaptation and

that features may need more sophisticated DA approaches. Additionally,

to provide further insights on the results of Tab. 4.2 and Tab. 4.3, we

also report and discuss the scaling parameters automatically selected by

our method. Considering experiments on the nuScenes→KITTI task, SF-

UDA3D (SS) estimates the parameters [1.30, 1.30, 1.15] along the axis X,Y

and Z, respectively, showing that KITTI data have to be upscaled along
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Table 4.2: Adaptation results: nuScenes→KITTI

Method Easy Moderate Hard Avg-AP

Source 0.273 0.196 0.188 0.219

AdaBN [102] 0.277 0.200 0.188 0.222

OT [196] 0.199 0.166 0.153 0.173

FS [196] 0.506 0.436 0.396 0.446

SF-UDA3D (SS) 0.589 0.414 0.388 0.464

SF-UDA3D (MS-3) 0.688 0.498 0.450 0.545

SF-UDA3D (MS-5) 0.657 0.479 0.427 0.521

Target 0.873 0.769 0.760 0.801

each axis to better match with nuScenes data. Similarly, SF-UDA3D (MS-

3) provides an indication in the upscaling direction and selects the scale

parameters within the intervals [1.15, 1.30] along X, [1.15, 1.30] along Y and

[1.15, 1.30] along Z. Conversely, for the more challenging KITTI→nuScenes

setting, SF-UDA3D (SS) computes the scaling parameters [0.85, 0.70, 1.00],

indicating that nuScenes objects point clouds should be downscaled along

X and Y while keeping the original dimension along Z. Also the scale pa-

rameters adopted by the best performer SF-UDA3D (MS-5) indicate down-

sampling for adaptation, by the ranges [0.85, 1.15] along X, [0.70, 0.85]

along Y and [0.85, 1.00] along Z. Here the model finds the wider range in

X beneficial. Note that, in all of the above cases, the selected scales along

the three axes are different. So further to scaling, SF-UDA3D implicitly

learns to change the aspect ratios for domain adaptation.

4.1.3 Ablation studies

Here we present the results of the ablation on each component of our

method.

Scaling parameters. We investigate the importance of the scaling param-

eters in the single-scale (SS) setup of SF-UDA3D during the pseudo -

annotation phase. We consider the nuScenes→KITTI task and compare
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Table 4.3: Adaptation results: KITTI→nuScenes

Method AP-0.5 AP-1.0 AP-2.0 AP-4.0 Avg-AP

Source 0.143 0.208 0.224 0.234 0.202

AdaBN [102] 0.144 0.208 0.224 0.234 0.203

OT [196] 0.124 0.202 0.224 0.233 0.196

FS [196] 0.170 0.211 0.235 0.250 0.216

SF-UDA3D (SS) 0.136 0.260 0.290 0.308 0.249

SF-UDA3D (MS-3) 0.203 0.266 0.290 0.308 0.267

SF-UDA3D (MS-5) 0.211 0.264 0.288 0.307 0.268

Target 0.370 0.422 0.440 0.455 0.422

our results with three baselines:

• No score: we remove from SF-UDA3D the temporal-coherence tracking-

based scores. This results in the random sampling of ω in the range

[0.7, 1.3] along each axis during the pseudo-annotation phase and quan-

tifies the mere scale-augmentation.

• No scale: we remove from SF-UDA3D the scale-transformations al-

together. So the target dataset is simply pseudo-annotated by the

source model as is.

• Supervised scale (Sup-scale): we make the single-scale SF-UDA3D

weakly-supervised by providing it with the ground-truth scale differ-

ences between the target and source average object sizes.

Tab. 4.4 reports the results of our evaluation, comparing different scaling

methods in terms of Avg-AP and reporting the selected scales. We observe

from Tab 4.4 that No scale is a poor adaptation strategy, probably because

there is a significant average scale difference between KITTI and nuScenes.

Among the three ablation variants, No score is the worst, a bit surprisingly.

While data augmentation is mostly a positive tool, here it shows that

it is important to augment at the relevant scales, which we determine

by tracking. Sup-scale respects the intuition and is slightly above our
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Table 4.4: Ablation results: different scaling parameters.

Method
Selected Scale

Avg-AP
X Y Z

No scale 1.00 1.00 1.00 0.306

No score [0.70, 1.30] [0.70, 1.30] [0.70, 1.30] 0.223

SS 1.30 1.30 1.15 0.464

Sup-scale 1.18 1.09 1.16 0.499

single-scale (SS) SF-UDA3D, since knowing the ground truth is important.

However, the improvement is marginal, which confirms that the estimation

of scale-transformation parameters is effective.

Scale selection metric

We compare possible variants of unsupervised metrics to assess the quality

of tracks (and thus to identify the most suitable scale transformations) on

both the considered adaptation settings. In more detail, we take inspiration

from the work of [209] on benchmarking super voxels and compare the

applicable unsupervised metrics, namely the Time-Extension (TEX) and

the Mean Volume Variation (MVV) – note that [209] introduces MSV,

applicable to images, which we generalize to the point cloud volumes with

MVV. TEX measures the temporal extent of tracking across frames, since

intuitively a more stable tracking algorithm generates longer tracks. For

MVV we compare the bare metric, as well as our proposed extension MVV∗

with the penalty below a minimum-length track.

Table 4.5: Ablation results: different scoring metrics.

Metric
Avg-AP

nuScenes→KITTI KITTI→nuScenes

TEX [209] 0.030 0.229

MVV [209] 0.488 0.125

MVV∗ 0.464 0.249
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Table 4.6: nuScenes→KITTI setting: quality of pseudo-annotations by using the best

3-scored scaling parameters. The results differ from Tab. 4.4 since here we measure the

quality of pseudo-annotations before the fine-tuning step.

Scale
Selected Scale

Avg-AP
X Y Z

No scale 1.00 1.00 1.00 0.202

1st best 1.30 1.30 1.15 0.370

2nd best 1.15 1.30 1.30 0.394

3rd best 1.30 1.15 1.15 0.369

Sup-scale 1.18 1.09 1.16 0.435

From Tab. 4.5, we see that TEX is not a suitable metric, though. In

the realm of point clouds, longer tracks may correspond to wrong matches

over time. This table shows that MVV is slightly better for the adaptation

nuScenes→KITTI, but MVV∗ greatly outperforms it for the adaptation

KITTI→nuScenes. So the penalty terms play an important role in the

scoring over the noisier and more difficult nuScenes dataset.

Assessing pseudo-annotations by scaling just

We target to measure the quality of the pseudo-labels due to scaling trans-

formations and to investigate why the combination of multiple scales is

superior to the single-scale (e.g., MS-3 Vs. SS) pseudo-labelling. To this

goal, we focus on estimating the best scales by temporal coherency. Then

we consider each of the three best (1st, 2nd and 3rd best) and re-scale

the target point cloud according to it. Finally, we detect with the origi-

nal source model ΦS, without fine-tuning. Compared to the full pipeline of

Fig. 4.2, this study excludes step 4 of the pipeline. The results are reported

in Tab. 4.6. Re-scaling the point cloud according to each of the three best

scales improves the performance of the source model considerably. In fact,

the source model passes from a performance of 0.202 Avg-AP on the non-

rescaled point-cloud (No scale) to 0.370 Avg-AP in the case of the 1st
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best, which is 83% better. Also, re-scaling according to the ground-truth

annotation statistics (Sup-scale entry in the Table) is understandably bet-

ter. Finally, note that the three best scales resize the point cloud in the

same direction, by approximately similar upscaling factors, but with dif-

ferent aspect ratios. This may account for the better performance of MS-3

Vs. SS.

Pseudo-annotations

We report qualitative examples of the pseudo-annotations obtained with

SF-UDA3D and used in the last fine-tuning step. In Fig. 4.6, we re-

port the pseudo-annotations of SF-UDA3D for the KITTI dataset while

in Fig. 4.7 we report the pseudo-annotations for the nuScenes dataset. As

visible, KITTI is an easier adaptation direction allowing to more stable

pseudo-annotations with a small presence of false positives. Differently,

the nuScenes dataset is an harder adaptation direction, with an high den-

sity difference and more difficult detections. Nevertheless, SF-UDA3D is

capable to obtain stable pseudo-annotations, with an higher presence of

false positives compared to KITTI, which allow to an improvement after

the fine-tuning step. Interestingly, we found that false positives do not

affect models performance.
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Figure 4.6: Pseudo-annotations of the KITTI target dataset obtained by using the multi-

scale top-3 pseudo-annotation pipeline of SF-UDA3D, based on scale transformation, tem-

poral coherency, and weighted multi-scale aggregation.
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Figure 4.7: Pseudo-annotations of the nuScenes target dataset obtained by using the

multi-scale top-3 pseudo-annotation pipeline of SF-UDA3D, based on scale transformation,

temporal coherency, and weighted multi-scale aggregation.
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Chapter 5

Setting 4: Sequential target

In this chapter, we delve into the fourth setting, ”Setting 4: Sequential

target”. Similar to Setting 3, we begin with a pre-trained source model,

with source data not available during adaptation. However, in this case, the

unlabeled target dataset is presented as a continuous stream of sequential

point clouds, introducing additional challenges, i.e., the risk of negative

drift. We focus on the task of 3D semantic segmentation and introduce

a novel online adaptation method designed for source-free adaptation in

scenarios where target point clouds are given sequentially. This setting

is both novel and practically significant, as it simulates the scenario of a

vehicle adapting while navigating through a new and unseen environment

5.1 GIPSO: Geometrically informed propagation for

online adaptation in 3D LiDAR segmentation

Autonomous driving requires accurate and efficient 3D visual scene percep-

tion algorithms. Low-level visual tasks such as detection and segmentation

are crucial to enable higher-level tasks such as path planning [29, 36] and

obstacle avoidance [187]. Deep learning-based methods have proven to be
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Figure 5.1: Existing methods adapt 3D semantic segmentation networks offline, requiring

both source and target data. Differently, real-world applications urge solutions capable

of adapting to unseen scenes online having access only to a pre-trained model.

the most suitable option to meet these requirements so far, but at the cost

of requiring large-scale annotated datasets for training [224]. Relying only

on annotated data is not always a viable solution. This problem can be

mitigated by considering synthetic data, as it can be generated at a low

cost with potentially unlimited annotations and under different environ-

mental conditions [44, 69]. However, when a model trained on synthetic

data is deployed in the real world, typically, it will underperform due to

domain shift, e.g., caused by varying lighting conditions, clutter, occlu-

sions and materials with different reflective properties [5]. We argue that

a 3D semantic segmentation algorithm running on an autonomous vehicle

should be capable of adapting online – handling scenarios that are visited

for the first time while driving – and it should do so by only using the newly

captured data. A variety of research works have addressed the adaptation

problem in the context of 3D semantic segmentation. However, most ap-

proaches operate offline and assume to have access to training (source) data

[90, 235, 221, 245, 246, 204]. In this section, we argue that these two as-

sumptions are too restrictive in an autonomous driving scenario (Fig. 5.1).

On the one hand, offline adaptation would be equivalent to performing

model adaptation on the data a vehicle has captured when the navigation

has terminated, which is clearly a sub-optimal solution for autonomous

driving [75]. On the other hand, having to rely on source data may not be
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a viable option, as it requires the method to store and query a potentially

large amount of data, thus hindering scalability [103, 225].

