
PhD Dissertation

PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Risk-based vulnerability management
Exploiting the economic nature of the attacker to build sound

and measurable vulnerability mitigation strategies

Luca Allodi

Advisor:

Prof. Fabio Massacci

Università degli Studi di Trento

April 2014

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Automatic Techniques for the Synthesis

and Assisted Deployment of Security

Policies in Workflow-based Applications

Daniel Ricardo dos Santos

Advisor:

Dr. Silvio Ranise

Fondazione Bruno Kessler (FBK)

Co-Advisors:

Dr. Luca Compagna and Dr. Serena Ponta

SAP Labs France

March 2017

To my family, who support me in every moment of

my life; amare et sapere vix deo conceditur.

Abstract

Workflows specify a collection of tasks that must be executed under the

responsibility or supervision of human users. Workflow management sys-

tems and workflow-driven applications need to enforce security policies in

the form of access control, specifying which users can execute which tasks,

and authorization constraints, such as Separation/Binding of Duty, further

restricting the execution of tasks at run-time. Enforcing these policies is

crucial to avoid frauds and malicious use, but it may lead to situations

where a workflow instance cannot be completed without the violation of the

policy. The Workflow Satisfiability Problem (WSP) asks whether there ex-

ists an assignment of users to tasks in a workflow such that every task is

executed and the policy is not violated. The run-time version of this prob-

lem amounts to answering user requests to execute tasks positively if the

policy is respected and the workflow instance is guaranteed to terminate.

The WSP is inherently hard, but solutions to this problem have a practical

application in reconciling business compliance (stating that workflow in-

stances should follow the specified policies) and business continuity (stating

that workflow instances should be deadlock-free). Related problems, such as

finding execution scenarios that not only satisfy a workflow but also satisfy

other properties (e.g., that a workflow instance is still satisfiable even in

the absence of users), can be solved at deployment-time to help users design

policies and reuse available workflow models.

The main contributions of this thesis are three:

1. We present a technique to synthesize monitors capable of solving the

run-time version of the WSP, i.e., capable of answering user requests

to execute tasks in such a way that the policy is not violated and the

workflow instance is guaranteed to terminate. The technique is ex-

tended to modular workflow specifications, using components and glu-

ing assertions. This allows us to compose synthesized monitors, reuse

workflow models, and synthesize monitors for large models.

2. We introduce and present techniques to solve a new class of problems

called Scenario Finding Problems, i.e., finding execution scenarios

that satisfy properties of interest to users. Solutions to these prob-

lems can assist customers during the deployment of reusable workflow

models with custom authorization policies.

3. We implement the proposed techniques in two tools. Cerberus inte-

grates monitor synthesis, scenario finding, and run-time enforcement

into workflow management systems. Aegis recovers workflow mod-

els from web applications using process mining, synthesizes monitors,

and invokes them at run-time by using a reverse proxy. An extensive

experimental evaluation shows the practical applicability of the pro-

posed approaches on realistic and synthetic (for scalability) problem

instances.

Keywords

Business Process, Workflow, Authorization, Workflow Satisfiability, Work-

flow Resiliency

6

Contents

1 Introduction 1

1.1 Objectives and research challenges 6

1.2 Contributions . 8

1.3 Structure of the thesis . 9

1.4 List of publications . 10

2 State of the art 13

2.1 Workflow modeling . 14

2.2 Workflow satisfiability . 16

2.2.1 Problem formulations 17

2.2.2 Related approaches 23

2.2.3 Comparison . 26

2.3 Workflow resiliency . 31

2.3.1 Comparison . 33

2.4 Workflow-driven web applications 34

2.4.1 Comparison . 36

I Fundamentals 39

3 Automatic synthesis of run-time enforcement monitors 41

3.1 Overview . 43

3.1.1 Off-line phase . 43

i

3.1.2 On-line phase . 50

3.2 Formal description . 54

3.2.1 Off-line . 54

3.2.2 On-line . 63

4 Modularity for security-sensitive workflows 67

4.1 Modular design and enactment 69

4.2 Security-sensitive workflow components 72

4.3 Gluing together security-sensitive components 81

4.4 Modular synthesis of run-time monitors 86

5 Assisting the deployment of security-sensitive workflows 89

5.1 Preliminaries . 90

5.2 Scenario finding problems 92

5.2.1 Minimal user-base scenarios 94

5.2.2 Resilient scenarios 96

5.2.3 Constrained scenarios 99

5.3 From solving the WSP to solving SFPs 101

5.3.1 Solving the B-SFP and the MUB-SFP 102

5.3.2 Solving the SkR-SFP 107

5.3.3 Solving the C-SFP 111

II Applications 113

6 Cerberus: integrating monitor synthesis in workflow man-

agement systems 115

6.1 Tool architecture and implementation 116

6.2 Using Cerberus . 119

6.2.1 Design-time . 120

ii

6.2.2 Monitor synthesis 121

6.2.3 Deployment . 122

6.2.4 Run-time . 122

6.3 Experiments . 123

6.3.1 Monitor synthesis - real-world workflows 125

6.3.2 Monitor synthesis - scalability 127

6.3.3 Scenario finding . 129

7 Aegis: automatic enforcement of security policies in

workflow-driven web applications 137

7.1 Overview . 140

7.1.1 Example 1 - Enforcing constraints 143

7.1.2 Example 2 - Mitigating vulnerabilities 148

7.2 Details . 150

7.2.1 Step 1 - Model inference 152

7.2.2 Step 2 - Monitor synthesis 157

7.2.3 Step 3 - Run-time monitoring 160

7.3 Experiments . 161

7.3.1 Experimental setup 162

7.3.2 Results . 164

7.4 Discussion and limitations 167

III Discussion 171

8 Industrial impact 173

8.1 Use cases . 173

8.1.1 Cerberus . 173

8.1.2 Aegis . 174

8.1.3 TestREx . 176

iii

8.2 Discussion and Perspectives 178

9 Conclusions and Future work 183

9.1 Future work . 186

9.1.1 Monitor extensions 186

9.1.2 Modularity and reuse of workflow patterns 187

9.1.3 Scenario finding . 189

9.1.4 Web application monitoring and testing 190

Bibliography 193

iv

List of Tables

2.1 Comparison of related work 23

3.1 TRW as symbolic transition system 46

3.2 A run of the monitor program Mn=3 for the TRW 53

6.1 Experiments for the B-SFP, MUB-SFP, and C-SFP 133

6.2 Experiments for the SkR-SFP 134

7.1 Applications used in the experiments 163

7.2 Monitoring overhead . 166

v

List of Figures

2.1 Constraint classes . 21

3.1 TRW in extended BPMN 42

3.2 TRW as an extended Petri net 43

3.3 Graph-like representation of the set of reachable states for

the TRW . 48

4.1 MDW in extended BPMN 70

4.2 User actions necessary to specify and compose modules rep-

resenting the TRW and MDW 70

4.3 TRW and MDW as combinations of security-sensitive com-

ponents . 75

5.1 Another graph representation of the set of reachable states

for the TRW . 103

6.1 Tool Architecture . 116

6.2 Loan Origination Process 119

6.3 Workflow constraints . 121

6.4 Generate the monitor and instantiate the workflow 123

6.5 Task list . 124

6.6 Request granted . 124

6.7 Request denied . 124

6.8 Drug dispensation process from [10]. 125

vii

6.9 Total run-time of off-line phase by the number of tasks in

all configurations . 129

6.10 Total run-time of the on-line phase by the number of tasks

in all configurations . 130

6.11 ITIL 2011—IT Financial Reporting (abbreviated ITIL) . . 131

6.12 ISO9000—Budgeting for Quality Management (abbreviated

ISO) . 131

7.1 Overview of the technique 142

7.2 Customer invoice process in BPMN (top) and as a Petri net

(bottom) . 144

7.3 Checkout process in BPMN (top) and as a Petri net (bottom)148

7.4 Patient visit workflow mined from OpenEMR (top) and lab

analysis workflow mined from BikaLIMS (bottom) 164

8.1 Overview of the testbed architecture 177

9.1 Workflow pattern composition. Sequential (top), parallel

(middle), and alternative (bottom) composition. 188

viii

Abbreviations

ARBAC Administrative RBAC

BoD Binding of Duty

BP Business Process

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Model and Notation

EPC Event Process Chains

ERP Enterprise Resource Planning

FPT Fixed-Parameter Tractable

GRC Governance, Risk, and Compliance

GUI Graphical User Interface

LTL Linear Temporal Logic

MDP Markov Decision Process

MDW Moderate Discussion Workflow

OMG Object Management Group

RBAC Role-Based Access Control

RCP Resiliency Checking Problem

REST Representational State Transfer

SMT Satisfiability Modulo Theories

ix

SOA Service-Oriented Architecture

SoD Separation of Duty

SoDA Separation of Duties Algebra

TRW Trip Request Workflow

WFMS Workflow Management System

WSP Workflow Satisfiability Problem

YAWL Yet Another Workflow Language

x

Chapter 1

Introduction

A workflow specifies a collection of tasks, whose execution is initiated by

humans or software agents executing on their behalf, and the constraints

on the order of execution of those tasks. Workflows represent a repeatable

and structured collection of tasks designed to achieve a desired goal. They

are used to model Business Processes (BPs) that capture the activities that

must be performed in a business setting to provide a service or product.

Business Process Management (BPM) includes the identification, execu-

tion, monitoring, and improvement of business processes over time [158].

BPM encompasses tools such as Workflow Management Systems (WFMS),

used to handle the execution of workflows modeled in standard languages,

e.g., Business Process Model and Notation (BPMN); and Process Mining,

used to discover business processes from event log data [144].

Workflow enactment services provide the run-time environment that

controls and executes workflows. BPM was originally a business discipline

focused on modeling rather than the automated enactment of processes.

The notion of Service-Oriented Architecture (SOA) helps bridge the gap

between modeled processes and executable artifacts by encapsulating func-

tionality provided by applications within web services. SOA can be used

to realize process enactment with processes implementing new services or

1

Chapter 1

using existing ones. Business Process Execution Language (BPEL) [115] is

an executable language for specifying actions within business processes as

web services. Processes in BPEL export and import information by using

web service interfaces that can be invoked using standards such as HTTP,

WSDL and UDDI [145].

More recent trends in SOA include the development of microservices to

build systems that evolve incrementally and are continuously deployed, as

well as the use of Representational State Transfer (REST) web services.

These services allow requesting systems to access and manipulate textual

representations of web resources using a predefined set of stateless opera-

tions, called an API. These trends have led to the development of a new

generation of “agile” BPM tools that allow the direct execution of a subset

of BPMN through the invocation of REST APIs (see, e.g., [90, 89]). On

the infrastructure side, BPM is moving to the cloud due to advantages

such as elasticity [135]. Workflow as a Service (WFaaS) [120] and Business

Process as a Service (BPaaS) [153] platforms allow customers to outsource

the modeling and execution of processes. Cloud-based run-time platforms

take advantage of RESTful BPM to manage many process instances and

provide scalability and dependability not supported by traditional BPM

software [63]. One example of a cloud-only BPM tool is Amazon SWF1,

whereas tools such as jBPM2 and Activiti3 can be deployed on-premise or

on cloud. The three preceding tools expose REST APIs to manage the

execution of workflows.

The aforementioned different technologies show that there are several

ways to implement BPM. Both functional and non-functional require-

ments need to be considered when implementing workflow-based appli-

cations [145]. Workflow patterns [148, 128, 127] can be used to elicit

1http://aws.amazon.com/swf/
2http://www.jbpm.org/
3http://www.activiti.org/

2

http://aws.amazon.com/swf/
http://www.jbpm.org/
http://www.activiti.org/

Chapter 1

functional requirements, whereas architectural choices are mostly driven

by non-functional requirements related to cost, performance, and secu-

rity [145].

Security-related dependencies are specified in workflows as authorization

policies and additional constraints on the execution of the various tasks.

Authorization policies specify that, in an organization, a workflow task

is executed by a user who should be entitled to do so; e.g., the teller of a

bank may create a loan request whereas only a manager may accept it. Ad-

ditional authorization constraints are usually imposed on task execution,

such as Separation of Duty (SoD) or Binding of Duty (BoD) whereby two

distinct users or the same user, respectively, must execute two tasks. In

this thesis, following [5], we call “security-sensitive” this kind of workflows.

Authorization policies and constraints are crucial to ensure the security of

workflow systems and to avoid errors and frauds. A recent example of fraud

that could be avoided with the proper enforcement of authorization con-

straints is the Société Générale scandal, caused by shuffling transactions,

that led to a loss of almost 5 billion euro [28, 59].

While the enforcement of authorization policies and constraints is fun-

damental for security [92], it may also lead to situations where a workflow

instance cannot be completed because no task can be executed without vi-

olating either the authorization policy or the constraints. These deadlock

situations emphasize the conflict between security and usability and, in the

case of business processes, the conflict between business compliance and

business continuity. Business compliance states that the business processes

must follow the modeled workflows, respecting control-flow constraints, au-

thorization policies and authorization constraints. Business continuity, on

the other hand, states that the business must not stop even in adverse

conditions, e.g., in the absence of authorized users.

These conflicts may be resolved by an administrator granting additional

3

Chapter 1

permissions to a user, which violates the original intended policy and there-

fore hurts compliance. An alternative is that an administrator can cancel

the execution of a business process instance, which violates business conti-

nuity. An ideal solution is to avoid that any instance execution ever reaches

a situation where this choice must be made.

The Workflow Satisfiability Problem (WSP) consists of checking if

there exists an assignment of users to tasks such that a security-sensitive

workflow successfully terminates while satisfying all authorization con-

straints. Such a problem has been studied in several papers; see,

e.g., [14, 34, 154, 41, 36, 29, 30, 35, 42, 12]. The run-time version of

the WSP consists of answering sequences of user requests at execution

time and ensuring successful termination together with the satisfaction of

authorization policies and constraints. This problem has received less at-

tention and only an approximate solution is available [12, 10]. Besides the

WSP, other related problems have been studied in the literature. Work-

flow Resiliency [154] amounts to checking if a workflow can still be satisfied

even in the absence of a certain number of users, while Workflow Feasibil-

ity [85] concerns the question of whether there is a possible configuration

of the authorization policy (considering, e.g., delegation or administrative

policies) in which the workflow is satisfiable.

These problems have been studied for workflows running in a WFMS,

which usually provides control-flow enforcement and basic authorization

enforcement, although support for authorization constraints is rare. How-

ever, nowadays, web applications are one of the most widely used platforms

to implement business processes and deliver services to customers. Web

applications implementing workflows are called workflow-driven and both

control-flow and authorization enforcement are often implemented as ad-

hoc solutions for these applications.

In this thesis, we describe a new solution to the run-time WSP us-

4

Chapter 1

ing a monitor synthesis technique. The idea underlying our approach can

be summarized as follows. Model checking is a technique for determining

whether a (formal) model of a system satisfies a given property. If the prop-

erty is false in the model, model checkers typically produce a counterexam-

ple scenario, which is then used by developers to fix bugs in the design of the

system. To solve the WSP, we use the capability of model checkers to re-

turn counterexamples as follows. We formally represent security-sensitive

workflows as symbolic transition systems. A symbolic model checker is

then asked to find a counterexample to the property that the system is

not terminating. Indeed, the returned counterexample (if any) is precisely

an execution scenario solving the WSP. Since we are interested in finding

all execution scenarios, we modify the model checker in order to compute

all counterexamples, not just one. We represent a set of counterexample

scenarios by using a reachability graph, i.e., a directed graph whose edges

are labeled by task-user pairs in which users are symbolically represented

by variables and whose nodes are labeled by a symbolic representation

(namely, a formula of first-order logic) of the set of states from which it

is possible to reach a state in which the workflow successfully terminates.

The graph allows us to compactly encode all possible interleavings of tasks

in a workflow. From the set of formulae labeling the nodes in the reach-

ability graph we derive a monitor capable of answering positively to user

requests to execute tasks at run-time iff the user is authorized to do so

by the policy, there is no violation of authorization constraints and the

workflow can still terminate (i.e., the request is part of one of the scenarios

computed in the reachability graph).

The crux of our approach is that the model of the security-sensitive

workflow in input to the symbolic model checker only contains the con-

straints on the control-flow and the authorization constraints, while it ab-

stracts away from the authorization policy. In this way, the reachability

5

1.1. Objectives and research challenges Chapter 1

graphs computed by the model checker can then be refined with respect to

an authorization policy associated to a particular deployment context.

This technique is reused and extended to solve related problems, e.g.,

finding execution scenarios at deployment-time that satisfy certain autho-

rization policies or additional constraints. Monitor synthesis and run-time

enforcement are applied to workflow management systems, implemented

as a tool called Cerberus, and to workflow-driven web applications, im-

plemented as a tool called Aegis. The technique is the first precise and

efficient solution to the run-time WSP (as opposed to approximate solu-

tions, e.g., [12] that is too restrictive). Experimental results indicate good

performance, with requests answered in less than 1 second for workflows of

up to 200 tasks in Cerberus and overheads under 100 ms for real-world

applications in Aegis (details in Chapters 6 and 7).

The work reported in this thesis was done as part of the SECENTIS4

project, a European Industrial Doctorate program5 with the participation

of Fondazione Bruno Kessler, SAP Labs France, and the University of

Trento. Due to the nature of the project, much of the research done in this

thesis was driven and influenced by industrial needs.

1.1 Objectives and research challenges

This thesis has three main goals: to develop a novel solution to the run-

time WSP that can be applied in an industrial setting; to foster the reuse

of workflow models by providing tools to assist customers in deploying

these models; and to show how to integrate the developed solutions into

workflow management systems and workflow-driven web applications.

To achieve these goals, we must answer the following non-trivial research

questions (Q), each with an associated challenge (C).
4www.secentis.eu
5Funded by the European Union under grant 317387 (FP7-PEOPLE-2012-ITN).

6

www.secentis.eu

Chapter 1 1.1. Objectives and research challenges

Q1 How can we best specify security-sensitive workflow systems in order

to allow automatic synthesis of run-time monitors?

C1 The WSP is known to be NP-hard already in the presence of one SoD

constraint [154]. Although there are current solutions to the problem,

they are either not focused on its run-time version (see, e.g., [78]) or

not precise [12].

Q2 How can we scale monitor synthesis and allow the reuse of synthesized

monitors?

C2 Synthesis techniques based on formal methods are known to suffer

from the state-space explosion problem that severely limits their scal-

ability [118]. The resulting artifacts from such techniques cannot be

modularly composed in the interest of both reuse and scalability.

Q3 How can we ensure customers that they can reuse workflow models

with the authorization policy in their organization and how to ensure

this deployment is resilient?

C3 It is not obvious which problems a customer may face when trying to

reuse a workflow model. The associated computational problems are

at least as complex as the WSP.

Q4 How to integrate monitor synthesis and run-time enforcement with an

industrial workflow management system?

C4 Support for modeling and enforcement of authorization constraints is

not built into industrial workflow management systems. These con-

straints are often specified separately and handled by auditing soft-

ware, whose main goal is to detect problems a posteriori.

Q5 How to extend the applicability of monitor synthesis and run-time

enforcement to workflow-driven web applications?

C5 Web applications are usually not developed from a workflow specifica-

7

1.2. Contributions Chapter 1

tion. The absence of a model and the stateless nature of HTTP leads

to bugs and vulnerabilities in control-flow and authorization enforce-

ment for web applications.

1.2 Contributions

To answer the five questions above and overcome the associated challenges,

this thesis makes the following main contributions.

1. The specification of security-sensitive workflow systems using tran-

sition systems and an automated technique to synthesize run-time

monitors capable of ensuring the successful termination of workflows

while enforcing authorization policies and SoD/BoD constraints, thus

solving the run-time version of the WSP (Chapter 3). This contribu-

tion provides answers to Q1 and C1.

2. A refined version of the same specification and synthesis technique

that is focused on modularity and composability, allowing scalability

and reuse of synthesized monitors (Chapter 4). This contribution

provides answers to Q2 and C2.

3. The definition and solution of Scenario Finding Problems. Each of

these problems represents situations that a customer may want to

know before deploying a reusable workflow model (Chapter 5). This

contribution provides answers to Q3 and C3.

4. The architecture, implementation, and evaluation of the integration

of the monitor synthesis technique with a state-of-the-art workflow

management system based on the SAP HANA6 in-memory database

(Chapter 6). This contribution provides answers to Q4 and C4.

5. The use of process mining to obtain workflow models from web ap-

plication execution traces that can be fed to the same synthesis tech-

6http://hana.sap.com/

8

http://hana.sap.com/

Chapter 1 1.3. Structure of the thesis

nique to generate monitors capable of enforcing security policies in

workflow-driven web applications (Chapter 7). This contribution pro-

vides answers to Q5 and C5.

1.3 Structure of the thesis

The rest of this thesis is organized as follows. Chapter 2 discusses the

background required for the rest of this work and describes the main related

work.

Part I (Fundamentals) contains Chapters 3 to 5, describing the main

theoretical contributions. Chapter 3 presents the technique to automati-

cally synthesize run-time monitors. Chapter 4 shows an extension of the

technique for modular specifications of workflows, improving its scalability

and allowing users to exploit the reuse of workflow specifications. Chap-

ter 5 introduces and solves Scenario Finding Problems, whose solutions

assist users during the deployment of workflows with specific authorization

policies.

Part II (Applications) contains Chapters 6 and 7, describing two valu-

able applications of the solutions presented in the previous Chapters.

Chapter 6 presents the implementation of a tool integrating our work into

the SAP HANA Operational Process Intelligence platform for business pro-

cess modeling and enactment. Chapter 7 discusses the use of the monitor

synthesis technique for workflow-driven web applications.

Part III (Discussion) contains Chapters 8 and 9, discussing the impact

and results of the thesis. Chapter 8 considers the industrial impact of this

work. Chapter 9 concludes this thesis and presents future lines of research.

9

1.4. List of publications Chapter 1

1.4 List of publications

Parts of this thesis were published as the following papers (in reverse

chronological order).

[1] Chapter 7: L. Compagna, D.R. dos Santos, S.E. Ponta, and S. Ranise.

Aegis: Automatic enforcement of security policies in workflow-driven

web applications. In Proc. of CODASPY. ACM, 2017

[2] Chapter 4: D.R. dos Santos, S. Ranise, and S.E. Ponta. Modular

Synthesis of Enforcement Mechanisms for the Workflow Satisfiability

Problem: Scalability and Reusability. In Proc. of SACMAT. ACM,

2016

[3] Chapter 6: L. Compagna, D.R. dos Santos, S.E. Ponta, and S. Ranise.

Cerberus: Automated Synthesis of Enforcement Mechanisms for

Security-sensitive Business Processes. In Proc. of TACAS. Springer,

2016

[4] Chapter 5: D.R. dos Santos, S. Ranise, L. Compagna, and S.E. Ponta.

Assisting the Deployment of Security-Sensitive Workflows by Finding

Execution Scenarios. In Proc. of DBSec. Springer, 2015 (Best Stu-

dent Paper Award)

[5] Chapter 3: C. Bertolissi, D.R. dos Santos, and S. Ranise. Automated

Synthesis of Run-time Monitors to Enforce Authorization Policies in

Business Processes. In Proc. of ASIACCS. ACM, 2015

[6] Chapter 8: S. Dashevskyi, D.R. dos Santos, F. Massacci, and A. Sa-

betta. TESTREX: a Testbed for Repeatable Exploits. In Proc. of

CSET. USENIX, 2014

10

Chapter 1 1.4. List of publications

This work also resulted in the filing of two patents, which are cur-

rently under evaluation in the United States Patent and Trademark Office

(USPTO):

[7] S.E. Ponta, L. Compagna, D.R. dos Santos, and S. Ranise. Secure

and Compliant Execution of Processes. Filed in the USPTO on

13/04/2016

[8] A. Sabetta, L. Compagna, S.E. Ponta, S. Dashevskyi, D.R. dos Santos,

and F. Massacci. Multi-context Exploit Test Management. Filed in

the USPTO on 22/04/2015

11

1.4. List of publications Chapter 1

12

Chapter 2

State of the art

A workflow specification spans at least three perspectives: control-flow,

data-flow, and authorization (also called the resource perspective) [148].

Control-flow constrains the execution order of the tasks (e.g., sequential,

parallel, or alternative execution); the data-flow defines the various data

objects consumed or produced by these tasks; and the authorization spec-

ifies the organizational actors responsible for the execution of the tasks in

the form of authorization policies and constraints. These three dimensions

are interconnected, as each one of them influences the others. The set of

behaviors (i.e., possible executions of the workflow) allowed by the control-

flow is further constrained by conditions on the data, as well as by user

assignments and constraints in the authorization perspective.

Consider a simple Loan Origination Process with fours tasks: Request

Loan (t1), Evaluate Internal Credit Rating (t2), Evaluate External Credit

Rating (t3), and Approve Loan (t4). If task t1 has to be executed first,

followed by t2 and t3 (in any order), followed by t4, then the behaviors

t1, t2, t3, t4 and t1, t3, t2, t4 are allowed, whereas, e.g., t1, t4, t3, t2 is not

(where t1, . . . , tn represents a sequence of n tasks executed in order, i.e.,

ti+i is executed after ti). Now imagine that t3 is only executed for loans

of more than 10k Euro, then behavior t1, t2, t4 becomes allowed, but only

13

2.1. Workflow modeling Chapter 2

for some instances (those where the data object “loan amount” is less than

10k). If the organization running this workflow has two users u1 and u2

and there is a SoD constraint between t1 and t4 (so that the same user

cannot request and approve a loan), then any behavior containing, e.g.,

t1(u1) and t4(u1) is not allowed (where t(u) means that user u executes

task t).

Given the conflicting goals of business compliance and business conti-

nuity presented in Chapter 1, finding good (or even optimal) trade-offs has

been a topic of research in the business process management and security

communities. The problems raised by these opposing views are further

complicated by the interplay between the three perspectives (control-flow,

data-flow, and authorization) introduced above. To better understand

the problems and solutions that have been identified in the literature, we

present an overview of the state of the art in four related fields, namely

workflow modeling (Section 2.1), workflow satisfiability (Section 2.2), work-

flow resiliency (Section 2.3), and workflow-driven web applications (Sec-

tion 2.4).

Notice that a common practice in the analysis of workflow satisfiability

and resiliency is to abstract away from parts of a workflow specification.

For instance, no related work takes into account the data-flow (some com-

pletely disregard it, e.g. [35], and some model it with non-deterministic

decisions, e.g., [12]). It is also usual practice to limit the allowed control-

flow constructs and supported authorization constraints.

2.1 Workflow modeling

There are many ways to model workflows, e.g., Petri nets [111], Event Pro-

cess Chains (EPC), and Yet Another Workflow Language (YAWL) [158].

BPMN is a de facto standard in workflow modeling. It is maintained by

14

Chapter 2 2.1. Workflow modeling

the Object Management Group (OMG) [116] and is currently the language

of choice in most BPM applications. BPMN provides a graphical notation

for modeling business processes with the goal of supporting BPM for tech-

nical and business users, since it is intuitive and can be used to represent

complex process semantics.

BPMN models are diagrams constructed from a set of graphical ele-

ments. Most realistic use cases are constrained to a subset of the elements

found in the language. Muehlen and Recker [110] observed the frequency

of elements in real-world scenarios. The most widely used (more than

50% of models) are Sequence Flow, Task, End Event, Start Event, Pool,

and Exclusive Gateway; followed by Start Message, Text Annotation, Mes-

sage Flow, Parallel Fork/Join, Lanes and Gateway (used in around 25% of

models). We now describe the workflow modeling elements that are used

throughout this thesis.

Tasks are depicted as rounded boxes and represent any kind of work that

must be performed in a workflow. They are categorized based on

the agent who performs them. Human tasks are performed by hu-

man users, whereas system tasks are performed automatically by the

WFMS (e.g., stored procedures or invocation of external applications).

Sub-processes are depicted as rounded boxes with a “+” sign at the

bottom. They represent special activities whose internal details are

abstracted in a high-level view.

Events are depicted as circles and their occurrence affects the flow of a

process. We use only Start and End events, which mark the beginning

and the end of the execution of a process, respectively.

Sequence Flows are depicted as solid arrows and constrain the order

of execution of activities. Arrows connect a source, which must be

executed first, to a target, which must be executed afterwards.

15

2.2. Workflow satisfiability Chapter 2

Gateways are depicted as diamonds and control the divergence and con-

vergence of Sequence Flows in a process, determining branching, fork-

ing, merging, and joining of paths. We use two kinds of gateways.

Parallel gateways create and synchronize parallel flows, where the

activities may be performed in any possible ordering. Exclusive gate-

ways create and merge alternative flows. Only one of the alternative

flows is taken during process execution and only the activities inside

that flow will be executed. Exclusive gateways have conditions asso-

ciated to each of the paths that are evaluated at run-time.

Data Objects represent the data consumed or produced by an activity.

They are associated to activities by data associations (depicted as

dashed arrows), whose direction indicates if the object is an input or

an output.

Security requirements and authorization constraints are not supported

by BPMN. There have been proposals of BPMN extensions to model secu-

rity elements, e.g., SecureBPMN [22] and SecBPMN [129], but they are not

yet widely adopted. In our graphical depictions of workflows throughout

the thesis, we adopt a variation of those proposals to model authorization

constraints. We use dashed lines connecting pairs of tasks and labeled by

icons representing each constraint (e.g., “6=” for SoD and “=” for BoD).

2.2 Workflow satisfiability

To position our work with respect to the state of the art in workflow satis-

fiability, we must introduce some concepts (Section 2.2.1), then comment

on the related approaches (Section 2.2.2) and finally compare them with

our technique (Section 2.2.3).

16

Chapter 2 2.2. Workflow satisfiability

2.2.1 Problem formulations

Different formulations of the WSP are concerned with three dimensions:

control-flow models, supported authorization policies and constraints, and

problem setting.

Control-flow

There are three basic categories of control-flow support: linear workflows,

which only admit a sequential execution of tasks (e.g., [14]); partial orders,

which also allow parallel executions (e.g., [35]); and others (e.g., CSP [77]

and Petri nets [111]), which add support for conditional branches and loops

(e.g., [12]).

It is known that a family of partial orders is needed to characterize one

Petri net [84], which means that modeling the control-flow with Petri nets

has the advantage of compactly representing a workflow that has to be

specified as potentially many partial orders. It is also always possible to

obtain a safe Petri net from a CSP process [159].

As described in [160], conditional execution can lead to execution paths

of different lengths, which means that WSP solutions that try to assign

users to every task in a workflow cannot be immediately applied. Yang

et al. [164] defined several formulations of the WSP, considering differ-

ent control-flow patterns, and showed that, in general, the problem is in-

tractable.

Authorization

A plan π : T → U , where T is the finite set of tasks in the workflow and

U is a finite set of users, is an assignment of tasks to users representing a

workflow execution where (t, u) ∈ π means that user u takes the responsi-

bility of executing task t. An authorization constraint c ∈ C can be seen

17

2.2. Workflow satisfiability Chapter 2

as a pair (T ′,Θ), where T ′ ⊆ T is called the scope of c and Θ is a set of

functions θ : T ′ → U [35]. The functions in Θ specify the assignments of

tasks to users that satisfy the constraint.

Instead of enumerating every function θ ∈ Θ, it is common to define Θ

implicitly by using a specification device. Several classes of authorization

constraints for workflows have been identified in the literature. They can

all be used, with some ingenuity, to define the functions θ ∈ Θ, so they can

be recast in the form (T ′,Θ) shown above [29].

Counting constraints are of the form (tl, tr, T
′), where 1 ≤ tl ≤ tr ≤ k.

A plan satisfies a counting constraint if a user performs either no tasks

in T ′ or between tl and tr tasks. One example of counting constraint

is (1, 2, {t1, t2, t3}), which is satisfied if a user u1 executes 0, 1 or 2

tasks among those in {t1, t2, t3}.

Entailment constraints are of the form (T1, T2, ρ), where T1 ∪ T2 = T ′

and ρ ⊆ U × U . A plan satisfies an entailment constraint iff there

exist t1 ∈ T1 and t2 ∈ T2 such that (π(t1), π(t2)) ∈ ρ.

Entailment constraints can be further subdivided in three types. In

Type 1 constraints, both sets T1 and T2 are singletons. In Type 2

constraints, at least one of the sets must be a singleton, whereas in

Type 3 there are no restrictions on the cardinality of sets.

Examples of Type 1, 2 and 3 constraints are ({t1}, {t2}, 6=}),
({t1, t2}, {t3}, 6=}), and ({t1, t2}, {t3, t4}, 6=}), respectively. The first

constraint is satisfied if a user u1 executes t1 and u2 executes t2 (be-

cause u1 6= u2). The second and third constraints are satisfied if

u1 executes t1 and u2 executes t3. Those are examples of SoD con-

straints, BoD constraints can be similarly defined by using = instead

of 6=.

18

Chapter 2 2.2. Workflow satisfiability

A special class of Type 1 constraints are equivalence-based constraints,

of the form (t1, t2,∼), where ∼ is an equivalence relation on U . A plan

satisfies this kind of constraint if the user who executes t1 and the user

who executes t2 belong to the same equivalence class, e.g., same role

(or to different classes for 6∼ constraints).

Two generalizations of the previous classes are user-independent con-

straints and class-independent constraints [35].

User-independent constraints c are those where given a plan π that

satisfies c and any permutation φ : U → U , the plan π′ = φ(π(s))

also satisfies c [29]. I.e., user-independent constraints are those whose

satisfaction does not depend on the individual identities of users. The

SoD constraints presented so far are user-independent, whereas a con-

straint requiring a specific user to perform at least one task in a set is

not user-independent [30].

Class-independent constraints are those whose satisfaction depends

only on the equivalence classes that users belong to [35]. Formally, let

c be a constraint, ∼ be an equivalence relation on U , U∼ be the set

of equivalence classes induced by ∼, and u∼ ∈ U∼ be the equivalence

class containing u. Then, for any plan π, we can define a function

π∼ : T → U∼ as π∼(t) = (π(t))∼. Finally, c is class-independent for ∼
if for any function θ, θ∼ ∈ Θ implies θ ∈ Θ, and for any permutation

φ : U∼ → U∼, θ∼ ∈ Θ∼ implies φ ◦ θ∼ ∈ Θ∼ [35].

One example of class-independent constraint is ({t1}, {t2},∼), where

the classes induced by ∼ corresponds to departments of a company.

This constraint is satisfied if u(t1) ∼ u(t2), i.e., the user executing t1

and the user executing t2 are in the same department. Indeed, every

equivalence constraint (t1, t2,∼) (or (t1, t2, 6∼)) is class-independent

19

2.2. Workflow satisfiability Chapter 2

and every user-independent constraint is class-independent with re-

spect to the identity relation [35].

Other approaches to authorization constraint specification include

Bertino et al.’s [14] constraint specification language and Li and Wang’s

Separation of Duties Algebra (SoDA) [95]. The first is based on rules built

on pre-defined logic predicates. The resulting set of rules, called constraint

base, is a stratified normal program. The second is an algebra for high-

level policies that allows to express and formalize policies based on users’

attributes and the number of users executing tasks. The policies are en-

forced by low-level mechanisms such as static and dynamic separation of

duties in Role-Based Access Control (RBAC) [132].

Unlike for control-flow, it is not easy to classify authorization constraints

in terms of expressiveness, partly because there are many different frame-

works to express them. For instance, entailment constraints of Type 3

clearly include those of Types 1 and 2, but counting constraints can also

be used to express some forms of SoD [160], so entailment and counting

constraints are not disjoint (i.e., in some cases, it is possible to express the

same set of behaviors using a counting constraint or an entailment one).

Also, clearly user-independent and class-independent constraints subsume

parts of the other classes, but it is not clear which parts.

Figure 2.1 shows an attempt to systematically classify some classes of

authorization constraints for workflow systems presented in the literature.

The Figure shows the sets Ent . of entailment constraints (the subsets of

constraints of Types 1, 2, and 3 are not shown to keep the figure read-

able), Count . of counting constraints, Eq . of equivalence constraints, CI

of class-independent constraints and UI of user-independent constraints.

Naturally, Eq . ⊂ Ent . and CI . ⊂ Ent ., since an equivalence relation is an

instance of a binary relation. The facts UI ⊂ CI and Eq . ⊂ CI were shown

by Crampton et al. [35].

20

Chapter 2 2.2. Workflow satisfiability

Figure 2.1: Constraint classes

The Figure also shows the following intersections: I1 = Ent . ∩ Count .,

I2 = Eq . ∩ Count ., I3 = Eq . ∩ UI , I4 = Count . ∩ UI , I5 = Count . ∩ CI .

We can show that these intersections are non-empty by using SoD and BoD

constraints as examples. I1 and I2 are non-empty because SoD and BoD

can be specified using entailment: (t1, t2, 6=) and (t1, 2,=), resp.; counting:

(1, 1, {t1, t2}) and (2, 2, {t1, t2}), resp.; or equivalence, since = is an equiv-

alence relation. I3, I4, and I5 are non-empty because both constraints are

user-independent [30], which also makes them class-independent [35].

To the best of our knowledge, there has never been a comparison be-

tween the expressive power of other frameworks, e.g., SoDA and the con-

straint classes defined by Crampton et al. In any case, the most widely

adopted kinds of constraints in practice are simple forms of SoD and BoD,

and we will focus mostly on these.

21

2.2. Workflow satisfiability Chapter 2

Problem setting

Different solutions to the WSP consider at least two distinguishing char-

acteristics: (i) is the order of the tasks considered? and (ii) is satisfiability

checked at design-time (before the execution of any instance of the work-

flow) or at run-time (during execution), so that a satisfying execution is

ensured?

The separation between ordered and unordered WSP was presented

in [36]. The unordered WSP admits as solution a plan π assigning users

to tasks in such a way that all tasks have an assigned user and all con-

straints are satisfied. The ordered version admits as solution a plan

π with an execution schedule σ, which is a tuple (t1, . . . , tk) such that

1 ≤ i < j ≤ k, ti 6= tj, i.e., the assignment must respect the ordering of

tasks defined by the control-flow. The ordered and unordered versions of

the WSP are only equivalent for the class of well-formed workflows [36],

i.e., workflows with the following property: for all ti||tj (tasks that can be

executed in any order), (ti, tj, ρ) ∈ C if and only if (ti, tj, ρ̃) ∈ C, where ρ̃

is defined as {(u, u′) ∈ U × U : (u′, u) ∈ ρ} and C is a set of entailment

constraints.

A classification of WSP approaches in the design-time/run-time dimen-

sion was done in a recent survey [78]. Design-time techniques ensure the

existence of at least one satisfying assignment, whereas run-time techniques

enforce that a workflow instance follows a satisfying execution. As shown

in Chapter 5, it is possible to use, at run-time, an algorithm that stati-

cally solves the WSP, but this is very inefficient, as it entails solving a new

instance of the problem for each user request.

