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An Innovative Real-Time Technique for
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Abstract—In this letter, a new online inverse scattering
methodology is proposed. The original problem is recast into a
regression estimation one and successively solved by means of a
support vector machine (SVM). Although the approach can be
applied to various inverse scattering applications, it results very
suitable to deal with the buried object detection. The application of
SVMs to the solution of such kind of problems is firstly illustrated.
Then, some examples, concerning the localization of a given object
from scattered field data acquired at a number of measurement
points, are presented. The effectiveness of the SVM method is
evaluated also in comparison with classical neural networks based
approaches.

Index Terms—Buried objects, inverse scattering problems,
real-time detection, support vector machines.

I. INTRODUCTION

T HE SOLUTION of inverse scattering problems is usually
very difficult due to their inherent non linear nature and

ill-posedness. Nowadays, the leading way to face them is to re-
cast the original problem into an optimization one, which is suc-
cessively solved by means of a minimization technique (e.g., see
[1]–[3] and the reference therein). Unfortunately, the use of it-
erative procedures often makes the reconstruction process com-
putationally expensive. As a consequence, serial implementa-
tions of optimization techniques cannot be generally used for
real-time applications.

Therefore, the development of alternative strategies, when
online reconstructions are required (i.e., industrial process con-
trol, leak detection, materials characterization during manufac-
turing and while in use, landmine detection, etc.) is mandatory.
Recently, a great attention has been devoted to inverse scattering
methodologies based on neural networks (NNs). Methods based
on both multilayer perceptron (MLP) [4], [5] and radial basis
function (RBF) [6] NNs have been successfully proposed.

However, in spite of their success, NN-based approaches
suffer from typical problems of neural networks (e.g., the over-
fitting, etc.) which make the method accuracy highlytraining
dependent. A solution to these problems is the use of RBF-
based techniques trained with orthogonal least squares [7].

In this letter, the effectiveness of an alternative procedure,
based on a support vector machine [8], is presented. SVMs are
built on a solid theoretical framework, the statistical learning
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Fig. 1. Problem geometry.

theory (SLT) [9]. Similarly to NNs, (after the training phase)
the SVM allows to obtain reconstruction results in quasi real
time (few tenths of seconds), with a percentage of time saved
with respect to iterative methods greater than 90% [10], [11].
Moreover, SVM-based procedures allow the control of the gen-
eralization accuracy of the approximating function. More in de-
tail, the arising optimization problem is aimed at finding the best
trade-off between the capability of the SVM to learn from the
given set of examples and a measure of the complexity of the
model itself. Since the model complexity has a straightforward
consequence on the generalization accuracy [9], this leads to the
determination of models that outperform standard NNs.

In the following, a brief description of the electromagnetic
problem and of the basic theory of the support vector machine
will be presented (Sections II and III, respectively). In Sec-
tion IV, the performances of the proposed SVM-based inverse
scattering technique will be assessed and compared with those
obtained with a NN-based approach by considering the localiza-
tion problem. In particular, the attention will be focused on the
localization of a cylindrical geometry with circular cross sec-
tion. This problem is largely encountered in practical applica-
tions as, for example, the detection of buried pipes, tubes, or ca-
bles in urban environments. Finally some conclusions and final
remarks will be provided.

II. M ATHEMATICAL FORMULATION

Let us consider the two-dimensional half-space problem
shown in Fig. 1. A homogeneous pipe is buried in a lossy region
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with relative dielectric parameters, generally inhomogeneous,
and . The unknown homogeneous scatterer is

characterized by constant permittivity and conductivity
values. The geometric characteristics (position, shape, and size)
of the scatterer are defined by the center coordinates, (, ),
and by the parametric description of its cross section given by

(1)

For computational purposes, let us assume a square investiga-
tion domain ( ) large enough (-sided) so that the scatterer lies
in . Multiple illuminating sources and measurement points are
located above or on the air–ground interface at the same height
( ). When the electric source is a line source, located at

and radiating a monochromatic electromagnetic field,
the electric field scattered by buried targets and collected at the
observation points, , , , is expressed as

(2)

where and are the scattered electric fields at
the measurement points when the reconstruction domain
contains or not the unknown scatterer, respectively;is the
electric field inside the reconstruction domain filled with the
background medium; is the Green’s function of the inho-
mogeneous medium [12]; and is the relative dielectric
profile defined as follows

if

otherwise

(3)

Inverse scattering procedures aim at retrieving the location,
the shape, and the dielectric properties of the scatterer starting
from the knowledge of . Mathematically,
the problem reduces to determine the following relation:

(4)

where is the scatterer array (
being the number of parameters which

completely describe the scatterer), and is the data array
defined as ; ;

. This problem can be reformulated as are-
gression problem, where the unknown function () must be
approximated from the knowledge of a number of known I/O
pairs of vectors , ; .

