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Introduction

Hyperbolic conservation laws arise in areas as diverse as shallow water flows,

compressible gasdynamics, turbulence modelling, turbomachinery, plasma modelling,

rarefied gas dynamics and many others. Analytical solutions are available only in

very few special cases and numerical methods must be used in practical applications.

The present thesis is devoted to the construction of numerical schemes of very high-

order of accuracy for solving nonlinear hyperbolic conservation law. In designing

such schemes one faces at least three major difficulties. One of them concerns the

preservation of high accuracy in both space and time for multidimensional problems

containing source terms. Another one concerns conservation; this is mandatory in

the presence of shock waves. The other very important issue relates to the generation

of spurious oscillations in the vicinity of strong gradients; according to Godunov’s

theorem [18] these are unavoidable by linear schemes of accuracy greater than one.

These oscillations pollute the numerical solution and are thus highly undesirable.

To avoid generating spurious oscillations, non-linear solution-adaptive schemes must

be constructed.

Each one of these difficulties is in itself not easy to resolve; the simultaneous

resolution of all three difficulties above represents a formidable task in the numerical

analysis of hyperbolic conservation laws.

At present, there are various approaches for constructing numerical schemes that

attempt to overcome the above difficulties. The class of Godunov-type methods

for solving numerically hyperbolic conservation laws is often regarded as one of

the most successful. The original first-order scheme of Godunov [18] uses the self-

similar solution of the local Riemann problem with piece-wise constant initial data

to compute the upwind numerical flux. The extension to second order of accuracy in

time and space can be carried out, amongst other ways, by using a non-oscillatory

piece-wise linear reconstruction of data from cell averages. It appears as if it

was Kolgan [25] who first proposed to suppress spurious oscillations by applying

the so-called principle of minimal values of derivatives, producing in this manner

a non-oscillatory (TVD) Godunov-type scheme of second order spatial accuracy.

Further, more well-known, developments are due to van Leer [82]. In multiple

space dimensions unsplit second-order non-oscillatory methods were constructed by

Kolgan [27, 26], Tiliaeva [48], Colella [12] and many others.

TVD methods avoid oscillations by locally reverting to first order of accuracy

near discontinuities and extrema. They are therefore unsuitable for applications
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involving long time evolution of complex structures, e.g. in acoustic and compressible

turbulence. In these applications extrema are clipped as time evolves and numerical

diffusion may become dominant. Uniformly very high order methods, both in time

and space, are needed for such applications.

Essentially non-oscillatory schemes [19] can be regarded as uniformly high order

extensions of Kolgan- van Leer approach in which the data in each cell is represented

by polynomials of arbitrary order rather than linear ones. The numerical solutions

obtained by these methods are, at least to the eye, free from spurious oscillations.

The key idea in the rth - order ENO reconstruction procedure used in [19, 43, 7] is

to consider r possible stencils covering the given cell (in one space dimension) and

to select only one, the smoothest, stencil. The reconstruction polynomial is then

built using this selected stencil. The WENO reconstruction [30, 22] takes a convex

combination of all r stencils with non-linear solution-adaptive weights. The design of

the weights involves local estimates of the smoothness of the solution in each possible

stencil so that the reconstruction achieves (2r − 1)th - order of spatial accuracy in

smooth regions and emulates the rth - order ENO reconstruction near discontinuities.

A more refined version of the one-dimensional WENO reconstruction is the so-

called monotonicity-preserving WENO (MPWENO) [3] which is a combination of

increasingly high order (e.g. 9th order) WENO and a monotonicity preserving (MP)

constraint [46].

Essentially non-oscillatory schemes can be divided into finite-difference schemes

and finite-volume schemes. Finite-difference schemes, pioneered in [43] and further

developed in [22, 3] seem to be more popular for academic applications due to

their simplicity and low cost, e.g. [44], but are restricted to smooth structured

meshes. Finite-volume schemes are more expensive and complicated, but can be

used on arbitrary non-smooth or/and non-structured meshes and are therefore of

more interest to us. In multiple space dimensions these schemes have been developed

in [7, 1, 33, 21, 41, 52]. A comparison of finite-difference and finite-volume ENO

schemes can be found in [8].

Another very interesting class of very-high order methods for hyperbolic systems

is the class of Discontinuous Galerkin (RKDG) Finite Element Methods, which

consists of Runge-Kutta DG methods [9, 2, 10, 11] and Space-Time DG methods [79,

80, 81]. These schemes combine the finite-element idea of representing the data

locally inside each cells by means of spatial polynomials and using the Riemann

problem solution in the computation of the intercell flux. In fact, the first-order

DG scheme boils down to the original Godunov method [18]. The key advantage

of DG methods over finite-volume schemes lies in their locality: since the data
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representation in each cell is stored and evolved by the method no reconstruction

procedure is required. This is especially important when using unstructured meshes,

e.g. triangles in two space dimensions. Locality of the method also greatly helps in

implementing h-refinement algorithms. However, a pending problem in the RKDG

methods is the construction of some sort of the limiting procedure to suppress the

spurious oscillations. The present approaches, such as the TVD limiter or the use

of Hermite WENO schemes [36, 35], do not seem to completely resolve the issue.

We should also mention the class of Compact Difference Methods of Tolstykh

and co-workers [55, 56, 57, 59, 60, 58]. These schemes achieve arbitrary order of

spatial accuracy, e.g. in last two references up to 57th order is reported. However,

the compact approximations are, in general, not monotone and some sort of a limiter

must be used to avoid spurious oscillations. The application of the limiter is helped

by the fact, that the oscillations are typically contained in 2-3 cells around the

discontinuity only.

All the schemes discussed above meet the requirement of very high-order spatial

accuracy. Matching time accuracy to space accuracy, however, remains an issue in

all of the above approaches due to the use Runge-Kutta methods for time evolution.

To avoid spurious oscillations these Runge-Kutta methods must be TVD [42]. This

leads to accuracy barriers: the accuracy of such methods cannot be higher than

fifth [42]. Moreover, fourth and fifth order methods are quite complicated and

have reduced stability range. In most practical implementations reported, when the

solution is not smooth, a third order TVD Runge-Kutta method has been used,

e.g. [3].

Although increased order of spatial discretisation improves accuracy for some

problems such schemes converge with third order only when the mesh is refined

and thus should be regarded as third order schemes. For some applications, such

as numerical simulation of compressible turbulence and wave propagation problems

involving long-time evolution it may be beneficial to use schemes which converge

with higher order both in time and space.

A recent approach for constructing schemes of very high order of accuracy is

the ADER (Advection-Diffusion-Reaction) approach [71, 72], which stems from the

modified Generalised Riemann Problem (MGRP) scheme [64], which in turn is a

simplification of the GRP-type schemes [4, 31]. ADER allows the construction

of arbitrarily high-order accurate schemes, both in time and space. The original

ADER idea was applicable to linear advection with constant coefficients only. In

[71, 72] formulations were given for one, two and three-dimensional linear schemes

on regular meshes and implementation of linear schemes of up to 10th order in space
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and time for both the one-dimensional and the two-dimensional case were reported.

In [40, 39, 17] linear schemes for linear systems with constant coefficients of up to

6th order in space and time were constructed. These were then applied to acoustic

problems and detailed comparison with other schemes was carried out.

The extension of the ADER approach to non-linear problems relies on the solution

of the Derivative Riemann problem. The solution procedure for the DRP reported

in [74] provides an approximation to the state variable along the t-axis in the form

of a Taylor time expansion and relies, among other things, on the availability of

an approximate-state Riemann solver for the non-linear conventional (piece-wise

constant initial data) Riemann problem system. Construction of ADER schemes

for the one-dimensional Euler equations using this Riemann problem solution has

been reported in [49]. For the construction of schemes as applied to non-linear

scalar equations in one space dimension see also [47]. Extension of ADER to scalar

advection-diffusion-reaction equations in one space dimension is reported in [50],

where explicit non-linear schemes of up to 6th order are presented.

This thesis is devoted to the further construction and generalization of the ADER

advection schemes to the case of non-linear multi-dimensional conservation laws with

reactive-like source terms. The main objective is three-fold. Firstly, we would like to

extend the schemes to systems for which the solution of the conventional Riemann

problem is not available or exceedingly complicated. To achieve this, we need to

modify the Derivative Riemann problem solver. Secondly, we would like to extend

the schemes to multidimensional non-linear hyperbolic systems with reactive-like

source terms. Finally, we carry out truncation error and stability analysis of the

schemes for the model linear advection equation with constant coefficients in one,

two and three space dimensions.

The rest of the thesis is organized as follows.

In Chapter 1 we present the approximate solution of the Derivative Riemann

problem. Conventionally, the Riemann problem for a system of conservation laws

is defined as the Cauchy problem with initial conditions consisting of two constant

states separated by a discontinuity at the origin [18]. A generalization of this is the

so-called Generalized Riemann problem [4, 32], whereby a piece-wise linear data

Riemann problem is posed and solved. A further generalization is to consider

the Riemann problem for a system of equations with source terms and arbitrary

piece-wise smooth initial data [29, 6, 74]. In particular, the initial conditions may

consist of polynomials of arbitrary degree. Here we call such Riemann problem, the

Derivative Riemann Problem, or DRP for short. The approximate solver described

here provides an approximation to the state variable along the t-axis in the form
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of a Taylor time expansion. To build up this expansion, the original DRP is

reduced to a sequence of conventional Riemann problems for homogeneous advection

equations. The leading term of the expansion is computed as the Godunov state of

the conventional nonlinear Riemann problem, whereas the evaluation of higher-order

terms involves the solution of linearized Riemann problems for spatial derivatives.

Therefore, availability of an approximate-state Riemann solver for the non-linear

conventional Riemann problem system is crucial for building up the approximate

solution to the DRP.

Although exact or approximate-state Riemann solvers are available for a large

variety of hyperbolic systems of conservation laws [65, 28], for complex nonlinear

systems they may become very complicated or simply unavailable. It is therefore

desirable to have a simple procedure for calculating the leading term of the state

expansion which would not necessarily require a detailed knowledge of the Riemann

problem solution. We develop a new modification of the DRP solver which differs

from the original one in the way how the leading term of the Taylor time expansion

is computed. That is, the new procedure does not require a Riemann solver for the

nonlinear system to be solved. This method proceeds first to a non-linear evolution

of the initial condition of a conventional Riemann problem, followed by a simple

linearization of the Riemann problem, which leads to closed-form solutions. We

illustrate the method by solving the DRP for the inviscid Burgers’ equation with a

source term. The presented results demonstrate that both the original and modified

solvers can maintain a really arbitrary order of accuracy even when the solution to

the problem contains a shock wave.

In Chapter 2 we present the general construction of the ADER schemes as

applied to the non-homogeneous conservation laws in multiple space dimensions

on Cartesian meshes. The ADER schemes have a standard one-step finite-volume

form with intercell numerical fluxes obtained by performing time-space integration

of the physical fluxes over cell faces. The computation of the ADER intercell flux

essentially consists of three major steps. Firstly, since the scheme advances cell

averages of the solution but the flux need point-wise values, a high-order polynomial

reconstruction is carried out for each cell. In order to circumvent Godunov’s theorem

[18] and avoid spurious oscillations the weighted essentially non-oscillatory procedure

is used. We discuss the finite-volume WENO reconstruction in multiple space

dimensions and present extensions of [7, 22, 41] to higher orders and three spatial

dimension [52]. Next, at each cell interface (or spatial quadrature point for spatial

integration over the side/face in multiple space dimensions) we have the Derivative

Riemann problem with the initial data in the form of reconstruction polynomials.
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Using the DRP solver described in Chapter 1 we build up an approximate state

and use it to obtain the numerical flux. The computation of the numerical source

terms is then performed in a rather direct manner and involves application of the

multidimensional quadrature.

The chapter is composed as follows: firstly, we describe the reconstruction

procedure. Next, the scheme in one spatial dimension is presented. A special version,

called ADER-TVD, is developed by replacing the first-order Godunov flux by the

second-order TVD flux for each term of the ADER flux expansion leading to a much

more accurate scheme. Finally, extension to the multiple space dimensions is carried

out, which includes a special adaptation of the DRP solver from Chapter 1.

In Chapter 3 we carry out the stability and truncation error analysis of the

schemes as applied to the model linear advection equation with constant coefficients

in one, two and three space dimensions. We consider the schemes of different order

of accuracy as well as different reconstruction stencils, e.g. upwind or downwind

biased. The results of the analysis demonstrate analytically that the schemes do

maintain the desired order of accuracy both in time and space and are stable under

the normal Courant number. The stability region of the scheme is the same as that

of the unsplit first-order Godunov method and the state-of-the-art ENO/WENO

schemes.

Numerical results are presented in Chapter 4 and are divided in three groups:

scalar equations, nonlinear compressible Euler equations and nonlinear shallow water

equations with source terms. In most of the cases we compare our schemes with

the state-of-the art finite-volume WENO schemes [41] The convergence studies for

a number of well-established test problems demonstrate the schemes compare well

with the other modern methods, can maintain the desired very high order of accuracy

in both time and space for nonlinear systems, and at the same time can be used for

computing solutions with strong moving and possibly colliding discontinuities.

Our presentation is concentrated on the development of main ideas of the ADER

flux and source term computation and is thus restricted to Cartesian meshes only.

Recently, the approach has been extended to unstructured triangular meshes [23, 24].

All the basic technologies for the computation of the ADER flux, e.g. the solution of

the Derivative Riemann Problem, remain the same except the reconstruction, which

is now carried out on triangles. In [24] non-oscillatory schemes of up to fourth order

of temporal accuracy have been reported and applied to a number of test problems.

Another very recent and promising direction of research on advection schemes

are the so-called ADER-DG methods [14, 16, 15]. The basic idea of these methods
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is to replace the Runge-Kutta time marching in the DG methods by the ADER-

type temporal discretization. The resulting ADER-DG methods are one-step and

of really arbitrary order of accuracy. The numerical results of the schemes of up to

6th order as applied to two-dimensional non-linear systems have been reported.

The main results of the present thesis have been published in the following

papers:

1. V.A. Titarev and E.F. Toro. Finite-volume WENO schemes for three-dimen-

sional conservation laws. J. Comput. Phys., 201(1):238–260, 2004.

2. E.F. Toro and V.A. Titarev. ADER schemes for scalar non-linear hyperbolic

conservation laws with source terms in three-space dimensions. J. Comput.

Phys., 202(1):196–215, 2005.

3. V.A. Titarev and E.F. Toro. ADER schemes for three-dimensional nonlinear

hyperbolic systems. J. Comput. Phys., 204(2):715–736, 2005.

4. V.A. Titarev and E.F. Toro. MUSTA schemes for multi-dimensional hyperbolic

systems: analysis and improvements. International Journal for Numerical

Methods in Fluids, 49(2):117–147, 2005.

5. E.F Toro and V.A. Titarev. TVD fluxes for the high-order ADER schemes.

J. Sci. Comput., 24(3):285-309. 2005.

6. E.F. Toro and V.A. Titarev. Derivative Riemann solvers for systems of conservation

laws and ADER methods. J. Comput. Phys., 212(1):150-165. 2006.

and in [51]. One more paper is to appear in J. Comput. Phys.:

E.F. Toro and V.A. Titarev. MUSTA schemes for systems of conservation laws.

Main results have also been presented at a number of international conferences,

including the 6th International Conference on Spectral and High-Order Methods,

June 21-25, 2004, Brown University, RI, USA and The Tenth International Conference

”Hyperbolic Problems: Theory, Numerics and Applications”, September 13-17,

2004, Osaka, Japan.
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1. Derivative Riemann Solvers

Introduction

Conventionally, the Riemann problem for a system of conservation laws is defined

as the Cauchy problem with initial conditions consisting of two constant states

separated by a discontinuity at the origin. A generalization of the conventional

Riemann problem in which the piece-wise linear polynomials are used as the initial

data has become to be known as the Generalized Riemann problem [4, 29, 6, 31,

32]. A further generalization is to consider the Riemann problem for a system of

equations with source terms and arbitrary piece-wise smooth initial data [29, 6, 74].

In particular, the initial conditions may consist of polynomials of arbitrary degree.

Here we call such Riemann problem, the Derivative Riemann Problem, or DRP for

short.

This chapter is devoted to the construction of the approximate solution for the

Derivative Riemann problem [74, 78]. Later we intend to use this solution in the

design of the numerical schemes. We note that for the Godunov-type methods one

does need the Riemann problem solution in the whole t− x space, but rather only

along the t axis. Moreover, the complete solution is most probably impossible to

construct for a sufficiently complex system. For example, a second-order accurate

solution to the GRP problem for a rather simple system of the one-dimensional

compressible Euler equations is already quite complicated [32] and probably is not

practical.

The solution procedure reported here provides an approximation to the state

variable along the t-axis in the form of a Taylor time expansion. To build up this

expansion, the original DRP is reduced to a sequence of conventional Riemann

problems for homogeneous advection equations. The leading term of the expansion

is computed as the Godunov state of the conventional nonlinear Riemann problem,

whereas the evaluation of higher-order terms involves the solution of linearized

Riemann problems for spatial derivatives. Therefore, availability of an approximate-

state Riemann solver for the non-linear conventional Riemann problem system is

crucial for building up the approximate solution to the DRP.

Although approximate-state Riemann solvers exist now for a large variety of

hyperbolic systems of conservation laws [65, 28], for complex nonlinear systems

they may become very complicated or simply unavailable. It is therefore desirable

to have a simple procedure for calculating the leading term of the state expansion
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which would not necessarily require a detailed knowledge of the Riemann problem

solution. Here we employ a recent EVILIN solver [69] to circumvent the problem of

computing the leading term. The method proceeds first to a non-linear evolution

of the initial condition of a conventional Riemann problem, followed by a simple

linearization of the Riemann problem, which leads to closed-form solutions.

Finally, we illustrate the performance of the DRP solver with both methods for

computing the leading term by solving the DRP for the inviscid Burgers’ equation

with a source term. We first obtain an accurate numerical solution of the problem.

Next, we use this solution to verify the accuracy and convergence rate of the

approximate DRP solver, developed in this chapter.

1.1. Derivative Riemann problem and solution methodology

The Derivative Riemann Problem or DRP for a hyperbolic system is the initial-

value problem

∂tQ + ∂xF(Q) = S(x, t,Q) ,

Q(x, 0) =

{
QL(x) if x < 0 ,

QR(x) if x > 0 .





(1.1)

where the initial states QL(x), QR(x) are two vectors, the components of which

are smooth functions of distance x. We introduce the notation DRPK to mean

the Derivative Riemann Problem in which K represents the number of non-trivial

spatial derivatives of the initial condition, K = max{KL, KR}, where KL and KR

are such that

∂(k)
x QL(x) ≡ 0 ∀k > KL , ∀x < 0 and ∂(k)

x QR(x) ≡ 0 ∀k > KR , ∀x > 0 .

DRP0 means that all first (k = 1) and higher-order spatial derivatives of the initial

condition for the DRP away from the origin vanish identically; this case corresponds

to the conventional piece-wise constant data Riemann problem.

The two initial states QL(x) and QR(x) are assumed to be smooth functions, for

example K−th order polynomials, defined respectively for x < 0 and for x > 0, with

a discontinuity at x = 0. Away from x = 0 we could use the Cauchy-Kowalewski

method to construct a solution Q(x, t) to (1.1), provided that all the smoothness

assumptions of the Cauchy-Kowalewski theorem were met. Here we are interested

in the solution of DRPK , right at x = 0, where in fact the initial data may be

discontinuous.
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Figure 1.1. Information available in the DRPK for a scalar problem.

Figure 1.1 illustrates the initial conditions of the DRPK and the information

available at t = 0 at the origin x = 0. The initial data is, in general, discontinuous

at x = 0. Away from x = 0 the initial data is smooth, with all spatial derivatives well

defined and readily computed. At x = 0 we can define one-sided spatial derivatives,

so that at the interface x = 0 we have jumps in spatial derivatives. These jumps will

form the initial data for new (conventional) Riemann problems, as we shall explain

below.

We seek a power series solution at x = 0 as a function QLR(t) of time t only.

Formally, we write the sought solution as

QLR(τ) = Q(0, 0+) +
K∑

k=1

[
∂

(k)
t Q(0, 0+)

] τ k

k!
, (1.2)

where 0+ ≡ lim
t→0+

t. The solution contains a leading term Q(0, 0+) and higher-order

terms with coefficients determined by ∂
(k)
t Q(0, 0+). In what follows we describe a

method to compute each of the terms of the series expansion.

1.2. The leading term

The leading term Q(0, 0+) in the expansion accounts for the first-instant interaction

of the initial data via the governing PDEs, which is realized solely by the boundary

extrapolated values QL(0) and QR(0) in (1.1). Therefore, the leading term Q(0, 0+)
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is found from the similarity solution of the following DRP0

∂tQ + ∂xF(Q) = 0 ,

Q(x, 0) =

{
QL(0) ≡ limx→0− QL(x) if x < 0 ,

QR(0) ≡ limx→0+ QR(x) if x > 0 .





(1.3)

Here, the influence of the source term can be neglected. Denoting the similarity

solution by D(0)(x/t), the sought leading term is given by evaluating this solution

along the t-axis, that is along x/t = 0, namely

Q(0, 0+) = D(0)(0) . (1.4)

The value D(0)(0) is commonly known as the Godunov state, as it corresponds to

the numerical flux associated with the first-order upwind scheme of Godunov [18].

In what follows we shall extend the use of this terminology to mean the solution

of conventional Riemann problems for spatial derivatives evaluated at x/t = 0. In

practice, a conventional Riemann solver, possibly approximate, is needed here to

determine the leading term.

1.3. Higher-order terms

To compute the higher-order terms in (1.2) we need to compute the coefficients,

that is the partial derivatives ∂
(k)
t Q(x, t) at x = 0, t = 0+. If these were available

on both sides of the initial discontinuity at x = 0, then one could implement a fairly

direct approach to the evaluation of the higher order terms. The method presented

below relies on the availability of all spatial derivatives rather than temporal derivatives

away from the interface, see Fig. 1.1.

In order to express all time derivatives as functions of space derivatives we apply

the Cauchy-Kowalewski method and use the fact that both the physical flux and

source term are the functions of the vector of conservative variables. This yields the

following expressions for time derivatives:

∂
(k)
t Q(x, t) = P(k)(∂(0)

x Q, ∂(1)
x Q, . . . , ∂(k)

x Q) . (1.5)

These time-partial derivatives at x = 0 for t > 0 have a meaning if the spatial

derivatives ∂
(0)
x Q, ∂

(1)
x Q, . . . , ∂

(k)
x Q can be given a meaning at x = 0 for t > 0. For

x < 0 and for x > 0 all spatial derivatives

∂(k)
x QL(x) , ∂(k)

x QR(x) , k = 1, 2, . . . , K



15

are defined and readily computed. At x = 0, however, we have the one-sided

derivatives

∂
(k)
x QL(0) = limx→0− ∂

(k)
x QL(x)

∂
(k)
x QR(0) = limx→0+ ∂

(k)
x QR(x)





k = 1, 2, . . . , K .

