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ABSTRACT	

 

Humans are capable of recognizing a myriad of objects in everyday life. To do that, they have 

evolved the ability to detect their commonalities and differences, moving from perceptual details to 

construct more abstract representations that we call concepts, which span entire categories (such 

as the one of people) or refer to very specific and individual entities (such as our parents). 

Organizing our knowledge of the world around concepts, rather than around individual 

experiences, allows us for more rapid access to behavioural relevant information (for instance, how 

to behave when we encounter a dangerous animal), and to quickly generalize this information to 

what we never encountered before. In few words, this is what permeates the world with meaning. 

 

The present work is about the neural bases of learning novel object concepts, a process that in our 

species is vastly supported by symbols and language: for this reason, I talk about semantic 

representations. The word “semantics” generally refers to the study of meaning (and to what a 

“meaning” ultimately is) as it is conveyed by a symbol; in the specific case of cognitive 

neuroscience, it deals with the neural mechanisms that allow symbols to re-present the meanings 

or concepts they refer to in the brain. For instance, we can easily describe what is the meaning of 

the word “DOG”, pretty much as we can explain what “DEMOCRACY” means. However, although 

cognitive neuroscience has focused on the neuro-cognitive bases of semantic representations for 

decades, the neural mechanisms underlying their acquisition remain elusive. How does the human 

brain change when learning novel concepts using symbols? How does a symbol acquire its 

meaning in the brain? Does this learning generate novel neural representations and/or does it 

modify pre-existing ones? What internal representational format (neural code) supports the 

representation of newly learnt concepts in the human brain? 

 

The contribution of this work is three-fold. First, I show how new semantic representations learned 

by categorizing novel objects (defined through a combination of multisensory perceptual features) 
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using words, emerge from the orchestrated plasticity of both perceptual and memory systems. 

Second, I show results converging on the idea that brain regions that evolved in lower-level 

mammals to represent spatial relationships between objects and locations, such as the 

hippocampal formation and medial prefrontal cortex, in humans are recruited to encode 

relationships between words and concepts by means of the same neural codes used to represent 

and navigate the physical environment. Finally, I present preliminary data on the cognitive effects 

of using symbols during learning novel object concepts, showing how language supports the 

construction of generalizable semantic representations. 
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The universe (which others call the Library) is composed of an indefinite and perhaps infinite 

number of hexagonal galleries, with vast airshafts between, surrounded by very low railings. […] 

Like all men of the Library, I have travelled in my youth; I have wandered in search of a book, 

perhaps the catalogue of catalogues; now that my eyes can hardly decipher what I write, I am 

preparing to die just a few leagues from the hexagon in which I was born. 

 

 

 

Jorge Luis Borges (1941), The Library of Babel, in The Garden of Forking Paths 
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GENERAL	INTRODUCTION	

 

A key step for making sense of the rich multisensory world surrounding us is to be able to 

parse it into meaningful discrete and recognizable object categories, or “concepts”. To solve this 

task, the human brain needs to extract from experience and combine all the defining details of a 

concept, such as its sensory or contextual properties. This set of information we have about things 

in the world is called “conceptual knowledge”, and it defines the bases for nearly every human 

activity: it allows us, for instance, to remember what distinguishes dogs from wolves, how to use a 

pen to write, or how to behave in a particular situation. A long-standing tradition in cognitive 

neuroscience has referred to the neural representations of concepts in the human brain as 

semantic representations, because of the central and undeniable role that language and symbols 

(such as words or numbers) play in acquiring, organizing, and recalling conceptual knowledge 

(semàntico derives from the late latin semantĭcus, and from the greek term σηµαντικός -

“meaningful”, from the root σηµαίνω «to symbolize, to mean»). The present work is about how 

semantic representations emerge in the human brain, how they are organized, and what are their 

effects on human behaviour. 

 

This thesis is divided into 5 chapters. Chapter 1 is an introduction to the neuroscience of semantic 

representations, and it will revolve around two main themes: the representation and acquisition of 

concepts in the human brain through symbols (an issue known as the “symbol-grounding problem” 

(Harnad 1980)), and the neural codes supporting the organisation of these representations. 

Bringing together knowledge from previous studies, I will formulate two predictions: 1) that novel 

semantic representations, defining the meaning of symbols (words) emerge in the brain as a 

consequence of the orchestrated plasticity of both memory and perceptual systems, and 2) that in 

humans the same neural codes subtending spatial navigation, might also support the 

representation of language-based semantic knowledge, especially in those brain regions mostly 

known for encoding spatial memory and higher level reasoning, such as the hippocampal 
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formation and the medial prefrontal cortex. By the end of Chapter 1 I will present a behavioural 

training paradigm thanks to which human adults learn novel object concepts that I validated and 

used for subsequent experiments. In Chapter 2 and 3 I will present a longitudinal fMRI study I 

designed to test these predictions. In this study, participants were trained  for 9 days to construct  a 

novel semantic space, and crucially they were tested before and after this learning process. I will 

present the two sets of analyses separately, in the format of two independent journal articles, as 

they attack two questions that I believe(d) being distinguishable. Chapter 2 will summarize the 

neuroimaging results addressing the first prediction. Chapter 3 will address the idea that spatial 

neural codes (distance-based and direction-based) employed by specific brain regions to represent 

the structure of the physical space and to support spatial navigation, may also be recruited to 

represent the structure of the novel semantic space during an orthogonal and non-spatial symbolic 

categorization task. In Chapter 4 I will present the results of an independent behavioural 

investigation aimed at verifying the advantages of using symbols to create novel categorical 

representations: although at the moment of writing this experiment is still ongoing, I believe the first 

effects that it shows will be of particular interest for the present dissertation. Finally, in Chapter 5 I 

will conclude this work with a general discussion, stressing open questions and future directions. 
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Semantic	representations	in	the	human	brain	 	
 

 

The nature of concepts has been a central topic in philosophy and cognitive science for 

centuries. A long standing tradition in cognitive neuroscience attacked the question of the neural 

correlates of human conceptual knowledge by taking advantage of the fact that in humans 

conceptual memory is dependent on symbols, such as words or numbers, and can be inferred by 

mostly using linguistic material. Such symbol-dependent form of conceptual knowledge is defined 

“semantic memory” and its study aims at unveiling the neuro-cognitive mechanisms that give rise 

to semantic representations. 

 

Early neuropsychological studies (e.g. Warrington & McCarthy 1983; Warrington and Shallice 

1984) indicated that brain damaged patients have selective deficits for some categories of 

concepts compared to others. More than one hundred cases has been reported so far (for reviews 

see Capitani et al. 2003; Mahon & Caramazza 2010), involving semantic specific impairments for 

living things such as animals (e.g. Caramzza & Shelton 1998; Blundo et al. 2006), fruit/vegetables 

(e.g. Hart et al. 1985; Samson & Pillon 2003), non-living things such as tools (e.g. Laiacona & 

Capitani 2001; Sacchett & Humphreys 1992); and conspecifics (e.g. Ellis et al. 1989; Miceli et al. 

2000).  

Other studies tried to further extend these results by mapping what neocortical regions were 

activated when healthy participants were engaged in various conceptual tasks prompted by words 

presentation. The rationale behind this approach is that words, as abstract symbols provided with 

meanings by experience, guarantee a rapid and efficient access to conceptual representations 

while at the same time controlling the contribution of low-level properties of the physical input. 

When participants are asked to perform tasks that enhance the meaningful nature of words, as 

opposed for instance to pseudowords (e.g. Demonet et al 1992; Binder et al. 2003, 2005; etc etc.), 

only those neocortical regions that store and elaborate purely conceptual information should 

activate: the semantic network.  
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Despite the high variability in the kind of words (e.g. concrete vs. abstract words) or tasks (e.g. 

evaluate if a string of letters was a words or a pseudo-words, or whether two words referred to 

similar concepts or not) used, these studies generated very consistent results. In 2009 Binder et al. 

published a critical review and meta-analysis of 120 functional neuroimaging (fMRI and Positron 

Emission Tomography, or PET) studies focusing on conceptual processing on healthy adults. 

These studies were conducted in laboratories all over the world in a period of time that span more 

than 15 years (from 1992 to 2007), and involved a great variety of conceptual tasks. The results 

revealed a distributed, but mainly left-lateralized network of 7 cortical regions consistently 

activated: the left Angular Gyrus in the inferior parietal cortex; 2) middle and inferior temporal gyri 

extending to the anterior temporal lobe; 3) fusiform and parahippocampal gyri; 4) dorsomedial 

prefrontal cortex; 5) ventromedial prefrontal cortex; 6) inferior frontal gyrus; 7) precuneus and 

posterior cingulate cortex (Figure 1.3). All the nodes of this network are associative regions far 

from primary sensory and motor cortices, and they are consistently reported as high-level 

multimodal areas (Mesulam 1985; Sepulcre et al. 2012) with wide and distributed connectivity with 

secondary sensory areas (Achard 2006; Buckner et al. 2009; Andersen et al. 1990).  

 

In 2013, Fairhall & Caramazza directly investigated what brain regions showed the definitional 

property of neural semantic representations of object concepts (that is of concepts that represent 

object classes) – that of showing corresponding, or similar, activation patterns for a concept, 

irrespective to its presentation modality (either the symbol (e.g., the word CAT) or its referent (e.g., 

the picture of a cat) – by using multivariate analysis to identify neocortical regions that represented 

well known object concepts in a modality invariant fashion. They presented participants with stimuli 

belonging to 5 semantic categories – fruits, clothes, tools, mammals, and birds – during a 

typicality-judgment task (e.g. rating the typicality of “hammer” as a tool, or “apple” as a fruit). 

Crucially, participants were presented with these stimuli in either a pictorial (e.g. the picture of an 

apple) or a symbolic (e.g. the string of letters A-P-P-L-E) format. The authors then applied a cross-

modal decoding procedure implemented in a whole-brain searchlight: for each sphere of the 

searchlight, a classifier (SVM) was trained to distinguish semantic content from the multivariate 
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brain activity evoked during the presentation of stimuli in one sensory modality (e.g. pictures), and 

it was tested on the independent brain activity dataset collected during stimuli presentation in the 

other modality (e.g. words). This revealed a network of areas mostly overlapping to the semantic 

network, thus indicating that these regions are indeed representing semantic content irrespective 

of the format (symbolic or pictorial) of presentation. 

 

Among these neuroimaging studies using words to access semantic representations, the most 

consistently reported neocortical region is the left Angular Gyrus (AG), in the inferior portion of the 

parietal lobule (IPL). This region is practically absent in lower primates, and expanded significantly 

in humans compared to their homologues in macaques (von Bonin and Bailey 1947; Hyvarinen 

1982). Given its anatomical location at the conjunction of secondary visual, auditory, spatial, and 

somatosensory associative regions, it has been indicated as the ideal candidate as neo-cortical 

“convergence zone” (for a definition see Damasio 1989 and Meyer & Damasio 2009), where high-

level conjunction of perceptual information is integrated into more abstract, or conceptual, 

representations (Geschwind 1965; Binder & Desai 2011). This view has been confirmed by brain 

stimulation studies, causally linking modulation of AG activity to modulation of behaviour and 

performance in memory tasks (e.g. Sestieri et al. 2013). Yazar et al. (2017) applied continuous 

theta burst stimulation to this area while participants had to retrieve information on audio-visual 

features of recently acquired memories. They showed a significant impairment in participants when 

they had to retrieve conjunctive multisensory information (audio and video together) compared to a 

condition where the stimulation was applied at a vertex control site, and no effect when they had to 

retrieve single modality features (audio or video separately). This indicated a specific role of the 

Angular Gyrus in combining (or binding) multisensory information, an operation that in real life is 

essential for defining new memories and concepts, and also for grounding the meaning of new 

symbols. 

However, other works mostly based on clinical observations, indicated the anterior portion of the 

left temporal lobe (ATL) as the key convergence hub for semantic processing (for reviews see 

Patterson et al. 2007; Lambon-Ralph 2014). Crucial evidence in this sense comes from a dramatic 
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neurodegenerative disorder, semantic Dementia (SD). Mostly affecting temporal regions, this 

disorder is characterized by severe anomia and inability to recover conceptual knowledge even in 

tasks that do not require its explicit verbal communication, such as simple object use (Hodges et al 

2000) or item identification based on sound (Bozeat et al. 2000), taste (Piwnica-Worms et al 2010) 

or smell (Luzzi et al. 2007). SD patients are usually impaired in judging the typicality of items within 

a conceptual category (e.g. guitar as musical instrument), and their performance decreases as a 

function of specificity (e.g. recognizing a very specific dog breed)(Lambon Ralph et al. 2016). 

Neuroimaging studies confirmed that anterior regions of the temporal lobe differently represent 

concepts on the bases of their semantic details, such as categorical membership (Malone et al. 

2016, Borghesani et al. 2016). 

All these studies suggest that processing semantic knowledge in humans elicits activity in a 

widespread network of associative regions that presumably, in light of their specific anatomical 

positions, act as convergence zones (Meyer & Damasio 2009) for inputs coming from lower 

associative and sensory regions. 

 

But how do these semantic representations emerge in the brain? A fundamental problem in 

cognitive science, indeed, is the “symbol-grounding problem” (Harnad 1980), that relates to the 

issue of how a symbol acquires its meaning. In the field of cognitive neuroscience, this translates 

to the question of whether and how the neural representations of symbols and the objects they 

refer to change to reflect the novel, meaningful, association, or whether this novel representation 

emerge separately and independently in brain regions that did not previously represent either the 

symbols or the objects themselves.  

The observation that in some cases there are shared neural representations between a symbol 

and its non-symbolic meaning suggests that symbols acquire their meaning by means of a 

mapping process onto the same neural representation of their referent (Pulvermuller 2013). This 

seems particularly true in the case of numbers, where brain regions responding to quantity, such 

as the Intraparietal Sulcus (hIPS), show a representational code common to both number symbols 

and non-symbolic numerosities, as revealed by fMRI adaptation (Piazza et al. 2007), to the point 
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that even the semantics of complex mathematical sentences activates the same neuronal circuits 

usually involved in processing simpler numerical operations or over digits but also sets of items 

(Amalric & Dehaene 2016). 

 

However, as these studies focused on well known semantic categories, it is not possible to have a 

conclusive answer, neither to unveil what are the brain mechanisms that allow this putative 

mapping or grounding process to happen: indeed, these results are silent on whether the 

computations necessary to attach a symbol to its meaning (and viceversa) happen within the same 

areas the later show the mutual correspondence, or if other areas participates in building the novel 

semantic representation.  

One potentially powerful way to address the problem is to use training studies, where participants 

learn new concepts by associating them with specific names. The use of functional neuroimaging 

techniques then permits to record the activity patterns for the stimuli at different time points, for 

instance before and after learning the semantic association, and thus reveal what are the changes 

occurring in the brain as new meanings are created. 

 

The behavioural consequences of  learning novel with the use of symbols compared to learning it 

without symbolic aids have been indeed explored in behavioural training experiments showing that, 

for instance, the availability of symbols greatly facilitates the acquisition of novel categories both in 

adult (Lupyan et al. 2007) and children (e.g. Althaus & Plunkett 2016, Althaus & Westemann 

2015). There are reasons, coming from behavioural studies, to believe that the changes supporting 

the emergence of semantic information spread also to perceptual representations. Past works, 

indeed, highlighted the effects of categorization on perceptual judgements. Long-lasting expertise 

can improve perception of diagnostic structures and features in animal (Biederman & Shiffrar 

1987) or beer (Peron & Allen 1988) experts, as well as in radiologists (Norman et al. 1992), 

suggesting that learning to recognize specific object categories by attaching them a label can alter 

perceptual processing. Such a categorical effect on perceptual judgements seems to rely on 

dimensional modulation (Folstein et al. 2015) of behaviourally relevant perceptual features. This 
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alteration revolves around acquired distinctiveness between members of different categories 

(Lawrence 1949) and acquired equivalence between members of the same category (for a review 

see Braunitzer et al. 2017). Goldstone (1994), for instance, found that participants who have been 

trained to categorize, using labels, a set of 16 squares basing on their size and brightness were 

more likely to discriminate between across- boundary stimuli compared to a control group, 

providing behavioural evidence for acquired distinctiveness. This “warping” of the perceptual 

representations occurring during categorization might indicate that learning new semantic 

knowledge involves changes that may be traced down to the perceptual systems as well, effects 

that are usually overlooked by studies that focused on well-known classes of object/words. 

 

This might indicate that the symbol-grounding problem is solved by the human brain by means of 

complex and distributed changes that spread even to perceptual representations. 

 

Conclusions 

 

Humans construct their conceptual knowledge of the world by organizing multisensory experiences 

into labelled categories. No study to date systematically looked for the neural changes supporting 

this uniquely human faculty monitoring the early stages of learning to map symbols to their 

meaning. Several questions remain open: does learning generate ex-novo neuronal 

representations that were not present before? Does it also, or only, modify previously existing 

ones? Do these changes involve brain regions beyond the semantic network? What neural 

mechanisms support these changes?  

To answer these questions, I designed a learning experiment where I monitored, using fMRI, the 

neural changes of learning novel multisensory object concepts using symbols. The details of the 

experiment will be presented in Chapter 2, while the remaining part of this introductory chapter will 

revolve around the second central topic of the present work: what is the representational format 

underlying semantic representations? 
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Spatial	codes	for	semantic	spaces		
 

 

 The second part of this introduction is about the format underlying conceptual 

representations in the human brain. This refers to the neural code(s) that different brain regions 

employ to represent the relations between concepts. Specifically, I will discuss a fascinating idea 

that emerged in the late 40s by Tolman (1949) and that has been recently formalized in a 

theoretical work (Bellmund et al. 2018), suggesting that the representation of the knowledge we 

have about things in the world and that we use in our everyday behaviour is supported by the 

same neural mechanisms that we recruit to represent the physical space. This theory states that 

the relationships between concepts and items in memory are conceivable as distances between 

the regions of a conceptual representational space, and thus we can use the same neural codes 

that allow us to navigate in the physical space (spatial codes) to “move” among concepts in 

memory.  