22

Chapter 2 2.2. Workflow satisfiability

2.2.2 Related approaches

Table 2.1 presents a comparison of related approaches on the WSP (col-

umn ‘Paper’) in terms of control-flow models (column ‘Control-flow’), au-

thorization constraints (column ‘Constraints’), and problem setting (or-

dered/unordered and execution time in columns ‘Ordered’ and ‘Time’, re-

spectively), as described in the previous Section.

Initial works

The seminal work of Bertino et al. [14] described the specification and

enforcement of authorization constraints in workflow management systems,

presenting constraints as clauses in a logic program and an exponential

algorithm for assigning users and roles to tasks without violating them,

but considering only linear workflows. Crampton [34] extended these ideas

by considering workflows as partial orders, defining Type 1 constraints, and

developing an algorithm to determine whether there exists an assignment

of users to tasks that satisfies the constraints.

Table 2.1: Comparison of related work

Paper Control-flow Constraints Ordered Time

[14] Linear order Constraint Specification Language Yes Design-time

[34] P. order Type 1 Yes Design-time

[154] P. order Type 2 No Design-time

[41] P. order Type 3 + Counting + Equivalence No Design-time

[36] P. order Type 3 No Design-time

[29] P. order User-independent + Equivalence No Design-time

[30] P. order User-independent + Counting No Design-time

[35] P. order Class-independent No Design-time

[42] P. order Type 1 Yes Design-time

[12] CSP SoD + BoD Yes Run-time

This work 1-safe PN First-order logic Yes Run-time

23

2.2. Workflow satisfiability Chapter 2

Wang and Li [154] introduced the unordered version of the WSP, showed

that it is NP-complete and that this intractability is inherent in authoriza-

tion systems supporting simple constraints. They reduced the problem

to SAT, which allows the use of off-the-shelf solvers, and showed that,

with only equality and inequality relations (BoD/SoD), the WSP is Fixed-

Parameter Tractable (FPT) in the number of tasks (since the number of

tasks is typically smaller than the number of users)1. Wang and Li’s FPT

proof motivated many later works by Crampton et al., all considering the

unordered version of the WSP for workflows specified as partial orders.

Crampton et al.

Crampton et al. [41] improved the complexity bounds for the WSP and

showed that it remains FPT with counting and equivalence constraints.

Later [36], they used the notion of constraint expressions (logical combi-

nations of constraints) to support conditional workflows and Type 3 con-

straints by essentially splitting one instance of the problem into several

instances, e.g., an instance of WSP for SoD/BoD constraints of Type 3

can be transformed into multiple instances of the WSP with SoD/BoD

constraints of Type 1, and an instance of the WSP for a conditional work-

flow can be solved as many instances for parallel workflows. They also

showed that the ordered version of the WSP is FPT for constraints of

Type 1.

Cohen et al. [29] solved the WSP using techniques for the Constraint

Satisfaction Problem, which allowed the authors to devise a general algo-

1FPT is a parameterized complexity class which contains the problems that can be solved in time

f(k) ·na for some computable function f , parameter k, and constant a [56]. Many hard problems become

less complex if some natural parameter of the instance is bounded. An example is the satisfiability

problem parameterized by the number of variables: a given formula of size n with k variables can be

checked by brute force in time O(2kn). The WSP is FPT when parameterized by the number of tasks

(i.e., k = |T |).

24

Chapter 2 2.2. Workflow satisfiability

rithm that works for several families of constraints. Their solution builds

executions incrementally, discarding partial executions that can never sat-

isfy the constraints. The authors showed that their algorithm is optimal

for user-independent constraints. Cohen et al. [30] demonstrated the prac-

ticality of the previously designed algorithm by adapting it to the class

of user-independent counting constraints and showing its superiority when

compared with the classical SAT reduction of the problem.

Crampton et al. [35] extended the notion of user-independent constraints

to that of class-independent constraints, showed that the WSP remains

FPT in this case and provided an algorithm to solve it. Crampton et

al. [35] and Cohen et al. [30] experimentally compared the results of FPT

algorithms against those of a SAT solver on workflows of up to 30 tasks

and concluded that FPT algorithms are better because those based on the

SAT solver run out of memory.

Crampton et al. [42] used model checking on an NP-complete fragment

of Linear Temporal Logic (LTL), called LTL(F), to decide the satisfiability

of workflow instances. The authors presented three encodings in LTL(F)

that can compute a set of solutions. The slowest encoding considers the

ordered WSP, while the other two consider unordered versions. They ex-

perimented with workflows of up to 220 tasks. The synthesis of monitors

was left as future work.

Basin et al.

Basin et al. [11] considered the problem of choosing authorization policies

that allow a successful workflow execution and an optimal balance between

system protection and user empowerment. They treated the problem as

an optimization problem (finding the cost-minimizing authorization policy

that allows a successful workflow execution) and showed that, in the role-

based case, it is NP-complete. They generalized the decision problem of

25

2.2. Workflow satisfiability Chapter 2

whether a given authorization policy allows a successful workflow execution

to the notion of an optimal authorization policy that satisfies this property.

In a following work [10], the authors used SoDA to enforce SoD con-

straints in a dynamic, service-oriented enterprise environment. They gen-

eralized SoDA’s semantics to workflow traces that satisfy a term and re-

fined it for control-flow and role-based authorizations. Their formalization,

based on CSP, is the base for provisioning SoD as a Service, with an im-

plementation using a workflow engine and a SoD enforcement monitor.

Finally, in [12], they used CSP to model workflows in two levels: control-

flow and task execution, allowing them to synthesize monitors that enforce

at run-time obstruction-free, or satisfying, workflow executions.

2.2.3 Comparison

Overview of our approach

Our approach to solve the WSP, described in Chapter 3, works by synthe-

sizing run-time monitors capable of ensuring that all executions terminate

and authorization constraints in a workflow are satisfied. This is done in

two steps.

We first construct a symbolic transition system S whose executions cor-

respond to those of the security-sensitive workflow. Transitions in the

system are composed of enabling conditions and effects. Control-flow and

authorization constraints are encoded in the conditions of transitions in S

by using predicates on state variables. Authorization constraints (such as

SoD and BoD) are specified by using history functions hti(u) that evolve

with the execution of a workflow instance to keep track of which user u

has executed which task ti. Authorization policies are encoded by using

functions ati(u) that return True if the user u is authorized to execute task

ti according to the policy (they are left unspecified in the first step, so

26

Chapter 2 2.2. Workflow satisfiability

that we can accommodate different policies at run-time). Then, we use a

symbolic model checker to explore all terminating executions of the work-

flow which satisfy both the control-flow and the authorization constraints.

The model checker returns a symbolic representation R of the set of all

reachable states encountered during the exploration of the terminating ex-

ecutions of S. We use first-order logic [58] to symbolically represent S

and R. In the second step, we derive a Datalog [26] program M from the

formulae R, representing the set of states reachable in the terminating ex-

ecutions of S and the policy P specifying which user can perform which

task. The Datalog program M derived in this way is the monitor capable

of guaranteeing that any request of a user to execute a task is permitted by

P , satisfies the authorization constraints, and the workflow instance can

terminate.

Splitting the problem in two steps allows us to pre-compute a signifi-

cant part of the solution and synthesize monitors that are parametric with

respect to the authorization policies. This is important because it fosters

the reuse of workflow models across different organizations and is more

efficient when there is a policy change inside the same organization.

In Chapter 4 we describe an extension of this technique based on a refine-

ment of the transition systems used to specify security-sensitive workflows.

The refined transition systems are associated to a suitable notion of inter-

face, forming a so-called security-sensitive component. We then show how

to synthesize monitors for components and how to combine these monitors

in a principled way, by using gluing assertions that specify how the control-

flow and authorization constraints are transferred from one component to

another. The intuition is that monitors for components are computed by

considering any possible values for the variables in their interfaces. The

additional constraints in the gluing assertions define a subset of these val-

ues.

27

2.2. Workflow satisfiability Chapter 2

Since the synthesized monitors are modular, we can treat very large

workflow instances as a composition of simpler parts, again fostering reuse

and allowing the scalability of the synthesis technique.

Authorization constraints

Although in the remainder of this thesis we present only SoD and BoD con-

straints as examples (because the history functions used in the conditions

of transitions are a natural representation of user-independent constraints),

the use of first-order logic formulae allows us to support a variety of au-

thorization constraints.

As introduced above, we derive a symbolic transition system S from

a workflow W such that the transitions in S encode a condition and an

effect of the execution of each task in W . Both conditions and effects

are composed of a control-flow and an authorization part. We ignore the

control-flow for now, as it reuses well-known symbolic encodings of Petri

nets (see, e.g., [133]), and give a hint on how we encode authorization

constraints (both are detailed in the next Chapters).

We illustrate the main ideas of our symbolic encoding by using a simple

workflow W containing tasks t1 and t2 and a SoD constraint (t1, t2, 6=).

The constraint can be specified as a condition that must hold in every state

in the execution of W :

∀u.¬(ht1(u) ∧ ht2(u))⇔ ∀u.(¬ht1(u) ∨ ¬ht2(u)) . (2.1)

We can add this constraint to the conditions of every transition in S.

For instance, transition t1 is

∃z.CFC ∧ at1(z) ∧ ∀u.(¬ht1(u) ∨ ¬ht2(u))→ CFE ∧ ht1(z) := T (2.2)

where CFC and CFE are the symbolic representations of conditions and

effects, respectively, on control-flow. We can eliminate the universal quan-

tifier by only considering finitely many instances of u (exactly those that

28

Chapter 2 2.2. Workflow satisfiability

are existentially quantified). For the formal result guaranteeing this, see [2].

From now on, for simplicity, we also omit the existential quantifier, which

is implicit for the users in every transition. Then (2.2) becomes

CFC ∧ at1(z) ∧ (¬ht1(z) ∨ ¬ht2(z))→ CFE ∧ ht1(z) := T (2.3)

which can be rewritten as two transitions by using simple logical transfor-

mations

CFC ∧ at1(z) ∧ ¬ht1(z)→ CFE ∧ ht1(z) := T (2.4)

CFC ∧ at1(z) ∧ ¬ht2(z)→ CFE ∧ ht1(z) := T (2.5)

It is not difficult to show that (2.4) is redundant. Intuitively, if t1 has

never been executed, then ∀u.¬ht1(u) trivially holds and the set of states

generated by (2.4) is contained in the set of states generated by (2.5).

Transition t2 is similar, but substituting at1 by at2 and showing that

the version with condition ¬ht2 is redundant. It is possible to optimize the

encoding provided that some additional constraints hold. For instance, if

we consider a control-flow constraint that specifies that t1 must be executed

before t2, we can eliminate ¬ht2 from the condition of t1.

It is possible to support other authorization constraints by devising

logical constraints such as (2.1). For entailment constraints (T1, T2, ρ), we

can use

∀u1, u2.
∨
t1∈T1

∨
t2∈T2

ht1(u1) ∧ ht2(u2)⇒ ρ(u1, u2) (2.6)

when ρ is definable in a “relatively simple” theory of users, which satisfies

the assumptions for the termination of fix-point computation (for instance,

6= for SoD and = for BoD). The formalization of this kind of theory is given

in [2]. For counting constraints (tl, tr, T
′), we can use

∀uT ′.

(∧
t′∈T ′

ht′(ut′)⇒ AtMost(UT ′, tr) ∧ AtLeast(UT ′, tl)

)
(2.7)

where UT ′ = {ut′|t′ ∈ T ′}.

29

2.2. Workflow satisfiability Chapter 2

Differences

The works by Basin et al. [10, 12] are the closest to ours, since they also

consider the WSP at run-time and implement a monitor. However, the

monitor in [10] only verifies if a trace of a workflow satisfies a SoDA term

with respect to the past, being incapable of checking whether there is a

future trace that can be concatenated in order to satisfy the workflow. On

the other hand, the monitor in [12] enforces obstruction-freedom (which

is equivalent to solving the WSP) but in an approximated way and may

be too restrictive. The authors call their monitors Enforcement Processes

and the problem of deciding the existence of such a monitor for a con-

strained workflow is called Enforcement Process Existence (EPE). Their

naive solution to the EPE is double exponential in the number of users and

constraints because it depends on checking failure-equivalence in CSP [126].

They present two approximate solution, one is exponential and one is poly-

nomial. The approximations are based on solutions to the graph coloring

problem [62] and are overly restrictive because they may return ‘No’ even

if an enforcement process does exist for the constrained workflow taken

as input (although they make no approximations in the other direction,

i.e., if there does not exist an enforcement process, the procedures always

return ‘No’). They also implemented, as we do (Chapter 6), tool support

for the specification and enforcement of constraints, but the evaluation was

limited to a few workflows used as examples.

Ours is the first work to provide a precise enforcement for the run-time

version of the WSP. As shown in Table 2.1, it is also one of only two to

consider control-flows more complex than partial orders and among a few

to consider the ordered version of the problem. Most existing approaches to

solve the WSP [154, 34, 36, 41, 42, 29, 30, 35] model workflows as partially

ordered sets, which does not allow for conditional execution branches. This

30

Chapter 2 2.3. Workflow resiliency

limitation can be overcome by treating a workflow model with conditional

branches as many deterministic workflows [36], however that means that

one instance of the problem has to be solved in multiple steps. We take

as input a BPMN model that is translated to a Petri net and later to

a transition system, which allows us to support conditional workflows by

using many goal formulas. Other, more complex, control-flow patterns can

also be handled more naturally this way [148, 51].

2.3 Workflow resiliency

Li et al. [96] introduced the notion of resiliency policies for access control

systems, i.e., policies that require the system to be resilient to the absence

of users. They defined the Resiliency Checking Problem (RCP), which

amounts to checking if an access control state satisfies a given resiliency

policy. Wang and Li [154] then studied resiliency in workflow systems and

its relation to the WSP, defining three levels of resiliency based on when

the users are allowed to be absent and whether they are allowed to return.

In static resiliency, a number of users may be absent before a workflow

instance execution; in decremental resiliency, users may be absent before

or during a workflow instance execution, but absent users do not become

available again; and in dynamic resiliency, users may become absent and

available again. They showed that checking static workflow resiliency is in

NP, while checking decremental and dynamic resiliency is in PSPACE. The

authors observed that there are other possible formulations of resiliency

that can be of interest.

Mace et al. [101] defined quantitative workflow resiliency, in which a user

wants to know how likely a workflow instance is to terminate given a user

availability model. The authors solve the problem by finding optimal plans

for Markov Decision Process (MDP). The same authors [104] showed that

31

2.3. Workflow resiliency Chapter 2

alternative executions may lead to different resiliency values for each path,

and defined resiliency variance as a metric to indicate volatility, claiming

that a higher variance increases the likelihood of workflow failure. User

availability models were discussed in more details in [102], categorized into

non-deterministic, probabilistic, and bounded, with several encodings for

the PRISM probabilistic model checker2. The same group studied the im-

pact of policy design (adding or removing authorization constraints) on

workflow resiliency computation time [103]. They were able to compute

sets of security constraints that can be added to a policy in order to re-

duce computation time while maintaining resiliency. The authors then

developed WRAD [105], a tool for workflow resiliency analysis and design,

which automatically encodes workflows into PRISM, evaluates their re-

siliency and computes optimal changes for security constraints to ensure a

resiliency threshold.

Crampton et al. [38] studied the Bi-Objective WSP, which is the prob-

lem of minimizing two weight functions associated to a valid plan, one

representing the violation of constraints and one representing the violation

of the authorization policy. This problem has a set of incomparable solu-

tions (a Pareto front), allowing the user to choose the most suitable. The

authors also related this problem to workflow resiliency, claiming that Mace

et al.’s translation to MDP is not necessary since the same metrics can be

computed by constructing a graph where the nodes are partial valid plans,

and the edges, connecting successive plans, are labeled with the probability

of a user being available to execute the next task (checking every possi-

ble partial plan has exponential-time complexity). The Bi-Objective WSP

is a generalization of the Valued WSP [37], which has as single objective

minimizing the sum of both weights.

Crampton et al. [39] reduced the RCP to the WSP and showed how to

2http://www.prismmodelchecker.org/

32

http://www.prismmodelchecker.org/

Chapter 2 2.3. Workflow resiliency

solve it using an FPT algorithm for the WSP. The RCP differs from work-

flow resiliency by considering three parameters: s users, forming d teams of

size t, such that all teams are authorized to access the resources in a policy

P . In contrast, k-resiliency for workflows just considers k absent users and

whether the remaining users can execute all tasks. However, the RCP is

always static, whereas workflow resiliency can be static, decremental, or

dynamic. The basic solution in the original paper about RCP [96] is to

enumerate all subsets of s users and check for satisfiability (using a proce-

dure for s = 0 as a black-box), but there is a pruning strategy based on the

redundancy of some subsets, to have a more efficient solution. Crampton

et al. [39] solved the same RCP problem, using the same pruning strat-

egy and their FPT algorithm as the black-box to decide satisfiability (by

translating the resources in P to a workflow). The authors mention that

this basic reduction cannot be applied directly to decremental or dynamic

workflow resiliency, but they point to their work on Valued WSP [37] as a

possibility to do it, by using weights to represent the availability of users.

Khan and Fong [85] defined the problem of workflow feasibility, when

there are rules to update the authorization relation. A workflow is feasible

if there is at least one reachable access control configuration where the

workflow is satisfiable. They studied feasibility in relationship-based access

control.

2.3.1 Comparison

Our solution to workflow resiliency, described in Chapter 5, relies on refin-

ing the reachability graphs computed by the model checker with a given

authorization policy. The refinement is performed by a depth-first search

of the graph to prune those executions that do not satisfy the authoriza-

tion policy used in the deployment context under consideration. This is

combined with a (heuristic) method to generate subsets of users not con-

33

2.4. Workflow-driven web applications Chapter 2

taining k users (by adapting the pruning strategy from [96]) in order to find

scenarios guaranteeing the termination of a workflow despite the absence

of k users.

Our approach is inspired by the solution to the RCP in [39], with the

difference that we solve the resiliency problem for workflows and invoke a

synthesized monitor for solving the WSP. Compared to other works, our

technique has the advantage of reusing the heaviest part of the compu-

tation (i.e., generating the reachability graph) and only refining it during

deployment. The algorithm presented as a solution is also capable of find-

ing execution scenarios that satisfy other constraints, such as a particular

user executing a task or using a minimal number of users.

We only consider static workflow resiliency, but the solution could be

adapted for quantitative resiliency by assigning weights representing avail-

ability to the edges in the reachability graph, as hinted at in [39].

2.4 Workflow-driven web applications

Web applications can be designed using workflow modeling and there

are frameworks that allow their declarative description (e.g., Spring Web

Flow [151]). Web applications can also be modeled using page-flows (a

graph where the nodes are pages and the edges are links), control-flow

graphs [99], and automata [74, 48]. However, model-driven development

of web applications is not common practice. This highlights the need for

model inference techniques, which can be based on static analysis [24, 72]

or dynamic analysis (e.g., web crawling [156] or symbolic execution [73]).

Some of the main challenges for all analysis techniques are dynamic web

pages, and the precision of recovered models, often requiring human post-

processing [25]. Process mining was used to capture workflow models of

web applications to optimize user interaction [122].

34

Chapter 2 2.4. Workflow-driven web applications

There are many white-box approaches to the enforcement of authoriza-

tion, control-flow, and data-flow integrity in web applications. These ap-

proaches mitigate so-called business or logic vulnerabilities, such as missing

authorization checks [139, 163]; workflow and state violations [9, 33, 61];

forceful browsing [19]; and parameter tampering [18, 7]. A survey on how

to secure web applications against business and logic vulnerabilities can be

found in [45].

A black-box approach to block request forgery was described in [82, 81],

but it ignores data-flow and authorization. Black-box enforcement of

control-flow and data-flow integrity was done in Ghostrail [20] by dynami-

cally replicating on the server-side valid user clicks, form entries, links, and

parameters. Ghostrail does not consider authorization, and needs a fresh

replica for each user session, which is not scalable.

Web application workflow models were used to detect anomalous user

behavior using Hidden Markov Models [98] and to find logic vulnerabil-

ities by capturing execution traces, identifying behavioral patterns, and

generating test cases [119].

BLOCK [97] and InteGuard [161] use a reverse proxy as an external

monitor for web applications, construct control-flow and data-flow policies

using invariants detected from network traces, and rely on manual identi-

fication of critical requests. BLOCK also extracts invariants from session

information in PHP applications. InteGuard is tailored for multi-party

application integration, where most of the steps in a trace are automatic

(not human tasks) and workflows must be executed from beginning to end

in one shot. Neither tool enforces authorization policies nor constraints.

FlowWatcher [112] uses a similar approach of proxy monitoring, but en-

forces only authorization policies specified in a domain specific language.

The enforcement of authorization constraints for collaborative web ap-

plications was studied in [64, 66, 65], where the authors considered appli-

35

2.4. Workflow-driven web applications Chapter 2

cations for form and document editing.

2.4.1 Comparison

Aegis is the approach described in Chapter 7 to synthesize run-time moni-

tors for workflow-driven web applications that are capable of automatically

(i) enforcing security policies composed of combinations of control- and

data-flow integrity constraints, authorization policies, and authorization

constraints; and (ii) solving the run-time version of the WSP.

Aegis is based on the monitor synthesis technique from Chapter 3.

To synthesize a monitor, Aegis first infers, using process mining [144],

workflow models of the target application from a set of HTTP traces rep-

resenting user actions. Traces must be manually edited to contain only

actions that should be enforced by the monitor. Inferred models are Petri

nets labeled with HTTP requests representing tasks and annotated with

data-flow properties obtained by using heuristics based on differential anal-

ysis [161, 140]. These Petri nets can be refined by a human user who spec-

ifies authorization constraints and an authorization policy. A monitor is

then generated from a model by invoking the synthesis tool. At run-time,

a reverse proxy is used to (i) capture login actions to later establish the

acting users, and (ii) capture incoming requests and query the monitor to

determine whether to allow or deny the request. Aegis is completely black-

box and can be used to add support for the enforcement of security-related

properties or to mitigate logic vulnerabilities in web applications.

Aegis is similar to [97, 161] with respect to capturing execution traces

and synthesizing policies that are enforced by a reverse proxy. It is also

inspired by [64, 66, 65] in the enforcement of authorization constraints

for collaborative scenarios. Nevertheless, our solution has some important

differences. Aegis is the only to consider at the same time control-flow,

data-flow, and authorization. It is also the first work to consider the WSP

36

Chapter 2 2.4. Workflow-driven web applications

in the context of web applications.

37

2.4. Workflow-driven web applications Chapter 2

38

Part I

Fundamentals

Chapter 3

Automatic synthesis of run-time

enforcement monitors1

In this Chapter, we introduce our approach to synthesize run-time moni-

tors for security-sensitive workflows. We first introduce the Trip Request

Workflow (TRW) as an illustrative example that is used throughout the

thesis.

Example 1 (Trip Request Workflow (TRW)). The workflow in Figure 3.1

is composed of five tasks—each one indicated by a box labeled by Request

(t1), Car rental (t2), Hotel booking (t3), Flight reservation (t4), and Val-

idation (t5)—whose execution is constrained as follows (cf. solid arrows

and diamonds labeled with +): t1 must be executed first, then t2, t3 and t4

can be executed in any order, and when all have been performed, t5 can be

executed, thereby terminating the workflow. Additionally, each task is ex-

ecuted under the responsibility of a user (indicated by the small icon inside

the boxes corresponding to the various tasks) who has the right to execute

it according to some authorization policy—not shown in Figure 3.1—and

the five authorization constraints depicted as dashed lines labeled by the

symbol 6= for Separation of Duty (SoD). So, for example, the authorization

constraint connecting the boxes of t1 and t2 requires the user executing t2
1Parts of this chapter were previously published in [15]

41

Chapter 3

Figure 3.1: TRW in extended BPMN

to be distinct from the one that has executed t1, i.e. the user who requests

the trip cannot also rent a car. The SoD constraints used in this example

are not necessarily realistic, but are used for illustrative purposes.

Our goal is to synthesize a run-time monitor capable of ensuring that

all execution and authorization constraints are satisfied. Our approach is

organized in two phases: off-line and on-line.

Off-line. We first construct a symbolic transition system S whose execu-

tions correspond to those of the security-sensitive workflow. Then,

we use a symbolic model checker to explore all possible terminating

executions of the workflow which satisfy both the control-flow and the

authorization constraints. We assume the model checker to be able

to return a symbolic representation R of the set of all states, called

reachable, encountered during the exploration of the terminating ex-

ecutions of S. We use particular classes of formulae in first-order

logic [58] to be the symbolic representations of S and R.

On-line. We derive a Datalog [26] program M from the formulae R, rep-

resenting the set of states reachable in the terminating executions of

S and the policy P specifying which users can perform which tasks.

42

Chapter 3 3.1. Overview

Figure 3.2: TRW as an extended Petri net

The Datalog program M derived in this way is the monitor capable of

guaranteeing that any request of a user to execute a task is permitted

by P , satisfies the authorization constraints (such as SoD), and the

workflow can terminate its execution.

3.1 Overview

We illustrate the two phases of the monitor synthesis technique on the

security-sensitive workflow in Figure 3.1.

3.1.1 Off-line phase

First, we build the symbolic transition system S in two steps: (i) we adopt

the standard approach (see, e.g., [147]) of using (extensions of) Petri nets

to formalize the semantics of workflows and (ii) we adapt the well-known

translation of Petri nets to symbolic transition systems (see, e.g., [133]) to

the class of extended Petri nets used in this thesis.

Figure 3.2 shows the extended Petri net that can be automatically de-

43

3.1. Overview Chapter 3

rived from the BPM notation of Figure 3.1. Tasks (the boxes in the figure)

are modeled as transitions or events, whereas places (the circles in the fig-

ure) encode their enabling conditions. At the beginning, there will be just

one token in place p0, which enables the execution of transition t1. This

corresponds to the execution constraint that task t1 must be performed

before all the others. The execution of t1 removes the token in p0 and puts

a token in p1, another in p2, and yet another in p3; this enables the execu-

tion of t2, t3, and t4. Indeed, this corresponds to the causality constraint

that t2, t3, and t4 can be executed in any order after t1 and before t5. In

fact, the executions of t2, t3, and t4 remove the tokens in p1, p2, and p3

and put a token in p4, p5, and p6 which, in turn, enables the execution

of t5. This removes the token in p4, p5, and p6 and puts a token in p7,

which enables no more transitions. This corresponds to the fact that t5 is

the last task to be executed.

The fact that there is at most one token per place is an invariant of the

Petri net. This allows us to symbolically represent the net as follows: we

introduce a Boolean variable per place (named as the places in Figure 3.2)

together with a Boolean variable representing the fact that a task has

already been executed (denoted by dt and if assigned to True implies that

task t has been executed). So, for instance, the enabling condition for the

execution constraint on task t1 can be expressed as p0∧¬dt1, meaning that

the token is in place p0 and transition t1 has not yet been executed. The

effect of executing transition t1 is to assign F (alse) to p0 and T (rue) to

p1, p2, p3, and dt1; in symbols, we write p0, p1, p2, p3, dt1 := F, T, T, T, T .

The other transitions are modeled similarly.

Besides the constraints on the execution of tasks, Figure 3.2 shows also

the same authorization constraints of Figure 3.1. These are obtained by

taking into consideration both the access control policy P granting or deny-

ing users the right to execute tasks and the SoD constraints between pairs

44

Chapter 3 3.1. Overview

of tasks. To formalize these, we introduce two functions at and ht from

users to Boolean, for each task t, which are such that at(u) is true iff u has

the right to execute t according to the policy P and ht(u) is true iff u has

executed task t. Notice that at is a function that behaves as an abstract

interface to the policy P , whereas ht is a function that evolves over time

and keeps track of which users have executed which tasks.

For instance, the enabling condition for the authorization constraint on

task t1 is simply at1(u), i.e. it is required that the user u has the right to

execute t1, and the effect of its execution is to record that u has executed

t1, i.e. ht1(u) := T (notice that this assignment leaves unchanged the value

returned by ht1 for any user u′ distinct from u). Notice that it is useless to

take into account the SoD constraints between t1 and t2, t4 when executing

t1 since t2 and t4 will always be executed afterwards. As another example,

let us consider the enabling condition for the authorization constraint on

t2: besides requiring that u has the right to execute t2 (i.e. at2(u)), we

also need to require the SoD constraints with t1 and t3 (not that with t5,

since this will be executed afterwards), i.e. that u has executed neither t1

(i.e. ¬ht1(u)) nor t3 (i.e. ¬ht3(u)). The authorization constraints on the

other tasks are modeled in a similar way.

Table 3.1 shows the formalization of all transitions in the extended Petri

net of Figure 3.2. The first column reports the name of the transition to-

gether with the fact that it is dependent on the user u taking the respon-

sibility of its execution. The second column shows the enabling condition

divided in two parts: CF, pertaining to the execution constraints, and

Auth, to the authorization constraints. The third column lists the effects

of the execution of the transition again divided in two parts: CF, for the

control-flow, and Auth, for the authorization.

The initial state of the security-sensitive workflow is described by the

45

3.1. Overview Chapter 3

initial formula

p0 ∧
∧

i=1,...,7

¬pi ∧
∧

i=1,...,5

¬dti ∧
∧

i=1,...,5

∀u.¬hti(u) (3.1)

saying that there is just one token in p0, no task has been executed, and

no user has yet executed any of the tasks, whereas a state of a terminating

execution of the workflow by the goal or final formula

p7 ∧
∧

i=0,...,6

¬pi ∧
∧

i=1,...,5

dti (3.2)

saying that there is just one token in p7 and all the tasks have been exe-

cuted.

Formally, the way in which we specify the transition systems correspond-

ing to security-sensitive workflows can be seen as an extended version of

the assertional framework proposed in [138]. We emphasize that obtaining,

from the extended BPM notation of Figure 3.1, the symbolic representation

S of the initial and goal formulae with that of the transitions in Table 3.1

is a fully automated process.

Table 3.1: TRW as symbolic transition system

id enabled action

CF Auth CF Auth

t1(u) p0 ∧ ¬dt1 at1(u) p0, p1, p2, p3, dt1

:= F, T, T, T, T

ht1(u) := T

t2(u) p1 ∧ ¬dt2 at2(u) ∧ ¬ht3(u) ∧
¬ht1(u)

p1, p4, dt2

:= F, T, T

ht2(u) := T

t3(u) p2 ∧ ¬dt3 at3(u) ∧ ¬ht2(u) p2, p5, dt3

:= F, T, T

ht3(u) := T

t4(u) p3 ∧ ¬dt4 at4(u) ∧ ¬ht1(u) p3, p6, dt4

:= F, T, T

ht4(u) := T

t5(u) p4∧p5∧p6∧¬dt5 at5(u) ∧ ¬ht3(u) ∧
¬ht2(u)

p4, p5, p6, p7, dt5

:= F, F, F, T, T

ht5(u) := T

46

Chapter 3 3.1. Overview

Exploring the search space

After obtaining the symbolic representation of the initial and goal states

together with the transitions of the security-sensitive workflow, we invoke a

symbolic model checker in order to compute the symbolic representation R

of the set of (reachable) states visited while executing all possible sequences

of transitions leading from an initial to a goal state. A crucial assumption

of our approach is that the model checker is able to compute R for any

finite number of users. By doing this, the interface functions at’s can be

instantiated with any policy P , i.e., containing any number of users. As

a consequence, changes in the authorization policy do not imply to re-run

the off-line phase. In summary, our goal is to compute a parametric—in

the number n of users—representation of the set of states visited while

executing all possible terminating sequences of transitions. From now on,

we write Rn to emphasize this fact.

Although the computation of Rn seems to be a daunting task, there exist

techniques available in the literature about parameterized model checking

(see the seminal paper [1]) that allow us to do this. Among those available,

we have chosen the Model Checking Modulo Theories approach proposed

in [68] because it uses first-order formulae as the symbolic representation

of transition systems and there are available tools, such as mcmt [69],

capable of returning the set of reachable states as a first-order formula.

Figure 3.3 shows an excerpt (to keep it readable) of a graph-like repre-

sentation of the formula Rn for the security-sensitive workflow described

by the symbolic transition system derived from Figure 3.1. Each node is

associated to a first-order formula: node 0 (bottom of the figure) is labeled

by the goal formula (3.2), nodes 17–26 (top of the figure) are labeled by

formulae describing sets of states that have non-empty intersection with

the set of initial states characterized by the initial formula (3.1), all other

47

3.1. Overview Chapter 3

0

1

t5(u1)

2

t2(u2)

3

t3(u2)

4

t4(u1)

5

t4(u2)

6

t2(u2)

7

t3(u2)

8

t3(u3)

9

t4(u2)

10

t4(u3)

11

t4(u2)

12

t4(u3)

13

t3(u3)

14

t3(u3)

15

t2(u3)

16

t4(u4)

17

t1(u3)

18

t1(u4)

19

t1(u1)

20

t1(u3)

21

t1(u4)

22

t1(u1)

23

t1(u4)

24

t1(u1)

25

t1(u3)

26

t1(u5)

Figure 3.3: Graph-like representation of the set of reachable states for the TRW

nodes (namely, those from 1 to 16) are labeled with formulae describing

sets of states that are visited by executing transitions (labeling the arcs

of the graph) belonging to a terminating sequence of executions of the

workflow.

For instance, node 1 is labeled by the formula

¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧

dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5 ∧

(at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1))

describing the set of states from which it is possible to reach a goal state

when some user u1 takes the responsibility to execute task t5. The first

two lines in the formula above require that there is a token in places p4,

p5, and p6 (thereby enabling transition t5), tasks t1, t2, t3, and t4 have

48

Chapter 3 3.1. Overview

been executed, and t5 has not yet been performed. The last line requires

that user u1 has the right to execute t5 and that he/she has performed

neither t2 nor t3 (because of the SoD constraints between t5 and t2 or t3).

In general, let us consider an arc ν
t(u)−→ ν ′ in the graph of Figure 3.3: the

formula labeling node ν describes the set of states from which it is possible

to reach the set of states described by the formula labeling node ν ′ when

user u executes task t. Thus, the paths starting from one of the nodes 17–

26 (labeled by formulae representing states with non-empty intersection

with the set of initial states) and ending in node 0 (labeled by the goal

formula) describe all possible terminating executions of the workflow in

Figure 3.1 (although nodes 5, 7, 10 and 12 seem to be exceptions, this is

not the case: explaining their role requires a more precise description of

how the graph is built and will be discussed in Section 3.2).

For instance, the sequence of blue nodes describes the terminating se-

quence t1, t3, t4, t2, t5 of task executions by the users u3, u3, u2, u2, and

u1, respectively. It is easy to check that this sequence satisfies both the

execution and the authorization constraints required by the workflow in

Figure 3.1. In fact, t1 is executed first, t5 is executed last, and t2, t3, t4

are executed in between; there are three distinct users u1, u2, u3 that can

execute the five tasks without violating any of the SoD constraints. By

considering all possible paths in the graph of Figure 3.3, it is easy to see

that there should be at least three distinct users to be able to terminate

the security-sensitive workflow in Figure 3.1.

From what we said above, the formula Rn representing the set of states

visited during terminating sequences of task executions of the security-

sensitive workflow in Figure 3.1 can be obtained by taking the disjunction

of the formulae labeling the nodes in the graph of Figure 3.3 except for the

one labeling node 0 since, by construction, no task is enabled in the set of

states represented by that formula. Let rν be the formula labeling node ν,

49

3.1. Overview Chapter 3

then

Rn :=
∨
ν∈N

rν (3.3)

where N is the set of nodes in the graph (in the case of Figure 3.3, we have

N = {1, . . . , 26}).

3.1.2 On-line phase

Once the symbolic model checker has returned the first-order formula Rn

describing the set of states visited during any terminating execution for a

(finite but unknown) number n of users, we can derive a Datalog program

which constitutes the run-time monitor of the security-sensitive workflow

formalized by the symbolic transition system used to compute Rn. Then,

we can add the specification of the interface functions at1,. . . ,at5 for a given

value of n.

We have chosen Datalog as the programming paradigm in which to en-

code monitors for three main reasons. First, it is well-known [94] that a

wide variety of access control policies can be easily expressed in Datalog.

Second, Datalog permits efficient computations: the class of Datalog pro-

grams resulting from translating formulae Rn permits to answer queries

in LogSpace (see below for more details). Third, it is possible to further

translate the class of Datalog programs we produce to SQL statements

so that run-time monitors can be easily implemented as database-backed

applications [142].

In the rest of this section, we describe how it is possible to derive Datalog

programs from formulae describing the set of reachable states computed

by the model checker and then how to add the definitions of the interface

functions at1,. . . ,at5.

50

Chapter 3 3.1. Overview

From Rn to Datalog

Recall the form (3.3) of Rn. It is not difficult to see that each rν can be

seen as the conjunction of a formula rCF
ν containing the Boolean functions

p0, . . . , p7 for places and dt1, . . . , dt5 keeping track of task execution with a

formula rAuth
ν of the form

at(u0) ∧ ρAuth
ν (u0, u1, . . . , uk)

where u0 identifies the user taking the responsibility to execute task t, ρAuth
ν

is a formula containing the variables u0, u1, . . . , uk, the interface functions

at1, . . . , at5, the history functions ht1, . . . , ht5, and all disequalities between

pairwise distinct variables from u0, u1, . . . , uk (indeed, if there are no vari-

ables, there is no need to add such disequalities). For instance, formula r1

labeling node 1 in Figure 3.3 is rCF
1 ∧ rAuth

1 where

rCF
1 := ¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧

dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5
rAuth

1 := ρAuth
1 (u1)

ρAuth
ν (u1) := at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1)

with u0 renamed to u1.

In general, each rν in the expression (3.3) for the formula Rn can be

written as

rCF
ν ∧ at(u0) ∧ ρAuth

ν (u0, u1, . . . , uk) (3.4)

and describes a set of states in which user u0 executes task t while guar-

anteeing that the workflow will terminate since ν is one of the nodes in

the graph computed by the model checker while generating all terminat-

ing sequences of tasks. In other words, (3.4) implies that u0 can execute

task t or, equivalently written as a Datalog clause: can do(u0, t)← (3.4),

51

3.1. Overview Chapter 3

where can do is a Boolean function returning true iff a user (first argu-

ment) is entitled to execute a task (second argument) while all execution

and authorization constraints are satisfied and the workflow can terminate.

Notice that can do(u0, t) ← (3.4) is a Datalog clause. So, we generate

the following Datalog clauses

can do(u0, t)← rCF
ν ∧ at(u0) ∧ ρAuth

ν (u0, u1, . . . , uk) (3.5)

for each ν ∈ N . In the following, let Dn be the Datalog program com-

posed of all the clauses of the form (3.5). For instance, the Datalog clause

corresponding to node 1 is

can do(u1, t5) ← ¬p0 ∧ ¬p1 ∧ ¬p2 ∧ ¬p3 ∧ p4 ∧ p5 ∧ p6 ∧

dt1 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ¬dt5 ∧

at5(u1) ∧ ¬ht2(u1) ∧ ¬ht3(u1) .