We thus have a set of K pairs (∂
(k)
x QL(0), ∂

(k)
x QR(0)) of constant vectors that could

be used as the initial condition for K conventional Riemann problems, if in addition

we had a set of corresponding evolution equations for the quantities ∂
(k)
x Q(x, t).

The sought evolution equations can be easily constructed. It can be verified that

the quantity ∂
(k)
x Q(x, t) obeys the following system of non-linear inhomogeneous

evolution equations

∂t(∂
(k)
x Q(x, t)) + A(Q)∂x(∂

(k)
x Q(x, t)) = Hk . (1.6)

where the coefficient matrix A(Q) is precisely the Jacobian matrix of system (1.1).

Equations (1.6) are obtained by manipulating derivatives of (1.1). The source term

Hk on the right hand side of (1.6)

Hk = Hk(∂(0)
x Q(x, t), ∂(1)

x Q(x, t), . . . , ∂(k)
x Q(x, t))

is a function of the spatial derivatives ∂
(k)
x Q(x, t), for k = 0, 1, . . . , k, and vanishes

when the Jacobian matrix A is constant and S ≡ 0, that is, when the original system

in (1.1) is linear and homogeneous with constant coefficients. In order to easily solve

these evolution equations we perform two simplifications, namely, we first neglect

the source terms Hk and then we linearize the resulting homogeneous equations.

Neglecting the effect of the source terms Hk is justified, as we only need ∂
(k)
x Q(x, t)

at the first-instant interaction of left and right states. We thus have homogeneous

non-linear systems for spatial derivatives. Then we perform a linearization of the

homogeneous systems about the leading term of the power series expansion (1.2),

that is the coefficient matrix is taken as the constant matrix

A
(0)
LR = A(Q(0, 0+)) .

Thus, in order to find the spatial derivatives at x = 0, t = 0+ we solve the following

homogeneous, linearized conventional Riemann problems

∂t(∂
(k)
x Q(x, t)) + A

(0)
LR∂x(∂

(k)
x Q(x, t)) = 0 ,

∂
(k)
x Q(x, 0) =





∂
(k)
x QL(0) , x < 0 ,

∂
(k)
x QR(0) , x > 0 .





(1.7)
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Note that the (constant) Jacobian matrix A
(0)
LR is the same coefficient matrix for all

∂
(k)
x Q(x, t)) and is evaluated only once, using the leading term of the expansion.

We denote the similarity solution of (1.7) by D(k)(x/t). In the computation of all

higher order terms, the solutions of the associated Riemann problems are analytic

and the question of choosing a Riemann solver does not arise. The relevant value

at the interface is obtained by evaluating this vector at x/t = 0, namely

∂(k)
x Q(0, 0+)) = D(k)(0) .

We call this value the Godunov state, in analogy to the interface state (1.4) associated

with the leading term.

Having evolved all space derivatives at the interface x = 0 we form the time

derivatives and finally define the solution of the DRPK as the power series expansion

QLR(τ) = C0 + C1τ + C2τ
2 + . . . + CKτK . (1.8)

where the coefficients are given by

Ck =
∂

(k)
t Q(0, 0+))

k!
. (1.9)

1.4. Riemann solvers for the leading term of DRP

Recall that the leading term of the Taylor series expansion (1.2), the Godunov

state, will be the solution of a non-linear problem, found by a non-linear Riemann

solver, exact or approximate. As has already been mentioned, for complex nonlinear

systems such solvers are very complicated or simply unavailable. It is therefore

desirable from the practical point of view to have a simple procedure for calculating

the leading term of the state expansion which would not require a detailed knowledge

of the Riemann problem solution.

Here, we suggest that the recently-proposed EVILIN Riemann solver [69] be

used to obtain the Godunov state of the nonlinear Riemann problem (1.2). The

computation of the Godunov state by the EVILIN Riemann solver consists of two

main steps. The first step is to open the Riemann fan by using the generalized Multi-

Stage (GMUSTA) Riemann solver [76] which is an improvement of the MUSTA

solver originally proposed in [67]. See also [54]. The GMUSTA Riemann solver solves

the local Riemann problem (1.3) numerically rather than analytically by means of

a simple first-order scheme applying transmissive boundary conditions at each local

time step. This is equivalent to evolving in time the initial data QL(0), QR(0)
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via the governing equations. In the second step one applies a linearized Riemann

solver on the evolved initial data obtained from the GMUSTA procedure giving a

close-form expression for the Godunov state.

Below we briefly outline the GMUSTA and EVILIN Riemann solvers. Assume

that at initial time t = 0 we know the left and right initial data values QL(0),

QR(0) of the Riemann problem (1.3). We introduce a local spatial domain and

the corresponding mesh with 2M cells: −M + 1 ≤ m ≤ M and the local cell size

∆xloc. The boundary between cells m = 0 and m = 1 corresponds to the interface

position x = 0 in (1.3). Transmissive boundary conditions are applied at numerical

boundaries x±M+1/2 on the grounds that the Riemann - like data extends to ±∞.

We now want to solve this Riemann problem numerically on a given local mesh and

construct a sequence of evolved data states Q
(l)
m , 0 ≤ l ≤ k in such a way, that the

final values adjacent to the origin Q
(k)
0 , Q

(k)
1 are close to the sought Godunov state.

Here k is the total number of stages ( time steps) of the algorithm.

In short, the GMUSTA local time marching for m = −M +1, . . . M is organized

as follows:

Q(l+1)
m = Q(l)

m − ∆tloc

∆xloc

(
F

(l)
m+1/2 − F

(l)
m−1/2

)
, F

(l)
m+1/2 = FGF (Q(l)

m ,Q
(l)
m+1). (1.10)

Here FGF is the monotone first order GFORCE numerical flux [76] which is the

upwind generalization of the centred FORCE flux [65] and is given by:

FGF = ΩlocF
LW + (1− Ωloc)F

LF , Ωloc =
1

1 + Cloc

, (1.11)

where FLW and FLF are the centred Lax-Wendroff and Lax-Friedrichs fluxes, respecti-

vely. The local Courant number coefficient 0 < Cloc < 1 is prescribed by the user;

we typically take Cloc = 0.9. The local time step ∆tloc is computed according to the

conventional formula

∆tloc = Cloc∆xloc/Smax,

and then is used in the time update and for evaluation FLW and FLF . Here Smax

is the speed of the fastest way in the local solution. The local cell size ∆xloc can be

chosen arbitrary due to the self-similar structure of the solution of the conventional

Riemann problem. For example, one could take ∆xloc ≡ 1 or ∆xloc ≡ ∆x.

We remark that although expression (1.11) involves centred fluxes, the resulting

GFORCE flux is upwind due to the fact that the nonlinear weight Ωloc in (1.11)

depends on the local wave speed. We remark that in the special case of the linear

constant coefficient equation the GFORCE flux is identical to the Godunov upwind

flux.
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The time marching procedure is stopped when the desired number of stages k is

reached. At the final stage we have a pair of values adjacent to the interface position.

For the construction of Godunov-type advection schemes one needs a numerical flux

at the origin, which for the outlined procedure is given by

FGM
i+1/2 = F

(k)
m+1/2 = FGF (Q(k)

m ,Q
(k)
m+1). (1.12)

For the purpose of solving the derivative Riemann problem, however, we need the

Godunov state as well. In general, the states adjacent to the origin, namely Q
(k)
0 ,Q

(k)
1

are different. We now use a linearized Riemann solver to resolve the discontinuity in

Q at the origin resulting in the EVILIN Riemann solver [69]. To this end we solve

exactly the following linearized Riemann problem:

∂tQ + A1/2∂xQ = 0, A1/2 = A(1
2
(Q

(k)
0 + Q

(k)
1 ))

Q(x, 0) =

{
Q

(k))
0 if x < 0 ,

Q
(k))
1 if x > 0 .

(1.13)

We remark that conventional linearized Riemann solvers have two major defi-

ciencies. Firstly, when a transonic rarefaction is present and the flow thus contains

a sonic point they give a large unphysical jump in all flow variables near this sonic

point, a rarefaction shock, unless explicit entropy fixes are enforced. This is due to

the fact that linearized Riemann solvers do not open the Riemann fan when the

solution contains a sonic point and produce instead a rarefaction shock. Secondly,

the linearized Riemann solvers cannot handle the situation when the Riemann

problem solution contains very strong rarefaction waves. These problems do not

occur for the EVILIN Riemann solver, which is essentially due to the fact that we

apply the linearized Riemann solver to evolved values rather than to the initial data.

See [69] for more details and numerical examples.

It can be shown numerically [76] that when the number of cells 2M and number

of stages k are large, the GMUSTA flux converges to the Godunov flux with the

exact Riemann solver. Correspondingly, the approximate Godunov state produced

by the EVILIN solver (1.13) converges to the exact Godunov state, even for nonlinear

systems with a complex wave pattern. For the linear constant coefficient equations

this property is exact, whereas for nonlinear systems it can be verified by numerical

experiments.

We note that since the solution of the piece-wise constant Riemann problem

(1.3) is self-similar, the value of the cell size ∆x used in the local time marching

does not influence the resulting GMUSTA and EVILIN solutions. For a given CFL

number Cloc these solutions depend only on the number of stages k and domain size

2M . Moreover, when M > k the transmissive boundary conditions do not affect the

numerical solution of (1.3) which in this case depends only on k and Cloc.
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Figure 1.2. Numerical solution of DRP problem (1.14)

1.5. Numerical example

As an example here we solve the following derivative Riemann problem for the

inviscid inhomogeneous Burgers’ equation:

∂tq + ∂x(
1
2
q2) = e−q

q(x, 0) =





qL(x) = e−2(x− 1
5
)2 if x < 0

qR(x) = 1
4
e−2(x+ 1

5
)2 if x > 0





(1.14)

Fig. 1.2 shows the global solution of (1.14) in the x− t plane. This solution was

obtained numerically using a high-order non-oscillatory numerical method on a very

fine mesh. The dominant feature of the solution is an accelerating shock wave that

emerges from the initial discontinuity in the initial condition at x = 0. We regard

this as the exact solution and define an error by taking the difference between the

accurate numerical solution and our semi-analytical DRP solution (1.2).

Table 1 shows the variation of the error as function of the order of accuracy of the

Taylor time expansion for different times τ using the exact Riemann solver for the
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Table 1 . Convergence study for the Derivative Riemann problem (1.14) for different

output times τ and different orders of accuracy. The exact Riemann solver

is used.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.2918× 10−2 0.1573× 10−1 0.3300× 10−1 0.6580× 10−1

2 0.7381× 10−4 0.1513× 10−2 0.4560× 10−2 0.8916× 10−2

3 0.3479× 10−5 0.4197× 10−3 0.3168× 10−2 0.2200× 10−1

4 0.2452× 10−7 0.1830× 10−4 0.3356× 10−3 0.6032× 10−2

5 0.1389× 10−8 0.3843× 10−5 0.1042× 10−3 0.2331× 10−2

6 0.3771× 10−10 0.6143× 10−6 0.3840× 10−4 0.2234× 10−2

Table 2 . Convergence study for the Derivative Riemann problem (1.14) for different

output times τ and different orders of accuracy. The EVILIN Riemann

solver with M = 1 and k = 2 is used for the leading term.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.3097× 10−2 0.9719× 10−2 0.2699× 10−1 0.5979× 10−1

2 0.5873× 10−2 0.4161× 10−2 0.7710× 10−3 0.4269× 10−2

3 0.5949× 10−2 0.6063× 10−2 0.8381× 10−2 0.2617× 10−1

4 0.5946× 10−2 0.5633× 10−2 0.4936× 10−2 0.1385× 10−2

5 0.5947× 10−2 0.5647× 10−2 0.5165× 10−2 0.2269× 10−2

6 0.5946× 10−2 0.5651× 10−2 0.5303× 10−2 0.6708× 10−2

leading term of the time expansion. As expected, for sufficiently small output times

the error rapidly decreases when the number of terms in the expansion increases.

For the last output time τ = 0.2 the solution appears to be too far away from the

initial time and therefore the Taylor time expansion (1.2) is not accurate anymore.

Tables 2–4 show the convergence study for the case when the EVILIN Riemann

solver is used for the leading term of the time expansion. These tables illustrate the

influence of the number of cells 2M and stages k in the local time marching (1.10) on

the accuracy of the resulting Taylor time expansion (1.2). As expected, the size of

the error is defined by the accuracy of the leading term. That is the error committed

in computing the leading term of the state expansion (1.2) by using the EVILIN

approximation (1.13) cannot be recovered by high order terms. From the tables it is

clear that this error crucially depends on the number of stages k and cells 2M in the
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Table 3 . Convergence study for the Derivative Riemann problem (1.14) for different

output times τ and different order of accuracy. The EVILIN Riemann

solver with M = 2 and k = 10 is used for the leading term.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.2918× 10−2 0.1573× 10−1 0.3300× 10−1 0.6580× 10−1

2 0.7379× 10−4 0.1512× 10−2 0.4560× 10−2 0.8916× 10−2

3 0.3501× 10−5 0.4197× 10−3 0.3168× 10−2 0.2200× 10−1

4 0.2848× 10−8 0.1828× 10−4 0.3356× 10−3 0.6032× 10−2

5 0.2028× 10−7 0.3823× 10−5 0.1042× 10−3 0.2331× 10−2

6 0.2171× 10−7 0.6349× 10−6 0.3842× 10−4 0.2234× 10−2

Table 4 . Convergence study for the Derivative Riemann problem (1.14) for different

output times τ and different order of accuracy. The EVILIN Riemann

solver with M = 3 and k = 12 is used for the leading term.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.2918× 10−2 0.1573× 10−1 0.3300× 10−1 0.6580× 10−1

2 0.7381× 10−4 0.1512× 10−2 0.4560× 10−2 0.8916× 10−2

3 0.3479× 10−5 0.4197× 10−3 0.3168× 10−2 0.2200× 10−1

4 0.2452× 10−7 0.1830× 10−4 0.3356× 10−3 0.6032× 10−2

5 0.1389× 10−8 0.3843× 10−5 0.1042× 10−3 0.2331× 10−2

6 0.3783× 10−10 0.6143× 10−6 0.3840× 10−4 0.2234× 10−2

GMUSTA time marching (1.10). As M and k grow, the leading term obtained by

EVILIN approximation approaches the exact one and the EVILIN solution converges

to the one obtained by using the exact Riemann solver, see Table 4.

1.6. Summary of the method

The solution of the Derivative Riemann Problem has the following steps:

• I: The leading term

To compute the leading term one solves exactly or approximately the conventional

Riemann problem (1.3) to obtain the similarity solution D(0)(x/t). The leading

term in then given by the Godunov state Q(0, 0+)) = D(0)(0).
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• II: Higher order terms

1. Time derivatives in terms of spatial derivatives

Use the Cauchy-Kowalewski method to express time derivatives ∂
(k)
t Q(x, t)

in terms of functions of space derivatives as in (1.5)

2. Evolution equations for derivatives

Construct evolution equations for spatial derivatives (1.6).

3. Riemann problems for spatial derivatives

Simplify (1.6) by neglecting source terms and linearizing the evolution

equations. Then pose conventional, homogeneous linearized Riemann

problems for spatial derivatives (1.7).

Solve analytically these Riemann problems to obtain similarity solutions

D(k)(x/τ) and set ∂
(k)
x Q(0, 0+)) = D(k)(0).

• III: Form the solution as the power series expansion (1.8) with the coefficients

(1.9).

Conclusions

In this chapter we first presented a general method for solving the so-called

Derivative Riemann problem. The solution procedure builds up an approximate

expression for the state variable along the t-axis by reducing the original initial-

value problem to a sequence of conventional Riemann problem for homogeneous

equations. Only one of these problems is nonlinear whereas others are linearized.

Next, we developed a modification of the solution procedure which does not require

an approximate-state Riemann solver. The accuracy of the approximate solution

has been demonstrated on a model initial value problem for the Burgers’ equation.

Up to sixth order of accuracy has been demonstrated.

In the next chapter we will use the developed DRP solver in the construction of

very high order ADER schemes applicable hyperbolic systems of conservation laws.
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2. General framework of ADER schemes

Introduction

In this chapter we describe the ADER schemes for multidimensional systems

with reactive source terms. The schemes are based on the essentially non-oscillatory

reconstruction [19, 7, 22, 41, 52] and the approximate solution of the Derivative

Riemann problem, developed in the previous chapter. The chapter is structured as

follows. We first present the review of the WENO reconstruction procedure. Next

we outline the one-dimensional ADER scheme, which is an extension of [49] to the

case of non-homogeneous systems. We also describe a new, improved version of the

one-dimensional scheme, called the ADER-TVD scheme, based on the use of TVD

fluxes as the building block. Finally, extension of the ADER approach to three space

dimensions is given.

2.1. Reconstruction in multiple space dimensions

Here we outline the dimension-by-dimension reconstruction procedure in multiple

space dimensions. For the sake of brevity, we concentrate on the three-dimensional

case from the beginning. Expressions for the one- and two-dimensional procedure

are part of this general case. Our presentation is based on [7, 22, 41, 52]. Note, that

in the above references only expressions for the state variables are given whereas

here we need the spatial derivatives as well.

2.1.1. Scalar finite-volume reconstruction

The reconstruction problem we face is the following. Given spatial averages of a

scalar function q(x, y, z) in a cell Iijk

qijk =
1

∆x

1

∆y

1

∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

q(x, y, z) dz dy dx,

we want to compute the point-wise value of q at Gaussian integration points

(xi+1/2, yα, zβ)

so that the reconstruction procedure is conservative and these reconstructed values

are of high-order of accuracy. There are essentially two ways of accomplishing this:

genuine multidimensional reconstruction and dimension-by-dimension reconstruction.
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The genuine multidimensional reconstruction [21] considers all cells in the multi-

dimensional stencil simultaneously to build up a reconstruction polynomial, whereas

dimension-by-dimension reconstruction [7, 41] consists of a number of one-dimensio-

nal reconstruction sweeps. The dimension-by-dimension reconstruction is much

simpler and less computationally expensive than the genuine multidimensional one;

this is especially so in three space dimensions. Therefore, in this paper we use

dimension-by-dimension reconstruction throughout.

The general idea of dimension-by-dimension (dim-by-dim) reconstruction in two

space dimensions is explained in [7, 41] in the context of the ENO schemes. The

extension to three space dimensions is straightforward and consists of three steps.

Recall that we need left qL
i+1/2,αβ and right qR

i+1/2,αβ extrapolated values. For the left

values the stencil consists of cells Iixiyiz such that

i− r ≤ ix ≤ i + r, j − r ≤ iy ≤ j + r, k − r ≤ iz ≤ k + r, (2.1)

where r−1 is the order of polynomials used in WENO sweeps, e.g. r = 3 corresponds

to the weighted piece-wise parabolic (fifth order) reconstruction and so on. For the

right values the stencil consists of cells for which i + 1− r ≤ ix ≤ i + 1 + r and iy,

iz vary according to (2.1).

In the first step of the three-dimensional reconstruction for all indexes iy, iz

from the stencil we perform the one-dimensional WENO reconstruction in the x

coordinate direction (normal to the cell face) and obtain two-dimensional averages

with respect to y − z coordinate directions:

vL
iyiz =

1

∆y

1

∆z

∫ yiy+1/2

yiy−1/2

∫ ziz+1/2

ziz−1/2

q(xi+1/2 − 0, y, z) dz dy,

vR
iyiz =

1

∆y

1

∆z

∫ yiy+1/2

yiy−1/2

∫ ziz+1/2

ziz−1/2

q(xi+1/2 + 0, y, z) dz dy.

In the second step we perform one-dimensional reconstruction in y coordinate direction

for all values of iz and obtain one-dimensional averages of the solution with respect

to z coordinate direction

wL
iz =

1

∆z

∫ ziz+1/2

ziz−1/2

q(xi+1/2 − 0, yα, z) dz,

wR
iz =

1

∆z

∫ ziz+1/2

ziz−1/2

q(xi+1/2 + 0, yα, z) dz

in lines corresponding to the Gaussian integration points on the y axis (x = xi+1/2,

y = yα). Finally, for each line (x = xi+1/2, y = yα) we obtain reconstructed point-

wise values q(xi+1/2, yα, zβ) by again applying the one-dimensional reconstruction
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now to wL
iz , wR

iz in the z coordinate direction. We note that it is also possible to do

the z sweep in the second step instead of y sweep.

The two-dimensional reconstruction is obtained by using only two first steps in

the above algorithm.

We now proceed to define the reconstructed values for each of the one-dimensional

WENO sweeps. We do so in terms of reconstructions of one-dimensional averages

ui of a function u(ξ)

ui =
1

∆ξ

∫ ξi+1/2

ξi−1/2

u(ξ) dξ,

where ∆ξ is the cell size: ∆ξ = ξi+1/2−ξi−1/2. Recall that in one space dimension for

any order of accuracy r there are r candidate stencils for reconstruction. For each

such stencil of r cells there is a corresponding (r − 1)th-order polynomial pl(ξ), l =

0, . . . r− 1. The WENO reconstruction procedure [30, 22] defines the reconstructed

value as a convex combination of rth-order accurate values of all polynomials, taken

with positive non-linear weights. The weights are chosen in such a way as to achieve

(2r − 1)th order of accuracy when the solution is smooth and to mimic the ENO

idea [19, 7] otherwise. For a given point ξ̃ the design of weights consists of three

steps. First, one finds the so-called optimal weights dl so that the combination of all

polynomials with these weights produces the value of the polynomial of order (2r−1)

corresponding to the large stencil. Next, if optimal weights dl are all positive one

defines the non-linear weights ωl as

αl =
dl

(ε + βl)2
, ωl =

αk∑r−1
l=0 αl

, l = 0, . . . r − 1. (2.2)

Here βl are the so-called smoothness indicators [22]:

βl =
r−1∑
m=1

∫ ξi+1/2

ξi−1/2

(
dm

dxm
pl(ξ)

)2

∆ξ2m−1dξ, l = 0, . . . r − 1. (2.3)

If some of dl are negative then a special procedure to handle such negative weights

must be used, see [41] for details. The small constant ε is introduced to avoid division

by zero when βl ≡ 0; we usually set ε = 10−6. The final WENO reconstructed value

is then given by

u(ξ̃) =
r−1∑

l=0

pl(ξ̃)wl. (2.4)

In several space dimensions the one-dimensional WENO procedure is applied

during each one-dimensional sweep. For the first sweep (normal to the cell face)

the weights are designed to obtain reconstructed values at xi+1/2; the corresponding
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linear weights dl and smoothness indicators βl can be found in [22, 3] for up to r = 6.

