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Abstract

During the first half of 2020, the Italian government imposed several restrictions

to limit the spread of the COVID-19 pandemic: at the beginning of March, a

heavy lockdown regime was introduced leading to a drastic reduction of traffic

and, consequently, traffic-related emissions. The aim of this study is to evaluate

the effects of these restrictions on pollutant concentrations close to a stretch of the

Italian A22 motorway lying in the Alpine Adige valley. In particular, the analysis

focuses on measured concentrations of nitrogen dioxide (NO2) and black carbon

(BC). Results show that, close to the motorway, NO2 concentrations dropped by

around 45% during the lockdown period with respect to the same time period of

the previous 3 years. The equivalent analysis for BC shows that the component

related to biomass burning, mostly due to domestic heating, was not particularly

affected by the restrictions, while the BC component related to fossil fuels, directly

connected to traffic, plummeted by almost 60% with respect to the previous years.

Since atmospheric concentrations of pollutants depend both on emissions and

meteorological conditions, which can mask the variations in the emission regime,

a random forest algorithm is also applied to the measured concentrations, in order

to better evaluate the effects of the restrictions on emissions. This procedure

allows for obtaining business-as-usual and meteorologically normalized time

series of both NO2 and BC concentrations. The results derived from the random

forest algorithm clearly confirm the drop in NO2 emissions at the beginning of the

lockdown period, followed by a slow and partial recovery in the following months.

They also confirm that, during the lockdown, emissions of the BC component due

to biomass burning were not significantly affected, while those of the BC compo-

nent related to fossil fuels underwent an abrupt drop.
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1 | INTRODUCTION

In order to prevent the spread of the COVID-19 disease,
during the first half of 2020 severe lockdown measures
were taken all over the world. These measures caused a
sudden halt in socio-economic human activities: many
industrial sectors shut down and personal mobility was
heavily restricted. The impact on traffic was huge: as the
production activities stopped, the number of circulating
heavy-duty vehicles drastically decreased and the restric-
tions on people's movement caused a sudden drop in the
number of circulating light vehicles as well. Hence, as
the traffic was reduced, the transport-related emissions
immediately diminished too. Guevara et al., 2021 esti-
mated that road transport was the main contributor to
emission reduction in Europe during the COVID-19 lock-
down period in 2020.

Vehicular traffic is responsible for the emission of dif-
ferent pollutants, among which carbon monoxide (CO),
volatile organic compounds (VOCs), polycyclic aromatic
hydrocarbons (PAHs), nitrogen monoxide (NO) and diox-
ide (NO2) (sometimes collectively referred to as NOx),
and particulate matter (PM), which comprises black car-
bon (BC). In the present work, the attention focuses on
the effects of the lockdown measures against COVID-19
on the emissions and atmospheric concentrations of two
of these pollutants: NO2 and BC. NO2 represents nowa-
days one of the most problematic pollutants emitted by
vehicles, with concentrations frequently exceeding the
annual limit value of 40 μg m�3, set by the European
directive 2008/50/EU, alongside major roads. Exposure to
high NO2 concentrations can cause severe airway inflam-
mation and increases the probability of cells being dam-
aged by airborne viruses; it also has effects on blood cells
(Frampton et al., 2002). On the other hand, BC is a com-
ponent of PM2.5 and consists of fine carbonaceous parti-
cles produced by the incomplete combustion of fossil
fuels and biomass. BC measurements allow for discerning
between the component produced by biomass burning
and the one emitted by the combustion of fossil fuels
(Sandradewi et al., 2008). Although there are still no reg-
ulatory limits for BC concentrations, this pollutant is very
harmful to human health as, when introduced into the
body, causes cardiovascular and pulmonary diseases and
might also lead to lung cancer (Laeremans et al., 2018;
Magalhaes et al., 2018; Stabile et al., 2018).

Different studies have analysed the impact of COVID-
19 lockdown measures on pollutant emissions and con-
centrations, highlighting different behaviours depending
on the pollutant and the local context (e.g., Grange
et al., 2021). NO2 has generally been reported as one of
the pollutants most impacted by lockdown measures,
especially at traffic sites. For example, Sokhi et al., 2021