 

Between the 30s and the 40s Tolman conducted a series of behavioural experiments on rats, 

where he observed that animals, to find rewards in complex mazes, were able to take shortcuts or 

find new routes when the old ones were blocked  (e.g. Tolan & Honzik 1930, Tolman et al. 1946). 

He coined the term “cognitive map” to indicate that the animals, in order to show such complex and 

adaptive behaviour, must have had developed an internal representation of the world and the 

relationships between its elements, such as landmarks or locations (Tolman 1948). 

 

A literal interpretation of the word “map” directed the following years of research to find the internal 

neural correlates of such representation of the external physical environment. In 1971 O’Keefe and 

Dostrovsky discovered hippocampal “place cells”, neurons that are active when the animal enters 

very specific positions in the environment, no matter the orientation of the movement trajectory or 

its velocity. The following four decades have seen a proliferation of milestone results in the study of 

spatial coding in this area, mostly represented by the discovery of other spatially tuned neurons, 
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such as head direction cells (Ranck 1984; Taube et al 1990), boundary cells (O’Keefe and Burgess 

1996), boundary vector cells (Lever et al. 2009), speed cells (Kroppf et al. 2015), object vector 

cells (Hoyadal et al. 2017) and most recently even social place cells (Omer et al. 2018; Danjo et al. 

2018). 

The most celebrated kind of spatially tuned neurons are grid cells, first described by the group of 

Edvard and Mary-Britt Moser (hafting et al. 2005), who in 2014 were awarded, together with John 

O’Keefe, the Nobel Prize in Medicine and Physiology. Grid cells were first observed in the medial 

entorhinal cortex of rats (a sub-portion of the hippocampal formation, mostly projecting to the 

hippocampus), and are neurons that fire for multiple spatial locations in the environment. These 

locations correspond to the vertices of a regular triangular grid covering the entire environment, 

and show a precise 6-fold rotational symmetry, resulting in a very specific hexagonal pattern. 

Besides their peculiar firing rate, grid cells show some other very interesting properties. First, 

visual cues strongly influence the alignment of the grid: when external cues are rotated, the grid 

pattern rotates in the same way. Second, grid activity remains unchanged when visual input is 

removed (e.g. by turning off the lights in the environment). Third, grid patterns appear as soon as 

the animal enters a novel environment. Finally, and possibly most importantly, grid cells maintain 

the specific size of the grid pattern and its offset compared to one another even if the animal is 

moved to different environment. This property is not shown for instance by hippocampal place 

cells, that exhibits a profound remapping in different environments (Bostock et al. 1991; Leutgeb et 

al. 2005; Fyhn et al. 2007). In general, grid cells are thought to support path-integration, enabling 

an internal representation of distances between locations, thus guiding mammals’ behaviour when 

navigating the environment (Bush et al 2015). 

 

A seminal study by Doeller et al. (2010) demonstrated that grid activity is present in humans, and 

that it is possible to record it using non-invasive functional MRI. This study moved from a very 

precise observation about electrophysiological data on rats: grid orientation of different grid cells 

relative to the external environment remains constant across cells (while for instance their relative 

phase or size of the grid pattern change). To understand why this observation is so important, 
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consider a single grid cell, which activates more often when the animal moves in the environment 

in a direction that is aligned to one of the 6 main axes of the grid, compared to a situation where it 

moves for the same distance but in a direction that is not aligned. If we consider now entorhinal 

activity at the population level, this would result in a stronger signal for movement directions 

aligned to the grid (one of the 6 axes) compared to movement directions that are not aligned to the 

grid.  

 

The brilliant intuition of the authors was that such different population activity should require a 

different consumption of blood, thus it could be observed at cortical level as a modulation of the 

BOLD signal, using functional MRI. Doeller et al. in their experiment asked participants to navigate 

a virtual reality environment with a joystick, while lying in the MR scanner. During navigation, 

participants had to find the locations of some objects, while their brain activity was analysed, 

looking for 6-fold modulations of the BOLD signal as a function of running direction (at this step, 

randomly aligned to a reference direction). The analysis technique they used was particularly 

complex, and consisted in two steps. In a first step, half of the functional data were used to 

estimate the putative grid orientation, by means of a quadrature filter procedure. Next, they aligned 

the running directions of the second, and independent, half of the dataset to the putative grid 

orientation, and looked for intensity of the BOLD signal for aligned vs. misaligned clusters (30°) of 

movement directions. They reported an impressively precise modulation of BOLD signal in the 

right entorhinal cortex, that could not be explained by other periodicities (e.g. 45° or 90°). Crucially, 

when they applied fMRI adaptation to reveal those brain regions that showed a reduction in fMRI 

signal according to how recently participants were running at 60° to the current direction, this 

revealed a network of areas including not only the entorhinal cortex, but also other areas, such as 

the medial prefrontal cortex, best known for its connectivity to the hippocampal formation and for 

its role in both spatial e non spatial memory (Preston & Eichenbaum 2013).  

 

In 2013 Jacobs et al. reported the first evidence of grid cells in humans using intracranial 

recordings, while epileptic patients performed a virtual reality task. Neurons in their entorhinal 



12 

cortex and in medial prefrontal cortex exhibited grid-like firing patterns as a function of spatial 

position in the virtual environment, thus proving that humans and lower level animals rely on 

corresponding spatial-coding schemes at neuronal level. Interestingly, two independent studies in 

2016 observed grid-like modulation of fMRI BOLD signal when healthy participants were involved 

in imagined navigation tasks. In the first of these studies, Horner et al. (2016) trained participants 

to memorize the positions of 6 objects in a virtual reality environment. Next, they asked them to 

either move or imagine moving to the locations of each object, from various positions, thus eliciting 

different movement trajectories. ROI-based analysis revealed a significant cluster of voxels in EC 

that showed 6-fold modulation of bold signal as a function of running direction. In the second study, 

Bellmund et al. (2016) independently confirmed these results by applying a more parsimonious 

and potentially powerful method based on Representational Similarity Analysis (RSA, Kriegeskorte 

et al. 2008), where they showed that the neural similarity of pairs of imagined movement 

trajectories – carefully sampled to be at 30° or 60° apart one from each other – was higher, in EC, 

when the two trajectories were 60° apart compared to when they were 30° apart, as an underlying 

grid-code would impose. 

 

As both the hippocampal formation and the medial prefrontal cortex are classically associated to 

more general memory functions (see Preston & Eichenbaum 2013, Stalnaker et al. 2015; Behrens 

et al. 2018 for reviews), is it possible that the same spatial codes are involved in non-spatial 

navigation tasks? Constantinescu et al. have made a crucial contribution in this sense in 2016. 

They adapted the same logic and experimental design of Doeller et al. (2010) to ask whether the 

same grid-like activity could be observed, using fMRI, when participants processed a novel 

continuous space of visual shapes. They created 6 bird shapes and they associated each one of 

them to a Christmas symbol. Crucially, bird shapes varied in the length of their legs and neck, thus 

each bird could be intended as a point in a bi-dimensional “bird” space where coordinates were the 

length of the two diagnostic features. They made participants familiarize with this bird space by 

means of a task where they could adjust the ratio between neck-length and legs-length, thus 

mimicking a movement in this artificial space. By adjusting these two visual features, participants 
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had to find the 6 birds shapes associated to the Christmas symbols. Next, during the fMRI 

sessions, participants were presented with brief videos of morphing birds, showing a slow change 

in their silhouette in terms of neck- and legs-length. Participants were instructed to imagine the 

morphing animation to continue “in the same way” (that is, crucially, in the same direction in the 

corresponding 2D bird space) and to guess what kind of resulting bird shape they will find, as 

indicated by one of the Christmas symbols. Although participants were not consciously aware of 

the 2D spatial representation underlying this task, when authors analysed their brain activity as a 

function of “morphing” direction looking for the 6-fold periodic modulation typical of grid-cells 

activity, they found it in a network of areas strikingly similar to the one reported by Doeller et al. 

(2010) for spatial navigation. In particular, this signal was stronger in the entorhinal cortex and in 

the ventromedial prefrontal cortex. 

 

This result was the first, and to date the only one, evidence of hexadirectional modulation for a 

non-spatial task in humans, which required memorizing a continuous and bi-dimensional visual 

space. This proves that the grid-code might serve, in the human brain, a more general function 

than representing the physical space, and it opens the possibility of representing conceptual 

knowledge using spatial codes. 

 

But what does it mean to represent knowledge using spatial codes? In the theoretical framework 

formalized by Gardenfors (2000), knowledge can be conceived as organized into “cognitive 

spaces”, internal representations of objects or events spanning by a set of quality dimensions 

(sensory or abstract features). For instance, a zebra and a wasp can be thought as occupying 

different regions in a bi-dimensional “animal space” spanning animals’ size and ferocity, or any 

other two dimensions might be relevant for the task to solve or for the memory to encode. Any 

given stimulus can be thus located in a cognitive space according to a set of diagnostic feature 

values. Relations between concepts (regions of the cognitive space) can be expressed using 

geometrical notions: dissimilarity between concepts can be expressed as Euclidean distance 

between regions in the n-dimensional feature space, and sequences of concepts are thus 
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conceivable as movements in the corresponding underlying space. Interestingly, a very similar 

intuition is also emerging in completely different fields, that of neurolinguistics and computational 

linguistics, where scholars tend to conceptualize word meanings (that is, semantic representations 

of concepts), as regions or points in an internal space, the semantic space, with proximities 

reflecting similarity in meaning, thus highlighting that high-level symbolic thinking might share 

some important features with spatial processing (Borghesani & Piazza 2017).  Under this 

framework, it is essential to provide an interface to index the location of a concept along one or 

more dimensions. Place- and grid- cells do that for physical spaces, easily conceivable as bi-

dimensional navigable surfaces, but they might serve the same purpose for any conceptual 

representation that can be reduced to an n-dimensional space of task relevant features. 

Consider the study by Aronov et al. (2017). In the task they designed, rats were required to use a 

joystick to manipulate a sound along a 1-dimensional continuous frequency axis, to find the correct 

frequency that would lead to a reward. They recorded neural activity in the hippocampus and in the 

entorhinal cortex, and they found that both regions contained neurons that responded to very 

specific sound frequencies. In particular, neurons in the hippocampus fired selectively for only one 

frequency each, while neurons in the entorhinal cortex exhibited multiple firing fields at different 

(usually 2-3) sound frequencies. Crucially, to test whether these neurons were also involved in 

spatial representations, they recorded their activity while rats navigated a spatial environment 

looking for pellets of food. They found that between 25% and 35% of spatially tuned cells were 

also involved in the sound modulation task. These results indicate that during a non-spatial task, 

the hippocampal-entorhinal system of lower-level mammals holds a representation of the task 

relevant features (in this case just one, sound) in a 1-dimensional feature space, where different 

regions or states (the frequencies) are represented by the same neurons that represents locations 

in the physical environment, showing similar firing properties (e.g. single selective vs. multiple firing 

fields for place and grid cells, respectively). As spatial and non-spatial task representations are 

produced by the same neuronal population, the underlying neural code(s) – usually referred to as 

spatial code(s) in light of their first observation in spatial tasks - might serve a more general 
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function, such as representing the underlying structure of an internal representation of the task: 

exactly what Tolman called “cognitive map” and what Gardenfors called “cognitive space”. 

 

Conclusions 

 

Humans and lower level mammals rely on the same neural mechanisms to navigate the physical 

space, recruiting a variety of spatial codes mostly encoded in the hippocampal formation. 

However, the same spatial-codes that allow to navigate the physical space have been observed in 

humans in non-spatial tasks, such as evaluating visual shapes corresponding to regions of a 

perceptual bi-dimensional visual space. This suggests that in humans, the same structures and 

neural codes that subtend spatial representations might also be recruited for more abstract and 

higher-level forms of cognition. To date, no study has investigated more thoroughly this intuition. 

Do “spatial” codes activate to represent human semantic knowledge, which is multisensory, 

categorical, and highly dependent, by definition, on symbols and language?  

I will address this point specifically in Chapter 3, where I will use multivariate analysis to explore 

the existence of both a distance and a direction-based code of a novel semantic space during a 

symbolic categorization task. 
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Introduction	to	the	experimental	work	
 

In the next chapters I will describe three works trying to attack 3 fundamental questions in 

the study of semantic representations: 

1. how do semantic representations emerge in the human brain? 

2. does the human brain recruit spatial codes for representing semantic information even 

when it has no spatial content? 

3. does learning categories of objects using symbols facilitate generalization to novel 

exemplars? 

 

The first two works will describe a set of longitudinal fMRI analyses combined with a 9-days long 

symbolic categorical training, that represented the core of my work during this doctoral program. 

The third work, which is still ongoing, will present the very preliminary, yet of potential interest, 

results of a behavioural investigation. 

 

The first part of my doctorate has been dedicated, besides the study of the relevant literature and 

of the neuroimaging methods that I will be describing later on, to validate a behavioural training 

paradigm suitable for later experiments. This revolved around i) the creation of a novel semantic 

space composed by multisensory objects, which are divided into 4 orthogonal categories by means 

of abstract labels (novel words), and ii) the validation of the behavioural training. I will briefly sum 

up the methods and the results of this validation as final part of this introductory chapter, before 

moving to the presentation and the discussion of the experimental work. 

 

Participants. The study included 15 right-handed adult volunteers (10 females and 5 males; mean 

age = 21.6, std = 2.02). All participants gave written informed consent and were reimbursed for 

their time.  
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Stimulus space. I developed a set of 16 novel animated multisensory objects, orthogonally 

manipulating the size of an abstract shape (Figure 1.1A) and the pitch of an associated sound. A 

total of four size- and pitch- levels were used for each participant, leading to a stimulus space 

where each object represented the unique combination of one size and one pitch level (Figure 

1.1B). The values of these two features were selected for each participant on the first day of the 

experiment, following a brief psychophysical validation consisting of a QUEST adaptive staircase 

method (Watson & Pelli 1987). Using a two-stimuli comparison task for each sensory modality, I 

calculated subject-specific sensitivity as the minimum appreciable increment (Just Noticeable 

Difference, JND) from a reference value (size: visual angle of 5.73°, pitch: frequency of 800 Hz) 

leading to 80% of correct responses. For each sensory modality, four subject-specific feature 

levels were calculated, applying the logarithmic Weber-Fechner’s law and selecting values at every 

three JNDs, in order to ensure that feature levels were equally distant and clearly identifiable. 

Moreover, in order to strengthen the multisensory binding between the two unisensory features, I 

applied a ‘squeezing’ animation during each object presentation by displaying 13 frames of the 

same object with increasing (frames 1 to 7) and decreasing (frames 8 to 13) size along the 

horizontal axis (for an exemplar video of the animated stimuli, visit 

https://www.youtube.com/watch?v=Nyq2BgY-8jc&feature=youtu.be). Objects presentation lasted a 

total of 750 ms and sounds were presented at the apex of the squeezing period. The object space 

was divided into four categories based on the combination of two sensory boundaries (Figure 

1.1B). The categorical membership of each object, as well as their unique multisensory identities, 

could thus be recovered only when considering both sensory features. I assigned to each category 

an abstract name (Figure 1.1C): KER (small size and low pitch); MOS (big size and low pitch); 

DUN (small size and high pitch); GAL (big size and high pitch).  

Stimuli presentation. Stimuli were presented foveally using MATLAB Psychtoolbox in all 

experimental phases, at a distance of ~ 130 cm. Multisensory objects subtended a different visual 

angle for each size level, and a different frequency for each pitch level, ranging from an average of 

5.73° and 800 Hz for level 1 (size and pitch, respectively) to an average of 8.97° and 973.43 Hz for 
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level 4. Each word subtended a visual angle of 3.58° horizontally and 2.15° vertically, and was 

presented with black Helvetica font on a grey background. 

 

Stimuli presentation. Stimuli were presented foveally using MATLAB Psychtoolbox in all 

experimental phases, at a distance of ~ 130 cm. Multisensory objects subtended a different visual 

angle for each size level, and a different frequency for each pitch level, ranging from an average of 

5.73° and 800 Hz for level 1 (size and pitch, respectively) to an average of 8.97° and 973.43 Hz for 

level 4. Each word subtended a visual angle of 3.58° horizontally and 2.15° vertically, and was 

presented with black Helvetica font on a grey background. 

 

Behavioral training. Participants underwent 9 daily sessions of behavioral training, aimed at 

making them learn the correct name of each object. Each behavioral session was approximately 

10 minutes long, and it was divided into 4 mini-blocks of 20 trials each, for a total of 80 trials. It 

started with a brief presentation of the objects as exemplars of the four categories (KER, MOS, 

DUN, GAL). After this familiarization phase, each trial consisted of an object presentation (750 

ms), followed by a fixation cross (500 ms), and by the presentation of the 4 possible names in 

random order, from left to right (Figure 1.1D). Each object was presented 10 times per training 

session. Participants were instructed to press one key on the keyboard to select the correct name. 

They were asked to respond as fast as possible, but no time limits were imposed. After their 

response, an immediate feedback appeared on the screen for 1000 ms, indicating with the words 

“Correct!” or “Wrong!” the accuracy of the choice. In the case of a wrong answer, the feedback also 

showed the correct object name, in order to speed up the learning process. After each miniblock, 

participants would be provided with the cumulative percentage accuracy. Starting from the seventh 

training session, the trial-by-trial feedback was removed and participants could rely only on the 

block-by-block cumulative feedback. For the first 8 days of training, participants were presented 

with the same 8 objects used in the two fMRI sessions. On the last training day, without being 

notified of the change, they were presented with all 16 objects. This allowed me to test for 

generalization of the categorical rule to new exemplars (here represented by objects 2 - 4 - 5 - 7 - 
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10 - 12 - 13 - 15), which would be a key ingredient of an efficient semantic representation. For this 

last session, the mini-blocks number was kept at 4, but the number of trials was doubled, resulting 

in a total testing time of ~ 20 min. 