To overcome these limitations, in this section, we explore the new prob-

lem of Source-Free Online Unsupervised Domain Adaptation (SF-OUDA)

for semantic segmentation, i.e., that of adapting a deep semantic segmen-

tation model while a vehicle navigates in an unseen environment without

relying on human supervision. Specifically, in this chapter, we first imple-

ment, adapt and thoroughly analyze existing adaptation methods for the

3D semantic segmentation problem in a SF-OUDA setup. We experimen-

tally observe that none of these methods provides consistent and satisfac-

tory performance when employed in a SF-OUDA setting. However, there

are elements of interest that, when carefully combined and extended, can

be generally applicable. This leads us to move toward and design GIPSO

(Geometrically Informed Propagation for Source-free Online adaptation),

the first SF-OUDA method for 3D point cloud segmentation that builds

upon recent advances in the literature, and exploits geometry information

and temporal consistency to support the domain adaptation process. We

also introduce two new synthetic datasets to benchmark SF-OUDA in two

different real-world datasets, i.e., SemanticKITTI [9, 51, 1] and nuScenes

[15]. We validate our approach on these new synthetic-to-real benchmarks.

Our motivation for creating these datasets is to make evaluation more com-

prehensive and to assess the generalization ability of different techniques

to different experimental setups. In summary, our contributions are:

• A thorough experimental analysis of existing domain adaptation meth-

ods for 3D semantic segmentation in a SF-OUDA setting.

• A novel method for SF-OUDA that exploits low-level geometric prop-

erties and temporal information to continuously adapt a 3D segmen-

tation model.
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Table 5.1: Comparison between public synthetic datasets and Synth4D in terms of sensor

specifications, acquisition areas, number of scans, number of points, presence of odometry

data, and whether the semantic classes are all or partially shared.

Specifications
Areas Scans Points Odometry

Shared semantic classes

Name Sensor FOV S-KITTI [3] nuScenes [4]

SinthCity [58] MLS 360◦ city 1 367M no no

GTA-LiDAR [204] HDL64E 90◦ town 121087 - partial no

PreSIL [69] HDL64E 90◦ town 51074 3135M partial no

SynLiDAR [208] HDL64E 360◦ city, town
198396 19482M all no

harbor, rural

Synth4D (ours)
HDL64E

360◦ city, town 20000 2000M
✓ all all

HDL32E rural, highway 20000 2000M

• The introduction of two new LiDAR synthetic datasets that are com-

patible with the SemanticKITTI and nuScenes datasets.

5.1.1 Datasets for synthetic-to-real adaptation

Autonomous driving simulators enable users to create ad-hoc synthetic

datasets that can resemble real-world scenarios. Examples of popular sim-

ulators are GTA-V [213] and CARLA [44]. In principle, synthetic datasets

should be compatible with their real-world counterpart [9, 15, 51], i.e., they

should share the same semantic classes and the same sensor specifications,

such as the resolution (32 vs. 64 channels) and the horizontal field of view

(e.g., 90◦ vs. 360◦). However, this is not the case for most of the synthetic

datasets in the literature. The SynthCity [58] dataset contains large-scale

point clouds that are generated from collections of several LiDAR scans,

making it unsuitable for online domain adaptation as no odometry data is

provided. PreSIL [69] and GTA-LiDAR’s [204] point clouds are captured

from a moving vehicle using a simulated Velodyne HDL64E [104], as that of

SemanticKITTI, however they are rendered with a different field of view,

i.e., 90◦ as opposed to 360◦ of SemantiKITTI. SynLIDAR’s [208] point
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Table 5.2: Number of annotated points for each adaptation category for the simulated

Velodyne HDL32E and Velodyne HDL64E. Each sensor setup was acquired in a different

run.

Velodyne
# labels (108)

vehicle pedestrian road sidewalk terrain manmade vegetation

HDL32E 2.52 0.04 4.35 1.07 0.95 1.48 1.24

HDL64E 1.15 0.03 6.09 1.25 1.51 1.11 0.75

clouds are obtained using a simulated Velodyne HDL64E with 360◦ field of

view, as in SemantiKITTI. However, the odometry data is not provided,

i.e., point clouds are all configured in their local reference frame. There-

fore, domain adaptation algorithms that are based on ray-casting like [90]

cannot be used.

To enable full compatibility with SemanticKITTI [9] and nuScenes [15],

we present a new synthetic dataset, namely Synth4D, which we created

using the CARLA simulator [44]. Tab. 5.1 compares Synth4D to the other

synthetic datasets. Synth4D is composed of two sets of point cloud se-

quences, one compatible with SemanticKITTI and one compatible with

nuScenes. Each set is composed of 20K labeled point clouds. Synth4D is

captured using a vehicle navigating in four scenarios, i.e., town, highway,

rural area, and city.

Because UDA requires consistent labels between source and target, we

mapped the labels of Synth4D with those of SemanticKITTI/nuScenes us-

ing the original instructions given to annotators [9, 15], thus producing

eight macro classes: vehicle, pedestrian, road, sidewalk, terrain, manmade,

vegetation and unlabelled. Fig. 5.2 shows examples of annotated point

clouds from Synth4D. Moreover, we report in Tab. 5.2 the class distribu-

tions for Synth4D after class mapping. Additional information about the

mapping can be found in our paper [154].
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(a) (b)
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Figure 5.2: Example of point clouds from Synth4D using the simulated Velodyne (a)

HDL32E and (b) HDL64E.

5.1.2 Method

Preliminaries and definitions

We formulate the problem of SF-OUDA for 3D point cloud segmentation

as follows. Given a deep network model FS that is pre-trained with super-

vision on the source domain S, we aim to adapt FS on the target domain

T given an unlabelled point cloud stream as input. FS is pre-trained using

the source data ΓS = {(X i
S , Y

i
S)}MS

i=1, where X i
S is a synthetic point cloud,

Y i
S is the segmentation mask of X i

S and MS is the number of available syn-

thetic point clouds. Let X t
T be a point cloud of our stream at time t and

F t
T be the target model adapted using X t

T and X t−w
T , with w > 0. YT is

the set of unknown target labels and C is the number of classes contained

in YT . The source classes and the target classes are coincident.

Our approach

The input to GIPSO is the point cloud X t
T and an already processed point

cloud X t−w
T . These point clouds are used to adapt FS to T through self-

supervision (Fig. 5.3). Two modules process the input. The first module

aims to create labels for self-supervision by segmenting X t
T with the source
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model FS . Because an unsupervised deep network produces these labels, we

refer to them as pseudo-labels. We select a subset of segmented points that

have reliable pseudo-labels through adaptive selection criteria and propa-

gate them to less reliable points. The propagation uses geometric similarity

in the feature space to increase the number of pseudo-labels available for

self-supervision. To this end, we use an auxiliary deep network (Faux) that

is specialized in extracting geometrically-informed representations from 3D

points. The second module aims to encourage temporal regularization of

semantic information between X t
T and X t−w

T . Unlike recent works [67],

where a global point cloud descriptor of the scene is learned, we exploit a

self-supervised framework based on stop gradient [23] to ensure smooth-

ness over time. Self-supervision through pseudo-label geometric propaga-

tion and temporal regularization are concurrently optimized to achieve the

desired domain adaptation objective.

Adaptive pseudo-label selection

An accurate selection of pseudo-labels is key to reliably adapt a model.

In dynamic real-world scenarios, where new structures appear/disappear

in/from the LiDAR field of view, traditional pseudo-labeling techniques [220,

168] can suffer from unexpected variations of class distributions, producing

overconfident incorrect pseudo-labels and making more populated classes

prevail on others [245, 246]. We overcome this problem by designing a

class-balanced adaptive-thresholding strategy to choose reliable pseudo-

labels. First, we compute an uncertainty index to filter out likely unreli-

able pseudo-labels. Second, we apply a different threshold for each class

based on the uncertainty index distribution. This uncertainty index is di-

rectly related to the robustness of the output class distribution for each

point. Robust pseudo-labels can be extracted from those points that con-

sistently provide similar output distributions under different dropout per-
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Figure 5.3: Overview of GIPSO. A source pre-trained model FS selects seed pseudo-labels

through our adaptive-selection approach. An auxiliary model Faux extracts geometric

features to guide pseudo-label propagation. Ldice is minimised over the pseudo-labels Y t
T .

In parallel, semantic smoothness is enforced with Lreg over time. (�) frozen parameters.

( �) learnable parameters.

turbations [77]. We found that this approach works better than alternative

confidence based approaches [245, 246].

Given the point cloud X t
T , we perform J iterations of inference with FS

by using dropout and obtain

ptT =
1

J

J∑
j=1

p
(
FS |X t

T , dj
)
, (5.1)

where ptT is the averaged output distribution of FS given X t
T and dj, i.e.,

the dropout at j-th iteration. We compute the uncertainty index νtT as the

variance over the C classes of ptT as

νtT = E
[(
ptT − µt

T
)2]

, (5.2)

where µt
T = E[ptT ] is the expected value of ptT . Then, we select the least

uncertain points by using a different uncertainty threshold for each class.
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Let λt
c be the uncertainty threshold of class c at time t. Since νtT defines the

uncertainty for each point, we group νtT values per class and compute λt
c as

the a-th percentile of νtT for class c. Therefore, at time t and for class c, we

select only those pseudo-labels having the corresponding uncertainty index

lower than λt
c and use the corresponding pseudo-labels as seed pseudo-labels.

Geometric pseudo-label propagation

Typically, seed pseudo-labels are few and uninformative for the adapta-

tion of the target model – the deep network is already confident about

them. Therefore, we aim to propagate these pseudo-labels to potentially

informative points. This is challenging because the model may drift dur-

ing adaptation. We propose to use the features produced by an auxiliary

geometrically-informed encoder Faux to propagate seed pseudo-labels to

geometrically-similar points. Geometric features can be extracted using

deep networks that compute 3D local descriptors [55, 4, 129]. 3D local

descriptors are compact representations of local geometries with great gen-

eralization abilities across domains. Our intuition is that, while the propa-

gation in the metric space may propagate only in the spatial neighborhood

of seed pseudo-labels, the use of geometric features would allow us to prop-

agate to geometrically similar points, which can be distant from their seeds

in the metric space (Fig. 5.4).

Given a seed pseudo-labeled point x̃t ∈ X t
T , we compute a set of geo-

metric similarities as

Gt
x̃ = ∥Faux(x̃t) − Faux(X t

T )∥2, (5.3)

where || · ||2 is the l2-norm and Gt
x̃ is the set that contains the similarity

values between x̃t and all the other points of X t
T (except x̃t). Then, we

select the points that correspond to top K values in Gt
x̃ and assign the

pseudo-label of x̃t to them. Let Y t
T be the final set of pseudo-labels that
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(a) (b)

Figure 5.4: Example of geometric propagation: a) starting from seed pseudo-labels, b)

geometric features are used to expand labels toward geometrically consistent regions.

we use for fine-tuning our model.