It is not difficult to show that can do(u, t) iff there exists a disjunct of

the form (3.4) in Rn for a given number n of users. Finally, observe that

clauses of the form (3.5) contain negations but are non-recursive.

Specifying the policy P

We are left with the problem of specifying the access control policy P

for a given number n of users. As already observed above, there should

be at least three distinct users in the system to be able to terminate the

execution of the workflow in Figure 3.1.

So, to illustrate, let U = {a, b, c} be the set of users and use the RBAC

model to express the policy. This means that we have a set R = {r1, r2, r3}
of roles which are indirections between users and (permissions to execute)

tasks. Let UA = {(a, r1), (a, r2), (a, r3), (b, r2), (b, r3), (c, r2)} be the user-

role assignments and TA = {(r3, t1), (r2, t2), (r2, t3), (r1, t4), (r2, t5)} be the

role-task assignment. Then, a user u can execute task t iff there exists a

52

Chapter 3 3.1. Overview

role r such that (u, r) ∈ UA and (r, t) ∈ TA. This can be formalized by

the following Datalog clauses:

ua(a, r1) ua(a, r2) ua(a, r3) ua(b, r2) ua(b, r3) ua(c, r2)

pa(r3, t1) pa(r2, t2) pa(r2, t3) pa(r1, t4) pa(r2, t5)

at(u) ← ua(u, r) ∧ pa(r, t) for each t ∈ {t1, . . . , t5}

and denoted by DP .

By taking the union of the clauses of Dn and DP , we build a Datalog pro-

gram Mn=3 allowing us to monitor the security-sensitive workflow of Fig-

ure 3.1. I.e. Mn=3 is capable of answering queries of the form can do(u, t)

in such a way that all execution and authorization constraints are satisfied

and the workflow execution terminates.

An example of a run of the monitor is in Table 3.2, where each line

represents a state of the system; columns ‘CF’ and ‘Auth’ describe the

values of the variables in that state (‘Token in’ shows which places have a

token and the various ‘hti’ hold the name of the user who executed task ti);

‘can do(u, t)’ represents user u requesting to execute task t and ‘Response’

is the corresponding response returned by the monitor (grant or deny the

request).

Table 3.2: A run of the monitor program Mn=3 for the TRW

CF Auth

Token in ht1 ht2 ht3 ht4 ht5 can do(u, t) Response

0 p0 - - - - - (a, t1) deny

1 p0 - - - - - (b, t1) grant

2 p1, p2, p3 b - - - - (b, t2) deny

3 p1, p2, p3 b - - - - (a, t2) grant

4 p4, p2, p3 b a - - - (c, t3) grant

5 p4, p5, p3 b a c - - (a, t4) grant

6 p4, p5, p6 b a c a - (b, t5) grant

7 p7 b a c a b - -

53

3.2. Formal description Chapter 3

The execution in the table shows two denied requests, one in line 0 and

one in line 2. In line 0, user a requests to execute task t1 but this is not

possible since a is the only user authorized to execute t4, and if a executes

t1, he/she will not be allowed to execute t4 because of the SoD constraint

between t1 and t4 (see Figure 3.1). In line 2, user b requests to execute

task t2 but again this is not possible since b has already executed task

t1 and this would violate the SoD constraint between t1 and t2. All the

other requests are granted, as they do not violate neither execution nor

authorization constraints.

3.2 Formal description

Considering the specification of workflows as transition systems presented

in Section 3.1, we now describe how a symbolic model checker can compute

a reachability graph that represents all terminating executions of the work-

flow (off-line phase) and how this is then translated to a Datalog program

that implements the run-time monitor for the WSP (on-line phase).

3.2.1 Off-line

As already observed in Section 3.1.1, it is standard to use (extensions of)

Petri nets to give a formal semantics to workflows written in BPMN [147].

In turn, it is well-known how to represent (extension of) Petri nets as state

transition systems (see, e.g., [133]), that are composed of a set of state

variables and a set of events, as proposed in [138].

A state of the system is defined by the values of the variables. A pred-

icate (Boolean function) over the state variables implicitly defines a set

of states, i.e. the one containing the values of the variables for which the

predicate evaluates to true. A state satisfies a predicate iff it belongs to

the set of states implicitly defined by the predicate.

54

Chapter 3 3.2. Formal description

An event has an enabling condition, which is a predicate on the state

variables, and an action, which updates the state variables. When the

enabling condition of an event evaluates to true in a given state s, we say

that the event is enabled at s. Executing an event enabled at state s results

in a new state s′ obtained by applying the update of the event to the values

of the variables in s.

Definition 1. A behavior is a sequence of the form s0
e0→ s1

e1→ · · · where

si is a state, ei is an event, and state si+1 is obtained by executing event

ei in state si, for i = 0, 1, We say that a state sn is reachable from a

state s0 iff there exists a behavior s0
e0→ s1

e1→ · · · sn−1
en−1−→ sn.

For the class of security-sensitive workflows considered in this thesis, the

set V of state variables is the union of a set VCF and a set VAuth where the

former contains a Boolean variable pi for each place in the Petri net (for

i = 0, 1, . . .) and a Boolean variable dt for each transition t in the Petri

net, whereas the latter contains two function variables at and ht mapping

the set U of users to Booleans for each transition t in the net.

Intuitively, pi is true iff there is a token in the corresponding place, dt

is true iff task t has been executed, at(u) is true iff user u has the right to

execute task t, and ht(u) is true iff user u has executed task t.

The enabling condition and the action of an event t are of the follow-

ing forms: enabledCF ∧ enabledAuth and actCF ||actAuth, respectively, where

enabledCF is a predicate over VCF, enabledAuth is a predicate over VAuth, actCF

(actAuth, resp.) is the parallel (||) updates of (some of) the variables in VCF

(VAuth, resp.), which are written as x1, . . . , xk := v1, . . . , vk for xi a state

variable and vi is the value to which xi should be updated to. An update

of a function variable f from users to Booleans is written as f(u) := b

where u is a user, b is a Boolean value, and after the update the function is

identical to the previous one except at u for which the value b is returned.

55

3.2. Formal description Chapter 3

An event is a tuple (t(u), enabledCF∧enabledAuth, actCF ||actAuth) written

as

t(u) : enabledCF ∧ enabledAuth → actCF ||actAuth (3.6)

where t is the name of the event (taken from a finite set) and u is a

user. Notice that an event is parametric with respect to a user; thus, (3.6)

specifies a collection of events, one for every u in the set U of users.

Definition 2. A security-sensitive (state) transition system over the finite

set U of users is a tuple (VCF ∪ VAuth,Tr) where U is a finite set of users,

VCF∪VAuth is the set of state variables as described above, and Tr is the set

of events obtained by considering all users in U .

Let U be an unbounded set of users and S = (VCF ∪ VAuth,Tr) be a

security-sensitive workflow over a finite set U ⊆ U , I and F be two predi-

cates over VCF ∪ VAuth and VCF, respectively, characterizing the set of initial

and final states. (Intuitively, F describes the set of states in which the

security-sensitive workflow terminates: to express this, the variables in

VCF are sufficient.) The goal of the off-line phase is to compute the set

B(S, I, F) of all behaviors s0
e0→ s1

e1→ · · · sn−1
en−1−→ sn such that s0 is an

initial state (i.e. satisfies I) and sn is a final state (i.e. satisfies F), for

every finite subset U of users in U .

Symbolic behaviors

We solve the problem of enumerating all possible behaviors of a security-

sensitive workflow S = (VCF ∪ VAuth,Tr) for every subset U of users in U
by using a symbolic representation for S and U . We use first-order logic

formulae to represent sets of states.

A state formula is a first-order formula containing (at most) the state

variables in VCF∪VAuth∪VUser as free variables where VUser is a set of variables

56

Chapter 3 3.2. Formal description

taking values over the set U of users. A state formula P evaluates to true

(in symbols, s, v |= P) or false (in symbols, s, v 6|= P) in a state s of the

system and for an assignment v of the user variables (i.e., a mapping from

VUser to U): for each variable x in VCF ∪ VAuth ∪ VUser that appears free in

P , replace x by its value in s or v and then evaluate the resulting formula.

In other words, state formulae define predicates or, equivalently, sets of

states. Examples of state formulae are (3.1) and (3.2) describing the sets

of initial and final states, respectively, of the security-sensitive workflow in

Figure 3.2.

A symbolic event is a tuple of the form (3.6) where u is a first-order

variable in VUser, enabledCF is a state formula over VCF, and enabledAuth is a

state formula over VAuth∪VUser, actCF is as before, and actAuth is of the form

f(u) := b where b is a Boolean value and u is the same variable in the label

t(u).

Definition 3. A symbolic security-sensitive transition system is a tuple

(VCF ∪ VAuth ∪ Vuser,Ev) where VCF ∪ VAuth is the set of state variables, VUser

is the set of user variables, and Ev is a finite set of symbolic events.

The semantics of a symbolic security-sensitive transition system (VCF ∪
VAuth ∪ VUser,Ev) is axiomatically defined by using the notion of weakest

liberal precondition (wlp) [52]:

wlp(Ev , P) :=
∨

(t(u):en→act)∈Ev

(en ∧ P [act]) (3.7)

where P [act] denotes the formula obtained from P by substituting the

state variable v with the value b when the assignment v := b is in actCF

and substituting v(x) with either v(x) ∨ x = u when v(x) := true is in

actAuth or with v(x) ∧ x 6= u when v(x) := false is in actAuth for x in

VUser and act := actCF∧ actAuth. When Ev is a singleton containing a single

symbolic event ev , we write wlp(ev , P) instead of wlp({ev}, P). Notice that

57

3.2. Formal description Chapter 3

wlp(Ev , P) is equivalent to
∨

ev∈Ev wlp(ev , P). To make expressions more

compact, we also write wlp(t(u), P) instead of wlp(t(u) : en → act , P).

Example 2. To illustrate, we compute wlp(t5(u), (3.2)) where the symbolic

event t5(u) is defined in Table 3.1 by using (3.7):(
p4 ∧ p5 ∧ p6 ∧ ¬dt5∧
at5(u) ∧ ¬ht3(u) ∧ ¬ht2(u)

)
∧ (

∧
i=0,...,3

¬pi ∧
∧

i=1,...,4

dti)

which is equivalent to

(
∧

i=0,...,3

¬pi ∧ p4 ∧ p5 ∧ p6 ∧
∧

i=1,...,4

dti ∧ ¬dt5) ∧

at5(u1) ∧ ¬ht3(u1) ∧ ¬ht2(u1))

and it identifies those states in which there is a token in places p4, p5, and

p6, task t5 has not yet been executed whereas tasks t1, . . . , t4 have been

executed, user u1 has the right to execute t5 and has executed neither t2

nor t3. This is exactly the formula labeling node 1 in Figure 3.3.

Definition 4. A symbolic behavior is a sequence of the form P0
e0−→

P1
e1−→ · · · en−1−→ Pn where Pi is a state formula and ei is a symbolic event

such that (a) P0∧I is satisfiable, (b) Pi is logically equivalent to wlp(ei, Pi+1)

for i = 0, . . . , n− 1, and (c) Pn is F for I and F formulae characterizing

the initial and final states, respectively.

The crucial advantage of symbolic events is the use of variables to rep-

resent users instead of enumerating them. To illustrate, consider a simple

security-sensitive workflow with just two tasks t1, t2 such that t1 should

be executed before t2 and there is a SoD constraint between them. If the

cardinality of the set U of users is n, then the cardinality of the set of all

possible behaviors is n2 − n. By using symbolic events, we can represent

all such behaviors by a single symbolic behavior P0
t1(u1)−→ P1

t2(u2)−→ P2 with

the proviso that u1 6= u2 where u1, u2 are variables.

58

Chapter 3 3.2. Formal description

Before stating formally this result, we need to introduce the notion of

security-sensitive transition system T = (VCF ∪ VAuth,EvT) associated to a

symbolic security-sensitive transition system S = (VCF ∪ VAuth ∪ VUser,EvS)

and a finite set U ⊆ U of users : if the symbolic event t(ui) : enS → actS

is in EvS, then EvT contains an event t(ui) : en → act where u is a user

in U , en is the predicate interpreting the formula obtained from enS by

substituting the variable ui with ui and all other user variables with users

in U (in all possible ways), and act is obtained from actS by substituting

ui with ui.

Theorem 1. Let S = (VCF ∪ VAuth ∪ VUser,EvS) be a symbolic security-

sensitive transition system and T = (VCF ∪ VAuth,EvT) be the associated

security-sensitive transition system for the set U ⊆ U of users. If s0
t0(u0)→

s1
t1(u1)→ · · · sn−1

tn−1(un−1)−→ sn is a behavior of T for u0, . . . , un−1 in U , then

there exists a symbolic behavior P0
t0(u0)−→ P1

t1(u1)−→ · · · tn−1(un−1)−→ Pn such that

si, vi |= Pi with vi(ui) = ui for i = 0, . . . , n− 1 and sn, vn−1 |= Pn.

Proof. (Sketch) The proof is by a standard induction on the length of

the behaviors. It exploits the fact that the enforcement of authorization

constraints depends only on two aspects. First, the identity of users (via

the state variables at’s modeling the interface to the concrete authorization

policy establishing if a user has the right to execute a task). Second, the

history of the computation (via the state variables ht’s keeping track of

who has executed which tasks so that SoD and BoD constraints can be

guaranteed to hold).

This result tells us that a symbolic behavior is an adequate (and hope-

fully compact) representation of a set of behaviors.

59

3.2. Formal description Chapter 3

Computation of symbolic behaviors

Algorithm 1 computes the set of all possible symbolic behaviors of a sym-

bolic security-sensitive workflow. It takes as input the symbolic security-

sensitive workflow S together with the state formula F defining the set

of final states and returns a labeled graph RG , called reachability graph,

whose set of labeled paths is the set of all symbolic behaviors of S ending

with F . The procedure incrementally builds the reachability graph RG by

updating the set N of nodes, the set E of edges, and the labeling function

λ from N to state formulae.

Initially (line 1), a new node i is created (by invoking the auxiliary

function new, which returns a “fresh” node—i.e. distinct from any other

node already in N—at each invocation), N is assigned to the singleton

containing node i, which is also labeled (via λ) by the final formula F .

Algorithm 1 Building a symbolic reachability graph

Require: S = (VCF ∪ VAuth ∪ VUser,EvS) and F

Ensure: RG = (N, λ,E)

1: i← new(); N ← {i}; E ← ∅; λ[i]← F ; TBV ← {i};
2: while TBV 6= ∅ do

3: if subsumed(i,N ,N ′) then

4: connect(N ′,i); TBV ← TBV − {i};
5: end if

6: for all ev ∈ EvS do

7: P ← wlp(ev , λ[i]);

8: if P is satisfiable then

9: j ← new(); N ← N ∪ {j}; E ← E ∪ {(i, ev , j)};
10: λ[j]← P ; TBV ← TBV ∪ {j};
11: end if

12: end for

13: i← pickOne(TBV); TBV ← TBV − {i};
14: end while

15: return (N, λ,E);

60

Chapter 3 3.2. Formal description

The algorithm also maintains the set TBV of nodes to be visited, which

is made equal to N .

Then, the main loop (lines 2–14) is entered by checking if there are some

nodes to be visited (line 2). At each iteration, it is first (line 3) checked

whether the set of states identified by the wlp of the formula λ[i] with

respect to the set EvS of symbolic events is included in the union of the

sets of states that have been already generated. This is done by invoking

subsumed(i,N ,N ′) which returns true iff, for each symbolic event ev ∈ EvS,

there exists a subset N ′ of N − {i} and wlp(ev , λ[i]) implies the formula∨
j∈N ′ λ[j] (notice that the third argumentN ′ is passed by reference). If this

is the case, we can avoid to add a new node ν to N labeled by wlp(ev , λ[i])

as the symbolic behaviors arriving in ν have already been generated when

visiting the nodes in N ′. Thus, we can delete node i from TBV , add

a new node j labeled by wlp(ev , λ[i]) together with an edge from j to i

labeled by ev and—by invoking the auxiliary function connect—duplicate

the initial part of each path passing through a node n′ in N ′ by replacing

n′ with j provided that the newly created path is a symbolic behavior of

the symbolic transition system.

Example 3. To illustrate, consider node 7 in Figure 3.3 (colored in red):

wlp(ti(u), λ[7]) is unsatisfiable for i = 1, 3, 4, 5 (and can thus be ignored)

whereas wlp(t2(u3), λ[7]) is satisfiable and implies λ[13]; this is checked by

invoking subsumed with N ′ = {13}. Thus, we create a new node (say)

29, with λ[29] equal to wlp(t2(u3), λ[7]), draw an edge from 29 to 7 with

label t2(u3), duplicate the initial parts of the paths passing through node

13 (namely λ[17]
t1(u3)−→ λ[13] and λ[18]

t1(u4)−→ λ[13]) while replacing 13 with

29 (thus obtaining λ[17]
t1(u3)−→ λ[29] and λ[18]

t1(u4)−→ λ[29]), and then check

61

3.2. Formal description Chapter 3

that the newly created paths, namely

λ[17]
t1(u3)−→ λ[29]

t2(u3)−→ λ[7]
t3(u2)−→ λ[4]

t4(u1)−→ λ[1]
t5(u1)−→ λ[0] and

λ[18]
t1(u4)−→ λ[29]

t2(u3)−→ λ[7]
t3(u2)−→ λ[4]

t4(u1)−→ λ[1]
t5(u1)−→ λ[0] ,

are symbolic behaviors. It turns out that only the latter is so, since the

former violates the SoD constraint between t1 and t2. We thus add only

the path λ[18]
t1(u4)−→ λ[29]

t2(u3)−→ λ[7] to the graph in Figure 3.3. Nodes 5, 10,

and 12 are handled similarly. These extensions to the graph in Figure 3.3

are omitted to keep it readable.

If node i is not subsumed by those in N (i.e. subsumed(i,N) returns

false), we compute the wlp with respect to all symbolic events (inner loop

6–11). I.e., for each ev in EvS, we compute wlp(ev , λ[i]) labeling the node

i being visited (line 6) and verify if it defines a set of states which is non-

empty, by checking the satisfiability of the resulting formula (line 7). If this

is the case, we add a fresh node j, labeled by the wlp just computed, to N ,

an edge from i to j labeled by the name ev of the symbolic event ev , and

add the newly created node j to the set TBV (lines 8 and 9). For instance,

when computing the wlp of the formula labeling node 0 in Figure 3.3, we

found out that only the symbolic event named t5(u1) generates a formula

denoting a non-empty set of states and thus we added node 1 labeled by

such a formula and an edge from 1 to 0 labeled by t5(u1).

After exiting the inner loop, if the set TBV of nodes to be visited is non-

empty, we consider another node to be visited by invoking the auxiliary

function pickOne(TBV) which non-deterministically selects an element

from TBV (when this is empty, pickOne returns a distinguished element),

which is then deleted, and we start the main loop again.

Theorem 2. Let I be the initial state formula. If Algorithm 1 returns the

reachability graph RG when taking as input the symbolic security-sensitive

transition system S = (VCF ∪ VAuth ∪ VUser,EvS) and the final state formula

62

Chapter 3 3.2. Formal description

F , then the set of all symbolic behaviors of S is the set of labeled paths in

RG starting with a node labeled by a formula whose conjunction with I is

satisfiable and ending with a node labeled by F .

Proof. (Sketch) The proof of this theorem uses two previous concepts.

First, the definition of wlp in formula 3.7. Second, the properties dis-

cussed above about the auxiliary functions subsumed and connect, i.e.,

the fact that Algorithm 1 returns a complete RG . It is possible to show

that Algorithm 1 always terminates by adapting the results in [16].

3.2.2 On-line

Theorem 2 implies that starting from an initial state (i.e., one satisfying

the initial formula I) in the reachability graph computed by Algorithm 1, it

is always possible to reach a final state (i.e., one satisfying the final formula

F). If no event can be enabled infinitely often without being executed—

the strong fairness assumption—then a final state is eventually reached.

(As observed in [150], the assumption of strong fairness is reasonable in

the context of workflow management since decisions to execute tasks are

under the responsibility of applications or humans.) This is the key to

prove the following result, underlying the correctness of the automated

technique—to be described below—for extracting (part of) the monitor

from the reachability graph computed by Algorithm 1.

Theorem 3. Let S = (VCF ∪ VAuth ∪ VUser,EvS) be a symbolic security-

sensitive transition system and T = (VCF ∪ VAuth,EvT) be the associated

security-sensitive transition system for the finite set U ⊆ U of users. Fur-

thermore, let RG = (N, λ,E) be the symbolic reachability graph computed

by Algorithm 1 when taking as input S and a final state formula F . If the

state s satisfies a formula λ[i] for some i ∈ N , then there exists a behavior

s0
t0(u0)→ s1

t1(u1)→ · · · sn−1
tn−1(un−1)−→ sn of T such that (i) s0 = s, (ii) sn satisfies

63

3.2. Formal description Chapter 3

F , and (iii) (i, t(x), j) ∈ E with t0 = t and s0(x) = u0.

Proof. (Sketch) This theorem is a direct consequence of three assumptions.

First, strong fairness (described above) states that a final state is eventu-

ally reached. Second, Theorem 1 connects the symbolic behavior in S to

the behavior in T . Third, Theorem 2 shows that the set of all symbolic

behaviors of S is the set of labeled paths in RG from an initial to a final

state.

Thus, if T is in state s and we want to know if a certain user u0 can

execute task t0 while guaranteeing that the authorization constraints are

satisfied and the workflow terminates, it is sufficient to find a node of the

reachability graph that is satisfied by the s and one of the outgoing edges

is labeled by t0. Indeed, this is exactly the task a monitor is supposed to

perform.

To make this operational, we observe that we can associate the Datalog

clause

can do(u, t) ← Γ ∧ Ck[i]

for each node i ∈ N and edge (i, t(u), j) ∈ E, where Γ is the conjunction

of atoms of the form is user(x) for each variable x in Ck[i] with RG =

(N, λ,E) and
∨ni
k=1Ck[i] is the disjunctive normal form of λ[i]. Let D(RG)

be the set of Datalog clauses built in this way from the reachability graph

RG . (It is straightforward to check that D(RG) is non-recursive; see [26]

for a precise definition). Formally, the addition of Γ is needed to make

D(RG) a safe Datalog program (see again [26] for a precise definition) so

that answering queries always terminates.

After building the Datalog program D(RG), it is straightforward to

build a run-time monitor. Let U be a finite set of users, A ⊆ VAuth be the

subset of state variables at’s modeling the interface to the concrete autho-

rization policy establishing if a user has the right to execute a task, and P

64

Chapter 3 3.2. Formal description

be a Datalog program formalizing an authorization policy (i.e., P contains

a clause of the form is user(u) for each u ∈ U and clauses whose heads

contain only the predicates in A). We call P a Datalog authorization policy

program over the interface variables in VAuth. (How to write authorization

policies in Datalog is outside the scope of this thesis, the interested reader

is pointed to [94].)

Any assignment over the state variables in VCF ∪ (VAuth − A) can be

represented by a set Σ of Datalog facts of the forms p, ¬p, dt,¬dt, ht(u),

or ¬ht(u) for p, dt ∈ VCF and ht ∈ (VAuth − A). We call Σ a partial Datalog

state over the state variables in VCF ∪ (VAuth − A).

Theorem 4. Let S = (VCF ∪ VAuth ∪ VUser,EvS) be a symbolic security-

sensitive transition system, T = (VCF∪VAuth,EvT) be the associated security-

sensitive transition system for the finite set U ⊆ U of users, and RG =

(N, λ,E) be the symbolic reachability graph computed by Algorithm 1 when

taking as input S and a final state formula F . Additionally, let P be a

Datalog authorization policy over the interface variables in VAuth and Σ be

a partial Datalog state. A user u ∈ U can execute task t guaranteeing

the satisfaction of all authorization constraints and the termination of the

workflow iff the query can do(u, t) is answered positively by the Datalog

program D(RG) ∪ P ∪ Σ.

Proof. (Sketch) This theorem is a consequence of the definitions of Datalog

authorization policy program and partial Datalog state (defined just before

this theorem), and Theorem 3.

D(RG) can be seen as an abstract version of the monitor where the

policy P is left unspecified or, equivalently, D(RG) works for any possible

policy. The addition of the clauses in P that define the policy has the effect

of instantiating D(RG) to the particular policy P . Finally, the addition

of Σ instantiates D(RG) ∪ P to a particular state in the execution of the

security-sensitive workflow.

65

3.2. Formal description Chapter 3

This is the main result of this Chapter and guarantees the correctness

of our procedure to synthesize run-time monitors. Notice that when both

D(RG) and P are non-recursive (stratified) Datalog programs, queries can

be answered efficiently in LogSpace and can be translated to SQL without

aggregate operators (such as AVG and COUNT).

So far, we have described the key ideas underlying our technique while

neglecting efficiency considerations related to the enumeration of all pos-

sible terminating execution sequences of the security-sensitive workflow.

If we want our approach to scale up and handle real-world workflows, we

have to design suitable heuristics.

Our idea is to split a complex workflow into components that can be

again decomposed into smaller components up to a desired level of detail.

Several workflow management systems support this style of specification

following an established line of works in both academia [143] and indus-

try [134]. It is also possible to decompose large workflows into smaller

components by using pre-existing techniques [125].

Besides fostering reuse and simplifying maintenance of complex work-

flows, modular specifications allow for the development of a divide-and-

conquer strategy when applying Algorithm 1. I.e. given a modular work-

flow, it is possible to compute its monitor for the WSP by first computing

the monitors for each of the components separately and then “gluing” them

together. This modular strategy is detailed in Chapter 4.

66

Chapter 4

Modularity for security-sensitive

workflows1

Business process designers constantly strive to adapt to rapidly evolving

markets under continuous pressure of regulatory and technological changes.

In this respect, a frequent problem faced by companies is the lack of au-

tomation when trying to incorporate new requirements into existing pro-

cesses. A traditional approach to business process modeling frequently re-

sults in large models that are difficult to change and maintain. This makes

it critical that business process models be modular and flexible, not only

for increased modeling agility at design-time but also for greater robust-

ness and flexibility of enacting at run-time (see, e.g., [106] for a discussion

about this and related problems).

The modular design of business processes has been advocated for a long

time in academia because of its support to reuse at design-time and scala-

bility at run-time [123, 124]. In industry, it is more and more common to

find solutions allowing the reuse of (parts of) workflows to realize complex

business processes. For instance, SAP Operational Process Intelligence2

supports the creation of end-to-end business processes spanning multiple

1Parts of this chapter were previously published in [54]
2https://help.sap.com/hana-opint

67

https://help.sap.com/hana-opint

Chapter 4

workflows. Such (template) workflows can be created once and stored in a

repository to be then operated in different contexts. As an example, a Pur-

chase Order workflow with tasks Create Purchase Order and Create Invoice

would be part of any end-to-end business process selling goods, whereas a

Warehouse Management workflow composed of tasks Locate Product and

Send Product would be included only in cases where physical goods are

involved.

Although techniques for modular specification and enactment of work-

flows and their impact have been extensively studied in the literature (see,

e.g., [123, 124, 93]), the same is not true for security-sensitive workflows.

In this special class of workflows, not only the control-flow spans several

modules, but even authorization constraints may be defined across different

components. Given the difficulties in specifying and enforcing execution

and authorization constraints in this context, it is not surprising that vul-

nerabilities can be exploited by malicious users. For example, recently, the

incorrect handling of authorization constraints between a Purchase Order

and a Warehouse Management workflow allowed an Amazon employee to

pay for cheap products and deliver expensive electronics to himself3. This

kind of fraud could be avoided by specifying at design-time and enforcing

at run-time a SoD constraint between tasks Create Purchase Order and

Send Product.

To summarize, the modular specification and enactment of security-

sensitive workflows is complicated by the lack of adequate answers to the

following questions:

(i) how to specify authorization constraints that span multiple modules

(inter-module constraints)?

(ii) how to enforce such constraints?

(iii) how to scale the enforcement mechanism and handle large workflows?

3https://goo.gl/1bySZH

68

https://goo.gl/1bySZH

Chapter 4 4.1. Modular design and enactment

Indeed, the last question is not unique to modular workflows, but is

important to the whole class of security-sensitive workflows. In this Chap-

ter, we introduce an approach capable of answering the questions above by

making the following contributions:

• the definition of security-sensitive workflow components equipped with

interfaces (Section 4.2) that allow to glue components together and

define constraints between them (Section 4.3), to answer question (i);

and

• an automated technique, extending the work in Chapter 3, to synthe-

size run-time monitors from workflow components ensuring that all

tasks can be executed without violating the policy or the constraints

(Section 4.4), to answer questions (ii) and (iii).

4.1 Modular design and enactment

We introduce our approach for the modular design and enactment of

security-sensitive workflows by combining the TRW introduced in Exam-

ple 1 with another example workflow.

Example 4. Figure 4.1 shows the Moderate Discussion Workflow (MDW)

whose goal is to organize a discussion and voting process in an organi-

zation. It is composed of four tasks: Request (t1), Moderate Conference

Call (t6), Moderate e-mail Discussion (t7), and Validation (t5). Four SoD

constraints must be enforced: (t1, t6), (t6, t5), (t6, t7), and (t7, t5). Each

task is executed under the responsibility of a user who is entitled to do so

according to some authorization policy, which we leave unspecified for the

sake of brevity and because the synthesis technique that we use generates

a monitor that can accommodate any authorization policy.

69

4.1. Modular design and enactment Chapter 4

Figure 4.1: MDW in extended BPMN

Figure 4.2: User actions necessary to specify and compose modules representing the TRW

and MDW

Notice that tasks t1 and t5 in Figures 3.1 and 4.1 are the same in

both the TRW and the MDW. The notion of security-sensitive component

introduced in this Chapter allows to reuse the specification of tasks t1

and t5 in different workflows so that only the specification of the parallel

execution of tasks t2, t3, and t4 for the TRW and t6 and t7 for the MDW

must be developed from scratch.

By using the approach in this Chapter, a process designer can model

both the TRW and the MDW by executing the following user actions, that

are also depicted in Figure 4.2 (where the elements in black represent the

internal specification of components, the red dashed arrows represent inter-

component execution (control-flow) constraints and the blue dashed lines

represent inter-component authorization constraints):

70

Chapter 4 4.1. Modular design and enactment

UA1 specify the parallel execution of tasks t2, t3, and t4 as a new com-

ponent C234, for the TRW, and of t6 and t7 as C67, for the MDW,

together with their authorization constraints: SoD between t2 and t3

for the TRW and between t6 and t7 for the MDW;

UA2 synthesize run-time monitors for the new components C234 and C67

to be stored (together with the monitors) in a repository for future

use;

UA3 import, from the available workflow repository, the security-sensitive

components containing tasks t1 and t5 in Figures 3.1 and 4.1, called

C1 and C5, respectively;

UA4 define the control-flow among components; and

UA5 define inter-component authorization constraints.

To enact the modularly designed business processes TRW and MDW,

the designer can simply add an authorization policy and deploy the process

to the run-time environment. Behind the scenes, the monitors of the vari-

ous components are automatically combined to build one for the composed

processes, namely TRW and MDW. This combination is done by using a

set G of “gluing assertions,” which are logical assertions connecting the

components, i.e. transferring control-flow and constraining the execution

of tasks in the next components.

The main result of this Chapter (Theorem 6) shows that the com-

bination of monitors M1, M234, and M5 synthesized for components

C1, C234 and C5, respectively, with their Datalog authorization policies

P1, P234, P5 and their execution histories H1, H234, H5, and using

the assertions in G, answers to user requests in the same way as a

monitor M computed for the TRW as a single component. Formally,

M1,M234,M5, G, P1, P234, P5, H1, H234, H5 ` can do(u, t) iff M,P,H `
can do(u, t). Therefore, a similar run as the one shown in Table 3.2 for

M can be obtained with M1, M234, M5.

71

4.2. Security-sensitive workflow components Chapter 4

Indeed, the simplicity of the TRW and the MDW spoils the advantages

of a modular approach. However, for large workflows the advantages are

substantial. To give an intuition of this, imagine replacing the tasks reused

in both workflows, i.e. t1 and t5, with complex workflows: reusing their

specifications and synthesized run-time monitors in larger workflows in

which they are plugged, becomes much more interesting.

4.2 Security-sensitive workflow components

The goal of this Section is to identify a refinement of the notion of security-

sensitive workflow (introduced in Chapter 3) that can be modularly com-

posed with others through an appropriate interface.

Technically, this is done by extending and partitioning the state vari-

ables of the transition system representing a security-sensitive workflow

and then adding an appropriate notion of interface to support composi-

tion. The resulting notion is called a security-sensitive component. A

(symbolic) security-sensitive component is a pair (S, Int) where S is a (sym-

bolic) security-sensitive transition system and Int is its interface.

Security-sensitive transition system

Recall the description of the transition system S = (V,Tr), with V =

VCF ∪ VAuth , associated to a security-sensitive workflow. We redefine a

(symbolic) security-sensitive transition system as follows.

Definition 5. A (symbolic) security-sensitive transition system S is a tuple

of the form ((P,D,A,H,C),Tr , B) where (P ∪D ∪ A ∪ H ∪ C) = V are

the state variables, Tr is a set of transitions, and B is a set of constraints

on the state variables in C.

The finite set P contains Boolean variables representing the places of

the Petri net associated to a BPMN specification of the security-sensitive

72

Chapter 4 4.2. Security-sensitive workflow components

workflow and D is a finite set of Boolean variables representing the fact

that a task has been executed or not; P ∪D are called execution constraint

variables. The finite set A contains interface predicates to the authorization

policy, H is a set of predicates recording which users have executed which

tasks, and C is a set of interface predicates to the authorization constraints;

A∪H∪C are called authorization constraint variables. The set Tr contains

the transitions (or events) of the form

t(u) : enEC(P,D) ∧ enAuth(A,C)→ actEC(P,D)||actAuth(H) (4.1)

where t is the name of a task taken from a finite set, u is a variable ranging

over a set U of users, enEC(P,D) is a predicate on P ∪ D (called the

enabling condition for the execution constraint), enAuth(A,C) is a predicate

on {v(u)|v ∈ A ∪ C} (called the enabling condition for the authorization

constraint), actEC(P,D) contains parallel assignments of the form v :=

b where v ∈ P ∪ D and b is a Boolean value (called the update of the

execution constraint of the security sensitive workflow), and actAuth(H)

contains parallel assignments of the form v(u) := b where v ∈ H and b is a

Boolean value (called the update of the authorization history of the security

sensitive workflow).4 Finally, the finite set B contains always constraints

of the form

∀u.v(u)⇔ hst , (4.2)

where u is a variable ranging over users, v is a variable in C, and hst is a

Boolean combination of atoms of the form w(u) with w ∈ H.

Interface of a security-sensitive component

Definition 6. The interface Int of a symbolic security-sensitive component

(S, Int) is a tuple of the form (A,P i, P o, Ho, Ci) where

4The assignment v(u) := b leaves unchanged the value returned by v for any u′ distinct from u. In

other words, after the assignment, the value of v can be expressed as follows: λx.if x = u then b else v(x).

73

4.2. Security-sensitive workflow components Chapter 4

• P i ⊆ P and each pi ∈ P i is such that pi := T does not occur in the

parallel assignments of an event of the form (4.1) in Tr,

• P o ⊆ P and each po ∈ P o is such that po := T occurs in the parallel

assignments of an event of the form (4.1) in Tr whereas po := F does

not,

• Ho ⊆ H, C i ⊆ C, and

• only the variables in (C \ C i) ∪ Ho can occur in a symbolic always

constraint of B.

When P i, P o, Ho, and C i are all empty, the component (S, Int) can only

be interfaced with an authorization policy via the interface variables in A.

The state variables in D are only used internally, to indicate that a task

has been or has not been executed; thus, none of them is exposed in the

interface Int . The variables in P , H, and C are local to S but some of them

can be exposed in the interface in order to enable the combination of S with

other components in a way which will be described below (Section 4.3).

The super-scripts i and o stand for input and output, respectively. The

requirement that variables in P i are not assigned the value T (rue) by any

transition of the component allows their values to be determined by those

in another component. Dually, the requirement that variables in P o can

only be assigned the value T (rue) by any transition of the component

allows them to determine the values of variables in another component.

Similarly to the values of the variables in P i, those of the variables in C i

are fixed when combining the module with another; this is the reason for

which only the variables in C \ C i can occur in the always constraints of

the component.

Example 5. We now illustrate the notion of security-sensitive component

by considering the TRW and the MDW. As said in Section 4.1, we want

to reuse tasks t1 and t5 in both TRW and MDW. To do so, we split the

specification of each workflow in four components C1, C234, C67, and C5 as

74

Chapter 4 4.2. Security-sensitive workflow components

Figure 4.3: TRW and MDW as combinations of security-sensitive components

shown in Figure 4.3, where the sequential composition of C1, C234, and C5

yields the TRW and that of C1, C67, and C5 gives the MDW.

The figure shows the extended Petri nets representing the four compo-

nents and how they are connected: circles represent places, rectangles with

a man icon transitions to be executed under the responsibility of users,

rectangles without the icon transitions not needing human intervention,

(black) dashed lines represent SoD constraints between tasks belonging to

the same component, (gray) dashed lines SoD constraints between tasks

belonging to distinct components, (black) solid arrows the control flow in

the same component, and (gray) dashed arrows the control flow between

two components.

Notice that the control flow between two components is outside of the

semantics of extended Petri nets. For example, a token in place p0 of C1

goes to p1 of C1 after the execution of t1 and, at the same time a token is

put in place p0 of C234 because of the (gray) dashed arrow from p1 in C1

75

4.2. Security-sensitive workflow components Chapter 4

to p0 in C234 representing an inter execution constraint. When the token

is in p0, the system executes the split transition s in C234 that removes the

token from p0 and puts one in p1, p2, and p3 so that t2, t3, and t4 in C234

become enabled. Notice that the execution of t2 is constrained by a SoD

constraint from task t1 in component C1 (dashed arrow between t1 in C1

and t2 in C234): this means that the user who has executed t1 in C1 cannot

execute also t2 in C234.

