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ABSTRACT Full-dynamics model predictive control (MPC) has recently been applied to quadrupedal
locomotion in semi-unstructured environments. These advances have been fueled by the availability
of efficient trajectory optimization (TO) algorithms and inexpensive computational power. The main
advantages of full-dynamics MPC are (i) enabling complex locomotion manoeuvres, (ii) considering
actuation limits, and (iii) improving robot stability. However, to make the TO problem sufficiently simple to
be solved at run time, reference swing foot trajectories are usually tracked in the MPC formulation. These
trajectories are often computed independently of the motion of the joints, limiting the approach generality
and capability. To address this limitation, we present a full-dynamics MPC formulation that does not require
reference swing-foot trajectories, featuring a novel cost function targeting swing foot motion and considering
environmental information. Removing the need for reference swing foot trajectories, our approach can also
automatically adjust footstep locations, as long as the contact surfaces are predefined. We have validated
our MPC formulation through simulations and experiments on the ANYmal B robot. Our approach has
similar computational efficiency to state-of-the-art formulations, while displaying superior push-recovery
capabilities on various terrains.

INDEX TERMS Full-body MPC, collision avoidance, DDP.

I. INTRODUCTION
Fast growth in legged robot hardware quality has led to more
impressive locomotion behaviors. To achieve so, a significant
part of the research community has focused on efficient
optimal control (OC) techniques [1], [2], [3], [4], [5]. Full-
dynamics MPC [6], [7] can improve robot stability and
enable complex locomotion manoeuvres while considering
the actuation limits.

Early work on MPC for legged locomotion mostly relied
on simplified models, such as linear inverted pendulum
(LIP) [8], spring-loaded inverted pendulum [9], or centroidal
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dynamics [10]. However, these models rely on assumptions
that limit their applicability, e.g., walking or running on
flat ground. In particular, simplified models omit several
whole-body features such as swing foot trajectories, which
are crucial for obstacle avoidance. Obstacles can still be
accounted for in a swing-foot planner, for instance via cubic
spline [11] or Bezier curve [12] optimization. However,
these methods cannot guarantee the robot’s balance and limb
momenta compensation.

For these reasons, incorporating full-body dynamics into
MPC is crucial for legged locomotion over obstacles, and
a number of works have exploited it for this purpose. For
instance, an obstacle potential field, as a function of the
joint configuration, can be added to the cost to obtain
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FIGURE 1. ANYmal trotting on a stair (10 height and 1 m length) using the
novel cost formulation. Experiments can be seen at
https://youtu.be/3lK3TxqPrjw.

a smooth state trajectory [13]. Alternatively, we adopt a
continuous-time collision avoidance harmony potential for
modelling fixed or mobile objects as in [14]. Wermelinger
et. al. [15] use exteroceptive sensors to build traversability
map based on different properties of the terrain, such as
roughness, slope, obstacles, etc. In general, obstacles can be
accounted for through penalty functions depending on the
distance between objects, which can be computed efficiently
using state-of-the-art algorithms [16], [17].
Full-body dynamics lead to non-convex and high-

dimensional Optimal Control Problems (OCPs), which are
challenging to solve inside fast control loops (between
50 and 100 Hz). Neunert et. al. [18] develop an explicit
spring-damper contact model to directly optimize contact
locations, sequence and timings. However, this could results
in local minima and nonphysical modeling, since the
contact forces never vanish during the swing motion. To
increase full-body MPC convergence rates, priors can be
injected into the OCP (e.g. reference CoM and swing-
foot trajectories) [6], [19]. Swing-foot references can be
computed as polynomials [20] or Bezier curves [12], [21].
In [22] nominal footholds can be obtained from base pose
reference and elevation terrain, then are projected into convex
footstep location constraints; for the swing trajectories,
heuristic splines are still used. Although these tailored
costs lead to faster convergence, locomotion robustness can
be compromised if external disturbances make reference
trajectories unfeasible.