Self-supervised temporal consistency loss

While the vehicle moves, the LiDAR sensor samples the environment from

different viewpoints generating point clouds with different point distribu-

tions due to clutter and/or occlusions. As points of consecutive point

clouds can be simply matched over time by using the vehicle’s odometry

[51, 15], we can reasonably consider local variations of point distributions

as local augmentations with the same semantic information. As a result, we

can exploit recent self-supervised techniques to enforce temporal smooth-

ness of our semantic features.

We begin by computing the set of corresponding points between X t−w
T

and X t
T by using the vehicle’s odometry. Let Tt−w→t ∈ R4×4 be the rigid

transformation (from odometry) that maps X t−w
T in the reference frame of

X t
T . We define the set of corresponding point Ωt,t−w as

Ωt,t−w =
{
{xt ∈ X t

T ,x
t−w ∈ X t−w

T } :

xt = NN
(
Tt−w→t ◦ xt−w, X t

T
)
,

∥xt − xt−w∥2 < τ
}
, (5.4)

where NN(n,m) is the nearest-neighbour search given the set m and the

query n, ◦ is the operator that applies Tt−w→t to a 3D point and τ is a

distance threshold.
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We adapt the self-supervised learning framework proposed in SimSiam

[23] to semantically smooth point clouds over time. We add an encoder

network h(·) and a predictor head f(·) to the target model FT and minimize

the negative cosine similarity between consecutive semantic representations

of corresponding points. Let zt ≜ h(xt) be the encoder features over the

target backbone for xt and let qt ≜ f(h(xt)) be the respective predictor

features. We minimize the negative cosine similarity as

Dt→t−w(qt, zt−w) = − qt

∥qt∥2
· zt−w

∥zt−w∥2
(5.5)

Time consistency is symmetric in the backward direction, hence we use

the corresponding point of xt from Ωt,t−w and define our self-supervised

temporal consistency loss as

Lreg =
1

2
Dt→t−w(qt, zt−w) +

1

2
Dt−w→t(q

t−w, zt) (5.6)

where stop-grad is applied on zt and zt−w.

Online model update

Classes are typically highly unbalanced in each point cloud, e.g., a pedes-

trian class may be 1% the number of points of the vegetation class. To this

end, we use the soft Dice loss [71] as we found it works well when classes

are unbalanced. Let Ldice be our soft Dice loss that uses the pseudo-labels

selected though Eq. 5.3 as supervision. We define the overall adaptation

objective as Ltot = Ldice+Lreg, where Lreg is our regularization loss defined

in Eq. 5.6.

5.1.3 Experiments

Experimental setup

Datasets. We pre-train our source models on Synth4D and SynLiDAR [208],

and validate our approach on the official validation sets of SemanticKITTI

99



5.1. GIPSO CHAPTER 5. SEQUENTIAL TARGET

[9] and nuScenes [15] (target domains). In SemanticKITTI, we use the

sequence 08 that is composed of 4071 point clouds at 10Hz. In nuScenes,

we use 150 sequences, each composed of 40 point clouds at 2Hz.

Implementation details. We use MinkowskiNet as deep network for point

cloud segmentation [27]. We use ADAM: initial learning rate of 0.01 with

exponential decay, batch-size 16, and weight decay 10−5. As auxiliary

network Faux, we use the PointNet-based architecture proposed in [129]

trained on Synth4D that outputs a geometric features (descriptors) for a

given 3D point. For online adaptation, we fix the learning rate to 10−3

and do not use schedulers as they would require prior knowledge about

the stream length. Because we adapt our model on each new incoming

point cloud, we use batch-size equal to 1. We set J=5, a=1, τ=0.3cm and

use 0.5 dropout probability. We set K=10, w=5 on SemanticKITTI, and

K=5, w=1 on nuScenes. Parameters are the same in all the experiments.

Evaluation protocol. We follow the traditional evaluation procedure for

online learning methods [20, 228], i.e., we evaluate the model performance

on a new incoming frame using the model adapted up to the previous

frame. We compute the Intersection over Union (IoU) [138] and report the

average IoU (mIoU) improvement over the source (averaged over all the

target sequences). We also evaluate the online version of our source model

by finetuning it with ground-truth labels for all the points in the scene

(target). We also evaluate the target upper bound (target) of our method

obtained from the online finetuning of our source models over labeled target

point clouds.

Benchmarking existing methods for SF-OUDA

Because our approach is the first that specifically tackles SF-OUDA in the

context of 3D point cloud segmentation, we perform an in-depth analysis

of the literature to identify previous adaptation methods that can be re-
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purposed for SF-OUDA. Additionally, we experimentally evaluate their

effectiveness on the considered datasets. We identify three categories of

methods, as detailed below.

Batch normalization-based methods perform domain adaptation by consid-

ering different statistics for source and target samples within Batch Nor-

malization (BN) layers. Here, we consider ADABN [102] and ONDA [112].

ADABN [102] is a source-free adaptation method which operates by up-

dating the BN statistics, assuming that all target data are available (offline

adaptation). ONDA [112] is the online version of ADABN [102], where the

target BN statistics are updated online based on the target data within

a mini-batch. This can be regarded as a SF-OUDA method. However,

these approaches are general-purpose methods and have not been previ-

ously evaluated for 3D point cloud segmentation.

Prototype-based adaptation methods use class centroids, i.e., prototypes, to

generate target pseudo-labels that can be transferred to other samples via

clustering. We implement SHOT [103] and ProDA [231]. SHOT [103] ex-

ploits Information Maximization (IM) to promote cluster compactness dur-

ing offline adaptation. We implement SHOT by adapting the pre-trained

model with the proposed IM loss online on each incoming target point

cloud. ProDA [231] adopts a centroid-based weighting strategy to denoise

target pseudo-labels, while also considering supervision from source data.

We adapt ProDA to SF-OUDA by applying the same weighting strategy

but removing source data supervision. We update target centroids at each

incremental learning step. We refer to our SF-OUDA version of SHOT and

PRODA as SHOT∗ and ProDA∗, respectively.

Self-training-based methods exploit source model predictions to adapt to

the target domain by re-training the model. We implement CBST [245]

and TPLD [168]. CBST [245] relies on prediction confidence to select the

most reliable pseudo labels. A confidence threshold is computed offline for
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each target class to avoid class unbalance. Our implementation of CBST,

which we denote as CBST∗, uses the same class balance selection strategy

but updates the thresholds online on each incoming frame. Moreover, no

source data are considered as we are in a SF-OUDA setting. TPLD [168],

originally designed for 2D semantic segmentation, uses the pseudo-label

selection mechanism in [245] but introduces a pixel pseudo-label densifi-

cation process. We implement TPLD by removing source supervision and

replacing the densification procedure with a 3D spatial nearest-neighbor

propagation. Our version of TPLD is denoted as TPLD∗.

Besides re-purposing existing approaches for SF-OUDA, we also evalu-

ate an additional baseline, i.e., the rendering-based method RayCast [90].

This approach is based on the idea that target-like data can be obtained

with photorealistic rendering applied to the source point clouds. Thus,

adaptation is performed by simply training on target-like data. While

RayCast can be regarded as an offline adaptation approach, we select it as

it only requires the parameters of the real sensor to obtain target-like data

from source point clouds.

Results

Evaluating GIPSO. Tab. 5.3, 5.4 and 5.5 report the results of our quantita-

tive evaluation in the cases of Synth4D → SemanticKITTI, Synlidar → Se-

mantic KITTI and Synth4D → nuScenes, respectively. The numbers in the

tables indicate the improvement over the source model. GIPSO achieves

an average IoU improvement of +4.31 on Synth4D → SemanticKITTI,

+3.70 on Synlidar → SemanticKITTI and +0.85 on Synth4D → nuScenes.

GIPSO outperforms both offline and online methods by a large margin

on Synth4D → SemanticKITTI and Synlidar → Semantic KITTI, while it

achieves a lower improvement over Synth4D → nuScenes. On SemanticKITTI,

GIPSO can effectively improve road, sidewalk, terrain, manmade and vege-
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Table 5.3: Synth4D → SemanticKITTI online adaptation. Source: pre-trained source

model (lower bound). We report absolute mIoU for Source and mIoU relative to Source

for the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.
Model SF UDA O vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 63.90 12.60 38.10 47.30 20.20 26.10 43.30 35.93

Target ✓ ✓ +16.84 +5.49 +8.48 +34.44 +51.92 +45.68 +39.09 +28.85

ADABN [102] ✓ ✓ -7.80 -2.00 -10.20 -18.60 -7.70 +5.80 -0.70 -5.89

RayCast [90] ✓ +3.80 -2.60 -3.10 -0.50 +7.30 +4.50 +0.20 +1.37

ProDA∗ ✓ ✓ ✓ -57.77 -12.34 -37.36 -46.95 -19.97 -25.62 -42.48 -34.64

SHOT∗ ✓ ✓ ✓ -62.44 -12.00 -28.27 -40.20 -20.00 -25.47 -42.55 -32.99

ONDA [112] ✓ ✓ ✓ -13.60 -1.70 -10.60 -20.00 -7.10 +3.90 -5.10 -7.74

CBST∗ ✓ ✓ ✓ -0.13 +0.58 -1.00 -1.12 +0.88 +1.69 +1.03 +0.28

TPLD∗ ✓ ✓ ✓ +0.36 +1.18 -0.76 -0.71 +0.95 +1.74 +1.15 +0.56

GIPSO (Ours) ✓ ✓ ✓ +13.12 -0.54 +1.19 +2.45 +2.78 +5.64 +5.54 +4.31

tation. vehicle is the best performing class, which can achieve a mIoU above

+13. pedestrian is the worst performing class on all the datasets. pedestrian

is a challenging class because it is significantly unbalanced compared to the

others, also in the source domain. Although we attempted to mitigate the

problem of unbalanced classes using adaptive thresholding and soft Dice

loss, there are still situations that are difficult to address. Indeed, GIPSO

limitations are related to geometric propagation and long-tailed classes. If

objects of different classes share similar geometric structures, the geometric

propagation may be deleterious. This can be mitigated by using another

sensor modality (e.g. RGB) or by accounting for multi-scale signals to ex-

ploit context information. If severe class unbalance occurs, semantic seg-

mentation accuracy may be affected, e.g. pedestrian class in Tabs. 5.3-5.5.

This can be mitigated by re-weighting the loss through a class-balanced

term (computed on the source). On nuScenes, the improvement is minor

because its lower resolutions make patterns less distinguishable and more

difficult to segment.