 

Behavioral training results.The learning trajectory indicated an increment in performance from 

session 1 to 8 (session 1: 46.5 ± 16%; session 2: 66.33 ± 20%; session 3: 75 ± 18%; session 4: 

77.5 ± 15%; session 5: 78.6 ± 19%; session 6: 78.7 ± 18%; session 7: 79 ± 14%; session 8: 78 ± 

19%; difference from session 8 to session 1: t14 = 7.25, p = 4.17x10-6). Performance collected on 

session 9 confirmed both the successful learning of the name-objects association and its 

generalization (training set: mean accuracy = 79.5%, std = 17%, different from chance t = 16.71, p 

< .001; generalization set: mean accuracy = 75.58%, std = 15.29%, difference from chance, t = 

12.81, p < .001)(Figure 1.1E). 

 

Conclusions 

The results of this first behavioural validation indicates that participants correctly learned to 

categories the novel multisensory space using words. Moreover, by analysing the performance on 

the last training day (test day), I can conclude that the categorical meaning of the novel word was 

acquired in an abstract and generalisable way, because participants could correctly categorise 

novel exemplars, a key ingredient when creating behaviourally relevant semantic representations.  

This behavioural paradigm will be largely used in the following experimental works. 
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Figure 1.1 - Validation of the behavioural training. A. Example of audiovisual object. B-C. 16 
multisensory objects are created as unique audiovisual combinations, and they are divided into 
four categories by means of abstract names. D. Participants perform for 9 days a delayed-match-
to-category-name task to learning the correct object-name association. E. Learning curve shows 
improvements; performance on session 9 demonstrates a generalization of the categorical rule. 
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NEURAL	MECHANISMS	UNDERLYING	THE	
EMERGENCE	OF	SEMANTIC	
REPRESENTATIONS	

Introduction	
 

A fundamental problem in cognitive science is the “symbol-grounding problem” (Harnad 

1980), related to the question of how symbols acquire their meanings. Indeed, a key step for 

making sense of the rich multisensory world surrounding us is to be able to parse it into meaningful 

discrete categories, and humans use symbols (such as words or numbers) to construct, recall, and 

generalise this knowledge. Although even very young children can solve this fundamental act with 

a striking ease, its neural correlates are still elusive and largely unexplored. 

 

Previous studies investigated how the human brain represents meanings, mostly focusing on the 

brain responses of adults processing overly known semantic categories, such as that of 

manipulable objects, food items, animals, or numbers. They report that several regions of the 

cortex, mostly in the parietal and infero-temporal lobes (see Binder et al. 2009; 2011) contain 

sufficient information for discriminating concepts both within and across classes, and do so both 

when they are presented as visual shapes (e.g. Connolly et al. 2012, Clarke & Tyler 2014, Cichy et 

al. 2014) and as written (e.g. Borghesani et al. 2016; Liuzzi et al. 2019) or spoken (Liuzzi et al. 

2015; 2017) words. Crucially, few studies suggested that symbols acquire meaning by linking their 

neural representations to the ones of the (class of) objects they refer to: this has been suggested 

to be the case in the case of numbers (Piazza et al. 2007; Eger et al. 2009), color (e.g. Simmons et 

al. 2007), objects/tools (Chao et al. 1999), and places (Kumar et al. 2017). However, since humans 

start learning the meaning of words and thus constructing these kinds of representation extremely 

early in life, it has not been possible to date to witness the neural changes underlying their 
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emergence. As a consequence, how the human brain solves the symbol-grounding problem 

remains unknown. 

 

While functional imaging in young children is possible, it is extremely time consuming and difficult 

to perform. A potentially easier and more powerful way to attack this issue is to engage adult 

participants in training studies, where they have to learn new concepts by giving names to 

previously unseen classes of objects or events. Monitoring, through functional neuroimaging, the 

changes occurring in the neural representations evoked by the stimuli (the symbols and their 

referents) as a function of learning, should unveil the brain mechanisms underlying the emergence 

of semantic representations. Behavioural studies already showed that learning to categorise visual 

objects using labels (that is, linking specific portions of a perceptual space to an abstract symbol 

and therefore creating a meaning, or a semantic representation, for that portion), alters perception, 

facilitating categorization itself (Lupyan et al. 2007) and even altering the perception of the objects 

themselves (Goldstone et al. 1994). This suggests that the way our brain creates new meanings 

through symbols significantly affects its own internal representation of the external world, and that 

the brain mechanisms engaged to solve the symbol-grounding problem might be more profound 

than simply associating two previously separate representations. 

 

In this study, I focused on the neural correlates of learning novel categories of multisensory objects 

by giving them a name, and asked two specific questions: 

i. where and how the new semantic representations emerge, as a function of learning, in the 

human brain? 

ii. how profound are the changes induced by symbolic learning on perceptual 

representations?  

 

I designed a longitudinal learning experiment where a behavioural training was paired with two 

fMRI sessions: one before and one after the training period. Participants learned for 9 days to 

associate novel multisensory objects to written names that represented their categorical identity. I 
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focused on written words because reading is one of the most distinctive abilities humans 

developed in the course of the evolution, strongly linked to the act of creating and conveying 

meanings using symbols, and the processing of which we have a good cognitive and 

neuroscientific understanding (e.g. McCandliss et al. 2003; Dehaene & Cohen 2011). Also, I opted 

for using a multisensory object space because previous studies on categorization focused mostly 

on visual stimuli, thus overlooking other sensory modalities and most of the times not even 

considering their combinations. In real life, however, we constantly integrate information coming 

from different sensory inputs to correctly recognize objects (for instance, I recognize an individual 

by integrating several visual features of her face with the specific sound of her voice), and how this 

multisensory integration relates with the process of creating semantic representations is ignored. 

Before and after learning participants were presented, during an fMRI scanning session, with 

pseudorandom sequences of the very same set of multisensory objects and visual words. While 

before learning they performed a simple one-back task on stimulus identity, after the learning 

period outside the scanner they were actively engaged in an object-name categorization task that 

explicitly required to associate each word to the correct objects, which is akin to the task they were 

performing during their training. In this way, I could properly isolate the brain regions involved in 

the process of grounding symbols to their meaning, and study the effects of this process at the 

whole brain level. 

Methods	
 

Participants. The study included 25 right-handed adult volunteers (fifteen females and ten males; 

mean age = 22.20, std = 2.74). All participants gave written informed consent, underwent 

screening to exclude incompatibilities with the MRI scanner, and were reimbursed for their time. 

The study was approved by the ethics committee of the University of Trento (Italy). Data from 4 

subjects were excluded from the analyses given their poor behavioral performance during the 

second fMRI day (accuracy < 70%). This led to a final sample of 21 participants (thirteen females 

and eight males; mean age = 21.95, std = 2.58). 
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Stimulus space. You can refer to Chapter 1, section 1.3 for identical procedures on how the 

stimulus space was created. For the current Chapter, the relevant figures are Figure 2.1 (A-B-C) 

and Figure 2.S1. 

 

Stimuli presentation. You can refer to Chapter 1, section 1.3 for identical procedures on how the 

stimulus space was presented. Behavioural and fMRI sessions were matched for stimuli 

presentation details. 

 

Experimental sessions. The experiment consisted of three parts: pre-learning fMRI, behavioral 

training, and post-learning fMRI (Figure 2.1D). During pre-learning fMRI, participants were 

exposed for the first time to the new multisensory objects and to the abstract names. This allowed 

recording of the patterns of neural activity evoked by the stimuli when they didn’t share any 

relationship. Starting with the following day, subjects underwent nine sessions of behavioral 

training outside the scanner. The aim was to teach them the object-name correspondence, an 

operation requiring parsing of the object space into four categories and connecting each symbol 

(word) to its meaning (the correct category exemplars). Finally, during the post-learning fMRI, they 

were again exposed to the same objects and words, now probing their mutual correspondence, 

and allowing us to record the updated cortical activity. On average, the second fMRI session 

occurred 9.86 days (std = 1.4 days) after the first one. All the tasks are described below. During 

both fMRI sessions, and during the first 8 training days, I used 8 out of 16 objects available in each 

subject’ stimulus space (objects: 1 - 3 - 6 - 8 - 9 - 11 - 14 - 16); the remaining 8 were used only 

during the 9th training session to test for generalization (see below). 

 

Functional localizer. At the start of the pre-learning fMRI session, participants underwent a block-

design functional localizer designed to isolate the cortical regions recruited to process visual and 

acoustic components of our objects, as well as their conjunction. During video mini-blocks, 

participants were presented with animated objects varying in their size, without any acoustic 
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component. During audio mini-blocks participants were presented with sounds varying in pitch, 

without the object visual component. Finally, during multisensory blocks participants were 

presented with multisensory objects: animated objects varying in size, associated with sounds of 

different pitch. There were four blocks for each condition (video, audio, multisensory), resulting in a 

total of twelve mini-blocks of six stimuli each, presented in pseudo-random order. Each block was 

preceded and followed by 10 s of fixation cross. For each block, participants had to perform a 

simple 1-back task, pressing a button whenever they detected a repetition of the same stimulus: 

same size for video blocks; same pitch for audio blocks; same size and same pitch for 

multisensory blocks.  

 

fMRI tasks. During the first fMRI session, participants performed a simple 1-back task on stimulus 

identity, where they were presented with the multisensory objects and the four abstract words in 

pseudorandom order. They were instructed to press a button when they detected an immediate 

repetition of the very same stimulus (either multisensory object or word). In the case of 

multisensory objects, they had to take into account both the size of the object and the pitch of the 

associated sound to provide the correct answer (Figure 2.1E). Each stimulus was presented for 

either 750 ms (objects) or 500 ms (words), with a variable ISI of 4 +/- 1.5 sec during which a blue 

fixation cross was presented. There were 4 runs, each one lasting around 7 minutes. Within a run, 

each stimulus (8 objects and 4 words) was repeated 6 times, resulting in 72 trials per run. There 

was one target event (1-back repetition) per stimulus, for a total of 12 out of 72 (~17%) expected 

responses per run. During the second fMRI session, participants were presented with a 1-back 

task on word-object correspondence, were they had to correctly associate each object to the 

corresponding name. This task could not be performed before learning given the absence of any 

categorical knowledge for our stimulus space. Participants were instructed to press the button 

anytime a multisensory object was followed by the corresponding name (e.g. object 1 followed by 

the word “KER”), and vice versa (e.g. word “KER” followed by object 1), requiring thus access to 

newly learned symbolic identity. This resulted in a total of 16 target events (~ 22%) per run. The 
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number of runs, trials, and stimuli repetition matched the 1-back task on stimulus identity on the 

first fMRI day. 

 

Behavioral training. You can refer to Chapter 1, section 1.3 for identical training procedures. The 

relevant figure for the current Chapter is Figure 2.1F. 

 

Neuroimaging acquisition. Data were collected on a 4T Bruker scanner (Bruker BioSpin) with 

standard head coil, at the Center for Mind/Brain Sciences, University of Trento, Italy. Functional 

images were acquired using EPI T2*-weighted scans. Acquisition parameters were as follows: TR 

= 3 s; TE = 21 ms; FA = 81°; FOV = 100 mm; matrix size = 64 x 64; number of slices per volume = 

51, acquired in interleaved ascending order; voxel size = 3 x 3 x 2 mm. T1-weighted anatomical 

images were acquired twice per participant (pre- and post-learning) with an MP-RAGE sequence, 

with 1 x 1 x 1 mm resolution. 

 

Preprocessing and General Linear Model. Functional images were preprocessed using the 

Statistical Parametric Toolbox (SPM8) in MATLAB. Preprocessing included the following steps: 

realignment of each scan to the first of each run; co-registration of functional and session-specific 

anatomical images; segmentation; normalization to the MNI space. No smoothing was applied. 

Functional images for each participant individually were analyzed using a general linear model 

(GLM) separately for the two fMRI sessions. For each run, 22 regressors were included: 13 

regressors of interest, corresponding to the onsets of the eight objects, the four words, and the 

motor response; 6 regressor for head-movements (estimated during motion correction in the pre-

processing); 3 regressors of no interest (constant, linear, and quadratic). Baseline periods were 

modelled implicitly, and regressors were convolved with the standard HRF without derivatives. A 

high-pass filter with a cutoff of 128s was applied to remove low-frequency drift. I thus obtained one 

beta map for each stimulus (eight objects and four words) for each run. 
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Split-half correlation analysis: words and objects identities. First of all I isolated those brain regions 

representing the identities of the 4 words and the 4 objects. To do that I applied a multivariate 

approach (see Haxby et al. 2014), implemented in a whole brain searchlight. A sphere with a 

radius of 3 voxels - selected for consistency with previous studies (Connolly et al. 2012) -  was 

centered in every voxel of the subject- and session-specific datasets. Within each sphere, I 

conducted a split-half correlation analysis (Haxby et al. 2001) that allowed me to test whether the 

distributed activity within a brain region differentiates between stimuli. I extracted, within each 

sphere, the patterns of neural activation across voxels for either the 4 words or the 8 objects, 

separately. Then I divided the dataset into two halves, and I crossed the neural representations of 

each stimulus (either words or objects) with each other, resulting in a correlation matrix with 4x4 

entries for words, and 8x8 entries for objects  (Figure 2A-D): here, the correlation between 

matching stimuli coming from the two different halves laid on-diagonal, while the correlation 

between non matching stimuli laid off-diagonal. If the activity in the ROI is differentiating between 

stimuli identities (that is, is representing differently the four words or the eight multisensory 

objects), the mean difference between Fisher-transformed values on-diagonal versus off-diagonal, 

resulting from all the possible combinations of the two dataset halves, should be positive. For each 

sphere, the resulting correlation score was stored in the center voxel, therefore I obtained one 

correlation map per subject, per session, and per type of stimuli (words or objects). Single-

subjects’ correlation maps were then submitted to group-level analysis to reveal significant clusters 

of voxels where multivariate information was sufficient to distinguish different words and different 

object identities. In the specific case of object identities, to be sure that the resulting clusters were 

sensitive to multisensory information and not to one of the two sensory features (that is, 

differentiating objects only basing on their size or on their pitch), I additionally run two 

corresponding searchlights but looking for brain regions responding to unimodal variations 

between objects. I used the union of these two resulting maps as exclusive mask for the group-

level analysis on object identities, therefore guaranteeing that the resulting clusters were sensitive 

to multisensory conjunction only, that is the real definitional criteria of our individual object 

identities. Spherical ROIs with radius of 8mm were created around the peak voxels, to be sure that 
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following analyses were conducted on Regions of Interest (ROIs) of matching voxel size. 

Corresponding results were obtained when the entire clusters were considered. 

 

Crossmodal correlation analysis. In the brain regions individuated from the two split-half correlation 

analyses, encoding the identity of either the four words or of the 8 objects, I run a crossmodal 

correlation analysis, where I attacked directly the core question of the study, that is the rise of 

mutual correspondence between the representations of objects and the names (symbols) used to 

denote them. By looking in these two areas I put to direct test the hypothesis that brain regions 

representing either words or objects change their activity to reflect the acquired association with 

the corresponding referent or symbol, respectively. In the crossmodal correlation analysis I divided 

the dataset into categories of objects (e.g. objects 1 and 3, or objects 6 and 8) and words, and I 

crossed the neural representation of each object category to the neural representations of each 

name (e.g. ‘KER’ or ‘GAL’), resulting in a 4x4 correlation matrix. I reasoned that if voxels within an 

ROI represent the correct category-name association (e.g. the category composed by objects 1 

and 3, and the word ‘KER’), then the correlation of neural patterns corresponding to matching 

stimuli (on-diagonal) should be higher than that of non-matching ones (off-diagonal). Thus, the 

mean difference between Fisher-r-to-z-transformed on-diagonal vs. off-diagonal values is stored 

for each subject, as summary of the information for the ROI, and subjects’ correlation scores are 

later tested against a null hypothesis of no correlation at the group level. Additionally, to avoid 

overlooking other potential brain regions that could contribute to this association, I implemented 

the same ROI analysis in a whole brain searchlight (for parameters, see above Split half 

correlation analysis). 

 

Decoding stimulus modality (words vs. objects). To investigate the contribution of the brain regions 

individuated by previous analyses, I wanted to quantify, in each region, the extent of abstraction in 

the representation of semantic classes. The neural signature of full abstraction from stimulus 

modality would correspond to an absence of residual information relative to it, that is the 

impossibility to decode whether, at any given trial, subjects were presented with a word or the 
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given corresponding object. In order to test this I implemented a decoding approach, because the 

higher the information on the stimulus modality, the higher the performance of a classifier trained 

with that that information to predict the incoming modality of an independent stimulus. I used a 

leave-one-run-out scheme to train and test a Linear Discriminant Analysis (LDA) in correctly 

predict the modality of the incoming stimulus, and I stored each subjects’ and ROI’s accuracy for 

later group-level test against a null hypothesis of chance performance (50%). Corresponding 

results are obtained using a Support Vector Machine (SVM). 

 

Perceptual learning and sensory segregation. To investigate is the changes induced by learning 

could be traced down to the activity of sensory regions, I focused on the representational 

geometries of objects in those brain regions that responded separately for their size or their pitch. 

ROIs responding to the visual and to the acoustic components of our multisensory objects were 

isolated on pre-learning imaging data. I selected brain activity evoked at group-level (p<.001; FWE 

corr.) by objects presentation during the 1-back task on stimulus identity. I masked the signal with 

the group-level results (p<.001; FWE corr.) of the functional localizer for either the visual and the 

acoustic modality. This resulted in a bilateral network wherein the Lateral Occipital Complex (LOC) 

and the anterior portions of the Superior Temporal Gyrus (STG) responded to the visual and to the 

acoustic components of our stimuli, respectively (Figure 2.4A). All clusters were binarized and 

used as regions of interest in the following analyses. In absence of a priori hypotheses on the 

lateralization of sensory signals, bilateral ROIs were used. In order to investigate whether the 

activity in sensory areas responding to visual and acoustic components of our objects changed 

after learning, I extracted neural dissimilarity  (1 - Pearson’s correlation) between pairs of all 

objects varying along one sensory dimension only (e.g. between object 1 and object 3, that varied 

in their size but had the same associated sound, Figure 2.4B), and considered their difference 

between the two fMRI sessions as dependent variable. I conducted a 2x2 repeated measures 

ANOVA looking for the interaction between the two ROIs (LOC and STG) and the two sensory 

modalities (distance between objects with different size but same sound, and vice versa). This 

approach was motivated by the fact that I wanted to describe whether the act of connecting objects 
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to their names (which is a fundamental step in the symbol-grounding problem) affected the 

perceptual representations of the referents (here the objects). By taking advantage of a 

longitudinal neuroimaging study, I could compare their neural representations after learning, during 

a semantic categorization task, with a pre-learning condition where no semantic information could 

be retrieved, not even automatically, because it was not part of participants’ knowledge. 