A. CONTRIBUTION
In this paper, we propose a novel reference-free MPC
formulation to achieve robust locomotion behaviors by
optimizing swing foot motions. The key challenge to enable
this is to avoid collisions between the swinging foot and the
environment. This typically requires moving slowly when
close to obstacles to prevent accidentally bumping into them.
To achieve this, we introduce a differentiable nonlinear cost
function that leverages geometric information to increase

foot-velocity penalization as the foot gets closer to an
obstacle. With respect to reference-based MPC [6], that we
identify as Ref throughout the paper, our approach allows a
larger range of motions and shows improved push-recovery
capabilities. It recovers from pushes up to twice as strong,
while avoiding obstacles with the swing feet. We validated
our approach through simulations and real experiments (see
the snapshots in Fig. 1) with a full-body MPC controller.
The paper is organized as follows: Section II briefly

discusses full-body dynamics subject to contact constraints.
Section III presents the main contributions: our novel cost
function and the MPC formulation. Simulation results and
experimental trials are reported in Sections IV and V,
respectively. Section VI draws the conclusions.

II. BACKGROUND
In this section, we provide a brief description of the equation
of motion for rigid body systems subjected to contact
holonomic constraints. This is also known as contact and
impulse dynamics.

A. CONTACT DYNAMICS
Given the state x =

[
q⊤ v⊤

]⊤, the rigid body dynamics of a
legged robot can be described as follows [23]:[

M J⊤
c

Jc 0

] [
v̇

−λ

]
=

[
S⊤τ − b

−a0

]
, (1)

where
[
v⊤ v̇⊤

]⊤ lies in the tangent space of the state
manifold; q =

[
bq⊤ jq⊤

]⊤
∈ Rnq is the generalized

position, containing both the base’s position (modeled as
a SE(3) group) and the joint configuration, while v =[
bv⊤ jv⊤

]⊤
, v̇ ∈ Rnv are the respective generalized velocity

and acceleration;M ∈ Rnv×nv is themassmatrix, Jc ∈ Rnc×nv

is the contact Jacobian, S ∈ Rnj×nv is a selection matrix for
the actuated joints, τ ∈ Rnj is the joint efforts vector, and
b ∈ Rnv accounts for the nonlinear effects; λ ∈ Rnc are the
contact forces and a0 ∈ Rnc is the desired acceleration in the
constraint space. To improve numerical integration stability,
a0 is defined in a Baumgarte stabilization fashion [24] with
the following PD law:

a0 = aλ − kp oM ref
λ

oMλ
−1

− kdvλ, (2)

where vλ, aλ are the spatial velocity and acceleration,
using the notation in [25], at the parent body of the
contact, oM ref

λ
oMλ

−1 is the difference between the reference
and current contact pose, represented as transformation
matrix [26], while kp, kd are positive stabilization gains.

B. IMPACT DYNAMICS
When the robot foot collides with the environment, it is
subject to an impulse, and the robot dynamics are [1]:[

M J⊤
c

Jc 0

] [
q̇+

−3

]
=

[
Mq̇−

−e J̇cq̇−

]
, (3)
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where q̇+ and q̇− are the generalized velocities after and
before the impact, respectively,3 is the impulse vector, while
e ∈ [0, 1] is the restitution coefficient. Note that for inelastic
contacts, the restitution coefficient is 0.

III. MPC FORMULATION
This section presents the MPC formulation used for generat-
ing locomotion behaviors, with particular focus on the novel
fly-high cost. The MPC problem can be expressed as:

min
Xj,Uj

j+N−1∑
k=j

ℓk (xk ,uk ) + ℓj+N (xj+N )

s.t. xj = x̂j,

xk+1 = fk (xk ,uk ),

u ≤ uk ≤ u, ∀ k ∈ [j, j+ N − 1], (4)

where Xj = (xj, . . . , xj+N ) and Uj = (uj, . . . ,uj+N−1) are
respectively the concatenations of the states and the controls,
j is the current time step, N is the horizon length, x̂j is the
estimated initial state; ℓ(·) describes the running or terminal
costs, f(·) is the discretized nonlinear robot dynamics, which
can be either (1) or (3), and u, u are the control bounds.
In this work, we have used the box feasibility-driven differ-

ential dynamic programming (Box-FDDP) algorithm [27] to
solve the OCPs. This solver is a direct multiple-shooting ver-
sion of the DDP algorithm, which provides better numerical
stability and more initialization options. Additionally, Box-
FDDP can handle control bounds (i.e., joint torque limits).