III. SVM-B ASED INVERSESCATTERING PROCEDURE

Generally speaking, a regression problem is the process
through which an unknown function is
approximated by means of a functionon the basis of some
samples , , being an input pattern and

the corresponding target ( ). As far as buried-ob-
ject detection problems are concerned, the location ( ),
the dimension (), and the complex permittivity ( ) of
the scatterer must be retrieved and each unknown parameter
is dealt with separately. Consequently, and

.
Usually, a problem is formulated as a regression one when

it is possible to observe and to measure the I/O signals of the
system under test, but the system dynamic is unknown (i.e., an
analytic expression for is not available). SVMs are a new
paradigm that have been recently proposed for the solution of
pattern recognition and function approximation tasks. Briefly
(the reader can refer to [8] for more details), the SVM-based
procedure aims at finding a smooth functionhaving at most
deviation from the targets for all samples. The function is
given by

(5)

where is a kernel function, while functional parameters
andstructural parameters are unknown

quantities. The parameter measures the trade-off between
the capability of to approximate the input samples and
the error on the new samples [8], while is the variance of
the kernel function, when Gaussian functions are taken into
account. It is important to note that expression (5) has the same
form as for RBF approaches. As a matter of fact, Gaussian
SVMs can be view as a special case of standard RBF networks
[13] whose centers and weights are computed following a
different procedure, as detailed later on.

The arrays and in (5) are computed by solving the fol-
lowing constrained quadratic programming problem (CQP)

(6)

subjected to the constraints , and
, being

(7)

and , , , ; ;
. The structure of the opti-

mization problem (6) is a key point of the proposed approach. Its
solution is the global minimum of the arising cost function, and
the local minima problem, which affects classical back-propa-
gation algorithms, is completely avoided. In order to solve (6),
traditional optimization techniques can be used. To this end, a
very effective procedure, described in [14], is adopted in this
work.

The threshold is computed by means of the Karush–Kuhn–
Tucker (KKT) conditions of the CQP at optimality, while the
hyperparametersof the problem are determined according to a

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on November 13,2023 at 15:53:48 UTC from IEEE Xplore.  Restrictions apply. 



BERMANI et al.: AN INNOVATIVE REAL-TIME TECHNIQUE FOR BURIED OBJECT DETECTION 929

model selection process (namely, the bootstrap procedure [15])
aimed at minimizing the control parametergiven by

(8)

being the radius of the smaller hypersphere containing all the
training data [9].

IV. NUMERICAL RESULTS

In order to assess the effectiveness of the proposed approach,
numerical simulations and comparisons with a MLP NN-based
procedure [16] have been performed.

The geometry under test is illuminated by means of an elec-
tric line source located above the air–soil interface. This
source model avoids the drawbacks arising from the modeling
of complex electromagnetic sources. Consequently, the atten-
tion is focused on the assessment of the proposed procedure.
Moreover, the electric line source is a simplified model of re-
alistic antennas when two-dimensional problems are addressed.
A buried lossless ( ) circular ( ) cylinder lies
into the domain . The dielectric parameters characterizing the
subsurface region are and 10 S/m and rep-
resent a worse case with respect to the realistic soil [18]. The
investigation area is a square region -sided, being the
wavelength in the upper region and the order of magnitude of the
skin depth [18]. The scattered data at each measurement point
are synthetically computed by using a finite-element code and a
PML truncation technique [19]. For an accurate representation
of the scattered electric field [17], 16 equally spaced ( )
measurement points are arranged on a line placed in region 1 at

(Fig. 1).
Let us consider the localization problem. For comparison

purposes, a two-layer MLP, characterized by 32 input, 32
hidden, and two output neurons (previously proposed and
assessed in [16]), is firstly trained by considering a stan-
dard back-propagation algorithm. In the “learning phase,”
a dataset of 700 examples, synthetically computed by
uniformly varying the position of the scatterer inside
( , , ,

, , )
is considered. As shown in [16], 700 equally distributed
examples define a suitable set to train NN for the solution
of localization problems. Input data for the NN are the real
and the imaginary parts of the scattered field collected at the
measurement line. The center-coordinatedand are the
NNs outputs.