For the second and third steps the weights, which will be different from the first step,

are designed to achieve (2r− 1)th order of accuracy for Gaussian integration points

(yα, zβ). The values of the weights are tailored to a specific Gaussian integration rule

used to discretize the spatial integrals over cell faces and the cell volume, see (2.47),

(2.48) below. Our numerical experiments show that the best results in terms of

accuracy and computational cost for r = 3, 4 are obtained if the following two-point

(fourth order) Gaussian quadrature is used:

∫ 1

−1

φ(ξ) dξ = φ

(
− 1√

3

)
+ φ

(
+

1√
3

)
, (2.5)

even though the use of (2.5) leads to formal fourth order spatial accuracy. The

WENO sweep in the x coordinate direction (normal to the cell face) corresponds

to the left and right reconstructed values at ξi+1/2 whereas the y and z sweeps

need values at the Gaussian points ξα; for the two-point quadrature (2.5) these are

ξi ±∆ξ/(2
√

3).

It appears as if the weights and reconstruction formulas for the Gaussian integration

points ξα have not been reported in the literature so far. Therefore, in order to

provide the complete information about the scheme below we give all necessary

information for one dimensional sweeps in the piece-wise parabolic (r = 3) and

piece-wise cubic (r = 4) reconstruction.

2.1.2. Piece-wise parabolic WENO reconstruction (r = 3)

We consider a cell [ξi−1/2, ξi+1/2] and provide expressions for u(ξi+1/2−0), u(ξi−1/2+

0) and u(ξi ±∆ξ/(2
√

3)). The three candidate stencils for reconstruction are

S0 = (i, i + 1, i + 2), S1 = (i− 1, i, i + 1), S2 = (i− 2, i− 1, i).

The corresponding smoothness indicators are given by [22]

β0 =
13

12
(ui − 2ui+1 + ui+2)

2 +
1

4
(3ui − 4ui+1 + ui+2)

2,

β1 =
13

12
(ui−1 − 2ui + ui+1)

2 +
1

4
(ui−1 − ui+1)

2,

β2 =
13

12
(ui−2 − 2ui−1 + ui)

2 +
1

4
(ui−2 − 4ui−1 + 3ui)

2.

(2.6)

The optimal weights dl and the left extrapolated value are given by [22]:

d0 =
3

10
, d1 =

3

5
, d2 =

1

10
(2.7)
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u(ξi+1/2 − 0) =
1

6
ω0(−ui+2 + 5ui+1 + 2ui)+

1

6
ω1(−ui−1 + 5ui + 2ui+1) +

1

6
ω2(2ui−2 − 7ui−1 + 11ui).

(2.8)

For derivatives we have

∆x
d

dx
u(ξi+1/2 − 0) = ω0(ui+1 − ui)+

ω1(ui+1 − ui) + ω2(ui−2 − 3ui−1 + 2ui).

∆x2 d2

dx2
u(ξi+1/2 − 0) = ω0(ui+2 − 2ui+1 + ui)+

ω1(ui+1 − 2ui + ui−1) + ω2(ui − 2ui−1 + ui−2).

The optimal weights and extrapolated values for the right boundary are obtained

by symmetry and are thus omitted.

For the first Gaussian integration point ξ = ξi −∆ξ/(2
√

3) the optimal weights

are as follows [52]:

d0 =
210−√3

1080
, d1 =

11

18
, d2 =

210 +
√

3

1080
(2.9)

and the reconstructed values are given by

u

(
ξi − ∆ξ

2
√

3

)
= ω0

[
ui + (3ui − 4ui+1 + ui+2)

√
3

12

]
+

ω1

[
ui − (−ui−1 + ui+1)

√
3

12

]
+ ω2

[
ui − (3ui − 4ui−1 + ui−2)

√
3

12

]
.

(2.10)

∆x
d

dx
u

(
ξi − ∆ξ

2
√

3

)
=

1

6
ω0

[
−9ui + 12ui+1 − 3ui+2 −

√
3ui + 2

√
3ui+1 −

√
3ui+2

]
+

1

6
ω1

[
−3ui−1 + 3ui+1 + 2

√
3ui −

√
3ui−1 −

√
3ui+1

]
+

1

6
ω2

[
9ui − 12ui−1 + 3ui−2 −

√
3ui + 2

√
3ui−1 −

√
3ui−2

]
.

(2.11)

∆x2 d2

dx2
u

(
ξi − ∆ξ

2
√

3

)
= ω0 [ui − 2ui+1 + ui+2] +

ω1 [−2ui + ui+1 + ui−1] + ω2 [ui − 2ui−1 + ui−2] .

(2.12)



28

For the second Gaussian integration point ξ = ξi+∆ξ/(2
√

3) the optimal weights

and the extrapolated values are obtained from symmetry

We note that the nonlinear weights ωl must be computed according to (2.2)

separately for each of the points ξi ±∆ξ/(2
√

3).

2.1.3. Piece-wise cubic WENO reconstruction (r = 4)

The four candidate stencils are

S0 = (i, i + 1, i + 2, i + 3), S1 = (i− 1, i, i + 1, i + 2),

S2 = (i− 2, i− 1, i, i + 1), S3 = (i− 3, i− 2, i− 1, i).
(2.13)

The corresponding smoothness indicators as well as expressions for uL
i+1/2 and uR

i−1/2

are rather cumbersome and can be found in [3]. We omit them to save space and

describe the weights and reconstructed values only for the Gaussian integration

points. The reconstructed values for derivatives are omitted as well.

For the first Gaussian integration point ξ = ξi −∆ξ/(2
√

3) the optimal weights

are as follows [52]1:

d0 =
−50 + 3717

√
3

166320

√
3, d1 =

72
√

3

7

(
889

√
3

63360
− 587

1995840

)
,

d2 =
72
√

3

7

(
889

√
3

63360
+

587

1995840

)
, d3 =

50 + 3717
√

3

166320

√
3

and the reconstructed value is given by

u

(
ξi − ∆ξ

2
√

3

)
=

ω0

[
ui − (−43ui + 69ui+1 − 33ui+2 + 7ui+3)

√
3

144
− (−ui + 3ui+1 − 3ui+2 + ui+3)

√
3

432

]
+

ω1

[
ui − (−15ui + 27ui+1 − 7ui−1 − 5ui+2)

√
3

144
+ (−3ui + 3ui+1 + ui−1 − ui+2)

√
3

432

]
+

ω2

[
ui − (15ui + 7ui+1 − 27ui−1 + 5ui−2)

√
3

144
+ (3ui − ui+1 − 3ui−1 + ui−2)

√
3

432

]

ω3

[
ui − (43ui − 69ui−1 + 33ui−2 − 7ui−3)

√
3

144
− (ui − 3ui−1 + 3ui−2 − ui−3)

√
3

432

]
.

(2.14)

For the second Gaussian integration point optimal weights and reconstructed values

are obtained from symmetry.

1Note that in note, that there is a misprint in the paper [52]
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2.1.4. Reconstruction for systems

The reconstruction for systems can be carried out either in conservative variables

or in local characteristic variables, see e.g. [19]. For the first option the above

expressions (2.7) – (2.14) are used for each component of the vector of conservative

variables Q. For the characteristic reconstruction one first transforms to characteristic

variables and then applies (2.7) – (2.14) to each component of these variables. The

final values are obtained by transforming back to conservative variables.

Although the use of characteristic decomposition in reconstruction increases the

computational cost of the scheme, our experiments show that in some cases it is

necessary in order to avoid spurious oscillations. Therefore, in this paper we always

carry out reconstruction in local characteristic variables.

A note needs to be added on the use of the ENO and WENO reconstructions for

nonlinear systems. In general, ENO reconstruction avoids generating large O(1)

oscillations near discontinuities by selecting a smooth stencil of r − 1 cells out

of r possible stencils covering the given cell. WENO reconstruction mimics the

behavior of the ENO reconstruction near discontinuities by assigning nearly zero

weights to stencils which cross a discontinuity. However, if the solution contains

two discontinuities which are too close to each other the reconstruction procedure

will not be able to find a smooth stencil and spurious oscillations will appear. As a

result, the scheme may crash.

To avoid the above problem we adopt (with appropriate modifications for the

present study) a method proposed in [19]. Consider computation of the left boundary

extrapolated values for the cell Iijk used in the evaluation of the numerical flux

Fi+1/2,jk. For each Gaussian integration point (xi+1/2 − 0, yα, zβ) we check the

following conditions:

|ρ(xi+1/2−0, yα, zβ)−ρijk| ≤ 0.9 ρijk, |p(xi+1/2−0, yα, zβ)−pijk| ≤ 0.9 pijk (2.15)

If conditions (2.15) are not satisfied we decrease the order of reconstruction r in

each of the one-dimensional WENO sweeps and repeat the reconstruction step for

the left boundary extrapolated values. If conditions (2.15) are not satisfied even for

the weighted piece-wise linear (r = 2) reconstruction we switch to a MUSCL-type

reconstruction in each of the one dimensional sweeps:

uL
i+1/2 = ui +

∆ξ

2
S, uR

i−1/2 = ui − ∆ξ

2
S, u

(
ξi ± ∆ξ

2
√

3

)
= ui ± ∆ξ

2
√

3
S,

where S is the limited slope. We use minmod-type limiter [25]:

S =
1

2
(sign(∆−)+sign(∆+)) min(|∆−|, |∆+|), ∆− =

ui − ui−1

∆ξ
, ∆+ =

ui+1 − ui

∆ξ
.
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The right boundary extrapolated values are treated in an entirely analogous

manner.

Our numerical experiments show that the use of a less diffusive slope limiter in

the above framework does not improve the accuracy and may sacrifice the robustness

of the scheme.

We remark that the use of the above procedure does not in any way degrade the

high order of accuracy of the schemes for smooth solutions; see [19] for details.

2.2. ADER schemes in one space dimension

Consider a hyperbolic system in conservation form given by

∂tQ + ∂xF(Q) = S(x, t,Q) (2.16)

along with initial and boundary conditions. Here Q is the vector of unknown

conservative variables, F(Q) is the physical flux vector and S(x, t,Q) is a source

term. Integrating (2.16) over a space-time control volume in x−t space [xi−1/2, xi+1/2]×
[tn, tn+1] of dimensions ∆x = xi+1/2−xi−1/2, ∆t = tn+1− tn, we obtain the following

one-step relations:

Qn+1
i = Qn

i +
∆t

∆x

(
Fi−1/2 − Fi+1/2

)
+ ∆tSi. (2.17)

Here Qn
i is the cell average of the solution at time level tn, Fi+1/2 is the time average

of the physical flux at cell interface xi+1/2 and Si is the time-space average of the

source term over the control volume:

Qn
i =

1

∆x

∫ xi+1/2

xi−1/2

Q(x, tn) dx, Fi+1/2 =

∫ tn+1

tn
F(Q(xi+1/2, t) dt,

Si =
1

∆t

1

∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

S(x, τ,Q(x, τ)) dx dτ.

(2.18)

Equation (2.17) involving the integral averages (2.18) is up to this point an exact

relation, but can be used to construct numerical methods to compute approximate

solutions to (2.16). This is done by subdividing the domain of interest into many

disjoint control volumes and by defining approximations to the flux integrals, called

numerical fluxes, and to the source integral, called numerical source. Let us denote

the approximations to these integrals by the same symbols Fi+ 1
2

and Si in (2.18).

Then the formula (2.17) is a conservative one-step scheme to solve (2.16).
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The ADER approach defines numerical fluxes and numerical sources in such

a way that the explicit conservative one-step formula (2.17) computes numerical

solutions to (2.16) to arbitrarily high order of accuracy in both space and time. The

approach consists of three steps: (i) reconstruction of point wise values from cell

averages, (ii) solution of a Derivative Riemann problem at the cell interface and

evaluation of the intercell flux Fi+1/2, (iii) evaluation of the numerical source term

Si by integrating a time-space Taylor expansion of the solution inside the cell.

The point-wise values of the solution at t = tn are reconstructed from cell

averages by means of essentially non-oscillatory (ENO) [19] or weighted essentially

non-oscillatory (WENO) [30, 22] techniques. We remark that for the rth order

accurate scheme (in time and space) the reconstruction polynomials must be of

(r − 1 )th order, e.g. for third order schemes we use piece-wise parabolic reconstruction

and so on. After the reconstruction step the conservative variables in each cell are

represented by vectors pi(x) of polynomials. Then at each cell interface we can pose

the following Derivative Riemann problem:

PDE: ∂tQ + ∂xF(Q) = S(x, t,Q),

IC: Q(x, 0) =

{
QL(x) = pi(x), x < xi+1/2,

QR(x) = pi+1(x), x > xi+1/2.

(2.19)

Obviously, the initial-boundary problem (2.19) is exactly the DRP (1.1). Therefore,

in order to obtain an approximate solution for the interface state Q(xi+1/2, τ), where

τ is local time τ = t− tn, we apply the solution procedure outlined in the previous

chapter and obtain the approximate state Q(xi+1/2, τ)) in the form of the temporal

polynomial (1.2).

Two options now exist to evaluate the numerical flux depending on the way we

evaluate the Godunov state of (1.3). If a conventional approximate-state Riemann

solver for the Riemann problem (1.3) is available we use the state-expansion version

of the method. We insert the approximate state Q(xi+1/2, τ)) into the definition of

the numerical flux (2.18) and then use an appropriate rth-order accurate quadrature

for time integration:

Fi+1/2 =

Kl∑

l=0

F(Q(xi+1/2, αl∆t))ωl. (2.20)

Here αl and ωl are properly scaled nodes and weights of the rule and Kl is the

number of nodes.

When a conventional approximate-state Riemann solver is not available, we use

the EVILIN Riemann solver to obtain the leading term of the state expansion (1.2).
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Numerical experiments show that in this case the best results are obtained when

the so-called flux-expansion ADER [53] is used. The main difference from the state-

expansion ADER is that we now seek a truncated Taylor time expansion of the

physical flux at xi+1/2:

F(xi+1/2, τ) = F(xi+1/2, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, 0+)

]
τ k

k!
. (2.21)

From (2.18) and (2.21) the numerical flux is now given by

Fi+1/2 = F(xi+1/2, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, 0+)

]
∆tk

(k + 1)!
. (2.22)

The leading term F(xi+1/2, 0+) accounts for the first interaction of left and right

boundary extrapolated values and is the GMUSTA flux (1.12). Other options include

the use of conventional upwind fluxes, see [53] for details. The remaining higher

order time derivatives of the flux in (2.22) are expressed via time derivatives of the

intercell state Q(xi+1/2, 0+), which are known from (1.1). The leading term Q(0+, 0)

is now given by the EVILIN Riemann solver (1.13). No numerical quadrature is then

required to compute the numerical flux.

An important issue is the choice of parameters M and k in the local GMUSTA

time marching (1.10). In general, we observe that convergence of the EVILIN state

to the exact Godunov state is obtained only when M, k → ∞. However, practical

experience suggest that for designing numerical methods in most of the cases the

choice M = 1 and k = 1 in the GMUSTA time marching (1.10) gives numerical

results that are comparable with those from the most accurate of fluxes, namely,

the first-order Godunov upwind flux used in conjunction with the exact Riemann

solver2. See [76] for a more detailed discussion of the choice of M and k. Therefore,

for the rest of the paper we use these values in ADER schemes.

Now we deal with the treatment of the source term. The first step in the

evaluation of the numerical source term Sn
i in (2.18) is to discretize the space integral

by means of a N -point Gaussian rule:

Si =
N∑

α=1

(
1

∆t

∫ tn+1

tn
S(xα, τ,Q(xα, τ))dτ

)
Kα, (2.23)

where Kα are the scaled weights of the rule, xα are the Gaussian integration points

and N is the total number of points in the rule.

2Note that in [78] the value of k is incorrectly given as 2.
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Next for each Gaussian point xα (which are different from xi±1/2) we reconstruct

values of Q and its spatial derivatives by means of the WENO reconstruction,

write the Taylor time expansion and perform the Cauchy-Kowalewski procedure

to replace all time derivatives by spatial derivatives. As a result we obtain high-

order approximations to Q(xα, τ), α = 1, . . . , N in the form of temporal polynomials.

Finally, the time integration in (2.18) is carried out by means of a Gaussian quadrature:

Si =
N∑

α=1

(
N∑

l=1

S(xα, τl,Q(xα, τl))Kl

)
Kα. (2.24)

The solution is advanced in time by updating the cell averages according to the

one-step formula (2.17).

2.3. ADER-TVD schemes

We recall that in the solution of the DRP we have made use of the so-called

Godunov state in the solution of each of the conventional Riemann problems to

evaluate each term of the expansion. It is known that the use of the Godunov state

is associated with the flux of a first-order monotone scheme, namely the Godunov

first-order upwind method [18]. In this section we propose to use a second-order

TVD flux (or state) instead of the first-order Godunov flux or state, to evaluate

each term of the expansion. We present the main ideas in terms of the model

hyperbolic equation. Our description follows that of [75, 77].

2.3.1. The scheme for the linear advection equation

Consider

∂tq + ∂xf(q) = 0 , f(q) = λq , λ : constant . (2.25)

The corresponding finite volume scheme reads

qn+1
i = qn

i −
∆t

∆x

(
fi+1/2 − fi−1/2

)
. (2.26)

We use the state-expansion version of ADER, whose numerical flux in (2.26) is

computed by first solving the appropriate DRP, the solution of which is

q(xi+1/2, τ) = q(xi+1/2, 0+) +
r−1∑

k=1

[
∂

(k)
t q(xi+1/2, 0+)

] τ k

k!
. (2.27)
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We now need to determine the coefficients ∂
(k)
t q(xi+1/2, 0+). The Cauchy-Kowalewski

method allows us to write

∂
(k)
t q(x, t) = (−λ)k∂(k)

x q(x, t) , (2.28)

so now the problem is reduced to that of computing space derivatives at x = xi+ 1
2
,

τ = 0+. To do this we first note that q(k) ≡ ∂
(k)
x q obeys the evolution equation in

(2.25) and the associated conventional Riemann problem DRP0 is:

PDE: ∂tq
(k) + λ∂xq

(k) = 0 ,

IC: q(k)(x, 0) =

{
q
(k)
L ≡ ∂

(k)
x qL(xi+1/2) if x < xi+1/2 ,

q
(k)
R ≡ ∂

(k)
x qR(xi+1/2) if x > xi+1/2 ,





(2.29)

whose similarity solution is denoted by q(k)(x, τ). The sought particular value of

this solution is

q(k)(xi+ 1
2
, 0+) : The Godunov state . (2.30)

Then, from (2.28) we may write

∂
(k)
t q(xi+ 1

2
, 0+) = (−λ)kq(k)(xi+ 1

2
, 0+) (2.31)

and thus the expansion (2.27) becomes completely determined, namely

q(xi+1/2, τ) = q(xi+1/2, 0+) +
r−1∑

k=1

[
(−λ)kq(k)(xi+ 1

2
, 0+)

] τ k

k!
. (2.32)

Then the flux is computed from (2.21) and (2.22) as

fi+1/2 = λ

[
q(xi+1/2, 0+) +

r−1∑

k=1

[
(−λ)kq(k)(xi+ 1

2
, 0+)

] ∆tk

(k + 1)!

]
(2.33)

and substitution into (2.26) gives the updated solution at the time level n + 1.

It is informative to fully expand the algebraic expression of the updated solution

at the new time level. We obtain

qn+1
i = qn

i − (∆t)0

∆x

(
λp

(0)
i+1/2 − λp

(0)
i−1/2

)

− (∆t)1

∆x

(
λp

(1)
i+1/2 − λp

(1)
i−1/2

)

. . .

− (∆t)k

∆x

(
λp

(k)
i+1/2 − λp

(k)
i−1/2

)

. . .

− (∆t)r−1

∆x

(
λp

(r−1)
i+1/2 − λp

(r−1)
i−1/2

)





(2.34)
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with

p
(k)
i+1/2 = (−λ)kq

(k)
i+1/2 , (∆t)k =

(∆t)k+1

(k + 1)!
. (2.35)

First we see that in the case of piece-wise constant representation of the data

(no reconstruction) the first line of (2.34) is the Godunov first-order upwind method

applied to the state variable q = ∂
(0)
x q. An immediate thought that comes to mind

is to replace the Godunov flux by some more accurate flux, provided it gives a non-

oscillatory scheme, such as a TVD flux. We also note that the second line could be

interpreted as solving an equation for the evolution of gradients q(1) = ∂
(1)
x q, also

using the Godunov first-order upwind method, and in which the initial condition

is given by the two terms on the right-hand side of the first line. Again one could

argue that it is obviously better to use a second order TVD flux for this part instead

of the first-order Godunov flux. Similar observations apply to the remaining lines

of (2.34), leading to the obvious conclusion that for each one of them one should

utilize a TVD flux, instead of the first-order Godunov flux.

In other words, in each term of the expansion in the solution of the Derivative

Riemann problem DRPr−1 we replace the Godunov state (2.30), or its corresponding

flux (2.33), by a state or corresponding flux associated with a second-order TVD

scheme.

2.3.2. The ADER-WAF scheme for systems

There are several TVD fluxes in the literature, see for example [65]. However,

it seems as if not all TVD fluxes would be suitable to our purpose. A key requirement

for simplicity is that second-order of accuracy be achieved without data reconstruction.

To our knowledge the only (upwind) second order TVD flux that satisfies this

requirement is the WAF flux, which does not impose any constraints on the boundary

extrapolated values Q
(k)
L (xi+1/2) and Q

(k)
R (xi+1/2) (k = 0, 1, . . . , m−1). The Weighted

Average Flux (WAF) method [61, 63, 62, 65, 5] is a one-step Godunov-type method.

Here we describe the WAF flux for an N × N one-dimensional hyperbolic system.

It is defined as

FWAF
i+1/2 =

1

∆x

∫ ∆x/2

−∆x/2

F(Q(x, tn + ∆t/2)) dx . (2.36)

Assuming the integrand F to be the solution of the conventional piece-wise constant

Riemann problem with QL ≡ Qn
i , QR ≡ Qn

i+1, we may write

FWAF
i+1/2 =

1

2
(Fn

i + Fn
i+1)−

1

2

N∑

k=1

ck∆F
(k)
i+1/2 , (2.37)
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where ck = Sk∆t
∆x

is the Courant number associated with wave k of speed Sk in the

solution of the Riemann problem DRP0 and ∆F
(k)
i+1/2 is the jump in F across wave k.

The TVD (non-oscillatory) version of the WAF flux is given by

FWAF
i+1/2 =

1

2
(Fn

i + Fn
i+1)−

1

2

N∑

k=1

sign(ck)A
(k)
i+1/2∆F

(k)
i+1/2 . (2.38)

The WAF flux limiter A
(k)
i+1/2 = A

(k)
i+1/2(r

(k)
i+1/2) depends on the parameter r

(k)
i+1/2,

which refers to wave k in the solution of the Riemann problem and is the following

ratio

r
(k)
i+1/2 =





∆q
(k)
i−1/2/∆q

(k)
i+1/2 , if ck > 0 ,

∆q
(k)
i+3/2/∆q

(k)
i+1/2 , if ck < 0 .