 

Figure 2.1 - Methods. A. Example of audiovisual object. B-C. 16 multisensory objects are created 
as unique audiovisual combinations, and they are divided into four categories by means of abstract 
names. D. Experimental design: two fMRI sessions (pre and post learning) are paired with a 9-
days long training. E. Tasks performed in the fMRI in the two days. F. Training task. 
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Results	
 

During 9 daily sessions of training, 21 healthy volunteers learned to recognise 8 new audiovisual 

animated objects by associating them to one of 4 novel words (Figure 2.1A-B-C). Objects were 

created by varying parametrically and crossing orthogonally the size of an abstract shape and the 

pitch of the sound produced during a little animation (see Methods). The unique object identity was 

therefore multisensory in nature and the correct names could be recovered only by attending to the 

specific combinations of the two sensory features, thus through multisensory integration. I paired 

this behavioural training with two fMRI recording sessions: one pre- and one post- training (Figure 

2.1D, see below). During both sessions, participants were presented with pseudo-random 

sequences of the same 8 audiovisual animated objects and the 4 written words corresponding to 

their category names. Before learning, subjects performed a 1-back task on stimulus identity, while 

after learning they performed 4 runs of a 1-back task on word-object identity explicitly probing the 

newly acquired object-name associations (Figure 2.1E, see Methods) 

 

Behavioral training results. The behavioural training consisted of 9 daily sessions outside the 

scanner, lasting ~ 20 min each (see Methods). During each training session, participants were first 

presented with one of 8 randomly selected audiovisual object per trial (training set), and then with 

the 4 written words in shuffled order (Figure 2.1F). They were told that each object type belong to a 

specific category which had a specific name, and that they had to select the correct word, receiving 

feedback on their performance on every trial. During the last training session, and without being 

notified, participants were also presented with 8 novel stimuli. These consisted in specific 

combination of size and pitch that were absent in the training set, allowing testing for 

generalisation (Supplementary Figure 2A). The learning trajectory indicates an increment in 

performance from session 1 to 4, while from session 5 on participants maintained unchanged their 

accuracy level (session 1: 61 ± 18%; session 2: 76 ± 17%; session 3: 83 ± 13%; session 4: 87 ± 

11%; session 5: 89 ± 10%; session 6: 90 ± 11%; session 7: 91 ± 8%; session 8: 91 ± 7%), 

indicating a period of consolidation (Supplementary Figure 2.2B-C). Performance collected on 
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session 9 confirmed both the successful learning of the name-objects association and its 

generalization. Performance was high for both sets (training set: mean accuracy = 88.12%, std = 

5.93%, different from chance t = 29.44, p < .001; generalization set: mean accuracy = 75.03%, std 

= 10.68%, difference from chance, t20 = 10.74, p < .001), even though it was lower for the 

generalization set (t = 5.06, p<.001), indicating that while generalisation did occur, it was not 

perfect (Supplementary Figure 2.2D-E). 

 

Neuroimaging results 

 

The emergence of semantic representations in VWFA. I started by isolating those brain regions 

where multivariate activity differentiated between words’ identities. In a whole brain searchlight I 

implemented a split-half correlation analysis (see Methods) that allows one to test whether a brain 

region represents the different identities of the stimuli considered. Before learning, thus when 

words did not correspond to any object class (namely, they had no meaning), this resulted in two 

significant clusters: one in the right lingual gyrus (MNIx,y,z: 15, -76, -2; t = 5.27) and one in the left 

inferior fusiform gyrus (MNIx,y,z: -45, -61, -8; t = 4.85), a region known as Visual Word Form Area 

(Dehaene & Cohen 2011) (Figure 2.2A-D). Then I asked whether the neural representations of 

those stimuli were modified during learning, and more precisely whether their response to the 

words became more similar to the ones evoked by the corresponding objects (e.g. the word KER 

and object 1) then to the non corresponding ones (e.g. the word KER and object 16). This classical 

view of the role of these regions in reading (representing the lexical orthographic pre-semantic 

stage of processing) would predict no trace of semantic coding. I applied, in these two ROIs, a 

crossmodal correlation analysis (see Methods) that allows one to reveal whether words and the 

corresponding objects are represented similarly, thus suggesting a shared neural code between 

the symbols and their specific referents. I found a significant result in the VWFA (t = 3.74, p = .001) 

but not in the lingual gyrus (t = 0.62, p = .54)(Figure 2.2B). This word-object correspondence was 

not present before learning (t = 1.6, p = .13), when no knowledge of the object-name association 

was present. 
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Figure 2.2 - A shared representation for objects and their categorical names in VWFA. A. 
Split-half correlation analysis reveals individual word representations in VWFA and lingual gyrus. 
Neural DSM for illustrative purposes. B-C. After learning, the representations of words in VWFA 
become more similar to the ones of the corresponding objects.  
 

The emergence of specific representations for each multisensory trained objects. Next, I applied 

the same procedure looking for brain regions showing specific pattern of responses to the different 

object identities. While a whole-brain searchlight on the brain activity before training revealed that 

the objects were not discriminable, after the training three brain regions locally contained 

distributed activity sufficient for discriminating across all individual objects: the left angular gyrus 

(MNIx,y,z: -36, -67, 26; t = 6.8), the left middle frontal gyrus (MFG)(MNIx,y,z:-33, 47, 18; t = 7.82), and 

the right Inferior Frontal Gyrus (IFG)(MNIx,y,z: 51, 35, -6; t = 6.98)(Figure 2.2D). In these regions the 

signal coming from unisensory areas is integrated to give rise to the representation of single 

multisensory objects.  

 

The emergence of semantic representations in L-AG. Then, within these three ROIs I applied the 

crossmodal correlation analysis to verify whether concurrently with the differentiation between 

objects they also developed a response of category that  was similar across words and objects 

(the same analysis performed in the VWFA). Of the three regions, only the left angular gyrus (t = 

3.53, p = .002) displayed this coding feature (MFG: t = 0.9, p = .36; IFG: t = 1.73, p = .10)(Figure 
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2.2E). This pattern of similarity in the left Angular Gyrus was absent before learning (t = 1.04, p = 

.31). 

 

Figure 2.3 - A shared representation for objects and their categorical names in left AG. A. 
Split-half correlation analysis reveals individual object representations in left AG, left MFG, right 
IFG.Neural DSM for illustrative purposes. B-C. Object representations in the left AG are more 
similar to the ones of the corresponding names. 
 

A distributed network encoding object-name association. Although our previous results already led 

to drive interesting conclusions on the development of corresponding associations between 

symbols and their referents, I further investigated whether any other brain region represented this 

correspondence. I implemented the crossmodal analysis in a whole brain searchlight that revealed 

an additional set of brain regions that, after learning, represented the association between objects 

and their categorical names: other than the left fusiform gyrus/VWFA (MNIx,y,z: -51, -61, -12; t = 

6.7) and the left Angular Gyrus, here also extending to the Superior Parietal Lobule (MNIx,y,z: -27, -

58, 46; t = 6.6), that confirmed the findings revealed in the previous ROI approach, categorical and 

modality invariant information was also present in the right Superior Parietal Lobule (MNIx,y,z: 21, -

73, 54; t = 6.6), in the right Inferior Parietal Lobule (MNIx,y,z: 57, -46, 46; t = 5.1), in the right Angular 

Gyrus/ Temporo-parietal Junction (MNIx,y,z: 54, -67, 34; t = 5.25), and in the right Hippocampus 

(MNIx,y,z: 27, -22, -6; t = 5.14) (Figure 2.4A). Before learning, no region showed this effect. 
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Tolerance to variations in the stimulus presentation modality. How do these areas support the 

emergence of object-name association? While VWFA and the left Angular Gyrus also encode the 

identity of single word and of single objects, respectively, and developed a similarity between 

matching symbol-referent pairs, the right-lateralized ROIs emerged only after the crossmodal 

searchlight. This raises the possibility that these brain regions show a higher level of invariance to 

the presentation modality, which could be potentially useful to construct the object-name 

association. To test this hypothesis I implemented a decoding procedure where I trained a Linear 

Discriminant Analysis (LDA) classifier to predict the sensory modality of the presented stimulus 

(word or object) (see Methods). Although I selected these ROIs for the fact that they similarly 

respond to objects and their corresponding names, I don’t know the degree of their sensitivity to 

differences in the two presentation modalities - which, however, should be trivial for a classifier to 

capture, given the extremely different lower-level perceptual features between the audiovisual 

objects compared to the written words. The classifier accuracy was indeed very high, especially in 

the left-lateralized ROIs (VWFA: mean accuracy = 64%; t = 6.14, p = 5.25x10-6; L-AG/SPL: mean 

accuracy = 59%; t = 5.15, p = 4.77x10-5), and decreased as I moved to right regions, and from 

superior cortical structures down to the hippocampus, where the performance of the classifier did 

not diverge from chance (R-SPL: mean accuracy = 59%; t = 4.70, p = 1.35x10-4; R-IPL: mean 

accuracy = 56%; t = 3.66, p = .001; R-AG/TPJ: mean accuracy = 55%; t = 2.41, p = .026; R-HPC: 

mean accuracy = 52%; t = 1.60, p = .12)(Figure 2.4B). 

 

Correlation with behavioural performance. Finally, I correlated the crossmodal correlation scores in 

the areas of our network with the behavioural performance collected at the end of the training, 

before the second fMRI session. I found that the degree of similarity between the neural 

representations of the objects and their corresponding names in the right hippocampus 

significantly correlated with overall behavioural performance during the last day of training (R= 

0.58, p = .006)(Figure 2.3D), while none of the other areas showed this effect (all p>.17). 

Interestingly, the correlation remained significant when restricting the categorization performance 

during the last training day to only the subset of novel (generalized) objects (R = 0.54, p = 0.012). 



36 

 

Figure 2.4 - A temporo-parietal network supporting the emergence of semantic 
representations and the role of the right Hippocampus. A. Whole-brain results of the 
crossmodal correlation searchlight (S/IPL = Superior/Inferior Parietal Lobule; HPC = 
Hippocampus). B. A LDA classifier trained to discriminate the presentation modality shows 
decreasing performance as we move from left to right ROIs, and specifically down to the right 
HPC. C. Neural DSM of crossmodal correlation in r-HPC. D. Crossmodal correlation score in r-
HPC significantly correlates with behaviour during the last training day (test day), when novel and 
generalized objects are presented. 
 

Perceptual learning and sensory segregation. Finally, I focused on the second question I wanted to 

attack with this experiment, that is to what extent the effects of symbolic categorical learning also 

affect sensory coding of the object features. With our split-half object-based correlation analysis I 
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already demonstrated an increased sharpening of the representation of individual multisensory 

object identities after learning, during our symbolic categorization task, in a frontoparietal network. 

Does this effect extend to lower level perceptual regions, that could potentially inform and support 

higher-level multisensory integration, necessary to the task at hand? To answer the question, I 

looked for evidence of sharpening of the differences along unisensory modalities in their specific 

sensory regions (e.g. differences in sound frequency within acoustic sensory cortices) and, 

additionally, in the sensory regions responding to the opposite modality (e.g. differences in sound 

frequency within visual cortices responding to size). I approached the problem by first selecting, 

through a independent functional localizer, visual and acoustic ROIs - bilateral Occipital Cortex 

(LOC) and anterior Superior Temporal Gyrus (STG) respectively - responding selectively to the 

visual and acoustic components of our multisensory objects (see Methods)(Figure 2.5A). Thus, on 

the basis of previous report of plastic properties of sensory areas showing an increase in precision 

of visual and acoustic information as a function of unisensory learning (e.g. Jiang et al. 2007; 

2018), I asked whether similar perceptual learning effects can be detected with our design. To 

answer the question, I investigated if and how unisensory regions modify their representations of 

each sensory feature separately. In each of the two sensory ROIs, I compared the neural 

representational dissimilarity (1 - Pearson’s r)(see Methods) before and after training, between 

objects varying along each of the two dimensions separately, and used an ANOVA to compare 

perceptual learning (indexed by the difference in dissimilarity between the two fMRI sessions) 

across regions and sensory features (Figure 2.5B). The ANOVA revealed a significant interaction  

between changes along sensory dimensions (size vs pitch) and ROIs (LOC vs aSTG)(F = 8.13, p = 

.009)(Figure 2.5C). This indicated that training induced a form of sensory segregation in sensory 

regions: both regions developed an increased sensitivity for the preferred sensory dimension, and 

that was paired with a decreased discriminability between differences along the non-preferred one. 



38 

 

Figure 2.5 - Perceptual segregation in sensory areas. A. LOC and STG respond to the visual 
and acoustic components of our objects, respectively. B. Neural dissimilarity is compared between 
objects varying only along one sensory modality, and between the two session (pre post) and 
ROIs. C. Significant interaction reveals sensory segregation. 

	

Discussion	
 

In this study, I attacked the question of how novel semantic representations, that are meaningful 

representations of object classes conveyed by symbols, emerge in the brain. I reported three main 

findings: i) an increased similarity between the neural representations of symbols (words) and their 

referents (the objects they refer to) emerge in the VWFA and in the left Angular Gyrus, two areas 

that also encode the identity of the individual words and individual objects, respectively; ii) beyond 

these left-lateralized regions, also a set of right-lateralized areas - encompassing superior and 

inferior parietal cortices and the hippocampus - support the emergence of this shared neural 

similarity and, among those, the right hippocampus shows full invariance to presentation modality 

and strong correlation between its multivariate activity and behavioural performance on the last 

training day (test day); iii) processing the object-name correspondence also drives changes in the 

representation of multisensory objects, in the form of increased sensory segregation in those lower 

perceptual regions that code for either their visual or their acoustic component. 

 

The emergence of lexico-semantic representations of words in the Visual Word Form Area 



39 

 

The posterior portion of the left occipitotemporal sulcus plays a key role in reading (Dehaene & 

Cohen 2011), being sensitive to the presentation of written words over objects (Cohen et al. 2000), 

and invariant to changes in the location (Cohen et al. 2000), in case (Dehaene et al. 2001, 2004), 

or font (Quiao et al. 2010) of the presented words. The area was named Visual Word Form Area 

(VWFA), and its role as inferred from imaging studies was consistent by neuropsychological 

evidence: patients with lesions to the VWFA develop severe pure alexia, that is the loss of the 

ability to efficiently identify visually presented words irrespective of their lexical or semantic status 

(Cohen et al. 2000, 2003; Starrfelt et al. 2009; Mani et al. 2008). These results have been 

replicated many times (e.g. Jobard et al. 2003 for a meta-analysis), and have been further 

strengthened by longitudinal training studies showing that the degree of literacy of both adults and 

children correlates with the activation of this area during word identification (Dehaene et al. 2010; 

Cantlon et al. 2011). In the present study, I proved that the VWFA differently represents, in its 

multivariate activity pattern, the identity of short pseudo-words that subjects did not encounter 

before and thus had no meaning. This is the first time, to our knowledge, that individual word 

identities could be differentiated from the activity patterns in VWFA, and this is likely due to the 

presence of only 4 words in our design. Moreover, and crucially, I demonstrated that after a 

symbolic categorical training where participants learned to map these words onto categories of 

novel multisensory objects, the representational geometry of the VWFA also reflected the newly 

acquired object-name similarity. This result significantly extends the previous body of work linking 

the VWFA to an orthographic level of encoding only, by showing that its plastic properties might 

also support the link between the visual form of a word and the meaning it refers to. Recent works 

suggested indeed that the multivariate activity of this area is affected by the semantic content of 

the words if that is relevant for the task that subjects are performing. Want et al. (2018) report that 

the multivariate activity patterns of the VWFA evoked by known words during different semantic 

tasks significantly correlates with the semantic information they convey and that is relevant for the 

ongoing task: the similarity of the neural representation of words in the VWFA between two words 

like “doctor” and “teacher”, or between “hospital” and “school” is high during a taxonomic task that 
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requires to judge the similarity of words on the bases of their taxonomic membership (people vs 

locations), while it is low during a thematic task that enhance contextual information, and that 

would predict an higher similarity between, for instance, “doctor” and “hospital”, or “teacher” and 

“school”. Crucially, this pattern was inverted when participants were actively engaged in a thematic 

semantic task, showing that the multivariate activity of the VWFA represents semantic information 

and adapt to the ongoing task-setting and behaviour. In my experiment I could demonstrate that 

the plastic properties of this area allow for the emergence of a shared neural code between the 

words and their referent that was not present before learning. 

 

The emergence of object identities and semantic representation in the left Angular Gyrus 

 

While my previous findings showed that a brain region coding for lexical/orthographic properties of 

novel words (VWFA) developed, after learning, an increased similarity between these words (the 

symbols) and the objects belonging to the category they refer to (their referent, or meaning), I 

additionally seek for the specular pattern by looking for those brain regions where object identities 

were represented, to see whether they also developed a response to words that reflected the 

newly acquired object-name similarity. Surprisingly I did not find evidence of individual object 

representations before learning, despite an almost perfect task performance (>90% of correct 

responses). A possible explanation for this null finding is that participants were not integrating the 

visual and acoustic features in a single individual combination, but they were rather processing 

size and pitch separately to solve the one-back identity task. Interestingly, such individual 

representations emerged after learning, when participants had to recover their names, in a fronto-

parietal network encompassing the left Angular Gyrus, the left middle frontal gyrus, and the right 

inferior frontal gyrus. While a central role of the L-AG in supporting semantic memory is widely 

accepted (Binder et al. 2009; Binder & Desai 2011), little was previously known with respect to its 

precise function and nature of semantic coding schemes. Given its anatomical position, the L-AG 

well suits as convergence zone (Damasio 1989, Binder & Desai 2011) to integrate information 

coming from lower sensory regions. Indeed, recent studies indicated its causal role during 
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multisensory integration (Bonnici et al. 2016; Yazar et al. 2017). These findings are coherent with 

our discovery that the representation of individual objects which identity is defined by the 

integration of specific visual and audio properties emerge in this region. Crucially, the emergence 

of a representation of the individual objects was paired with an increased representational 

similarity between the objects and the symbols that identify them. This is suggestive of similarities 

with the case of numbers, that in the IPS, known to represent quantities, evoke similar 

representations both when quantities are presented in their symbolic (as Arab digits) and non-

symbolic (as dots) form (Piazza et al. 2007). This might indicate that the human brain employes a 

parsimonious solution to the symbol-grounding problem, mapping symbols representations directly 

onto those neural circuits that respond to the objects these symbols refer to. Less clear, in this 

respect, is the role of the frontal regions that, although representing individual object identities, did 

not develop similarity between their representation and the one of their names. Previous studies in 

the field of object recognition and categorization indicates that lateral prefrontal cortices are 

involved in the process of recognizing objects and their categories (e.g. Riesenhuber & Poggio 

2002, Jiang et al. 2007; 2018) and that these effects are modulated by the task (Roy et al. 2010; 

Van der Linden 2014). Also, it has been shown that the same areas contribute to support working 

memory in a variety of perceptual and categorization tasks (Lara & Wallis 2015; Miller et al. 2018). 