A. FLY-HIGH COSTS
In previous works (e.g., [6], [21], [28]), ℓ(·) contains a
cost to stiffly track some user-defined reference swing foot
trajectory, limiting the range of motions that the solver
can discover. We introduce a novel cost, called ‘‘fly-high’’,
to replace the classic trajectory tracking cost. Our key idea is
to increasingly penalize the foot f ∈ {lf, lh, rf, rh} proximity
to obstacles, as its velocity f ṗ grows. In this way, we can
expect the foot to move away from obstacles when swinging
fast. In contrast, it should slow down when it needs to
approach an obstacle in order to make contact. This heuristic
behavior resembles biological systems’ movement, as shown
in [29] for humans walking and running. This locomotion
strategy leads to robust results. Below, we suggest two
versions of this strategy defined in terms of cost functions.

1) SQUARE FLY-HIGH COST
Our first definition has a square in its formulation, i.e.,

ℓ
f ,o
sqr (x) =


∥∥∥∥ β

(φf ,o)2 + β

f ṗ2xy

∥∥∥∥2 , if φf ,o ≥ 0∥∥∥f ṗ2xy∥∥∥2 , if φf ,o < 0,
(5)

where f ṗ2xy =

[
f ṗ2x

f ṗ2y
]⊤

∈ R2 contains the longitudinal

and lateral linear velocities of the swinging foot f , φf ,o ∈

FIGURE 2. Fly-high cost functions (5) and (6) for f ṗxy = (1, 1) and
β = 10−2, γ = 40.

R is the signed distance between the foot and the o-th
obstacle, while β ∈ R+ is a small positive constant used
to smooth the cost when φf ,o → 0. Signed distances can
be efficiently computed using the GJK algorithm [16], for
example, available in [17] and [30]. Despite its piecewise
definition, this cost is continuous and differentiable.

2) EXPONENTIAL FLY-HIGH COST
Our second definition relies on the exponential function, i.e.,

ℓ
f ,o
exp(x) =

∥∥∥f ṗxy e−γφf ,o
∥∥∥2 , f ṗxy =

[
f ṗx f ṗy

]⊤

∈ R2,

(6)

where γ is a hyperparameter to ponder the effect of φf ,o

on the cost. Thanks to the monotonic properties of the
exponential function,1 this cost also deals with colliding
objects, so with φf ,o < 0.

Fig. 2 shows the fly-high costs argument as a function
of the distance φf ,o, considering a fixed value of velocity
˙f p
xy = (1, 1) (chosen for visualization purposes). The two costs
are both monotonically non-increasing along φf ,o. Thus,
the solver will penalize the foot proximity to the obstacle.
Function (5) is constant in φf ,o for negative distances to
ensure differentiability ∀φf ,o. With a velocity close to zero,
both costs reach their minimum value, so foot contact with
the environment (φf ,o = 0) is allowed. During the MPC
loop resolution, φf ,o < 0 happens rarely, thus the constant
behaviour of function (5) does not degrade performances.

3) ANALYTICAL DERIVATIVES
Since most of the costs, including the fly-high ones, depend
on the squared norm function applied to an argument function
r: Rnx × Rnu −→ Rnr , we can consider the following
notation:

ℓ(x,u) = a(r(x,u)), a(r) = ∥r∥2 ∈ R
≥0, (7)

where cost derivatives can be computed using the chain rule.
The cost Hessian ℓxx = ∂2ℓ/∂x2 is computed through the
Gauss-Newton approximation, to avoid the tensor Rxx and
ensure positive definiteness:

ℓxx = R⊤
x ArrRx + R⊤

xxAr ≈ R⊤
x ArrRx, (8)

1Although penetration distances can be more difficult to define [31].
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where Ar = ∂a/∂r, Arr = ∂2a/∂r2. The Jacobian Rx is
obtained through the chain rule:

Rx =
∂r
∂x

=
∂r

∂ f ṗxy

∂ f ṗxy
∂x

+
∂r

∂φf ,o

∂φf ,o

∂x
. (9)

Further details on the computations of object distance
derivatives can be found in Appendix A.

B. OTHER COST FUNCTIONS
To achieve quadrupedal locomotion, other cost functions are
summed to the fly-high cost. Let us consider the following
notation for cost weights w:

∥η∥
2
w =

n∑
i=1

wiη2i , w = (w1, . . . ,wn), (10)

where some weights will be reduced to scalars.

1) REGULARIZATION
This cost penalizes large deviations of the state from a
reference configuration:

ℓx(x) =
∥∥x − x∗

∥∥2
wx

, (11)

where x∗ refers to the backward and forward configurations
for the front and rear legs respectively.