(2.39)

Here q is a suitable variable which changes across each wave family in the solution of

the Riemann problem; ∆q
(k)
l+1/2 denotes the jump in the variable q across wave k in

the self-similar solution Ql+1/2(ξ, τ) in the Riemann problem with data (Qn
l ,Q

n
l+1).

Another possible version of WAF is obtained by first defining an weighted average

state

Qi+1/2 =
1

2
(Qn

i + Qn
i+1)−

1

2

N∑

k=1

sign(ck)A
(k)
i+1/2∆Q

(k)
i+1/2 (2.40)

and then obtaining an associated flux as Fi+1/2 = F(Qi+1/2). Further details are

found in [65].

For a non-linear system the proposed ADER-WAF scheme utilizes a WAF flux

(2.38) or state (2.40), instead of the Godunov flux or state, in every term of the

solution (1.2) of the DRP (1.1). It is immediately obvious that in the limiting case

of no reconstruction (piece-wise constant data), our schemes reduce to a second-order

TVD scheme, whereas the conventional schemes reduce to a first-order monotone

scheme, the underlying scheme used as the building block.

2.3.3. Some implementation issues

A couple of remarks on implementation issues are in order. These are particularly

relevant for long time evolution problems. The first remark concerns the nonlinear

WENO weights used in the solution reconstruction. The design of these weights

involves a small parameter ε used to avoid division by zero [22]. Usually one takes ε =

10−6. We find, however, that for the ADER and ADER-WAF methods, especially

for the third order versions, it is preferable to use a smaller value. We normally take

ε = 10−24 for these schemes.
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The second remark concerns the computation of the ratio r = N/D in (2.39),

where N is the numerator and D is the denominator. This requires special attention

when the denominator D is small, |D| ≤ δ, say, where δ is a small positive number.

For TVD methods, experience shows that the robustness of the methods does not

depend too crucially on the way this step is handled, while accuracy does. The

following two procedures are usually applied:

r =
N

D + δ
, (2.41)

r =
N̂

D̂
, X̂ =





δ sign(1, X) , if |X| ≤ δ ,

X , otherwise ,
(2.42)

where X = N, D. Procedure (2.42) leads to more accurate results and it can be

easily seen that for nearly uniform flow r ≈ 1, leading to second order accuracy, the

correct behaviour of a TVD scheme. This is not the case with procedure (2.41),

which results in larger artificial diffusion. There is a third procedure given by

r =





N

D
, if |D| ≥ δ ,

0 , otherwise .

(2.43)

For the computations reported in this thesis, procedure (2.42) was used success-

fully, except for a particular case, namely the linear advection equation for the

fourth order ADER-WAF scheme for a long time evolution as applied to the linear

advection equation. For such case procedure (2.43) was applied with satisfactory

results. It seems to us as if the implementation of TVD criteria in the construction

of very high-order methods may require some further investigations.

2.4. ADER schemes in three space dimensions

Consider the following three-dimensional nonlinear system of conservation laws:

∂tQ + ∂xF(Q) + ∂yG(Q) + ∂zH(Q) = S(x, y, z, t,Q). (2.44)

Integration of (2.44) over a space-time control volume of dimensions ∆x = xi+1/2 −
xi−1/2, ∆y = yj+1/2 − yj−1/2, ∆z = zk+1/2 − zk−1/2, ∆t = tn+1 − tn produces the

following one-step finite-volume scheme:

Qn+1
ijk = Qn

ijk +
∆t

∆x

(
Fi−1/2,jk − Fi+1/2,jk

)
+

∆t

∆y

(
Gi,j−1/2,k −Gi,j+1/2,k

)

+
∆t

∆z

(
Hij,k−1/2 −Hij,k+1/2

)
+ ∆tSijk,

(2.45)
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where Qn
ijk is the cell average of the solution at time level tn:

Qn
ijk =

1

∆x

1

∆y

1

∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

Q(x, y, z, tn) dz dy dx, (2.46)

Fi+1/2,jk, Gi,j+1/2,k and Hij,k+1/2 are the space-time averages of the physical fluxes

at the cell interfaces:

Fi+1/2,jk =
1

∆t

1

∆y

1

∆z

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

∫ tn+1

tn
F(Q(xi+1/2, y, z, τ)) dτ dz dy,

Gi,j+1/2,k =
1

∆t

1

∆x

1

∆z

∫ xi+1/2

xi−1/2

∫ zk+1/2

zk−1/2

∫ tn+1

tn
G(Q(x, yi+1/2, z, τ)) dτ dz dx,

Hij,k+1/2 =
1

∆t

1

∆x

1

∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ tn+1

tn
H(Q(x, y, zi+1/2, τ)) dτ dy dx.

(2.47)

and Sijk is space-time average of the source term:

Sijk =
1

∆t

1

∆x

1

∆y

1

∆z

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

S(x, y, z, t,Q) dz dy dx dt.

(2.48)

Here τ = t− tn is local time.

While describing the procedure to evaluate the numerical flux in three space

dimensions we concentrate on Fi+1/2,jk; the expressions for Gi,j+1/2,k and Hij,k+1/2

are obtained in an entirely analogous manner.

The evaluation of the ADER numerical flux Fi+1/2,jk consists of the following

steps. First we discretize the spatial integrals over the cell faces in (2.47) using a

tensor product of a suitable Gaussian numerical quadrature. The expression for the

numerical flux in the x coordinate direction then reads

Fi+1/2,jk =
N∑

α=1

N∑

β=1

(
1

∆t

∫ tn+1

tn
F(Q(xi+1/2, yα, zβ, τ))dτ

)
Kβ Kα, (2.49)

where yα, zβ are the integration points over the cell face [yj−1/2, yj+1/2]×[zk−1/2, zk+1/2]

and Kα, Kβ are the weights. Normally, we use the two-point Gaussian quadrature

for third and fourth order schemes and a higher-order Gaussian quadrature for fifth

and higher order schemes.

Next we reconstruct the point-wise values of the solution and all derivatives up

to order r−1 from cell averages at the Gaussian integration points (xi+1/2, yα, zβ) by

means of the dimension-by-dimension WENO reconstruction. For general information
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on reconstruction in the context of the two-dimensional ENO and WENO schemes

see [7, 21]. Extension to three space dimensions in the context of ADER schemes

can be found in [68]. See Section 2.1 for more details.

After the reconstruction is carried out for each Gaussian integration point (yα, zβ)

at the cell face we pose the Derivative Riemann problem (1.1) in the x-coordinate

direction (normal to the cell boundary) and obtain a high order approximation to

Q(xi+1/2, yα, zβ, τ). All steps of the solution procedure remain essentially as in the

one-dimensional case. We write Taylor series expansion in time

Q(xi+1/2, yα, zβ, τ) = Q(xi+1/2, yα, zβ, 0+) +
r−1∑

k=1

[
∂k

∂tk
Q(xi+1/2, yα, zβ, 0+)

]
τ k

k!
.

(2.50)

The leading term Q(xi+1/2, yα, zβ, 0+) is the Godunov state of the conventional

augmented Riemann problem

∂tQ + ∂xF(Q) = 0,

Q(x, 0) =

{
QL(xi+1/2, yα, zβ) if x < xi+1/2,

QR(xi+1/2, yα, zβ) if x > xi+1/2,





(2.51)

To evaluate higher-order terms we first express all time derivatives by spatial derivatives

by means of the Cauchy-Kowalewski procedure. We note that this procedure will

now involve mixed x, y and z derivatives up to order r − 1. For the system in

conservation form (2.44) we have

∂tQ = −
(

∂F
∂Q

)
∂xQ−

(
∂G
∂Q

)
∂yQ−

(
∂H
∂Q

)
∂zQ,

∂txQ = −
(

∂2F
∂Q2

)
(∂xQ)2 −

(
∂F
∂Q

)
∂xxQ−

(
∂2G
∂Q2

)
(∂xQ)(∂yQ)−

(
∂G
∂Q

)
∂xyQ

−
(

∂2H
∂Q2

)
(∂xQ)(∂zQ)−

(
∂H
∂Q

)
∂xzQ,

∂tyQ = −
(

∂2F
∂Q2

)
(∂yQ)(∂xQ)−

(
∂F
∂Q

)
∂xyQ−

(
∂2G
∂Q2

)
(∂yQ)2 −

(
∂G
∂Q

)
∂yyQ

−
(

∂2H
∂Q2

)
(∂yQ)(∂zQ)−

(
∂H
∂Q

)
∂yzQ,

∂tzQ = −
(

∂2F
∂Q2

)
(∂zQ)(∂xQ)−

(
∂F
∂Q

)
∂xzQ−

(
∂2G
∂Q2

)
(∂zQ)(∂yQ)−

(
∂G
∂Q

)
∂yzQ

−
(

∂2H
∂Q2

)
(∂zQ)2 −

(
∂H
∂Q

)
∂zzQ,

∂ttQ = −
(

∂2F
∂Q2

)
(∂tQ)(∂xQ)−

(
∂F
∂Q

)
∂txQ−

(
∂2G
∂Q2

)
(∂tQ)(∂yQ)−

(
∂G
∂Q

)
∂tyQ

−
(

∂2H
∂Q2

)
(∂tQ)(∂zQ)−

(
∂H
∂Q

)
∂tzQ
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and so on. An optimized FORTRAN or C output can be produced using algebraic

manipulators and then can be directly included into the actual code.

In an entirely analogous way to the one-dimensional case, we can derive evolution

equations and the initial conditions for each spatial derivative

Q(m+n+l) ≡ ∂m+n+l

∂xm∂yn∂zl
Q, 1 ≤ m + n + l ≤ r − 1

by differentiating the governing equation (2.44) and the reconstruction polynomials

QL, QR with respect to x. The evolution equations have exactly the same form

as (1.7) with a difference. The right hand side will now depend not only on lower

order x derivatives but also on mixed derivatives. For the Taylor expansion (2.50)

we need the values at x = xi+1/2, τ = 0. Therefore, entirely analogous to the

one-dimensional case, we neglect the source term, linearize the equation around the

leading term of the time expansion (2.50) and replace the piece-wise polynomial

initial data by the left and right extrapolated values. The spatial derivatives at

(x− xi+1/2)/τ = 0 are then the Godunov states of the following linearised Riemann

problem with piece-wise constant initial data:

∂t

(
Q(m+n+l)

)
+ Ai+1/2 ∂x

(
Q(m+n+l)

)
= 0,

Ai+1/2 = A(Q(xi+1/2, yα, zβ, 0+)),

Q(m+n+l) =





∂m+n+l

∂xm∂yn∂zl
QL(xi+1/2, yα, zβ), x < xi+1/2

∂m+n+l

∂xm∂yn∂zl
QR(xi+1/2, yα, zβ), x > xi+1/2

(2.52)

After solving (2.52) for 1 ≤ m + n + l ≤ r − 1 we form the Taylor expansion (2.50)

for the interface state at the Gaussian integration point (xi+1/2, yα, zβ). The flux of

the state-expansion ADER scheme is obtained by inserting the approximate state

(2.50) into formula (2.49) and using an appropriate rth-order accurate quadrature

for time integration:

Fi+1/2,jk =
N∑

α=1

N∑

β=1

(
N∑

l=1

F(Q(xi+1/2, yα, zβ, τl))Kl

)
Kβ Kα. (2.53)

For the flux expansion ADER schemes we write the Taylor time expansion of the

physical flux at each point (xi+1/2, yα, zβ)

F(xi+1/2, yα, zβ, τ) = F(xi+1/2, yα, zβ, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, yα, zβ, 0+)

]
τ k

k!
.

(2.54)
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From (2.47) and (2.54) the numerical flux is given by

Fi+1/2,jk =
N∑

α=1

N∑

β=1

F(xi+1/2, yα, zβ, 0+)KαKβ

+
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, yα, zβ, 0+)

]
∆tk

(k + 1)!
KαKβ .

(2.55)

Entirely analogous to the one-dimensional case, the leading term F(xi+1/2, yα, zβ, 0+)

is computed from (2.51) using a monotone upwind flux. The remaining higher order

time derivatives of the flux in (2.54) are expressed via time derivatives of the intercell

state Q(xi+1/2, yα, zβ, τ) which are given by the Taylor expansion (2.50).

As in the one-dimensional case, when a conventional approximate-state Riemann

solver is not available, the leading term Q(0+, 0) is now given by the EVILIN

Riemann solver (1.13). The leading term of the flux expansion F(xi+1/2, 0+) is

given by the GMUSTA flux. Other options again include the use of conventional

upwind fluxes, see [53] for details. No numerical quadrature is then required to

compute the numerical flux.

The computation of the numerical source now involves four-dimensional integrals.

First we use the tensor-product of the N -point Gaussian rule to discretize the three-

dimensional space integral in (2.48) so that the expression for sijk reads

Sijk =
N∑

α=1

N∑

β=1

N∑
γ=1

(
1

∆t

∫ tn+1

tn
S(xα, yβ, zγ, τ, q(xα, yβ, zγ, τ))dτ

)
KγKβKα. (2.56)

Then we reconstruct values and all spatial derivatives, including mixed derivatives,

of q at the Gaussian integration point in x − y − z space for the time level tn.

Note that these points are different from flux integration points over cell faces. The

reconstruction procedure is entirely analogous to that for the flux evaluation. Next

for each Gaussian point (xα, yβ, zγ) we perform the Cauchy-Kowalewski procedure

and replace time derivatives by space derivatives. As a result we have high-order

approximations to Q(xα, yβ, zγ, τ). Finally, we carry out numerical integration in

time using the Gaussian quadrature:

Sijk =
N∑

α=1

N∑

β=1

N∑
γ=1

(
N∑

l=1

S(xα, yβ, zγ, τl,Q(xα, yβ, zγ, τl))Kl

)
KγKβKα. (2.57)

The solution is advanced in time by updating the cell averages according to the

one-step formula (2.45).
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Conclusion

In this chapter we first presented a brief description of the WENO reconstruction

procedure. Expressions for higher order reconstructions as well as extension to three

spatial extension were given. Next, we described the ADER approach as applied

to the multidimensional nonlinear systems of conservation laws with source terms.

In the one-dimensional case a special, more accurate version of the scheme, called

ADER-WAF, was developed.

We remark that the ADER approach provides the upwind approximation of the

source term due to the nice coupling of the flux and the source via the Taylor time

expansion. A detailed study of this aspect of the schemes is subject of the ongoing

research.
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3. Truncation error and stability analysis

Introduction

Despite significant advances in the development of the ADER schemes made in

recent years, little analysis of their properties has been done. So far only linear

schemes with a centred stencil have been studied [17]. Here we analyze stability

properties and truncation errors of the more general finite-volume ADER schemes

on structured meshes as applied to the linear advection equation with constant

coefficients in one, two and three spatial dimensions. The stability of linear ADER

schemes is studied by means of the von Neumann method. Due to the significant

complexity of the resulting expressions for the amplification factor we adopt the

idea of [12, 70] to verify the stability condition numerically rather than analytically.

The truncation error analysis is carried out for linear ADER schemes in one, two

and three space dimensions. In one space dimension we additionally analyze the

nonlinear ADER schemes as well as special ADER-WAF methods [75, 77].

The chapter is organized as follows. In In Section 3.1 we analyze one-dimensional

schemes, both linear and nonlinear, including ADER-TVD scheme. In Section 3.2

we study two-dimensional schemes. Analysis of the three-dimensional case is given

in Section 3.3.

We restrict ourselves to the Cauchy problem only and do not study the stability

of the schemes with respect to the boundary conditions.

3.1. One-dimensional schemes

3.1.1. Framework

We now consider the model linear advection equation:

∂v

∂t
+

∂f(v)

∂x
= 0, f = av, (3.1)

where a > 0 is the constant propagation speed. The ADER schemes are written as

follows:

vn+1
i = vn

i −
∆t

∆x
(fi+1/2 − fi−1/2). (3.2)

In one spatial dimension the most general formulation is the flux-expansion

ADER-WAF scheme [75, 77]. Let Pi(x) and Pi+1(x) be the left and right reconstruction
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polynomials for calculating the intercell flux fi+1/2. Then when applied to (3.1) the

ADER-WAF flux reads as follows:

fi+1/2 =
a

2

r−1∑

k=0

(−1)kak∆tk

(k + 1)!

[
(1 + ϕ

(k)
i+1/2)

dkPi

dxk
(xi+1/2) + (1− ϕ

(k)
i+1/2)

dkPi+1

dxk
(xi+1/2)

]
.

(3.3)

Here the WAF flux limiter ϕ
(k)
i+1/2 is calculated separately for each spatial derivative.

The ADER-WAF scheme thus may contain two nonlinearities: one is due to the

TVD limiter ϕ
(k)
i+1/2 and another is due to the possible use of the nonlinear, solution-

adaptive reconstruction. A particular choice of the flux limiter ϕ ≡ signa gives the

conventional upwind ADER schemes [49], both linear and nonlinear.

In general, it is very difficult, if possible, to analyze the scheme when a TVD

limiter is used due to the fact that the limiter does not depend continuously on data.

Therefore, we restrict our analysis to the following simplified variant of the scheme:

ϕ
(k)
i+1/2 ≡ ϕ = const.

The expression for the flux (3.3) takes the following form:

fi+1/2 =
a

2
(1 + ϕ)

r−1∑

k=0

(−1)kak∆tk

(k + 1)!

dk

dxk
Pi(xi+1/2)

+
a

2
(1− ϕ)

r−1∑

k=0

(−1)kak∆tk

(k + 1)!

dk

dxk
Pi+1(xi+1/2).

(3.4)

In order to avoid confusion with the complete ADER-WAF version, given by (3.3),

we call the scheme with the flux (3.4) the ADER-ϕ scheme. The flux (3.4) differs

from (3.3) in that ϕ depends neither on the interface position xi+1/2 nor on the

order of the spatial derivative k. However, this simplified ADER-ϕ scheme does

include the conventional ADER ϕ = signa as well as the case of the second order

Lax-Wendroff flux ϕ ≡ Kx = a∆t/∆x as the building block for each term in the

flux expansion (3.3). Therefore, it allows us to study the effect of using higher-order

building blocks in the ADER schemes. We remark that nonlinearity of the scheme

may still be present due to the adaptive reconstruction procedure.

The description of ADER flux (3.4) is complete once the expressions for the

reconstruction polynomials are provided. The simplest one-dimensional ADER

scheme is the linear scheme with the fixed-stencil reconstruction and the first-order

upwind flux as the building block (ϕ = signa). Recall that for the rth order scheme

we need to have a reconstruction polynomial of order r− 1. For a given cell i there

are r polynomials p
(l)
i constructed from the stencils Sl = (i− l, . . . , i + r − l). Here
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l = 0, 1, . . . r is the shift of the stencil with the respect to the index i. We denote by

f
(l)
i+1/2 the ADER flux which is obtained by setting Pi(x) = p

(l)
i (x) and ϕ = signa:

f
(l)
i+1/2 = a

r−1∑

k=0

(−1)kak∆tk

(k + 1)!

dk

dxk
p

(l)
i (xi+1/2), a > 0. (3.5)

ADER-ϕ schemes use the more accurate weighted essentially non-oscillatory

(WENO) reconstruction procedure to obtain the reconstructed values of the solution

at the cell interface position, see [22, 3] and references therein. The basic WENO

idea is to combine all r reconstruction polynomials to build up a more accurate

reconstruction polynomial:

Pi(x) =
r∑

l=0

dlp
(l)
i (x), (3.6)

where the so-called optimal weights dk are taken from [22, 3]. Note, that the weights

are tied up to the specific choice of the reconstruction point x = xi+1/2 and are

different for Pi(xi+1/2 − 0) and Pi+1(xi+1/2 + 0), see [22]. In the nonlinear version

of the scheme the linear weights dk are replaced by the nonlinear, solution-adaptive

WENO weights ωk given by [22]

αk =
dk

(ε + βk)p
, ωk =

αk∑
k

αl

, βl =
r−1∑

k=1

(
dkp

(l)
i (x)

dxk

)2

∆x2k−1.

Here βk are the so-called smoothness indicators, p is a parameter which ensures that

the discontinuous stencils are assigned small weights. We use a typical value p = 2.

We remark that the leading term of the truncation error of these schemes does not

depend on the value of p. A small constant ε is added to avoid division by zero.

For the purpose of analysis we set ε = 0. Finally, the reconstruction polynomials

obtained by replacing linear weights in (3.6) by nonlinear weights ωk:

Pi(x) =
r∑

l=0

ωlp
(l)
i (x). (3.7)

It follows from the linearity of the advection equation that for a given order

of accuracy r the description of ADER-ϕ schemes is complete once we provide

expressions for the fixed-stencil fluxes f
(l)
i+1/2.

Note, that the flux of the rth order ADER scheme with WENO reconstruction

uses for reconstruction a combination of r polynomials of order r−1. The stencils of

these polynomials form a larger stencil of 2r− 1 cells from which one can construct
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a polynomial of higher order s = 2r − 2 and use it for the flux evaluation. The

corresponding scheme ADERr-s scheme will have the same rth order of temporal

accuracy but a higher order spatial discretization. It is therefore interesting to study

its properties and compare it with other ADER schemes.

In the rest of the section for a given order of temporal accuracy r we analyze

three families of the ADER schemes: i) fixed stencil ADERr schemes with p
(l)
i (x)

polynomials; ii) ADERr-s schemes with polynomials of order s = 2r−2; iii) ADER-

ϕ schemes with linear (3.6) and nonlinear (3.7) WENO reconstructions. Depending

on the choice of ϕ we may have conventional ADERr schemes (ϕ = signa) and as well

as ADER schemes with the Lax-Wendroff flux, denoted by ADERr-LW (ϕ = Kx)

3.1.2. Description of the schemes

Second-order schemes

Linear second-order fixed-stencil schemes use piece-wise linear reconstruction. We

have two schemes, which we call centred-stencil (l = 0) and upwind-biased (l = 1).

The corresponding second-order fluxes are given by

f
(0)
i+1/2 =

1
2

a (1 + Kx) vj +
1
2

a (1−Kx) vj+1. (3.8)

f
(1)
i+1/2 =

1
2

a (Kx − 1) vj−1 +
1
2

a (3−Kx) vj . (3.9)

Here Kx ≡ a∆t/∆x is the CFL number in x spatial direction. Obviously, (3.8) is

the flux of the Law-Wendroff scheme whereas (3.9) is the flux of the Warming-Beam

scheme.

Next, we consider the second-order ADER2-3 scheme, which has the same stencil

as scheme (3.6) but uses a fixed parabolic polynomial for reconstruction. The

expression for the corresponding flux takes the form

fi+1/2 =
1
6
a [−vj−1 + (5 + 3Kx) vj + (2− 3Kx) vj+1] . (3.10)

The flux of ADER2-ϕ scheme can be obtained from (3.4) and is omitted.