Although with the current experiment I can not find a precise answer to what contribution these 

regions are actually offering to the symbol-grounding problem, I could speculate that their role 

might be more related to the act of holding in memory the identity of the current object which, being 

ambiguous and more difficult to discern compared to words, might require an extra effort, for which 

their contribution could be essential. 

 

The crossmodal network and the role of the right hippocampus 

 

A crucial step in our analyses was to search, using a whole brain searchlight, for other regions 

where the object-name similarity was present after learning. This was motivated by the fact that to 

solve the symbol-grounding problem the association might emerge not only in the specific regions 
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representing the symbol or its referent(s), as I showed above, but also in separate areas, less 

dependent to the perceptual format of the incoming stimulus, but coding for their similarity in a 

more abstract way. I did find a set of regions responding to this criterion in the right parietal and in 

the hippocampal cortices. Crucially, I saw a pattern of increasing abstraction (as indicated by a 

decrease in stimulus presentation format classification accuracy) as I moved from the VWFA and 

the left AG to the right hemisphere and down to the right hippocampus, where the performance of 

our classifier was the worst. A possible explanation of this null result in the HPC is the well 

established problem of signal loss from the medial temporal lobe (Schmidt et al. 2005; Bellgowan 

et al. 2006; Olman et al. 2009), that however wouldn’t fit with the strong positive result of the cross-

modal correlation analysis. A more interesting and more plausible alternative explanation posits 

that the hippocampus might be truly involved in constructing the relevant semantic association 

between a symbol and its referent, thus acting as interface to support the symbol-referent 

association. Indeed, previous studies showed that the hippocampus is crucial in representing the 

association between the neural representations of objects or, separately, words pairs (Spiers et al. 

2001; Giovanello & Keane 2003; Clark et al. 2018). Additionally, it contains neurons that are highly 

selective to specific stimuli identities (e.g. pictures of a specific place) but highly invariant to the 

presentation modality of its identity, responding to the same stimulus identity whether it is 

presented as a picture, as a hand drawing, or even as a spoken or written word (Quiroga et al. 

2005; 2012). I observed a strong correlation between the degree of specificity of the similarity 

between words and their relative objects in the right hippocampus and the performance on the last 

training day, during which participants were precisely tested in matching the objects to their 

names. Crucially, in this last testing session I  presented participants with the same old objects that 

they have been trained on and also with novel exemplars, representing audiovisual combinations 

that subjects had never seen before. The significant correlation between HPC object-name 

similarity with the behaviour remained also when I considered only the new, generalized, objects. 

This suggests that the hippocampus likely holds a representation that goes beyond a simple 

episodic association of a particular object exemplar with a particular word. A recent study by 

Blumenthal et al. (2017) reported the case of an amnesic patient with well documented 
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hippocampal lesion, who showed severe deficits in producing semantic features for well-known 

object concepts when they referred to contextual informations, such as how to typically use an 

object or where to find it. This report suggested that semantic and episodic memory might not be 

completely separated as classically assumed. Recent theoretical works (Mack et al. 2017; Morton 

et al. 2017) suggests that the hippocampus might actually contribute in the course of concept 

learning by means of pattern separation and pattern completion, that allow to differentiate 

overlapping experiences for behavioural purposes, as well as integrating those aspects of these 

experiences that shares commonalities. This might provide a framework to interpret the role of 

hippocampus in our experiment: during and after the course of the training, it might have 

developed a representation of object categories by integrating all the common aspects of individual 

instances of a category and by separating, or abstracting from, those details that do not repeat 

themselves across the different expositions of the same category. In the case of different 

exemplars of KER, for instance, the hippocampus might have developed a representation of the 

core definitional aspects of the category KER, that of being a small object producing a low sound, 

without representing the perceptual variability within the category. This would allow for a later 

generalization to novel exemplars when their linguistic label had to be retrieved - exactly as we 

observed.  In this perspective, the hippocampus might play a crucial role in solving the symbol-

grounding problem. Future studies should further investigate this idea with complementary 

methods to non-invasive neuroimaging. One possibility is the study of clinical patients with lesions 

to their hippocampus, that might reveal that they are indeed unable, or less proficient, to generalize 

an associative rule such as the one existing between an object and its name to novel exemplars. 

Additionally, intracranial recordings on epileptic patients that are implanted for clinical reasons 

should address whether an increased neuronal response encoding the association between an 

object and its name emerge during and/or after learning, as it happens for object-object 

associations (Ison et al. 2014).  

What remains surprising is the right lateralization of the peak I observed. The right hippocampus is 

usually associated to visuo-spatial memory, which doesn’t bear any relevance to our experimental 

design, unless we interpret our novel semantic space as a cognitive space (Bellmund et al. 2018) 
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which structure can be captured in a spatial format. This is not a novel idea, and an increase 

number of studies is showing how brain regions holding specific spatially-tuned representational 

code recruits the same mechanisms to represent abstract information (e.g. Constantinescu et al. 

2016, Garvert et al. 2017) in the form of an internal cognitive map of memories and concepts 

(Behrens et al. 2018; Bellmund et al. 2018). A very recent study by Theves et al. (2019) indeed 

found that the hippocampus encodes distances between well-known objects that are learned, by 

adult participants, as specific points of a novel bidimensional space. Future studies should more 

directly address this possibility and explore whether and how these mechanisms are crucial during 

semantic learning. 

 

Perceptual segregation in sensory regions 

 

Finally, I investigated the effects of symbolic categorization on the neural representations of 

objects in perceptual regions. While the acoustic and the visual components of the audio-visual 

objects were conjointly encoded in the L-AG after training, the two sensory features defining each 

object identity were also separately processed in perceptual areas of the visual and acoustic 

pathways (Mishkin et al. 1983; Rauschecker & Tian 2000; Obseler et al. 2008). However, learning 

to map object identities onto the representation on words (and viceversa) changed anterior STG 

and LOC responses to sensory stimuli, which developed an enhanced sensitivity to differences 

along their preferred sensory modality: i.e., acoustic areas became more sensitive to differences in 

the sounds produced by objects; visual areas becomes more sensitive to differences in the size of 

the objects. Concurrently, they developed a decreased sensitivity to differences along the non-

preferred one: i.e., acoustic areas became less sensitive to differences in the size of the objects; 

visual areas became less sensitive to difference in the sound produced by the objects. I relate 

these results to two well-known behavioural effects occurring during categorical learning (Gibson & 

Gibson 1955; Gibson & Walk 1956; Vanderplas et al. 1964). In tasks were subjects learn to 

discriminate objects on the basis of single dimensions, while their sensitivity to that dimension 

increases (so called ’acquired distinctiveness’ effect (Lawrence 1949), their sensitivity to 
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concurrent changes in task irrelevant dimensions decreases (so called ‘acquired equivalence’ 

effect (Waller 1970)). These observations lead to the idea that training ‘warps’ representational 

spaces such that the perceptual distance (or dissimilarity) between features changes (Harnad 

1987; Goldstone 1994a,b). Past imaging work supported this idea but were restricted to unisensory 

visual (e.g. Kourtzi et al. 2005; Op de Beeck et al. 2006; Op de Beeck & Backer 2010; Folstein et 

al. 2013; Brants et al. 2016) or acoustic stimuli (Ahveninee et al. 2011, Ley 2012, 2014; Bao 2015). 

Whether and how these effects extend to multisensory stimulations has been largely ignored. 

Lemus et al. (2010) for example recorded single neurons in macaque monkeys discriminating, on 

interleaved trials, between two tactile or two acoustic stimuli. While several neurons in the 

somatosensory cortices and primary auditory cortex responded to both visual and auditory stimuli, 

the stimulus identity could only be decoded from responses to their principal sensory modality. 

Thus, the authors suggested that during multisensory stimulation the representations of the 

different sensory modalities compete against each other, and sensory cortices select one over the 

other, according to their perceptual preference. The results of the present experiment are 

congruent with this view, as I observed that within sensory regions, information along the non-

relevant sensory modality was reduced/suppressed (acquired equivalence), in favour of higher 

sensitivity for relevant sensory differences (acquired distinctiveness). These kinds of “suppressive” 

effects may be entirely overlooked in multisensory stimulation experiments where the different 

sensory features of stimuli often do not orthogonally vary but, rather, are correlated and thus 

predictive of one another. In this experiment, on the contrary, the two sensory features varied 

orthogonally, such that allowing one modality to interfere with the encoding of the other would 

reduce accuracy in stimulus recognition, the task that subjects were asked to perform. In this 

sense, the amount and type of multisensory integration that can be observed in early sensory 

cortices might be crucially determined by the task and stimuli features used during the experiment 

at hand, and future work should further and directly investigate their specific role in influencing 

multisensory information coding in sensory areas, during both symbolic and non-symbolic tasks.  

 

 



46 

 

Supplementary	material	
 

 
 

Figure 2.S1 - Psychophysical validation. A-B. Two independent tasks are utilized to extract the 
Just Noticeable Difference for each participant, using QUEST (Watson and Pelli, 1987). C. 
Participants have very different perceptual sensitivities, and each perceptual space is created on 
their individual scores. 
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Figure 2.S2 - Training results. A. Different objects are used to train participants and to test for 
generalization. B-C. The learning curve suggests an initial period of learning (sessions 1 to 4) and 
a subsequent period of consolidation (5 to 8) D-E. Performance on the last day (test day) reveals 
that subjects not only learned to correctly recognise the familiar objects, but also novel 
combinations, indicating a generalization of the categorical multisensory space that represents the 
meaning of the novel words. 
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NAVIGATING	A	NOVEL	SEMANTIC	SPACE	
WITH	DISTANCE	AND	DIRECTIONAL	CODES	
IN	THE	HUMAN	BRAIN		

Introduction	
 

Humans and animals have a remarkable ability to orient themselves in space. When we 

leave our office after a busy working day, we can effortlessly find our way home in the myriad of 

roads of our city and, in the unfortunate case that the typical route we take is stuck in traffic, we 

can take a different path to the same destination by surveying the memory we have of the city and 

selecting an alternative route. The ability to adapt our behaviour in such a flexible way derives from 

the fact that we stored, in our memory, the knowledge of the city, in terms of where locations of 

interest are, how distant they are from each other and, by consequence, what are the possible 

pathways that connect them. In the late 40s Tolman (1949) observed a very similar ability in rats 

navigating an experimental maze, and he coined the term “cognitive map” to refer to the internal 

knowledge that they acquired about the experimental setting and the relationships between its 

elements, such as the distances between different locations or the position of corners, that enabled 

the animals to easily find shortcuts or alternative routes when obstacles blocked their way to the 

reward. The neural bases of this spatial knowledge have been described in the following decades, 

when the hippocampal formation and surrounding areas (for instance retrosplenial cortex and 

medial prefrontal regions) have been proven to contain spatially-tuned neurons, such as place-

cells (O’Keefe & Dostrovksy 1979) and grid-cells (Hafting et al. 2005) that, taken together, 

contribute to the representation of the animal’s current location and its memory of the surrounding 

environment. The so-called grid cells, in particular, fire at multiple locations covering the entire 

navigable surface with a precise triangular periodicity, and are thought to contribute in estimating 

the distances between points of the physical space to construct a spatial cognitive map (Bush et al. 

2015). Crucially, place- and grid-cells have been later observed in humans, during virtual-reality 
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spatial navigation, using both intracranial recordings (Jacobs et al. 2013) and fMRI (Doeller et al. 

2010), not only in the hippocampal formation (mostly entorhinal cortex) but also in medial 

prefrontal regions, known for their contribution to associative learning and spatial memory and for 

their strong connections with the hippocampus (see Preston & Eichenbaum 2013 for a review). 

 

A recent proposal posits that humans might use the same neuronal machinery to support an 

internal representation of non-spatial memories and experiences, recruiting the same neural codes 

to organise their abstract knowledge in a “cognitive map” of concepts (Behrens et al. 2018; 

Bellmund et al. 2018). This proposal comes from a set of complementary observations. First of all, 

the same brain regions where spatially-tuned neurons have been recorded (mostly hippocampus, 

entorhinal cortex, and medial prefrontal cortex), are also activated during non-spatial tasks, 

supporting abstract decision making (Schuck et al. 2015; Schuck et al. 2016; Kaplan et al. 2017), 

and representing, for instance, temporal sequences (Eichenbaum 2014), social spaces (Tavares et 

al. 2015, Kaplan & Friston 2019), and associative and hierarchical spaces (Dusek and 

Eichenbaum 1997; Heckers et al 2004; Zeithmanova et al. 2012). Second, in very particular 

experimental situations, these areas show a 6-fold periodic modulation of their BOLD signal that is 

consistent with the one observed during spatial navigation - most likely originating from grid cells 

activity (Doeller et al. 2010) - but during tasks that bear little, if any, similarity with navigation of 

physical environments, such as imagined navigation (Bellmund et al. 2016), visual search (Julian 

et al. 2018; Nau et al. 2018), or processing of morphing objects in a 2D visual space 

(Constantinescu et al. 2016). Finally, in rats and monkeys, lesioning or interfering with mPFC or 

the hippocampal formation prevents animals to perform tasks where behavioural flexibility is 

required, such as learning the abstract structure of the task, adapt to reversal learning rules, 

generalize their knowledge through transitive inference, or finding new shortcuts within a maze 

(Dusek and Eichenbaum 1997; Buckmaster et al. 2004; Walton et al. 2010; Takahashi et al. 2011; 

Jones et al. 2012; Koscik and Tranel 2012; Gilboa et al. 2014; Wikenheiser eand Schoenbaum 

2016). Taken together, these findings led to the proposal of a shared neuronal machinery for both 

spatial navigation and high level, concept based, cognition. 
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But what does it mean to have a “cognitive map” of concepts? A similar intuition had emerged in 

the fields of neurolinguistic and computational linguistic, where scholars tend to interpret concepts 

(usually represented by words) as regions or points in an internal space (semantic space), with 

proximities reflecting similarity in meaning (e.g., see Borghesani and Piazza, 2017). If the idea of 

conceptual spaces is more than a metaphor, and if the human brain uses the same neuronal 

machinery used to represent and navigate in physical space to represent and navigate complex 

conceptual spaces, two predictions follow. First, the activity of those brain regions involved in 

representing the “cognitive map” of the conceptual space relevant to the task at hand, should also 

reflect the actual pattern of distances between concepts, when they are considered as regions of 

an abstract space (the “cognitive space”) which coordinates are the dimensions, or features, that 

define those concepts. Second, moving between concepts in memories should involve the same 

direction-dependent neural codes observed in lower level mammals and humans when they 

navigate the physical space. To date, evidence supporting these two predictions for human 

conceptual knowledge is still missing, mostly because it is extremely difficult to reduce complex 

human conceptual representations to low dimensional spaces that allows a comparison with the 

navigable physical environment. 

 

Here I was interested in studying whether and where the human brain holds a cognitive map of 

complex concepts, by representing their mutual distances. Additionally, I seek for evidence of 

directional coding that could be complementary to a distance code. There are at least two 

definitional criteria for human-like conceptual representations as we intend, and use, in everyday 

life: that of referring to objects/events classes, or categories, and that of being accessed and 

manipulated using symbols, such as words or numbers. Because well known concepts are 

multidimensional in nature and their multiple semantic properties might interfere with our scope, I 

applied this approach to the same set of data described in Chapter 2, where we created a novel, 

artificial, but highly controlled conceptual space composed by audiovisual objects that are divided 

into four categories by means of linguistic labels (words) (Figure 3.1A-B)(see Methods). Twenty-
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five adult participants learned to assign each one of the novel objects to a particular category 

during 9 days of behavioural training. Before and after learning, they were presented with 

pseudorandom sequences of objects and words and, after learning (because before learning it was 

impossible) they were asked to bear in mind the conceptual identity of either the object or the word 

to perform a one back categorization task (see Methods). I reasoned that, for a cognitive map to 

exist in a brain region, the activity evoked by stimuli referred to different regions of the semantic 

space should reflect the distance existing between them: the closer two concepts are in the 

semantic space, the closer (or similar) their representations should be. Additionally, I reasoned that 

subsequent presentations of words and objects referring to different categories implied a specific 

direction travelled within the conceptual space. Therefore, my data were suitable for investigating 

the existence of both a distance and a directional representational code underlying the 

representation of a semantic space (Figure 3.1C)(see Methods). 

 

 

Figure 3.1 - Methods. A. Exemplar of audiovisual object. B. 16 multisensory objects are divided 
into 4 categories by means of abstract words: this creates a novel multisensory semantic space. C. 
Subsequent presentations of either objects or words imply a movement between the regions of the 
semantic space. These movements cover a certain distance, and have particular directions. 
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Methods	
 

Participants. You can refer to Chapter 2, section Methods-Participants for identical procedures on 

the experimental sample.  

 

Conceptual space. You can refer to Chapter 1, section Methods-Conceptual space for identical 

procedures on how the conceptual space was created. For the current Chapter, the relevant 

figures are Figure 2.1 (A-B). 

 

Stimuli presentation. You can refer to Chapter 1, section Methods-Stimuli presentation for identical 

procedures. 