2) BOUNDS
Since the Box-FDDP solver cannot handle state constraints,
we penalize violations of the state bounds x and x:

ℓbx(x) =
∥∥max(x − x, 0)

∥∥2
wbx

+ ∥max(0, x − x)∥2wbx
, (12)

where the max operator acts element-wise.

3) FRICTION CONES
Considering the usual linear approximation of friction
cones [32], the Coulomb inequalities are:∣∣∣λfx ∣∣∣ ≤ µ λfz

∣∣∣λfy∣∣∣ ≤ µ λfz λfz ≥ λmin
z . (13)

These can be written in matrix form as Aλ ≥ c. Then,
the bounds on the contact forces are accounted for by the
following penalty term:

ℓcone(x) = ∥min(Aλ − c, 0)∥2wcone
. (14)

4) CONTACT SEQUENCE
Contrary to the standard formulation Ref, in this work we
have removed the costs related to tracking the reference
trajectories of the Center of Mass (CoM) and the feet.
However, the MPC needs guidance to move inside an
environment. We have considered two approaches: in the first
one, fixed footstep positions f p∗ are imposed through the
following cost at the moment contacts are made:

ℓc(x) =

∥∥∥f p −
f p∗

∥∥∥2
wc

. (15)

This method will be used in all the environments with stairs.
In the second approach, the contact sequence is left free,
except for the vertical direction, by setting wc = (0, 0,wc).
This procedure can be useful for flat terrain scenario, where
footstep locations can be freely optimized. To ensure motion
in a particular direction, a reference linear velocity bv∗

∈ R3

is tracked by the robot’s base:

ℓt (x) =

∥∥∥bv −
bv∗

∥∥∥2
wt

. (16)

C. CONTACT SCHEDULE
In this work, we use the same contact schedule as in [6].
The contact schedule can be defined as a sequence of phases,
which can be active or inactive: during the active phase, the
foot position is constrained to be fixed, while in the inactive
phase the motion of the foot is left free. The transitions
between contact phases occur at each:

nf∑
j=1

T aj + T ij , (17)

where nf is the number of feet and T a, T i are the duration of
the active and inactive phases, respectively. Depending on the
type of locomotion, the phases can have different durations,
including zero. Each timing is defined a priori before the
MPC pipeline starts. We have considered quadruped trotting
motions, in which the legs move in diagonal pairs (e.g. the
right-front leg moves with the left-hind leg).

D. LOW-LEVEL WHOLE-BODY-CONTROLLER
The robot is controlled by a whole-body controller running at
1 kHz: it is composed of a feed-forward and a proportional-
derivative (PD) term. The MPC provides joint torque
commands with a time step of 10 ms. Whole-body linear
feedback is realized through Riccati gains [33]:

τ̄ = τ 0 + K0(x ⊖ x0), (18)

where τ 0, and x0 are respectively the optimal initial torque
and state computed by the MPC step, and x is the current
estimated state at 1 kHz. The feedback gain K0 is computed
in the backward pass of the Box-FDDP solver [27].

We sum the action of a PD controller to the previous term,
to get the torques sent to the robot:

τ = τ̄ + Kp(jqd −
jq) + Kd (jvd −

jv), (19)

with Kp,Kd being the proportional and derivative gain
diagonal matrices, and jq, jv being the current joint positions
and velocities. The targets jqd and jvd , given by the MPC
at 100 Hz, are updated in the low-level controller at 1 kHz:
the interpolated values are obtained through cubic smoothing
univariate splines.

IV. SIMULATION RESULTS
We have evaluated our novel problem formulation consider-
ing the fly-high cost through various simulations, answering
the following questions:
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TABLE 1. Cost weights for the nominal formulation with reference foot trajectories.

TABLE 2. Cost weights for our formulation w/o reference foot trajectories.

FIGURE 3. Number of iterations to solve the full-horizon OCP (ANYmal on
flat ground). For the different problem formulations we have compared
the cost weights of Set 1 (Table 1) and Set 2 (Table 2).