Evaluating state-of-the-art methods. We also analyze the performance of

the existing methods. Batch-normalisation based methods perform poorly
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Table 5.4: SynLiDAR → SemanticKITTI online adaptation. Source: pre-trained source

model (lower bound). We report absolute mIoU for Source and mIoU relative to Source

for the other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.
Model SF UDA O vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 59.80 14.20 34.90 53.50 31.00 37.40 50.50 40.19

Target ✓ ✓ +21.32 +8.09 +11.51 +28.13 +40.46 +33.67 +30.63 +24.83

ADABN [102] ✓ ✓ +3.90 -6.40 -0.20 -3.70 -5.70 +1.40 +0.30 -1.49

RayCast [90] ✓ - - - - - - - -

ProDA∗ ✓ ✓ ✓ -53.30 -13.79 -33.83 -52.78 -30.52 -36.68 -49.29 -38.60

SHOT∗ ✓ ✓ ✓ -57.83 -12.64 -24.80 -46.02 -30.80 -36.83 -49.32 -36.89

ONDA [112] ✓ ✓ ✓ -2.90 -6.40 -2.20 -8.80 -7.60 -1.20 -6.70 -5.11

CBST∗ ✓ ✓ ✓ +0.99 -0.83 +0.55 +0.20 +0.74 -0.07 +0.38 +0.28

TPLD∗ ✓ ✓ ✓ +0.90 -0.48 +0.59 +0.33 +0.84 +0.07 +0.37 +0.37

GIPSO (Ours) ✓ ✓ ✓ +13.95 -6.76 +3.26 +5.01 +3.00 +3.34 +4.08 +3.70

on all the datasets, with only ADABN [102] showing a minor improve-

ment on nuScenes. We argue that non-i.i.d. batch samples arising in the

online setting are playing an important role in this degradation, as they

can have detrimental effects on models with BN layers [169]. SHOT∗ and

ProDA∗ perform poorly in almost all the experiments, except on Synth4D

→ nuScenes where ProDA∗ achieves +0.29. This minor improvement may

be due to the short sequences of nuScenes (40 frames) making centroids

less likely to drift. This does not occur in SemanticKITTI where the

long sequence causes a rapid drift (see detailed in Sec. 5.1.4). CBST∗

and TPLD∗ improve on SemanticKITTI and perform poorly on nuScenes.

This can be ascribed to the noisy pseudo-labels that are selected using

their confidence-based filtering approach. Lastly, RayCast [90] achieves

+1.37 on Synth4D → SemanticKITTI, but underperform on Synth4D →
nuScenes with a degradation of -3.46. RayCast was originally proposed for

real-to-real adaptation, therefore we believe that its performance may be

affected by the large difference in point cloud resolution between Synth4D

and nuScenes. RayCast underperforms GIPSO in the online setup, thus

showing how offline solutions can fail in dynamic domains. Note that Ray-
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Table 5.5: Synth4D → nuScenes online adaptation. Source: pre-trained source model

(lower bound). We report absolute mIoU for Source and mIoU relative to Source for the

other methods. Key. SF: Source-Free. UDA: Unsupervised DA. O: Online.
Model SF UDA O vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75

Target ✓ ✓ +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

ADABN [102] ✓ ✓ +1.23 -2.74 -1.24 +0.14 +0.53 +0.70 +4.03 +0.38

RayCast [90] ✓ -1.36 -9.69 -3.53 -3.42 -2.77 -2.54 -0.91 -3.46

ProDA∗ ✓ ✓ ✓ +0.57 -1.40 +0.73 +0.09 +0.71 +0.40 +0.91 +0.29

SHOT∗ ✓ ✓ ✓ +0.82 -1.77 +0.68 -0.05 -0.70 -0.54 +1.09 -0.07

ONDA [112] ✓ ✓ ✓ +0.34 -1.90 -1.19 -0.62 +0.18 -0.40 +0.58 -0.43

CBST∗ ✓ ✓ ✓ +0.37 -2.61 -1.35 -0.79 +0.19 -0.36 -0.45 -0.71

TPLD∗ ✓ ✓ ✓ +0.65 -1.90 -0.96 -0.39 +0.43 +0.07 +0.86 -0.18

GIPSO (Ours) ✓ ✓ ✓ +0.55 -3.76 +1.64 +1.72 +2.28 +1.18 +2.36 +0.85

Cast cannot be evaluated using Synlidar, because Synlidar does not provide

odometry information.

5.1.4 In-depth analyses

Method components

Tab. 5.8 shows the results of our ablation study on Synth4D → Semantic

KITTI. When we use only the adaptive pseudo-label selection (A) we can

achieve +1.07 compared to the source. When we combine A with the

temporal regularization (T) we can further improve by +3.65. Then, we

can achieve our best performance through the geometric propagation (P)

of the pseudo labels.

Method parameters

We perform ablations for different parameters of GIPSO on Synth4D →
SemanticKITTI. First, we study the propagation size K by increasing it up

to 100 for each seed pseudo-label. Then, we study how GIPSO performs

by varying the time window w. Results report the performance on Source
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Figure 5.5: (a) Per-class improvement of GIPSO over time on Synth4D → Se-

manticKITTI. (b) DB-Index over time on Synth4D → SemanticKITTI. The lower the

DB-Index, the better the class separation of the features.

Table 5.6: Online adaptation on Synth4D → SemanticKITTI with different propagation

size K.

Model K vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source - 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75

Target - +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

Ours 1 +14.18 -1.13 +1.08 +2.11 +2.74 +5.49 +5.39 +4.27

Ours 5 +13.42 -0.51 +0.91 +2.16 +2.66 +5.54 +5.62 +4.26

Ours 10 +13.12 -0.54 +1.19 +2.45 +2.78 +5.64 +5.54 +4.31

Ours 50 +12.01 -1.00 +0.73 +2.01 +3.02 +5.51 +5.66 +3.99

Ours 100 +12.25 -2.49 +0.62 +1.93 +3.39 +5.99 +5.68 +3.91

(gray) in absolute mIoU while the others are reported as relative mIoU

improvement over the Source model. Target is the supervised upper bound

of our task in our setting.

Propagation size We study the effect of different propagation steps by using

our geometry-based propagation. Tab. 5.6 shows the results with a K of

1, 5, 10, 50, 100. We can see that mIoU starts to decrease when a higher

number of propagation steps are used, i.e., K = 50, whereas we reach

the best improvement of +4.31 with K = 10. These results show that K

should be set such that to both preserve pseudo-labelling accuracy while

propagating seed labels towards new informative points.

Time-window length We study the effect of different time window length

w in our self-supervised temporal consistency loss. Tab. 5.7 shows that w
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Table 5.7: Online adaptation on Synth4D → SemanticKITTI with a different time window

w.

Model w vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source - 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75

Target - +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

Ours 1 +9.73 -0.63 +0.56 +1.79 +2.86 +4.88 +4.27 +3.35

Ours 2 +11.76 -1.09 +0.78 +1.97 +2.50 +5.01 +5.23 +3.74

Ours 3 +12.89 -0.37 +0.79 +1.84 +2.70 +5.20 +5.12 +4.02

Ours 4 +13.84 -0.84 +0.94 +2.24 +2.57 +5.37 +5.49 +4.23

Ours 5 +13.12 -0.54 +1.19 +2.45 +2.78 +5.64 +5.54 +4.31

Ours 6 +13.95 -0.48 +0.95 +2.01 +2.77 +5.69 +5.93 +4.40

Ours 7 +13.32 -0.90 +1.11 +2.16 +3.14 +5.43 +5.74 +4.28

Ours 8 +13.16 -1.16 +0.95 +1.88 +2.67 +5.75 +6.20 +4.21

should be selected neither too large (w = 8) nor too small (w = 1) for the

best performance. The time window w should be set based on the sampling

rate of the sensor and the overlap between adjacent frames.

Oracle study

We analyze the importance of using a reliable pseudo-label selection metric.

Tab. 5.9 shows the pseudo-label accuracy as a function of the points that

are selected as the K-th best candidates based on the distance from their

centroids (as proposed in [231]), confidence (as proposed in [245]) and

uncertainty (ours). Centroid-based selection shows a low accuracy even at

K = 1, which tends to worsen as K increases. Confidence-based selection

is more reliable than the centroid-based selection. We found uncertainty-

based selection to be more reliable at smaller values of K, which we deem

to be more important than having more pseudo-labels but less reliable.

Per-class temporal behavior

Fig. 5.5a shows the mIoU over time for each class on Synth4D → Se-

manticKITTI. We can observe that six out of seven classes have a steady
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Table 5.8: Synth4D → SemanticKITTI

ablation study of GIPSO: (A) Adaptive

thresholding; (A+T) A + Temporal consis-

tency; (A+T+P) A+T + geometric Propa-

gation.

Source Target A A+T A+T+P

35.95 +28.85 +1.07 +3.65 +4.31

Table 5.9: Oracle study on Synth4D → Se-

manticKITTI that compares the accuracy

of different pseudo-label selection metrics:

Centroid, Confidence and Uncertainty.

Centroid Confidence Uncertainty

Top-1 38.1 66.7 76.1

Top-10 43.8 61.4 69.7

improvement: vehicle is the best performing class, followed by vegetation

and manmade. Drops in mIoU are typically due to sudden geometric vari-

ations of the point cloud, e.g., a road junction after a straight road, or

a jammed road after an empty road. pedestrian confirms to be the most

challenging class.

Temporal compactness of features

We assess how well points are organized in the feature space over time. We

use the DB Index (DBI) that is typically used in clustering to measure the

feature intra- and inter-class distances [35]. The lower the DBI, the better

the quality of the features. We use SHOT∗ and ProDA∗ as comparisons

with our method, and the source and target models as references. Fig. 5.5b

shows the DBI variations over time. SHOT∗ behavior is typical of a drift, as

features of different classes become interwoven. ProDA∗ does not drift, but

it produces features that are worse than the source model. Our approach is

between source and target models, with a tendency to get closer to target.

Different 3D local descriptors

We assess the effectiveness of different 3D local descriptors. We test

FPFH [147] (handcrafted) and FCGF [28] (deep learning) descriptors.

GIPSO achieves +3.56 mIoU with FPFH, +4.12 mIoU with FCGF and

+4.31 mIoU with DIP. This is in line with the experiments shown in [130],
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where DIP shows a superior generalization capability across domains than

FCGF.

Performance with global features. We assess the GIPSO performance on

Synth4D→SemanticKITTI when the global temporal consistency loss pro-

posed in STRL [67] is used instead of our per-point loss (Eq. 5.5). This

variation achieves +1.74 mIoU, showing that per-point temporal consis-

tency is key.

Improving state-of-the-art with GIPSO

We show that our proposed modules also improve state-of-the-art methods,

such as CBST [245], ProDA [231] and, TPLD [231], providing additional

evidence that our propositions are steps forward in SF-OUDA not just in

GIPSO. First, we show that our adaptive sampling strategy can be used

in state-of-the-art methods to obtain more reliable pseudo-labels. Second,

we propose modifications to further improve baselines performance in SF-

OUDA. We propose the following modifications:

• CBST∗ uses a confidence based sampling strategy to select class-

balanced pseudo-labels. We improve CBST∗ by using our adaptive

selection strategy based on uncertainty;

• TPLD∗ builds upon CBST∗ by increasing pseudo-label number through

densification and voting. We improve TPLD∗ with our more ro-

bust adaptive pseudo-label selection and substitute the spatial nearest

neighbor with our geometrically informed propagation strategy.

• ProDA∗ exploits a centroid-based weighting strategy to denoise pseudo-

labels. Moreover, momentum update is performed between source FS

and target model FT . We improve ProDA∗ in its three main parts.

First, we remove source model momentum update as it promotes do-

main drift. Second, we substitute pseudo-labelling with our iterative
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Table 5.10: Improvement of state-of-the-art methods by using GIPSO adaptive selection

strategy and propagation strategy on Synth4D → SemanticKITTI.