reported the results of a study coordinated by the World
Meteorological Organization Global Atmospheric Watch
(WMO/GAW), highlighting, from the analysis of data
from 540 worldwide air quality stations, a clear correla-
tion between the reduction in NO2 concentrations and
the reduction in people's mobility. Focusing on Europe,
Solberg et al., 2021 found NO2 concentration reductions
of � 60% in April 2020 in Spain, Italy, Portugal and
France at traffic sites. On the other hand, the studies ana-
lysing the impact of lockdown measures on BC concen-
trations show more variable results, depending on the
context and on the fraction of BC considered. For exam-
ple, Liu et al., 2021 found a 20% increase in BC concen-
trations in Beijing during the lockdown period,
contrasting a 70% decrease in Tibet. Goel et al., 2021 ana-
lysed BC contributions in Dehli during pre-lockdown and
lockdown periods, highlighting a strong decrease in the
component due to fossil fuels, while the component due
to biomass burning experienced lower variations. The
effect of lockdown measures on BC is generally clearer
when considering data from traffic sites, as highlighted
by Hudda et al., 2020, who analysed BC concentrations
in an urban neighbourhood in Sommerville
(Massachusetts), recording a concentration reduction of
22%–56% depending on the road class.

The analysis presented in this work focuses on pollut-
ant concentrations measured along a stretch of the A22
Italian motorway (which is also called the Brenner
motorway) entirely lying in the Adige valley, a glacial
valley located in the northeastern Italian Alps. In this
motorway stretch, meteorological conditions and pollut-
ant concentrations are exceptionally well monitored in
the framework of the European LIFE project Brenner-
LEC, where LEC stands for “Lower Emissions Corridor”.
The project started in 2016 aiming at testing policies to
reduce traffic-related pollution along the motorway,
since in a fragile Alpine context high pollutant concen-
trations can be dangerous not only for people but also
for wildlife and vegetation (Felzer et al., 2007). The
monitoring network installed for this project allows for
a comprehensive evaluation of the effects of the lock-
down measures on pollutant concentrations not only
close to the motorway, thus in positions directly affected
by traffic-related emissions, but also at different dis-
tances from the road, thus also evaluating the effects of
lockdown measures on background concentrations in
an Alpine valley (Bisignano et al., 2022).

It is well known that pollutant concentrations mea-
sured by air quality stations depend not only on emissions,
but also on meteorological conditions, and in particular on
atmospheric dispersion. As a consequence, in the analysis
of concentration measurements, changes in emission pat-
terns can be at least partly masked by the meteorological
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variability, and in particular by the alternation of periods
more or less favourable for pollutant dispersion (Anh
et al., 1997). Therefore, in order to gather information on the
intrinsic emissions, one should be able to separate the two
contributions. This is particularly important over complex
terrain, where dispersion processes are usually much more
complicated than over flat areas, as they are affected by a
large range of atmospheric phenomena at different spatial
scales (Giovannini et al., 2020). For example, mountain
valleys, due to orographic shadowing and the convergence
of katabatic winds from the slopes, are frequently influ-
enced by stable stratification, with strong and persistent
ground-based temperature inversions, which lead to
reduced dispersion and pollutant accumulation in the
lowest atmospheric layers (Clements et al., 2003; Neff &
King, 1989; Quimbayo-Duarte et al., 2019). The most
unfavourable conditions for pollutant dispersion occur
during wintertime, when the weak solar radiation may
fail to completely break up the nocturnal stable stratifi-
cation, creating a shallow mixed layer topped by an ele-
vated inversion, that traps pollutants close to the
ground. These conditions can last for several days, caus-
ing severe air pollution episodes (de Franceschi &
Zardi, 2009). Moreover, under fair weather conditions,
temperature contrasts at different spatial scales cause
the development of thermally-driven winds, which can
play an important role in dispersion. In particular, day-
time hours are characterized by up-slope and up-valley
circulations, that transport pollutants from the plain
and the bottom of the valley to higher altitudes, while
down-slope and down-valley winds develop during
nighttime (Zardi & Whiteman, 2013). Even in the case
of strong synoptic forcing, the consequences for the dis-
persion can be different from valleys to plains. In fact,
over plains, strong winds sweep away pollutants, while
in a valley the penetration of the wind depends on the
orientation of the valley axis with respect to the wind
field, and on the depth of the valley itself, as high
mountains and/or pre-existent stable layers obstacle
wind intrusions (Mayr & Armi, 2010; Whiteman &
Doran, 1993).