1) How many iterations does the Box-FDDP solver
needs to solve an OC problem? Are these numbers
comparable to the nominal formulation (w/ reference
trajectories)? (see Section IV-A)

2) Is our approach sufficiently fast for real-time applica-
tions? (see Section IV-B)

3) Is our approach more robust to external disturbances
than other methods? (see Section IV-C)

4) What is the shape of the obtained feet trajectories when
using the Exponential cost or the Squared cost? (see
Section IV-D1)

5) How are foot velocity and obstacle distance related?
(see Section IV-D2)

We have used Pinocchio for robot dynamics and deriva-
tives [34], Crocoddyl [1] for solvingOCPs andHPP-FCL [30]
for distance computations. For the purpose of this section,
we identify our modified formulations with the associated
fly-high costs with the terms Sqr and Exp. For all simulations
and experiments on flat ground, we consider free footstep
locations.

A. NUMBER OF ITERATIONS & COST WEIGHTS
To compare our trajectory-free formulation to the state-
of-the-art formulation that considers reference trajectories
for the feet, we had to tune the weights of the different terms
in the cost function. Table 1 shows the weights used inRef [6]:
the parameters are ordered as in Section III-B.

FIGURE 4. Minimum, average and maximum computation time, in ms, for
each MPC cycle (given only one iteration of the OCP solver, ANYmal on
flat ground).

For the trajectory-free formulation, we have changed some
weights, as reported in Table 2 to improve computational
performance. To motivate this choice, we have solved a
full-horizon OC problem, considering 5 steps of trotting of
the quadruped robot ANYmal (18 Degrees of Freedom),
moving on flat ground. Fig. 3 shows the number of
Box-FDDP iterations required for convergence. With the
first set of weights, the novel fly-high square cost requires
more iterations (24) than the nominal formulation (17),
while the exponential formulation needs fewer iterations (11).
In contrast, with the second set of weights, specifically tuned
for the fly-high costs, the iterations are less with both the fly-
high costs.

B. COMPUTATION TIMES
For real-time applications, the time spent on each MPC cycle
is fundamental. We have run the simulations on a computer
with AMD Ryzen 9 5950X CPU @ 3.4 GHz. Fig. 4 reports
the minimum, average and maximum periods for each cycle,
considering only one Box-FDDP iteration. The MPC horizon
is composed of 100 nodes, with a total duration of 1 s.
Before the MPC pipeline, a first warm-start OC problem is
solved: starting from an initial standing configuration xstand0
of the quadruped, with all the feet in contact with the ground,
we solve problem (4) for j = 0 until the solver reaches
its convergence criteria. With the proposed costs, we have
a larger deviation between the minimum and maximum
values. The average computation time of both the Sqr and
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FIGURE 5. Simulation architecture including the Whole-Body MPC, low-level controller and PyBullet simulator.

Exp methods are considerably close to the Ref approach.
In general, we can state that the periods are small enough to
lead to MPC frequencies of about 100 Hz. This is a typical
reference for full-body MPC on legged robots.

C. FULL-BODY DYNAMICS MPC
We have validated the novel cost models through a simulator
developed in Python, whose architecture is reported in
Fig. 5. On the left, the multiplexer box identifies the two
possible guidelines for the MPC cycles, which can be a
predefined contact sequence or a base reference velocity
(as stated in Section III-B). The orange and purple blocks,
containing respectively the MPC and the low-level controller,
are executed sequentially: every 10 iterations of the low-level
controller, we run an MPC cycle using the last state value.
During the computation of eachMPC step, which lasts 10 ms,
we use the previous optimal state x0, control τ 0, and Riccati
gains K0 in the low-level controller.

1) PYBULLET
PyBullet physics engine [35] simulates robot dynamics. With
this library, we have built an environment composed of the
floor and some stairs. External forces Fext can be applied
to the robot directly from the simulator: in our approach,
we have modeled external disturbances like momentum,
integrating a force with a fourth-order polynomial profile.