Model vehicle pedestrian road sidewalk terrain manmade vegetation Avg

Source 22.54 14.38 42.03 28.39 15.58 38.18 54.14 30.75

Target +3.76 +0.92 +9.41 +16.95 +19.79 +10.92 +10.71 +10.35

ProDA∗ -58.92 -12.08 -36.74 -45.32 -15.46 -20.69 -39.24 -32.63

CBST∗ -0.13 0.58 -1.00 -1.12 0.88 1.69 1.03 0.28

TPLD∗ 0.36 1.18 -0.76 -0.71 0.95 1.74 1.15 0.56

ProDA∗ (Ours) 2.04 4.40 0.24 0.62 0.29 1.07 1.71 1.48

CBST∗ (Ours) 2.72 -2.53 -0.19 0.56 1.48 3.02 2.46 1.07

TPLD∗ (Ours) 2.81 -2.33 -0.05 0.65 2.30 3.44 2.82 1.38

dropout based pseudo-labeling strategy. Third, we compute more ro-

bust centroids by considering the mean of point-features in our itera-

tive pseudo-labelling strategy.

Tab. 5.10 shows that GIPSO components can be used to successfully im-

prove the performance of existing methods. ProDA∗ improves from −32.63

to +1.48, we deem this is due to the more robust centroid computation and

to the lower adaptation drift obtained with a non-updated source model.

CBST∗ benefits from a better pseudo-label selection improving from +0.28

to +1.07. TPLD∗ benefits from a better pseudo-labels and the geometri-

cally informed propagation improving from ∗0.56 to +1.38.

Qualitative results

Fig. 5.6 shows the comparison between GIPSO and the source model

on on Synth4D→SemanticKITTI. The first row shows frame 178 of Se-

manticKITTI with an improvement of +27.14 mIoU (large). The classes

vehicle, sidewalk and terrain are incorrectly segmented by the source model,

we can see a significant improvement in segmentation on these classes after

adaptation. The second and third rows show frame 1193 and frame 2625

with an improvement of +10.00 mIoU (medium) and +4.99 mIoU (small).
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Improvements are visible after adaptation in the classes vehicle, sidewalk

and road. The last row shows a segmentation drift for road that is caused

by incorrect pseudo-labels.
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Figure 5.6: Results on Synth4D→SemanticKITTI with three different ranges of mIoU

improvements, i.e., large (+27.2), medium (+10.0) and small (+5.1).
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Chapter 6

Setting 5: Unknown target

In this sixth chapter, we delve into the final setting, ”Setting 5: Unknown

target”. This setting is one of the most difficult studied in this thesis.

Indeed, we are given an annotated source dataset, but we miss any infor-

mation about the future target domains. This specific experimental setup

is also known as the domain generalization task. In this chapter, we study

this setting for the first time in 3D semantic segmentation, specifically

in LiDAR point clouds. Tackling this task is not trivial as domain shift

needs to be solved in advance, aiming for generalization capabilities dur-

ing source training. We address this problem by introducing a simple and

robust method that leverages a dense auxiliary task during point cloud

segmentation learning.

6.1 Walking your LiDOG: A journey through multi-

ple domains for LiDAR semantic segmentation

We address the challenge of achieving accurate and robust semantic seg-

mentation of LiDAR point clouds. LiDAR semantic segmentation (LSS) is

one of the most fundamental perception problems in mobile robot naviga-

tion, with applications ranging from mapping [98], localization [110], and
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LiDAR Semantic Segmentation (LSS)
Train: Source

Domain 
shift

This work: Domain generalization for LSS

Train: Source 2

Test: Source

Train: Source 1 Test: Target 1

Test: Target 2

Domain 
shift

Figure 6.1: Domain Generalization for LiDAR Semantic Segmentation (DG-LSS). Left :

Existing LSS methods are trained and evaluated on point clouds drawn from the same

domain. Right : We focus on studying LSS under domain shifts, where the test samples are

drawn from a different data distribution. This chapter aims to address the generalization

aspect of this task.

online dynamic situational awareness [179].

Status Quo. State-of-the-art LSS methods [27, 66, 178, 243] perform well

when trained and evaluated using the same sensory setup and environment

(i.e., source domain, Fig. 6.1, left). However, their performance degrades

significantly in the presence of domain shifts (Fig. 6.1, right), commonly

caused by differences in sensory settings, e.g., a new type of sensor, or

recording environments, e.g., geographic regions with different road layouts

or types of vehicles. One way to mitigate this is to collect multi-domain

datasets for pre-training, similar to what has been done in the image do-

main using inexpensive cameras that are widely available [40, 105]. How-

ever, building a crowd-sourced collection of multi-domain LiDAR datasets

is currently not feasible.

Stirring the pot. As a first step towards LiDAR segmentation models that

are robust to domain shifts, we present the first-of-its-kind experimental

test-bed for studying Domain Generalization (DG) in the context of Li-

DAR Semantic Segmentation (LSS). In our DG-LSS setup, we train and

evaluate models on different domains, including two synthetic [154] and
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two real-world densely labeled datasets [10, 8, 48], recorded in different

geographic regions with different sensors. This evaluation setup reveals

a significant gap in terms of mean intersection-over-union between models

trained on the source and target domains: for example, a model transferred

from SemanticKITTI to nuScenes dataset obtains 26.53 mIoU compared

48.49 mIoU obtained by the model fully trained on the target domain.

Could this gap be alleviated with DG techniques?

Insights. To address this challenge, we propose LiDOG (LiDAR DOmain

Generalization) as a simple yet effective method specifically designed for

DG-LSS. In addition to reasoning about the scene semantics in 3D space,

LiDOG projects features from the sparse 3D decoder onto the 2D bird’s-

eye-view (BEV) plane along the vertical axis and learns to estimate a

dense 2D semantic layout of the scene. In this way, LiDOG encourages the

3D network to learn features that are robust to variations in, e.g., type

of sensor or geo-locations and thereby can be transferred across different

domains. This directly leads to increased robustness toward domain shifts

and yields +8.35 mIoU improvement on the target domain, confirming

the efficacy of our approach. Our experimental evaluation confirms this

approach is consistently more effective compared to prior efforts in data

augmentations [230, 123, 153], domain adaptation techniques [196, 89],

and image-based DG techniques [26, 125], applied to the LiDAR semantic

segmentation.

Contributions. We make the following key contributions:

• We present the first study on domain generalization in the context of

LiDAR semantic segmentation.

• We carefully construct a test-bed for studying DG-LSS using two syn-

thetic and two densely-labeled real-world datasets recorded in different

cities with different sensors.
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Figure 6.2: LiDOG overview. We encode our input LiDAR scan Pj using the 3D backbone

g3D to learn the occupied voxels’ feature representations F 3D. (Upper branch - main task)

We apply a sparse segmentation head on F 3D and supervise with 3D semantic labels, Y3D
j .

(Lower branch - auxiliary task) We project those features along the height-axis to obtain

a dense 2D bird’s-eye (BEV) view features FBEV , and apply several 2D convolutional

layers to learn the 2D BEV representation. We supervise the BEV auxiliary task by

using BEV-view of semantic labels, YBEV
j . We train jointly on both L3D and LBEV .

• We rigorously study how prior efforts proposed in related domains can

be used to tackle domain shift

• We propose LiDOG, a simple yet strong baseline that learns robust,

generalizable, and domain-invariant features by learning semantic pri-

ors in the 2D birds-eye view. Despite its simplicity, we achieve state-

of-the-art performance in all the generalization directions.

6.1.1 Method

Preliminaries and definitions

In this section, we first recap the standard LiDAR Semantic Segmentation

(LSS) setting for completeness. Next, we formally introduce the problem

of Domain Generalization for LiDAR Semantic Segmentation (DG-LSS),

which we study in this chapter.

LiDAR semantic segmentation. In LSS, we are given a set of labeled training
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instances in the form of point clouds Ttrain = {Pj = {pi ∈ R3}Nj

i=1}. Each

point cloud Pj ∼ D consists of Nj points, and is drawn from a certain point

cloud distribution D. Moreover, point clouds in the training set are labeled

according to a predefined semantic class vocabulary K = {1, . . . , K} of

K categorical labels. Given such a training set Ttrain along with class

vocabulary K, the goal of LSS is to learn a function f(pi) → K, that

maps each point pi ∈ Pj,∀j, to one of K semantic classes, such that the

prediction error on the same domain D is minimized. In other words,

LSS models are trained and evaluated on (disjunct) sets of point clouds

that are drawn from the same data distribution D. We note that it is

standard practice for LSS methods to be evaluated on multiple datasets.

However, standard multi-dataset evaluation follows the setting described

above: models are trained and evaluated for each domain separately.

Domain generalization for LiDAR semantic segmentation. In this chapter,

we release the assumption that train and test splits were sampled from the

same domain and explicitly study cross-domain generalization in LSS. We

are given M labeled datasets Tm ∼ Dm, m ∈ {1, . . . ,M} sampled from

different data distributions Dm. Importantly, all datasets must be labeled

according to a common semantic vocabulary K, i.e., we are studying DG in

closed-set conditions [238]. Then, the task can be defined as follows: we use

T{m} datasets for training, and the held-out datasets T{m′}, {m′}∩{m} = ∅,

solely for testing.

The goal of DG-LSS is, therefore, to train a mapping f(pi) → K, such

that the prediction performance on the target datasets T{m′} ∼ D{m′} is

maximized. We only have access to data and labels from the target datasets

during evaluation. The model has never seen any target data before eval-

uation, neither labeled nor unlabeled.

117



6.1. LIDOG CHAPTER 6. UNKNOWN TARGET

Overview

We provide a schematic overview of LiDOG: Lidar DOmain Generalization

network in Fig. 6.2. LiDOG leverages a 3D sparse-convolutional encoder-

decoder neural network (Fig. 6.2, g3D) that encodes the input point cloud

Pj into sparse 3D features F 3D (Fig. 6.2). In order to tackle the domain

shift problem, we propose to augment this network with a dense top-down

prediction auxiliary task during model training. In particular, we project

sparse 3D features F 3D from the decoder network along the height axis to

obtain a 2D bird’s-eye view (BEV) representation FBEV of the features

learned by the 3D network. Then, we jointly optimize the losses for the

3D and BEV network heads. Importantly, the auxiliary BEV head is not

required during model inference. Its sole purpose is to effectively learn

domain-agnostic features during training.

3D segmentation branch

The upper branch of LiDOG (Fig. 6.2) aims to learn the main segmentation

task, i.e., it learns the mapping function f(pi) → K. We first process

the input LiDAR point cloud Pj into a 3D occupancy (voxel) grid Vj.

During this phase, the continuous 3D input space is evenly sampled into

discrete 3D cells. Points falling into the same cell are merged. We then

learn a feature representation of the occupancy grid Vj via a 3D encoder-

decoder network g3D based on the well-established sparse-convolutional

backbone [27]. The encoder consists of a series of sparse 3D convolutional

downsampling layers that learn a condensed 3D representation, while the

decoder upsamples the features back to the original resolution with sparse

convolutional upsampling layers. We use sparse batch-normalization layers.