Third-order schemes

Third-order fixed-stencil schemes use parabolic reconstruction polynomials. We have

three schemes, which we call downwind-biased (l = 0), upwind-biased (l = 1) and
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one-sided upwind (l = 2). The corresponding third-order fluxes are given by

f
(0)
i+1/2 = a

[(
1
3

+
1
2

Kx +
1
6

K2
x

)
vi +

(
5
6
− 1

2
Kx − 1

3
K2

x

)
vi+1 +

(
−1

6
+

1
6

K2
x

)
vi+2

]
(3.11)

f
(1)
i+1/2 = a

[(
−1

6
+

1
6

K2
x

)
vi−1 +

(
5
6

+
1
2

Kx − 1
3

K2
x

)
vi +

(
1
3
− 1

2
Kx +

1
6

K2
x

)
vi+1

]
(3.12)

f
(2)
i+1/2 = a

[(
1
3
− 1

2
Kx +

1
6

K2
x

)
vi−2 +

(
−7

6
+

3
2

Kx − 1
3

K2
x

)
vi−1 +

(
11
6
−Kx +

1
6

K2
x

)
vi

]

(3.13)

The flux of the ADER3-ϕ scheme with weighted piece-wise parabolic reconstruc-

tion [22] can be obtained from (3.4) and is omitted.

Finally, we consider the third-order ADER3-5 scheme, which has the same stencil

as scheme (3.6) but uses a fixed fourth-order polynomial for reconstruction. The

expression for the third-order ADER flux takes the form

fi+1/2 = a

[(
1
30
− 1

24
Kx

2

)
vi−2 +

(
1
4

Kx
2 − 13

60
− 1

24
Kx

)
vi−1+

(
47
60
− 1

3
Kx

2 +
5
8

Kx

)
vi +

(
9
20

+
1
12

Kx
2 − 5

8
Kx

)
vi+1+

(
1
24

Kx
2 − 1

20
+

1
24

Kx

)
vi+2

]
(3.14)

The stencil of the ADER3-5 scheme consists of six cells and is upwind-biased.

Fourth-order schemes

Fourth-order fixed-stencil schemes use piece-wise cubic reconstruction. There are

now four candidate schemes: downwind-biased (l = 0), symmetric or centred (l = 1),

upwind-biased (l = 2) and one-sided upwind (l = 3). The corresponding fourth-

order fluxes are given by

f
(0)
i+1/2 = a

[(
1
24

Kx
3 +

1
4

+
1
4

Kx
2 +

11
24

Kx

)
vi +

(
13
12
− 1

8
Kx

3 − 7
12

Kx
2 − 3

8
Kx

)
vi+1+

(
1
8

Kx
3 − 5

12
+

5
12

Kx
2 − 1

8
Kx

)
vi+2 +

(
1
24

Kx − 1
24

Kx
3 +

1
12
− 1

12
Kx

2

)
vi+3

]

(3.15)

f
(1)
i+1/2 = a

[(
1
24

Kx
3 − 1

12
+

1
12

Kx
2 − 1

24
Kx

)
vi−1 +

(
7
12
− 1

8
Kx

3 − 1
12

Kx
2 +

5
8

Kx

)
vi+

(
7
12

+
1
8

Kx
3 − 1

12
Kx

2 − 5
8

Kx

)
vi+1 +

(
1
24

Kx − 1
24

Kx
3 − 1

12
+

1
12

Kx
2

)
vi+2

]

(3.16)
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f
(2)
i+1/2 = a

[(
1
24

Kx
3 − 1

24
Kx +

1
12
− 1

12
Kx

2

)
vi−2 +

(
1
8

Kx − 1
8

Kx
3 − 5

12
+

5
12

Kx
2

)
vi−1+

(
1
8

Kx
3 +

13
12
− 7

12
Kx

2 +
3
8

Kx

)
vi +

(
1
4
− 1

24
Kx

3 +
1
4

Kx
2 − 11

24
Kx

)
vi+1

]

(3.17)

f
(3)
i+1/2 = a

[(
1
24

Kx
3 +

11
24

Kx − 1
4
− 1

4
Kx

2

)
vi−3 +

(
13
12
− 1

8
Kx

3 +
11
12

Kx
2 − 15

8
Kx

)
vi−2+

(
1
8

Kx
3 − 23

12
− 13

12
K2 +

23
8

Kx

)
vi−1 +

(
− 1

24
Kx

3 +
25
12

+
5
12

Kx
2 − 35

24
Kx

)
vi

]

(3.18)

For the fourth order schemes with WENO reconstruction we limit our analysis

to the linear ADER4-ϕ. The expressions for the corresponding flux and scheme are

omitted.

Finally, we can construct the fourth-order ADER4-7 scheme, which has the

same stencil as scheme (3.4) with WENO reconstruction but uses a fixed six-order

polynomial for reconstruction. The expression for the flux is omitted.

3.1.3. Stability analysis

The von Neumann stability analysis of the linear versions of our schemes is

performed as follows. We consider a trial solution vn
i = An exp (Iiα), where A

is the amplitude, α = P∆x is the phase angle, P is the wave number (not to be

confused with the reconstruction polynomial), λ = 2π/P is the wave length and

I =
√−1 is the unit complex number. We now write down the schemes in the

following concise form:

vn+1
i =

∑

l

blv
n
i+l,

where bl are the coefficients of the schemes. Inserting the trial solution in the

expression above we obtain the following algebraic expression for the modulus of

the amplitude A:

|A|2 =

(∑

l

bl cos (lα)

)2

+

( ∑

l

bl sin (lα)

)2

. (3.19)

A necessary condition for stability is |A| ≤ 1. However, the resulting algebraic

expression for the modulus of the amplification factor (3.19) is rather complicated

and untractable for algebraic analysis. We therefore verify the condition |A| ≤ 1

numerically rather than analytically by evaluating |A| for many values of the phase

angle α. This would give us a good and reliable indication of the stability region of

the scheme. See [12, 70] for more details on this procedure.
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We summarize the results of the stability study in Tables 5–7. Let us first

discuss the linear schemes with fixed-stencil reconstructions. We observe that the

downwind-biased schemes are unconditionally unstable, which is to be expected.

Other third order schemes are stable under a conventional stability condition Kx ≤
1. For the second and fourth order schemes the situation is more complicated.

The upwind-biased second order scheme and centred stencil fourth order scheme are

stable under a conventional stability condition Kx ≤ 1. The second order scheme

with the one-sided upwind stencil and fourth order scheme with the upwind-biased

stencil have an enlarged stability region Kx ≤ 2 which is twice that of the Godunov

scheme. Finally, the one-sided upwind fourth-order scheme has a very unusual

stability condition 1 ≤ Kx ≤ 3, which renders it impractical. Therefore, the stability

regions of schemes of even and odd orders of accuracy are quite different.

N Description Stability condition

Fixed-stencil schemes

1. Upwind-biased (3.8) Kx ≤ 1

2. One-sided upwind (3.9) Kx ≤ 2

3. ADER2-3 (3.10) Kx ≤ 0.72

Schemes with linear WENO reconstruction

4. ADER2 Kx ≤ 1.0

5. ADER2-LW unstable

Schemes with nonlinear WENO reconstruction

6. ADER2 Kx ≤ 1 (experiments with the scheme)

7. ADER2-WAF Kx ≤ 1 (experiments with the scheme)

Table 5 . Stability conditions for one-dimensional second-order schemes

We now proceed to analyze the schemes with increased orders of spatial accuracy.

We observe that compared to the fixed-stencil versions ADER2-3, ADER3-5 and

ADER4-7 schemes have reduced stability regions. The loss of stability region is

again expected and has been observed for other schemes in which the temporal

accuracy does not match the spatial accuracy. However, given the possible increase

in accuracy over fixed-stencil schemes, this reduction of the admissible CFL numbers

is justified.

Next we look at the linear schemes with WENO reconstruction. We observe

that the second order ADER2 scheme has a conventional stability region Kx ≤ 1
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N Description Stability condition

Fixed-stencil schemes

1. Downwind-biased unstable for all Kx

2. Upwind-biased (3.12) Kx ≤ 1

3. One-sided upwind (3.13) Kx ≤ 1

4. ADER3-5 (3.14) Kx ≤ 0.85

Schemes with linear WENO reconstruction

5. ADER3 Kx ≤ 0.4

6. ADER3-LW unstable

Schemes with nonlinear WENO reconstruction

7. ADER3 Kx ≤ 1 (experiments with the scheme)

8. ADER3-WAF Kx ≤ 1 (experiments with the scheme)

Table 6 . Stability conditions for one-dimensional third-order schemes

whereas higher order schemes have a reduced stability region Kx ≤ 0.4 for ADER3

and Kx ≤ 0.2 for ADER4. Moreover, the linear ADER2-LW and ADER3-LW

schemes are unstable. We remark, however, that for both schemes the maximum

value of |A| is only slightly larger than unity in the region 0 ≤ Kx ≤ 1. The linear

ADER4-LW scheme is stable with a very stringent stability condition Kx ≤ 0.08.

Finally, we discuss the stability condition of the nonlinear ADER schemes using

the nonlinear WENO reconstruction. The above spectral stability analysis is valid

for linear schemes only. For nonlinear schemes we have investigated the stability

for the special initial data in the form of an isolated harmonic wave and found that

the nonlinear ADER schemes are stable up to Kx = 1. The same analysis shows

that the nonlinear ADER3-LW is still unstable for small Kx, but its instability

becomes less severe. Therefore, we estimate the stability condition of the nonlinear

schemes ADER-WAF from numerical experiments. After exhaustive study for both

smooth and discontinuous solutions we find that these schemes are stable under a

conventional stability condition Kx ≤ 1. Therefore, despite the fact that the linear

schemes are unstable, the nonlinear versions are indeed stable.

We remark that it is not unusual that the nonlinear version of the scheme is

stable when the linear one is not. For example, see [25] for the spatially second

order Godunov schemes which nonlinear non-oscillatory versions are proven to be

stable but linear ones are unconditionally unstable.
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N Description Stability condition

1. Downwind-biased unstable for all Kx

2. Centred stable for Kx ≤ 1

3. Upwind-biased stable for Kx ≤ 2

4. One-sided upwind stable for 1 ≤ Kx ≤ 3

5. ADER4-7 scheme stable for Kx ≤ 1.2

Schemes with linear WENO reconstruction

6. ADER4 stable for Kx ≤ 0.2

7. ADER4-LW stable for Kx ≤ 0.08

Schemes with nonlinear WENO reconstruction

8. ADER4 Kx ≤ 1 (experiments with the scheme)

9. ADER4-WAF Kx ≤ 1 (experiments with the scheme)

Table 7 . Stability conditions for one-dimensional fourth-order schemes

3.1.4. Truncation error analysis

The accuracy of the schemes can be analyzed by studying the leading term

ε(∆x, ∆t) of their truncation errors, which in the one-dimensional case can be

written as:

ε(∆x, ∆t) = a Φ(Kx)∆xr

(
∂r+1

∂xr+1
v(xi, t

n)

)
. (3.20)

Here r is the order of the scheme. The accuracy of different schemes of a given order

r can be compared by studying the coefficients Φ(Kx) of the leading term.

In Tables 8–10 we list expressions for Φ(Kx) for all schemes. Additionally, we

plot Φ(Kx) against the CFL number for third and fourth order schemes in Figs. 3.1,

3.2.

N Description Φ(Kx)

1. Upwind-biased (3.8) 1
6
(1−K2

x)

3. One-sided upwind (3.9) 1
6
(2− 3 Kx + K2

x)

4. ADER2-3 (3.10) −1
6
K6

x

5. linear ADER2-ϕ 1
6
Kx (ϕ−Kx)

5. nonlinear ADER2-ϕ 1
6
Kx (ϕ−Kx)

Table 8 . Φ(Kx) functions for one-dimensional second-order schemes
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Figure 3.1. Φ(Kx) functions for ADER3 schemes with different reconstructions.

Left- scheme with fixed-polynomial reconstruction, right - schemes

with weighted reconstruction

Let us first discuss the results for the linear schemes with a fixed-stencil reconstruc-

tion. For a fixed order of accuracy r these schemes differ only by the shift of

the stencil l with respect to the cell i. We observe that the one-sided upwind

schemes have the largest error among the schemes considered, whereas the one-

sided downwind scheme for r = 3 and the scheme with the centred stencil for r = 4

have the smallest error. The upwind-biased schemes have an average accuracy. For

the special case Kx = 1 the leading term of the truncation error vanishes for all

schemes. It can also be easily seen from the expressions for vn+1
i that the schemes

actually produce the exact solution vn+1
i ≡ vn

i−1 for this special case.

Next we look at the ADER2-3, ADER3-5 and ADER4-7 schemes which are

constructed by using a higher-order polynomial while keeping the temporal accuracy

r equal to that of the fixed-stencil schemes. It is obvious, that the overall formal

order of accuracy is not increased by increasing the spatial accuracy. However, from

Figs. 3.1, 3.2 it is clear that the actual error of these two schemes is considerably

smaller than that of the fixed-stencil schemes for Courant numbers 0 ≤ Kx ≤ 0.7.

For larger Kx the ADER3-5 and ADER4-7 schemes become unstable. Therefore,

the use of the ADER2-3, ADER3-5 and ADER4-7 schemes is recommended for

moderate and small CFL numbers only.

Finally, we consider the linear and nonlinear ADER-ϕ schemes with WENO

reconstruction. Firstly, we observe that there is no difference in the leading term of
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Figure 3.2. Φ(Kx) functions for ADER4 schemes with different reconstructions.

Left- scheme with fixed-polynomial reconstruction, right - schemes

with weighted reconstruction

the truncation error between a scheme with linear and nonlinear WENO reconstruc-

tion. The truncation error vanishes for Kx = 1. Secondly, we conclude that

all schemes with WENO reconstruction are significantly more accurate than the

corresponding schemes with fixed-stencil reconstruction. As compared to the ADERr-

s schemes the use of WENO reconstruction improves the accuracy for large Kx close

to unity. Finally, we see that the use of the weighted flux instead of the first-order

upwind flux as the building block does not affect the accuracy of the scheme for all

ϕ. Moreover, the second order scheme becomes third order in the case ϕ = Kx.

3.1.5. Other schemes

We have also studied the fifth-order scheme with an upwind-biased stencil (l = 2).

The coefficient of the leading term of the truncation error of this fixed-stencil scheme

is given by

Φ(Kx) =
1

720

(
K5

x − 3 K4
x − 5K3

x + 15 K2
x + 4 Kx − 12

)

For a special case Kx = 1 the truncation error vanishes, which can also be seen

from the expression for the scheme, omitted here. The scheme is stable under a

conventional condition Kx ≤ 1.
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N Description Φ(Kx)

Fixed-stencil schemes

1. Downwind-biased (3.11) 1
24

(K3
x + 2 K2

x −Kx − 2)

2. Upwind-biased (3.12) 1
24

(K3
x − 2 K2

x −Kx + 2)

3. One-sided upwind (3.13) 1
24

(K3
x − 6 K2

x + 11 Kx − 6)

4. ADER3-5 (3.14) 1
24

K3
x

5. linear ADER3-ϕ 1
120

K (5 K2
x − 6 Kxϕ + 1)

6. non-linear ADER3-ϕ 1
120

K (5 K2
x − 6 Kxϕ + 1)

Table 9 . Φ(Kx) functions for one-dimensional third-order schemes

N Description Φ(Kx)

1. One-sided downwind − 1
120

(K4
x + 5 K3

x + 5 K2
x − 5 Kx − 6)

2. Centred − 1
120

(K4
x − 5 K2

x + 4)

3. Upwind-biased − 1
120

(K4
x − 5 K3

x + 5 K2
x + 5 Kx − 6)

4. One-sided upwind − 1
120

(K4
x − 10 K3

x + 35 K2
x − 50 Kx + 24)

5. ADER4-7 scheme − 1
120

K4
x

6. Linear ADER4-ϕ 1
840

Kx (−7 K3
x + 10 ϕK2

x − 5 Kx + 2 ϕ)

Table 10 . Φ(Kx) functions for one-dimensional fourth-order schemes

3.2. Two-dimensional schemes

3.2.1. Framework

Consider the model two-dimensional linear advection equation

∂v

∂t
+

∂f(v)

∂x
+

∂g(v)

∂y
= 0, f = av, g = bv, (3.21)

where a, b > 0 are constant propagation speeds. The schemes now read:

vn+1
ij = vn

ij −
∆t

∆x
(fi+1/2,j − fi−1/2,j)− ∆t

∆y
(gi,j+1/2 − gi,j−1/2). (3.22)

Generally speaking, the spatial integral of the cell side in the numerical flux

should be approximated numerically, using a Gaussian quadrature. However, in this

section we study fixed-stencil schemes only. In this case for the linear advection
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equation we can use the exact spatial integration in the expression for the numerical

fluxes.

Suppose the reconstruction polynomial of order r− 1 for the cell i, j is given by

Pij(x, y). For the linear constant coefficient equation in the case a > 0 the solution of

the DRP problem becomes trivial. In Riemann problems (2.51), (2.52) the solution

is equal to the left initial state. The final expression for the fixed-stencil flux fi+1/2,j

of order r reads [72]:

fi+1/2,j =
a

∆y

yj+1/2∫

yj−1/2

(
r−1∑

k=0

(
−a

d

dx
− b

d

dy

)k
∆tk

(k + 1)!
Pij(xi+1/2, y)

)
dy. (3.23)

It is obvious from (3.23) that the solution of the DRP problem does include all

mixed spatial derivatives up to the order r − 1.

The construction of the reconstruction polynomial of order r−1 for the rth order

scheme requires the use of the two-dimensional stencil with cells

(i− lx, . . . , i− lx + r)× (j − ly, . . . , j − ly + r),

where lx, ly are shifts of the stencil with respect to the cell i, j in the x and y

coordinate directions, respectively. Performing the exact integration over the cell

side, we obtain the following expression for the two-dimensional fixed-stencil ADER

flux in the x coordinate direction:

fi+1/2,j = a
∑

α

∑

β

Wα,β vi+α,j+β, (3.24)

where Wα,β are the coefficients which depend on the CFL coefficients Kx = a∆t/∆x,

Ky = b∆t/∆y.

The flux in the y direction is formulated in an entirely analogous way and can

be obtained from (3.24) by interchanging x and y directions.

Substituting fi+1/2,j and gi,j+1/2 into the conservative update formula (3.22), we

obtain the expression for the scheme.

3.2.2. Description of the schemes

Second-order schemes

We study the second order ADER scheme with MUSCL-type piece-wise linear

reconstruction [25, 27] with the reconstruction polynomial given by:

Pij(x, y) = vij + Sx(x− xi) + Sy(y − yj), (3.25)
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where Sx, Sy are slopes in the x and y coordinate directions correspondingly. We

choose the centred slopes:

Sx =
vi+1,j − vi−1,j

2∆x
, Sy =

vij+1 − vij−1

2∆y
.

The corresponding ADER flux is given by

W−1,0 =
1

4
Kx−1

4
, W0,−1 =

1

4
Ky, W0,0 = 1, W0,1 = −1

4
Ky, W1,0 = −1

4
Kx+

1

4
.

and is in fact the flux of the unsplit MUSCL-Hancock scheme with centred slopes,

see [65].

Third-order schemes

The third order upwind-biased scheme with the parabolic reconstruction polynomial

corresponds to the choice lx = ly = 1. The resulting third-order upwind-biased

ADER flux in the x coordinate direction is given by the following non-zero coefficients

Wα,β:

W−1,−1 =

(
− 1

36
Ky

2 − 1

24
Ky

)
, W−1,0 =

(
−1

6
+

1

18
Ky

2 +
1

6
Kx

2

)
,

W−1,1 =

(
− 1

36
Ky

2 +
1

24
Ky

)
, W0,−1 =

(
5

36
Ky

2 +
5

24
Ky +

1

6
Kx Ky

)
,

W0,0 =

(
− 5

18
Ky

2 +
5

6
+

1

2
Kx − 1

3
Kx

2

)
, W0,1 =

(
5

36
Ky

2 − 5

24
Ky − 1

6
Kx Ky

)
,

W1,−1 =

(
1

18
Ky

2 +
1

12
Ky − 1

6
Kx Ky

)
, W1,0 =

(
1

3
− 1

9
Ky

2 +
1

6
Kx

2 − 1

2
Kx

)
,

W1,1 =

(
1

18
Ky

2 − 1

12
Ky +

1

6
Kx Ky

)
.

Another scheme we studied is a scheme with a higher order cubic reconstruction

from the fourth order version but third-order time discretization with lx = ly = 2.

The resulting scheme is denoted as the ADER3-4 scheme. The coefficients Wα,β are

given by:

W−2,−2 = − 1

144
Ky +

1

216
KxKy, W−2,−1 =

1

24
Ky − 1

36
KxKy +

1

72
K2

y ,

W−2,0 = − 1

24
Kx − 1

48
Ky +

1

72
KxKy − 1

36
K2

y −
1

12
K2

x +
1

12
,

W−2,1 =
1

108
KxKy − 1

72
Ky +

1

72
K2

y , W−1,−2 = − 1

72
KxKy +

5

144
Ky,
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W−1,−1 =
1

12
KxKy − 5

24
Ky − 5

72
K2

y ,

W−1,0 = − 5

12
− 1

24
KxKy +

5

48
Ky +

5

36
K2

y +
5

12
K2

x +
1

8
Kx,

W−1,1 = − 1

36
KxKy +

5

72
Ky − 5

72
K2

y ,

W0,−2 = − 13

144
Ky − 1

24
KxKy, W0,−1 =

1

4
KxKy +

13

24
Ky +

13

72
K2

y ,

W0,0 =
3

8
Kx − 13

48
Ky +

13

12
− 1

8
KxKy − 13

36
K2

y −
7

12
K2

x,

W0,1 = −13

72
Ky − 1

12
KxKy +

13

72
K2

y ,

W1,−2 = − 1

48
Ky +

11

216
KxKy, W1,−1 =

1

8
Ky − 11

36
KxKy +

1

24
K2

y ,

W1,0 =
11

72
KxKy +

1

4
− 1

12
K2

y −
1

16
Ky +

1

4
K2

x −
11

24
Kx,

W1,1 =
11

108
KxKy − 1

24
Ky +

1

24
K2

y .