It is then clear that, especially over complex terrain, it
is crucial, in order to evaluate changes in the emissions,
to take into account the effects induced by meteorological
conditions on local pollutant concentrations. This operation
can be performed using a meteorological normalization pro-
cedure. This technique allows for discriminating the contri-
bution of the emission sources from the effects of
meteorological conditions on the variability of the observed
concentration levels. In meteorological normalization pro-
cedures, the dependence of the measured concentration on
different independent variables representative of both dis-
persion processes (e.g., meteorological variables) and

emission variations (e.g., temporal variables) is evalu-
ated, in order to eliminate the effects of atmospheric
conditions on the measured concentrations, leaving
only the intrinsic variations due to the emissions. In this
way, a normalized time series showing a trend of concen-
trations independent from meteorological conditions can
be obtained. Early meteorological normalization tech-
niques involved the use of least square regressions (Deolal
et al., 2012; Henneman et al., 2015; Lu & Chang, 2005;
Sloane, 1984). This method has the disadvantage to be
parametric, that is, it requires the introduction of some
kind of explicit functional dependence, which can be chal-
lenging, given the complexity of processes in the atmo-
spheric boundary layer. In recent times new non-
parametric approaches have been developed, that is,
machine learning algorithms that exploit large datasets to
“understand” the complex relationship between the con-
centration and the independent variables. Hence, machine
learning algorithms are statistical predictive methods that
can be used to (a) make predictions of pollutant concentra-
tions, knowing the meteorological data and making
assumptions on the source emissions (b) produce a normal-
ized time series, highlighting the variations in the intrinsic
emissions. In this study, both these capabilities of the
machine learning technique are exploited to better under-
stand the effects of the COVID-19 restrictions on pollutant
concentrations. The machine learning procedure here
employed makes use of the rmweather R package (Grange
et al., 2018; Grange & Carslaw, 2019), which is based on a
random forest algorithm (details in Section 4). The same
package was successfully used in several other studies aim-
ing at discriminating the effects of changes in emissions
from the meteorological variability (e.g., Falocchi
et al., 2021; Mallet, 2020; Vu et al., 2019; Walker
et al., 2019). In particular, Falocchi et al., 2021 analysed
with this methodology multi-year NO2 time series from dif-
ferent air quality stations located in a stretch of the Adige
Valley slightly northward with respect to the area consid-
ered here. The same methodology was recently adopted
also to evaluate the effects of COVID-19 on pollutant emis-
sions by Grange et al., 2021, who compared observed and
business-as-usual predicted concentrations in several Euro-
pean cities, and by Fenech et al., 2021, who applied this
technique to pollutant concentrations measured in Malta.
Grange et al., 2021, analysing data from 246 air quality sta-
tions located in 102 urban areas, found decreases in NO2

concentrations of 34% and 32% at traffic and urban back-
ground stations respectively. Fenech et al., 2021 also
highlighted a more significant decrease in NO2 concentra-
tions (54%) at a traffic site with respect to background
stations.

The present paper is organized as follows: Section 2
illustrates the target area, Section 3 describes the datasets
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used, while Section 4 briefly explains the random forest
algorithm. The analysis of the measured concentrations
of NO2 and BC is presented in Section 5, along with the
results obtained with the machine learning algorithm.
Finally, conclusions are drawn in Section 6.

2 | STUDY AREA

The A22 motorway starts from the border with Austria,
at the Brenner Pass, flows along the Isarco and Adige val-
leys in the Italian Alps, and ends close to the town of
Modena, in the Po Plain. It is an important infrastructure
connecting Italy to Central Europe, and, in particular, it
is the busiest Alpine corridor, moving approximately
40,000 vehicles per day, with higher peaks during holi-
days. The motorway stretch considered here is entirely
located within the southern Adige valley, where both

rural areas and urban settlements can be found
(Figure 1). The floor of the Adige valley is approximately
2 km wide, and it is flanked by peaks reaching heights of
1500–2000 m above the valley floor.

In the present study, data from six air quality stations
located at different distances from the A22 motorway are
analysed (Figure 1). Three of them (BL103, BL107 and
BL164) are located close to the motorway, at a distance of
about 10 m from the traffic centreline. This positioning
allows for the direct measurement of traffic-induced pol-
lution and, for this reason, as stated by the European
directive 2008/50/CE, these stations are classified as
traffic stations. Avio is located 16 m from the motorway
centreline and thus it is still representative of traffic-
related emissions. The other two stations (Cortina and
Mezzolombardo), from now on referred to as rural sta-
tions, are located respectively at 230 and 800 m from the
motorway, far from major pollutant sources, and their

FIGURE 1 Map of the Adige

Valley. The black line indicates the

A22 motorway, with the red part

being the stretch between San

Michele all'Adige and Egna

considered in Section 3.4 for the

analysis of traffic data. The red dots

indicate the reference

meteorological and air quality

stations, while the blue dots refer to

the weather stations used for the

calculation of the lapse rate. The

aeroplane shows the position of the

temperature profiler at the Bolzano

airport and the green squares

indicate the largest urban centres of

the area. Background map from

Google Earth.
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observations will be used to assess the effect of lock-
down measures on background pollutant levels in the
rural areas of the valley floor. In particular, the analysis
of measurements from air quality stations located in dif-
ferent local contexts allows for the investigation of the
impact of lockdown measures at different distances
from the motorway. The details regarding the position
and the instruments installed in these six stations are
listed, respectively, in Tables 1 and 2. Both the instru-
ments measuring NO2 concentrations have an accuracy
of ±1% full-scale, while the aethalometer that provides
BC measurements has a resolution of 1 ng m�3 and a
sensitivity of 0.03 μg m�3.