The output of g3D is a set of voxel-wise features F 3D
j = g3D(Vj), where

each feature vector is associated with a voxel cell in Vj. We employ a
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sparse segmentation head to obtain semantic posteriors that predict the

voxel-wise categorical distribution from the voxel features F 3D
j : ˜Y3D

j =

p(K|Vj) = σ(h3D(F 3D
j )), where σ denotes the softmax activation function.

Dense auxiliary task

In the lower branch of LiDOG, we add the auxiliary task that encourages

the network to learn a representation that is robust to domain shifts. We

transform 3D features to bird’s-eye view (BEV) space, and train a network

to estimate BEV semantic scene layout.

Sparse-to-dense feature projection. We start our dense-to-sparse segmenta-

tion task by projecting voxel-wise features F 3D
j into dense BEV-features

feature space FBEV
j . Given a voxel vi ∈ Vj center coordinates (xi, yi, zi),

we compute its corresponding BEV coordinates (xBEV
i , zBEV

i ) as:

q(xi, zi) = (xBEV
i , zBEV

i ) =
(⌊xi

xq

⌋
,
⌊zi
zq

⌋)
, (6.1)

where q is the projection function, and xq and zq are the quantiza-

tion parameters. We project only voxels within projection bounds B3D =

[(−bx, bx), (−bz, bz)], where bx and bz are the bound values along the x and

z axis, and shift projected coordinates to fit in the BEV-features height

and width. Consequently, we define BEV features FBEV
j by initializing

them to zero and by filling non-empty cells as FBEV
j (xBEV

i , zBEV
i ) = F 3D

i .

When multiple voxels project to the same cell, we randomly keep one.

Sparse-to-dense label projection. We obtain source labels by following the

same procedure used for FBEV
j . After voxelization, each voxel vi is associ-

ated to a label category y3Di ∈ Y3D
j . We use Eq. 6.1 and the same bounds

B3D to compute the label coordinates (xBEV
i , zBEV

i ) of BEV image pixels.

Then, we define BEV labels as: YBEV
j (xBEV

i , zBEV
i ) = y3Di .

BEV predictions. We predict BEV semantic posteriors by employing a
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Figure 6.3: LiDAR point clouds and their corresponding BEV views: SemanticKITTI

(left) and nuScenes (right). After projection, BEV images are geometrically more similar.

standard 2D segmentation head hBEV which predicts semantic classes in

the dense 2D BEV plane and takes as input BEV features FBEV
j . First,

we reduce the dimensionality of FBEV
j through a pooling operation. Then,

we feed hBEV with FBEV
j and obtain BEV semantic predictions: ˜YBEV

j =

σ(hBEV (FBEV
j )), where σ denotes the softmax activation function.

Losses

Given 3D semantic predictions ˜Y3D
j and labels Y3D

j , as well as BEV se-

mantic predictions ˜YBEV
j and labels YBEV

j , we train both LiDOG net-

work heads jointly using soft DICE loss [71], i.e., L3D = dice( ˜Y3D
j ,Y3D

j ),

and LBEV = dice( ˜YBEV
j ,YBEV

j ). Finally, we average contributions of

both losses: Ltot = 1
2(LBEV + L3D). DICE loss has been shown in lit-

erature [71, 153] to perform favorably for rarer classes compared to the

cross-entropy loss.

6.1.2 Why our approach works

We demonstrate empirically in Sec. 6.1.3 that the dense BEV prediction

proxy task significantly improves model performance in terms of cross-

domain generalization. Why does this simple objective yield, in practice,

more robust feature representations? There are several possible sources of

domain shift, e.g., different sensors, different environments, and scans are

visibly different (Fig. 6.3). After the projection, we obtain a denser label
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Figure 6.4: Feature visualization: t-SNE visualization [42] of the point embeddings for

the road class, obtained by training our network without (w/o BEV, left) and with

BEV task (BEV, right). Top: Synth4D-KITTI→SemanticKITTI. Bottom: Synth4D-

KITTI→nuScenes. As shown, projected features are well-aligned when training the net-

work with the auxiliary BEV task.

space that is less sensitive to individual sensor characteristics: in the BEV

space scans from different domains look more alike, Fig. 6.3. We effec-

tively regularize the model training by promoting the network robustness

to changes in the sensor acquisition patterns. We validate this intuition

in Fig. 6.4 by visualizing learned point embeddings [42] for the road class

with and without BEV auxiliary task, across multiple domains. As can be

seen, projected embeddings are consistently closer when employing BEV

auxiliary task.
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6.1.3 Experiments

In this section, we report our experimental evaluation. First, we describe

our evaluation protocol, datasets and baselines. Second, we provide im-

plementation details. Then, we report our synth-to-real and real-to-real

results, and discuss qualitative results. Finally, we ablate our proposed

approach.

Experimental protocol

We base our evaluation protocol on two synthetic (Synth4D [154]) and two

real-world datasets (SemanticKITTI [10] and nuScenes [48]). We study

(i) generalization from synthetic→real data in single- and multi-source

settings, i.e., trained on one or multiple source datasets, as well as (ii)

real→real generalization.

Synthetic datasets. Synth4D [154] is a synthetic dataset generated using

CARLA [44] simulator. It provides two synthetic source domains, each one

with 20k labeled scans, emulating Velodyne64HDLE and Velodyne32HDLE

sensors, similar to those used to record SemanticKITTI (Synth4D-KITTI )

and nuScenes-lidarseg datasets (Synth4D-nuScenes). These datasets were

generated in the same synthetic environment, mimicking different sensor

types. We use the official training splits in all experiments.

Real datasets. SemanticKITTI [10] was recorded in various regions of Karl-

sruhe, Germany, with Velodyne64HDLE sensor, and provides 20k labeled

scans. nuScenes [48] was recorded in Boston, USA, and Singapore, with a

sparser Velodyne32HDLE sensor and provides 40k labeled LiDAR scans.

We use the official training and validation splits for both datasets in all

experiments.

Class vocabulary. To ensure this task is well-defined, we formalize cross-

dataset consistent and compatible semantic class vocabulary, which ensures
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there is a one-to-one mapping between all semantic classes. We follow [154]

which provides a common label space among Synth4D, SemanticKITTI and

nuScenes-lidarseg consisting of seven semantic classes: vehicle, person,

road, sidewalk, terrain, manmade and vegetation. We perform all eval-

uation with respect to these classes.

Baselines. We are the first in studying DG-LSS, therefore, we construct our

set of baselines by considering the previous efforts in bridging the domain

shift in other LiDAR tasks as well DG methods for images.

Data augmentation baselines (Aug). Data augmentations are used in su-

pervised learning to improve model generalization and, in DA, to reduce

domain shift. We re-implement and evaluate in the DG context three

data augmentation approaches: Mix3D [123], PointCutMix [230] and CoS-

Mix [153]. Mix3D concatenates both points and labels of different scenes,

obtaining a single mixed-up scene. PointCutMix and CoSMix follow the

same strategy but mix either patches or semantic regions, respectively.

We follow the official implementations and apply these data augmentation

strategies during source training. For single-source training, we mix be-

tween samples of the same domain, while for multi-source training, we mix

between samples of the two source domains.

Image-based baselines (2D DG). Image-based DG is a widely explored field.

However, not all the methods can be extended to DG-LSS due to their

image-related assumptions, e.g., style consistency. We identify and re-

implement two image-based approaches that can be extended to DG-LSS:

IBN [125] and RobustNet [26]. IBN makes use of both batch and instance

normalization layers in the network blocks to boost generalization perfor-

mance. We follow the IBN-C block scheme and use it to build the sparse

model. RobustNet [26] makes use of IBN blocks and introduces an instance

whitening loss. Similarly, we start from our IBN implementation and use

their instance-relaxed whitening loss [26] during training.
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UDA for LiDAR baselines (3D UDA). Most of the UDA for LSS approaches

assume (unlabeled) target data available for training/adaptation [215],

hence, we cannot adapt and evaluate them in the DG setting fairly. We

identify two UDA baselines that assume only weak supervision from the

target domain, e.g., vehicle dimensions or sensor specs. We re-implement

and extend SN [196] and RayCast [90]. SN [196] uses the knowledge of av-

erage vehicle dimensions from source and target domains to re-scale source

instances. We employ DBSCAN to isolate vehicle instances in both source

and target domains and estimate the ratio between their dimensions. At

training time, we follow their pipeline and train our segmentation model on

the re-scaled point clouds. RayCast [89] employs ray casting to re-sample

source data by mimicking target sensor sampling. We use the official code

to re-sample source data and use mapped data during training. Notice

that both these baselines use a-priori knowledge from the target domain,

i.e., vehicle dimensions or target sensor specifications, and can thus be

considered as weakly-supervised baselines.

Implementation details

We implement our method and all the baselines by using the PyTorch

framework. We use MinkowskiNet [27] as a sparse convolutional backbone

in all our experiments and train until convergence with voxel size 0.05m,

total batch size of 16, learning rate 0.01 and ADAM optimizer [82]. In the

experiments, we use random rotation, scaling, and downsampling for bet-

ter convergence of baselines and LiDOG. We set rotation bounds between

[−π/2, π/2], scaling between [0.95, 1.05], and perform random downsam-

pling for 80% of the patch points. We set projection bounds B3D based

on the input resolution. We set bx and bz to 50m in the denser source

domains of Synth4D-KITTI and SemanticKITTI and bx and bz to 30m in

the sparser domains of Synth4D-nuScenes and nuScenes. Quantization pa-
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Table 6.1: Synth4D-KITTI→Real, single-source. Our approach (LiDOG) improves upon

Source model on both real datasets: +19.49 mIoU for SemanticKITTI and +16.52 mIoU

for nuScenes, outperforming all baselines. Lower bound (red): a model trained on the

source domain without the help of DG techniques. Upper bound (blue): model directly

trained on the target data.

S T Info Method Vehicle Person Road Sidewalk Terrain Manmade Vegetation mIoU

Lower bound Source 34.33 4.47 36.38 13.27 19.48 23.1 41.81 24.69
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em
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Aug

Mix3D [123] 59.99 14.02 55.75 17.71 25.67 39.26 53.00 37.92

PointCutMix [230] 58.26 14.35 67.74 13.91 27.26 49.21 64.22 42.14

CoSMix [153] 43,01 14.16 61.84 12.38 18.84 18.00 57.56 32.26

2D DG
IBN [125] 24.95 9.18 56.82 17.85 7.21 21.59 44.65 26.04

RobustNet [26] 50.85 14.97 58.71 7.83 19.96 42.58 44.52 34.20

3D UDA
SN [196] 49,38 14.83 68.53 18.45 25.62 37.49 59.48 39.11

RayCast [90] 51.73 4.33 56.43 18.07 23.91 36.23 40.52 33.03

3D DG Ours (LiDOG) 72.86 17.1 71.85 28.48 11.53 46.02 61.42 44.18

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53

Lower bound Source 19.99 6.80 32.85 6.81 11.95 45.07 20.86 20.62
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Aug

Mix3D [123] 26,8 22.68 41.90 7.31 13.54 48.17 52.09 30.36

PointCutMix [230] 23,97 19.49 44.27 6.29 12.14 48.85 55.44 30.06

CoSMix [153] 16.94 15.78 52.97 2.09 5.55 15.6 43.85 21.83

2D DG
IBN [125] 21,32 11.96 36.83 5.39 11.25 35.91 37.46 22.87

RobustNet [26] 26.19 7.47 43.85 2.29 13.93 43.63 46.32 26.24

3D UDA
SN [196] 23.14 14.08 51.60 11.38 14.02 46.91 50.83 30.28

RayCast [90] 19.54 11.78 56.53 6.66 8.45 45.66 36.99 26.52

3D DG Ours (LiDOG) 31.29 19.62 64.66 14.21 15.63 57.3 57.27 37.14

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49

rameters xq and zq are computed based on the spatial bounds in order to

obtain BEV labels of 168x168 pixels. For downsampling dense features, we

use a max pooling layer with window size 5, stride 3, and padding 1. The

LiDOG 2D decoder is implemented with a series of three 2D convolutional

layers interleaved by batch normalization layers. ReLU activation function

is used on all the layers while softmax activation is applied on the last

layer.
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Table 6.2: Synth4D-nuScenes→Real, single-source. We train our model on Synth4D-

nuScenes and test on SemanticKITTI and nuScenes. LiDOG improves over the source

models by +15.08 mIoU on SemanticKITTI and by +9.21 mIoU on nuScenes. LiDOG

outperforms all the compared baselines. Lower bound (red): a model trained n the source

domain without the help of DG techniques. Upper bound (blue): a model directly trained

on target data.