  

Experimental design. You can refer to Chapter 2, section Methods-Experimental design for 

identical procedures. 

  

fMRI tasks. You can refer to Chapter 2, section Methods-fMRI tasks for identical procedures. 

 

Behavioural Training. You can refer to Chapter 1, section Methods-Behavioural Training for 

identical procedures. 

 

Neuroimaging acquisition and Preprocessing. You can refer to Chapter 2, section Methods-

Neuroimaging acquisition and Preprocessing for identical procedures. 

  

Adaptation analysis. First of all, I assessed what brain regions, after learning, represented the 

reciprocal distances between the four concepts. I did that by means of adaptation, reasoning that, 

under the cognitive map hypothesis, a large distance (e.g. from KER to GAL) travelled in the 

conceptual space should result in an higher release from adaptation compared to a small distance 

(e.g. from KER to MOS). Functional images for each participant individually were analysed using a 
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general linear model (GLM). For each run, 14 regressors were included: 1 regressor for each pair 

of trials of no interest where no movement happened (e.g. two subsequent stimuli referring to the 

same category); 2 regressors of interest modelling pairs of trials where either a small or a large 

movement happened in the conceptual space (Figure. 3.2A); 1 regressor indicating that there was 

a change in the presentation modality (from object to word or viceversa); 1 regressor for motor 

response; 6 regressor for head-movements (estimated during motion correction in the pre-

processing); 3 regressors of no interest (constant, linear, and quadratic). Baseline periods were 

modelled implicitly, and regressors were convolved with the standard HRF (without derivatives). A 

high-pass filter with a cutoff of 128 s was applied to remove low-frequency drifts. I applied group-

level analysis within SPM to find brain regions showing a significant adaptation effect for trials 

where the movement covered a large distance over those where the movement covered a small 

distance (Family-wise error (FWE) correction for multiple comparisons at cluster level was applied 

at α = 0.05). 

 

Distance-based Representational Similarity Analysis (RSA). In the brain region individuated, at the 

group level, from the adaptation analysis, I implemented multivariate pattern analysis (MVPa), 

which is complementary to adaptation. To do that, I run a second GLM. For each run, 22 

regressors were included: 1 regressor for each one of the 8 multisensory objects (resulting in 8 

regressors); 1 regressor for each one for he 4 words (resulting in 4 regressors); 1 regressor for 

motor response; 6 regressor for head-movements (estimated during motion correction in the pre-

processing); 3 regressors of no interest (constant, linear, and quadratic). Baseline periods were 

modelled implicitly, and regressors were convolved with the standard HRF without derivatives. A 

high-pass filter with a cutoff of 128 s was applied to remove low-frequency drifts. I thus obtained 

one beta map for each stimulus (object or word) and run. I used these beta maps to conduct a 

model-based RSA (Kriegeskoorte et al. 2008). I averaged the beta maps for all the stimuli that 

belonged to the same concept (e.g. two objects that are a KER and the word “KER”) and I 

extracted, from the Region of Interest (ROI) obtained in the previous analysis, the neural 

dissimilarity matrix (DSM, 1-Pearson’s correlation) to reveal their distances in the multivariate 
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representational space. Next I correlated the Fisher transformed DSM to the predicted matrix 

representing the distances between our concepts (Figure 3.2C). As a control, I repeated the same 

analysis using pre-learning data, when participants did not have any knowledge of the conceptual 

space and therefore the distance model should not correlate with the neural data. Finally, to further 

confirm that no other brain region represented the distance between our novel concepts in the 

multivariate activity pattern, I run a whole brain searchlight: a sphere was centred in every voxel of 

the subject- and session-specific datasets, following previous searchlight studies (Connolly et al. 

2012). Within each sphere I conducted the same model-based RSA previously conducted in the 

ROI. I used SPM to test for group level effects, after subtracting the results of two additional 

searchlights (with matching parameters) that used model-based RSA to look for brain regions 

responding to differences in either size or pitch, respectively, of the multisensory objects: this was 

a necessary step to exclude that the multivariate correlation score I obtained was explained by a 

low-level perceptual coding of differences between objects. Family-wise error (FWE) correction 

was applied at α = 0.05 to correct for multiple comparisons at cluster level. Additionally, I used the 

neural DSM to reconstruct, using multidimensional scaling as implemented in MATLAB, the most 

faithful bidimensional representation of the conceptual space, to visualize the spatial arrangement 

of the four concepts starting from real neural data, and I did it for both pre and post learning 

datasets. 

 

Direction-based RSA. Next, I asked whether BOLD activity evoked during the transition between 

two stimuli referring to different concepts was modulated by the direction of the movement in the 

conceptual space. To do that, I first run a third GLM, now modelling the directions of movement 

between concepts. For each run, 20 regressors were included: 8 regressors corresponded to the 8 

possible directions of movement within the conceptual space, arbitrarily referenced to the 

horizontal axis; 1 regressor modelling subsequent presentation of two stimuli that belonged to the 

same conceptual region, corresponding with no movement across the conceptual environment; 1 

regressor for changes in presentation modality (e.g. from object to word or vice versa); 1 regressor 

for participants’ response; 6 regressor for head-movements (estimated during motion correction in 
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the pre-processing); 3 regressors of no interest (constant, linear, and quadratic). Baseline periods 

were modelled implicitly, and regressors were convolved with the standard HRF without 

derivatives. A high-pass filter with a cutoff of 128 s was applied to remove low-frequency drifts. I 

thus obtained one beta map for each movement direction for each run. In the ROI defined by 

previous analysis, I applied an extension of the similarity-based multivariate approach of Bellmund 

et al. (2016) to test for the existence of a hexadirectional code in our data, most likely originating 

from the activity of grid-cells (Doeller et al. 2010). Two movement directions 𝜑 and 𝜑’ in the interval 

0°-359° can be expressed as more or less similar in a n-fold periodic space, by calculating mod(𝜑-

𝜑’, θ), where θ indicates the angle of the periodic (n-fold) grid for which I want to test the 

modulation. In the case of a grid-like signal, corresponding to a 6-fold periodicity, θ = 60°, and 

therefore two directions perfectly aligned with a periodicity of 60° would have mod(𝜑-𝜑’, 60°) = 0. 

However, if the two directions are not perfectly aligned in the n-fold symmetry, the result of the 

mod() function indicates the angular distance to perfect alignment. I computed all the 8x8 pairwise 

comparisons between our sampled movement directions to obtain a model of their predicted 6-fold 

dissimilarity, corresponding to the angular deviation in the 60° periodic space (Figure 3.3A-B). 

Next, I applied model-based RSA correlating the 6-fold model to the Fisher transformed neural 

dissimilarity matrix (DSM) constructed by computing similarity distance (1-Pearson’s r) between 

any pair of distributed activity patterns in the ROI. I computed the correlation between neural data 

and the model using Pearson’s r. To investigate whether this modulation was detectable at the 

whole brain level, I used the CoSMoMVPa toolbox (Oosterhof et al. 2016) to implement this 

analysis in a whole-brain searchlight to find cortical regions responding to the 6-fold rotational 

symmetry. A sphere was centred in every voxel of the subject- and session-specific datasets, 

following previous searchlight studies (Connolly et al. 2012). Within each sphere I conducted our 

model-based grid-RSA, storing the resulting correlation score in the center voxel, as summary of 

the information for the surrounding sphere. To control for potentially competitive periodicities, I 

applied the same technique within the resulting ROIs, now using periodic models with 4-, 5-, or 7-

fold symmetries. 
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Results	
 

The main goal of the study was to investigate whether and where a (cognitive) map of our novel, 

multisensory conceptual space would be represented in the brain of adult and healthy participants. 

I reasoned that the key ingredient of such a map would be to reflecting the patterns of distance 

existing between the locations (the concepts) of the space it represents. Additionally, I asked 

whether I could observe a modulation of BOLD signal as a function of the direction of movement in 

the conceptual space. To test whether any brain region holds these representations, I used a 

combination of univariate (adaptation) and multivariate (RSA) techniques (see Methods). 

 

Behavioural results. During the learning phase outside the scanner, participants were trained for 8 

daily sessions with 8 multisensory objects, performing a delayed match-to-category-name task 

(see Methods). During the last training session, and without being notified, they were also 

presented with 8 novel stimuli that they never saw before.  These consisted in specific 

combinations of size and pitch that were absent in the training set, and they were introduced to 

verify the emergence of a real categorical representation of the semantic space, and not of a mere 

association between names to individual exemplars. The learning trajectory indicated a significant 

increment in performance from session 1 to session 8 (session 1: 60 ± 18%; session 8: 89 ± 8%; 

paired t-test: t24= 8.58, p = 8.86x10-9). Performance collected on session 9 confirmed the 

successful learning and generalization of the categories (performance training set: 87 ± 7%, 

different from chance t= 40.29, p = 1.48 x 10-23; performance generalization set: 73 ± 11%, 

difference from chance, t= 21.49, p = 3.45 x 10-17). 

After learning, participants underwent an fMRI session performing a one-back-category-name task 

(see Methods). Performance in the scanner was high (hit = 84 ± 10%, correct rejection = 97 ± 1%). 

No participant reported, at the end of the experiment, to have explicitly memorized the stimulus 

space in any kind of spatial arrangement. 
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Neuroimaging results 

 

Distance dependent adaptation. First, I investigated whether and where a cognitive map of the 

novel conceptual space was represented in our participants’ brains. I reasoned that a subsequent 

presentation of two stimuli belonging to two difference categories would cause an adaptation of the 

BOLD signal that would be proportional to the distance between the two concepts in the two-

dimensional concept space. Given our stimulus space we had two levels of distance: a small (e.g. 

KER preceded by MOS) or a large (e.g. KER preceded by GAL) one. Regions where the BOLD 

signal is affected by this difference should be detectable using fMRI adaptation, where the 

response to a given stimulus should be lower when the stimulus is preceded by another one with a 

small conceptual distance compared to a large distance. By applying this analysis at whole brain 

level on post-learning fMRI data, I revealed a significant cluster in medial Prefrontal Cortex (mPFC) 

(MNIx,y,z= 3 47 -4; T=6.73; FWE corr.)(Figure 3.2B). No significant cluster was found using pre-

learning data. 

 

Distance-dependent RSA To confirm this result with an independent and complementary measure, 

I extracted from the mPF cluster of the previous analysis the distributed activity patterns for each 

stimulus after running a second GLM (see Methods). Next, I applied model-based RSA 

(Kriegeskorte et al. 2008) by correlating the Fisher transformed neural dissimilarity matrix (DSM, 1-

Pearson’s r) to a model of the predicted distances in the conceptual space (Figure 3.2C). I 

observed that the multivariate activity evoked in the mPFC post-learning significantly correlated 

with the model of predicted distances (t=2.78; p = .005, one tail t-test). Again, this was not the case 

before learning (Figure 3.2D). Additionally, to verify whether this multivariate signal existed also in 

other brain regions, I implemented our model-based RSA within a whole-brain searchlight (radius 

of the sphere = 3 voxels, consistent with Connolly et al. 2012) after excluding brain regions 

responding to differences along either size or pitch between the audiovisual objects (see Methods). 

I found two significant clusters: one in mPFC (MNIx,y,z= 6 50 -10; T=5.71; FWE corr.)(Figure 3.2D) 

and one in the precentral gyrus (MNIx,y,z= 57 5 24; T=6.55; FWE corr.). Given our previous 
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adaptation analysis and the previous studies indicating mPFC as holding a representation of the 

cognitive map of task relevant information beyond spatial navigation (e.g. Constantinescu et al. 

2016, Shuck et al. 2016), I focused on this region for following controls: first of all, the distance 

effect in this area was not present before learning (t=-0.2; p = .58, one tail t-test) and, second, the 

multivariate signal of a spherical ROI constructed around the peak of the searchlight (see 

Methods) was enough to recover a faithful bidimensional representation of our novel conceptual 

space (Figure 3.2E). 

 

Figure 3.2  - Results of the distance analysis. A. Moving in the semantic space implies covering 
different distances. B. Results of a whole brain adaptation reveal a significant cluster in mPFC 
reflecting distances between semantic regions. C-D. This effect is further confirmed using a 
independent multivariate approach (RSA) both within the same ROI and with a whole-brain 
searchlight. E. For illustrative purposes, I show the neural DSM both before and after learning in 
mPFC, which is sufficient to recover a faithful bidimensional representation of the semantic space 
using MATLAB multidimensional scaling. 
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Direction-dependent RSA In a previous study (Constantinescu et al. 2016) it was observed that the 

BOLD signal in the mPFC was modulated following a 6-fold periodicity, typical of grid-cells (Hafting 

et al. 2005; Doeller et al. 2010), when human participants processed morphing bird shapes varying 

continuously in their neck:legs ratio, therefore mimicking a movement in an artificial bidimensional 

“bird space” akin the real-world physical space. Although with our design I could only sample 8 

movement directions, I asked whether I could observe a similar modulation between our four 

discrete concepts, that met both the definitional criteria of human-like, high-level conceptual 

representations: that of being categorical, and that of having a meaning that is conveyed with a 

linguistic symbols, such as a word. I fit a new GLM to extract a beta series for each movement 

direction across the 4 regions of the novel conceptual space (see Methods), resulting in 8 sampled 

directions. By building on findings that an hexadirectional code can be observed in multivariate 

activity patterns under highly controlled circumstances (Bellmund et al. 2016), I combined grid-

analysis with model-based RSA (Kriegeskorte et al. 2008) (see Methods) (Figure 3.3A). By 

computing all the dissimilarity measures between directions, I obtained a model (matrix) of the 

relative distances to the hypothetical hexadirectional grid (see Methods)(Figure 3.3B). Using 

model-based RSA I could test whether or not the neural dissimilarity matrix extracted from mPFC 

fit with the model, by computing Pearson’s r. This was not the case (t=0.41; p = .68). However, 

when I implemented the same analysis in a whole-brain searchlight, I did find a set of brain regions 

where this direction-dependent modulation of multivariate signal was present: right entorhinal 

cortex (MNIx,y,z= 30 5 -32), left orbitofrontal cortex (MNIx,y,z= -15 44 -20), left superior frontal gyrus 

(MNIx,y,z= -30 23 60), precentral gyrus (MNIx,y,z= 60 5 6; all p<.005 uncorr.). Given previous studies 

showing directional modulation of BOLD signal as a function of movement direction in entorhinal 

cortex during both spatial (Doeller et al. 2010) and non-spatial (Constantinescu et al. 2016; 

Bellmund et al. 2016; Nau et al. 2018; Julian et al. 2018) tasks, and given the high proximity of our 

entorhinal peak (MNIx,y,z= 30 5 -32) to the one reported by Doeller et al. (2010) during spatial 

navigation (MNIx,y,z= 30 3 -30), I focused on this region for subsequent analyses. First of all, I 

verified that other biologically implausible periodicities (4-fold, 5-fold, and 7-fold) did not account for 

the signal in this region, and this was not the case (4-fold: t=0.35; p = .94; 5-fold: t=-2.37; p = 0.02; 
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7-fold: t=-2.14; p = .04). Second, I verified that the 6-fold modulation was not present before 

learning (t=-0.55; p = .58). Finally, motivated by theoretical and simulation works showing that grid-

cells activity can be used to estimate distance between spatial locations to subserve navigation 

and path integration (Bush et al. 2015), I applied our model-based RSA for distance effect (see 

above) in the entorhinal cortex. Although I run a whole brain searchlight, I reasoned that, in light of 

the well-known signal drop in the medial temporal lobe (Schimdt et al. 2005; Bellgowan et al. 2006; 

Olman et al. 2009), such a distance effect could have been overlooked by our whole-brain 

correction. Indeed, I did find a weak, although significant, distance effect in this area (t=2.14; p = 

.02, one tail t-test) that was not present before learning (t=0.48; p = 0.62, one tail t-test)(see Figure 

3.3D for the reconstructed bidimensional space using multidimensional scaling). 

 

1

16

2 3 4

8765

9 10 11 12

13 14 15

Size Size Size Size 

K M

D G
1

16

2 3 4

8765

9 10 11 12

13 14 15

Size Size Size Size 

K M

D G 1

16

2 3 4

8765

9 10 11 12

13 14 15

Size Size Size Size 

K M

D G

0° 30
°

90
°

60
°

12
0°

15
0°

18
0°

21
0°

24
0°

27
0°

30
0°

32
0°

36
0°

B
O

LD
 a

ct
iv

ity

S
m

al
l

La
rg

e

Difference in
BOLD activity

Null difference
Small difference
Large difference

A

C

B

D

3.140

x = 30

y = 5

z = -32

-0
.0

6

0.
060

-0.06

0.06

0

-0
.0

6

0.
080

-0.06

0.06

0

Neural DSMs and recontructed
conceptual space from EHC

Different angular distances between movoement directions as a 
function of the BOLD signal periodicity

Predicted angular distances

Directional searchlight RSA



61 

Figure 3.3 - Methods and results of the directional analysis. A-B. Different movement 
directions elicit multivariate activity that can be expressed as more or less similar in a n-fold 
periodic space. By applying the function mod(X,Y,n) where X and Y are the two directions and n 
indicates the periodicity, one can construct a dissimilarity model of the predicted angular distances 
in the n-fold representational space. C. Results of a whole brain searchlight using model-based 
grid-RSA with the 6-fold periodic model. A significant cluster appears in right EHC. D. Distance 
analysis and illustration of the effect in EHC. 

Discussion	
 
In this experiment, I used fMRI to test the two key predictions underlying the “cognitive map” 

theory: i) that a distance-based representational code, known to represent the reciprocal distances 

between spatial locations, also represents the patterns of distances between concepts, and ii) that 

a direction-based representational code, known to be recruited in mammals during spatial 

navigation tasks, is also recruited when humans navigate among these concepts in memory. Using 

a training approach allowed me to master the precise metrics of a conceptual space (made of 4 

orthogonal categories of labelled multisensory objects). This allowed me to investigate the 

modulation of the BOLD signal as a function of movement distance and direction between regions 

of this  conceptual space. Through both a  whole-brain adaptation analysis and a whole-brain RSA 

analysis, I observed a strong and reliable distance code in the medial Prefrontal cortex (mPFC). 