3 | DATASET AND TEMPORAL
VARIABLES

In this section, the dataset used in the present study is
presented, including the air quality measurements, the
independent variables adopted in the random forest pro-
cedure and the traffic data. In particular, the independent
variables can be divided into meteorological and tempo-
ral variables, which are representative of the dispersion
processes and of the periodical emission variations
respectively. It is important to include all the variables
that can have an influence on concentrations, otherwise,
the random forest algorithm may not be able to correctly
predict observed concentrations and the normalized
trends might show a residual variability not caused by
changes in the emission regime. On the contrary, if an
irrelevant variable is used, the algorithm will simply
ignore it (Ziegler & König, 2014). The dataset analysed
covers the time period from 1 January 2017 to 20 July
2020, in order to compare air quality conditions along the
motorway between periods with normal traffic flows and
periods affected by the lockdown measures. Air quality,
meteorological and traffic measurements adopted in this
study were provided as 10-min data, which were then

aggregated to daily averages for the following analyses,
except for precipitation and traffic, which were summed
in order to obtain daily cumulative values.

3.1 | Concentrations

3.1.1 | NO2

The NO2 concentration series provided by the air quality
stations were controlled for data quality and cleaned by
removing the outliers. The outliers removal was per-
formed by calculating the logarithm of the single mea-
surements and excluding the measurements lying outside
the 3σ intervals evaluated on a daily basis. The original
distribution was, in fact, skewed towards low values and
using this rule on the untransformed data would have
excluded only the outliers on the high end of the distribu-
tion, while leaving unaffected unrealistically low concen-
tration values. The percentage of excluded data among
the datasets of the various stations ranges between 0.6%
and 1.5%. This low percentage ensures that the data qual-
ity procedure is appropriate and that only unrealistically
high and low concentration values were removed. Data
were finally aggregated at daily frequency, calculating
the average concentration and excluding days with data
availability less than 75%.

3.1.2 | Black carbon

Black carbon measurements were performed, at the two
traffic stations BL103 and BL164, with the Maegee Scien-
tific aethalometer AE33, exploiting the capacity of BC
particles to absorb and scatter light. Inside the instru-
ment, the aerosol is illuminated by radiation, and then
the absorption coefficient is evaluated and converted into
a concentration value. The absorption is measured at
7 wavelengths simultaneously: 370, 470, 520, 590,

TABLE 1 Position, altitude, pollutants measured and distance from the motorway centreline of the air quality stations analysed in

this work.

Station Position Altitude (m a.s.l.) Pollutants
Motorway
distance (m)

BL103 46.32� N 11.27� E 230 NO2, BC 10

BL107 46.29� N 11.24� E 220 NO2 10

BL164 45.87� N 11.0� E 190 NO2, BC 10

Avio 45.74� N 10.97� E 139 NO2 16

Cortina 46.27� N 11.23� E 210 NO2 230

Mezzolombardo 46.2� N 11.11� E 227 NO2 800

BERTAZZA ET AL. 5 of 23Meteorological Applications
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660, 880 and 950 nm and the total BC concentration is
directly derived from the 880 nm absorption coefficient, b
(880). In this study, the BC component produced by fossil
fuel combustion (BCff), mainly related to traffic, and the
one caused by biomass burning (BCbb), mainly related to
domestic heating, are analysed. These components have
been derived following Sandradewi et al., 2008. In partic-
ular, it was assumed that the absorption coefficients of
the two components have the following wavelength
dependence: λ�1 for BCff and λ�2 for BCbb, and measure-
ments at 470 and 950 nm were used to calculate the frac-
tion of each component. The BC outliers were removed
by adopting the same technique used for NO2 concentra-
tions; in this case, the percentage of removed data is
0.6%. The concentrations of the two components, BCff

and BCbb, were found by multiplying the total BC con-
centration by the respective fractions. Finally, for both
BCff and BCbb time series, data were aggregated at daily
frequency using the same methods adopted for NO2.