S T Info Method Vehicle Person Road Sidewalk Terrain Manmade Vegetation mIoU

S
y
n
th
4D

-n
u
S
ce
n
es

S
em

an
ti
cK

IT
T
I

Lower bound Source 14.54 2.41 32.78 14.86 6.4 30.89 36.07 19.71

Aug

Mix3D [123] 37.38 7.26 56.90 21.06 10.60 34.46 53.79 31.64

PointCutMix [230] 27.51 4.32 56.04 21.37 7.02 24.38 45.35 26.57

CoSMix [153] 16.13 6.42 39.71 14.63 13.04 23.54 30.57 20.58

2D DG
IBN [125] 47.15 7.81 50.74 4.51 15.20 29.53 51.35 29.47

RobustNet [26] 21.19 8.56 44.46 10.80 15.06 11.95 30.59 20.37

3D UDA
SN [196] 11.56 2.38 37.50 10.86 5.19 20.70 39.23 18.20

RayCast [90] 28,89 6.34 53.59 12.94 15.86 21.74 41.85 25.89

3D DG Ours 55.08 11.42 59.48 26.10 2.78 34.83 53.82 34.79

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53

S
y
n
th
4D

-n
u
S
ce
n
es

n
u
S
ce
n
es

Lower bound Source 17.73 8.94 36.53 7.28 5.78 52.13 43.62 24.57

Aug

Mix3D [123] 33.83 17.85 47.74 8.93 9.71 56.35 44.18 31.23

PointCutMix [230] 21.51 13.12 53.72 8.86 8.45 54.83 48.81 29.90

CoSMix [153] 22.00 15.43 57.40 8.86 9.08 56.24 47.16 30.88

2D DG
IBN [125] 23.07 14.13 44.96 7.10 9.83 53.70 49.49 28.90

RobustNet [26] 21.59 12.29 48.52 8.14 6.22 51.33 47.68 27.97

3D UDA
SN [196] 24.71 8.45 5.,08 5.66 11.04 47.00 39.05 26.57

RayCast [90] 19.65 12.24 58.08 7.58 9.71 46.43 41.37 27.86

3D DG Ours (LiDOG) 26.79 18.68 63.28 15.81 6.57 58.8 46.5 33.78

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49

Synth → Real evaluation

In this section, we train our model on one or more synthetic source do-

mains and evaluate on both real target domains, i.e., SemanticKITTI and

nuScenes-lidarseg. We report two models as lower and upper bounds in all

the tables for reference: source (i.e., a model trained on the source domain

without the help of DG techniques) and target (i.e., model directly trained

on the target data).

Single-source. In Tab. 6.1, we report the results for single-source Synth4D-

KITTI→Real. We observe a 36.84 mIoU gap (SemanticKITTI) between

126



CHAPTER 6. UNKNOWN TARGET 6.1. LIDOG

the source (24.69 mIoU) and target (61.53 mIoU) models. Among the base-

lines, augmentation-based methods are the most effective: PointCutMix

and Mix3D achieve 42.14 mIoU and 30.36 mIoU on Synth4D-KITTI→Real,

respectively. Surprisingly, these approaches outperform 3D DA baselines,

that leverage prior information about the target domain, e.g., vehicle di-

mensions (SN) or target sensor specs (RayCast), confirming the efficacy

of data augmentations for DG. LiDOG significantly reduces the domain

gap between source and target models and outperforms all the compared

baselines in all the scenarios. For example, on Synth4D-KITTI→Real

(Tab. 6.1), we obtain 44.18 mIoU, a +19.49 improvement over the source

model. In Tab. 6.2, we report the results for single-source Synth4D-nuScenes

→ Real. We observe a 41.82 mIoU gap (SemanticKITTI) between the

source (19.71 mIoU) and target (61.53 mIoU) models on Synth4D-nuScenes

→ SemanticKITTI and a 23.92 mIoU gap (nuScenes), between source

(24.57 mIoU) and target (48.49 mIoU) on Synth4D-nuScenes→nuScenes.

Among the baselines, augmentation-based methods are the most effec-

tive, with Mix3D achieving 31.64 mIoU (SemanticKITTI) and 31.23 mIoU

(nuScenes). LiDOG reduces the domain gap between source and target

models and outperforms all the compared baselines in all the scenarios. For

example, on Synth4D-nuScenes→Real (Tab. 6.2), we obtain 34.79 mIoU,

a +15.08 improvement over the source model.

Multi-source. In Tab. 6.3, we report the results for the multi-source train-

ing, where we train our model on both synthetic datasets, and evaluate the

model on both real datasets. Compared to the single source (Tab. 6.1),

in this setting, we train models on synthetic data that mimic two differ-

ent sensor types. The source model improves from 24.69 → 31.82 mIoU

on SemanticKITTI and from 20.62 → 25.60 mIoU on nuScenes as a re-

sult of training on multiple synthetic datasets. As can be seen, LiDOG

consistently improves over top-scoring baselines, RobustNet (+3.04 mIoU)
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Table 6.3: (Synth4D-nuScenes + Synth4D-KITTI)→Real, multi-source. Baselines signif-

icantly improve performance relative to the source model. Specifically, with LiDOG we

observe +10.62 mIoU improvement on SemanticKITTI and +14.63 mIoU on nuScenes.

Our approach (LiDOG) outperforms all the compared approaches. Lower bound (red):

a model trained on the source domain without the help of DG techniques. Upper

bound (blue): model directly trained on the target data.

S T Info Method Vehicle Person Road Sidewalk Terrain Manmade Vegetation mIoU

S
y
n
th
4D

-n
u
S
ce
n
es
+
S
y
n
th
4D

-K
IT

T
I

Lower bound Source 45.14 8.39 41.74 17.28 18.44 33.81 57.93 31.82

S
em

an
ti
cK

IT
T
I

Aug

Mix3D [123] 45.64 7.72 59.11 22.12 16.86 50.03 51.59 36.15

PointCutMix [230] 48.38 6.28 60.8 20.53 7.56 33.62 54.32 33.07

CoSMix [153] 45.81 0.93 59.28 22.81 18.13 43.14 40.91 33.00

2D DG
IBN [125] 58.9 12.02 67.09 27.89 7.53 33.91 57.62 37.85

RobustNet [26] 59.28 13.11 66.55 7.75 30.87 35.46 62.75 39.40

3D UDA
SN [196] 35.07 5.95 60.36 27.96 13.3 26.88 54.88 32.06

RayCast [90] 58.06 3.3 63.41 25.33 22.03 35.39 41.64 35.59

3D DG Ours (LiDOG) 66.23 18.87 67.39 24.13 15.22 46.21 59.03 42.44

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53

S
y
n
th
4D

-n
u
S
ce
n
es
+
S
y
n
th
4D

-K
IT

T
I

Lower bound Source 20.64 13.4 28.44 7.61 10.23 52.88 46.01 25.60

n
u
S
ce
n
es

Aug

Mix3D [123] 28.35 24.6 57.16 13.96 9.48 60.19 55.98 35.67

PointCutMix [230] 25.6 14.8 54.29 11.58 6.66 58.09 51.53 31.79

CoSMix [153] 23.13 8.26 52.24 11.04 10.88 58.29 53.43 31.04

2D DG
IBN [125] 26.11 16.95 55.16 13.59 12.67 56.64 52.92 33.43

RobustNet [26] 27.03 16.48 50.61 6.66 15.73 57.68 56.47 32.95

3D UDA
SN [196] 19.08 13.89 53.18 14.73 9.69 53.54 45.39 29.93

RayCast [90] 25.37 9.03 60.27 10.03 11.15 54.72 45.56 30.87

3D DG Ours (LiDOG) 30.78 25.3 73.2 19.83 16.03 62.65 53.80 40.23

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49

and Mix3D (+4.56 mIoU). On average, LiDOG significantly improves over

the source model with +10.62 mIoU and +14.63 mIoU on SemanticKITTI

and nuScenes, respectively. We conclude that LiDOG is consistently a

top-performer for classes and scenarios over the source model, except for

the terrain class. This may be a limitation of our BEV projection. We

assume it occurs when multiple classes are spatially overlapping due to the

top-down projection, e.g., mixing terrain with vegetation.
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Table 6.4: SemanticKITTI→nuScenes, single-source. We train our model on Se-

manticKITTI and evaluate it on the nuScenes dataset. LiDOG improves over the source

model by +8.35 mIoU. Lower bound (red): a model trained on the source domain with-

out the help of DG techniques. Upper bound (blue): model directly trained on the target

data.
S T Info Method Vehicle Person Road Sidewalk Terrain Manmade Vegetation mIoU

Lower bound Source 22.92 0.03 63.33 16.09 7.42 35.40 40.53 26.53

S
em

an
ti
cK

IT
T
I

n
u
S
ce
n
es

Aug

Mix3D [123] 33.74 11.22 58.54 12.91 5.28 50.36 48.59 31.52

PointCutMix [230] 22.75 2.68 59.37 10.47 7.04 27.9 42.74 24.71

CoSMix [153] 35.91 0.00 58.13 11.57 8.95 45.17 49.11 29.83

2D DG
IBN [125] 29.93 0.01 56.77 18.70 12.09 37.67 33.83 27.00

RobustNet [26] 25.50 0.03 62.40 15.12 9.40 29.58 43.62 26.52

3D UDA
SN [196] 21.35 0.01 60.48 15.06 6.16 31.85 45.69 25.80

RayCast [90] 28.82 0.00 59.25 16.08 12.51 49.72 49.82 30.89

3D DG Ours (LiDOG) 23.97 14.86 70.63 24.59 13.97 45.27 50.85 34.88

Upper bound Target 47.42 20.18 80.89 37.02 34.99 64.27 54.67 48.49

Real → Real evaluation

In this evaluation, we only train and evaluate our models on real-world

recordings. We report SemanticKITTI→nuScenes results in Tab. 6.4 and

nuScenes→SemanticKITTI results in Tab. 6.5. Overall, we observe that

the performance gap of Real→Real (Tab. 6.4-6.5) is lower compared to the

gap in Synth→Real setting (Tab. 6.1-6.3).