2) PUSH RECOVERY
We have studied the quadruped’s ability to balance without
falling down after external disturbances. In particular,
we have analyzed the effects of a pushing force on the
robot trunk, in the x-y plane and in different directions. The
results are summarized by the polar plots in Fig. 6: the radius
indicates the intensity of the pushing force, ranging from
50 to 470 N with a discretization step of 30 N, while the
plane has been divided into 10 sectors, each representing a
direction of the force. The 0◦ angle corresponds to the positive
x-axis, while 90◦ identifies the positive y-axis. Each polygon
represents the pair’s force/direction for which the robot
rejected the perturbation without colliding with the ground
(except for the feet) for the given models. In our formulations
Sqr and Exp, we consider free footstep locations, given a
longitudinal reference velocity bv∗x = 0.26 m/s in the cost

(16). The push disturbance is applied as an external force,
with a duration of 0.2 s, in the PyBullet environment. This is
done following the procedure described in subsection IV-C1.
The external force is applied starting from different instants,
namely the start (t = 0.8 s), mid (t = 0.9 s) and end (t = 1 s)
of the foot’s swing motion: the coverage areas are different in
the distinct moments, as the fall avoidance capability depends
on the joint configuration. Both our formulations showed
higher reliability than the nominal case, as shown by the
fact that the red patch is always contained inside the other
polygons. This is mainly due to our formulation’s ability to
optimize footstep positions, given the absence of reference
foot trajectories. We can also notice that the blue patches
(Sqr) are larger than the green ones (Exp), except for a few
peaks.

3) CLIMBING UPSTAIRS
Given the dependency on the distance between feet and
obstacles, our novel formulation can also be used for other
scenarios, such as climbing stairs, for which we can make
the same analysis as in subsection IV-B (see Fig. 7). In this
case we consider ‘‘fixed footsteps’’ (wc,i ̸= 0 for all the 3D
components in (15)) because the robot cannot freely decide
where to step. The periods related to the novel costs are
a bit larger than the Ref case, but they are still less than
10 ms. To achieve these results, the line search of the forward
pass inside the Box-FDDP has been limited to 2 iterations.
However, performance still remains high thanks to the
warm-start.

D. SWING TRAJECTORIES
1) SQR VS EXP
Using the two fly-high costs, we quantitatively compare the
foot trajectories. Fig. 8 shows ANYmal’s foot trajectories
along the x and z directions for both Sqr and Exp costs,
giving also the comparison with the Ref method. In these
simulations, ANYmal climbed two stairs given fixed footstep
positions. Only the front foot trajectories are shown since
the hind feet remain on the ground. In both cases, the feet
avoided collision with the stairs. The path generated with
the fly-high costs have also greater altitude with respect to
Ref trajectories, which might be beneficial in case of terrain
uncertainty.
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FIGURE 6. Push recovery capability of ANYmal moving on flat terrain, comparison between the Ref (red patch), Sqr (blue) and Exp (green)
models in three different instants of the motion (the force Fext is applied at time t).

FIGURE 7. Minimum, average and maximum computation periods, in ms,
for each MPC cycle (given only one iteration of the OCP solver, ANYmal
climbing two steps).

FIGURE 8. Feet trajectories, along the x and z directions, of ANYmal
climbing two steps, obtained with the Ref method and the two fly-high
costs.

2) HEIGHT-SPEED RELATIONSHIP
Fig. 9 shows one of the main benefits of the novel
cost formulations: the quadruped follows a time-varying
longitudinal base velocity reference, through cost (16). In the
mid and bottom subplots are reported the height f pz of the
left front and hind feet respectively, which swing alternatively
during the trotting motion. For the two costs, the base
velocities bvx (reported in the top subplot) are very similar
and, as expected, larger velocities correspond to larger foot
heights, which is typical behaviour of human walking as
shown in [29].

FIGURE 9. Comparison between the base’s longitudinal velocity and the
height of the left feet during locomotion.

V. EXPERIMENTAL RESULTS
In this section, we evaluate the novel cost functions’ perfor-
mances by generating trotting maneuvers on the ANYmal B
robot [36]. To reduce the number of experiments, we choose
only one of the two costs, namely the Exp model since it
reports lower computation times for flat terrain locomotion
(see Fig. 4).

We use the state estimator already equipped on the
ANYmal B robot [37], which relies on an EKF to fuse legs
odometry with inertial sensing from the IMU. LiDAR scans
adjust the drift due to inaccuracies in kinematic and contact
information, using the iterative closest point algorithm [38].
The MPC runs at 50 Hz on an offboard PC (Intel(R)

Core(TM) i9-9900KF CPU @ 3.60 GHz). The offboard
computer is connected to the onboard PC via Ethernet and
communication is achieved through ROS TCP/IP.