Fourth-order schemes

We consider two fourth order schemes with cubic reconstruction polynomials. The

first scheme is upwind-biased which corresponds to the choice lx = ly = 2. The flux

coefficients Wα,β, α = −2, . . . , 1, β = −2, . . . , 1, are given by

W−2,−2 =

(
1

216
Kx Ky +

1

96
Kx

2Ky +
1

288
Ky

3 − 1

144
Ky

)
,

W−2,−1 =

(
− 1

36
Kx Ky − 1

16
Kx

2Ky − 1

96
Ky

2Kx − 1

96
Ky

3 +
1

72
Ky

2 +
1

24
Ky

)

W−2,0 =

(
1

12
− 1

24
Kx − 1

12
Kx 2 +

1

24
Kx

3 +
1

32
Kx

2Ky

+
1

72
Kx Ky +

1

48
Ky

2Kx +
1

96
Ky

3 − 1

36
Ky

2 − 1

48
Ky

)

W−2,+1 =

(
1

48
Kx

2Ky +
1

108
Kx Ky − 1

96
Ky

2Kx − 1

288
Ky

3 +
1

72
Ky

2 − 1

72
Ky

)

W−1,−2 =

(
− 5

96
Kx

2Ky − 1

72
Kx Ky − 5

288
Ky

3 +
5

144
Ky

)

W−1,−1 =

(
5

16
Kx

2Ky +
1

12
Kx Ky +

1

32
Ky

2Kx − 5

24
Ky +

5

96
Ky

3 − 5

72
Ky

2

)
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W−1,0 =

(
1

8
Kx − 5

12
+

5

12
Kx

2 − 5

32
Kx

2Ky − 1

24
Kx Ky

− 1

16
Ky

2Kx − 1

8
Kx

3 − 5

96
Ky

3 +
5

36
Ky

2 +
5

48
Ky

)

W−1,1 =

(
− 5

48
Kx

2Ky − 1

36
Kx Ky +

1

32
Ky

2Kx +
5

288
Ky
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Ky +

13

288
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Ky

2 − 13

288
Ky

3 +
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48
Kx

2Ky − 1

12
Kx Ky +

3

32
Ky
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,

W1,−2 =

(
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2Ky +
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216
Kx Ky +

1

96
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48
Ky
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,
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(
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The second fourth order scheme we study uses the centred reconstruction in the

normal direction (x direction for fi+1/2,j), which corresponds to the choice lx = l.

In the y direction we still use ly = 1. This scheme will be referred to as as ADER4

with the centred stencil. The coefficients Wα,β are given by:
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288
K3
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yKx − 1

108
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1

48
K2

xKy,
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+

1

48
K2

yKx +
1

32
K2

xKy − 1

72
KxKy,

W−1,1 =
1

24
Ky − 1

96
K3

y −
1

96
K2

yKx − 1

16
K2

xKy +
1

36
KxKy − 1

72
K2

y ,



59

W−1,2 =
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1

216
KxKy +
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3.2.3. Stability analysis

The von Neumann stability analysis of our schemes can be performed as follows.

We consider a trial solution vn
ij = An exp (I(iα + jβ), where A is the amplitude, α

and β are phase angles in the x and y directions. We now write down the schemes

in the following concise form:

vn+1
ij =

∑

lm

blmvn
i+l,j+m, a, b > 0, (3.26)
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Figure 3.3. Stability plot for the two-dimensional ADER3 scheme

where blm are the coefficients of the schemes. Inserting the trial solution in the

expression above we obtain the following algebraic expression for the square of the

module of A:

|A|2 =

(∑

lm

blm cos (lα + mβ)

)2

+

(∑

lm

blm sin (lα + mβ)

)2

. (3.27)

A necessary condition for stability is |A| ≤ 1. The complexity of the algebraic

expression for the amplification factor in two space dimension does not allow an

analytical study. Instead we again perform a numerical study to get an indication

of the stability of the scheme.

We proceed as follows. For a given pair (Kx, Ky) we evaluate the amplification

factor A(Kx, Ky, α, β) for many phase angles α, β and record the proportion p(Kx, Ky)

if these pair for which |A| ≤ 1. Then a contour plot of p(Kx, Ky) in Kx −Ky plane

will indicate the stability region of the scheme.

The analysis shows that the ADER2 scheme with the MUSCL type reconstruction

(3.25) is stable with conventional stability condition

Kx + Ky ≤ 1, a, b > 0. (3.28)

Figs. 3.3 - 3.6 show stability contour plots of p(Kx, Ky) of higher-order ADER

schemes. We observe that the upwind-biased ADER3 scheme has conventional
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Figure 3.4. Stability plot for the two-dimensional ADER4 scheme with a centred

reconstruction
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Figure 3.5. Stability plot for the two-dimensional ADER4 scheme with an upwind-

biased reconstruction
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Figure 3.6. Stability plot for the two-dimensional ADER3-4 scheme with an

upwind-biased reconstruction

stability condition (3.28). The stability of the fourth order scheme depends on the

reconstruction used. The scheme with a centred stencil is stable under condition

Kx + Ky ≤ 0.75, a, b > 0. (3.29)

However, the scheme with an upwind-biased stencil has a much larger stability

region, approximately twice that of the ADER3 scheme. In practice, the time step

for this scheme can be chosen from the approximate condition

Kx + Ky ≤ 1.75, a, b > 0. (3.30)

The stability region of the ADER3-4 scheme with an upwind-biased stencil is an

average between (3.28) and (3.30). In practice, the time step for this scheme can be

chosen from the approximate condition

Kx + Ky ≤ 1.25, a, b > 0. (3.31)

Therefore, as in the one-dimensional case, the use of a higher-order spatial

reconstruction affects the stability region of the scheme.

If one of the advection coefficients of the equation is zero for all schemes we

recover the one-dimensional stability region for most of the schemes except the

centred ADER4.
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3.2.4. Truncation error analysis

To find the truncation error of the scheme we have to insert the exact solution

v(x, y, t) into the difference formulation and obtain the expression for the leading

term of the truncation error ε(∆x, ∆y, ∆t) as a function of Courant numbers Kx, Ky.

Direct evaluation of expression for the truncation error of the second-order

scheme with the MUSCL reconstruction (3.25) gives the following result:

ε =

(
− 1

12
a∆x2 +

1

4
a2∆t∆x− 1

6
a3∆t2

)
∂3

∂x3
v

+

(
1

4
ab∆t∆x− 1

2
a2b∆t2

)
∂3

∂x2∂y
v +

(
1

4
ab∆t∆y − 1

2
ab2∆t2

)
∂3

∂x∂y2
v

+

(
1

4
b2∆t∆y − 1

6
b3∆t2 − 1

12
b∆y2

)
∂3

∂y3
v

Inserting expression for Kx, Ky we obtain

ε = a

(
− 1

12
+

1

4
Kx − 1

6
K2

x

)
∆x2 ∂3

∂x3
v + b

(
1

4
Kx − 1

2
K2

x

)
∆x2 ∂3

∂x2∂y
v

+a

(
1

4
aKy − 1

2
Ky

2

)
∆y2 ∂3

∂x∂y2
v + b

(
− 1

12
+

1

4
Ky − 1

6
bKy

2

)
∆y2 ∂3

∂y3
v

It is obvious that the scheme is second order accurate in space and time.

Direct evaluation of expression for the truncation error of the third order upwind-

biased scheme gives the following result:

ε = +

(
1

24
a4∆t3 − 1

24
a2∆t∆x2 +

1

12
a∆x3 − 1

24
a3∆t2∆x

)
∂4

∂x4
v

+

(
1

12
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24
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∂x3∂y
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∂x∂y3
v.

The scheme is third order accurate in space and time. Inserting expression for Kx,

Ky we obtain

ε = +a

(
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x −
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Note, that the presentation of ε as a function of Kx, Ky is not unique. In two

limiting cases of one-dimensional advection the above expression coincides with the

corresponding truncation error of third-order upwind-biased scheme (3.12) in purely

one-dimensional case, see Table 9.

Direct evaluation of expression for the truncation error of the fourth order

upwind-biased scheme gives the following result:

ε = +
(

1
20

a∆x4 +
1
24

a4∆t3∆x− 1
24
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b2∆t∆y3 +
1
24

b4∆t3∆y − 1
24

b3∆t2∆y2 − 1
120

b5∆t4
)

∂5

∂y5
v

− 1
12

a2b3∆t4
∂5

∂x2∂y3
v − 1

24
a4b∆t4

∂5

∂x4∂y
v − 1

12
a3b2∆t4

∂5

∂x3∂y2
v

− 1
24

ab4∆t4
∂5

∂x∂y4
v +

1
48

a3b∆t3∆x
∂5

∂x4∂y
v − 1

24
ab∆t∆x3 ∂5

∂x4∂y
v +

1
48

∆t3∆yab3 ∂5

∂x∂y4
v

+
1
72

ab2∆t2∆x2 ∂5

∂x∂y4
v − 1

24
ab∆t∆y3 ∂5

∂x∂y4
v +

1
72

a2b∆t2∆x2 ∂5

∂x4∂y
v.

The scheme is fourth order accurate in space and time. Inserting expression for Kx,

Ky we obtain:
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In two limiting cases of one-dimensional advection the above expression coincides

with the corresponding truncation error of fourth-order upwind-biased scheme in

purely one-dimensional case, see Table 10.

3.3. Three-dimensional schemes

Finally, we consider the model three-dimensional linear advection equation

∂v

∂t
+

∂f(v)

∂x
+

∂g(v)

∂y
+

∂h(v)

∂z
= 0, f = av, g = bv, h = cv, (3.32)

where a, b and c are constant propagation speeds. The scheme is written as

vn+1
ijk = vn

ijk −
∆t

∆x
(fi+1/2,jk − fi−1/2,jk)− ∆t

∆y
(gi,j+1/2,k − gi,j−1/2,k)− ∆t

∆y
(hijk+1/2 − gijk−1/2).

(3.33)



65

Suppose the reconstruction polynomial for the cell i, j, k is given by Pijk(x, y, z).

Similar to the two-dimensional case, for the linear constant coefficient equation in

the case a > 0 the solution of the DRP problem is easy. The flux fi+1/2,jk of order

r reads:

fi+1/2,jk =
a

∆y∆z

yj+1/2∫

yj−1/2

zk+1/2∫

zk−1/2

(
Pi(xi+1/2, y, z)+

r−1∑
p=1

(
−a

d

dx
− b

d

dy
− c

d

dz

)p
∆tp

(p + 1)!
Pijk(xi+1/2, y, z)

)
dz dy.

(3.34)

Performing the exact integration over the cell side, we obtain the following

expression for the three-dimensional fixed-stencil ADER flux in the x coordinate

direction:

fi+1/2,jk = a
∑

α

∑

β

∑
γ

Wα,β,γ vi+α,j+β,k+γ, (3.35)

where Wα,β are the coefficients which depend on the CFL coefficients Kx, Ky and

Kz = c∆t/∆z.

The fluxes in other directions are formulated in an entirely analogous way.

3.3.1. Description of the schemes

Second-order scheme

We study the second order ADER scheme with MUSCL-type piece-wise linear

reconstruction [26] with the reconstruction polynomial given by:

Pijk(x, y, z) = vijk + Sx(x− xi) + Sy(y − yj) + Sz(z − zk), (3.36)

where Sx, Sy, Sz are slopes in the x, y and z coordinate directions correspondingly.

Similar to the two-dimensional case, we choose the centred slopes:

Sx =
vi+1,jk − vi−1,jk

2∆x
, Sy =

vij+1,k − vij−1,k

2∆y
, Sz =

vijk+1 − vijk−1

2∆z
.

The corresponding ADER flux is given by

W−1,0,0 = −1

4
+

1

4
Kx, W0,−1,0 =

1

4
Ky, W0,0,−1 =

1

4
Kz, W0,0,0 = 1,

W0,0,1 = −1

4
Kz, W0,1,0 = −1

4
Ky, W1,0,0 =

1

4
− 1

4
Kx.
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Third-order schemes

We limit our study to the upwind-biased third order ADER scheme. The corresponding

parabolic reconstruction polynomial for fi+1/2,jk uses the following two-dimensional

stencil of 27 cells: (i − 1, i, i + 1) × (j − 1, j, j + 1) × (k − 1, k, k + 1). The flux is

given by

W−1,−1,−1, = − 1

72
KyKz, W−1,−1,0 = − 1

72
Ky (2Ky + 3) , W−1,−1,1 =

1

72
KyKz,

W−1,0,−1 = − 1

72
Kz (3 + 2Kz) , W−1,0,0 =

1

18

(
K2

y + K2
z + 3K2

x − 3
)
,
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72
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1
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KyKz,
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72
KyKz,

W0,−1,−1 =
5
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KyKz, W0,−1,0 =

1

72
Ky (10Ky + 15 + 12Kx) ,

W0,−1,1 = − 5

72
KyKz, W0,0,−1 =

1

72
Kz (10Kz + 15 + 12Kx ) ,

W0,0,0 =
1

18

(
15− 5K2

y − 5K2
z − 6K2

x

)
+

1

2
Kx, W0,0,1 = − 1

72
Kz (−10Kz + 15 + 12Kx) ,

W0,1,−1 = − 5

72
KyKz, W0,1,0 =

1

72
Ky (10Ky − 15− 12Kx) ,

W0,1,1 =
5

72
KyKz, W1,−1,−1 =

1

36
KyKz,

W1,−1,0 =
1

36
Ky (2Ky + 3− 6Kx) , W1,−1,1 = − 1

36
KyKz,

W1,0,−1 = − 1

36
Kz (−2Kz − 3 + 6Kx) , W1,0,0 = −1

9
K2

y −
1

9
K2

z +
1

3
− 1

2
Kx +

1

6
K2

x,

W1,0,1 =
1

36
Kz (2Kz − 3 + 6Kx) , W1,1,−1 = − 1

36
KyKz,

W1,1,0 =
1

36
Ky (2Ky − 3 + 6Kx) , W1,1,1 =

1

36
KyKz.

3.3.2. Stability analysis

For the von Neumann stability analysis we consider a trial solution

vn
ijk = An exp (I(iα + jβ + kγ),
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Figure 3.7. Stability plot for the three-dimensional ADER schemes for Kz = 0.

where A is the amplitude, α,β and γ are phase angles in x, y and z directions. We

now write down the scheme in the following concise form:

vn+1
ijk =

∑

lmp

blmpv
n
i+l,j+m,k+p, (3.37)

where blmp are the coefficients. Inserting the trial solution in the expression above

we obtain the following algebraic expression for the square of the module of A is

given by

|A|2 =

(∑

lm

blmp cos (lα + mβ + pγ)

)2

+

(∑

lmp

blmp sin (lα + mβ + pγ)

)2

. (3.38)

A necessary condition for stability is |A| ≤ 1. For a given set (Kx, Ky, Kz) we

evaluate the amplification factor for many phase angles and record the proportion

p(Kx, Ky, Ky) of sets for which |A| ≤ 1. Then a contour plot of p(Kx, Ky, Kz) in

Kx−Ky plane for a given value of Kz will indicate the stability region of the scheme.

Our analysis shows that the stability regions of ADER2 and ADER3 schemes

are identical and are given in Figs. 3.7 - 3.8. We observe that the schemes are stable

under the conventional stability condition of the 3D unsplit Godunov scheme:

Kx + Ky + Kz ≤ 1, a, b, c > 0. (3.39)
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Figure 3.8. Stability plot for the three-dimensional ADER schemes for Kz = 1 −
Kx −Ky.

3.3.3. Truncation error analysis

Direct evaluation of the leading term of the truncation error ε(∆x, ∆y, ∆t) as a

function of Kx, Ky and Kz shows that both ADER2 and ADER3 schemes achieve

the rth order of accuracy in space and time. The corresponding expressions are

omitted. For the ADER3 scheme in two limiting cases of one-dimensional advection

the truncation error coincides with the corresponding truncation error of third-order

upwind-biased scheme (3.12) in the purely one-dimensional case, see Table 9.

Conclusions

In this chapter we have analyzed stability properties and truncation errors of

ADER schemes. The analysis can be divided in three parts: one-dimensional

linear and non-linear schemes, two-dimensional linear and three-dimensional linear

schemes. In the first part we have studied the linear schemes with conventional

single-polynomial reconstruction, linear schemes with increased spatial order of

accuracy as well as linear and nonlinear schemes with weighted reconstruction.

The analysis shows that the properties of the schemes depend strongly on the

choice of the reconstruction stencil. Overall, one-dimensional schemes with weighted
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reconstructions are most accurate but have a reduced linear stability region. However,

in practical calculations the nonlinear versions are stable under normal Courant

numbers for both smooth and discontinuous solutions. We also note some unusual

stability regions for the fourth order schemes, e.g. the scheme with the centred

reconstruction is stable for Courant numbers up to two. In general, we find that the

stability regions of schemes of even and odd orders of accuracy are quite different.

In two spatial dimensions we have analyzed second, third and fourth order

schemes with different reconstructions. Due to an increased complexity of these

schemes we have limited ourselves to some selected reconstructions only. Overall,

we observe that the designed schemes have a conventional or better stability regions.

Truncation error is such that for special cases of advection in one dimension only

it coincides in most of the cases with that of the corresponding one-dimensional

scheme. In three spatial dimensions our analysis is limited to the second and third

order schemes which are shown to be stable with a conventional stability region.

The truncation error of the third-order scheme reduces to the one-dimensional one

when advection takes place in one spacial dimension only.
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4. Numerical results

Introduction

In this chapter we present numerical results of the ADER schemes of up to fifth

order of accuracy as applied to linear and nonlinear conservation laws with source

terms. Different fluxes are used as the building blocks. For comparisons we also

run the finite-volume versions of the WENO schemes [22, 3, 41] with the third-order

TVD Runge-Kutta method for time evolution. Following the original reference [41],

in two space dimensions for nonlinear systems we use the dimension-by-dimension

reconstruction, upwind Rusanov flux [38] as the building block and a three-point

(sixth order ) Gaussian quadrature to discretize fluxes and thus is of formal fifth

order of accuracy in space.

All results are obtained using the fully nonlinear versions of the schemes, even

when verifying the convergence order for the infinitely smooth solutions.

We remark that it seems to have become a popular practice to check the formal

order of very high-order schemes by running them with very small Courant numbers

or choosing the time step in such a way that the spatial order dominates the

computation [3, 11]. This results in exceedingly small time steps and therefore

enormous computational cost of the scheme. This is especially so in many space

dimensions. We remark that in practical calculations for hyperbolic equations one

uses a fixed Courant number which should be as close as possible to the maximum

allowed value given in the previous section. This would maximize the efficiency of

the methods. Since here our goal is to compare the performance of different methods

in a realistic setup, in all computations below we use a fixed Courant number close

to the upper stability limit of the scheme.

4.1. Scalar equations

4.1.1. Long time evolution for linear advection

The motivation here is to test the ADER-WAF schemes for problems with

discontinuous solutions for long evolution times. We solve

∂tq + λ∂xq = 0 , λ = 1 , (4.1)
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with the following initial condition [22, 46, 3]

q(x, 0) =





exp (ln2 , (x + 0.7)2/0.0009) , −0.8 ≤ x ≤ −0.6 ,

1 , −0.4 ≤ x ≤ −0.2 ,

1− |10x− 1| , 0.0 ≤ x ≤ 0.2 ,

(1− 100(x− 0.5)2)1/2 , 0.4 ≤ x ≤ 0.6 ,

0 , otherwise .

(4.2)

This initial condition consists of a discontinuous square pulse and several continuous

but narrow profiles. We use a baseline mesh of 200 cells and periodic boundary

conditions. We compute the numerical solution at the output times t = 20 and

t = 2000. Note that for the last output time the initial profile is propagated 1000

times over the spatial domain. When CFL number of unity is used, this output time

corresponds to 1000×N time steps, where N is the number of cells. For example,

for the finest mesh of N = 1600 cells the numerical solution is evolved for 1.6× 106

time steps.

Table 11 shows results of our convergence study at two output times: t = 20 (10

periods) and t = 2000 (1000 periods). We present the errors of cell averages of the

solution in the L1 norm; in this norm all schemes should converge with first order

accuracy. We use CFL = 0.95 for ADER-WAF schemes and, following the original

papers [22, 3], CFL = 0.4 for the WENO5 scheme. From the results of Table 11,

the most accurate schemes are the ADER-WAF schemes, which is apparently due

to the excellent resolution of the square pulse. On the finest mesh of 1600 cells and

the largest output time t = 2000 ADER3-WAF is more accurate than the WENO5

scheme by a factor of twenty.

With regards to the behaviour of the ADER schemes, as we increase both the

space and the time accuracy, the results show that the ADER4-WAF scheme is in

turn more accurate than the ADER3-WAF scheme by a factor of two on all meshes.

We also note that the convergence rates of the ADER3-WAF and ADER4-WAF

schemes actually exceed the theoretically expected rate of one (for cell averages).

It is important to remember, at this stage, that although for discontinuous

solutions most shock-capturing schemes are expected to achieve first order accuracy

in the integral L1 norm, the actual order of accuracy can be much lower than the

theoretical first order. An illuminating illustration of this fact can be found in the

convergence table for the blast interaction test problem in [83]. Another important

factor is the actual size of the error on a given (coarse) mesh; this becomes even

more important for very long output times. From Table 11 we see that not only the
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Table 11 . Convergence study for various schemes as applied to the model equation

(4.1) with initial condition (4.2) at output times t = 20 and t = 2000.

ADER and ADER-WAF schemes used with CFL = 0.95 and WENO5

scheme used with CFL = 0.4

Scheme N t = 20 t = 2000

WENO5 200

400

800

1600

L1 r1

1.05× 10−1

4.55× 10−2 1.21

2.13× 10−2 1.09

1.16× 10−2 0.88

L1 r1

4.07× 10−1

3.98× 10−1 0.03

3.26× 10−1 0.29

1.65× 10−1 0.98

ADER3-WAF 200

400

800

1600

2.70× 10−2

1.06× 10−2 1.35

4.52× 10−3 1.22

2.09× 10−3 1.11

1.54× 10−1

5.95× 10−2 1.37

2.46× 10−2 1.27

8.92× 10−3 1.46

ADER4-WAF 200

400

800

1600

2.30× 10−2

9.55× 10−3 1.27

4.38× 10−3 1.12

2.07× 10−3 1.08

7.00× 10−2

2.95× 10−2 1.24

1.11× 10−2 1.42

4.54× 10−3 1.29

ADER-WAF schemes achieve the expected first order of accuracy but actually well

exceed it. This is not the case with the WENO5 scheme, which approaches the first

order convergence rate only on the finest mesh. Due to the faster convergence of

ADER-WAF schemes with mesh refinement they produce smaller errors as compared

to the WENO5 scheme.

A further illustration of the above results can be obtained by analysing Figs. 4.1

and 4.2. Fig. 4.1 shows results of the WENO5, ADER3-WAF and ADER4-WAF

schemes for the output time t = 2000 on the mesh of 200 cells. In all figures the

continuous line corresponds to the exact solution and symbols correspond to the

numerical solution. Fig. 4.2 shows the corresponding results for the mesh of 1600

cells. An obvious general comment is that long evolution times really expose the

limitations of numerical methods, even the very sophisticated schemes presented

here.
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WENO5, CFL=0.4

ADER3-WAF, CFL=0.95

ADER4-WAF, CFL=0.95

Figure 4.1. Computed (symbol) and exact (line) solutions for the linear advection

equation (4.1) with initial condition (4.2) at output time t = 2000.

The mesh of N=200 cells is used.
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WENO5, CFL=0.4

ADER3-WAF, CFL=0.95

ADER4-WAF, CFL=0.95

Figure 4.2. Computed (symbol) and exact (line) solutions for the linear advection

equation (4.1) with initial condition (4.2) at output time t = 2000.