Here, I demonstrated that both the univariate signal and the multivariate activity pattern encoded 

information about the distance between the four concepts of our novel conceptual space. The 

distributed pattern of neuronal activity was indeed sufficient recover a faithful bidimensional 

representation of the conceptual distances. Therefore, my results demonstrate that the activity of 

the mPFC mirrors the patterns of distance between novel concepts, at least during a categorization 

task. Additionally, I observed an intriguing modulation, as a function of movement direction, of the 

activity of the right entorhinal cortex, where grid-like signals have been previously reported in 

humans using both intracranial recordings (Jacobs et al. 2013) and fMRI (Doeller et al. 2010) 

during navigation of virtual reality environments. Consistent with simulation studies indicating that 

grid-cells activity contributes to the estimation of distances between locations in the physical space 

(e.g. Bush et al. 2015), I found a distance effect also in this region. These results might be 



62 

complementary to the distance code observed in mPFC, although some potential limitations of the 

grid analysis (see below) should be taken into account. 

 

A cognitive map of concepts in mPFC 

 

A previous study by Constantinescu et al. 2016 reported a direction-based modulation of BOLD 

fMRI signal in vmPFC/OFC (and entorhinal cortex, see below) when participants process 

previously unknown visual stimuli depicting bird shapes that varied in their neck:legs ratio. This 

was taken as evidence in favour of an internal “cognitive map” of conceptual knowledge, that 

allows navigation through concepts as they were locations in the physical space. While the notion 

of “concept” in this seminal study was taken to indicate a conjunctive representation of two object 

characteristics, it remained silent on two key features that define conceptual representations in 

humans: the first one is that in our species concepts typically refer to objects/event classes, or 

categories, and the second one is that humans construct, recall, and manipulate these categories 

using linguistic symbols: words. The resulting representations - typically referred to as “semantic 

representations” - can be conceived as regions in a representational space where the different 

dimensions represent different features of the objects that the words refer to, the semantic space 

(Borghesani & Piazza 2017).  

In the current work I implemented a training study aimed precisely at extending these previous 

results and more directly testing whether a distance code underlies one of the most complex of 

human functions, that of organizing concepts and categories using words. Similarly to 

Constantinescu et al. (2016), I worked on a highly controlled 2D stimulus set where objects 

resulted in the orthogonal combination of size and pitch, controlling that variations along these two 

features were perceptually matched across subjects, using a subject-specific scale (see Methods). 

However, contrary to them, I engaged participants in a symbolic categorization task, where they 

had to learn to parse the object space into 4 categories using words, basing on the conjunction of 

their size and their pitch. By associating more object exemplars to a single category name, 

participants were constructing true semantic representations, meeting all the definitional criteria of 
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human-like concepts: that of originating from an arbitrary conjunction of features (similarly to 

Constantinescu et al. (2016), but here extended to the multisensory domain), that of being 

categorical (thus defining more broad regions that support generalization, as I demonstrated on the 

last training day), and that of being labeled with words.  

My study also departs from the work of Constantinescu et al. (2016) on the analytical approach 

used to test for the existence of a cognitive map of concepts. Instead of focusing on directional 

coding, I first applied a series of univariate and multivariate analyses to find what brain regions 

would represent the distances between the novel concepts, as the first key ingredient of any map 

is to reflect the existing distances between locations in space it represents. I did find strong 

evidence of such signal in the medial region of the prefrontal cortex (mPFC), which has been 

previously associated to a great variety of cognitive functions different from spatial cognition, such 

as reversal learning (Jones and Mishkin 1972; Fellows and Farah 2003; Hornak et al. 2004; 

Izquierdo et al. 2004; Walton et al. 2010), emotion control (Bechara et al. 1999, 2000, 2001; 

Rampel-Clower et al. 2007), or assignment of economic value (Padoa-Schioppa and Assad 2006, 

2008). Stalnaker et al. (2015) discussed all these positions and call them into question by showing 

that they actually accounted for very specific experimental situations. They propose a more 

general role of this region, specially in its ventral and orbital portions (vmPFC/OFC), in encoding a 

representation of the “task space”, that is an internal representation of the possible states a 

participant could be while performing a task. Our results are compatible with this view, as they 

indicated that during a categorization task, a representation of the “task space” was encode in 

mPFC: in particular, our task space reflected a categorical and labelled multisensory concept 

space, therefore extending previous findings that limited the evidence of internal cognitive maps to 

the domain of reasoning and decision making (e.g. Schuck et al. 2015; 2016). 

 

The entorhinal cortex: coding direction and distances between concepts? 

 

I also investigated the existence of a directional code underlying the navigation in our novel 

conceptual space. While previous studies relied on quadrature filter procedures (e.g. Doeller et al. 
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2010; Constantinescu et al. 2016; Nau et al. 2018) to estimate the grid angle on a subset of the 

data and further test its consistency on independent partitions, I combined the multivariate 

approach first adopted by Bellmund et al. (2016) together with model-based RSA (Kriegeskorte et 

al. 2008) constructing a potentially more flexible method. The analysis did not show a significant 

modulation in the mPFC region that emerged in the previous, distance-based, analysis, but it 

showed an intriguing result after a whole brain searchlight in the right entorhinal cortex, where grid-

cells in rats have been originally recorded (Hafting et al. 2005) and where Doeller et al. (2010) 

found a grid-like signal when human participants navigated a virtual reality physical environment. 

Although caution should be adopted in making inferences on neural codes following fMRI 

analyses, our study indicates that during multisensory semantic categorization - the act of 

classifying multisensory objects using language, and a hallmark of human high-level cognition - the 

entorhinal cortex might recruit a directional code similar to the grid-like code typically supporting 

spatial navigation, to represent movements between regions of the conceptual space. Crucially, in 

the same area I found a weak, although significant, distance code, which is coherent with the idea 

that grid-cells support path integration and the representation of distances between locations in the 

space (e.g. Howard et al. 2014; Bush et al. 2015). It’s extremely likely that I did not find any signal 

of the distance code in entorhinal cortex during our whole brain analyses (adaptation and 

searchlight RSA) because of the well-known loss of signal in the medial temporal lobe (Schimdt et 

al. 2005; Bellgowan et al. 2006; Olman et al. 2009). It is interesting to notice that I did not observe 

the opposite pattern in the mPFC: although I found a very strong modulation of its signal as a 

function of distance, no evidence of directional coding was found in this region. There are at least 

two possible explanations, which are not mutually exclusive. First of all, although the argument 

introduced above posits that grid-cells might support the representation of distances between 

location in a physical, or conceptual, space, this might not be the only way our brain represent 

distances. Indeed, more recently evolved brain regions such as the mPFC might have developed 

different representational codes to support the same function. Another possibility is that the two 

regions - mPFC and entorhinal cortex - both support the representation of a cognitive map of 

concepts useful to solve the task at hand, but by playing different roles: a possible scenario, in light 
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of the well-known connectivity patterns between the hippocampal formation and the mPFC (see 

Preston & Eichenbaum 2013) is that the former, and in particular the entorhinal cortex, informs the 

latter by using a grid code. In this picture, the distance code reflected in the mPFC would be the 

result of the computations happening at a lower level in the entorhinal cortex. Future studies 

should try to address this issue with more specific experimental designs and measures. 

 

Possible limitations 

 

There is actually a third, and potentially more parsimonious reason why I did not observe a 

directional modulation of the mPFC signal, that could also explain the weaker statistical 

significance of the directional signal in EHC, which refers to a limitation of our experimental design: 

a sub-sampling of the possible directions of movements within our 2D conceptual space. In fact, 

given that I only had 4 categories I could only sample 8 movement directions, that might not offer 

enough information to properly estimate the grid-signal in areas different from the entorhinal 

cortex, at least compared to other experiments (e.g. Constantinescu et al. 2016) where, thanks to 

the availability of a continuous space (which in turn would make less plausible a generalization to 

discrete human-like conceptual representations), many different directions could be tested. 

Moreover, due to the same sub-sampling, I should notify that our 6-fold symmetry model is also 

compatible with the presence of a 2-fold symmetry. While a 6-fold symmetry readily derives from 

the known hexagonal arrangement of the tuning functions of neurons recorded in the entorhinal 

cortex and in an extended memory network in humans (e.g., Hafting et al. 2005; Doeller et al. 

2010; Jacobs et al. 2013; Bellmund et al. 2016; Constantinescu et al. 2016; Nau et al. 2018; Julian 

et al. 2018), a 2-fold rotational symmetry would correspond to a population of neurons tuned only 

to a given direction 𝜑 and to its opposite 𝜑 + 180°. This response has never been reported to date 

neither in neuroimaging or electrophysiological works, and thus seems to me as largely 

implausible. However, while I cannot firmly exclude the presence, in the human brain of a neuronal 

populations characterized by a two-fold symmetrical tuning function, I can certainly claim that its 

presence is, based on our current knowledge, biologically rather implausible. However, even in the 
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case that our results actually reflect a 2-fold symmetry, they would still represent evidence for a 

directional coding that is characterized by either a 2 or a 6 fold periodicity, but not by other 

periodicities (4-, 5-, 7-fold), and that underlies navigating abstract conceptual spaces in the 

entorhinal cortex. Thus, at the very least our results represent novel evidence for the presence of 

both a distance-based and a directional coding (compatible with either a 6-fold or a 2-fold 

symmetry) of concepts and movements among them. 

 

Conclusions 

 

To conclude, in humans symbol-dependent categorical format of representations defines 

behaviourally relevant regions of the knowledge space that we typically refer to as “concepts”. As 

human cognition critically depends on language, it is essential to encode the relationships between 

its units (the meaning of the words) to support generalization, abstractions, and inferences, the key 

elements of human flexible behaviour (Behrens et al. 2018). Our results indicate that the medial 

PFC encodes these relationships through distance dependent code, and reveal weaker but 

potentially informative direction and distance dependent modulation of entorhinal signal. On a 

more general perspective these results may be seen as a novel example of “cortical recycling” 

(Dehaene & Cohen 2005): brain regions holding specific coding schemes that evolved, in lower-

level animals, to represent spatial relationships between objects and locations crucial for spatial 

navigation, in humans are reused - or “recycled” - to encode relationships between words and 

concepts in an internal cognitive map (Tolman 1947; O’Keefe & Nadel 1978). 
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OBJECT	NAMING	SUPPORTS	THE	
EMERGENCE	OF	GENERALIZED	SEMANTIC	
CATEGORICAL	SPACES		

Introduction	
 

Humans are able to acquire, store, and recall much information about what they experience 

in everyday life. This knowledge we have about things in the world is stored in our conceptual 

memory, which is organised into behaviourally relevant categories. Categories are equivalence 

classes, based on highly similar patterns of activation for all the items they are composed by, and 

range from perception- based equivalences (a dog and a cat shares the typical shape of all the 

mammals) to more sophisticated behaviourally relevant and abstract similarities (both a pen and a 

computer can be seen as writing devices). Humans construct categories by means of symbols, 

and this gives rise to internal meaningful semantic representations. 

 

But what are the advantages, if any, of having conceptual representations of categories that are 

defined by means of symbols (semantic representations)? Previous studies showed that when 

participants were asked to find items of a given category (e.g. a number), they were more accurate 

and faster in giving the correct responses when a linguistic and redundant label, matching with the 

category of the expected response, was offered as a cue (Lupyan & Spivey 2010; Lupyan & 

Thompson-Schill 2012). Pierce & Lupyan (2015) argued that this might be due to the fact that 

symbols and labels refer to abstract representations that do not covary with specific instances of 

the class or category they refer to, but rather they act as “unmotivated” cues, holding a more 

general, symbolic or abstract representation of the category. On the contrary, other cues such as 

the picture of a dog, or the sound of the animal barking, would necessarily convey information 

about a specific exemplar, as they would refer to the category via an iconic relationship. 
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If symbols affect the access to conceptual knowledge by enhancing its abstract meaning rather 

then the representations of specific and individual exemplars, it is reasonable to assume that the 

same facilitation emerges during the process of acquisition of this knowledge, that is during 

categorization. Indeed Lupyan et al. (2007) showed that human adults were more proficient in 

learning to parse novel visual objects, representing fictitious aliens, into categories, when labels 

representing their category names were provided with them compared to a situation in which no 

label, or a non verbal label, was given. These effects have been to date long established in both 

adults and children (Balaban & Waxman 1997; Fulkerson & Waxman 2007; Ferry et al. 2010), and 

Althaus & Plunkett (2016), following Waxman & Markow (1995) showed that in 12-months-old 

children the facilitation effect provided by linguistic labels triggers an attentional focus on the 

similarities between different objects that share the same name. 

 

Here I report the first results of an ongoing study focused on adult subjects to investigate the 

hypothesis that, besides facilitating categorizing training stimuli, symbols affect the way novel 

object exemplars, for which participants were not trained on, are categorized: in brief, I asked 

whether categorical judgements are more generalisable when the categories are constructed using 

symbols. 

 

I trained 40 adult participants for two days in parsing a multisensory object space into categories. 

One group acquired categories by means of a non-symbolic, where they had to indicate whether 

two objects belonged to the same category or not, while the other by mean of a category naming 

task. Next, I tested both groups on a third day with a non-symbolic task - the same used to train 

the non-symbolic group. Crucially, half of the trials during the test phase consisted of novel objects, 

representing previously unseen combinations of features, but falling within specific portions of the 

the learnt categorical space. By comparing performance during the test day between the two 

groups and between novel vs old category exemplars, I seek to verify whether symbolic 

categorization affects later categorical generalization.  
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Methods	
 

Participants. 40 adult volunteers were recruited for the experiment (eleven males; mean age = 

23.6, std = 2.1). All participants gave written informed consent, and were reimbursed for their time. 

They were right-handed with normal or corrected-to-normal vision. 

 

Conceptual space. You can refer to Chapter 1.3, section Methods-Conceptual space for identical 

procedures. The relevant figures for the current chapter are Figure 4.1A-B-C. 

 

Stimuli presentation. You can refer to Chapter 1.3, section Methods-Stimuli presentation for 

identical procedures. 

  

Experimental design. The experiment consisted of two parts: training and test. At the beginning of 

the training phase, each participant was randomly assigned to either the symbolic (S) or the non-

symbolic group (NS). For both groups, the training phase lasted 2 days, but the tasks they were 

involved in changed on the basis of the group. On the third day of the experiment, participants 

performed a test task that was identical for both the groups. Figure 4.1D 

 

Training phase. The S-group performed a delayed match to category name task for 2 training 

days, where they had to learn the correct category name for each multisensory object. 

Each training session was approximately 10 minutes long, and it was divided into 4 mini-blocks of 

20 trials each, for a total of 80 trials. It started with a brief presentation of the objects as exemplars 

of the four categories (KER, MOS, DUN, GAL). After this familiarization phase, each trial consisted 

of an object presentation (750 ms), followed by a fixation cross (500 ms), and by the presentation 

of one category name. Each object was presented 10 times per training session. Participants were 

instructed to press one key on the keyboard to select the whether the presented name was the one 

indicating the correct category of the object. They were asked to respond as fast as possible, but 

no time limits were imposed. After their response, an immediate feedback appeared on the screen 
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for 1000 ms, indicating with the words “Correct!” or “Wrong!” the accuracy of the choice. After each 

miniblock, participants would be provided with the cumulative percentage accuracy. For half of the 

trials, objects were followed by the correct name, while for the other half they were followed by a 

wrong name: this led to a chance level of 50%.  

The NS-group performed a same or different category task for 2 training days, where they had to 

learn whether two objects belonged or not to the same category, without the help of linguistic 

labels. 

Each training session was approximately 10 minutes long, and it was divided into 4 mini-blocks of 

20 trials each, for a total of 80 trials. It started with a brief presentation of the objects as exemplars 

of the four categories, without specifying their names. After this familiarization phase, each trial 

consisted of an object presentation (750 ms), followed by a fixation cross (500 ms), and by the 

presentation of another object (750 ms). Each object was presented 10 times per training session 

as first stimulus. Participants were instructed to press one key on the keyboard to select the 

whether the presented objects belonged to the same category. They were asked to respond as 

fast as possible, but no time limits were imposed. After their response, an immediate feedback 

appeared on the screen for 1000 ms, indicating with the words “Correct!” or “Wrong!” the accuracy 

of the choice. After each miniblock, participants would be provided with the cumulative percentage 

accuracy. For half of the trials, the two objects belonged to the same category, while for the other 

half they did not: this led to a chance level of 50%. 

For both the training protocols I used a subset of 8 objects (exemplars number 1-4-6-7-10-11-13-

16). The remaining 8 objects (exemplars number 2-3-5-8-9-12-14-15) were used on the test phase 

(see below). 

 

Test phase. During the test phase both groups performed the same non-symbolic same-or-

different-category task that the NS-group was trained on. The procedure was exactly identical to 

the one described above, except for the fact that i) no feedback was given after the response, and 

ii) now all the 16 objects were used. In particular, each trial could be of two types: type 1 (old-old 

trials) presented two objects that were both known to participants, because they were selected 
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from the subset they have been previously trained on; type 2 (old-new) trials presented them with a 

known object, followed by a novel object they never saw before. Novel objects were constructed 

with the complementary audiovisual combinations missing from the training object set. This led to a 

longer session of about 20 minutes. Crucially, participants were not notified about the presence of 

novel objects. 
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Figure 4.1 - Methods. A-B-C. 16 audiovisual objects are divided into 4 categories by means of 
symbols. Symbols are revealed only to half of the participants. D. a subset of 8 objects is used 
during the training, while the remaining 8 objects (generalization set) are used, together with the 
old ones, on the test day. E. Half of the participants are trained with a symbolic task (delayed 
match to category name), while the other half with a non symbolic task (same or different category 
task). On the last experiment day (test day) they are both tested with a non symbolic same or 
different category task, but novel objects are introduced together with the old ones. 

Results	
 

Learning performance during training 

 

Both the S-group and the NS-group had significantly above chance performance during day 1 and 

day 2. The S-group significantly improved its performance in object naming from training day 1 to 

training day 2 compared to the NS-group, as revealed by a significant interaction after a 2x2 

repeated measure ANOVA (F=14.06, p = 0.001) and post-hoc t-tests (see Figure 4.2A). 