We now show how to formalize the components depicted in Figure 4.3

by defining C1 = (S1, Int1), C5 = (S5, Int5), C234 = (S234, Int234), and

C67 = (S67, Int67) where Sy = ((Py, Dy, Ay, Hy, Cy),Tr y, By), and Inty =

(Ay, P
i
y, P

o
y , H

o
y , C

i
y) for y = 1, 5, 234, 67. For components C1 and C5, we set

Py := {p0y, p1y}, Dy := {dty}, Ay := {aty}, Hy := {hty}, Cy := {city},
By := ∅, P i

y := {p0y}, P o
y := {p1y}, Ho

y := {hty}.

for y = 1, 5, and take

Tr 1 := {t1(u) : p01 ∧ ¬dt1 ∧ at1(u)→ p01, p11, dt1, ht1(u) := F, T, T, T},
Tr 5 := {t5(u) : p05 ∧ ¬dt5 ∧ at5(u) ∧ cit5(u)→

p05, p15, dt5, ht5(u) := F, T, T, T},
C i

1 := ∅, C i
5 := {cit5}.

According to the transition in Tr 1, task t1 is enabled when there is a

token in place p01 (place p0 of component C1 in Figure 4.3), t1 has not been

already executed (¬dt1) and there exists a user u capable of executing t1

(at1(u)). The effect of executing such a transition is to move the token from

p01 to p11 (places p0 and p1 of component C1 in Figure 4.3, respectively),

set dt1 to true meaning that t1 has been executed, and recording that t1

has been executed by u.

The interface of each component is the following: p0y is the input place,

p1y is the output place, and the history variable hty can be used to constrain

the execution of tasks in other components (for instance of t2 in the TRW

76

Chapter 4 4.2. Security-sensitive workflow components

as t1 and t2 are involved in a SoD, shown by the gray dashed line between

the two tasks in Figure 4.3). Notice that the execution of task t1 cannot be

constrained by the execution of tasks in other components (thus C i
1 := ∅)

since t1 is always executed before all other tasks and cannot possibly be

influenced by their execution.

The definition of the transition in Tr 5 is similar to that in Tr 1 except for

the fact that the execution of task t5 can be constrained by the execution

of tasks in other components (thus C i
5 := {cit5}) since t5 is always executed

after all other tasks and can be influenced by their execution. In particular,

cit5 will be defined so as to satisfy the SoD constraints between t5 and t2

or t3 for the TRW and t6 or t7 for MDW.

For component C234, we set

P234 := {py234|y = 0, . . . , 7}, D234 := {s234, j234, dty|y = 2, 3, 4},
A234 := {aty|y = 2, 3, 4}, H234 := {hty|y = 2, 3, 4},
C234 := {ct2, ct3, city|y = 2, 3, 4},
B234 := {∀u.ct2(u)⇔ ¬ht3(u),∀u.ct3(u)⇔ ¬ht2(u)},

Tr 234 :=

s234 : p0234 ∧ ¬ds →
p0234, p1234, p2234, p3234, ds234 := F, T, T, T, T

t2(u) : p1234 ∧ ¬dt2 ∧ at2(u) ∧ ct2(u) ∧ cit2(u)→
p1234, p4234, dt2, ht2(u) := F, T, T, T

t3(u) : p2234 ∧ ¬dt3 ∧ at3(u) ∧ ct3(u) ∧ cit3(u)→
p2234, p5234, dt3, ht3(u) := F, T, T, T

t4(u) : p3234 ∧ ¬dt4 ∧ at4(u) ∧ cit4(u)→
p3234, p6234, dt4, ht4(u) := F, T, T, T

j234 : p4234 ∧ p5234 ∧ p6234 ∧ ¬dj →
p4234, p5234, p6234, p7234, dj234 := F, F, F, T, T

P i

234 := {p0234}, P o
234 := {p7234}, Ho

234 := {ht2, ht3}, C i
234 := {cit2, cit4}.

Transitions s234 and j234 (corresponding to the rectangles labeled s and

j of component C234 in Figure 4.3) model the parallel composition of tasks

77

4.2. Security-sensitive workflow components Chapter 4

t2, t3, and t4 in the TRW and the MDW. Since no human intervention

is needed, the enabling conditions for the authorization constraint of both

transitions are omitted. Tasks t2 and t3 are involved in a SoD constraint

(cf. the dashed lines labeled by 6= between t2 and t3 in Figure 4.3). For

this reason, their enabling conditions contain ct2(u) and ct3(u) which are

defined in B234 so as to prevent the execution of t2 and t3 by the same

users: to execute t3 (t2, resp.), user u must be such that ¬ht2(u) (¬ht3(u),

resp.), i.e. u should have not executed t2 (t3, resp.). Transitions t2, t3,

and t4 in Tr 234 have enabling conditions that contain cit2(u), cit3(u), and

cit4(u) which will be defined so as to satisfy the SoD constraints in which

the tasks are involved (cf. the gray dashed lines across the rectangles in

Figure 4.3).

The definition of component C67 is quite similar (albeit simpler) to that

of C234:

P67 := {py67|y = 0, . . . , 5}, D67 := {s67, j67, dty|y = 6, 7},
A67 := {aty|y = 6, 7}, 5H67 := {hty|y = 6, 7}, C67 := {cty, city|y = 6, 7},
B67 := {∀u.ct6(u)⇔ ¬ht7(u),∀u.ct7(u)⇔ ¬ht6(u)}

Tr 67 :=

s67 : p067 ∧ ¬ds → p067, p167, p267, ds67 := F, T, T, T

t6(u) : p167 ∧ ¬dt6 ∧ at6(u) ∧ ct6(u) ∧ cit6(u)→
p167, p367, dt6, ht6(u) := F, T, T, T

t7(u) : p267 ∧ ¬dt7 ∧ at7(u) ∧ ct7(u) ∧ cit7(u)→
p267, p467, dt7, ht7(u) := F, T, T, T

j67 : p367 ∧ p467 ∧ ¬dj →
p367, p467, p567, dj67 := F, F, T, T

P i

67 := {p067}, P o
67 := {p567}, Ho

67 := {ht6, ht7}, C i
67 := {cit6}.

Section 4.3 below explains how components C1, C234, C67, and C5 can be

“glued together” to build the TRW and the MDW.

78

Chapter 4 4.2. Security-sensitive workflow components

Semantics of a security-sensitive component

The notion of symbolic security-sensitive transition system introduced here

is equivalent to that in Chapter 3; the only difference being the presence

of the authorization constraint variables in C together with the always

constraints in B.

It is easy to see that, given a transition system ((P,D,A,H,C),Tr , B),

it is always possible to eliminate the variables in C occurring in B from

the conditions of transitions in Tr by using (4.2): it is sufficient to replace

each occurrence of v(u) with hst . Let [[tr]]B denote the transition obtained

from tr by exhaustively replacing the variables in C that also occur in B

as explained above. Since no variable in C may occur in the update of a

transition and in the enabling condition for the execution constraint of a

transition, by abuse of notation, we apply the operator [[·]]B to the enabling

condition for the authorization constraint of tr . The substitution process

eventually terminates since in hst there is no occurrence of variables in the

finite set C, only the variables in H may occur.

The possibility of eliminating the variables in C allows us to give the

semantics of the class of (symbolic) security-sensitive transition systems

considered here by using the notion of weakest liberal precondition (wlp)

as done in Chapter 3. The intuition is that computing a wlp with respect

to the transitions in Tr and the always constraints in B is equivalent to

computing that with respect to [[Tr]]B. Formally, we define

wlp(Tr , B,K) :=
∨

tr∈Tr

(enEC ∧ [[enAuth]]B ∧K[actEC||actAuth]) (4.3)

where B is a set of always constraints, tr is of the form (4.1), K is a

predicate over P ∪D ∪A ∪C, and K[actEC||actAuth] denotes the predicate

obtained from K by substituting

• each variable v ∈ P ∪D with the value b when the assignment v := b

is in actEC and

79

4.2. Security-sensitive workflow components Chapter 4

• each variable v ∈ H with λx.if x = u then b else v(x) when v(x) := b

is in actAuth for b a Boolean value.

It is easy to show that wlp(Tr , B,K) is
∨

tr∈Tr wlp(tr , B,K). When Tr is

a singleton containing one symbolic transition tr , we write wlp(tr , B,K)

instead of wlp({tr}, B,K).

Definition 7. A symbolic behavior of a security-sensitive transition sys-

tem S = ((P,D,A,H, C),Tr , B) is a sequence of the form K0
tr0−→ K1

tr1−→
· · · trn−1−→ Kn where Ki is a predicate over P ∪D ∪ A ∪ C and tr i is a sym-

bolic transition such that Ki is logically equivalent to wlp(tr i, B,Ki+1) for

i = 0, . . . , n− 1.

The semantics of the security-sensitive transition system S is the set of

all possible symbolic behaviors. The semantics of a security-sensitive com-

ponent (S, Int) is the set of all possible symbolic behaviors of the security-

sensitive transition system S.

Example 6. We consider component C5 (cf. Example 5) and compute the

wlp with respect to t5(u) (in the set Tr 5 of transitions) for the following

predicate ¬p05 ∧ p15 ∧ dt5 characterizing the set of final states of C5, i.e.,

those states in which task t5 has been executed and there is just one token

in place p15.

By using definition (4.3) above, we obtain p05 ∧ ¬dt5 ∧ at5(u) ∧ cit5(u),

which identifies those states in which there is a token in place p01, task

t1 has not yet been executed, and user u has the right to execute t1 and

authorization constraints imposed by other components are satisfied (e.g.,

the SoD constraint between t5 and t2 in C234 for the TRW).

80

Chapter 4 4.3. Gluing together security-sensitive components

4.3 Gluing together security-sensitive components

We now show how components can be combined together in order to build

other, more complex, components. For l = 1, 2, let (Sl, Int l) be a symbolic

security-sensitive component where Int l = (A,P i
l , P

o
l , H

o
l , C

i
l) and Sl =

((Pl, Dl, Al, Hl, Cl),Tr l, Bl) is such that P1 and P2, D1 and D2, A1 and

A2, H1 and H2, C1 and C2 are pairwise disjoint sets. Furthermore, let

G = GEC ∪GAuth be a set of gluing assertions over Int1 and Int2, where

• GEC is a set of formulae of the form pi ⇔ po for pi ∈ P i
k and po ∈ P o

j ,

called inter execution constraints, and

• GAuth is a set of always constraints in which only the variables in

C i
k ∪Ho

j may occur,

for k, j = 1, 2 and k 6= j.

Intuitively, the gluing assertions in G specify inter component con-

straints; those in GEC define how the control flow is passed from one com-

ponent to another, whereas those in GAuth specify authorization constraints

across components, i.e., how the fact that a task in a component is executed

by a certain user constrains the execution of a task in another component

by a subset of the users entitled to do so.

Definition 8. The symbolic security-sensitive component (S, Int) obtained

by gluing (S1, Int1) and (S2, Int2) together with G, in symbols (S, Int) =

(S1, Int1)⊕G(S2, Int2), is defined as S = ((P,D,A,H,C),Tr , B) and Int =

(A,P i, P o, Ho, Ci), where

• P = P1∪P2, D = D1∪D2, A = A1∪A2, H = H1∪H2, C = C1∪C2,

• Tr := [Tr 1]GEC
∪ [Tr 2]GEC

where [Tr j]GEC
:= {[tr j]GEC

|tr j ∈ Tr j} and

[tr j]GEC
is obtained from tr j by adding the assignment pi := b if pi is

in P i
j , there exists an inter execution constraint of the form pi ⇔ po

in GEC, po is in P o
k , and po := b is among the parallel assignments of

tr j; otherwise, tr j is returned unchanged, for j, k = 1, 2 and j 6= k,

81

4.3. Gluing together security-sensitive components Chapter 4

• B = B1 ∪B2 ∪GAuth,

• P i = {p ∈ (P i
1 ∪ P i

2)|p does not occur in GEC},
• P o = {p ∈ (P o

1 ∪ P o
2)|p does not occur in GEC},

• Ho = Ho
1 ∪Ho

2 , and

• C i = {c ∈ (C i
1 ∪ C i

2)|c does not occur in GAuth}.

The definition is well formed since S is obviously a security-sensitive

transition system and Int satisfies all the structural constraints at page 73.

Example 7. Let us consider components C1 and C234 of Example 5. We

glue them together by using the following set G = GEC ∪ GAuth of glu-

ing assertions where GEC := {p11 ⇔ p0234} and GAuth := {∀u.cit2(u) ⇔
¬ht1(u),∀u.cit4(u) ⇔ ¬ht1(u)}. The inter execution constraint in GEC cor-

responds to the dashed arrow connecting p1 in component C1 (p11) to p0 in

component C234 (p0234) in Figure 4.3. The always constraints in GAuth for-

malize the dashed lines linking task t1 of component C1 to tasks t2 and t4

of component C234. The component obtained by gluing C1 and C234 together

with G (in symbols, C1 ⊕G C234) is such that

• its set of transitions contains all transitions in Tr 234 plus the transition

in Tr 1 modified to take into account the inter execution constraint in

GEC, i.e.

t1(u) : p01 ∧ ¬dt1 ∧ at1(u)→

p01, p11, dt1, ht1(u) := F, T, T, T ||p0234 := T

ensuring that when the token is put in p11 it is also put in p0234 (in

this way, we can specify how the control flow is transferred from C1 to

C234);

• its set of always constraints contains all the constraints in B1 and B234

plus those in GAuth so that the SoD constraints between task t1 in C1

and tasks t2 and t4 in C234 are added;

82

Chapter 4 4.3. Gluing together security-sensitive components

• if its interface is (A,P i, P o, Ho, Ci), then P i := {p11} since p0234 oc-

curs in GEC, P 0 := {p7234} since p11 occurs in GEC, and C i := ∅ since

both cit2 and cit4 occur in GAuth.

Notice that C1 ⊕G C234 can be combined with C5 to form a compo-

nent corresponding to the TRW in Figure 3.1. This is possible by con-

sidering the following set G′ = G′EC ∪ G′Auth of gluing assertions where

G′EC := {p7234 ⇔ p05} and G′Auth := {∀u.cit5(u) ⇔ ¬ht2(u) ∧ ¬ht3(u)}. The

inter execution constraint in G′EC corresponds to the dashed arrow connect-

ing p7 in component C234 (p7234) to p0 in component C5 (p05) in Figure 4.3.

The always constraint in GAuth formalizes the dashed lines linking task t5

of C5 with tasks t2 and t3 of C234.

We now illustrate the computation of the wlp with respect to the tran-

sitions of a composed component by means of an example.

Example 8. Let us consider (C1 ⊕G C234) ⊕G′ C5 of Example 7 and the

predicates

K1 := ¬p01 ∧ dt1
K234 :=

∧
i=0,...,6

¬pi234 ∧ dt2 ∧ dt3 ∧ dt4 ∧ ds234 ∧ dj234

K5 := ¬p05 ∧ p15 ∧ dt5

whose conjunction K characterizes the final states of the TRW, i.e. those

situations in which all tasks have been executed and there is just one token

in place p15 (notice that K234 does not mention p7234 whose value is implied

by K5 and the inter execution constraints p7234 ⇔ p05 and similarly K1

does not mention p11 whose value is implied by K234 and the inter execution

constraint in p11 ⇔ p0234).

Now we compute wlp(t5, B,K) where B is the union of B1, B234, B5,

GAuth, and G′Auth given in Example 7 by using (4.3):

K1 ∧K234 ∧ (p05 ∧ ¬dt5 ∧ at5(u) ∧ ¬ht2(u) ∧ ¬ht3(u)) . (4.4)

83

4.3. Gluing together security-sensitive components Chapter 4

Notice how K1 and K234 have not been modified since the parallel updates

of t5 do not mention any of the state variables in C1 and C234 but only those

of C5, namely p05 and dt5.

To illustrate how the computation of wlp takes into account the transfer

of the control flow from one component to another, let us compute the wlp

of (4.4) with respect to transition j in component C234. According to the

definition of composition of components, transition j234 becomes

j∗234 : p4234 ∧ p5234 ∧ p6234 ∧ ¬dj234 →

p4234, p5234, p6234, p7234, dj234 := F, F, F, T, T ||p05 := T .

Notice the added assignment p05 := T to take into account the inter execu-

tion constraint in G′EC (see Example 7) ensuring that when the token is put

in p7234, it is also put in p05. By using (4.3), we have that wlp(j∗234, B, (4.4))

is

K1 ∧

 ¬p0234 ∧ ¬p1234 ∧ ¬p2234∧
¬p3234 ∧ p4234 ∧ p5234 ∧ p6234∧
¬dt2 ∧ ¬dt3 ∧ ¬dt4 ∧ ds234 ∧ ¬dj234

 ∧(¬dt5 ∧ at5(u)∧
¬ht2(u) ∧ ¬ht3(u)

)
(4.5)

Notice how K1 is left unmodified since it describes the state of component

C1 and no gluing assertions involve state variables of C1 and those in the

update of j∗234. K234 instead is modified substantially (see the predicate

in square brackets) since j234 is a transition of component C234, while the

remaining part of (4.5) is almost identical to the formula between paren-

theses in (4.4) except for the deletion of p05 because of the additional

assignment p05 := T in j∗234, introduced to take into account the inter

execution constraint in G′Auth.

An alternative way of computing wlp(j∗234, B, (4.4)) is the following. Ob-

serve that the value of p7234 is fixed to T because of the inter execution

constraint p05 ⇔ p7234 in GAuth and the fact that (4.4) implies that p05

is T . Thus, we can consider the predicate K234 ∧ p7234 and then compute

84

Chapter 4 4.3. Gluing together security-sensitive components

wlp(j234, B234, K234 ∧ p7234) which is the predicate in square brackets of

(4.5). By taking the conjunction of this formula with K1 and the predicate

obtained by deleting p05 from wlp(t5, B5 ∪ GAuth, K5) in which we delete

p05 (because (4.4) implies that p05 is T) thereby obtaining the predicate

between parentheses in (4.4), we derive (4.5) as before.

The last paragraph of the example suggests a modular approach to

computing wlp’s. It is indeed possible to generalize the process described

above and derive a modularity result for computing the wlp of a complex

component by using the wlp’s of its components by taking into account the

gluing assertions. We do not do this here because it is not central to the

applications of the notion of component discussed in Section 4.4 below.

Theorem 5. Let (Sk, Intk) be a symbolic security-sensitive component for

k = 1, 2, 3, G1,2 be a set of gluing assertions over Int1 and Int2, and G2,3

be a set of gluing assertions over Int2 and Int3. Then,

Commutativity: (S1, Int1)⊕G1,2
(S2, Int2) = (S2, Int2)⊕G1,2

(S1, Int1) and

Associativity: ((S1, Int1) ⊕G (S2, Int2)) ⊕G (S3, Int3) = (S1, Int1) ⊕G
((S2, Int2)⊕G (S3, Int3)) for G = G1,2 ∪G2,3.

Proof. (Sketch) The proof is straightforward and based on Definition 8 and

the commutativity and associativity of set union, since the definition of

⊕G uses the union of the sets of variables in each of the security-sensitive

components and in G. Notice that the associativity property above is

expressed by taking into account the union of the gluing assertions over

the interfaces of the reusable systems being combined.

Example 9. Recall the components of Example 7. Because of Theorem 5,

we have that the TRW can be expressed as C1⊕G′′C234⊕G′′C5 for G′′ = G∪G′

where G,G′ have been defined in Example 7.

85

4.4. Modular synthesis of run-time monitors Chapter 4

Notice that, despite the commutativity of the operator ⊕, the task in C1

will always be executed before all tasks in components C234 and C5 because

of the gluing assertions in G′′. Thus, the component C234 ⊕G′′ C1 ⊕G′′ C5

obtained by considering the components in a different order is equivalent

to TRW.

4.4 Modular synthesis of run-time monitors

In Chapter 3, we have shown how to automatically derive a monitor ca-

pable of solving the run-time version of the WSP for a security-sensitive

transition system.

As already discussed in Section 4.2 (“Semantics of a security-

sensitive component”), the notion of security-sensitive transition sys-

tem introduced here and that in Chapter 3 are equivalent. In particu-

lar, given a security-sensitive transition system ((P,D,A,H,C),Tr , B) we

can derive an equivalent security-sensitive transition system of the form

((P,D,A′, H, ∅), {[[tr]]B|tr ∈ B}, ∅), which is precisely a security-sensitive

transition system of Chapter 3, where A′ contains the variables in A and

those in C which are not mentioned in B.

Let RM be the procedure which takes as input a security-sensitive

transition system S = ((P,D,A,H,C),Tr , B), applies the transforma-

tion above, and then the procedure for the synthesis of run-time moni-

tors described in Chapter 3, which returns a Datalog program RM(S)

defining a predicate can do(u, t) such that user u can execute task t

and the workflow can successfully terminate iff can do(u, t) is a logical

consequence (in the sense of Datalog) of RM(S) ∪ P ∪ H (in symbols

RM(S),P ,H |= can do(u, t)), where P is a Datalog program defining the

meaning of the predicates in A (i.e. the authorization policy) and H is a

set of history facts of the form ht(u), recording the fact that user u has

86

Chapter 4 4.4. Modular synthesis of run-time monitors

executed task t.

We now show how to reuse RM for the modular construction of run-

time monitors for the WSP, i.e., we build a monitor for a composite com-

ponent by combining those for their constituent components. Let G =

GEC∪GAuth be a set of gluing assertions where GEC is a set of inter execution

constraints andGAuth a set of always constraints over an interface (A,P i, P o,

Ho, Ci), then 〈G〉 := 〈GEC〉 ∪ 〈GAuth〉, where 〈GEC〉 := {pi ← po|pi ⇔ po ∈
GEC} and 〈GAuth〉 := {ci(u) ← hst i(u)|∀u.ci(u) ⇔ hst i(u) ∈ GAuth}. Intu-

itively, the shape of the Datalog clauses in 〈GEC〉 models how the execution

flow is transferred from a component (that with an output place) to the

other (that with an input place).

Theorem 6. Let (Sk, Intk) be a symbolic security-sensitive compo-

nent, Sk = ((Pk, Dk, Ak, Hk, Ck),Trk, Bk), Hk is a set of (history)

facts over Hk, and Pk a Datalog program (for the authorization pol-

icy) over Ak, for k = 1, 2. If G is a set of gluing assertions

over Int1 and Int2, then RM(S),H1,H2,P1,P2 |= can do(u, t) iff

RM(S1),H1,P1, 〈G〉,RM(S2),H2,P2 |= can do(u, t), where (S, Int) =

(S1, Int1)⊕G (S2, Int2).

Proof. (Sketch) The idea underlying the proof of this theorem is that the

monitors for the components are computed by considering any possible

values for the variables in their interfaces. The additional constraints in the

gluing assertions simply consider a subset of all these values by specifying

how the execution flow goes from one component to the other and how the

authorization constraints across components further constrain the possible

executions of a component depending on which users have executed certain

tasks in the other.

87

4.4. Modular synthesis of run-time monitors Chapter 4

88

Chapter 5

Assisting the deployment of

security-sensitive workflows1

As discussed in Chapter 4, there is a trend in BPM of collecting and reusing

business process models [145, 50, 71]. At deployment time, it is crucial for

customers reusing a template from the library to understand whether it

can be successfully instantiated with the authorization policy adopted by

their organization.

This means that customers want to scrutinize concrete execution sce-

narios showing the termination of the instantiated business process model

by giving evidence that some of the employees can successfully execute the

various tasks in the workflow. Variants of this basic problem may be of

interest to assist customers in deploying security-sensitive workflows under

specific operational conditions.

A first refinement is to focus on those scenarios that can be executed by

a given “small” set of users, called minimal user base in the literature [42].

This would enable organizations to assess the likelihood of emergencies or

extraordinary situations due to, e.g., employee absences.

A second variant of the problem of finding execution scenarios is to

discover those that are resilient to the absence of users, i.e., whether the

1Parts of this chapter were previously published in [53]

89

5.1. Preliminaries Chapter 5

termination of the workflow is guaranteed even if a certain number of users

(regardless of which concrete users) is unavailable to execute tasks for a

given execution [154].

A refinement of all previous problems consists of considering only those

scenarios satisfying some additional conditions on the execution of a work-

flow, such as only a given user can execute a task, the Boolean value of

a conditional is true (or false), the order of execution of a set of parallel

tasks is fixed, or arbitrary combinations of such constraints.

In the following, we call these types of problems Scenario Finding Prob-

lems (SFPs). In this Chapter, we give the following contributions:

• we give precise statements of four SFPs together with a discussion of

their relationships with the WSP (Section 5.2); and

• we describe methods to automatically solve the four SFPs by adapting

the technique for the synthesis of run-time monitors for the WSP

(Section 5.3).

5.1 Preliminaries

Let T be a finite set of tasks and U a finite set of users. An execution

scenario (or, simply, a scenario) is a finite sequence of pairs of the form

(t, u), written as t(u), where t ∈ T and u ∈ U . The intuitive meaning of a

scenario η = t1(u1), . . . , tn(un) is that task ti is executed before task tj for

1 ≤ i < j ≤ n and that task tk is executed by user uk for k = 1, . . . , n.

A workflow W (T, U) is a set of scenarios. Among the scenarios in a

workflow, we are interested in those that describe successfully terminat-

ing executions in which users execute tasks satisfying the authorization

constraints and the authorization policy. Since the notion of successful

termination depends on the definition of the workflow (e.g., in case of a

conditional choice, we will have two acceptable execution sequences ac-

90

Chapter 5 5.1. Preliminaries

cording to the Boolean value of the condition), in the following we focus

only on the authorization policy and the authorization constraints while

assuming that all the scenarios in the workflow characterize successfully

terminating behaviors.

Given a workflow W (T, U), an authorization relation TA is a subset of

U × T . Intuitively, (u, t) ∈ TA means that u is authorized to execute task

t. We say that a scenario η of a workflow W (T, U) is authorized according

to TA iff (u, t) is in TA for each t(u) in η.

An authorization constraint over a workflow W (T, U) is a tuple (t1, t2, ρ)

where t1, t2 ∈ T and ρ is a subset of U × U . (It is possible to generalize

authorization constraints to the form (T1, T2, ρ) where T1, T2 are sets of

tasks as done in, e.g., [40]. We do not do this here for the sake of simplicity.)

For instance, a SoD constraint between tasks t and t′ can be formalized

as (t, t′, 6=) with 6= being the relation {(u, u′)|u, u′ ∈ U and u 6= u′}. A

scenario η of W (T, U) satisfies the authorization constraint (t1, t2, ρ) over

W (T, U) iff there exist t1(u1) and t2(u2) in η such that (u1, u2) ∈ ρ. Let C

be a (finite) set of authorization constraints, a scenario η satisfies C iff η

satisfies c, for each c in C. A scenario η of a workflow W (T, U) is eligible

according to a set C of authorization constraints iff η satisfies C.

We use the TRW introduced in Chapter 3 to illustrate the main notions

in this Chapter.

Example 10. A simple situation in which the TRW in Example 1

can be deployed is a tiny organization with a set U = {a, b, c}
of three users and the following authorization policy TA =

{(a, t1), (b, t1), (a, t2), (b, t2), (c, t2), (a, t3), (b, t3), (c, t3), (a, t4), (a, t5),

(b, t5), (c, t5)}. The organization would then like to know if there is an

execution scenario that allows the process to terminate according to TA.

Indeed, this is the case as shown by the following sequence of task-user

pairs: η = t1(b), t3(c), t4(a), t2(a), t5(b). It is easy to check that the tasks

91

5.2. Scenario finding problems Chapter 5

in η are executed so that the ordering constraints on task execution are

satisfied, each user u in each pair t(u) of η is authorized to execute t since

(u, t) ∈ TA, and each SoD constraint is satisfied (e.g., tasks t1 and t2 are

executed by the distinct users b and a, respectively).

5.2 Scenario finding problems

As described in previous Chapters, it is possible to pre-compute—once and

for all—the set E of eligible scenarios, i.e., those scenarios satisfying the

authorization constraints, associated to a security-sensitive workflow in a

library. We are then left with the problem of finding those scenarios in

E that are still computable as soon as an authorization policy becomes

available (and possibly satisfying some additional properties).

We begin by defining a basic version of the scenario finding problem,

whose definition (and solution) will help us in understanding (and solving)

more complex problems.

Definition 9 (Basic Scenario Finding Problem (B-SFP)). Given the finite

set E of eligible scenarios according to a set C of authorization constraints

in a workflow W (T, U), return (if possible) a scenario η ∈ E which is

authorized according to a given authorization relation TA.

Example 11. Let us consider the TRW. If U =

{Alice,Bob,Charlie,Dave,Erin,Frank} is the set of users, then the

set E of eligible scenarios contains, among many others, the following

elements:

η1 = t1(Alice), t2(Bob), t3(Charlie), t4(Dave), t5(Erin)

η2 = t1(Bob), t2(Alice), t3(Charlie), t4(Alice), t5(Bob)

η3 = t1(Bob), t4(Charlie), t2(Alice), t3(Dave), t5(Bob)

92

Chapter 5 5.2. Scenario finding problems

Now, let TA = {(Alice, t1), (Bob, t1), (Alice, t2), (Bob, t2), (Charlie, t3),
(Alice, t4), (Dave, t4), (Bob, t5), (Erin, t5)} be the authorization relation,

then η1 and η2 are solutions to the B-SFP, while η3 is not because

(Dave, t3) 6∈ TA.

A scenario η solving the B-SFP is also a solution of the WSP and

vice versa. So, in principle, to solve the B-SFP for a workflow W (T, U),

a set C of authorization constraints, an authorization policy TA, and

ηe = t(u), t′(u′), . . . an eligible scenario in E, we can reuse an algorithm A
returning answers to the WSP as follows. Initially, we consider the task-

user pair t(u) in ηe and create a new authorization relation TA1 = TA|(u,t)
derived from TA by deleting all pairs (x, t) ∈ TA with x 6= u. We invoke

A on the WSP for W (T, U), C, and TA1: if A returns a scenario, this

must have the form t(u), η where η is some sequence of task-user pairs

(notice that t(u), η and ηe are guaranteed to have only t(u) as a common

prefix). Afterwards, we move to the task-user pair t′(u′) in ηe and run A
on the WSP for W (T, U), C, and TA2 = TA1|(u′,t′). If A returns a scenario,

this must have the form t(u), t′(u′), η′ where η′ is some sequence of task-

user pairs (notice that t(u), t′(u′), η′ and ηe are guaranteed to have only

t(u), t′(u′) as a common prefix). By repeating this process for each ηe in

E, until all tasks in ηe are executed, we can check if it is also authorized

according to TA (besides being eligible as ηe is in E). Overall, there are

at most O(`max · |E|) invocations to A, where `max is the longest (in terms

of number of task-user pairs occurring in it) scenario of E. Indeed, this

is computationally expensive because of the complexity of the WSP [154]

and, most importantly, we do not exploit the fact that the scenarios in E

are eligible.

A better approach to solve the B-SFP is to consider each eligible scenario

ηe in E and check if all task-user pairs in ηe are authorized according to TA.

This means that there are at most O(`max ·|E|) invocations to the algorithm

93

5.2. Scenario finding problems Chapter 5

for checking membership of a user-task pair to TA. The complexity of such

an algorithm depends on how TA has been specified. Policy languages

are designed to make such a check efficient (e.g., linear or polynomial);

this is in sharp contrast to the heavy computational cost of running A.

Below, we assume authorization policies to be specified in Datalog so that

checking membership to TA is equivalent to answering a Datalog query,

which is well-known to have polynomial-time (data) complexity [26]. Even

though checking for membership to TA is efficiently performed, the overall

computational complexity may be problematic since such a check must be

repeated O(`max · |E|) and |E| may be large.

For instance, as we will show below, already for the simple TRW with

|U | = 6 (as in Example 11), the cardinality of E is 19, 080. Intuitively,

the larger the set U of users, the higher the cardinality of E. It is thus

important to design a suitable data structure to represent the available

set E of eligible scenarios which permits to design an efficient strategy to

search through all scenarios and identify one that is authorized. We will

see this in Section 5.3.1.

5.2.1 Minimal user-base scenarios

A refinement of B-SFP is to search for (eligible and) authorized scenarios

in which a “minimal” set of users occurs. Formally, let η be a scenario in a

workflow W (T, U), the set of users occurring in η is usr(η) = {u|t(u) ∈ η}.
Following [42], we define a minimal user base of a workflow W (T, U) to

be a subset U ′ of the set U of users such that there exists a scenario η in

W (T, U) in which usr(η) = U ′ and there is no scenario η′ in W (T, U) in

which usr(η′) is a strict subset of U ′.

Definition 10 (Minimal user-base scenario finding problem (MUB-SFP)).

Given the set E of eligible scenarios according to a set C of authorization

94

Chapter 5 5.2. Scenario finding problems

constraints in a workflow W (T, U), return (if possible) a scenario η ∈ E
which is authorized according to a given relation TA and such that the set

usr(η) of users occurring in η is a minimal user base.

Example 12. Let us consider again the TRW together with the set

U of users, the set E of eligible scenarios, and the authorization re-

lation TA of Example 11. A solution to the MUB-SFP is ηM =

t1(Bob), t2(Alice), t3(Charlie), t4(Alice), t5(Bob) and a minimal user base

is usr(ηM) = {Alice, Bob,Charlie}.

An approach derived from that of solving the B-SFP can also solve the

MUB-SFP. We consider each eligible scenario ηe in E and check if all task-

user pairs in ηe are authorized according to TA. We also maintain a variable

ηM storing an eligible scenario in E such that ηM is authorized (according

to TA) and usr(ηM) is a candidate minimal user base. Initially, ηM is set

to the empty sequence ε. If the eligible scenario ηe under consideration

is authorized and ηM 6= ε, then we compare the cardinalities of usr(ηe)

and usr(ηM): if |usr(ηe)| < |usr(ηM)|, then ηM ← ηe; otherwise ηM is left

unchanged. When ηM = ε, we do not perform the comparison between the

cardinalities of usr(ηe) and usr(ηM) and simply set ηM to ηe. Indeed, when

all eligible scenarios in E have been considered, usr(ηM) stores a minimal

user base.

This process requires that there are O(`max · |E|) invocations to the

algorithm for checking membership of a user-task pair to TA. Although the

complexity bounds of solving the B-SFP and the MUB-SFP are identical,

the bound for the latter is tighter than the former. This is so because

we always need to consider all eligible scenarios in E for the MUB-SFP

whereas we can stop as soon as we find an authorized scenario for the

B-SFP.

95

5.2. Scenario finding problems Chapter 5

5.2.2 Resilient scenarios

Resiliency in workflow systems concerns the question of whether a work-

flow is still satisfiable even if a number of users is absent for an instance

execution. It is an important property of workflows and authorization re-

lations, since it indicates the likelihood of the workflow terminating even

in adverse conditions.

There are several possible definitions of resiliency. The most obvious one

is to fix a set Ua of absent users and check if the workflow can terminate.

This can be easily reduced to a B-SFP problem by eliminating all those

execution scenarios in W (T, U) in which at least one task is executed by an

absent user and by removing all pairs containing an absent user in Ua from

the authorization policy TA. If the resulting B-SFP has a solution, then

it can be considered as a witness of the fact that the workflow W (T, U) is

resilient to the absence of the users in Ua. This definition could be useful,

for instance, when it is known beforehand that a set of users will be absent

for some time, e.g., to attend a conference.

Another, more interesting, notion of resiliency has been proposed

in [154] and amounts to checking whether a workflow is resilient to the

absence of all subsets of users of a fixed size k. This means that no matter

which concrete users are absent, as long as no more than a given number is

absent (at any given time), the workflow remains satisfiable. We adapt this

idea of resiliency to our context by identifying resilient sets of execution

scenarios as follows.

Definition 11 (Statically k-resilient set of scenarios). Given a workflow

W (T, U), an authorization relation TA, and an integer k > 0, a set of

scenarios H is statically resilient up to k absent users if and only if for

every subset U ′ of U of size t = |U | − k, there is (at least) one scenario

η ∈ H that satisfies W (T, U) under TA|U ′.

96

Chapter 5 5.2. Scenario finding problems

Notice that resiliency is defined up to k since a k-resilient set of scenar-

ios is clearly also (k − 1)-resilient. Notice that it is not possible to limit

resiliency to a single scenario because the second notion of resiliency dis-

cussed above must hold for all subsets of users of size t and this implies

that if any one of the users u in a scenario η is removed, then η can no more

be executed until the end. Instead, by considering a set H of execution

scenarios, when we consider a certain subset U ′ of absent users of size t,

we can hope to find a scenario in H containing no user in U ′ that can still

be executed until the end.

We are now ready to introduce the problem of finding sets of resilient

scenarios.

Definition 12 (Statically k-Resilient Scenario Finding Problem

(SkR-SFP)). Given the set E of eligible scenarios according to a set C

of authorization constraints in a workflow W (T, U) and an integer k, re-

turn (if possible) a set H of scenarios η which are authorized according to

a given relation TA and statically resilient up to k absent users.

Example 13. Let us consider again the TRW together with the set U of

users, the set E of eligible scenarios, and the authorization relation TA of

Example 11. In that case, there is no solution to the SkR-SFP, even with

k = 1, because if Charlie is removed from U , there is no user authorized to

perform t3 and if Alice or Bob are removed the same user has to perform

t1 and t2, which violates the SoD constraint.

Now consider the same workflow and set of users, but with TA′ = TA∪
{(Charlie, t1), (Charlie, t2), (Alice, t3)}. In this case, a solution to the

97

5.2. Scenario finding problems Chapter 5

SkR-SFP, with k = 1 is H = {η1, η2, η3, η4, η5} where

η1 = t1(Charlie), t2(Bob), t3(Charlie), t4(Dave), t5(Erin)

η2 = t1(Charlie), t2(Alice), t3(Charlie), t4(Dave), t5(Erin)

η3 = t1(Alice), t2(Bob), t3(Alice), t4(Dave), t5(Erin)

η4 = t1(Bob), t2(Alice), t3(Charlie), t4(Alice), t5(Erin)

η5 = t1(Charlie), t2(Alice), t3(Charlie), t4(Dave), t5(Bob) .

Notice that η1 is satisfiable when U ′ = {Alice}, η2 is satisfiable when

U ′ = {Bob}, η3 is satisfiable when U ′ = {Charlie}, η4 is satisfiable when

U ′ = {Dave}, and η5 is satisfiable when U ′ = {Erin}. All scenarios are

also satisfiable when U ′ = {Frank}, because Frank is not used in any of

them. Even with the new authorization relation TA′ the workflow is not

2-resilient, because if, e.g., Alice and Charlie are removed from the set of

users, again there is no user capable of executing t3.

To solve the SkR-SFP, an obvious strategy is to initialize the set H

of k-resilient execution scenarios to the empty set, generate all subsets

of users with size t = n − k (for n the total number of users), update the

authorization policy TA by removing the k absent users, and then compute

a solution of the resulting B-SFP. If such a scenario exists, we add it to

the set H.

Indeed, enumerating all subsets of size t of a set of n elements is equal

to the binomial coefficient
(
n
t

)
. Thus, we would need O(n!) calls to a

procedure solving the B-SFP in the worst case (or close to nt when t is

small compared with n [96]). It is possible to reduce the number of sets that

must be considered by observing (as done in [96]) that some sets of users

can be ignored as they are “dominated” by others with respect to the set

of tasks that they can execute. We will make this precise in Section 5.3.2

below.