Fig. 10 shows the x-z trajectories, of the left-front and right-
hind feet, during the trotting motion reported in Fig. 1. The
green lines represent the pathsmeasured directly from the feet
by the point cloud. The robot crosses the stair with both feet
successfully.
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FIGURE 10. Feet trajectories, along the x and z directions, of ANYmal
trotting on a big flat stair.

FIGURE 11. Longitudinal velocities versus height of the front feet during
trotting, following a longitudinal reference velocity of 0.5 m/s with free
footsteps positions.

TABLE 3. RMSEs (in mm) of the feet x and z positions.

We investigate the relationship, given by the novel cost
function, between the foot’s velocity and the distance from
the terrain or the obstacle. Fig. 11 reports the longitudinal
velocities against the heights of the front feet during loco-
motion with free footsteps locations: peaks at the altitudes
correspond to large velocities as expected. This behaviour is
clearly visible in the experiment with the joystick (see the link
in Fig. 1).

We also evaluated the performances of the state-feedback
and low-level controller [6]. Table 3 reports the Root Mean
Square Errors (RMSEs) associated with the longitudinal and
vertical positions of all the feet during the aforementioned
experiments. The RMSE is computed on the difference
between the measured and predicted foot trajectories. In all
positions, RMSEs are always lower than 6 mm for the free

footsteps scenario. However, they are a bit higher but still
acceptable for the big stair. Thus the tracking performances
are superior in the simple scenario as expected.

VI. CONCLUSION
In this work, we have proposed a full-body MPC approach
with a novel cost formulation that does not require reference
swing foot trajectories. This is made possible by introducing
a cost function able to produce collision-free foot trajectories
without reference paths to follow. Using the same solver and
MPC pipeline, we have shown that our approach achieves
better push-recovery capabilities than the state-of-the-art
approach, while keeping almost identical computational
times. To validate our approach, we have performed simu-
lations with different agile trotting maneuvers, including flat
ground and stairs. In addition, we have carried out hardware
experiments to demonstrate the applicability of our approach
to the MPC pipeline.

Future research directions include the incorporation of
a contact planner for the stair scenarios, removing the
constraint of pre-defined contact locations. Since most of the
real environments are unstructured and cannot be modeled
as combination of geometrical primitives, triangular meshes
and point clouds can be adopted to model intricate shapes
while preserving the continuity of the distance function.
Another improvement can be the application of the MPC
pipeline with fly-high costs for biped locomotion, which
would require some adaptation of the novel costs to consider
foot orientations.

APPENDIX A
DISTANCE DERIVATIVE
Let us consider each foot modeled as a sphere with zero radii,
thus collapsed into a point f p. The environmental obstacles,
like the ground and the stairs, are modeled with boxes.
By referring to the obstacle point closest op, the distance
derivative can be written as:

∂φf ,o

∂q
= n⊤

d

(
∂ f p
∂q

−
∂op
∂q

)
, (20)

with nd being the unit vector aligned with f p −
0p. The

previous definition can be further simplified if we assume
static obstacles, which is reasonable for ground and stairs.
Fig. 12 shows the x-z cross-section of a stair, with the red and
blue dots depicting possible positions of f p and op for each
highlighted area. During the foot motion, op can move on the
box faces if f p ∈ S1 or f p ∈ S2, while it moves along the
corner line for f p ∈ S3. Given the following definitions:

f p ∈ S1 H⇒

∂op
∂q =

[
∂opx
∂q

⊤ ∂opy
∂q

⊤

0⊤

]⊤

nd = [0 0 1]⊤

f p ∈ S2 H⇒

∂op
∂q =

[
0⊤ ∂opy

∂q

⊤ ∂opz
∂q

⊤
]⊤

nd = [1 0 0]⊤
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FIGURE 12. Cross-section of an axis-aligned stair.

f p ∈ S3 H⇒

∂op
∂q =

[
0⊤ ∂opy

∂q

⊤

0⊤

]⊤

nd = [nx 0 nz]⊤
(21)

we can infer that the following always holds:

n⊤
d

∂op
∂q

= 0, ∀q. (22)

This statement holds also for the other faces of the box due
to symmetry. Therefore, (20) can be simplified into:

∂φf ,o

∂q
= n⊤

d
∂ f p
∂q

= n⊤
d
f Jp, (23)

where f Jp is the Jacobian of the foot position with respect to
q [39]. In conclusion, we observe that the distance function
is continuous and differentiable everywhere, even during the
transitions among sectors.
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