SemanticKITTI→nuScenes. We observe a performance gap of 21.96 mIoU

between source (26.53 mIoU) and target (48.49 mIoU) models. All the

baselines consistently improve over the source model, however, by a smaller

margin as compared to Synth→Real. Again, LiDOG improves on all the

classes compared to the source performance and achieves top generaliza-

tion performance on all the classes except for vehicle and manmade. On

average, LiDOG obtains 34.88 mIoU and obtains +8.35 mIoU improvement

over the source model.

nuScenes→SemanticKITTI. We observe a performance gap of 31.98 mIoU
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Table 6.5: nuScenes→SemanticKITTI, single-source. We train our model on nuScenes

and evaluate it on the SemanticKITTI dataset. LiDOG improves over the source model

by +11.67 mIoU. Lower bound (red): a model trained on the source domain with-out the

help of DG techniques. Upper bound (blue): model directly trained on the target data.

S T Info Method Vehicle Person Road Sidewalk Terrain Manmade Vegetation mIoU

Lower bound Source 27.16 6.12 29.19 8.75 22.87 51.27 61.47 29.55

n
u
S
ce
n
es

S
em

an
ti
cK

IT
T
I

Aug

Mix3D [123] 37.86 6.74 41.95 5.73 27.59 41.21 65.41 32.36

PointCutMix [230] 55.22 13.92 45.96 5.43 30.47 56.50 70.98 39.78

CoSMix [153] 44.58 13.88 36.10 10.19 29.32 54.43 69.08 36.80

2D DG
IBN [125] 22.00 11.32 37.24 0.21 13.11 21.76 50.33 22.28

RobustNet [26] 32.94 10.98 39.85 14.70 28.27 50.42 58.47 33.66

3D UDA
SN [196] 25.69 5.46 19.59 2.17 23.47 27.65 61.07 23.58

RayCast [90] 28.30 16.09 45.80 9.44 20.56 38.56 61.83 31.51

3D DG Ours (LiDOG) 60.07 9.03 47.44 16.40 32.58 54.21 68.82 41.22

Upper bound Target 81.57 23.23 82.09 57.64 46.84 64.14 75.21 61.53

with source and target models achieving 29.55 mIoU and 61.53 mIoU, re-

spectively. Augmentation-based methods are once again the most effective

baselines, with PointCutMix achieving 39.78 mIoU. LiDOG outperforms

all the compared baselines, achieves 41.22 mIoU and obtains +11.67 over

the source model.

6.1.4 Ablation studies

BEV auxiliary task

We study whether LiDOG generalization capabilities are due to the addi-

tional segmentation head, or specifically due to the dense BEV segmen-

tation head. The use of multiple prediction heads for ensembling is a

well-known practice for improving prediction robustness [19, 47]. To this

purpose, we remove the lower branch of LiDOG and attach an additional

3D branch. The resulting architecture has two sparse 3D heads h3D taking

as input F 3D. During inference, predictions are obtained by averaging the

predictions from both heads. Fig. 6.5 reports the generalization perfor-
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Figure 6.5: Effectiveness of the BEV head: We compare 2D BEV decoder (Ours) to

simply adding an additional 3D segmentation head (Double) on SemanticKITTI (left)

and nuScenes (right). Source: Synth4D −KITTI.

mance of this alternate version (Double) compared to LiDOG (Ours). As

can be seen, by simply learning two decoders and ensembling predictions

we obtain lower performance as compared to utilizing the proposed BEV

network heads to improve the generalization.

BEV prediction area

First, we study the impact on the generalization ability of LiDOG w.r.t.

BEV area size in Synth4D-KITTI→Real setting. We experiment with

projection bounds B3D ranging from 10x10 to 60x60m. As can be seen in

Fig. 6.6, there is a near-linear relation between the BEV area and general-

ization performance.

BEV resolution

We study the impact of BEV image resolution on the LiDOG performance.

We adapt the feature resolution by applying several pooling steps and the

label resolution via the quantization step size. In Fig. 6.7, we report the

results obtained on Synth4D-KITTI→Real, when using BEV features with

50% and 75% of the initial resolution (100%). Interestingly, on Synth4D-

KITTI→nuScenes, we observe a slight improvement with 75% resolution.

131



6.1. LIDOG CHAPTER 6. UNKNOWN TARGET

10m 20m 30m 40m 50m 60m

m
Io

U

40.86 40.55

41.92

39.8

44.18

42.51

32.65
33.22

35.95
34.85

37.4

35.27

Figure 6.6: BEV prediction area: We study the impact of BEV area size on Se-

manticKITTI (top) and nuScenes (bottom). 50x50m area is consistently the best-

performing option on both datasets. Source: Synth4D −KITTI.
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Figure 6.7: BEV image resolution: We compare the performance while changing the BEV

image resolution on SemanticKITTI (left) and nuScenes (right), Source: Synth4D-KITTI.

However, we obtain consistently top performance on both domains with

the full resolution (100%).

Qualitative comparison with Mix3D

In Fig. 6.8, we discuss qualitative results, comparing the source model, the

top-performing baseline, Mix3D, our proposed LiDOG, and the ground-

truth labels. As we can see, the source model predictions are often incorrect

and mingled in many small and large regions. Mix3D brings (limited)
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source mix3D ours gt

Figure 6.8: Qualitative results. Top: Synth4D-KITTI→SemanticKITTI, bottom:

Synth4D-KITTI→nuScenes. LiDOG improves consistently improves results over the

source model and outperforms Mix3D [123] with more homogeneous predictions.

improvements. For example, notice how road (Fig. 6.8 top) is incorrectly

segmented. LiDOG achieves overall top performance, improving on both

small (vehicle) and large (building and road) areas.

Additional qualitative results

We report additional qualitative results for each baseline and in all the

studied generalization directions. In Fig. 6.9-6.11 we show qualitative re-

sults in the Synth→Real setting: Synth4D-kitti→Real (Fig. 6.9), Synth4D-

nuScenes→Real (Fig. 6.10) and Synth4D-kitti+Synth4D-nuScenes→Real

(Fig. 6.11). In Fig. 6.12-6.13 we show qualitative results in the Seman-

tic KITTI → nuScenes and nuScenes→SemanticKITTI directions, respec-

tively. Source predictions are often incorrect and spatially inconsistent.

Baselines consistently improve over the source model performance. LiDOG

achieves the overall best performance with improved and more precise pre-

dictions. This can be seen in all the reported results, both synth→real and

real→real.

133



6.1. LIDOG CHAPTER 6. UNKNOWN TARGET

so
u
rc
e

m
ix
3
D

p
.c
u
tm

ix
c
o
sm

ix
ib
n

ro
b
u
st
.

sn
ra

y
c
a
st

o
u
rs

g
t

SemanticKITTI nuScenes

Figure 6.9: Qualitative results. Left: Synth4D-kitti→SemanticKITTI, right: Synth4D-

kitti→nuScenes.
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Figure 6.10: Qualitative results. Left: Synth4D-nuScenes→SemanticKITTI,

right: Synth4D-nuScenes→nuScenes.
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Figure 6.11: Qualitative results. Left: Synth4D-kitti + Synth4D-nuScenes → Se-

manticKITTI, right: Synth4D-kitti + Synth4D-nuScenes → nuScenes.
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Figure 6.12: Qualitative results. SemanticKITTI→nuScenes.
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Figure 6.13: Qualitative results. nuScenes→SemanticKITTI.
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Chapter 7

Conclusions

In this thesis, we addressed the challenge of domain shift in 3D point cloud

perception, exploring mitigation strategies across five distinct settings that

vary in target supervision, target data availability, and source availability.

Our study ranged from semi-supervised and unsupervised domain adapta-

tion to source-free and online adaptation to domain generalization.

In particular, Chapter 3 focused on domain shift with annotated source

and partially annotated or unlabeled target domains. We introduced a

novel mixing-based strategy for point cloud domain adaptation in these

settings. In Chapter 4, we presented the first study on source-free adap-

tation, mitigating domain shift from a pre-trained source model without

access to source data during adaptation. Our approach employed pseudo-

annotations, reversible scale transformations, and motion coherency. Chap-

ter 5 and Chapter 6 delved into the novel settings of online target data

and no target data, respectively. In Chapter 5, we introduced the pioneer-

ing study of source-free online unsupervised domain adaptation for point

clouds and the first method for this setting leveraging pseudo-annotations

and geometric feature propagation. Additionally, we introduced a synthetic

dataset for 3D semantic segmentation simulating widely used LiDAR sen-

sors. Finally, in Chapter 6, we explored handling domain shift towards
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unknown target domains. After studying existing work in related fields,

we proposed the first approach for domain generalization in point clouds,

using an auxiliary dense BEV task.

7.1 Future directions

The progress in methods for domain adaptation and domain generalization

for 3D perception has been driven by assumptions that facilitate the study

of this issue, yet these assumptions underlie the main limitations of these

approaches.

Current approaches rely on the close-set class assumption, assuming

the same label space in source and target domains. While practical in

controlled scenarios, this assumption is challenging to verify in real-world

perception. A first promising research direction is the development of adap-

tation or generalization approaches between different label spaces across

domains. Addressing domain shift while recognizing diverse or novel classes

presents a valuable opportunity for real-world applications. While novel

class discovery in 3D semantic segmentation has gained attention [140], ex-

isting approaches focus on the same domain. Consequently, the challenge

of handling domain shift with different label spaces in 3D perception still

needs to be explored.

A second promising direction is the study of label shift in recent open-

vocabulary 3D perception methods. Recent advances in multi-modal learn-

ing [137] have demonstrated extraordinary results, unlocking the potential

of diverse modalities for open vocabulary perception [127, 174]. How-

ever, their behavior across different domains remains relatively unexplored,

presenting a promising direction for future studies. These methods typi-

cally leverage self-supervised pre-training with image and text modalities,

wherein semantic concepts are implicitly learned from the text modality
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and inherited post-distillation into the 3D modality [127, 174]. Never-

theless, the identification of seen and unseen classes and the impact on

open-vocabulary and out-of-domain robustness are yet to be explored com-

prehensively.

A third promising research direction involves the use of multiple modal-

ities during adaptation or generalization training. Connected with multi-

modal learning, the inclusion of additional modalities in the adaptation

process has shown potential for enhancing adaptation performance and

generalization capabilities, as evidenced by some recent works [74]. How-

ever, the exploration of how these additional modalities can improve gener-

alization or adaptation in the context of 3D perception remains relatively

unknown.

In conclusion, existing domain adaptation or generalization approaches

need a comprehensive exploration of domain shift among different input

representations. Specifically, methods using projection-based architectures

often avoid the inclusion of point or voxel-based architectures and vice

versa. This creates a significant gap, as certain phenomena and domain

shift causes may be representation-dependent, presenting an opportunity

for cross-representation learning. Our work in [156] took a step in this di-

rection by introducing BEV maps to enhance generalization robustness.

Nevertheless, the inclusion of other point cloud representations during

training and the investigation of domain shift among input representations

remains an interesting and unexplored direction for future research.
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