98

Chapter 5 5.2. Scenario finding problems

Another interesting problem is to find the maximal value kmax such that

there is a set H of scenarios that are authorized according to a relation

TA and resilient up to kmax . A possible way to attack this problem is to

use a procedure solving SkR-SFP to find a set H of resilient scenarios for

a value k∗ = 1. If there is a solution, we increase the value of k∗ by one

and invoke again the procedure to solve the Sk∗R-SFP. We keep increasing

the value of k until no more solutions are found and set the value of kmax

to k∗− 1. Since there are at most |U | users, the search for kmax eventually

terminates. In case the set U of users is large, the search may go through

several iterations, each requiring the invocation of the procedure solving

the SkR-SFP. A better solution is to first find an upper bound to kmax

by preliminarily finding a solution m to the MUB-SFP. Then, an upper

bound on kmax is given by k∗max = |U | −m as it is not possible to complete

the workflow with less than m users. Afterwards, we invoke the procedure

to solve the SkR-SFP with k = k∗max . If the problem is solvable, then we

return such a value as k∗max ; otherwise, we decrease k by one and invoke

again the procedure solving the SkR-SFP. In the worst case (i.e. when the

workflow is 0-resilient), the procedure to solve the SkR-SFP will be invoked

m times; this indeed implies termination.

5.2.3 Constrained scenarios

The three problems (B-SFP, MUB-SFP, and SkR-SFP) introduced above

accept as solutions unconstrained scenarios, i.e., scenarios where any au-

thorized user can execute any task and any allowed control path can be

taken (e.g., any interleaving of parallel tasks is possible and any branch of

a conditional is equally likely to be executed).

Sometimes, policy designers may be interested in finding scenarios sat-

isfying certain properties, e.g., scenarios in which only certain authorized

users can execute certain tasks or some control-flows can be executed. For

99

5.2. Scenario finding problems Chapter 5

instance, the designer may want to investigate scenarios in which the test of

a conditional evaluates to true or in which only certain users perform some

tasks. We use constraints to specify the properties that scenarios must ad-

ditionally satisfy in the constrained versions of the three problems above.

The constraints specified by the designer are represented as predicates and

are collected in a set Γ.

We are now in the position to generalize the B-SFP problem by defining

its constrained version as follows.

Definition 13 (Constrained Scenario Finding Problem (C-SFP)). Given

the set E of eligible scenarios according to a set C of authorization con-

straints in a workflow W (T, U) and a set Γ of constraints, return (if possi-

ble) a scenario η ∈ E which is authorized according to a given relation TA

and such that all the predicates in Γ evaluate to true.

Example 14. Let us consider again the TRW together with the set

U of users, the set E of eligible scenarios, and the authorization rela-

tion TA of Example 11. A solution to the C-SFP with Γ = {t2(Bob)}
(requiring that Bob executes task t2 in any scenario) is the scenario

η = t1(Alice), t2(Bob), t3(Charlie), t4(Dave), t5(Erin).

Similar generalizations of the MUB-SFP and the SkR-SFP are possible,

thereby obtaining their constrained versions that we call C-MUB-SFP and

C-SkR-SFP, respectively. More precisely, a solution to the C-MUB-SFP is

a scenario that uses a minimal number of users and makes all the predicates

in the set of constraints evaluate to true. A solution to the C-SkR-SFP is

a k-resilient set H of scenarios such that each scenario in H makes all the

predicates in the set of constraints evaluate to true.

As we will see in Section 5.3.1, the procedures used to solve the uncon-

strained versions of the scenario finding problems can be lifted to solve also

their constrained version.

100

Chapter 5 5.3. From solving the WSP to solving SFPs

5.3 From solving the WSP to solving SFPs

The reachability graph RG defined in Chapter 3 provides us with a compact

data structure to represent the set of all eligible scenarios in a workflow,

which is crucial for the design of an efficient solution to SFPs.

A sequence ηs = t1(υj1), . . . , tn(υjn) of task-user pairs is a symbolic

execution scenario where υji is a user variable with 1 ≤ ji ≤ n and

i = 1, . . . , n. A well-formed path in RG is a path starting with a node

without an incoming edge and ending with a node without an outgoing

edge. The crucial property of RG is that the symbolic execution sce-

nario ηs = t1(υj1), . . . , tn(υjn) collected while traversing one of its well-

formed paths corresponds to an eligible (according to C) execution scenario

ηc = µ(ηs) = t1(µ(υj1)), . . . , tn(µ(υjn)) for µ an injective function from the

set Υ = {υj1, . . . , υjn} of user variables (also called symbolic users) to the

given set U of users of W (T, U).

Three observations are in order. First, µ is extended to symbolic execu-

tion scenarios in the obvious way, i.e. by applying it to each user variable

occurring in them. Second, since ji can be equal to ji′ for 1 ≤ i 6= i′ ≤ n,

the cardinality of Υ is at most equal to the number n of tasks in the sym-

bolic execution scenario. Third, since µ is injective, distinct user variables

are never mapped to the same user.

Example 15. Recall the excerpt of the symbolic reachability graph for

the TRW in Figure 3.3 where a task-user pair t(υk) labeling an edge

is shown as t(uk). For instance, the symbolic execution scenario ηs =

t1(υ3), t3(υ3), t4(υ2), t2(υ2), t5(υ1) (cf. the well-formed path identified by

the blue nodes in Figure 3.3) represents all those execution scenarios in

which a symbolic user identified by υ3 first performs task t1 followed by t3,

then a symbolic user identified by υ2 performs t4 and t2 in this order, and

finally a symbolic user identified by υ1 executes t5. If we apply an injec-

101

5.3. From solving the WSP to solving SFPs Chapter 5

tive function µ from the set Υ = {υ1, υ2, υ3} of user variables to any finite

set U of users (of cardinality at least three), the corresponding execution

scenario ηc = µ(ηs) is eligible according to the set C of SoD constraints

shown in Figure 3.1.

5.3.1 Solving the B-SFP and the MUB-SFP

Preliminarily, we need to decide how the set E of eligible scenarios and the

authorization policy TA are specified as input to the algorithm solving the

scenario finding problems.

For TA, we assume the availability of a Datalog program P defining the

binary predicates at’s for each task t in the workflow. For E, we define the

set E(RG , U) of eligible scenarios induced by a symbolic reachability graph

RG and a set U of users as the collection of all the scenarios of the form

µ(t1(υj1), . . . , tn(υjn)) where v0

t1(υj1)
−→ · · · tn(υjn)−→ vn+1 is a well-formed path in

RG and µ is an injective function from Υ = {υj1, . . . , υjn} to U .

Two observations are important. First, there are several different sets

E(RG∗, U) induced by a fixed symbolic reachability graph RG∗ and a vary-

ing set U of users. Second, a symbolic reachability graph—once a set of

users is fixed—provides an implicit and compact representation of the set

of eligible scenarios. This is due to two reasons: one is the sharing of com-

mon sub-sequences of task-user pairs in execution scenarios and the other

is the symbolic representation of several execution scenarios by means of a

single symbolic execution scenario. This is best illustrated by an example.

Example 16. Let us consider the TRW with a set U of 6 users. The

graph in Figure 5.1 is, for the sake of readability, another excerpt of the

full symbolic reachability graph showing only a small subset of all well-

formed paths (similar to Figure 3.3 but showing a few more nodes and

edges). The full graph has 46 nodes, 81 edges, and 61 well-formed paths

102

Chapter 5 5.3. From solving the WSP to solving SFPs

0

1

t5(1)

2

t2(2)

3

t3(2)

4

t4(1)

6

t2(2)

7

t3(2)

8

t3(3)

9

t4(2)

10

t4(3)

11

t4(2)

12

t4(3)

13

t3(3)

41

t3(3)

14

t3(3)

35

t3(3)

15

t2(3)

17

t1(3)

42

t1(3)

18

t1(4)

34

t1(4)

19

t1(1)

20

t1(3)t1(3)

43

t1(3)

23

t1(4)

31

t1(4)

32

t1(4)

33

t1(4)

27

t1(4)

29

t1(4)

45

t4(2)

t4(1)

39

t4(1)

t4(1)

t2(3)t4(2)t4(2)t4(3)t4(3)t2(3) t4(1)

t2(3) t2(2)

t4(2)t3(3)

Figure 5.1: Another graph representation of the set of reachable states for the TRW

of which 21, 34, and 6 contain 3, 4, and 5, respectively, symbolic users.

For instance, notice how the sub-sequence t3(υ2), t5(υ1) is shared by 6

distinct (symbolic) execution scenarios induced by the well-formed paths

whose initial node is 23 (left of figure). Additionally, observe that, from

the definition of E(RG , U) above, in order to establish the number of all

eligible paths when |U | = n, we just need to calculate how many injective

functions there are from a set of cardinality k to a set of cardinality n—

which is known to be J(n, k) = n(n− 1)(n− 2) · · · (n− k + 1)—for n = 6,

k = 3, 4, 5, and take their sum. Thus, the number of all eligible paths in

our case is 21 · J(6, 3) + 34 · J(6, 4) + 6 · J(6, 5) = 19, 080. Compare this,

with the number of well-formed paths in the symbolic reachability graph

which is only 61: the blow-up factor is more than 300. Indeed, the increase

is even more dramatic for larger sets of users.

103

5.3. From solving the WSP to solving SFPs Chapter 5

We are now ready to describe our technique, depicted in Algorithm 2, to

solve the B-SFP. For the time being, let us ignore the additional input set

Γ (by setting it to ∅); it will be explained in Section 5.3.3 below. The main

idea underlying Algorithm 2 is to adapt a standard Depth-First Search

(DFS) search to explore all well-formed paths in the reachability graph RG

while checking that the scenario associated to the path is indeed authorized

by using the run-time monitor, synthesized in the on-line phase of the

technique in Chapter 3.

Lines 1–2 are the standard initialization phase of a DFS algorithm in

Algorithm 2 Solving the B-SFP

Require: RG symbolic reachability graph, U set of users, P Datalog program defining

at’s, Γ set of facts

Ensure: η authorized execution scenario

1: for all v ∈ Nodes(RG) do visited[v]← false;

2: end for

3: η ← ε; NI ← NoIncoming(RG);

4: while (v ∈ NI and η = ε) do

5: η ← DFS(v, ε,Γ); NI ← NI \ {v};
6: end while

7: return η

8: function DFS(v, η,H)

9: visited[v]← true; OE ← OutGoing(v);

10: if OE = ∅ then return η

11: else

12: for all v
t(υ)−→ w ∈ OE do

13: if (not visited[w] and M,P,H `υ 7→u can do(t, υ)) then

14: return DFS(w, append(η, t(u)), H ∪ {h(t, u)})
15: end if

16: end for

17: end if

18: return ε

19: end function

104

Chapter 5 5.3. From solving the WSP to solving SFPs

which all nodes in RG (returned by the function Nodes) are marked as not

yet visited. Lines 3–6 invoke the (modified) DFS algorithm on each node

without an incoming edge in RG (returned by the function NoIncoming)

until either all such nodes have been considered (this allows us to consider

all well-formed paths) or an authorized scenario (if any) has been found

(line 7). Lines 8–19 show the (modified) DFS recursive function which

takes as input a node v and extends a sequence η of task-user pairs to an

authorized execution scenario (if possible). Line 9 marks as visited the

node v under consideration and computes its set OE of outgoing edges

(returned by the function OutGoing). Line 10 checks whether the set of

outgoing edges of v is empty: if this is the case, then we have considered

all task-user pairs in a well-formed path and the sequence η containing

them is an authorized execution scenario. If this is not the case, we have

not yet considered all task-user pairs in a well-formed path of RG and

thus we need to consider the possible continuations in OE . This is done

Algorithm 3 Solving the MUB-SFP

Require: RG symbolic reachability graph, U set of users, P Datalog program defining

at’s, Γ set of facts

Ensure: η authorized execution scenario

1: for all v ∈ Nodes(RG) do visited[v]← false;

2: end for

3: η ← ε; ηM ← ε; NI ← NoIncoming(RG);

4: while v ∈ NI do

5: η ← DFS(v, ε,Γ); NI ← NI \ {v};
6: if (η 6= ε and ηM = ε) then

7: ηM ← η;

8: else if (η 6= ε and |usr(η)| < |usr(ηM)|) then

9: ηM ← η;

10: end if

11: end while

12: return ηM

105

5.3. From solving the WSP to solving SFPs Chapter 5

in the loop at lines 12-16: an edge v
t(υ)−→ w in OE is selected (line 12),

it is checked if the node w is not yet visited and if the run-time monitor

combined with the authorization policy P can find a user u capable of

executing the task t in label of the edge in OE under consideration (line

13). The second check (namely, M,P,H `υ 7→u can do(t, υ)) is done by

asking a Datalog engine to find a user u in U to which the user variable υ

can be mapped (cf. superscript υ 7→ u of `) without violating the execution

and the authorization constraints together with the authorization policy

specified by P . If the test at line 13 is successful, line 14 is executed

whereby a recursive call to the DFS function is performed in which the

new node to consider is w, the sequence η of task-user pairs is extended

with t(u) (by invoking the function append), and the set H of facts keeping

track of the tasks executed so far is also extended by h(t, u). In case all

edges in OE have been considered but none of them makes the check at

line 13 successful, the empty sequence is returned (line 18). Notice that

at line 13, instead of enumerating all suitable users in U to which υ can

be mapped, we exploit the capability of the Datalog engine to find the

right user. This permits us to exploit well-engineered implementations of

Datalog engines instead of designing and implementing new heuristics to

reduce the time taken to enumerate the users in U . This concludes the

description of the algorithm solving the B-SFP.

It is possible to modify Algorithm 2 following the idea discussed after

Example 12 in order to solve the MUB-SFP. This requires to avoid return-

ing the authorized scenario as soon as we find one (removing the condition

η = ε in line 4) so that all well-formed paths in RG are considered. More-

over, a global variable ηM is maintained in which a candidate scenario

with a minimal user base is stored and updated according to the strategy

discussed above comparing the users occurring in ηM and those in the cur-

rently considered scenario. As a result of these modifications, we obtain

106

Chapter 5 5.3. From solving the WSP to solving SFPs

Algorithm 3 that is capable of solving the MUB-SFP. The DFS function

used in this algorithm is the same as the DFS function in Algorithm 2).

The complexity of Algorithms 2 and 3 can be derived from that of the

standard DFS algorithm, which is O(n + m) for n the number of nodes

and m the number of edges, when using an adjacency list to represent the

graph. Notice that the most computationally intensive operation is the

invocation of the Datalog engine at line 13, which takes polynomial time

as the only part that changes over time is the set H of facts whereas the

Datalog programs M and P are fixed; cf. the results on data complexity of

Datalog programs in [26]. It is easy to see that we invoke (at most) O(n+

m) times the Datalog engine for both algorithms (line 13 in Algorithm 2

and hidden in the DFS function in Algorithm 3). This is much better

than the upper bounds discussed in Section 5.2. To see this, consider the

situation in Example 16: `max = 5 and |E| = 19, 080 so that the check for

authorization (modulo constant factors) is invoked at most 95, 400 times

whereas in Algorithm 2 (or its modified version for the MUB-SFP) the

same check is invoked at most n+m = 46 + 81 = 127 times.

5.3.2 Solving the SkR-SFP

As discussed in Section 5.2.2, a naive solution to the SkR-SFP requires the

enumeration of all subsets of the set of users of a given size. Indeed, this

is expensive from a computational point of view. To alleviate this, it is

possible to adapt an heuristic proposed in [96] and reduce the number of

sets of a given size to be considered.

The idea is based on the notion of “dominance” that is defined in terms

of which tasks a given set of users can execute. If a set A1 of users can

execute at least the same set of tasks that a second set A2 of users can

execute, then we say that A1 dominates A2 and the latter can be ignored

without loss of generality. This implies that if an instance of the SkR-

107

5.3. From solving the WSP to solving SFPs Chapter 5

SFP can tolerate the removal of users in a set of absent users A1, then the

problem instance can tolerate the removal of users in the second set A2.

This is why we can consider only the set A1 and safely disregard A2. Below,

the set of users in the authorization policy TA is {u | (u, t) ∈ TA} and the

set Perms(u) of permissions associated to a user u is {t | (u, t) ∈ TA}.

Definition 14 (Absent set domination). A user u1 in TA dominates a

user u2 in TA iff Perms(u1) ⊇ Perms(u2). A set of (absent) users A1

dominates a set A2 of (absent) users iff there exists a bijection f from A1

to A2 such that, for each user u in A1, u dominates f(u) in A2.

We are now in the position to adapt the result (Lemma 7) in [96] to avoid

the enumeration of all subsets of a given size while solving the SkR-SFP.

Lemma 1. Let E be a set of eligible scenarios according to a set C of autho-

rization constraints containing only SoD (i.e. ρ is 6= for each (t, t′, ρ) ∈ C)

in a workflow W (T, U) and an integer k. If A1, A2 ⊆ U , A1 dominates

A2, and the SkR-SFP for W (T, U \A1) is solvable, then the SkR-SFP for

W (T, U \ A2) is also solvable.

Proof. (Sketch) Assume that A1 dominates A2 and the SkR-SFP for

W (T, U \ A1) is solvable. The former is equivalent to

Perms(u) ⊇ Perms(f(u)) for each u in U \ A1 (5.1)

while the latter implies (by recalling the definition of solution to the WSP)

that

∀t ∈ T,∃u ∈ U \ A1. (u, t) ∈ TA (5.2)

∀(t1, t2, ρ) ∈ C, ∃u1, u2 ∈ U \ A1. (u1, u2) ∈ ρ, (5.3)

where (5.2) states that each task in a scenario solving the WSP is performed

by an authorized user and (5.3) states that each authorization constraint

is satisfied.

108

Chapter 5 5.3. From solving the WSP to solving SFPs

By (5.1), it is possible to show that if (5.2) holds (i.e. the problem is

solvable after the removal of A1), it also holds when replacing A2 with A1

(i.e. the problem is solvable after the removal of A2), because A2 contains

the same number of users of A1 (since f is a bijection) and each user in

A2 has the same permissions or less of the corresponding user (via the

bijection f) in A1 (a more detailed proof of this property proceeds along

the same line of that in Lemma 7 in [96]).

Unfortunately, it is not possible to show for an arbitrary set C of con-

straints that (5.3) implies (5.3) with A2 in place of A1. This is so because

we can imagine a scenario where the users removed in A2, which are dif-

ferent from those in A1, are necessary to fulfill some of the constraints in

C. A somewhat contrived example is a constraint requiring a task t2 to be

executed by a user more senior, given a seniority relation < inside an orga-

nization [36], than that who executes t1, and a less senior user u1 with more

permissions than a user u2, so that u1 < u2, but Perms(u1) ⊇ Perms(u2).

Although u1 dominates u2, there may be no user able to execute t2 due to

the constraint.

Fortunately, when C contains only SoD constraints, one can observe

that the bijection f from A1 to A2 maps distinct users into distinct users.

As a consequence, from an execution scenario solving the SkR-SFP for

W (T, U \ A1), it is always possible to find an execution scenario solving

the SkR-SFP for W (T, U \ A2).

Lemma 1 allows us to avoid enumerating all possible subsets of a given

size when solving the SkR-SFP by exploiting the dominance relation among

sets of absent users in presence of SoD constraints only. How this is done

is shown in Algorithm 4.

In line 1, the variable H which stores the scenarios to be returned is

initialized to the empty set. In line 2, the function NextSubset returns a

new, i.e. not previously generated, subset of size t = |U | − k of the set U

109

5.3. From solving the WSP to solving SFPs Chapter 5

of users and s stores the returned subset. The NextSubset function is im-

plemented as an iterator that returns only the next subset at each call, so

that it is not necessary to generate all subsets up front, which is expensive

from a computational point of view. Most importantly, NextSubset imple-

ments the smart enumeration of subsets that are not dominated by others

according to Lemma 1 when the set C contains only SoD constraints. In

line 3, the Datalog program defining the at’s is updated by removing all

assertions that include users not in the current subset S (P |S), and in line

4 the SFP function (implemented as shown in Algorithm 2) is called to

find an execution scenario. If no scenario is found (line 5), an empty set is

returned (line 6) and execution halts. Notice that the execution must stop

because the SkR-SFP is defined as finding a scenario for every subset of

size t in U . If a scenario is found (line 7), it is added to the set H (line 8);

after this is done for all subsets, NextSubset returns an empty set and the

final H is returned (line 11).

Algorithm 4 Solving the SkR-SFP

Require: RG symbolic reachability graph, U set of users, P Datalog program defining

at’s,

Γ set of facts, C set of authorization constraints, k ∈ N desired resiliency

Ensure: H set of authorized execution scenarios

1: H ← ∅;
2: while (S ← NextSubset(k,U) and S 6= ∅) do

3: P ′ ← P |S;

4: η ← SFP(RG , U, P ′,Γ);

5: if η = ε then

6: return ∅;
7: else

8: H ← H ∪ {η};
9: end if

10: end while

11: return H;

110

Chapter 5 5.3. From solving the WSP to solving SFPs

5.3.3 Solving the C-SFP

So far, we have assumed that the set Γ of constraints taken as input of

Algorithm 2 is empty. Here, we consider the situation in which this is

no more the case and show how Algorithms 2, 3, and 4 also solve the

constrained versions of the B-SFP, MUB-SFP, and the SkR-SFP.

Let us consider Algorithm 2 and how it solves a C-SFP by taking as

input a non-empty set Γ of facts, that can be used to drive the search for a

scenario with particular characteristics. For instance, one can be interested

in authorized scenarios in which a certain user only, say u∗, executes a given

task, say t∗. It is possible to steer the search towards such scenarios by

setting Γ to be the singleton containing the fact h(t∗, u∗). Another use

of Γ is guiding the search towards scenarios in which the tests of certain

conditionals of the workflows are either true or false. Again, it is possible

to add the facts encoding that particular control conditions are true or false

to Γ in order to force Algorithm 2 to find scenarios taking only particular

execution branches.

A more interesting approach is to develop an interactive algorithm where

after each step in the search for a solution, the user of the algorithm is asked

to enter his or her preferences to which user executes which task and which

is the next task to be executed. If he or she does not specify anything, the

algorithm picks an arbitrary user and task; otherwise the algorithm checks

if the corresponding instance of the WSP is solvable and, if the case, would

allow the user to proceed with the exploration.

Since Algorithms 3 and 4 (i.e. the procedures to find the solutions to the

MUB-SFP and to the SkR-SFP) use Algorithm 2 as a sub-procedure, they

straightforwardly inherit the capability to solve the constrained versions of

B-SFP and MUB-SFP.

111

5.3. From solving the WSP to solving SFPs Chapter 5

112

Part II

Applications

Chapter 6

Cerberus: integrating monitor

synthesis in workflow management

systems1

In this Chapter, we present Cerberus2, a tool that relies on the technique

described in Chapters 3 and 4 to automatically synthesize, at design-time,

enforcement monitors that can be used in workflow management systems

to guarantee, at run-time, that workflow instances can terminate while

satisfying the authorization policy and the authorization constraints. As

described before, the synthesized monitors are parametric in the authoriza-

tion policy so that they can be combined at run-time with authorization

policies dedicated to different instances of a process. The tool also im-

plements the solutions to the SFPs described in Chapter 5 to guide users

during the deployment of workflows.

Cerberus can be easily integrated in many workflow management sys-

tems, it is transparent to process designers, and does not require any knowl-

edge beyond usual BP modeling. To demonstrate the tool, we integrated

1Parts of this chapter were previously published in [31]
2Cerberus is a three-headed watchdog in Greek mythology, with the first head associated to the past,

the second to the present and the third to the future. Cerberus acts as a monitor that takes into

account the history of executions, the current authorization relation and future executions to grant or

deny requests.

115

6.1. Tool architecture and implementation Chapter 6

Figure 6.1: Tool Architecture

it into the SAP HANA Operational Intelligence (OpInt) platform, which

offers a BPMN modeling and enactment environment integrated with a

repository capable of storing workflow models.

6.1 Tool architecture and implementation

A reference architecture for WFMS [158] is composed of the five blue ele-

ments shown in Figure 6.1. Workflow Modeling is a graphical user inter-

face for a Process Designer to create workflow models using a modeling

language such as BPMN or YAWL. The models are stored in a Workflow

Model Repository, while the Workflow Engine interprets the models and

directs the execution to the Invoked Applications, in the case of system and

script tasks, or to a Graphical User Interface (GUI), in the case of user

tasks, which are performed by Process Participants.

On top of the WFMS components, we add the Cerberus components

shown in red in Figure 6.1. The Monitor Synthesizer is responsible for

116

Chapter 6 6.1. Tool architecture and implementation

interpreting the workflow model and automatically translating it into a

transition system format, with initial and final formulae, accepted by a

Symbolic Model Checker capable of computing a reachability graph whose

paths are all possible executions of the workflow (cf. Algorithm 1). The

reachability graph is translated into a language such as Datalog or SQL

and stored in the Monitor Repository. The Monitor itself is invoked by the

GUI and grants or denies user requests to execute tasks. This is because

users only access tasks through the GUI and automatic tasks are not part

of the authorization policy or constraints.3

The Scenario Finder can be used by a process designer (or a policy

designer) during deployment, when an authorization policy is specified,

to make sure that the desired execution scenarios are possible (cf. Algo-

rithm 2, 3, and 4). After a Monitor is synthesized, the designer invokes

the Scenario Finder, inputs an authorization policy, chooses which kind

of scenarios to find (e.g., basic or minimal) and optionally gives a set of

constraints (as described in Section 5.2.3). The Scenario Finder outputs

found scenarios and the designer can repeat the process with different pa-

rameters.

The modular approach described in Chapter 4 has been implemented

in the tool and whenever a process designer uses the modeling component,

he/she can import models with their associated monitors from the reposi-

tories, combine the models with new or pre-existing models and export the

resulting complex component back to the workflow repository, alongside

its monitor stored in the monitor repository. The modular approach and

decomposition of models is also key to scalability for monitor synthesis.

With the use of the modular approach, scalability is shown in Section 6.3.

The main goals in the design of Cerberus are usability, scalability and

3This is a limitation of the current implementation. Nonetheless the approach is able to monitor any

task subject to an authorization policy.

117

6.1. Tool architecture and implementation Chapter 6

minimal interference with pre-existing functionalities. Usability is achieved

because the tool is fully automated and all the formal details are hidden

from the process designer, who only has to input the workflow model with

a set of authorization constraints that he/she wishes to be enforced (which

can be done graphically). Scalability is ensured by the use of modular

monitor synthesis (decomposing workflows into components, synthesizing

monitors for them and combining the results) and minimal interference is

guaranteed by using the tool as a plug-in, so that both monitor synthesis

and enforcement can be easily activated or deactivated.

The Cerberus implementation is built on top of OpInt to synthe-

size, store, combine and retrieve run-time monitors for security-sensitive

workflows therein modeled and enacted. HANA Studio is the IDE that

acts as the Workflow Modeling component, while the HANA Repository

implements both the Workflow Model Repository and the Monitor Repos-

itory. We added the authorization constraint specification and monitor

synthesis capabilities in the IDE and used MCMT as the Symbolic Model

Checker. The Monitor Synthesizer is written in Python (core algorithms)

and JavaScript (IDE and repository integration). The monitors are output

in SQL as a view that is queried by the execution engine. The Workflow

Engine differs from traditional WFM systems because OpInt does not di-

rectly execute the BPMN models, but instead translates them to executable

artifacts (JavaScript and SQL code) that manage and perform the tasks

in the workflows. The invoked applications are handled by SQL procedure

calls and the GUI for user tasks is integrated in a web task management

dashboard.

Since we build on top of a reference architecture, other possible im-

plementations of Cerberus could use different versions of the WFMS

components, e.g., the IBM Business Process Manager platform4 or open-

4https://www-03.ibm.com/software/products/en/business-process-manager-family

118

https://www-03.ibm.com/software/products/en/business-process-manager-family

Chapter 6 6.2. Using Cerberus

Figure 6.2: Loan Origination Process

source components, e.g., Activiti5. The Monitor Synthesizer is capable

of generating monitors for SWI Prolog6, pyDatalog7, MySQL8, and SAP

HANA SQLScript9, but there is no integration with other WFMS systems.

6.2 Using Cerberus

To demonstrate how to use Cerberus, we introduce another workflow

example.

Example 17. The simplified Loan Origination Process shown in Figure 6.2

is composed of four tasks, Request loan (t1), Evaluate external credit rating

(t2), Evaluate internal credit rating (t3) and Approve loan (t4), and two

SoD constraints, which impose that the user who executes t2 (t3, resp.)

cannot also execute t3 (t4, resp.). The authorization policy, associating

users to tasks, is described in the table shown in the Figure.

The usage of the tool involves four steps: design-time specification,

monitor synthesis, deployment, and run-time enforcement. SAP HANA is

an in-memory relational database, so the BPMN artifacts and the monitors

5http://activiti.org/
6http://www.swi-prolog.org/
7https://sites.google.com/site/pydatalog/home
8https://www.mysql.com/
9http://help.sap.com/hana/SAP_HANA_SQL_Script_Reference_en.pdf

119

http://activiti.org/
http://www.swi-prolog.org/
https://sites.google.com/site/pydatalog/home
https://www.mysql.com/
http://help.sap.com/hana/SAP_HANA_SQL_Script_Reference_en.pdf

6.2. Using Cerberus Chapter 6

are translated to SQL. There is a long tradition of works using relational

languages, such as Datalog and SQL, to express role-based access control

and other authorization policies [130]. Moreover, we use database tables

to store the users (USERS), authorization policy (one PARTICIPANTS table

for each task) and execution history (HST).

6.2.1 Design-time

At design-time, a process designer uses the HANA Studio IDE to model

the control-flow and authorization constraints of a workflow. Authorization

constraints are not part of standard BPMN and we simply use task docu-

mentation to input the constraints in textual form. This can be changed in

the future so that constraints are specified as graphical elements. Autho-

rization policies are specified by linking each task to an assignment table

in the database. The tables will be populated only at deployment-time.

When design is complete, the model is translated to SQL by pressing a

button in the IDE.

To model the example of Figure 6.2, a process designer uses the IDE

to create a new BPMN file and graphically drags, drops and connects the

required elements: start and end events (the circles in the figure), user tasks

(rounded rectangles), sequence flows (solid arrows) and parallel gateways

(diamonds labeled by “+”). The authorization constraints are input in

the documentation of the second and third tasks, the PARTICIPANTS data

objects are linked to database tables with the same names (which are empty

at the moment) and the task UIs are linked to web pages (see Figure 6.3).

120

Chapter 6 6.2. Using Cerberus

Figure 6.3: Workflow constraints

6.2.2 Monitor synthesis

The monitor synthesis runs in parallel with the BPMN-to-SQL compiler

and is completely transparent to end users. When the monitor synthesizer

receives a request to generate a monitor, the BPMN model file (in XML)

is read from the repository and translated to a symbolic transition system

that is fed to the monitor synthesis tool. The resulting SQL view, using

the database tables representing users, authorization policy and history

of execution, is stored in the repository and queried at run-time by the

execution engine.

In the example of Figure 6.2, the monitor consists of an SQL view

defined by a procedure containing, among others, the following query for

t2 (simplified for the sake of clarity):

SELECT U2.ID FROM USERS AS U1 , USERS AS U2 WHERE HST.dt1 = 1 AND HST.dt2 = 0

AND HST.dt3 = 1 AND HST.dt4 = 0 AND (U1.ID <> U2.ID) AND NOT HST.t3by = U1.ID

AND NOT HST.t3by = U2.ID AND U2.ID IN (SELECT ID FROM PARTICIPANTS2) AND U1.ID

IN (SELECT ID FROM PARTICIPANTS4)

121

6.2. Using Cerberus Chapter 6

which encodes the fact that, to execute t2, the system must be in a

state where t1 and t3 have been executed, but neither t2 nor t4 (dt1 = 1

AND dt2 = 0 AND dt3 = 1 AND dt4 = 0), there must be a user u1 who

can execute t2 (SELECT ID FROM PARTICIPANTS2), and a different user u2

(U1.ID <> U2.ID) who can execute t4 (SELECT ID FROM PARTICIPANTS4)

and neither user should have executed t3 because of the SoDs between

t2 and t3 and between t3 and t4 (NOT t3by = U1.ID AND NOT t3by =

U2.ID). Other queries for t2 and all queries for other tasks are similar.

6.2.3 Deployment

For the deployment of a workflow it is necessary to specify the concrete au-

thorization policy by populating the linked database tables PARTICIPANTS1

to PARTICIPANTS4. End users manage workflows using a generated API, as

shown in Figure 6.4. The snippet of code in Figure 6.4 shows the program-

matic instantiation of the authorization policy given in the table shown in

Figure 6.2.

As discussed above, at this moment the process designer can also invoke

the scenario finder tool to find concrete execution scenarios with a given

authorization policy. Some valid execution scenarios for Example 17 are

t1(C), t2(A), t3(B), t4(A) and t1(A), t3(B), t2(C), t4(A).

6.2.4 Run-time

At run-time, there is a running job responsible for calling the next tasks

based on tokens stored in the database, whose flow is specified by the

control-flow in the BPMN model. When a human task is executed, the

monitor associated to the workflow is called into action by the automatic

invoking of a procedure from the task UI. To grant or deny a request, the

monitor queries the USERS, PARTICIPANTS1 to PARTICIPANTS4 and HST

122

Chapter 6 6.3. Experiments

Figure 6.4: Generate the monitor and instantiate the workflow

tables described above to ensure that the requesting user is entitled to

perform the task, the user has or has not performed another conflicting

task, and the execution of this task will not prevent the satisfaction of

the workflow (as shown in the example query above). An example of the

UI with the list of tasks that a user is entitled to perform is shown in

Figure 6.5. When a user selects a task to perform he/she is taken to a task

UI displaying the task actions and when the user selects to complete the

task, the monitor is called and the request is either granted (Figure 6.6)

or denied (Figure 6.7).

6.3 Experiments

The previous Section described the use of Cerberus on a simple exam-

ple, but to further validate the techniques in this thesis, we performed a

series of experiments, focusing on monitor synthesis for real-world work-

123

6.3. Experiments Chapter 6

Figure 6.5: Task list

Figure 6.6: Request granted

Figure 6.7: Request denied

124

Chapter 6 6.3. Experiments

Figure 6.8: Drug dispensation process from [10].

flows (Section 6.3.1), scalability of monitor synthesis (Section 6.3.2) and

scenario finding (Section 6.3.3).

All experiments were run on a MacBook Air 2014 laptop with a 1.3GHz

dual-core Intel Core i5 processor and 8GB of RAM. All monitor synthesis

and query answering times in the experiments are related to monitors for

the pyDatalog engine.

6.3.1 Monitor synthesis - real-world workflows

We have experimented with real-world workflows taken from related works

(e.g., [12, 10]) and available repositories (e.g., Signavio reference models10,

SAP Business Process Repository11, and the BPM Academic Initiative12).

Below, we discuss one example using the basic control-flow patterns (se-

quential, parallel, and alternative execution [148]) to demonstrate the ex-

pressiveness of our approach.

Example 18. Figure 6.8 shows the Drug dispensation process from [10].

The execution of an instance of this workflow starts with a Patient re-

questing drugs to a Nurse (t1). The Nurse consults the Patient’s record

and sends it to a PrivacyAdvocate (t2), who decides if this data should

be anonymized (t3 and t4). If the drug prescription has therapeutic notes,

10Available at http://www.signavio.com/reference-models/
11Available at https://implementationcontent.sap.com/bpr
12Available at http://bpmai.org/

125

http://www.signavio.com/reference-models/
https://implementationcontent.sap.com/bpr
http://bpmai.org/

6.3. Experiments Chapter 6

they must be reviewed by a Therapist (t5) and in parallel, a Researcher

can add data related to experimental drugs (t6). In the end a Pharma-

cist either approves or denies the process (t7) and a Nurse carries out the

related tasks: collect and dispense the drugs (t9 and t10) or notify the

Patient (t8). A SoD constraint for this workflow is (t1, t7, 6=): the same

user cannot act as Patient and Pharmacist, so that a Pharmacist cannot

dispense drugs to himself.

A workflow of this size (10 tasks) would be intractable for our tool with-

out modular decomposition. In fact, without using modular specifications,

for a workflow with up to 5 tasks, running Algorithm 1 (the most expensive

step of our technique) takes few seconds on a standard laptop; for 6 tasks,

around a minute; and for 7 tasks, already two hours and a half.

Thus, we come up with a specification consisting of two components to

be executed one after the other; the former contains tasks t1, . . . , t4 and the

latter, tasks t5, . . . , t10. This particular decomposition is easy because it

splits the workflow roughly in half and the first component ends before the

parallel gateway where the second component starts. According to some

control flow operators, not all tasks must be executed in the workflow for

its successful termination. In fact, tasks t4, t5 and t6 may or may not

be executed depending on certain conditions (e.g., “anonymize?”), while

tasks t8 and t9 are mutually exclusive.

To represent the decisions that have to be taken to complete the work-

flow, we create transitions for the various branches whose enabling con-

ditions depend on additional variables—called environment variables—

modeling non-deterministic choices of the environment. For instance, the

fact that task t7 is followed by the decision point approved? can be repre-

126

Chapter 6 6.3. Experiments

sented by the following two transitions:

ttrue7 (u) = p6 ∧ p7 ∧ ¬dt7 ∧ app ∧ at7 ∧ ¬ht1(u) →

p6, p7, p10, dt7, ht7(u) := F, F, T, T, T

tfalse7 (u) = p6 ∧ p7 ∧ ¬dt7 ∧ ¬app ∧ at7 ∧ ¬ht1(u) →

p6, p7, p8, dt7, ht7(u) := F, F, T, T, T .

When the environment variable app is true (cf. ttrue7), tasks t9 and t10

must be executed; when it is false (tfalse7), only task t8 is executed. Be-

sides permitting the precise representation of the control flow, environment

variables allow for writing final formulae differentiating between the alter-

native execution. For example, assuming a Petri net representation of the

drug dispensation process that has a place p4 after t4 and before t5, we

run the model checker on the first component with the final formula

(¬p0 ∧ ¬p1 ∧ · · · ∧ p4 ∧ dt1 ∧ dt2 ∧ dt3 ∧ dt4) ∨

(¬p0 ∧ ¬p1 ∧ · · · ∧ ¬p4 ∧ dt1 ∧ dt2 ∧ dt3 ∧ ¬dt4) .

A similar final formula can be derived for the second component.

The time spent to compute the reachability graph and translate it to

a Datalog program is around 15s (roughly, 3s for the first and 12s for

the second). The time taken by the synthesized monitor to answer access

requests is almost negligible.