In order to compare NN and SVM performances under the
same “conditions,” the same training set has been considered
during the SVM learning phase. However, since SVMs have
been developed to solve one-output learning problems (see [9]
for further details), two different SVMs, one for each coordinate
of the target, are trained by using the CQP algorithm. Gaussian
functions are considered as kernel functions due to their ca-
pability to work as a universal approximator [13]. After the
bootstrap procedure, the values of the hyperparameters result:

Fig. 2. Test case.

, , , ,
and .

The performances of the classical NN- and SVM-based pro-
cedures are illustrated and compared in the following by consid-
ering first a noiseless test set made up of 160 examples. These
examples are synthetically obtained by randomly varying the
position of the cylinder inside . The cylinder locations are
different from those of the training set (Fig. 2). Figs. 3 and 4
show the estimated versus the actual scatterer properties when
the SVM- and NN-based approaches are taken into account, re-
spectively. Both actual and estimated values are normalized to
the maximum admissible error (set equal to the investigation
domain side, ). Let us observe that, as far as the scatterer
depth estimation is concerned, SVM greatly reduces the error
of the NN, and the correlation coefficient ( ,
where the subscripts and indicate the actual and esti-
mated values, respectively) results much closer to one. Such an
improvement is mainly due to the definition of the kernel de-
viation that guarantees targets to deviate at mostfrom the
function itself. Moreover, larger errors occur when the targets
are positioned just below the air–ground interface. This is prob-
ably due to the interaction between the object and the interface,
and it is more evident when targets are positioned near the left
and right side of the investigation domain.

In order to quantitatively evaluate the localization accuracy,
let us define some error figures

(9)

(10)

Fig. 5 shows the mean value and the variance for both the error
figures when the NN and the SVM are used. As expected, SVM
enhances the performances achieved with the standard NN ap-
proach due to optimal generalization properties guaranteed from
the SLT.
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(a)

(b)

Fig. 3. SVM-based approach. Estimated versus real scatterer properties. (a)x =� and (b)y =� .

(a)

(b)

Fig. 4. NN-based approach. Estimated versus real scatterer properties.
(a) x =� and (b)y =� .

Fig. 5. SVM-based approach versus NN-based approach. Location error:
standard deviation and average values.

In order to analyze the robustness of the proposed approach,
target objects of circular cross section, with radii and dielectric
permittivities different from those of the training set, have also
been taken into account. First, different locations of the target in

have been considered ( ). In corre-
spondence with radius variations, the mean values of the error
figures are , , and

, , respectively. Similar results have been
obtained also when the SVM approach is adopted for localizing
objects with different values of permittivity. The values of the av-
erage error are equal to and .
For the same test set, the results achieved by using the NN tech-
nique are and .
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TABLE I
NOISY MEASUREMENT DATA. AVERAGE VALUES. (a) � AND (b) �

FOR DIFFERENTSIGNAL-TO-NOISE RATIOS (SNRs)

(a)

(b)

Moreover, the dependence of the localization accuracy versus
the target shape has been analyzed. To this aim, the target is a
cylinder with square cross section. The area of the cylinder is
the same of the reference circular cylinder used in the training
phase. The achieved average localization errors (

and ) confirm the generalization capa-
bility of the SVM and the effectiveness of the proposed ap-
proach with respect to the NN technique ( and

).
Finally, a noisy environment has been considered. Noisy

data have been obtained by adding a uniform Gaussian noise
to simulated measurement data. The obtained results are given
in Table I.

V. CONCLUSION

In this letter, an innovative online inverse scattering method-
ology, based on the implementation of a support vector machine,
has been presented and applied to the detection of buried ob-
jects. The training of SVM requires the solution of a constrained
quadratic optimization problem. This is a key point of the pro-
posed approach, and it represents the main advantage of the
method (with respect to MLP NN-based procedures). It avoids
typical drawbacks as overfitting or local minima occurrence.

The effectiveness of the proposed approach has been checked
by considering the localization of a given target. An exhaustive
numerical analysis has been performed and selected numerical
results (statistically significant) have been presented in order to
assess the robustness of the method. The obtained results clearly
demonstrated significant improvements in the quasi-real-time
localization of pipes buried in inaccessible domains. Moreover,
the generalization capability of the SVM procedure has been
also pointed out. Future works, currently under development,
will be devoted to further assess the method and to introduce, in
a convenient way, somea priori information into the retrieval
procedure.
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