 

Generalization during test phase 

 

Crucially, during day 3 (test day)  the S-group was able to correctly categorize objects during old-

old and old-new trials, while the NS-group was significantly worse with old-new trials, where novel 

exemplars were introduced (2x2 repeated measure ANOVA, F=6.006, p = 0.024). Post-hoc t-tests 

reveal that the effect was driven by the fact that NS-group was worse with old-new trials compared 

to old-old trials (t= 2.94, p = .008) and that it was worse with old-new trials compared to the S-

group (t = 2.90, p = .009)(Figure 4.2B). 
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Figure 4.2 - Results. A. The symbolic group (S) significantly improves its performance during the 
training, from day 1 to day 2. B. Crucially, the symbolic group during the test day was able to 
correctly categorize both trials with only old objects and trials where novel object combinations 
were presented. The non symbolic (NS) group on the contrary wa significantly worse during trials 
with novel objects. 
 

Discussion	
 

Here, I have reported the preliminary results of a study aimed at investigating the effects of 

symbolic categorization on generalization. So far, I have observed that participants who learned to 

categorize objects by means of linguistic symbols (written words) not only improve their 

performance during training faster than a control group that learned the categories without 

symbols, but they extended categorical judgments in a subsequent non-symbolic categorization 

task also to object exemplars that were new and for that they had not received explicit training. 

This was not the case for the non-symbolic group, who performed, during the final test, significantly 

worse when categorical judgments involved novel objects rather than familiar ones.  

 

These results, although limited as the study is still going on at the moment when I write, are of 

potentially interest for the present dissertation and worth mentioning, because they immediately 

speak on the nature and function of semantic representations that emerge after categorical 

learning. 
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In a previous study, Lupyan et al. 2007 trained adult participants in grouping novel objects 

(fictitious aliens) as members of two behaviourally relevant categories, basing on their visual 

appearance, as exemplars to either approach (first category) or to avoid because dangerous 

(second category). Two groups of people underwent this training performing almost the exact 

same training procedure for which, after each response, a feedback was given. However, a crucial 

manipulation was introduced to make the two protocols different: one of the two groups received, 

together with the feedback, a redundant information on the name of the category that the object 

just presented belongs to. This simple, presumably irrelevant manipulation, had a singular effect 

on categorical learning: the symbolic group became more faster and more accurate in correctly 

categorize objects. These effects were not present in the non-symbolic group, neither in a control 

group that received a non linguistic cue instead of the word label to identify the categories. These 

results were suggestive of two important aspects of creating conceptual (categorical) 

representations using linguistic symbols: first of all, words significantly facilitate the acquisition of 

the conceptual knowledge they represent, and this finding has been replicated many times, also in 

children within the first 10 or 12 months of life (Althaus & Westemann 2015; Althaus & Plunkett 

2016); second, they indicated that there is something special in words and symbolic labels, that 

other cues used with the same purpose do not have. 

With the present study I wanted to investigate what are the key aspects that make symbols so 

useful in constructing conceptual representations, and in general what are the advantages of 

having semantic representations at all. Although preliminary, our results seem to indicate that one 

crucial aspect facilitated by the presence of words is generalization: categorical representations 

constructed using symbols are more generalizable than those constructed without them. 

 

Ongoing and future research will have to address this issue more carefully, also try to link these 

findings to changes in brain activity (see Chapter 2).  
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GENERAL	DISCUSSION		

 

Acquiring knowledge about the world and organizing it into meaningful categories is a 

complex process, one that the human brain solves with a striking ease thanks to the use of 

language and symbols, that define the transition from perceptual to semantic representations, and 

therefore from perceptual to conceptual spaces. The majority of cognitive neuroscience studies on 

semantic memory focus on well-known concepts. Here I had the unique opportunity to observe 

how the plastic nature of the human brain supports one of the key mechanisms of knowledge 

acquisition: learning to recognise individual multisensory objects and to categorize them through 

the association with arbitrary symbols, thus to create novel semantic representations. Learning-

induced changes happened in a set of brain regions, only partially overlapping with the classical 

“semantic network” (Binder et al. 2009), where both sensory and associative areas modified their 

representational geometries to support the emergence of stable representations of individual 

objects and the association of such representations to those of their names. These observations 

revealed that novel semantic representations, where symbols (words) acquired meaning through 

the association to a referent (classes of multisensory objects), originated from the orchestrated and 

integrated activity of distributed perceptual and memory systems, of which the main players are: 

● the Visual Word Form Area (VWFA), an area in the left fusiform gyrus best known for its 

role in word recognition (Dehaene & Cohen 2011), which multivariate activity after learning 

encodes both words and objects in a way that reflect their categorical association 

● the left Angular Gyrus (AG), an area of the left parietal lobule best known for its role in 

multisensory integration and for being one of the key nodes of the semantic network (see 

Binder et al. 2011), where the representations of object identities as unique multisensory 

combinations emerged after learning and where objects and the corresponding categorical 

names became similarly represented, somehow mirroring the pattern observed in the 

VWFA; 
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● the right Hippocampus, a subcortical area in the Medial Temporal Lobe playing a crucial 

role in associative learning (Suzuki 2007), here representing words and their corresponding 

categorical names in a way that fully abstracts from the presentation modality, and which 

activity strongly correlated with behavioural performance in categorization outside the 

scanner; 

● the auditory and visual associative cortices in the Superior Temporal Gyrus (STG) and in 

Lateral Occipital Complex (LOC), respectively, that after training developed high sensory 

specificity, supporting sensory segregation. 

In Chapter 3 I also showed how these semantic representations, being conceivable as regions of a 

novel semantic space, are encoded in the medial Prefrontal Cortex (mPFC) and, to a weaker 

extent, in the right Entorhinal Cortex (EHC) using the same neural codes typically employed during 

spatial navigation (e.g. Doeller et al. 2010). In particular, I demonstrated,  using two independent 

techniques (fMRI adaptation and Multivoxel pattern analysis), that the mPFC encoded the 

distances between concepts in the novel semantic space, while the right Entorhinal Cortex, 

besides encoding distance, also showed traces of encoding the direction of movements in the 

semantic space, as mimicked by the sequential processing of stimuli. Finally, in Chapter 4 I 

presented the preliminary results of a behavioural investigation aimed at describing the 

advantages of using symbols during categorical learning, with a particular focus on generalization: 

here I demonstrated that categorical judgments can generalize to novel exemplars when 

categories are learned using symbols, compared to when symbols are not used. 

 

Taken together, these results are, in my view, complementary. The role of the hippocampal 

formation in semantic knowledge has been traditionally overlooked in favour of its well-

documented involvement in episodic memory. The results of i) the cross-modal searchlight 

(Chapter 2) and ii) the directional-RSA searchlight (Chapter 3) point to this macro-structure in the 

Medial Temporal Lobe as participating in the process of learning and representing concepts and 

meanings, although the two analyses revealed different sub-portions of this area: the hippocampus 

and entorhinal cortex, respectively. It is interesting to notice, in this respect, that post hoc analyses 
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(that I only report here) indicate that the hippocampus does not show any evidence of directional 

code (RSA grid analysis t = -1.71, p = .10), confirming previous intracranial recordings in rats (e.g. 

Hafting et al. 2005), and that the entorhinal cortex did not showed cross-modal similarity between 

objects and their corresponding names (t = .97, p = .33). This strongly support the existence of 

independent processes going on in these two sub-regions of the hippocampal formation. Among 

them, the right Hippocampus was the one that puzzled me the most, mostly because of its 

lateralization: even lowering the threshold of the statistical tests I did not observed significant 

results in the left hemisphere for the crossmodal searchlight. The right hippocampus is best known 

for its role in spatial memory, which should not have any relevance in my task. However, as 

demonstrated in Chapter 3, brain regions holding specific coding schemes for supporting spatial 

navigation also recruit them to represent a novel semantic space. Among these, and besides the 

EHC, I found a strongly significant cluster in mPFC, a region that is highly recognized for its pivotal 

role both in spatial and non-spatial tasks and for its strong connections to the hippocampus 

(Preston & Eichenbaum 2013). This raised the fascinating hypothesis that the right hippocampus 

supports the creation of novel semantic representations by recruiting a spatial code. To test this, I 

verified whether the the similarity of the neural representations of the four concepts in participants’ 

hippocampus reflected their mutual distances in the underlying semantic space. To do that, I 

applied the same multivariate approach introduced in Chapter 3, which revealed such a distance-

dependent representation in mPFC. In this post-hoc analysis centered in the hippocampus, I found 

a weak, but significant, result (t = 2.09, p = .023, one-tail). This did not happen in any of the other 

regions emerging from the crossmodal searchlight showed in Chapter 2. This additional analysis is 

informative for at least 3 reasons:  

i) it suggests more strongly that the right hippocampus might use a spatial code to contribute in 

associating words to their meanings, potentially by representing the objects that become the 

referents for the symbols in a spatial format. This would enable answering the question about the 

lateralized effect reported in Chapter 2 (indeed, a very recent work by Theves et al. 2019 found 

that the right, and not the left hippocampus encodes distances between the representations of 

objects arbitrarily assigned to positions of a bidimensional visual space);  
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ii) the results suggests that a similar computational strategy is employed by the mPFC (although it 

did not show evidence for cross-modal similarity (t = 0.20, p = 0.84)), pretty much as it has been 

shown to do for “task-spaces” in decision making experiments (see Wilson et al. 2014; Schuck et 

al. 2016) ;  

iii) that the idea of a “cognitive map” reflecting conceptual or semantic spaces for the ongoing tasks 

via the recruitment of spatial-dependent codes (Bellmund et al. 2018) is potentially true, but at the 

same time it needs a better definition to be able to explain the exact computations underlying the 

role of these different mid-temporal and frontal areas (and potentially parietal, see Doeller et al. 

2010 and Constantinescu et al. 2016).  

An intriguing set of results from Chapters 2 and 4 suggests that one of the directions future studies 

should focus on is the study of the interplay between semantic representations, spatial codes, and 

generalization: in Chapter 2 I showed a behavioural effect of generalization in naming novel 

objects after training participants on a different subset of exemplars, and this effect correlated with 

the crossmodal similarity observed in the right hippocampus. In Chapter 4 I showed preliminary 

behavioural results that a similar effect happens for non linguistic categorical judgments after 

symbolic categorical learning. Is there a relationships between the putative recruitment of a spatial 

code and the advantages in generalization following symbolic categorization? In light of this 

question, which will be objective of future research, a set of results from intracranial recording 

studies conducted by the team of Rodrigo Q. Quiroga, in collaboration with Itzkav Fried become 

relevant. In a sequence of fascinating experiments they reported that individual neurons in the 

hippocampal formation of human adults represent what they called “concepts” (that are, individual 

identities of famous people, places, animals, etc.) in a very selective and highly invariant fashion: a 

neuron responding to the identity of Luke Skywalker would fire only for pictures of that character 

and not to the ones of other ones but, crucially, it would fire also to other stimuli representing its 

very same identity, such as his written or spoken name (Quiroga et al. 2005; 2012). It has been 

claimed that such representations support declarative memory functions specifically in light of their 

invariance to basic metric details of the stimuli, holding a truly abstract or conceptual 

representation of the stimulus processed. If this is the case, than these neurons would serve as the 
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perfect interface for generalization, because they would hold a “core”, abstract representation of a 

concept that does not reduce to the specific physical characteristics of the stimulus just presented, 

and such core representation could be used to evaluate whether a novel stimulus is similar or not 

or, to put it in another way, how much closer it is in the corresponding conceptual space. Recent 

theoretical works elaborated on the interesting similarities between humans’ concepts cells and 

place cells observed in lower level mammals (Horner & Doeller, 2017; Behrens et al. 2018), 

suggesting that both these neural behaviours are signatures of the same underlying (spatial) code.  

 

While the specific other results obtained in my works are discussed in the relative “Discussions” 

sections for each Chapter, there are some questions that remain unaddressed, and will be object 

of future attention and research: 

 

1. Despite strong evidence from clinical and neuroimaging studies (see Lambon-Ralph et al. 

2017 for a review) I did not find any representation of the novel concepts in the Anterior 

Temporal Lobe (ATL). This might be due to the stimuli I used, that varied in size and sound, 

but not in shape. The ventral visual pathway is known to encode shapes of visual objects 

and stimuli, and some neuroimaging works has tried to disentangle whether object 

representations in the ventral visual pathway are defined by the visual properties of the 

pictorial material used (e.g Proklova et al. 2016, but see Proklova et al. 2019). Indeed, a 

simple yet fundamental conceptual distinction such as living vs. non-living concepts can be 

fully accounted for by similarities within the “living” category (e.g. most of the animals have 

similar body structures, with a head, a body, and a number of legs between two and eight) 

and across the “living” vs. “non-living” categories. This is one of the reasons that motivated 

,the few neuroimaging studies that make use symbolic stimuli such, as words, for referring 

to items in the respective categories. A recent study by Borghesani et al. (2016) for 

instance demonstrated that the ATL contains conceptual information sufficient for 

discriminating among different clusters of animals, but it was based on a ROI-based 

approach that ignored regions outside the ventral stream, in particular the AG. In our study 
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we found that the left AG represents object categories in a way that is very similar to their 

corresponding names. The AG lies at the perfect intersection between auditory and visual 

pathways, making it the ideal candidate as a convergent zone to merge together audio-

visual information into more abstract representations. Future studies should address 

directly the specific contributions of the left AG, the ATL, the VWFA, and the hippocampal 

formation in representing conceptual knowledge, controlling for the type of task used and 

for the sensory modalities upon which the investigated concepts are best defined by. 

 

2. Classical accounts of memory consolidation indicate that the hippocampus provides a fast-

learning interface for rapid encoding of new memories that are slowly written in the 

neocortex for later recalling (e.g. McClelland et al. 1995). Our results support this view, and 

stress i) on one hand the crucial role of the hippocampus in learning and supporting 

conceptual representations, and ii) on the other hand the role of neocortical regions, such 

as the VWFA and L-AG, in holding these representations beyond learning. It worth 

mentioning, however, a recent paper by Brodt et al. (2018) where the authors, by showing 

learning-induced changes rapidly emerging in human posterior parietal cortex (Precuneus, 

known to be part of the semantic system) and lasting for more than 12 hours, challenged 

traditional models of memory consolidation, reporting evidence of a fast emergence of 

memory traces outside the hippocampal formation. Further studies will have to address the 

temporal dynamics of conceptual learning in the human brain, monitoring the emergence of 

semantic representations during multiple learning stages, and how higher associative 

regions interact with lower sensory cortices during this learning process. 

 

3. The training procedure I designed involved the use of words to tile the perceptual space 

into categories. I chose this approach because humans construct and organize their 

conceptual knowledge of the world using language, giving rise to semantic representations 

where meanings are conveyed by symbols. Lupyan (2007, 2012, 2015) demonstrated that 

language enables subjects to  focus on those sensory characteristics that define objects 
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and object categories, eventually fostering the creation of concepts. This has been 

investigated in carefully controlled uni-sensory domains. Human experience, however, is 

much more articulated and multisensory in nature. What is the role of symbolic 

categorization in multisensory perception? How does it give rise to complex categorical 

spaces, or conceptual/semantic spaces? Future studies should address these questions 

and look for careful descriptions of the effects of symbolic categorization for instance in 

multisensory perceptual judgments, generalization to novel exemplars, and creation of 

categories of abstract concepts of different types than objects, such as episodes or events. 

The investigation described in Chapter 4 is currently going toward this direction. 

 

4. I showed that the mPFC, the entorhinal cortex, and also potentially the hippocampus, 

mostly known for encoding spatial locations using a variety of spatial codes, also encodes 

the geometry novel bi-dimensional semantic space. However, human experience of the 

world is not confined to two dimensions, nor it is possible to reduce all the complexity of our 

semantic knowledge to bi-dimensional feature spaces (or cognitive spaces) relevant for the 

ongoing task. To date, a single study attacked the question of whether  the hippocampal 

formation used the same codes for representing non bi-dimensional environment, but it 

focused on rats, and on 1-dimensional sound spaces (Aronov et al. 2017). Despite 

interesting, as this task was not spatial in nature, much more work is required to investigate 

what these cells are actually involved into. Semantic spaces offer the unique opportunity to 

test not only neural representations that are relevant for humans, but also to test multiple 

dimensions and their representations beyond 2D. If place- and grid-cells are recruited to 

encode both 1- and 2-D non-spatial knowledge, as indicated by Aronov et al. (2017) and 

Constantinescu et al. (2016) respectively, is it possible that they change their firing 

properties to represent any n-dimensional representational space, or they are bound, by 

evolution and/or any biological constraint, to reduce higher dimensional representations to 

the same format of the external physical environment? Future studies shall focus on this 

question by training subjects to parse and label multidimensional stimuli. 
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A wise use of functional neuroimaging methods and carefully designed behavioural paradigms will 

surely help answering these and many other questions. 

Final	remarks	
 

I introduced the present work by asking three fundamental questions in the study of semantic 

representations. I can now provide short answers to these questions: 

 

Question 1. How do semantic representations emerge in the human brain? 

 Semantic representations emerge in the human brain by means of the orchestrated 

plasticity of both memory and perceptual systems. The human brain is likely solving the symbol-

grounding problem by locally modifying the representations of both symbols and their referent(s) 

so that they reflect the association with the complementary stimulus in the object-name association 

(the referent(s) and the symbols, respectively), at least for what I could witness being still at a 

relatively  early stage of learning with my experiment. This process also involves the hippocampus, 

which might play a crucial role beyond episodic memory by recruiting spatial codes to support the 

construction of semantic representations as they were regions of a conceptual space. 

 

Question 2. does the human brain recruit spatial codes for representing semantic spaces? 

 It seems so, even if the exact computations going on in different brain regions where I 

found these signals (right hippocampus, mPFC, EHC) are likely to be diverse and to serve different 

scopes. 

 

Question 3. Does symbolic categorization facilitate generalization? 

 Yes, and this might be one of the key advantages of using symbols. I raised the possibility 

that this function might be linked to the hippocampal formation and related structures (such as 

mPFC) and their recruitment of spatial codes for representing semantic spaces. 
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