6.3.2 Monitor synthesis - scalability

To test the scalability of our approach, we have extended the generator

of random workflows used in [42] to produce modular workflows. Our

generator takes the following parameters: nw, the number of components

and ntw, the number of tasks in each component (nt = nw · ntw is the total

number of tasks; nu, the number of users; pa, called authorization density,

127

6.3. Experiments Chapter 6

the ratio between the cardinality of
⋃
t{at(u) = true|u is a user} and nt ·nu

(where t ranges over the set of tasks); and pc, called constraint density, the

ratio between the number of SoD constraints in C and nt.

The generator also produces random (finite) sequences (r0, r1, . . . , rn)

of authorization requests, where ri = (t, u) for t a task and u a user,

encoding the question “can u perform task t according to the authorization

policy specified by the at’s and the constraints in C while guaranteeing its

termination?”

According to our experience with real-world workflows, we set ntw to 5

and increase the number nw of components so that the total number nt of

tasks in the generated workflows range from 10 to 500 (although workflows

of this size are rarely seen in practice, we want to emphasize the scalability

of the technique. Notice that [42] considers workflows with at most 150

tasks). More precisely, we let nt = 10, 20, . . . , 150, 200, 250, . . . , 500 and,

following [42], nu = nt, pa = 100%, 50%, 10%, pc = 5%, 10%, 20%.

Figure 6.9 shows the behavior of our prototype tool for the off-line phase

and Figure 6.10 shows the performance for the on-line phase. Both refer

to the modular workflows produced by the random generator with the

parameters described above. The x-axis shows the number nt of tasks in

the workflow and the y-axis, the timings in seconds. Each line corresponds

to different values for the pair (pa, pc) of parameters (recall that nu = nt).

Discussion

It is clear that the computation time of our tool in both the on-line and off-

line phases is linear in the number of tasks in the workflows for any value

of the pair (pa, pc) of parameters. For the off-line phase, this is so because

of the divide-and-conquer strategy supported by modular workflows. For

the on-line phase, the linear growth is because the synthesized Datalog

programs belong to a class whose requests can be answered in linear-time.

128

Chapter 6 6.3. Experiments

Number of tasks

Figure 6.9: Total run-time of off-line phase by the number of tasks in all configurations

Notice also that for workflows with nt ≤ 200, the (median) time to answer

a request is under 1 second while for workflows with 200 < nt ≤ 500,

it is around 1.6 seconds. This clearly demonstrates that the monitors

synthesized by our tool are suitable to be used at run-time.

6.3.3 Scenario finding

In the scenario finding experiments, we use the TRW described in Chap-

ter 3 as well as two real-world examples, shown in Figures 6.11 and 6.12,

derived from business processes available in an on-line repository provided

by Signavio,13 which contains models inspired by the ISO9000 standard for

quality management and the ITIL 2011 set of best practices for IT service

management.

Example 19. The goal of the ITIL workflow is to report costs and rev-

enues of an IT Service. It is composed of 7 tasks and 2 SoD constraints.

Tasks t1, t2, t3, t6 and t7 are for the checking and correction of bookings,

13Available at http://www.signavio.com/reference-models/

129

http://www.signavio.com/reference-models/

6.3. Experiments Chapter 6

Number of tasks

Figure 6.10: Total run-time of the on-line phase by the number of tasks in all configura-

tions

compilation of the financial report, and its communication; tasks t4 and t5

are for checking and defining corrections. The execution of tasks t2 and t5

depends on the conditions associated to two exclusive gateways: correct1?

(abbreviated with c1) and correct2? (abbreviated with c2), respectively.

The SoD constraints forbid that the same user compiles a draft report and

checks for errors (t3, t4, 6=) or compiles the draft and defines the corrections

(t3, t5, 6=).

Example 20. The goal of the ISO workflow is to plan for enough financial

resources to fulfill quality requirements of an organization. It is composed

of 9 tasks and 3 SoD constraints. Tasks t1, t2, . . . , t6 involve the detailed

preparation and consolidation of a draft budget, whereas tasks t7, t8 and t9

are for the approval of the previous activities, the integration into the total

budget, and the communication of the results. The execution of tasks t8 or

t9 depends on the exclusive gateway approved? (abbreviated with appr).

The SoD constraints forbid that the same user prepare and consolidate a

budget (t1, t6, 6=), prepare and approve a budget (t1, t7, 6=), or consolidate

130

Chapter 6 6.3. Experiments

Figure 6.11: ITIL 2011—IT Financial Reporting (abbreviated ITIL)

Figure 6.12: ISO9000—Budgeting for Quality Management (abbreviated ISO)

and approve a budget (t6, t7, 6=).

Although none of the workflows comes with an authorization policy,

swimlanes (not shown in Figures 6.11 and 6.12) suggest that a controlling

manager executes tasks t1, t2, t3, t6 and t7 while a financial manager

executes tasks t4 and t5 for ITIL and that a quality manager executes

tasks t1, . . . , t6 and a controlling manager executes tasks t7, t8 and t9

for ISO. These indications are taken into consideration for designing the

authorization policies (based on the RBAC model and encoded in Datalog)

in various scenarios with a fixed set U = {u1, . . . , u9} of users. For the

TRW, we consider two policies P0 and P1: the former is that in the Example

of Chapter 3 and the latter is derived from the former in such a way that

no user is authorized to execute t1 (thus no authorized scenario should be

found). For ITIL, we have policies P2 and P3, each one with 3 users as

financial managers, 3 users as controlling managers, and 3 with both roles;

P3 is derived from P2 by preventing users to be able to execute task t6.

For ISO, we consider policies P4 and P5, each one with 3 users assigned to

131

6.3. Experiments Chapter 6

the role of quality manager, 3 users as controlling managers, and 3 users

assigned to both roles; P5 is derived from P4 by preventing users to be able

to execute task t3.

Before invoking our algorithms for solving the SFPs, we need to build

the symbolic reachability graph (and the run-time monitor) for each ex-

ample. We did this by running the implementation of the off-line step

from Chapter 3. For TRW, the symbolic reachability graph is computed in

around a second. For ITIL, the graph is computed in around 3.5 seconds.

For ISO, graph building takes around 10.5 seconds. The time for deriving

the monitor M from the symbolic reachability graph of each example is

negligible and thus omitted.

Table 6.1 shows the findings of our experiments for the B-SFP, MUB-

SFP, and C-SFP. Each entry in column ‘Instance,’ describing the input to

Algorithm 2 (or its modification to solve the MUB-SFP), is of the form

W + Pi where W is the identifier of one of the three security-sensitive

workflows and Pi is one of the authorization policies described above. Col-

umn ‘Γ’ shows the facts in the set Γ that can be used to drive the search

of execution scenarios with particular properties. For instance, ITIL con-

tains two exclusive gateways labeled with conditions c1 and c2: we may

be interested in those scenarios in which c1 and c2 take some particular

truth values (see lines 1–4 and 12–15 of the table). Another use of the

set Γ is shown at line 8: we are interested in finding authorized scenarios

of TRW under the authorization policy P0 in which task t2 is always exe-

cuted by user b. There is no such scenario (the ‘Solution Scenario’ column

reports the empty sequence ε) since when b performs t2, a must perform

t1—because of the SoD constraint (t1, t2, 6=)—but if a performs t1, no user

can perform t4—because of the other SoD constraint (t1, t4, 6=). Column

‘Time’ reports the running time (in seconds) taken to find a scenario (if

any).

132

Chapter 6 6.3. Experiments

We report the performance of the implementation of Algorithm 4, to

solve instances of the SkR-SFP on the TRW, ITIL, and ISO workflows in

Table 6.2. Column ‘Instance’ shows the workflows used in the experiments.

Each one of the columns ‘Time’ reports the time taken (in seconds) to find

Table 6.1: Experiments for the B-SFP, MUB-SFP, and C-SFP

Instance Γ Solution Scenario Time

B-SFP

0 TRW+P0 ∅ t1(b), t2(a), t4(a), t3(c), t5(b) 0.288

1 ITIL+P2 {c1, c2} t1(u3), t3(u9), t4(u8), t6(u9), t7(u9) 4.267

2 ITIL+P2 {c1,not c2} t1(u3), t3(u3), t4(u7), t5(u8), t6(u3), t7(u7) 4.454

3 ITIL+P2 {not c1, c2} t1(u3), t2(u1), t3(u9), t4(u8), t6(u9), t7(u9) 4.374

4 ITIL+P2 {not c1,not c2}
t1(u3), t2(u1), t3(u3), t4(u7),

t5(u8), t6(u3), t7(u7)
4.561

5 ISO+P4 {appr}
t1(u3), t4(u7), t5(u8), t2(u3), t3(u7),

t6(u9), t7(u7), t9(u8)
6.581

6 ISO+P4 {not appr}
t1(u3), t4(u7), t5(u8), t2(u3), t3(u7),

t6(u7), t7(u8), t8(u6)
6.637

7 TRW+P1 ∅ ε 0.407

8 TRW+P0 {t2(b)} ε 1.554

9 ITIL+P3 ∅ ε 9.562

10 ISO+P5 ∅ ε 44.076

MUB-SFP

11 TRW+P0 ∅ t1(b), t2(c), t3(b), t4(a), t5(a) 2.385

12 ITIL+P2 {c1, c2} t1(u1), t3(u1), t4(u7), t6(u1), t7(u1) 108.819

13 ITIL+P2 {c1,not c2} t1(u3), t3(u3), t4(u7), t5(u7), t6(u3), t7(u3) 116.525

14 ITIL+P2 {not c1, c2} t1(u1), t2(u1), t3(u1), t4(u7), t6(u1), t7(u1) 108.827

15 ITIL+P2 {not c1,not c2}
t1(u3), t2(u3), t3(u3), t4(u7),

t5(u7), t6(u3), t7(u3)
116.533

16 ISO+P4 {appr}
t1(u5), t3(u5), t2(u5), t4(u5), t5(u5),

t6(u3), t7(u7), t9(u7)
166.632

17 ISO+P4 {not appr}
t1(u5), t3(u5), t2(u5), t4(u5), t5(u5),

t6(u9), t7(u6), t8(u9)
166.644

133

6.3. Experiments Chapter 6

a solution for k = 2, k = 4, k = 6, and k = 8. The experiments have

been run with three policy configurations, containing n = 9, n = 18, and

n = 27 users in U (indicated with |U | = n in the table). The performance

results are for the version of the algorithm using the subset enumeration

optimization (discussed in Section 5.3.2), since all the workflows used in

the experiments contain only SoD constraints. We do not report the per-

formance without the optimization because it is unsuitable.

Discussion

Our experiments indicate that the SFPs, their constrained versions, and the

algorithms for solving them introduced in this thesis fit well with emerging

practices for BPM reuse. Whenever a customer wants to deploy a business

process by reusing a workflow template, some SFP is solved (if possible)

to provide him or her with an authorized scenario showing that a template

business process can be successfully instantiated by his or her authorization

policy.

Table 6.2: Experiments for the SkR-SFP

Instance Time (k = 2) Time (k = 4) Time (k = 6) Time (k = 8)

|U | = 9

0 TRW 2.612 3.209 3.990 0.504

1 ITIL 3.606 6.012 7.416 1.308

2 ISO 10.815 12.034 13.820 26.254

|U | = 18

3 TRW 91.606 95.892 109.895 226.074

4 ITIL 114.128 159.105 161.935 165.059

5 ISO 107.864 135.725 197.564 207.941

|U | = 27

6 TRW 680.767 712.977 815.842 841.445

7 ITIL 1252.796 1370.184 1410.400 1637.548

8 ISO 702.154 1179.483 1557.616 2185.207

134

Chapter 6 6.3. Experiments

The efficiency of the proposed approach exploits the fact that the eligi-

ble scenarios (resulting from execution and authorization constraints) can

be computed once and reused with every authorization policy. In this way,

multiple changes to a policy, which are well-known to be costly [100], be-

come much less problematic to handle and customers can even explore and

evaluate the suitability of variants of a policy. This is in sharp contrast to

the approach discussed in Section 5.2 (after Example 11) that consists of

re-invoking an available algorithm for solving the WSP on every task-user

pair in a scenario.

To illustrate, consider the instance at line 4 of Table 6.1. Recall that

the off-line step for ITIL takes around 3.5 seconds and observe that this is

computed once and for all. If, instead, we use the technique to solve the

WSP from Chapter 3 as a black-box (i.e., without being able to retrieve

the symbolic reachability graph computed during the off-line phase), which

is common to (almost) all techniques available in the literature, solving the

same B-SFP would require almost 30 seconds resulting from recomputing

7 times (corresponding to the 7 task-user pairs in the returned scenario)

the same symbolic reachability graph (compare this with the timing of

4.561 seconds reported in the table). This is a significant performance gain

despite the small size of the example.

For each workflow, the times shown in Table 6.2 grow with the number

of users (|U |) and desired resiliency (k) for two reasons. First, there are

more absent subsets to be considered. Second, finding a scenario for each

subset takes longer, since the time to answer Datalog queries depends on

the number of users. For a combination of many users and a large resiliency,

the time taken may be unacceptable, which is inherent to the complexity

of the problem. In any case, the observation above about reusing the

pre-computed symbolic reachability graph is even more important for the

SkR-SFP. If the graph was not reused, it would have to be computed from

135

6.3. Experiments Chapter 6

scratch for each user-task pair of each absent subset. For the SkR-SFP,

the optimization based on absent set domination is crucial for acceptable

performance.

As an example, in line 2, column ‘k = 2’, the reported time (10.815)

is obtained considering only 3 dominant subsets of users, out of a total of(
9
2

)
= 36. If the 36 subsets are considered, the total time is 107.724. This

difference is even larger for instances with more users or a larger k.

Another advantage of Algorithm 4 is that it stops as soon as a concrete

scenario is not found for a subset (line 6 in the algorithm). Notice that the

times in column ‘k = 8’ of lines 0 and 1 are less than the time in columns

‘k = 2’, ‘k = 4’, and ‘k = 6’ of the same lines, since those instances are not

8-resilient. The instance in column ‘k = 8’ of line 3 is also not resilient,

but the algorithm took much longer to encounter a subset with no concrete

scenario.

136

Chapter 7

Aegis: automatic enforcement of

security policies in workflow-driven

web applications1

Web applications are nowadays one of the preferred ways of exposing busi-

ness processes and services to users. Many web applications implement

workflows, i.e. there is a pre-defined sequence of tasks that must be per-

formed by users to reach a goal [9].

If an application does not correctly enforce its workflows, attackers can

exploit this vulnerability to subvert it. In an e-commerce application, for

instance, users must Select products, Checkout, Enter shipping information,

Enter payment information and Confirm. If the application does not verify

that user actions follow this sequence, a user can, e.g., skip the payment

step and receive products without paying. Even simple navigation errors,

when a user accesses pages in an unexpected order, if handled improperly,

can be exploited [74].

Workflow and business logic vulnerabilities are listed in the Common

Weakness Enumeration (CWE)2, in the OWASP Testing Guide [108] and

(tangentially) in the OWASP Top 10 [117]. Enforcing the correct workflow

1Parts of this chapter were previously published in [32]
2https://goo.gl/yH4xrP and https://goo.gl/bFvzjK

137

https://goo.gl/yH4xrP
https://goo.gl/bFvzjK

Chapter 7

of an application is known as control-flow integrity and it has been used in

web applications to prevent workflow attacks and others, such as forceful

browsing and race conditions [19, 20].

Data-flow integrity is also crucial and incorrect enforcement can lead to

vulnerabilities where, e.g., a user can change the price of a product being

purchased to pay less for it [161]. This kind of vulnerability is even more

prominent in multi-party scenarios, where a user receives data objects, such

as tokens from one party (e.g., an identity provider) and must relay them

to another party (e.g., a service provider). Several vulnerabilities have

been discovered in recent years due to improper enforcement of data-flow

integrity [161, 119, 140].

Besides control- and data-flow integrity, access control is fundamental

for web application security whenever users must access only data and

functionalities that they are authorized to by a given policy. Access con-

trol vulnerabilities are common and hard to find [141]. Moreover, some

web applications implement collaborative work, in which many users work

together to achieve the goal of a workflow. Examples are Enterprise Re-

source Planning (ERP) software, used by employees in an organization to

manage, e.g., purchases, sales and finance; and e-health applications, used

by doctors and technical staff to manage patient records. In these appli-

cations, not only it is important to enforce authorization policies, but it

may also be necessary to support authorization constraints, such as BoD

or SoD. A valuable use of these constraints is to avoid errors and frauds in

security-critical applications that must follow regulatory compliance rules.

Nonetheless, none of the applications we experimented with provided

support for an easy to use, declarative specification of constraints. Includ-

ing Odoo3, an open-source ERP platform with more than 5000 developers

and 2 million users, among them big companies such as Toyota and Danone.

3https://www.odoo.com/

138

https://www.odoo.com/

Chapter 7

Without declarative specifications and proper enforcement, authorization

constraints have to be implemented as application code and embedded

into each task [14] or translated to static assignments in the authorization

policy. Both solutions are error-prone and can hardly scale.

Even with suitable specification and enforcement mechanisms, support

for authorization policies and constraints may lead to situations where an

application workflow cannot be completed because no user can execute an

action without violating them, emphasizing the need for solutions to the

WSP.

The WSP has received much attention in the workflow security commu-

nity [78], but, to the best of our knowledge, has never been considered in

web applications. In fact, transferring WSP solutions to the web domain

is not trivial. These solutions often rely on a workflow model specification

and a workflow management system to handle the control-flow of tasks and

to provide an interface for users to request task executions, elements which

are frequently not available for web applications.

In this Chapter, we present Aegis4, a technique to synthesize run-time

monitors for web applications that are capable of automatically (i) enforc-

ing security policies composed of combinations of control- and data-flow

integrity, authorization policies, and authorization constraints; and (ii)

solving the run-time version of the WSP by granting or denying, at run-

time, requests of users to perform tasks based on the satisfaction of the

policy and constraints and the possibility to terminate the current workflow

instance.

To synthesize a monitor, Aegis first infers, using process mining [144],

workflow models of the target application from a set of HTTP traces rep-

resenting user actions. Traces must be manually edited to contain only

4Aegis was the mythological shield carried by Athena, and “under the aegis of” means “under the

protection of.”

139

7.1. Overview Chapter 7

actions that should be controlled by the monitor. Inferred models are

Petri nets [111] labeled with HTTP requests representing tasks and anno-

tated with data-flow properties obtained by using a set of heuristics based

on differential analysis (as e.g., [161, 140]). These Petri nets (or a more

user-friendly representation, such as BPMN) can be refined by a human

user who, optionally, specifies authorization constraints and an authoriza-

tion policy. A monitor is then generated from a model by invoking the

synthesis technique described in Chapter 3.

At run-time, a reverse proxy is used to (i) capture login actions to later

establish the acting users, and (ii) capture incoming requests and query

the monitor to determine whether to allow or deny the request. Aegis

is completely black-box and can be used with new or legacy applications

to add support for the enforcement of security-related properties or to

mitigate logic vulnerabilities.

7.1 Overview

Aegis synthesizes run-time monitors for workflow-driven web applications,

i.e. applications implementing business processes and customer services

as workflows. Hereafter, web application is used as an abbreviation for

workflow-driven web application, unless stated otherwise.

A monitor synthesized by Aegis can enforce three security-related prop-

erties in web applications: authorization policies (P), defining which users

are entitled to perform which tasks; authorization constraints (C), defin-

ing run-time restrictions on the execution of tasks, e.g., a SoD requiring

two different users to perform a pair of tasks; and control- and data-flow

integrity (I), specifying the authorized control-flow paths that the appli-

cation must follow, as well as data invariants.

Different web applications have different enforcement needs, which al-

140

Chapter 7 7.1. Overview

lows for the synthesis of different configurations of monitors, depending on

which properties are switched on or off. We identify each configuration as

a tuple containing the active properties, e.g., 〈P , C, I〉, 〈P , I〉, 〈C, I〉, 〈I〉.
Control- and data-flow integrity are in the same category because it is not

realistic that an application needs to enforce one and not the other.

Aegis takes as input sets of HTTP traces representing user actions

executed while interacting with a target web application. It synthesizes

and outputs an external monitor composed of a set of queries to be used

by a proxy sitting between users and the application. Each set of input

traces is produced by a user simulating real clients completing a workflow

as foreseen by the application (“good traces”). Traces can be collected

using test automation tools such as Selenium5 or OWASP ZAP6 and must

be manually edited to contain only critical tasks. After trace collection,

the whole technique is automated.

The monitor only enforces those workflows given as input by the user,

having no impact on the rest of the application besides the overhead of a

reverse proxy (which is frequently used in any case to implement, e.g., load

balancing).

Figure 7.1 shows an overview of Aegis. The top of the Figure shows

the entire approach, where rectangles represent the three main steps (with

sub-steps), yellow notes represent inputs, and ovals represent generated

artifacts. The bottom of the Figure details the internals of the Run-time

Monitoring component. The three main steps are the following.

1. Model Inference. The set of HTTP traces is automatically stripped

of all information except request and response URLs, headers, and bodies;

each request and response is annotated with data-flow properties inferred

by a set of heuristics; traces are aggregated into a file called event log; and

5http://www.seleniumhq.org/
6https://goo.gl/XvxKd1

141

http://www.seleniumhq.org/
https://goo.gl/XvxKd1

7.1. Overview Chapter 7

Figure 7.1: Overview of the technique

a process mining [144] tool takes the log as input to generate a Petri net

workflow model whose transitions are labeled by the annotated requests.

The inferred model can be refined according to the user’s understanding

of the application.

2. Monitor Synthesis. Given a workflow model, the user specifies the

Authorization Constraints to be enforced (if any) and whether an Au-

thorization Policy will be provided at run-time. Control- and data-flow

integrity are obtained automatically from the model, can be optionally

modified by the user, and are always enforced. The workflow model can

be presented to the user in a convenient notation such as BPMN, and the

specification of constraints can be done graphically. A run-time Monitor

142

Chapter 7 7.1. Overview

capable of enforcing the chosen properties is synthesized by invoking the

tool described in Chapter 3.

3. Run-time Monitoring. A reverse proxy is instantiated with the

synthesized monitor and a concrete authorization policy, if required by the

application. As shown at the bottom of Figure 1, it sits between users

and the application, filters requests and translates them to the monitor.

The monitor enforces the properties defined in step 2, granting a request if

the control-flow is respected, the data-flow invariants hold, the user issuing

the request is authorized by the policy, the authorization constraints are

not violated and the current instance execution can still terminate. The

proxy, based on the response from the monitor, may forward requests to

the application or drop them to prevent the violation of some property.

A single application may implement several workflows. Steps 1 and 2

are performed for each workflow to be monitored, generating one monitor

for each workflow. Step 3 uses all the synthesized monitors and queries the

correct one depending on the incoming request. Requests not related to

any monitored workflow go direct to the application, without triggering a

monitor query.

Below, we present two motivating examples that illustrate the configura-

tions 〈P , C, I〉, 〈C, I〉 (first example), and 〈I〉 (second example). The first

example motivates the distinctive contributions of our technique: support

for authorization policies, constraints, and workflow satisfiability. The sec-

ond example shows that Aegis is capable of mitigating logic vulnerabilities

related to control- and data-flow integrity.

7.1.1 Example 1 - Enforcing constraints

Dolibarr7 is an open-source ERP web application for small and medium

enterprises. It implements, among others, a business process similar to

7http://www.dolibarr.org/

143

http://www.dolibarr.org/

7.1. Overview Chapter 7

Figure 7.2: Customer invoice process in BPMN (top) and as a Petri net (bottom)

the one shown at the top of Figure 7.2 (in BPMN) to manage customer

invoices.

The process contains 6 tasks. Tasks t1 to t4 must be performed in

sequence, while either t5, t6 or neither are performed last. The original

application implements each of the tasks shown in Figure 7.2. An autho-

rization policy, control-flow, and possible data-flow invariants are imple-

mented in an ad-hoc way, whose correctness is hard to verify, which may

lead to vulnerabilities. The authorization policy originally supported by

the application has a granularity of permissions that does not match the

user-task assignment we support (there is no specific permission to, e.g.,

re-open an invoice or send it by e-mail). Authorization constraints are not

supported. As a result, it is not trivial to prevent a malicious user from

creating and validating a customer invoice (SoD between t1 and t2) or in-

serting and validating a payment (SoD between t3 and t4), which would

allow him to, e.g., close invoices with an incorrect payment.

A user who wants to securely deploy this application can use Aegis to

generate a 〈P , C, I〉 monitor to enforce control-flow integrity, ensuring that

all the steps in the customer invoice process are performed in the correct

144

Chapter 7 7.1. Overview

order; an authorization policy, ensuring that only authorized users can ex-

ecute each task; and the SoD constraints described above, to avoid frauds.

If the user prefers to leave authorization enforcement to the application, a

〈C, I〉 monitor could be generated to only add support for constraints and

integrity.

To generate a monitor for the invoicing process, without impacting other

parts of the application, the user starts by collecting traces simulating users

performing the process. Some HTTP traces representing these executions

are8:

τ1 = {/invoice?action=create&value=10&prod=abc,

/invoice/validate?id=1, /invoice/pay/create?id=1&value=10,

/invoice/pay/validate?id=1},

τ2 = {/invoice?action=create&value=20&prod=def,

/invoice/validate?id=2, /invoice/pay/create?id=2&value=20,

/invoice/pay/validate?id=2, POST /invoice/send BODY id=2},

τ3 = {/invoice?action=create&value=30&prod=ghi&prod2=jkl,

/invoice/validate?id=3, /invoice/pay/create?id=3&value=30,

/invoice/pay/validate?id=3, /invoice/reopen?id=3}.

Each trace τi represents one possible execution of the invoicing process and

each request represents one task. The first four requests in each trace are

essentially the same, but with different parameter values (e.g., id is 1 in

τ1, 2 in τ2, and 3 in τ3). They represent tasks t1, t2, t3, and t4. τ1 is an

example of the branch where only the first four tasks are executed, while

t5 is executed after t4 in τ2, and t6 is executed after t4 in τ3.

The traces are automatically analyzed to extract data-flow properties,

annotated and aggregated into an event log, sent to a process mining tool
8for the sake of readability, we show only simplified URLs, but headers and body are also part of the

traces.

145

7.1. Overview Chapter 7

and the resulting Petri net labeled with a task-to-URL map (Step 1).

Figure 7.2 shows, at the bottom, the Petri net obtained from the process

mining tool (ignore for a moment the dashed lines). The tasks in the net

are labeled as ti, with the following task-to-URL map:

t1 : /invoice?action=create&value=<<I>>&prod=<<DC>>,

t2 : /invoice/validate?id=<<IID>>,

t3 : /invoice/pay/create?id=<<IID>>&value=<<I>>,

t4 : /invoice/pay/validate?id=<<IID>>,

t5 : POST /invoice/send BODY id=<<IID>>,

t6 : /invoice/reopen?id=<<IID>>

Data-flow properties are represented by annotations on the URLs. The

<<IID>> (instance identifier) annotation is applied to the elements used to

bind all the requests to the same instance of a workflow, in this case the

id parameter. The <<I>> (invariant) annotation is applied to values that

should not change during the whole workflow, in this example the value

of the invoice in t1 should be the same as the value of the payment in

t2. The <<DC>> (“don’t care”) annotation is applied to parameters that

should be present in the request to help identify it as a unique action,

but whose values are irrelevant. The parameter prod2, which is present in

the request of t1 only in τ3, is dropped in the task-to-URL map because

it is considered optional, i.e., a trace may represent an invoice with one

or more products, so only the first prod parameter needs to be present.

These data-flow properties, as well as others not used in this example, are

obtained by using heuristics detailed in Section 7.2.

The user then specifies the constraints that must be enforced, shown as

dashed lines labeled by 6= in Figure 7.2. The model is used to synthesize a

monitor (Step 2), which is composed of a set of SQL queries like

146

Chapter 7 7.1. Overview

1 SELECT U2.ID FROM USERS AS U1 , USERS AS U2, HST WHERE

2 HST.dt1 AND NOT HST.dt2 AND NOT HST.dt3 AND

3 NOT HST.dt4 AND NOT HST.dt5 AND NOT HST.dt6 AND

4 NOT HST.t1by = U1.ID AND U2.ID IN (SELECT * FROM

5 TA2) AND U1.ID IN (SELECT * FROM TA3) AND U2.ID IN

6 (SELECT * FROM TA4) AND U1.ID IN (SELECT * FROM TA5)

encoding the fact that, to perform task t2, only task t1 must have been

executed (lines 2 and 3), there must be an authorized user u2 who has not

performed t1 (line 4), and there must be other users capable of execut-

ing the remaining tasks (lines 5 and 6). This query is for the t5 branch,

there are similar queries for the t6 branch and the branch where neither is

executed, as well as other queries using a different number of users.

At run-time (Step 3), in the 〈P , C, I〉 configuration, a policy is spec-

ified as a task-user assignment, e.g., TA = {(u1, t1), (u1, t2), (u2, t2), (u3,

t3), (u4, t3), (u4, t4), (u5, t5), (u6, t6)}, where (u, t) ∈ TA means that user

u is authorized to execute task t. The assignment is stored in the appro-

priate tables in the database, and a reverse proxy is instantiated with the

synthesized monitor. The proxy is capable of receiving a request such as

GET /invoice/validate?id=5 Cookie: sid=abcd1234

and identifying that it refers to task t2 of instance 5 of the invoicing process

being performed by user u2 (whose cookie sid, sent in the header, has been

stored during login). It then queries the monitor and, assuming that u1

has previously executed t1 and t2 has not yet been executed, the query

presented above is satisfied and the request is granted. On the other hand,

a request can be blocked in several cases, such as if u3 tries to execute t2

((u3, t2) 6∈ TA, i.e., he is not authorized according to the authorization

policy), if u1 tries to execute t2 (there is a SoD between t1 and t2), if any

user tries to execute t3 before t2 (because of the control-flow), or if any

user issues a request for t3 with a value different from the one sent for t1

(because of the invariant).

147

7.1. Overview Chapter 7

Figure 7.3: Checkout process in BPMN (top) and as a Petri net (bottom)

To solve the WSP, regardless of the execution history, any request of u4

to execute t3 should also be blocked. Granting that request would mean

that the only user authorized to execute t4 has already executed t3, while

both tasks are in SoD. Therefore, any execution where u4 performs t3 would

either not terminate or terminate with the violation of some constraint or

policy.

The synthesized monitor presents a transparent way of avoiding this sit-

uation by blocking requests that lead to an undesired outcome. Exceptional

situations, where it is preferable to violate the policy with the knowledge

of an administrator, can be accommodated by using a soft enforcement

mode, as discussed in Section 7.4.

7.1.2 Example 2 - Mitigating vulnerabilities

TomatoCart9 is a popular e-commerce application that implements the

checkout process depicted on the top of Figure 7.3. It is composed of 5 tasks

executed in sequence, where t4 is a sub-process that can be implemented in

different ways, but must produce a data object representing a token issued

by a trusted third party, that is read in t5.

This is an example of a multi-party web application [140], which imple-

9http://www.tomatocart.com/

148

http://www.tomatocart.com/

Chapter 7 7.1. Overview

ments the payment step by using third-party solutions such as PayPal10.

An execution of this workflow, using PayPal Express Checkout, involves

three actors, a client C, a service provider SP implementing TomatoCart

and a trusted third party TTP implementing the payment provider. The

execution starts with the client browsing the SP , selecting some product

(t1), requesting checkout (t2), and entering shipping information (t3). The

SP then contacts the TTP and receives a token identifying the transaction

(not shown in the workflow). The user is redirected to the TTP with the

token (t4), completes the payment (again not shown in the Figure), and is

redirected back to the SP passing the token, which is verified to complete

the transaction (t5).

In version 1.1.7, TomatoCart had a vulnerability that allowed users to

replay a PayPal Express Checkout token in t5 of a new transaction and

shop for free [140]. This vulnerability was manually fixed in a later release

of the application, but Aegis could have been used to mitigate it until

a patch was available (or until the patch could be applied, which is not

always trivial).

To mitigate the replay vulnerability, we can generate a monitor in the

configuration 〈I〉, enforcing control-flow integrity and the data invariant

that the token received in t4 is the same that is sent in t5. An authorization

policy and authorization constraints are not specified since every user can

execute the steps in the checkout process and all steps are executed by the

same user. The details of the communication between SP and TTP and

between C and TTP are not shown in the workflow because the monitor

only needs to enforce that no user can replace the token that has been sent

to him/her. Although Aegis ignores some messages, many vulnerabilities

in multi-party web applications can be mitigated this way [161].

To generate the monitor, we repeat the steps presented for Example 1.

10https://www.paypal.com/

149

https://www.paypal.com/

7.2. Details Chapter 7

Below, there are some traces of the execution of the TomatoCart check-

out process, again simplified for readability. Now the traces involve three

parties, thus each request must be identified with its host.

τ1 = {shop.com/select, shop.com/checkout, shop.com/shipping,

shop.com/payment --> paypal.com/webscr?token=abcd1234,

shop.com/confirm?token=abcd1234},

τ2 = {shop.com/select, shop.com/checkout, shop.com/shipping,

shop.com/payment --> paypal.com/webscr?token=efgh5678,

shop.com/confirm?token=efgh5678}.

Figure 7.3 shows the Petri net obtained for the checkout process, labeled

directly with the URL of each task (where --> represents a redirect). The

invariant annotation <<I>> is applied to the token received from PayPal,

specifying that its value must be the same in /payment and /confirm.

A monitor is synthesized as before, however with neither authorization

policy nor constraints. Workflow instances can be identified by the user

identifier, since each user has only one checkout process at any given time.

At run-time, whenever a user tries to replay a token, the monitor blocks

this request because the token sent in t5 is different from the one received

in t4 (since PayPal generates unique tokens). If the user tries to bypass

the monitor by skipping step t4 and sending the token directly in t5, the

monitor blocks the request because of a control-flow violation.

7.2 Details

An HTTP trace (or a web session) is a sequence S = {(u1 : r1, s1), (u2 :

r2, s2), . . . , (un : rn, sn)} of pairs of web requests ri issued by users ui (which

may or may not be all distinct) and responses si. Each web request or

response is defined as ri = (headers , body) and the information we derive

150

Chapter 7 7.2. Details

from a request is a tuple (method , url, P), where method ∈ {GET, POST},
url is the requested URL, and P is a set of parameters of the form (k, v),

which can be in the URL (in GET requests), the body (in POST requests)

or in the headers (e.g., cookies or Location in redirects). Data values passed

as JSON can also be flattened to the same representation. The parameters

in P represent the data values later annotated with data-flow properties.

A workflow W (T, U) is a series of tasks (t ∈ T) in a causal order ex-

ecuted by a set of users (u ∈ U), and a web application is composed of

a set of workflows Ψ = {W1(T1, U1), . . . ,Wn(Tn, Un)}. We take as input

sets of web sessions WS = {S1, S2, . . . , Sn} and infer from each a workflow

Wi(Ti, Ui) using a process mining function PM, and a set of data prop-

erty labels Li using heuristics. We also take as input, optionally, sets of

authorization constraints Ci. We then use a monitor synthesis procedure

MS(Wi, Li, Ci) that returns a monitor Mi. Mi is capable of answering re-

quests of the form “can user u perform task t?”—encoded as can do(u, t)—

with True iff the control-flow in Wi and the data-flow in Li are respected,

no authorization constraint in Ci is violated, the requesting user u is au-

thorized by an authorization policy TA (specified at run-time), and the

workflow can be executed until the end.

Attacks and enforcement

At run-time, a reverse proxy RP receives an incoming request u : r and

based on the information taken from it, tries to translate it into a query of

the form can do(u, t), for u ∈ Ui and t ∈ Ti of workflow Wi(Ti, Ui), which

can be answered by Mi.

Attacks on the application at the level of web requests are reflected on

the workflows [98] as shown below. The monitor can mitigate these attacks

because they do not comply with the expected workflow (naturally, they

are only mitigated in the parts of the application covered by the inferred

151

7.2. Details Chapter 7

model).

A request forgery is an extra request not foreseen in a workflow

({r1, r2, . . . , rforged , . . . , rn}). A workflow bypass is a missing request

({r1, r2, . . . , ri−1, ri+1, . . . , rn}). A workflow violation is an attempt to ei-

ther repeat a unique request ({r1, r2, . . . , ri, . . . , ri, . . . , rn}) or execute a

request out of order ({r1, r2, . . . , ri+1, . . . , ri, . . . , rn}). Authorization viola-

tions happen when a request is issued by a user who is not entitled to do so

by the policy or when, for two tasks t1 and t2 in SoD, a user who previously

issued a request r1 to execute t1, issues a new request r2 to execute t2.

Adversary model

The monitor M enforces security properties related to access control and

control- and data-flow integrity, ignoring vulnerabilities such as code injec-

tion. We trust the target application, as well as any third parties trusted

by it. Application users are not trusted, since they can be partially or fully

controlled by an adversary.

7.2.1 Step 1 - Model inference

The goal of Aegis is not to produce an accurate model of the whole ap-

plication, but only workflow models composed of a sequence of critical

actions. These critical actions are the requests related to workflow tasks,

whose execution should be controlled by the monitor.

The definition of what is critical varies from application to application,

but besides the usual noise in HTTP traces (e.g., requests loading images

and other resources), any request that leaves the application state un-

changed (e.g., an AJAX request triggered for auto-completion of an input

field) should be filtered out. Such requests are called navigation events,

as opposed to system-interaction events, which change the state of the ap-

plication [136]. Not every system-interaction event should be controlled

152

Chapter 7 7.2. Details

by the monitor (this should be decided by the user). However, discarding

navigation events is crucial to keep the inferred models to a reasonable

size and to eliminate imprecision due to variations in the process when

executed by different users.

We assume that this treatment of the input traces is done before Aegis

is invoked. It can be done manually by deleting unimportant actions,

but there are proposals of automated black-box techniques to detect state

changing requests.

Some techniques detect a state change by sending identical requests

and comparing their outputs [55, 57], others are based on an abstraction

of the user interface [136]. The former have limitations such as the need to

isolate the application (other users cannot interact with it while a trace is

collected) and to be able to reset it to its initial state. The latter cannot

detect system states that are not reflected in the UI. Such techniques are

usually embedded in crawlers to obtain a model of the entire application.

Applying just the state-change detection part to traces of a single workflow

may have sub-optimal results. Evaluating similar approaches to automate

trace collection is left to future work.

Since some URLs in an application can take different parameters and dif-

ferent values for these parameters, while still representing the same action,

and since we apply differential analysis to identify data-flow properties, we

need at least two different traces as input, each containing a possible value

for each of the parameters (including their presence and absence). The

input traces should also represent all the possible execution paths of the

process (control-flow). The number of input traces required for a precise

model depends on the number of control-flow branches in the workflow

being analyzed, as well as the diversity of the traces. Related works use,

e.g., four traces as input [161] or traces with specific requirements for each

of the parties in the process [140].