The mesh of N=1600 cells is used.
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We first comment on schemes of the same formal accuracy and observe that the

ADER-WAF scheme is far superior to the WENO5 scheme, at least for this output

time, see Fig. 4.1; this is particularly evident with regard to the resolution of the

square pulse. The ADER-WAF schemes do not smear this feature, as time evolves.

We would like to stress that each discontinuity has five cells across it for all output

times, that is, once the initial smearing of the discontinuity has been established it

is propagated as a steady profile with a constant number of cells across it.

We note that on the finest mesh of 1600 cells the ADER-WAF schemes have

essentially converged to the exact solution, see Fig. 4.2, whereas the result of the

WENO5 scheme (third-order in time) is still far from the exact solution. Third

and fourth order ADER-WAF schemes combine the excellent resolution of contact

discontinuities, typical of the WAF scheme with the SUPERBEE limiter, and higher

order of accuracy in smooth regions, without the typical squaring effect of TVD

schemes with compressive limiters. We also observe improvements in accuracy in

the other parts of the solution when we move from the third to the fourth order

scheme.

The results of the conventional ADER schemes and ADER-WAF schemes of

accuracy higher than five (omitted) are somehow less satisfactory than those of the

presented schemes. In particular, the ADER5-WAF and ADER6-WAF schemes do

smear the square pulse, for longer times. This is again expected since the higher

order terms in the flux expansion interfere with the second-order TVD flux. Another

issue is the use of WENO reconstruction in the context of the ADER schemes,

which might need further investigations. This particularly concerns the design of

the nonlinear WENO weights.

4.1.2. Linear Reactive Equation

We solve the following advection-reaction equation

qt + qx = 5q (4.3)

with the initial condition

q(x, 0) = (sin πx)4, (4.4)

defined on [−1, 1]. The exact solution is a very fast growing function and given by

q(x, t) = (sin π(x− t))4 exp (5t)

Table 12 shows errors of cell averages of the solution at t = 2. We observe that all

ADER schemes operate at the designed order of accuracy. The fifth order scheme

is the most accurate scheme on all meshes.
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Table 12 . Reactive linear advection equation (4.3). Output time t = 2.

Method Number of cells L∞ error L∞ order L1 error L1 order

ADER3 10 1.44× 105 1.54× 105

20 3.10× 104 2.22 3.19× 104 2.22

40 5.25× 103 2.56 5.17× 103 2.63

80 7.61× 102 2.79 9.14× 102 2.87

160 1.01× 102 2.91 1.20× 102 2.93

ADER4 10 3.77× 104 3.99× 104

20 3.43× 103 3.46 3.72× 103 3.42

40 3.85× 102 3.15 4.48× 102 3.05

80 2.89× 101 3.74 3.18× 101 3.82

160 1.96× 10−1 3.88 2.14× 10−1 3.89

ADER5 10 1.08× 104 1.23× 104

20 5.57× 102 4.28 6.73× 102 4.19

40 2.25× 101 4.63 2.77× 101 4.61

80 7.93× 10−2 4.83 9.78× 10−2 4.82

160 2.63× 10−3 4.91 3.23× 10−3 4.92

4.1.3. The two-dimensional inviscid

Burgers’ equation with a source term

We solve the two-dimensional inviscid Burgers’ equation with a time-dependent

source term

qt +

(
1

2
q2

)

x

+

(
1

2
q2

)

y

= S(x, y, t, q),

S(x, y, t, q) = π(q − 1)
[
cos π(x− t) sin π(y − t) + sin π(x− t) cos π(y − t)

]
(4.5)

with the following initial condition defined on [−1, 1]× [−1, 1]:

q(x, y, 0) = q0(x, y) = sin(πx) sin(πy) (4.6)

and periodic boundary conditions. The exact solution is q(x, y, t) = q0(x− t, y− t).

The cell averages of the exact solution at the output time are computed by 8th-order

Gaussian rule and are used to measure the numerical errors of the schemes.
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Table 13 . Convergence study for the 2D inviscid Burgers’ equation with a source

term (4.5) with initial condition (4.6) at output time t = 1. CFL= 0.45

for all schemes. N is the number of cells in each coordinate direction.

Method N L∞ error L∞ order L1 error L1 order

ADER3 10 1.90× 10−2 3.21× 10−2

20 2.60× 10−3 2.87 3.99× 10−3 3.01

40 3.43× 10−4 2.92 4.78× 10−4 3.06

80 4.15× 10−5 3.05 5.90× 10−5 3.02

160 5.11× 10−6 3.02 7.36× 10−6 3.00

ADER4 10 7.00× 10−3 3.51× 10−3

20 1.82× 10−4 5.26 6.62× 10−5 5.73

40 5.53× 10−6 5.04 2.00× 10−6 5.05

80 1.62× 10−7 5.10 9.40× 10−8 4.41

160 7.59× 10−9 4.41 5.60× 10−9 4.07

ADER5 10 5.46× 10−4 4.66× 10−4

20 2.41× 10−5 4.50 2.69× 10−5 4.11

40 8.86× 10−7 4.77 8.96× 10−7 4.91

80 2.88× 10−8 4.95 2.81× 10−8 5.00

160 9.08× 10−10 4.99 8.77× 10−10 5.00

Table 14 shows the errors at the output time t = 1. We observe that all ADER

schemes reach the design rth order of accuracy in both L∞ and L1 norms. Moreover,

the error decreases by an order of magnitude when the formal order of accuracy

increases. As expected, the fifth order ADER scheme is the most accurate scheme.

The solution of this problem varies rapidly with time and thus preserving the

time accuracy of the numerical schemes is essential for obtaining the desired order

of accuracy.

We would like to stress the fact that the shown high orders of accuracy of ADER

schemes are achieved for a fixed Courant number.
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Table 14 . Convergence study for the 3D inviscid Burgers’ equation (4.7) with initial

condition (4.8) at output time t = 0.05. CFL= 0.27 for all schemes. N

is the number of cells in each coordinate direction.

Method N L∞ error L∞ order L1 error L1 order

ADER3 10 2.05× 10−3 3.17 3.47× 10−3 3.27

20 3.89× 10−4 2.39 2.09× 10−4 4.05

40 4.85× 10−5 3.00 1.74× 10−5 3.59

80 6.99× 10−6 2.79 2.18× 10−6 3.00

ADER4 10 1.07× 10−3 4.14 5.82× 10−4 5.25

20 6.64× 10−5 4.01 2.25× 10−5 4.70

40 5.10× 10−6 3.70 1.27× 10−6 4.15

80 3.07× 10−7 4.05 8.27× 10−8 3.94

ADER5 10 2.42× 10−4 4.30 1.17× 10−4 6.09

20 1.07× 10−5 4.50 3.50× 10−6 5.06

40 2.75× 10−7 5.28 1.06× 10−7 5.04

80 8.79× 10−9 4.97 3.95× 10−9 4.75

WENO [41], 10 1.86× 10−3 3.53 1.19× 10−3 4.50

Rusanov flux 20 2.65× 10−4 2.81 9.05× 10−5 3.71

40 3.64× 10−5 2.86 1.09× 10−5 3.06

4.1.4. The three-dimensional inviscid Burgers’ equation

We solve the three-dimensional inviscid Burgers’ equation

qt +

(
1

2
q2

)

x

+

(
1

2
q2

)

y

+

(
1

2
q2

)

z

= 0 (4.7)

with the following initial condition defined on [−1, 1]× [−1, 1]× [−1, 1]:

q(x, y, z, 0) = q0(x, y, z) = 0.25 + sin(πx) sin(πy) sin(πz) (4.8)

and periodic boundary conditions. For this test problem the exact solution is

obtained by solving numerically the relation q = q0(x − qt, y − qt, z − qt) for a
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given point (x, y, z) and time t. The cell averages of the exact solution at the output

time are computed using the 8th-order Gaussian rule.

Table 14 shows the errors at the output time t = 0.05, when the solution is still

smooth. We observe that all ADER schemes reach the design rth order of accuracy

in both norms. Moreover, the error decreases by an order of magnitude when the

formal order of accuracy increases. As expected, the fifth order scheme is the most

accurate scheme. Again, we would like to stress the fact that such high orders of

accuracy are achieved for a fixed Courant number.

4.1.5. The kinematic frontogenesis problem

This problem [13] is a popular test in meteorology, where it models a real effect

taking place in the Earth atmosphere. From the numerical point of view it tests the

ability of the schemes to handle sharp moving fronts in two space dimensions. We

remark that a number of advection schemes has been reported to fail for this test

problem, especially those using dimensional splitting.

We solve the two-dimensional linear equation with variable coefficients

qt + (u(x, y)q)x + (v(x, y)q)y = 0, (4.9)

where (u, v) is a steady divergence-free velocity field:

u = −y ω(r), v = xω(r), ω(r) =
1

r
UT (r), r2 = x2 + y2,

UT (r) = Umax sech2(r)tanh(r), Umax = 2.5980762.

(4.10)

The initial distribution of q(x, y, t), defined on a square domain [−5, 5]× [−5, 5], is

assumed to be one-dimensional

q(x, y, 0) = q0(y) = tanh
(y

δ

)
, (4.11)

where δ expresses the characteristic width of the front zone. The exact solution is

then given by [13]

q(x, y, t) = q0(y cos(ωt)− x sin(ωt)) (4.12)

and represents the rotation of the initial distribution around the origin with variable

angular velocity ω(r). We note that as time evolves the solution will eventually

develop scales which will be beyond the resolution of the computational mesh.

For this test problem we also include the results of the state-of-art finite-volume

WENO scheme We note that we use the exact Riemann solver as the building block
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Table 15 . Convergence study for the 2D linear advection equation with variable

coefficients (4.9) with initial condition (4.11) and δ = 1 at output time

t = 4. CFL= 0.45 for all schemes. N is the number of cells in each

coordinate direction.

Method N L∞ error L∞ order L1 error L1 order

ADER3 50 2.92× 10−1 6.53× 10−1

100 7.56× 10−2 1.95 1.16× 10−1 2.49

200 9.27× 10−3 3.03 1.12× 10−2 3.38

400 7.47× 10−4 3.63 6.65× 10−4 4.07

ADER4 50 2.04× 10−1 3.67× 10−1

100 2.95× 10−2 2.79 3.95× 10−2 3.22

200 2.63× 10−3 3.49 2.51× 10−3 3.98

400 3.22× 10−5 6.35 2.57× 10−5 6.61

ADER5 50 1.36× 10−1 2.84× 10−1

100 2.10× 10−2 2.69 3.06× 10−2 3.21

200 1.26× 10−3 4.06 9.47× 10−4 5.01

400 2.08× 10−5 5.92 1.70× 10−5 5.80

WENO [41] 50 2.87× 10−1 6.80× 10−1

exact Riemann solver 100 7.78× 10−2 1.88 1.23× 10−1 2.47

200 9.82× 10−3 2.99 1.44× 10−2 3.10

400 1.02× 10−3 3.27 1.86× 10−3 2.95
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Figure 4.3. Solution of (4.9) with the initial condition (4.11) and δ = 10−6.

Method: the ADER5 scheme. Mesh of 401×401 cells is used.

for the WENO scheme whereas in the original reference [41] a more diffusive Rusanov

flux [38] is used.

We first consider a smooth solution with δ = 1. Table 15 shows a convergence

study for cell averages at the output time t = 4. Obviously, all ADER schemes

achieve the designed order of accuracy. The size of the error decreases as the

formal order of the scheme increases. Moreover, the forth and fifth order schemes

show sixth order of accuracy on fine meshes. We see that the third-order ADER3

scheme competes well with the WENO scheme and higher-order ADER schemes

are considerably more accurate than the WENO scheme due to their higher order

spatial and temporal accuracy.

Next we compute the numerical solution which corresponds to a discontinuous

initial distribution, with δ = 10−6. At the given output time the initial discontinuity

has been rotated several times and the solution represents a discontinuous rolling

surface. Such a profile is difficult to be resolved on a fixed mesh since the scheme

must be able to handle moving discontinuities.

Figs. 4.3 – 4.4 depict, respectively, a three-dimensional plot and contour plot

of the numerical solution obtained by the fifth order ADER scheme. We observe

that the numerical solution is essentially non-oscillatory with sharp resolution of

all discontinuities. All parts of the discontinuous rolling surface have been captured



82

Figure 4.4. Contours of the solution of (4.9) with the initial condition (4.11) and

δ = 10−6. Method: the ADER5 scheme. Mesh of 401×401 cells is

used. See also Fig. 4.3.

well. Further illustration is provided by Figures 4.5 – 4.7, which show one-dimensional

cuts along the y axis for −3 ≤ y ≤ 3; results of the third, forth and fifth order

schemes on the meshes of 201 × 201 cells and 401 × 401 cells are shown. The odd

number of cells is chosen so that the one-dimensional cut corresponds to the center of

a middle cell for both meshes. In all figures the solid line corresponds to point-wise

values of the exact solution, whereas symbols correspond to the numerical solution

(cell averages). The meshes of 201×201 cells (left plot) and 401×401 cells (right

plot) are used. Clearly all schemes capture all features correctly. Note also that

the resolution of the discontinuities improves as the formal order of accuracy of the

scheme increases, which is more clearly shown in the finer mesh results. We observe

slight oscillations in the result of the ADER5 scheme in the y cut of q(x, y, t). These

oscillations are due to the fact that the essentially non-oscillatory reconstruction

cannot find a smooth stencil on this coarse mesh of 201 × 201 cells. Indeed, there

are only four cells between discontinuities in the middle, whereas the forth order

polynomials used in the reconstruction need at least five cells. When the mesh is

refined further the oscillations vanish rapidly.
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Figure 4.5. One-dimensional cuts along the y axis for (4.9) with the initial

condition (4.11) and δ = 10−6 for the ADER3 scheme.

Figure 4.6. One-dimensional cuts along the y axis for (4.9) with the initial

condition (4.11) and δ = 10−6 by the ADER4 scheme.
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Figure 4.7. One-dimensional cut along the y axis for (4.9) with the initial condition

(4.11) and δ = 10−6 by the ADER5 scheme.

4.2. Application to nonlinear systems

Next we present numerical results of the ADER schemes as applied to the

multidimensional nonlinear systems.

The state-expansion ADER schemes need the Godunov state to provide the

leading term of the state expansion (1.2). In general, any exact or approximate

Riemann solver can be used for this purpose. Here we choose the adaptive Riemann

solver described of Sect. 9.5.2 of [65]. We remark that the computational cost of the

Riemann solver is very small compared to the overall cost of the scheme, typically

around 5%. Other parts of the schemes are considerably more expensive, e.g. the

reconstruction procedure takes around 60% of the computing time.

The flux-expansion ADER schemes additionally need a first-order upwind flux to

provide the leading term of the flux expansions (2.22),(2.55). We have successfully

used a number of upwind fluxes, including the Rusanov flux [38], the Roe flux [37],

the HLL flux [20] and the HLLC flux [73]. For general background on fluxes see

also [65]. However, the aim of this section is not to assess the performance of

different fluxes in the ADER framework. Rather we would like to illustrate the idea

of the flux-expansion ADER schemes. Therefore, we present results for only two

numerical fluxes, the HLL flux [20] and HLLC flux [73]. The HLL flux assumes a

two-wave structure of the Riemann problem solution with wave speeds SL and SR.
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The HLLC fluxes uses a more accurate three-wave structure, which includes the

middle wave with the speed S∗. These wave speeds must be estimated. We use the

pressure-velocity estimates of Sect. 10.5.2 of [65].

Additionally, we include the results of the ADER schemes which use the new

modification of the DRP solver with the GMUSTA/EVILIN state, see Chapter 1.

For both the state-expansion and the flux-expansion variants of the ADER

approach we use the fourth-order Simpson rule for time integration in (2.20), (2.53).

We denote the state-expansion ADER schemes of third and fourth orders of time

accuracy, using the adaptive Riemann solver from [65], as ADER3-AD and ADER4-

AD respectively. The corresponding flux expansion ADER schemes are denoted

as ADER3-HLLC, ADER4-HLLC (the HLLC flux is used) and ADER3-HLL and

ADER4-HLL (the HLL flux is used). The schemes with the GMUSTA/EVILIN

state are referred to as the ADER-GM schemes.

In our computations we evaluate a stable time step ∆t according to

∆t = Ccfl ×min
ijk

(
∆x

|Sn,x
ijk |

,
∆y

|Sn,y
ijk |

,
∆z

|Sn,z
ijk |

)
. (4.13)

Here Sn,d
ijk is the speed of the fastest wave present at time level n travelling in the

d direction, with d = x, y, z. Ccfl is the CFL number and is chosen according to

the linear stability condition of the scheme, namely 0 < Ccfl ≤ 1/2 in two space

dimensions and 0 < Ccfl ≤ 1/3 in three space dimensions. We run all convergence

tests with a fixed Courant number close to the stability limit. Usually we use

Ccfl = 0.45 in two space dimensions and Ccfl = 0.3 in three space dimensions.

We note that the ADER3 schemes with different flxues and the WENO scheme [41]

use the same piece-wise parabolic (r = 3) reconstruction. Therefore, their comparison

is indeed justified. The fourth-order ADER4 schemes use more accurate piece-wise

cubic (r = 4) WENO reconstruction; therefore their comparison with other schemes

must be qualified.

4.3. Shallow water equations

We consider the case of horizontal channels with rectangular cross section. The

two-dimensional shallow-water equations with pollutant transport can be written as

follows:

∂tQ + ∂xF(Q) + ∂yG(Q) = S1 + S2, (4.14)
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where the vectors of conservative variables Q, fluxes F, G and source terms S1, S2

are given by

Q =




h

hu

hv

hψ


 , F =




hu

hu2 + 1
2
gh2

huv

huψ


 , (4.15)

G =




hv

hvu

hv2 + 1
2
gh2

hvψ


 . , S1 =




0

−gbxh

−gbyh

0


 . (4.16)

Here u and v are respectively x and y components of velocity, h is the depth, b is

the bed elevation, g = 9.8 is acceleration due to the gravity and ψ is concentration

of pollutant.

4.3.1. Dam-break problem

We solve a circular dam-break problem which corresponds to the following initial

condition defined on [−20 : 20]× [−20 : 20]:

(h, ψ) =

{
(2.5, 1) r ≤ 2.5,

(0.5, 0) r > 2.5,

u = v = 0, r2 = x2 + y2.

(4.17)

Here we compute the numerical solution at two output times t = 0.4 and t = 4.7

on a mesh of 201 cells in each coordinate direction. We use Ccfl = 0.45 for all runs.

We compare the results of the ADER4 scheme with a reference radial solution,

which is obtained by solving numerically the following one-dimensional shallow-

water equations with a geometric source term

∂t




h

hvr

hψ


 + ∂r




hvr

hv2
r + 1

2
gh2

hψvr


 = −1

r




hvr

hv2
r

hψvr




on a very fine mesh. See Chapter 13 of [66] for details. Figs. 4.8–4.10 show a

comparison between the one-dimensional reference radial solution (solid line) and

the cell averages of the two-dimensional ADER4 solution (symbols) along the radial

line that is coincident with the x-axis. We present distributions of depth h, velocity

u and pollutant concentration ψ.
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Figure 4.8. The circular dam-break problem. Depth (left) and velocity (right) for

the ADER4 scheme at the output time t = 0.4.

Figure 4.9. The circular dam-break problem. Depth (left) and velocity (right) for

the ADER4 scheme at the output time t = 4.7.

Figure 4.10. The circular dam-break problem. Pollutant transport for the ADER4

scheme at the output times t = 0.4 (left) and t = 4.7 (right).



88

A detailed numerical study of this problem for a sequence of output times is

given in Chapter 13 of [66]. At time t = 0.4, see Fig. 4.8, the solution contains

an outward-propagating circular shock wave and an inward-propagation rarefaction

wave which is about to reach the origin. Then the rarefaction reflects from the

origin and has overexpanded the flow to the point that the depth falls well below

the ambient depth initially outside the circular dam. A secondary circular shock is

then formed, which is more clearly seen in the velocity profile. This shock initially

propagates inwards and then reflects from the centre. At the final time t = 4.7, see

Fig. 4.9, it is propagating outwards.

We observe that the ADER4 scheme produces the correct flow pattern for all

output times. A complex process of implosion of the circular shock in the centre

and formation of a reflected outward-moving circular shock does not lead to the

generation of oscillations in the numerical solution. Overall, representation of shocks

is quite sharp, with only 2-3 cells across them.

4.3.2. Smooth convergence test

We consider a time-dependent flow with periodic boundary condtions in a domain

[−5 : 5]2. We take the exact solution in the following form:




h

hu

hv

hϕ


 =




5 + sin πt sin πx sin πy

(5 + sin πt sin πx sin πy) sin πt sin πx

(5 + sin πt sin πx sin πy) sin πt sin πy

(5 + sin πt sin πx sin πy) sin πt sin πx sin πy


 (4.18)

The bottom elevation has the form: b(x, y) = exp (−α(x2 + y2), with α = 10. The

second part of the source term S2 is adjusted in such a way that we have the exact

solution given above.

We present convergence results for the output time t = 1 for third and fourth

order ADER schemes.

Table 16 shows the convergence study for ADER3 and ADER4 schemes The

errors of cell averages of the solution in L∞ and L1 norms are presented. We observe

that approximately fifth order of accuracy is achieved by all schemes. It is interesting

to note that these orders of accuracy actually exceed the fourth order accuracy of

the two-point Gaussian rule used for flux integration.
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Table 16 . Convergence test for ADER schemes as applied to equations (4.14) with

the exact solution (4.18).

Method Mesh L∞ error L∞ order L1 error L1 order

ADER3 25× 25 2.82× 10−2 7.55× 10−1

50× 50 8.53× 10−3 1.73 2.33× 10−1 1.69

100× 100 4.54× 10−4 4.23 4.26× 10−3 5.78

ADER4 25× 25 6.92× 10−3 3.35× 10−1

50× 50 2.06× 10−3 1.75 7.31× 10−2 2.19

100× 100 7.15× 10−5 4.85 1.49× 10−3 5.61

4.4. Compressible Euler equations

We consider the compressible Euler equations of the form (2.44) with

Q =




ρ

ρu

ρv

ρw

E




, F = Qu +




0

p

0

0

pu




,

G = Qv +




0

0

p

0

pv




, H = Qw +




0

0

0

p

pw




,

(4.19)

p = (γ − 1)(E − 1

2
ρ(u2 + v2 + w2)).

Here ρ, u, v, w p and E are density, components of velocity in the x, y and

z coordinate directions, pressure and total energy, respectively; γ is the ratio of

specific heats. We use γ = 1.4 throughout.

We assess the performance our methods as applied to several test problems, as

detailed in the following subsections.
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Table 17 . Convergence study for various schemes as applied to the Euler equations

(1.7) with initial condition (4.20) at output time t = 2. All schemes are

used with CFL=0.95.