153

7.2. Details Chapter 7

At least two login traces with distinct users must also be present, so that

cookies defining the user session identifier and parameters representing user

names can be mined, to map requests to concrete users at run-time.

It is possible to obtain input traces by reusing functional tests, which are

common in web development and usually implemented using a framework

such as Selenium. From the set of HTTP traces, we extract three artifacts:

a workflow model, a task-to-URL map, and a set of data properties.

Workflow model and map

A workflow model is automatically obtained from a process mining tool.

There are many well-known process mining algorithms and Aegis uses the

α-algorithm [144]. It mines workflow nets by recording all the events in a

log and detecting relations between them, such as sequence (→), exclusive

or (#), and parallel (||).
In the traces used in Example 1, it is possible to see that t1 always

precedes t2 and t2 never precedes t1, so the algorithm infers a causal de-

pendency between them and adds a place connecting transitions t1 and t2

in the output net (place p1 in Figure 7.2). It is also possible to see that

t4 → t5 (t4 precedes t5), t4 → t6 (t4 precedes t6), and t5#t6 (t5 and t6

do not happen in the same trace), thus the algorithm creates a place after

t4 that branches the execution (p4 in the same Figure).

Since the input traces contain only relevant URLs and each unique URL

becomes a transition after process mining, the task-to-URL map is trivial

to obtain.

Data-flow properties

Identification and annotation of data properties has been used initially

in [155] and later in other works [161, 119, 140]. Each work proposes their

own annotations.

154

Chapter 7 7.2. Details

We use five annotations, namely constant, don’t care, invariant, instance

identifier, and user identifier, which are used for three goals. Constants

and don’t cares are used to restrict and generalize, respectively, the input

traces by fixing or hiding given values that are used to match incoming

requests at run-time. A user identifier is used to detect the user issuing

a request and an instance identifier to detect the workflow instance that

the request is related to. This is because several instances of the same

workflow may be running at the same time and they may have different

execution histories (e.g., an instance 1 of the invoicing process where only

t1 was executed by u1 and an instance 2 where both t1 was executed by

u1 and t2 was executed by u2). Invariants indicate values that should not

be modified during a workflow instance execution.

Data-flow properties are obtained by using differential analysis, i.e.,

comparing the differences in the data values between traces, as is done

in related work (e.g., [161, 140]). For each trace, the analysis compares the

values of all parameters in each request in relation to (i) the same param-

eter in other requests of the same trace, (ii) the same parameter in other

traces, (iii) other parameters in the same trace, and (iv) other parameter

in other traces.

Aegis does not apply syntactic annotation (as, e.g., [140]) to identify

the data type of each parameter, and does not try to discover possible

values or intervals for data elements, because it does not enforce particu-

lar values that were seen in the traces (except for constants). Below, we

describe the differential analysis used to identify each kind of data-flow

property.

Let WS be the set of traces τi used for analysis, each τi be composed of

requests rj and responses sj, and each request or response have a set P of

parameters (k, v). Considering the same request rj in every trace τ ∈WS ,

if a parameter (k, v) appears in only a strict subset τ ′ ⊂ τ of the traces,

155

7.2. Details Chapter 7

it is considered optional and ignored, i.e. dropped from the URL in the

labeling function L. Constants are parameters that are present in every

trace τ ∈WS for the same URL of a request rj and whose key k and value

v never change. An example is the parameter action=create, which is in

t1 of traces τ1, τ2, and τ3 in Example 1. Don’t cares are parameters that

appear in every trace τ ∈WS for the same URL of a request rj and whose

key k remains constant, but whose value v is different in at least one of

the requests. One example is prod=abc, prod=def and prod=ghi in t1 of

Example 1 annotated as prod=<<DC>>. An instance identifier is a key k

whose value v is present in every request r of a trace τ , with different v’s

in every trace. In Example 1, the parameter id is an instance identifier,

since it has the value 1 in every request of τ1, the value 2 in every request

of τ2, and the value 3 in every request of τ3. Notice that what must remain

constant is the value and not the key, so it is possible to have an instance

identifier called, e.g., id in one request and iid in another request. A user

identifier is a parameter that comes from a response issued by the server, is

stored in a cookie, sent in every request of a trace and whose value changes

in every trace in WS . In Example 1, only URLs are shown in the traces,

but the cookie sid is sent with every request, as can be seen towards the

end of the example. Invariants are values v that remain constant during a

trace, change between traces in WS and are not present in every request of

a trace (as opposed to instance identifiers). Two examples are the value

parameter in t1 and t3 in Example 1 and the token in t4 and t5 of Example

2. Like instance identifiers, invariant values should not change, but their

keys might, so that an invariant can be called, e.g., price in one request

and amount in another. There may be many invariants in a workflow, so

they are annotated as <<I_1>>,<<I_2>>, for run-time enforcement (there

may be several don’t cares too, but they are not enforced and do not need

separate annotations).

156

Chapter 7 7.2. Details

The result of Step 1 is a tuple (PN ,L), where PN is a Petri net obtained

from process mining and L is a labeling function that associates to each

transition in the net a URL annotated with the identified data properties.

Although the inferred model (PN ,L) is obtained automatically, it can

be edited by a user before being sent for monitor synthesis. Control-

flow constraints can be changed by graphically adding or removing places

or transitions in the Petri net (or tasks and gateways in BPMN), while

data properties can be modified by adding or removing annotations on the

URLs.

7.2.2 Step 2 - Monitor synthesis

Monitor synthesis takes as input the tuple (PN ,L) obtained from Step 1

and, optionally, augments it with security properties given by the user. The

user can specify a set of authorization constraints and indicate whether the

monitor should enforce an authorization policy, which will be specified at

run-time.

A symbolic transition system is obtained from the augmented tuple and

sent to a model checker, which computes the reachability graph containing

all valid executions of the workflow.

Security properties specification

All behaviors of the web application that satisfy the specified security

properties (namely those deriving from authorization policies and con-

straints) are represented by the executions of a symbolic transition system

S = (V, Tr), where V is a set of state variables and Tr is a set of transitions

(as described in Chapter 3). The enforced properties, and as a consequence

the variables in V , fall into four categories. Therefore, V can be seen as

the union of four disjoint sets VCF , VDF , VC , and VA, explained below.

157

7.2. Details Chapter 7

First, control-flow constraints (involving state variables from the set

VCF) are automatically derived from the Petri net PN by using Boolean

variables pi’s, one for each place in PN , indicating the presence or absence

of tokens in these places; and Boolean variables dti’s, one for each task,

representing the fact that a task has been executed or not.

Second, data values of parameters annotated as invariants are repre-

sented by variables vi and gi (g stands for ghost) in VDF . Data types are

abstracted, so every vi and gi is represented by a natural number.

Third, the set VC contains Boolean functions ht’s, one for each task,

keeping track of which user has executed task t. The functions start with

a value False for every transition and user and are updated after each task

execution. Authorization constraints of the form (tx, ty, 6=) are represented

by an enabling condition ¬htx (u) in transition ty. BoD constraints can be

encoded in a similar way as SoD.

Fourth, an authorization policy is represented by constraints on Boolean

functions at’s, one for each task, that involve state variables from the set VA

and return True iff a user is authorized to perform task t. The functions at’s

are an interface to the authorization policy that is provided at run-time.

Transitions in Tr have the shape

t(u) : enCF ∧ enC ∧ enA → actCF ||actC ||actA||actDF

where t(u) is an identifier, the en’s are predicates on the state variables

in V representing the enabling conditions of the transitions (in terms of

control-flow, constraints, and authorization policy, respectively), and the

act ’s are parallel (||) assignments to the variables in V representing the

effects of executing a transition (again, for each security property). Data

variables in VDF are not used in the conditions, only in the assignments of

transitions that contain data invariants, as gi := vi. The values of vi are

taken as input at run-time.

158

Chapter 7 7.2. Details

As an example, the transition for task t2 in Example 1 is

t2(u) : p1 ∧ ¬dt2 ∧ ¬ht1(u) ∧ at2(u)→ p1, p2, dt2, ht2(u) := F, T, T, T

indicating that, for this transition to be executed, there must be a token

in p1, t2 should not have been executed (¬dt2), the user u should not have

executed t1 (¬ht1(u)) and the same user u should be authorized to execute

t2 (at2(u)); the result of its execution is that a token is removed from p1,

placed in p2 and the functions dt2 and ht2 are updated to record that t2

has been executed and user u has executed t2, respectively. Since t2 does

not contain invariants, there is no assignment to data values. However, t1

contains g1 := v1 in the update, where the value of v1 will be taken as the

value of parameter value of the incoming request at run-time.

Monitor synthesis

The transition system S is fed to a symbolic model checker, which is re-

sponsible for computing a reachability graph RG representing all possible

executions of the workflow by a set of symbolic users.

A procedure MS to compute this graph is described in Chapter 3. A

Datalog program M is derived from RG by generating a clause of the form

can do(u, t)← βn for each node n in the graph. An invariant dt ⇒ vi = gi,

for every vi in the assignments of transition t, is conjoined with each clause

βn. This invariant specifies that after the execution of each transition the

value of a variable remains the same as the value of its respective ghost

variable.

M is then translated to SQL and the SQL program is capable of

answering—after being instantiated with a concrete authorization policy—

user requests to execute tasks in a workflow in such a way that the autho-

rization and execution constraints are not violated, the authorization policy

is respected and termination of the workflow is guaranteed, thus enforcing

159

7.2. Details Chapter 7

the specified security properties and solving the run-time WSP.

The result of the monitor synthesis step is a tuple (M,L), where M is

the monitor generated from RG and L is the labeling function, which now

maps from transitions in the system to annotated HTTP requests.

7.2.3 Step 3 - Run-time monitoring

Step 3 takes as input (M,L) and, if previously specified, an authorization

policy TA specifying which users can execute which tasks. The authoriza-

tion policy is used to populate a database queried by M , resulting in a

concrete monitor.

A reverse proxy intercepts all incoming requests to the application and

decides, for each request, whether it is part of a workflow or not. To do so,

it tries to match the URL and parameters in the request to annotated URLs

and parameters stored in L, taking into account the constant, ignored and

don’t care values. If there is no match, the proxy forwards the request

to the application, as it is not part of any workflow. If there is a match,

the proxy associates the request to a task t of a workflow W (T, U) and

checks the annotated URL for <<IID>> and <<UID>> values, extracting

the instance i and the user u. The user identifier is a cookie value that

must be mapped to a user name in the policy. This is done by capturing

login actions, storing the cookies issued to each user, and later retrieving

the user names based on the cookie.

To enforce data invariants, when the proxy receives a request for the

first URL containing the annotation inv=<<I_i>>, it stores the value of

the parameter inv as vi . When any subsequent task containing <<I_i>> is

accessed, the value of the incoming annotated parameter inc is compared

to the stored value (vi = inc). In Example 1, for instance, t1 sets the value

of parameter value, while t3 checks that this value is unchanged. In these

requests, the monitor query can do(u, t) ← β is dynamically conjoined

160

Chapter 7 7.3. Experiments

with the data invariant condition, becoming can do(u, t)← β ∧ vi = inc.

The WSP solution remains unchanged because the monitor still guarantees

termination if the invariants are respected.

Finally, the proxy issues a request can do(u, t) to the monitor of in-

stance i of W and acts based on its response by either forwarding the

request or dropping it.

7.3 Experiments

Aegis was implemented in Python 2.7. We capture execution traces as

Zest11 scripts exported by OWASP ZAP, extract data properties from

them, aggregate them into an XES [144] file and use ProM12 to output

a PNML [76] file containing the mined Petri net. The implementation of

the monitor synthesis algorithm is the one from Chapter 3, which takes

as input a PNML file and outputs the synthesized SQL monitor. We use

mitmproxy13 as the reverse proxy and instantiate it with the generated

monitor as in the example below:

mitmdump -R http://localhost:80 -p8080 -s httpmonitor.py

where mitmdump -R starts the proxy in the reverse mode to accept re-

quests on port 8080, process them using the httpmonitor.py script and,

possibly, forward them to the application (http://localhost:80). The

httpmonitor.py script intercepts requests and responses using a proxy

API, performs the URL matching, queries a MySQL database (where the

authorization policies are stored) by using the synthesized queries, and

either forwards or drops the request. The proxy also supports HTTPS

connections.
11https://goo.gl/jNyFK4
12http://www.promwebtools.org/
13https://mitmproxy.org/

161

https://goo.gl/jNyFK4
http://www.promwebtools.org/
https://mitmproxy.org/

7.3. Experiments Chapter 7

7.3.1 Experimental setup

We tested Aegis on popular open-source applications (shown in Table 7.1),

synthesizing monitors in the configurations 〈P , C, I〉 and 〈I〉. Applica-

tions 1-4 are ERP platforms, 5-6 are e-health applications and 7-10 are

e-commerce applications. Column ‘Application’ contains the name of each

application; ‘Language’ shows the language in which it was developed;

‘Params’ describes the predominant method used for parameter passing

(although an application can use several methods) and ‘Downloads’ re-

ports the number of downloads (applications 1-6) or public installations

(applications 7-10).

The different languages show the versatility of the black-box approach,

which has to be tailored to support each parameter passing method (to

annotate and match URLs). Supporting new applications that use the

same method is straightforward, whereas supporting new methods (e.g.,

OData [121]) requires new functionality for model inference. The number

of downloads and installations is a measure of the popularity of the ap-

plications and it comes from official repositories (applications 2, 3, 5, and

6), data in the web page of the project (applications 1 and 4), or related

work [119] (applications 7-10). The number of actual deployments for ap-

plications 1-6 is not available as they are usually internal to an organization

and not indexed by search engines. The numbers shown for applications

7-10 were obtained using Google dorks and are from 2014 [119].

We installed and pre-configured the applications using demo data (e.g.,

financial accounts for ERP, products for e-commerce, patients for e-health)

either available during installation or generated by us, which required some

manual effort. We then captured four execution traces for each workflow

(as in [161]) and two login traces for each application.

To compare Aegis in different ERP applications, we used workflows

162

Chapter 7 7.3. Experiments

offered by all of them: Purchase order (PO), Sales order (SO), Purchase

invoice (PI), and Sales invoice (SI). They are slightly different in each

application, varying from 4 to 6 tasks, usually with a gateway defining

2 to 3 alternative execution branches. Figure 7.4 shows at the top the

patient visit workflow mined from OpenEMR (where the lines labeled by

= represent BoD constraints added by us). The same Figure shows at

the bottom the lab analysis workflow mined from BikaLIMS. In these 6

applications, we added the authorization constraints and specified policies

with 10 users assigned to each task, generating 〈P , C, I〉 monitors. The

number of users was arbitrarily chosen because it influences the time taken

to answer queries (discussed in Section 7.3.2).

The workflows for e-commerce applications are similar to the one shown

in Figure 7.3. For these applications, we use the 〈I〉 configuration, thus

neither constraints nor authorization policies were defined. Applications

7 and 8 have a vulnerability allowing attackers to shop for free due to

improper validation of PayPal Express Checkout tokens, which can be

replayed from previous transactions, as explained in Section 7.1.2 (CVE-

Table 7.1: Applications used in the experiments

Application Language Params Downloads

1 Odoo Python JSON 2M

2 Dolibarr PHP GET 850k

3 WebERP PHP GET 617k

4 ERPNext Python JSON 25k

5 OpenEMR PHP GET 382k

6 BikaLIMS Python REST 111k

7 OpenCart 1.5.3.1 PHP GET 9M

8 TomatoCart 1.1.7 PHP GET 119k

9 osCommerce 2.3.1 PHP GET 80k

10 AbanteCart 1.0.4 PHP GET 21k

163

7.3. Experiments Chapter 7

Figure 7.4: Patient visit workflow mined from OpenEMR (top) and lab analysis workflow

mined from BikaLIMS (bottom)

2012-4934 for TomatoCart). Applications 9 and 10 allow an attacker to

buy products and pay to himself, by tampering with a parameter that

indicates who should receive the payment for a PayPal Payments Standard

transaction (CVE-2012-2991 for osCommerce).

All applications were deployed as Docker [107] containers and the tests

as Selenium scripts, using the architecture described in [44], which allows us

to achieve repeatable experiments by automatically testing the applications

in five steps: (i) start a new container with the application; (ii) run the

workflow in the Selenium script without monitoring; (iii) start the monitor;

(iv) run the workflow with monitoring; (v) capture results and destroy the

container. The experiments ran on a MacBook Air 2014 laptop with a

1.3GHz dual-core Intel Core i5 processor and 8GB of RAM.

7.3.2 Results

The enforcement of security properties and mitigation of vulnerabilities was

successful in all applications, which was confirmed by manual inspection.

164

Chapter 7 7.3. Experiments

In applications 1-6, we tested the enforcement of policies and constraints

by trying the attacks described in Section 7.2 (workflow bypass, workflow

violations, and authorization violations). The monitor was able to block

situations such as the same user executing an entire workflow (SoD viola-

tion), and users trying to access tasks that were not assigned to them. In

applications 7-10, we tried to exploit the vulnerabilities described above.

In applications 7-8, the attacks were unsuccessful because token was de-

tected as an invariant and automatically enforced. In applications 9-10,

the PayeeId parameter was detected as a constant, since every trace in

the input was related to the same shop. Constant values are usually not

enforced, only used to match URLs (details in Section 7.2). For appli-

cations 9-10, we edited the inferred model by annotating PayeeId with

<<I>>, so that requests with any value of PayeeId are controlled by the

monitor, and used invariant enforcement with a constant, instead of with

the first received value, to check that in every request containing PayeeId,

its value is equal to ShopId (the constant obtained in the traces). Man-

ual editing could be avoided by doing inference from a dataset containing

execution traces of different shops.

We measured the overhead of the monitors by comparing the execu-

tion of each workflow with and without monitoring. Each execution was

repeated 10 times and Table 7.2 shows the results (all times are in mil-

liseconds). Column ‘Application’ shows the application under test (and

the specific workflow tested for ERP applications); ‘Original’ reports the

median time between receiving a request and sending a response with no

monitor (measured by mitmproxy without the httpmonitor.py script);

‘Query’ reports the median time taken by the monitor to answer to a

query (ignoring the time taken by the proxy to invoke the script, translate

an incoming request to a monitor query, forward the request, etc); ‘Aegis’

reports the median time of a response with the monitor script (the time

165

7.3. Experiments Chapter 7

taken by the application, plus the translation time, plus the querying time);

and ‘Overhead’ shows the overhead incurred by the use of the monitor as

seen by a user (the difference between ‘Aegis’ and ‘Original’).

The time in column ‘Query’ varies with the size of a workflow and

Table 7.2: Monitoring overhead

Application Original Query Aegis Overhead

1 Odoo

1.1 PO 112 ms 6 ms 132 ms 20 ms (17.8%)

1.2 SO 170 ms 7 ms 213 ms 43 ms (25.2%)

1.3 PI 174 ms 7 ms 213 ms 39 ms (22.4%)

1.4 SI 104 ms 7 ms 116 ms 12 ms (11.5%)

2 Dolibarr

2.1 PO 93 ms 5 ms 103 ms 10 ms (10.7%)

2.2 SO 92 ms 4 ms 104 ms 12 ms (13%)

2.3 PI 89 ms 5 ms 97 ms 8 ms (8.9%)

2.4 SI 90 ms 5 ms 105 ms 15 ms (16.6%)

3 WebERP

3.1 PO 51 ms 6 ms 59 ms 8 ms (15.6%)

3.2 SO 50 ms 5 ms 57 ms 7 ms (14%)

3.3 PI 30 ms 6 ms 37 ms 7 ms (23.3%)

3.4 SI 32 ms 4 ms 39 ms 7 ms (21.8%)

4 ERPNext

4.1 PO 222 ms 7 ms 251 ms 29 ms (13%)

4.2 SO 327 ms 14 ms 411 ms 84 ms (25.8%)

4.3 PI 263 ms 10 ms 327 ms 64 ms (24.3%)

4.4 SI 272 ms 13 ms 318 ms 46 ms (16.9%)

5 OpenEMR 95 ms 7 ms 112 ms 17 ms (17.8%)

6 BikaLIMS 306 ms 7 ms 326 ms 20 ms (6.5%)

7 OpenCart 65 ms 6 ms 77 ms 12 ms (18.4%)

8 TomatoCart 63 ms 4 ms 71 ms 8 ms (12%)

9 osCommerce 79 ms 7 ms 95 ms 16 ms (20.2%)

10 AbanteCart 117 ms 8 ms 127 ms 10 ms (6.8%)

166

Chapter 7 7.4. Discussion and limitations

the number of users and constraints, as reported in Section 6.3.2, which

describes a linear growth due to the LogSpace complexity of the queries

used. The time in column ‘Aegis’ adds, to the time in Query, the time to

process and match URLs, which depends on the data structures used.

As shown in Table 7.2, the overhead varied from 8ms to 84ms, with a

median of 13.5ms, out of which less than 10ms in most cases is spent in

querying the monitor. The overhead variability is due to the complexity of

the workflows and the time taken to translate a request to a monitor. For

instance, applications 1 and 4 have a large overhead because of the time to

flatten JSON requests. Monitor synthesis is computationally much more

expensive, but it is run off-line and only once for each workflow (unless

there is a change in the application). Synthesis times are similar to what

was reported in Chapter 6. For the workflows used in the experiments (3 to

6 tasks and 0 to 2 constraints), monitor synthesis takes less than 1 minute.

We did not test the performance of monitoring concurrent executions

of workflows. Since there is no interaction between instances, we believe

that any additional overhead would be related to request processing in the

proxy and database access to answer monitor queries.

7.4 Discussion and limitations

Aegis targets workflow-driven web applications. These applications are

common in domains such as ERP, e-health, and e-commerce, where control-

and data-flow, and optionally authorization constraints and policies, need

to be enforced.

There are solutions to design web applications using workflow modeling

and frameworks that allow their declarative description (e.g., Spring Web

Flow [151]). However, model-driven development of web applications is not

common practice. This highlights the need for model inference, which can

167

7.4. Discussion and limitations Chapter 7

be based on static analysis [24, 72] or dynamic analysis [156, 73]. Using

dynamic analysis by relying on an existing process mining tool allows us to

develop a black-box approach. However, we believe that a hybrid solution,

combining static and dynamic techniques, enriched with the knowledge of

the user, is a direction to be investigated.

Our approach provides an easy way to enforce authorization policies

and constraints over the actions a user can trigger when interacting with

a service (via URL requests). Obtaining the same behavior within an

application is not trivial. In fact, it must be done differently for each

application and the granularity of the permissions therein offered may not

be easily related to URLs requests. As an example, the granularity of

permissions in the applications we experimented with varied from actions

in a module (e.g., creating or approving an invoice in the finance module

of Dolibarr) to binary module access. Though the former case provides

permissions over actions, it may be the case that not all actions triggered

in the process are covered, e.g., Send by email of Figure 7.2. In the latter

case, it would not even be possible to create SoD constraints between

actions triggered by different URLs implemented within the same module,

since users that can access a module can perform all actions therein. None

of the applications we analyzed offered support for authorization based on

individual URLs nor authorization constraints (although ERPNext allows

the definition of approval steps in predefined workflows). Moreover, the

policy enforced by Aegis can be applied on top of the existing one (if any)

and can be easily specified by connecting tasks (obtained from the HTTP

traces) to users (obtained from the application).

Limitations

Aegis only sees the traffic between users and the target application, ignor-

ing messages between a third party and a user, and between the application

168

Chapter 7 7.4. Discussion and limitations

and a third party. The model inference step ignores some formats that can

be used to exchange messages, such as XML in the body of a request or

response. The first limitation is architectural; the second is an implemen-

tation issue. It is possible to have a parser for each format that returns

(k, v) pairs and searches for them in incoming requests. The invariants

that Aegis detects and enforces are only exact matches, which is the most

common case in web applications [161]. Adding support for more complex

relations between data values (e.g., values in a list) requires new analysis

and new data annotations.

These limitations, coupled with the complexity of model inference, may

cause inferred models to be imprecise and not match all executions of an

application, leading to false positives. Therefore, the user may not want

Aegis to block incoming requests, which could prevent legal executions.

Instead, it can be used for soft enforcement, where denied requests rep-

resent deviations that must be logged so that a human agent can later

examine them.

Aegis synthesizes monitors that work in isolation, disregarding any

possible inter-workflow and inter-instance dependencies and constraints.

Related works consider such constraints when executing applications in

several tabs [19].

169

7.4. Discussion and limitations Chapter 7

170

Part III

Discussion

Chapter 8

Industrial impact

The work in this thesis is partly motivated by industrial applications be-

cause of the collaboration with SAP in the context of the SECENTIS

project. In this Chapter, we discuss the industrial impact of our work

by describing possible use cases of Cerberus and Aegis in an industrial

setting.

8.1 Use cases

8.1.1 Cerberus

Business processes and workflow management systems are widespread in

industry [158] and the commercial availability and use of Governance, Risk,

and Compliance (GRC) software to enforce access control and compliance,

highlight the need for supporting authorization policies and constraints for

industrial workflow systems.

GRC systems (e.g., SAP GRC1) combine access control enforcement and

auditing for business processes. They are often implemented as standalone

tools, i.e. support for the specification and enforcement of authorization

constraints is not integrated into workflow management systems.

1http://go.sap.com/solution/platform-technology/analytics/grc.html

173

http://go.sap.com/solution/platform-technology/analytics/grc.html

8.1. Use cases Chapter 8

Despite the importance of solutions to the WSP in industrial scenarios

to reconcile business compliance and business continuity, to the best of

our knowledge there are no commercial tools that support solutions to

this problem, or related problems, e.g., resiliency. On the other hand,

most academic approaches to solve the WSP are not viable as industrial

applications because of their heavy computational cost at run-time. By

splitting the problem in two phases, off-line and on-line, Cerberus is able

to provide a solution that not only is efficient at run-time, but also supports

the reuse of models and can be easily integrated in existing WFMS.

Cerberus creates a potential new commercial opportunity for existing

BPM solutions by complementing them with an automated technique to

ensure that authorization policies and constraints are enforced at run-time

while ensuring business continuity. We validated our prototype (described

in Chapter 6) on a real use case involving payment approval workflows

provided by a business unit in SAP.

8.1.2 Aegis

Industrial tools for web application security are mostly focused on the

development and testing of applications, using secure coding guidelines,

Static Application Security Testing (SAST), and Dynamic Application Se-

curity Testing (DAST) [60]. Some properties enforced by Aegis can be

achieved with other tools, e.g., Web Application Firewalls (WAFs) [13],

which filter incoming requests based on user-defined rules. Although the

use of WAFs is a best practice, they are typically incapable of handling log-

ical flaws [49]. Indeed, most web application security tools protect against

injection vulnerabilities rather than business logic flaws [45] and a defense-

in-depth approach, combining multiple tools, is recommended [4]. We are

unaware of any single tool that encompasses all the properties enforced by

Aegis.

174

Chapter 8 8.1. Use cases

As discussed in Chapter 7, there is a trend of exposing business pro-

cesses to customers as web applications, which leads to the need for tools

that can enforce, at run-time, security properties related to workflow exe-

cution. Aegis can be used as a complement to the tools described in the

previous paragraph, providing transparent policy enforcement based on

authorization, control-flow, and data-flow integrity and mitigating classes

of zero-day logic vulnerabilities before a patch is made available.

Aegis has not yet been validated in an industrial application, but we

envision that it could be applied in three scenarios:

• New or existing workflow-driven applications running on, e.g., SAP

HANA Extended Application Services2, SAP’s application server,

which supports languages such as Java and server-side JavaScript.

These applications may need to enforce any combination of the three

properties 〈P , C, I〉.
• ERP web applications such as S/4 HANA3 that already offer support

for authorization policies could be complemented with authorization

constraint specification and enforcement (〈C, I〉).
• E-commerce applications developed with Hybris4, SAP’s framework

that integrates e-commerce websites with other business processes run-

ning on SAP systems. These applications typically need to implement

control- and data-flow integrity (〈I〉).

In all scenarios, the basic use is the same: capture execution traces,

select properties to enforce, generate a monitor, and deploy it (as described

in the examples of Sections 7.1.1 and 7.1.2).

2http://scn.sap.com/docs/DOC-60322
3 http://go.sap.com/product/enterprise-management/s4hana-erp.html
4https://www.hybris.com/

175

http://scn.sap.com/docs/DOC-60322
http://go.sap.com/product/enterprise-management/s4hana-erp.html
https://www.hybris.com/

8.1. Use cases Chapter 8

8.1.3 TestREx

As part of the development and testing of Aegis, we created another tool

called TestREx [44], a testbed for repeatable exploits5. We did not detail

the usage of TestREx in this thesis because it was out of scope. The tool

has as main features: packing and running applications in different environ-

ments, using Docker containers; injecting exploits developed as Selenium

scripts and monitoring their success; and generating security reports.

TestREx assumes that a security researcher has an exploit X that can

subvert the execution of an application A running on an environment E,

composed of operating system, database, and other supporting applica-

tions. The tool helps this researcher to answer (semi) automatically to the

following questions:

1. Is X successful on application A running on a new environment E ′?

2. Is X successful on a new version of the application, A′, running on

environment E?

3. Is X successful on a new version of the application, A′, running on a

new environment E ′?

Figure 8.1 shows an overview of the tool. The main component is the

Execution Engine, which takes as input a Configuration and an Exploit and

outputs a Report. An Application is a set of files containing the source code

of the system under test. A Container is the representation of the execution

environment. It is an image of the system on which the application must be

run, containing an operating system and supporting applications, like an

application server and a database management system. A Configuration is

a set of files used to bind an Application to a Container. It describes the

setup required for a given application to run on a given container, like pre-

5TestREx is the result of a joint work with Stanislav Dashevskyi, another student in the SECENTIS

project, and his advisors Fabio Massacci and Antonino Sabetta.

176

Chapter 8 8.1. Use cases

Figure 8.1: Overview of the testbed architecture

loading a database, creating users and starting a server. An Exploit is a

sequence of steps that must be executed to take advantage of a vulnerability

in the application. A Report contains a result of the execution of an exploit

on a configuration and logs of the execution to provide more details. The

Packing Module allows testers to package the applications and execution

environments in a compressed archive file that can be deployed in another

system running the testbed. The Utilities are a collection of scripts to

import applications and exploits from other sources and to manage the

containers.

There are several possible uses of TestREx in an industrial setting,

covering different phases of the software development lifecycle. It can be

used for automated software validation and regression testing, using a cor-

pus of exploits stored in a corporate-wide repository to check the absence of

known vulnerabilities or to perform regression tests to verify that a previ-

ously fixed vulnerability is not introduced again. TestREx exploit scripts

can also be thought of as executable descriptions of an attack, replacing

the current practice of using a combination of natural language and script-

177

8.2. Discussion and Perspectives Chapter 8

ing to describe the process and the configuration necessary to reproduce

an attack.

8.2 Discussion and Perspectives

We presented some use cases of the tools developed in this thesis as indus-

trial applications. None of the tools has yet reached commercial produc-

tion, they are all research prototypes. Despite that, we believe that our

experience with the process of technology transfer was already successful

for the following reasons.

• First, two of the developed tools, TestREx and Cerberus, have

been submitted as patent applications to the USPTO. The third tool,

Aegis is under evaluation to follow the same steps. These patent

applications show that there is some interest in the commercial usage

of the techniques described in this thesis.

• Second, we were able to communicate research problems to an audi-

ence of software developers and business people. Our goal was to make

them understand the importance of these problems. Even if solutions

adopted in the future are not exactly the ones described in this work,

we are confident that these discussions contribute to raise awareness

about security issues and help making software, especially workflow

applications, more secure. Although these discussions did not impact

the techniques and implementations of our tools, we learned about

real scenarios and requirements from customers.

• Third, we learned valuable lessons about technology transfer on the

way. There is a big gap between early research prototypes and com-

mercial products; bridging the gap involves convincing people to spend

time and resources to turn a prototype into something usable and use-

178

Chapter 8 8.2. Discussion and Perspectives

ful to customers. To convince the people who can invest the time and

resources, there must a compelling use case. Just because a research

problem is hard or interesting, it does not mean that the solution will

have immediate impact on industrial practice.

Over the last decades there has been a growing interest in BPM [149,

145]. There are nowadays many well-known commercial tools to model,

enact, and improve business processes, such as SAP NetWeaver6, Oracle

BPM Suite7, and IBM BPM8. Process mining has been receiving a lot of

attention and is being touted as a bridge between process management

and data science [146]. There are also commercial process mining tools

available, e.g., Disco9 and Celonis10. A recent report on the state of the

BPM market in 2015 can be found in [75]. As discussed in Chapter 1,

the BPM field is experiencing a shift towards cloud-based, API-enabled

solutions using web technologies, as evidenced by tools such as Bonita

BPM11—used by, e.g., Sony, Cisco, and Orange—and Camunda12—used

by, e.g., Allianz, Lufthansa, and T-Mobile.

Security is increasingly important in IT as a whole and is considered a

key challenge in workflow-based applications [92]. It becomes even more

critical if we consider the transition to web-based systems, which are no-

toriously lacking in terms of security [45]. The use of formal methods in

many computer science disciplines, e.g., hardware verification and software

testing, has improved the quality and reliability of computer systems. The

participants of a recent NSF workshop on formal methods for security [27]

concluded that

6https://help.sap.com/netweaver
7http://www.oracle.com/us/technologies/bpm/overview/index.html
8https://www-03.ibm.com/software/products/en/business-process-manager-family
9https://fluxicon.com/disco/

10http://www.celonis.com/
11http://www.bonitasoft.com/
12https://camunda.com/

179

https://help.sap.com/netweaver
http://www.oracle.com/us/technologies/bpm/overview/index.html
https://www-03.ibm.com/software/products/en/business-process-manager-family
https://fluxicon.com/disco/
http://www.celonis.com/
http://www.bonitasoft.com/
https://camunda.com/

8.2. Discussion and Perspectives Chapter 8

“formal methods can provide similar improvement in the security

of computer systems.

Moreover, formal methods are in a period of rapid development

and significantly broadening practical applications. (...)

Without broad use of formal methods, security will always remain

fragile. Attackers have a clear advantage in what is currently a

match between the cleverness of the attacker and the vigilance of

the defender.”

The same researchers anticipated that

“Formal methods for security will have an enormous effect in the

coming years. Recent advances now enable their use at scales that

were previously impossible. The resulting security improvements

will spur new investments in formal tools and techniques. This

interplay will produce a virtuous circle of capital investments in

the methods and increases in both the quality of secure systems

and the productivity of security-minded developers.”

We strongly support the statements above and believe that the tech-

niques described in this thesis can pave the way towards formal tools to

enforce security in workflow-based applications that are at the same time

efficient and easy to use. Formal method techniques based on Satisfiabil-

ity Modulo Theories (SMT) have shown their efficiency and scalability in

many industrial settings. Some of them have been integrated into: dy-

namic symbolic execution (such as SAGE and Pex [70]), symbolic model

checking (such as SLAM [8]), static analysis (such as PREfix [23]) and

program verification (such as Boogie [46]). We believe that our monitor

synthesis technique, being based on SMT model checking, can benefit from

the power and flexibility of SMT solvers. Nevertheless, in the same report,

it is written that

180

Chapter 8 8.2. Discussion and Perspectives

“There are many open and compelling research problems, includ-

ing: (...) What is required to enable formal methods for security

at industrial scales and make them compatible with common in-

dustry processes?”

In our view, the efficiency and usability mentioned above are key issues

for the adoption of such tools. However, as discussed at the beginning of

this section, there is still a long way to go before the research prototypes

described so far can become commercial products available to customers.

181

8.2. Discussion and Perspectives Chapter 8

182

Chapter 9

Conclusions and Future work

In this thesis, we have motivated, described, implemented, and validated

techniques and tools to solve the Workflow Satisfiability Problem and re-

lated problems, such as Scenario Finding and Workflow Resiliency, in work-

flow management systems and workflow-driven web applications. Solutions

to these problems help users to avoid situations where a choice has to be

made between business compliance and business continuity.

After introducing the work, in Chapter 1, and the state of the art, in

Chapter 2, we have described, in Chapter 3, a precise technique to auto-

matically synthesize run-time monitors capable of ensuring the successful

termination of workflows while enforcing authorization policies and con-

straints, thus solving the run-time version of the WSP. It consists of an

off-line phase in which we compute a symbolic representation of all possi-

ble behaviors of a workflow and an on-line phase in which the monitor is

derived from such a symbolic representation. An advantage of the tech-

nique is that changes in the policies can be taken into account without

re-running the off-line phase since only an abstract interface to policies is

required. The interface is refined to the concrete policy only in the on-line

phase. We have also described the assumptions for the correctness of the

technique (cf. Theorem 4 in Chapter 3).

183

Chapter 9

This technique was extended, in Chapter 4, to modular workflow specifi-

cations. This extension is crucial for two applications. First, to improve the

scalability of monitor synthesis by adopting a divide-and-conquer approach

where workflows are decomposed into smaller components for which mon-

itors can be generated and later combined (cf. Theorem 6 in Chapter 4).

Second, to enable the reuse of workflow models stored in repositories that

can be retrieved and combined with new models, specifying control-flow

and authorization constraints spanning multiple models and avoiding the

burden of running monitor synthesis from scratch.

In Chapter 5, we have introduced four Scenario Finding Problems, dis-

cussed their relationships with the WSP, and argued that solving them

supports the deployment of business processes and the activity of model

reuse. We have also described algorithms to solve the SFPs, based on the

monitor synthesis technique for the WSP.

In Chapter 6, we have described and implemented Cerberus, a tool

to integrate monitor synthesis, scenario finding, and run-time enforcement

into workflow management systems. We have shown the use of the tool on a

simple example and experimented with real-world workflows and synthetic

benchmarks. The experiments show the scalability of monitor synthesis

and run-time monitoring because of the modular approach to synthesis.

The experiments also show that the scenario finding techniques can be

used in practice at deployment time since they perform the computationally

heaviest part (namely, computing the set of eligible scenarios) once and for

all when the workflow is added to a repository and reuse it for any possible

authorization policy.

In Chapter 7, we have described, implemented, and evaluated Aegis,

a technique and tool to enforce authorization policies and constraints,

control- and data-flow integrity and ensure the satisfiability of workflow-

driven web applications. We have tested our implementation with relevant

184

Chapter 9

open-source applications. Our findings confirm the validity of the approach

in enforcing the desired properties and mitigating related vulnerabilities.

The performance results show an overhead incurred at run-time that is

negligible in many cases and acceptable in all the others.

We have also discussed the industrial impact of this thesis in Chapter 8,

describing possible use cases of the developed research prototypes in an

industrial context.

Our contributions are significant because we provide techniques (and de-

scribe their implementation) that can be used to solve the WSP and related

problems in realistic, industrially relevant, scenarios. Our work has many

differences with respect to related approaches described in Chapter 2. Our

solution to the WSP is innovative because it focuses on the run-time and

because it is split in two phases, allowing us to reuse the heavy computation

of the reachability graph and to accommodate different authorization poli-

cies. The modular workflow specification and monitor synthesis allows us

to support users in reusing workflows and monitors from repositories. The

scenario finding approach allows us to define and solve a series of problems

that users may face when trying to deploy a workflow in their organization

with a specific authorization policy. Cerberus is innovative for allowing

easy and transparent monitor synthesis and run-time enforcement for end-

users, ensuring that workflow instances can be executed until successful

termination without damaging neither business compliance nor continuity.

Finally, Aegis is capable of enforcing security policies composed of many

properties related to control-flow, data-flow, and authorization under the

same umbrella and with a black-box approach.

185

9.1. Future work Chapter 9

9.1 Future work

There are many possible future research directions based on the work done

in this thesis, but we want to highlight four: the extension of monitor syn-

thesis with more authorization constraints (Section 9.1.1), modularity and

reuse of workflow patterns (Section 9.1.2), generalizations of scenario find-

ing (Section 9.1.3), and improved web application monitoring and security

testing (Section 9.1.4).

9.1.1 Monitor extensions

In this thesis, we described and presented a few examples of authorization

constraints, e.g., SoD and BoD. These are the most common in practice,

but they are relatively simple. Other, more complex, constraints could

also be supported by the monitor synthesis technique. Examples of such

complex constraints include data-based policies and instance-spanning con-

straints.

There is a long line of works discussing data authorizations (see,

e.g., [88, 3]) and the interplay between data and processes (see, e.g., [109]).

The main reasons for specifying constraints on data objects are increased

expressiveness and simplified specification and enforcement, since the ab-

sence of data-based constraints can lead to an explosive growth in the

number of task-based constraints. One example of the need for data au-

thorization is managing conflicts of interests [113], e.g., when a user has

access to the data of two competing organizations. To avoid this kind of

conflict, in a Chinese Wall model [21], data is separated into sets represent-

ing classes of conflict and when a user has access to the data of one of the

elements of the set, he/she cannot access the data of the other elements.

Instance-spanning constraints [91] restrict what users can do across

several instances of the same workflow (inter-instance), across several in-

186

Chapter 9 9.1. Future work

stances of different workflows (inter-process), or across workflows in dif-

ferent organizations (inter-organization). The most usual case is inter-

instance authorization constraints, which have been studied in, e.g., [157].

Since we adopt the approach of having one monitor for each instance, sup-

port for inter-instance constraints would require a global synchronization

of the states of each monitor, possibly using a global execution history. A

possibility would be to design a central entity to which selected parts of

the state of each monitor are communicated so that it can take the right

decision to avoid that some inter-instance constraint is violated. Indeed,

each monitor should ask the decision of the central entity before taking a

decision. Although the design of this central entity may be challenging, we

could take inspiration from cache-coherence protocols (see, e.g., [47]).

9.1.2 Modularity and reuse of workflow patterns

Since workflows are built from basic control-flow patterns (see, e.g., [148,

93]), a corollary of Theorem 6 in Chapter 4 is the possibility to compute

reachability graphs once for each basic security-sensitive workflow compo-

nent, store the result, and modularly combine it with others along the lines

of Section 4.4. In the following, we elaborate a bit on this idea according

to which a workflow is seen as a combination of basic components that can

be expressed by the gluing operator ⊕G introduced in Section 4.3 (e.g.,

sequential, alternative and exclusive execution, as shown in Figure 9.1,

where bidirectional arrows represent⇔ and dashed circles represent places

of components that are not shown).

For the sake of simplicity, we consider the sequential, parallel, and al-

ternative composition of just two security-sensitive workflow components

(S1, Int1) and (S2, Int2). The generalization to n components is straightfor-

ward. We also assume that there is just one input and just one output place

in both components (this is satisfied for the important class of workflow

187

9.1. Future work Chapter 9

Figure 9.1: Workflow pattern composition. Sequential (top), parallel (middle), and

alternative (bottom) composition.

nets [143]).

Sequential composition. It is sufficient to consider a set G = GEC ∪
GAuth of gluing assertions over Int1 and Int2 such that GEC = {pi2 ⇔ po1}.
Notice that (S1, Int1)⊕G(S2, Int2) = (S2, Int2)⊕G(S1, Int1) but because the

gluing assertion in GEC is pi2 ⇔ po1, and not po2 ⇔ pi1, the process specified

by component (S1, Int1) will always be executed before that specified by

(S2, Int2).

Parallel composition. We need to preliminarily introduce two other

components, each containing a single transition, one for splitting (and

split) and one for joining (and join) the execution flow. The transitions

are as follows:

Tras := {p0as ∧ ¬das → p0as, p1as, p2as, das := F, T, T, T}

Traj := {q0aj ∧ q1aj ∧ ¬daj → q0aj, q1aj, q2aj, daj := F, F, T, T}.

Then, it is sufficient to consider a set G = GEC ∪ GAuth of gluing asser-

tions over Int1, Int2, Intas, and Intaj (recall that the gluing operator is

associative) such that GEC = {p1as ⇔ pi1, p2as ⇔ pi2, p
o
1 ⇔ q0aj, p

o
2 ⇔ q1aj}.

188

Chapter 9 9.1. Future work

Alternative composition. Similarly to parallel composition, we need

to introduce two other components, each containing two non-deterministic

transitions (or split and or join) to route the execution flow in one of the

two components (S1, Int1) or (S2, Int2). The transitions are

Tr os :=

{
p0os ∧ ¬dos → p0os, p1os, p2os, dos := F, T, F, T,

p0os ∧ ¬dos → p0os, p1os, p2os, dos := F, F, T, T

}

Tr oj :=

{
q0oj ∧ ¬doj → q0oj, q2oj, doj := F, T, T,

q1oj ∧ ¬doj → q1oj, q2oj, doj := F, T, T

}
Then, it is sufficient to consider a set G = GEC ∪GAuth of gluing assertions

over Int1, Int2, Intos, and Intoj such that GEC = {p1os ⇔ pi1, p2os ⇔
pi2, p

o
1 ⇔ q0oj, p

o
2 ⇔ q1oj}.

We intend to add to Cerberus pre-computed monitors for the basic

control-flow patterns, such as the ones shown above. Hence, a monitor

for a new workflow could be synthesized while the user models it, by sim-

ply reading the pre-computed blocks from the repository and gluing them

according to the constraints imposed by the user.

9.1.3 Scenario finding

A generalization and extension of the scenario finding problems discussed

in Chapter 5 is to generate all possible meaningful (i.e., considering dom-

inance or other redundancy notions) configurations of an authorization

policy before the execution of a workflow and then check if there is at

least one authorized scenario (similar to the problem of workflow feasibil-

ity [85]). Policy configurations can be created with the use of authorization

delegation [43] or administrative rules (e.g., Administrative RBAC (AR-

BAC) [131]). An idea of how to solve this problem is to split it in two

reachability problems: first generate the reachability graph for the work-

flow, then use the authorization part of the formulae in the leaves (i.e.

189

9.1. Future work Chapter 9

the initial tasks) as the goal of a reachability problem for ARBAC, which

can be solved by similar symbolic model checking techniques, see, e.g., [6].

Naturally, this solution disregards changes to the authorization policy at

run-time, i.e. after the workflow execution has started. Supporting changes

at run-time is much more complex, since the naive solution of modeling

administrative actions interleaved with workflow tasks generates a huge

search space and may even not terminate, depending on the conditions

imposed on the administrative rules.

Another future direction is how to automatically synthesize, or suggest

changes to existing, authorization policies so that solutions of a scenario

finding problem are optimal with respect to some criteria, e.g., least privi-

lege [80] or cost/risk [11]. One idea is to associate weights with each edge in

the reachability graph, considering all possible applications of the injective

function of symbolic users to concrete users, and then to apply standard

graph algorithms for shortest paths to search for optimal solutions. This

quickly explodes as the number of users in the policy grows. It would be

interesting to study situations in which the graph can be pruned to achieve

usable solutions, even if they may be sub-optimal. An alternative is to use

Bounded Model Checking [17] with weights so that it is possible to reuse

SMT solvers capable of performing optimization, see, e.g., [137].

9.1.4 Web application monitoring and testing

The inference part of Aegis can be greatly improved in two directions.

First, remaining black-box, we could automatically filter the input traces

to remove non-critical tasks, using state-changing detection algorithms,

e.g., [55, 57] or detecting patterns in requests that must be dropped. Sec-

ond, having access to the source-code, we could measure the coverage of

the inferred model by executing the input traces and checking the paths

executed in the code.

190

Chapter 9 9.1. Future work

We would also like to explore monitor inlining [67], which requires source

code changes to embed the monitor into the application. This can be

done with the inferred model and a mapping from tasks to source-code

entry points, or using model extraction tools from the source code, such as

MARBLE [24]. In both cases, the synthesized monitor can be inlined into

the application using techniques such as aspect-oriented programming [86]

or policy-weaving [83].

We intend to adapt the model inference and monitor synthesis compo-

nents of Aegis to perform model-based testing of security policy enforce-

ment [60] in web applications. The overall idea is to use the synthesized

monitor as a test oracle and generate abstract test cases, which corre-

spond to execution scenarios, by adapting tools such as MISTA [162] or

M[agi]C [114], which combine model-based and combinatorial testing [87].

The abstract test cases can be later concretized into executable Selenium

scripts (taking into account also the events that were discarded during the

inference step) and the Selenium test cases can be run on TestREx.

191

Bibliography

[1] P.A. Abdulla, K. Cerans, B. Jonsson, and Y.K. Tsay. General decid-

ability theorems for infinite-state systems. In Proc. of LICS. IEEE,

1996.

[2] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Uni-

versal Guards, Relativization of Quantifiers, and Failure Models in

Model Checking Modulo Theories. Journal on Satisfiability, Boolean

Modeling and Computation, 8:29–61, 2012.

[3] B. Alhaqbani, M. Adams, C.J. Fidge, and A.H.M. ter Hofstede.

Privacy-aware workflow management. In Proc. of BPM. Springer,

2013.

[4] N. Antunes and M. Vieira. Defending against web application vul-

nerabilities. Computer, 45(2):66–72, Feb 2012.

[5] A. Armando and S.E. Ponta. Model checking of security-sensitive

business processes. In Proc. of FAST. Springer, 2009.

[6] A. Armando and S. Ranise. Automated analysis of infinite state

workflows with access control policies. In Proc. of STM. Springer,

2012.

[7] M. Balduzzi, C.T. Gimenez, D. Balzarotti, and E. Kirda. Automated

discovery of parameter pollution vulnerabilities in web applications.

In Proc. of NDSS, 2011.

193

Bibliography Chapter 9

[8] T. Ball and S.K. Rajamani. Automatically validating temporal safety

properties of interfaces. In Proc. of SPIN, pages 103–122, New York,

NY, USA, 2001. Springer.

[9] D. Balzarotti, M. Cova, V. Felmetsger, and G. Vigna. Multi-module

vulnerability analysis of web-based applications. In Proc. of CCS.

ACM, 2007.

[10] D. Basin, S.J. Burri, and G. Karjoth. Dynamic enforcement of ab-

stract separation of duty constraints. TISSEC, 15(3):13:1–13:30,

November 2012.

[11] D. Basin, S.J. Burri, and G. Karjoth. Optimal workflow-aware au-

thorizations. In Proc. of SACMAT. ACM, 2012.

[12] D. Basin, S.J. Burri, and G. Karjoth. Obstruction-free authoriza-

tion enforcement: Aligning security and business objectives. JCS,

22(5):661–698, 2014.

[13] M. Becher. Web Application Firewalls. VDM Verlag, Saarbrucken,

Germany, 2007.

[14] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforce-

ment of authorization constraints in workflow management systems.

TISSEC, 2(1):65–104, February 1999.

[15] C. Bertolissi, D.R. dos Santos, and S. Ranise. Automated Synthesis

of Run-time Monitors to Enforce Authorization Policies in Business

Processes. In Proc. of ASIACCS. ACM, 2015.

[16] C. Bertolissi and S. Ranise. Verification of composed array-based

systems with applications to security-aware workflows. In Proc. of

FROCOS. Springer, 2013.

194

Chapter 9 Bibliography

[17] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking

without bdds. In Proc. of TACAS, pages 193–207, Berlin, 1999.

Springer.

[18] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V.N.

Venkatakrishnan. Notamper: automatic blackbox detection of pa-

rameter tampering opportunities in web applications. In Proc. of

CCS. ACM, 2010.

[19] B. Braun, P. Gemein, H.P. Reiser, and J. Posegga. Control-flow

integrity in web applications. In Proc. of ESSoS, 2013.

[20] B. Braun, C. Gries, B. Petschkuhn, and J. Posegga. Ghostrail: Ad

hoc control-flow integrity for web applications. In Proc. of IFIP SEC,

2014.

[21] D. Brewer and M.J. Nash. The chinese wall security policy. In Proc.

of S&P. IEEE, 1989.

[22] A. Brucker and I. Hang. Secure and compliant implementation of

business process-driven systems. In Proc. of BPM. Springer, 2013.

[23] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for finding

dynamic programming errors. Softw. Pract. Exper., 30(7):775–802,

June 2000.

[24] R.P. Castillo, I.G.R. de Guzman, and M. Piattini. Business process

archeology using marble. Inf. and Soft. Tech., 53(10):1023 – 1044,

2011.

[25] R.P. Castillo, J.A.C. Lemus, I.G.R. de Guzman, and M. Piattini. A

family of case studies on business process mining using MARBLE. J.

of Systems and Soft., 85(6):1370 – 1385, 2012.

195

Bibliography Chapter 9

[26] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know

about datalog (and never dared to ask). TKDE, 1(1):146–166, 1989.

[27] S. Chong, J. Guttman, A. Datta, A. Myers, B. Pierce, P. Schaumont,

T. Sherwood, and N. Zeldovich. Report on the NSF workshop on

formal methods for security, 2016. Available at: https://arxiv.

org/abs/1608.00678.

[28] N. Clark and D. Jolly. Société générale loses $7 billion

in trading fraud. The New York Times, 2008. Avail-

able at: http://www.nytimes.com/2008/01/24/business/

worldbusiness/24iht-socgen.5.9486501.html.

[29] D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Itera-

tive plan construction for the workflow satisfiability problem. Journal

of Artificial Intelligence Research, 51:555–577, 2014.

[30] D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Algo-

rithms for the workflow satisfiability problem engineered for count-

ing constraints. Journal of Combinatorial Optimization, 32(1):3–24,

2016.

[31] L. Compagna, D.R. dos Santos, S.E. Ponta, and S. Ranise. Cerberus:

Automated Synthesis of Enforcement Mechanisms for Security-

sensitive Business Processes. In Proc. of TACAS. Springer, 2016.

[32] L. Compagna, D.R. dos Santos, S.E. Ponta, and S. Ranise. Aegis:

Automatic enforcement of security policies in workflow-driven web

applications. In Proc. of CODASPY. ACM, 2017.

[33] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An

approach for the anomaly-based detection of state violations in web

applications. In Proc. of RAID, 2007.

196

https://arxiv.org/abs/1608.00678
https://arxiv.org/abs/1608.00678
http://www.nytimes.com/2008/01/24/business/worldbusiness/24iht-socgen.5.9486501.html
http://www.nytimes.com/2008/01/24/business/worldbusiness/24iht-socgen.5.9486501.html

Chapter 9 Bibliography

[34] J. Crampton. A reference monitor for workflow systems with con-

strained task execution. In Proc. of SACMAT. ACM, 2005.

[35] J. Crampton, A. Gagarin, G. Gutin, M. Jones, and M. Wahlström.

On the workflow satisfiability problem with class-independent con-

straints for hierarchical organizations. ACM Trans. Priv. Secur.,

19(3):8:1–8:29, October 2016.

[36] J. Crampton and G. Gutin. Constraint expressions and workflow

satisfiability. In Proc. of SACMAT. ACM, 2013.

[37] J. Crampton, G. Gutin, and D. Karapetyan. Valued workflow satis-

fiability problem. In Proc. of SACMAT. ACM, 2015.

[38] J. Crampton, G. Gutin, D. Karapetyan, and R. Watrigant. The

bi-objective workflow satisfiability problem and workflow resiliency.

CoRR, abs/1512.07019, 2015.

[39] J. Crampton, G. Gutin, and R. Watrigant. Resiliency policies in

access control revisited. In Proc. of SACMAT. ACM, 2016.

[40] J. Crampton, G. Gutin, and A. Yeo. On the parameterized complex-

ity of the workflow satisfiability problem. In Proc. of CCS, pages

857–868. ACM, 2012.

[41] J. Crampton, G. Gutin, and A. Yeo. On the parameterized complex-

ity and kernelization of the workflow satisfiability problem. TISSEC,

16(1):4, 2013.

[42] J. Crampton, M. Huth, and J. Kuo. Authorized workflow schemas:

deciding realizability through ltl(f) model checking. STTT, 16(1):31–

48, 2014.

[43] J. Crampton and H. Khambhammettu. Delegation and satisfiability

in workflow systems. In Proc. of SACMAT. ACM, 2008.

197

Bibliography Chapter 9

[44] S. Dashevskyi, D.R. dos Santos, F. Massacci, and A. Sabetta.

TESTREX: a Testbed for Repeatable Exploits. In Proc. of CSET.

USENIX, 2014.

[45] G. Deepa and P.S. Thilagam. Securing web applications from injec-

tion and logic vulnerabilities: Approaches and challenges. Inf. and

Soft. Tech., 74:160–180, 2016.

[46] R. DeLine and K.R.M. Leino. Boogiepl: A typed procedural language

for checking object-oriented programs. Technical report, Microsoft

Research, 2005.

[47] Giorgio Delzanno. Automatic verification of parameterized cache co-

herence protocols. In Proc. of CAV, pages 53–68. Springer, 2000.

[48] G. Demarty, F. Maronnaud, G. Le Breton, and S. Hallé. Sitehopper:

Abstracting navigation state machines for the efficient verification of

web applications. In Proc. of WS-FM, 2013.

[49] M. Dermann, M. Dziadzka, B. Hemkemeier, A. Hoffmann, A. Meisel,

M. Rohr, and T. Schreiber. OWASP Best Practices: Use of Web

Application Firewalls, 2008. Available at: https://www.owasp.org/

index.php/Best_Practices:_Web_Application_Firewalls.

[50] R. Dijkman, M. La Rosa, and H.A. Reijers. Editorial: Managing

large collections of business process models-current techniques and

challenges. Computers in Industry, 63(2):91–97, 2012.

[51] R.M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis

of business process models in bpmn. Inf. and Soft. Tech., 50(12):1281

– 1294, 2008.

[52] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

198

https://www.owasp.org/index.php/Best_Practices:_Web_Application_Firewalls
https://www.owasp.org/index.php/Best_Practices:_Web_Application_Firewalls

Chapter 9 Bibliography

[53] D.R. dos Santos, S. Ranise, L. Compagna, and S.E. Ponta. Assisting

the Deployment of Security-Sensitive Workflows by Finding Execu-

tion Scenarios. In Proc. of DBSec. Springer, 2015.

[54] D.R. dos Santos, S. Ranise, and S.E. Ponta. Modular Synthesis of

Enforcement Mechanisms for the Workflow Satisfiability Problem:

Scalability and Reusability. In Proc. of SACMAT. ACM, 2016.

[55] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the

state: A state-aware black-box web vulnerability scanner. In Proc.

of USENIX Security, 2012.

[56] R.G. Downey and M.R. Fellows. Fundamentals of Parameterized

Complexity. Springer, 2013.

[57] F. Duchene, S. Rawat, J. Richier, and R. Groz. Ligre: Reverse-

engineering of control and data flow models for black-box xss detec-

tion. In Proc. of WCRE, 2013.

[58] H.B. Enderton. A Mathematical Introduction to Logic. Academic

Press, New York-London, 1972.

[59] J. Epstein. Security lessons learned from société générale. IEEE

Security and Privacy, 6(3):80–82, May 2008.

[60] M. Felderer, M. Büchlein, M. Johns, A.D. Brucker, R. Breu, and

A. Pretschner. Security testing: A survey. Advances in Computers,

101:1–51, March 2016.

[61] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward auto-

mated detection of logic vulnerabilities in web applications. In Proc.

of USENIX Security, 2010.

[62] P. Zhang G. Chartrand. Chromatic Graph Theory. 2008.

199

Bibliography Chapter 9

[63] A. Gambi and C. Pautasso. Restful business process management in

the cloud. In Proc. of PESOS, 2013.

[64] P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Supporting

customized views for enforcing access control constraints in real-time

collaborative web applications. In Proc. of ICWE, 2013.

[65] P. Gaubatz, W. Hummer, U. Zdun, and M. Strembeck. Enforcing

entailment constraints in offline editing scenarios for real-time col-

laborative web documents. In Proc. of SAC. ACM, 2014.

[66] P. Gaubatz and U. Zdun. Supporting entailment constraints in the

context of collaborative web applications. In Proc. of SAC. ACM,

2013.

[67] G. Gheorghe and B. Crispo. A survey of runtime policy enforce-

ment techniques and implementations. Technical report, University

of Trento, 2011.

[68] S. Ghilardi and S. Ranise. Backward reachability of array-based sys-

tems by SMT solving: Termination and invariant synthesis. LMCS,

2010.

[69] S. Ghilardi and S. Ranise. Mcmt: A model checker modulo theories.

In Proc. of IJCAR. Srpringer, 2010.

[70] P. Godefroid, P. de Halleux, A.V. Nori, S.K. Rajamani, W. Schulte,

N. Tillmann, and M.Y. Levin. Automating software testing using

program analysis. IEEE Softw., 25(5):30–37, September 2008.

[71] N.Z. Haddar, L. Makni, and H.B. Abdallah. Literature review of

reuse in business process modeling. Software & Systems Modeling,

13(3):975–989, 2014.

200

Chapter 9 Bibliography

[72] W.G.J. Halfond. Identifying inter-component control-flow in web

applications. In Proc. of ICWE, 2015.

[73] W.G.J. Halfond, S. Anand, and A. Orso. Precise interface identifica-

tion to improve testing and analysis of web applications. In Proc. of

ISSTA. ACM, 2009.

[74] S. Hallé, T. Ettema, C. Bunch, and T. Bultan. Eliminating nav-

igation errors in web applications via model checking and runtime

enforcement of navigation state machines. In Proc. of ASE. IEEE,

2010.

[75] P. Harmon. The state of business process management, 2016. Avail-

able at: http://www.bptrends.com/bpt/wp-content/uploads/

2015-BPT-Survey-Report.pdf.

[76] L.M. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves. A

primer on the petri net markup language and iso/iec 15909-2. In

Proc. of CPN, 2009.

[77] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1985.

[78] J. Holderer, R. Accorsi, and G. Müller. When four-eyes become too

much: a survey on the interplay of authorization constraints and

workflow resilience. In Proc. of SAC. ACM, 2015.

[79] V.C. Hu, D.R. Kuhn, and D.F. Ferraiolo. Attribute-based access

control. IEEE Computer, 48(2):85–88, 2015.

[80] H. Huang, F. Shang, J. Liu, and H. Du. Handling least privilege prob-

lem and role mining in rbac. Journal of Combinatorial Optimization,

pages 1–24, 2013.

201

http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf

Bibliography Chapter 9

[81] K. Jayaraman, G. Lewandowski, P.G. Talaga, and S.J. Chapin. En-

forcing request integrity in web applications. In Proc. of DBSec.

Springer, 2010.

[82] K. Jayaraman, P.G. Talaga, G. Lewandowski, S.J. Chapin, and

M. Hafiz. Modeling user interactions for (fun and) profit: preventing

request forgery attacks on web applications. In Proc. of PLOP, 2009.

[83] R. Joiner, T. Reps, S. Jha, M. Dhawan, and V. Ganapathy. Efficient

runtime enforcement techniques for policy weaving. In Proc. of FSE.

IEEE, 2014.

[84] J.-P. Katoen. Causal behaviours and nets. In Proc. of APN, pages

258–277. Springer, 1995.

[85] A.A. Khan and P.W.L. Fong. Satisfiability and feasibility in a

relationship-based workflow authorization model. In Proc. of ES-

ORICS, pages 109–126. Springer, 2012.

[86] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G.

Griswold. An overview of aspectj. In Proc. of ECOOP. Springer,

2001.

[87] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combinatorial software

testing. Computer, 42(8):94–96, August 2009.

[88] V. Kunzle. Object-Aware Process Management. PhD thesis, Univer-

sity of Ulm, July 2013.

[89] G. Lawton. In 2016, b2b integration api strat-

egy becomes a priority, 2016. Available at: http:

//searchsoa.techtarget.com/news/4500279512/

In-2016-B2B-integration-API-strategy-becomes-a-priority.

202

http://searchsoa.techtarget.com/news/4500279512/In-2016-B2B-integration-API-strategy-becomes-a-priority
http://searchsoa.techtarget.com/news/4500279512/In-2016-B2B-integration-API-strategy-becomes-a-priority
http://searchsoa.techtarget.com/news/4500279512/In-2016-B2B-integration-API-strategy-becomes-a-priority

Chapter 9 Bibliography

[90] G. Lawton. New jboss bpm middleware aims to in-

crease role of microservices, 2016. Available at:

http://searchsoa.techtarget.com/news/450299860/

New-JBoss-BPM-middleware-aims-to-increase-role-of-microservices.

[91] M. Leitner, J. Mangler, and S. Rinderle-Ma. Definition and enact-

ment of instance-spanning process constraints. In Proc. of WISE,

pages 652–658. Springer, 2012.

[92] M. Leitner and S. Rinderle-Ma. A systematic review on security

in process-aware information systems–constitution, challenges, and

future directions. Inf. and Soft. Tech., 56(3):273–293, 2014.

[93] C. Leuxner, W. Sitou, and B. Spanfelner. A formal model for work

flows. In Proc. of SEFM, 2010.

[94] N. Li and J.C. Mitchell. Datalog with constraints: a foundation for

trust management langauges. In Proc. of PADL. Springer, 2003.

[95] N. Li and Q. Wang. Beyond separation of duty: An algebra for spec-

ifying high-level security policies. J. ACM, 55(3):12:1–12:46, August

2008.

[96] N. Li, Q. Wang, and M. Tripunitara. Resiliency policies in access

control. TISSEC, 12(4):20:1–20:34, April 2009.

[97] X. Li and Y. Xue. Block: a black-box approach for detection of

state violation attacks towards web applications. In Proc. of ACSAC.

ACM, 2011.

[98] X. Li, Y. Xue, and B. Malin. Detecting anomalous user behaviors in

workflow-driven web applications. In Proc. of SRDS, 2012.

[99] D.R. Licata and S. Krishnamurthi. Verifying interactive web pro-

grams. In Proc. of ASE. IEEE, 2004.

203

http://searchsoa.techtarget.com/news/450299860/New-JBoss-BPM-middleware-aims-to-increase-role-of-microservices
http://searchsoa.techtarget.com/news/450299860/New-JBoss-BPM-middleware-aims-to-increase-role-of-microservices

Bibliography Chapter 9

[100] H. Lu, Y. Hong, Y. Yang, Y. Fang, and L. Duan. Dynamic workflow

adjustment with security constraints. In Proc. of DBSec. Springer,

2014.

[101] J.C. Mace, C. Morisset, and A. Moorsel. Quantitative workflow re-

siliency. In Proc. of ESORICS. Springer, 2014.

[102] J.C. Mace, C. Morisset, and A. van Moorsel. Modelling user avail-

ability in workflow resiliency analysis. In Proc. of HotSoS. ACM,

2015.

[103] J.C. Mace, C. Morisset, and A. van Moorsel. Proc. of qest. In Im-

pact of Policy Design on Workflow Resiliency Computation Time.

Springer, 2015.

[104] J.C. Mace, C. Morisset, and A. van Moorsel. Resiliency variance in

workflows with choice. In Proc. of SERENE. Springer, 2015.

[105] J.C. Mace, C. Morisset, and A. van Moorsel. WRAD: Tool Support

for Workflow Resiliency Analysis and Design, pages 79–87. Springer,

2016.

[106] I. Markovic and A.C. Pereira. Towards a formal framework for reuse

in business process modeling. In Proc. of BPM. Springer, 2008.

[107] K. Matthias and S.P. Kane. Docker: Up & Running. O’Reilly, 2015.

[108] M. Meucci and A. Muller. Testing Guide 4.0. The OWASP Founda-

tion, 2015.

[109] A. Meyer, S. Smirnov, and M. Weske. Data in business processes.

Technical report, University of Potsdam, 2011.

204

Chapter 9 Bibliography

[110] M. Muehlen and J. Recker. How much language is enough? theoret-

ical and practical use of the business process modeling notation. In

Proc. of CAISE. Springer, 2008.

[111] T. Murata. Petri nets: properties, analysis and applications. Pro-

ceedings of the IEEE, 77(4):541–580, 1989.

[112] D. Muthukumaran, D. O’Keeffe, C. Priebe, D. Eyers, B. Shand, and

P. Pietzuch. Flowwatcher: Defending against data disclosure vulner-

abilities in web applications. In Proc. of CCS. ACM, 2015.

[113] N. Nassr and E. Steegmans. Mitigating conflicts of interest by au-

thorization policies. In Proc. of SIN. ACM, 2015.

[114] C.D. Nguyen, A. Marchetto, and P. Tonella. Combining model-based

and combinatorial testing for effective test case generation. In Proc.

of ISSTA, 2012.

[115] OASIS. Web services business process execution language version

2.0. Technical report, OASIS, 2007. Available at: https://docs.

oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[116] OMG. Business process model and notation (bpmn), version 2.0.

Technical report, Object Management Group, 2011.

[117] OWASP. OWASP Top 10 - 2013: The Ten Most Critical Web Ap-

plication Security Risks. The OWASP Foundation, 2013.

[118] Radek Pelánek. Fighting state space explosion: Review and evalua-

tion. In Proc. of FMICS, pages 37–52. Springer, 2009.

[119] G. Pellegrino and D. Balzarotti. Toward black-box detection of logic

flaws in web applications. In Proc. of NDSS, 2014.

205

https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Bibliography Chapter 9

[120] S. Perera, I. Kumara, S. Weerawarana, and M. Pathirage. A multi-

tenant architecture for business process executions. In Proc. of ICWS,

2011.

[121] M. Pizzo, R. Handl, and M. Zurmuehl. Odata

version 4.0 part 1: Protocol. Technical report,

OASIS, 2014. Available at: https://www.oasis-

open.org/committees/tc home.php?wg abbrev=odata.

[122] N. Poggi, V. Muthusamy, D. Carrera, and Rania Khalaf. Business

process mining from e-commerce web logs. In Proc. of BPM. Springer,

2013.

[123] H.A. Reijers and J. Mendling. Modularity in process models: Review

and effects. In Proc. of BPM. Springer, 2008.

[124] H.A. Reijers, J. Mendling, and R.M. Dijkman. On the usefulness

of subprocesses in business process models. Technical report, BPM

Center, 2010.

[125] H.A. Reijers, J. Mendling, and R.M. Dijkman. Human and automatic

modularizations of process models to enhance their comprehension.

Inf. Syst., 36(5):881 – 897, 2011.

[126] A.W. Roscoe. A classical mind. chapter Model-checking CSP, pages

353–378. Prentice Hall International (UK) Ltd., Hertfordshire, UK,

UK, 1994.

[127] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der

Aalst. Workflow data patterns: Identification, representation and

tool support. In Proc. of ER, 2005.

206

Chapter 9 Bibliography

[128] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Ed-

mond. Workflow resource patterns: Identification, representation and

tool support. In Proc. of CAiSE, 2005.

[129] M. Salnitri, F. Dalpiaz, and P. Giorgini. Modeling and verifying

security policies in business processes. In Proc. of BPMDS. Springer,

2014.

[130] P. Samarati and S.C. de Vimercati. Access control: Policies, models,

and mechanisms. In Foundations of Security Analysis and Design.

Springer, 2001.

[131] R. Sandhu, V. Bhamidipati, and Q. Munawer. The arbac97 model for

role-based administration of roles. TISSEC, 2(1):105–135, February

1999.

[132] R. Sandhu, E. Coyne, H. Feinstein, and C. Youmann. Role-based

access control models. IEEE Computer, 2(29):38–47, 1996.

[133] S. Sankaranarayanan, H. Sipma, and Z. Manna. Petri net analysis

using invariant generation. In In Verification: Theory and Practice.

Springer, 2003.

[134] G.K. Schneider. Sap modeling handbook - modeling standards, 2010.

[135] S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch.

Elastic business process management: State of the art and open chal-

lenges for {BPM} in the cloud. FGCS, 46:36 – 50, 2015.

[136] M. Schur, A. Roth, and A. Zeller. Mining workflow models from web

applications. IEEE TSE, 41(12):1184–1201, dec 2015.

[137] R. Sebastiani and P. Trentin. OptiMathSAT: A Tool for Optimization

Modulo Theories. In Proc. of CAV. Springer, 2015.

207

Bibliography Chapter 9

[138] A.U. Shankar. An Introduction to Assertional Reasoning for Concur-

rent Systems. ACM Computing Surveys, 25(3):225–262, September

1993.

[139] S. Son, K.S. McKinley, and V. Shmatikov. Fix me up: Repairing

access-control bugs in web applications. In Proc. of NDSS, 2013.

[140] A. Sudhodanan, A. Armando, L. Compagna, and R. Carbone. At-

tack patterns for black-box security testing of multi-party web appli-

cations. In Proc. of NDSS, 2016.

[141] F. Sun, L. Xu, and Z. Su. Static detection of access control vulnera-

bilities in web applications. In Proc. of USENIX Security, 2011.

[142] G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with

recursive queries in database and logic programming systems. Theory

and Practice of Logic Programming, 8(2):129–165, March 2008.

[143] W.M.P. van der Aalst. Workflow verification: Finding control-flow

errors using petri-net-based techniques. In Proc. of BPM. Springer,

2000.

[144] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and

Enhancement of Business Processes. Springer, 2011.

[145] W.M.P. van der Aalst. Business process management: A comprehen-

sive survey. ISRN Software Engineering, 2013, 2013.

[146] W.M.P. van der Aalst. Process Mining: Data Science in Action.

Springer, 2016.

[147] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yet another

workflow language. Inf. Syst., 30:245–275, 2003.

208

Chapter 9 Bibliography

[148] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and

A.P. Barros. Workflow patterns. Distributed Parallel Databases,

14(1):5–51, 2003.

[149] W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business

process management: A survey. In Proc. of BPM, 2003.

[150] W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede,

N. Sidorova, H.M.W. Verbeek, M. Voorhoeve, and M.T. Wynn.

Soundness of workflow nets: classification, decidability, and analy-

sis. Formal Aspects of Computing, 23(3):333–363, 2011.

[151] E. Vervaet. The Definitive Guide to Spring Web Flow. Apress,

Berkely, CA, USA, 2008.

[152] B. von Halle. Business rules applied: building better systems using

the business rules approach. Wiley, 2001.

[153] M. Wang, K.Y. Bandara, and C. Pahl. Process as a service. In Proc.

of SCC, 2010.

[154] Q. Wang and N. Li. Satisfiability and resiliency in workflow autho-

rization systems. TISSEC, 13, 2010.

[155] R. Wang, S. Chen, and X. Wang. Signing me onto your accounts

through facebook and google: a traffic-guided security study of com-

mercially deployed single-sign-on web services. In Proc. of S&P, 2012.

[156] W. Wang, Y. Lei, S. Sampath, R. Kacker, R. Kuhn, and J. Lawrence.

A combinatorial approach to building navigation graphs for dynamic

web applications. In Proc. of ICSM, 2009.

[157] J. Warner and V. Atluri. Inter-instance authorization constraints for

secure workflow management. In Proc. of SACMAT, pages 190–199.

ACM, 2006.

209

Bibliography Chapter 9

[158] M. Weske. Business Process Management: Concepts, Languages,

Architectures. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2007.

[159] G. Winskel. Petri nets, algebras, morphisms, and compositionality.

Inf. and Comp., 72(3):197 – 238, 1987.

[160] C. Wolter, A. Schaad, and C. Meinel. Task-based entailment con-

straints for basic workflow patterns. In Proc. of SACMAT. ACM,

2008.

[161] L. Xing, Y. Chen, X. Wang, and S. Chen. Integuard: Toward auto-

matic protection of third-party web service integrations. In Proc. of

NDSS, 2013.

[162] D. Xu, M. Kent, L. Thomas, T. Mouelhi, and Y. Le Traon.

Automated model-based testing of role-based access control us-

ing predicate-transition nets. IEEE Transactions on Computers,

64(9):2490–2505, 2015.

[163] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck. Chucky:

exposing missing checks in source code for vulnerability discovery. In

Proc. of CCS. ACM, 2013.

[164] P. Yang, X. Xie, I. Ray, and S. Lu. Satisfiability analysis of workflows

with control-flow patterns and authorization constraints. IEEE TSC,

99, 2013.

210

	Introduction
	Objectives and research challenges
	Contributions
	Structure of the thesis
	List of publications

	State of the art
	Workflow modeling
	Workflow satisfiability
	Problem formulations
	Related approaches
	Comparison

	Workflow resiliency
	Comparison

	Workflow-driven web applications
	Comparison

	I Fundamentals
	Automatic synthesis of run-time enforcement monitors
	Overview
	Off-line phase
	On-line phase

	Formal description
	Off-line
	On-line

	Modularity for security-sensitive workflows
	Modular design and enactment
	Security-sensitive workflow components
	Gluing together security-sensitive components
	Modular synthesis of run-time monitors

	Assisting the deployment of security-sensitive workflows
	Preliminaries
	Scenario finding problems
	Minimal user-base scenarios
	Resilient scenarios
	Constrained scenarios

	From solving the WSP to solving SFPs
	Solving the B-SFP and the MUB-SFP
	Solving the SkR-SFP
	Solving the C-SFP

	II Applications
	Cerberus: integrating monitor synthesis in workflow management systems
	Tool architecture and implementation
	Using Cerberus
	Design-time
	Monitor synthesis
	Deployment
	Run-time

	Experiments
	Monitor synthesis - real-world workflows
	Monitor synthesis - scalability
	Scenario finding

	Aegis: automatic enforcement of security policies in workflow-driven web applications
	Overview
	Example 1 - Enforcing constraints
	Example 2 - Mitigating vulnerabilities

	Details
	Step 1 - Model inference
	Step 2 - Monitor synthesis
	Step 3 - Run-time monitoring

	Experiments
	Experimental setup
	Results

	Discussion and limitations

	III Discussion
	Industrial impact
	Use cases
	Cerberus
	Aegis
	TestREx

	Discussion and Perspectives

	Conclusions and Future work
	Future work
	Monitor extensions
	Modularity and reuse of workflow patterns
	Scenario finding
	Web application monitoring and testing

	Bibliography