Method N L∞ error L∞ order L1 error L1 order

ADER3-AD 20 1.45× 10−1 1.29× 10−1

40 1.29× 10−2 3.49 1.03× 10−2 3.65

80 2.29× 10−3 2.49 1.18× 10−3 3.13

160 2.69× 10−4 3.09 1.01× 10−4 3.55

ADER3-WAF 20 9.80× 10−2 7.71× 10−2

40 6.07× 10−3 4.01 6.58× 10−3 3.55

80 1.03× 10−3 2.56 6.27× 10−4 3.39

160 1.43× 10−4 2.85 6.59× 10−5 3.25

ADER5-AD 20 2.79× 10−2 3.09× 10−2

40 1.91× 10−3 3.87 6.96× 10−4 5.47

80 1.05× 10−5 7.51 3.50× 10−6 7.64

160 6.67× 10−8 7.29 4.09× 10−8 6.42

ADER5-WAF 20 1.58× 10−2 1.77× 10−2

40 1.24× 10−3 3.68 4.75× 10−4 5.22

80 8.83× 10−6 7.13 3.72× 10−6 6.99

160 7.79× 10−8 6.82 7.86× 10−8 5.57

4.4.1. Convergence studies in 1D

This test problem is chosen to study the convergence properties of the schemes.

We solve the one-dimensional Euler equations (1.7) for a γ-law gas, with γ = 1.4,

for the following initial condition, defined on [-1,1]:

u = p = 1, ρ = 2 + (sin πx)4 , (4.20)

so that the exact solution is ρ(x, t) = 2 + [sin(π(x − t))]4, u = p = 1. Periodic

boundary conditions are used. The error of cell averages is measured at the output

time t = 2 (one time period). Table 17 shows convergence rates and errors for

density in different norms. We observe that all ADER-AD and ADER-WAF schemes

reach the expected order of accuracy. In fact, the fifth order schemes well exceed

the designed fifth order of accuracy. In particular, we note that the use of the
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TVD flux, when used with a compressive limiter, does not affect the convergence

properties of the ADER-WAF schemes. Moreover, for the third order scheme the

accuracy actually improves.

At this stage, it is informative to remark that such high orders of accuracy

are achieved under nearly optimal Courant number CFL=0.95, and by non-linear

(non-oscillatory) schemes which produce essentially non-oscillatory results, as we

demonstrate below. These schemes may be used for solving practical problems

involving discontinuous solutions or large gradients.

4.4.2. Modified shock/turbulence interaction

Here we use a test problem that is a modification of the shock/turbulence

problem proposed in [3, 22]. The modification is three-fold. We use (i) a weaker

shock wave, (ii) a density fluctuation with frequency four times higher and (iii) an

output time ten times larger. The modified test is more appropriate for testing the

performance of very-high order schemes.

We solve the Euler equations on [−5, 5] with the initial condition

(ρ, u, p) =

{
(1.515695, 0.523346, 1.80500) , x < −4.5 ,

(1 + 0.1 sin 20πx, 0.0, 1) , x > −4.5 .
(4.21)

The test problem consists of a right facing shock wave of Mach number 1.1 running

into a high-frequency density perturbation. As time evolves, the shock moves into

this perturbation, which spreads upstream. We compute the solution at the output

time t = 5.

Results are shown in Figs. 4.11 and 4.12. In all figures, symbols denote the

numerical solution and the solid line denotes the reference solution, computed using

the ADER5-WAF scheme on a mesh of 5000 cells. The solution contains physical

oscillations which have to be resolved by the numerical method. It is for such type

of problems that sophisticated higher order schemes should give better results than

lower order ones. For the calculations shown here we choose a coarse mesh of 1000

cells so that there are only four to five cells between each extrema in the physical

oscillations. We use CFL = 0.95 for the ADER-AD and ADER-WAF schemes

and the smaller CFL = 0.6 for the WENO5-RK3 and WENO9-RK3 schemes. We

remark that further reduction of the CFL number does not improve the accuracy

of the WENO schemes whilst, needless to say, the computational cost increases

significantly.
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There are three schemes that use piece-wise parabolic reconstruction (fifth order

in space) and third-order time discretisation: WENO5, ADER3-AD and ADER3-

WAF. See Fig. 4.11. Of these, the most accurate scheme is ADER3-WAF. Next, we

have schemes that use reconstruction with fourth-order polynomials (ninth order in

space): WENO9, ADER5-AD and ADER5-WAF. See Fig. 4.12. The first of these

is third-order in time and the ADER schemes are fifth-order in time. Firstly, we

see that the ADER5-AD scheme is more accurate than the WENO9-RK3 scheme.

Secondly, the ADE5-WAF scheme is the most accurate scheme for this problem: on

a given course mesh it resolves almost all features of the solution.

Therefore, the ADER-WAF schemes are far superior to the corresponding ADER-

AD and WENO schemes. The difference in accuracy is evident for schemes of all

orders.

4.4.3. Two-dimensional vortex evolution problem

We solve the two-dimensional Euler equations in the square domain [−5 : 5] ×
[−5 : 5] with periodic boundary conditions. The initial condition corresponds to

a smooth vortex placed at the origin and is defined as the following isentropic

perturbation to the uniform flow of unit values of primitive variables [3]:

u = 1− ε

2π
e

1
2
(1−r2) y, v = 1 +

ε

2π
e

1
2
(1−r2) x,

T = 1− (γ − 1)ε2

8γπ2
e(1−r2),

p

ργ
= 1,

(4.22)

where r2 = x2 + y2 and the vortex strength is ε = 5. The exact solution is a vortex

movement with a constant velocity at 45o to the Cartesian mesh lines. We compute

the numerical solution at the output time t = 10 for which the vortex returns to the

initial position. We use Ccfl = 0.45 for all runs.

Table 18 shows the convergence study for the ADER and WENO schemes with

the piece-wise parabolic (r = 3) reconstruction. We present errors and convergence

rates in L∞ and L1 norm for cell averages of density. We observe that the ADER

schemes achieve approximately sixth and fifth orders of accuracy in L∞ and L1 norms

respectively. The ADER-GM scheme is only slightly less accurate than the ADER-

AD scheme. It is interesting to note that these orders of accuracy actually exceed

the fourth order accuracy of the two-point Gaussian rule used for flux integration.

The WENO scheme is less accurate than the ADER schemes by a factor of two on

coarse meshes and by a factor of three on the finest mesh. We also note, that the

accuracy of the ADER-AD and ADER-HLLC schemes of the same order is very
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WENO5, CFL=0.6

ADER3-AD, CFL=0.95

ADER3-WAF, CFL=0.95

Figure 4.11. Computed (symbol) and reference (line) solutions for the Euler

equations (1.7) with initial condition (4.21) at output time t = 5

for schemes with piece-wise parabolic reconstruction. The mesh of

N=1000 cells is used.



94

WENO9, CFL=0.6

ADER5-AD, CFL=0.95

ADER5-WAF, CFL=0.95

Figure 4.12. Computed (symbol) and reference (line) solutions for the Euler

equations (1.7) with initial condition (4.21) at output time t = 5

for schemes with piece-wise quadric reconstruction. The mesh of

N=1000 cells is used.
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Table 18 . Density convergence study for the vortex evolution problem (4.22) for

schemes with piece-wise parabolic (r = 3) reconstruction.

Method Mesh L∞ error L∞ order L1 error L1 order

ADER3-AD 25× 25 5.94× 10−2 3.43× 10−1

50× 50 8.90× 10−3 2.74 2.50× 10−2 3.78

100× 100 2.62× 10−4 5.08 8.83× 10−4 4.82

200× 200 4.55× 10−6 5.85 3.58× 10−5 4.62

ADER3-HLLC 25× 25 5.94× 10−2 3.43× 10−1

50× 50 8.94× 10−3 2.73 2.50× 10−2 3.78

100× 100 2.63× 10−4 5.09 8.83× 10−4 4.82

200× 200 4.68× 10−6 5.81 3.61× 10−5 4.61

ADER3-HLL 25× 25 6.08× 10−2 3.87× 10−1

50× 50 9.32× 10−3 2.71 2.64× 10−2 3.88

100× 100 2.86× 10−4 5.02 9.97× 10−3 4.73

200× 200 4.90× 10−6 5.87 3.79× 10−5 4.72

ADER3-GM 25× 25 1.01× 10−1 6.29× 10−1

50× 50 1.42× 10−2 2.83 4.20× 10−2 3.91

100× 100 4.58× 10−4 4.96 1.63× 10−3 4.69

200× 200 9.97× 10−6 5.52 5.15× 10−5 4.98

WENO [41] 25× 25 1.04× 10−1 6.92× 10−1

50× 50 1.38× 10−2 2.91 4.58× 10−2 3.92

100× 100 4.60× 10−4 4.91 2.33× 10−3 4.30

200× 200 1.67× 10−5 4.78 9.05× 10−5 4.68
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Table 19 . Density convergence study for the vortex evolution problem (4.22) at

the output time t = 10. ADER schemes with piece-wise cubic (r = 4)

reconstruction

Method Mesh L∞ error L∞ order L1 error L1 order

ADER4-AD 25× 25 1.96× 10−2 1.15× 10−1

50× 50 1.59× 10−3 3.62 5.43× 10−3 4.40

100× 100 2.52× 10−5 5.98 1.29× 10−4 5.39

200× 200 4.14× 10−7 5.93 1.81× 10−6 6.16

ADER4-HLLC 25× 25 1.96× 10−2 1.15× 10−1

50× 50 1.60× 10−3 3.62 5.43× 10−3 4.40

100× 100 2.52× 10−5 5.98 1.29× 10−4 5.40

200× 200 4.14× 10−7 5.93 1.80× 10−6 6.16

ADER4-HLL 25× 25 1.90× 10−2 1.15× 10−1

50× 50 1.61× 10−3 3.56 5.68× 10−3 4.34

100× 100 2.79× 10−5 5.85 1.44× 10−4 5.31

200× 200 4.49× 10−7 5.96 1.95× 10−6 6.20

similar whereas the ADER-HLL schemes are slightly less accurate, which is due to

the use of the less accurate HLL Riemann solver.

We also remark that all ADER schemes are more accurate than the WENO

scheme by a factor between two and three. The observed difference in accuracy

between ADER and WENO schemes can be related to the more accurate time

evolution method of the ADER approach as compared to the combination of the

Rusanov flux and the TVD RK method in the WENO scheme.

Table 19 shows the convergence study for the fourth order ADER schemes with

the higher-order piece-wise cubic (r = 4) reconstruction. We observe approximately

sixth order of accuracy in both norms. For a fixed resolution the fourth order ADER

schemes are more accurate than the schemes of Table 18 by a factor of ten.
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4.4.4. Double Mach reflection of a strong shock

The setup of the problem is as follows [83]. The domain of interest is a region of

4 units long and 1 unit wide. At the initial time t = 0 a right-moving shock wave

of shock Mach number equal to 10 is set up. The shock front makes an angle of

60o with the x-axis at x = 1/6. Ahead of the shock the gas is at rest with ρ = 1.4,

p = 1. The following boundary conditions are used. The in-flow boundary condition

is applied at the left vertical boundary x = 0 and transmissive boundary conditions

are used at the right vertical boundary x = 4. At the bottom boundary y = 0 the

exact post-shock values of all gas parameters are set for 0 ≤ x ≤ 1/6 whereas for

1/6 < x ≤ 4 reflective boundary conditions are used. The exact motion of the Mach

10 shock is prescribed at the top boundary y = 1. The solution is studied for the

output time t = 1/5.

Figs. 4.13–4.20 show numerical results of the third-order ADER3-AD, ADER3-

HLLC, ADER3-HLL and ADER3-GM schemes for three meshes: 480×120, 960×240

and 1920× 480 cells. The corresponding results of the WENO scheme can be found

in Fig. 3.4 of [41] and are not shown here. Comparing our results with those in the

existing literature [83, 22, 11, 21, 41] it is seen that ADER schemes produce the flow

pattern generally accepted at present as correct, on all meshes. All discontinuities

are well resolved and correctly positioned. Comparing ADER new schemes, and

the WENO scheme [41], we see that the main difference occurs in the resolution of

the slip surfaces and the associated jet. This is partly explained by the numerical

flux. The adaptive Riemann solver used to compute the leading term of the state

expansion (2.50) in the ADER3 scheme and the HLLC Riemann solver used for the

leading term of the flux expansion (2.55) in the ADER3-HLLC scheme recognize all

these waves. In fact, the numerical results of the ADER3-AD and ADER3-HLLC

schemes are very similar, almost identical. The HLL and the Rusanov fluxes used

in the ADER3-HLL and the WENO schemes ignore the internal structure of the

Riemann problem solution and thus smear the slip surfaces more significantly [73].

The overall accuracy of the ADER3-GM scheme compares well with that of the

WENO scheme [41] and conventional state-expansion ADER schemes.

Additionally, we observe that all ADER schemes produce much sharper profiles

of the shock waves as compared with the WENO scheme [41]. Presumably, this

should be attributed to the one-step framework of the ADER approach.

On the finest mesh we begin to see the appearance of the Kelvin-Helmholtz

instability (rolling) of the slip surface. We remark that slip surfaces are physically

unstable features of the flow, the converged solution of which can only be obtained
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Figure 4.13. Density convergence study for the double Mach reflection problem.

Method: the ADER3-AD scheme. 30 contour lines from 2 to 22.
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Figure 4.14. Density convergence study for the double Mach reflection problem.

Method: the ADER3-HLLC scheme. 30 contour lines from 2 to 22.
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Figure 4.15. Density convergence study for the double Mach reflection problem.

Method: the ADER3-HLL scheme. 30 contour lines from 2 to 22.
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Figure 4.16. Density convergence study for the double Mach reflection problem.

Method: the ADER3-GM scheme. 30 contour lines from 2 to 22.



102

X

Y

2 2.25 2.5 2.75
0

0.1

0.2

0.3

0.4

0.5

X

Y

2 2.25 2.5 2.75
0

0.1

0.2

0.3

0.4

0.5

X

Y

2 2.25 2.5 2.75
0

0.1

0.2

0.3

0.4

0.5

Figure 4.17. Density convergence study for the double Mach reflection problem.

Method: the ADER3-AD scheme. Zoomed area of Fig. 4.13.
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Figure 4.18. Density convergence study for the double Mach reflection problem.

Method: the ADER3-HLLC scheme. Zoomed area of Fig. 4.14
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Figure 4.19. Density convergence study for the double Mach reflection problem.

Method: the ADER3-HLL scheme. Zoomed area of Fig. 4.15
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Figure 4.20. Density convergence study for the double Mach reflection problem.

Method: the ADER3-GM scheme. Zoomed area of Fig. 4.15
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Figure 4.21. Density convergence study for the double Mach reflection problem.

Method: the ADER4-HLL scheme. Meshes: 480 × 120 cells (top) ,

960 × 240 cells (middle) and 1920 × 480 cells (bottom). 30 contour

lines from 2 to 22.
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Figure 4.22. Density convergence study for the double Mach reflection problem.

Method: the ADER4-HLL scheme. Zoomed area of Fig. 4.21
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by solving the Navier-Stokes equations. See e.g. [84] for a numerical study of

two-dimensional Rayleigh-Taylor instability. When we use the Euler equations, the

viscosity is in fact the numerical viscosity of the method and depends on the scheme

and the mesh used. As the mesh is refined, no limiting (converged) solution is found.

However, for a given particular mesh the numerical solution may exhibit features,

typical of physically unstable flows, but with unknown viscosity. Therefore, more

pronounced instability of the solution (rolling of the slip surfaces) means smaller

numerical diffusion of the ADER3-AD and ADER3-HLLC schemes as compared to

the ADER3-HLL scheme and the WENO scheme of [41].

We remark that the resolution of delicate flow features, such as slip surfaces and

the jet can be directly related to the accuracy of the Riemann solver used in the

scheme. In particular, complete Riemann solvers with all waves in the Riemann

problem solution, e.g. exact and HLLC Riemann solvers, give results superior to

those of the incomplete ones, such as HLL and Rusanov solvers. We observe that the

accuracy of our new ADER-GM scheme is comparable with that of the ADER-HLLC

scheme and superior to the ADER3-HLL and WENO schemes.

Figs. 4.21–4.22 show numerical results of the higher-order ADER4-HLL scheme

for the same meshes. We observe that the scheme produces the correct flow pattern

on all meshes, with thin profiles for discontinuities. Comparing Fig. 4.22 with that

of methods with the lower-order piece-wise parabolic reconstruction (see Figs. 4.13–

4.19 and [41]) it is seen that the rolling of slip surfaces is much more pronounced

in the results of ADER4-HLL scheme. Therefore, the ADER4-HLL scheme has

significantly smaller numerical diffusion as compared with the lower-order schemes.

4.4.5. Three-dimensional explosion test problem

Finally, we apply our schemes to the three-dimensional Euler equations (4.19)

and solve the spherical explosion test problem [65]. The initial condition defined on

[−1 : 1]× [−1 : 1]× [−1 : 1] consists of two regions of constant but different values

of gas parameters separated by a sphere of radius 0.4:

(ρ, p) =

{
(1.0, 1.0), r ≤ 0.4

(0.125, 0.1), r > 0.4
, u = v = w = 0, r2 = x2 + y2 + z2. (4.23)

The numerical solution is computed at the output time t = 0.25 on a sequence

of refined meshes with 25, 51 and 101 cells in each coordinate direction. We use

Ccfl = 0.3 for all runs. For this problem we obtain a reference radial solution by
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Figure 4.23. Spherical explosion test problem. Computed (symbol) and reference

(line) solutions for density (left) and internal energy (right) for the

ADER3-AD scheme. A mesh of 25× 25× 25 cells is used.

Figure 4.24. Spherical explosion test problem. Computed (symbol) and reference

(line) solutions for density (left) and internal energy (right) for the

ADER3-AD scheme. A mesh of 51× 51× 51 cells is used.

Figure 4.25. Spherical explosion test problem. Computed (symbol) and reference

(line) solutions for density (left) and internal energy (right) for the

ADER3-AD scheme. A mesh of 101× 101× 101 cells is used.
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solving numerically the following one-dimensional Euler equations with a geometrical

source term:

∂

∂t




ρ

ρVr

E


 +

∂

∂r




ρVr

ρV 2
r + p

(E + p)Vr


 = −2

r




ρVr

ρV 2
r

(E + p)Vr




where Vr is the radial velocity. We use the Weighted Average Flux (WAF) method

[61, 65] on a very fine mesh.

Figs. 4.23–4.25 show a comparison between the one-dimensional reference radial

solution (solid line) and the cell averages of the three-dimensional ADER3-AD

solution (symbols) along the radial line that is coincident with the x-axis. We

present distributions of gas density ρ and internal energy e = T/(γ − 1) for x > 0.

The solution contains a spherical shock wave and a contact surface travelling away

from the centre and a spherical rarefaction wave travelling towards the origin (0,0,0).

We observe that the scheme produce the correct flow patter with the correct values

behind the shock wave and the contact surface. As the mesh is refined, the numerical

solution approaches the reference solution. No oscillations are present.

The results of the ADER3-HLLC and ADER3-HLL schemes are essentially the

same and are thus omitted.

4.5. Cost comparison of the schemes

Table 20 shows approximate computing times for the schemes with piece-wise

parabolic reconstruction as applied to the double Mach reflection problem. All

numbers are normalized by the computing time of the ADER3-AD scheme. We

see that the third-order ADER schemes are faster than the WENO scheme with the

Rusanov flux roughly by 66% for the state expansion version and for 40% for the flux

expansion version with the EVILIN flux. The reason for this is twofold. Firstly, our

scheme needs to perform the very costly characteristic projections and smoothness

indicators computations in the reconstruction procedure only once during one time

step. Secondly, the ADER scheme uses the two-point integration rule to evaluate

the numerical fluxes whereas the WENO scheme in the cited reference uses the

three-point Gaussian rule.

The gain in computational cost of ADER schemes over the WENO schemes with

Runge-Kutta time stepping is similar to that of the finite-difference WENO schemes

with Cauchy-Kowalewski procedure over the finite-difference WENO schemes with

Runge-Kutta time stepping [34].
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Table 20 . Approximate computation times for the double Mach reflection problem.

Method Normalized computing time

ADER3-AD 100%

ADER3-HLLC 104%

ADER3-GM with k = M = 1 112%

WENO [41], Rusanov flux 166%

The fourth order ADER schemes in two space dimensions are more expensive

than the corresponding third order ADER schemes by a factor of three. This is due

to substantially more expensive reconstruction procedure and more complicated

fluxes.

Secondly, we discuss the memory requirement of the schemes. The ADER

schemes of any order effectively need only two global arrays to store the vector

of the conservative variables and the total sum of fluxes. The WENO schemes with

the third order three-stage TVD Runge-Kutta method [42] need at least three such

arrays. Note that expensive memory transfers may be needed for the RK method

in this case. For the fourth order five stage SSP RK method [45] the memory

requirements are substantially higher. In summary, the memory requirements of

the ADER schemes are significantly smaller than those of the WENO schemes with

RK time discretizations.

Conclusions

We implemented schemes of up to fifth order of temporal accuracy (fifth and

seventh order of spatial accuracy, respectively). We presented the numerical results

for scalar linear and nonlinear equations as well as for multidimensional nonlinear

systems. These illustrate the very high order of accuracy as well as the essentially

non-oscillatory properties of the ADER schemes. Comparisons with the state-of-art

WENO schemes [41] show that the ADER schemes are faster, more accurate and

need less computer memory.
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Conclusions and future work

This thesis has focused on the further construction and generalization of the

ADER advection schemes to the case of non-linear multi-dimensional conservation

laws with reactive-like source terms. The main results can be summarized as follows:

1. A new variant of the Derivative Riemann problem solver has been presented,

which can be applied to systems for which the solution of the conventional

Riemann problem is not available or is exceedingly complicated. The extension

consists of modifying the procedure of the computation of the leading term

whereas high-order terms are left intact.

2. The schemes have been extended to multidimensional non-linear hyperbolic

systems with reactive-like source terms. This required a suitable extension of

the DRP solver for the split multidimensional case, development of the 3D

reconstruction procedure as well as development of the WENO weights for

Gaussian quadrature points and for the higher orders of accuracy.

3. In one space dimension a special version of the schemes, called ADER-TVD,

has been developed by replacing the first order flux by a second order limited

flux for all terms in the Taylor time expansion in the DRP solution. The use

of a a superbee-type limiter has resulted in much better accuracy for long time

evolution problems without the squaring effect typical of TVD methods with

compressive limiters.

4. Truncation error and stability analysis of the schemes for the model linear

advection equation with constant coefficients in one, two and three space

dimensions has been performed. It shows that the ADER schemes are stable

under conventional CFL numbers similar to those for the WENO schemes and

retain the design order of accuracy.

5. Extensive numerical evaluation of the schemes as applied to a number of

the well-established test problems has been performed. Up to fifth order

of temporal accuracy has been demonstrated. Non-oscillatory results have

been obtained for problems with strong discontinuities. A detailed comparison

with the state-of-the art finite-volume WENO schemes has been carried out.

Overall, our methods compare well or favorably with the WENO methods.

Further work will include extension to other hyperbolic systems as well as more

careful study of the approximation of the source terms.
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