3.2 | Meteorological variables

The near-surface meteorological measurements used to
feed the random forest procedure implemented were pro-
vided by the air quality stations themselves. In particular,
the near-surface meteorological quantities selected as
independent variables are temperature, pressure, relative
humidity, global solar radiation (global solar radiation

data at Cortina presented long gaps, which were filled
using radiation measurements performed at BL107, given
the closeness of the two stations), precipitation, wind
speed and wind direction. Since atmospheric stability is
an important parameter influencing atmospheric disper-
sion, the temperature lapse rate is also taken into
account. For BL103, BL107 and Cortina, located in the
northern part of the study area, the values of the temper-
ature lapse rate were derived from the data of the temper-
ature profiler located at the airport of the city of Bolzano
(Figure 1). This instrument provides temperature mea-
surements up to 1000 m above ground level (AGL), with
a spatial resolution of 50 m. The data of the 21 vertical
levels provided by the temperature profiler were also in
this case aggregated in order to get the average daily tem-
perature for each level. Then, for every day, two different
lapse rates were calculated from a linear regression on
the data of the lowest 100 and 500 m AGL respectively.
On the other hand, Mezzolombardo, BL164 and Avio are
located far away from the temperature profiler, so the
lapse rate values obtained from its measurements might
not be representative of their local conditions. Therefore,
for these stations, the lapse rate was also calculated from
the difference between the temperature measured by the
air quality station and that measured by another weather
station located in the same area but at a higher altitude.
In particular, Cima Paganella and Faedo were used to
calculate the lapse rate for the normalization of air qual-
ity data at Mezzolombardo, while Brentonico and Malga
Zugna were adopted for the normalization procedure at
BL164 and Avio. Their position, along with the location
of the temperature profiler, are indicated in Figure 1 and
their details are reported in Table 3.

3.3 | Temporal variables

Some temporal variables are introduced as independent
variables in the random forest algorithm in order to
describe periodical changes in pollutant emissions caused
by, for example, variations in traffic or domestic heating.
In particular, the variables here considered are the Julian
day, the weekday and the Unix date. The Julian day

TABLE 3 Position and altitude of the meteorological stations

used for the lapse rate calculation.

Station Position Altitude (m a.s.l.)

Brentonico 45.82� N 10.96� E 727

Malga Zugna 45.81� N 11.06� E 1620

Faedo 46.19� N 11.17� E 696

Cima Paganella 46.14� N 11.04� E 2125

TABLE 2 Instruments installed at the air quality stations

analysed in this work.

Station Parameter Model

BL103 Meteo SIAP+MICROS sensors

NO2 Horiba APNA 370

BC Magee scientific
Aethalometer AE33

BL107 Meteo SIAP+MICROS sensors

NO2 Horiba APNA 370

BL164 Meteo Davis—Vantage Pro2

NO2 Horiba APNA 370

BC Magee scientific
Aethalometer AE33

Avio Meteo Davis—Vantage Pro2

NO2 Thermo 42i

Cortina Meteo SIAP+MICROS sensors

NO2 Horiba APNA 370

Mezzolombardo Meteo Davis—Vantage Pro2

NO2 Thermo 42i
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indicates the day number of the year, it is a value ranging
from 1 to 365 (or 366) and it helps to describe the sea-
sonal cycles of pollutant concentrations. For example, for
both NO2 and BC, concentrations are expected to be
higher on days with a Julian day value close to 1 or
365 (winter days). The weekday, instead, indicates the
day number of the week, it goes from 1 to 7 and describes
weekly cycles. For example, on Sundays (weekday = 7)
concentrations close to the motorway are expected to
decrease with respect to the other days of the week,
because of the prohibition of circulation of heavy vehi-
cles. Finally, the Unix date (number of seconds since
1970-01-01) is the trend term and is introduced to
describe the long–term fluctuations of concentrations, for
example, declining trends due to the car fleet renewal,
and those variations amenable to other explanatory vari-
ables not taken into account. Hence, the concentration
partial dependence on the Unix date shows the concen-
tration trend deprived of the effects of the other indepen-
dent variables, which is basically the behaviour of the
normalized series.

3.4 | Traffic variables

The number of vehicles transited on the motorway stretch
between San Michele all'Adige and Egna (red stretch in
Figure 1) was provided by measurements performed with
an inductive loop. These data allow the quantitative evalu-
ation of the effect of COVID-19 restrictions on motorway

traffic, as can be appreciated in Figure 2, which shows the
time series of the number of vehicles (light, heavy and
total) in the period from January to July in 2020 and
in the years 2017–2019. The background colours in
Figure 2 evidence four time periods, characterized by dif-
ferent traffic conditions, that are defined according to the
changes in the restrictions imposed by the Italian
government:

• 1 January–
24 February (unaltered period): no restrictions were in
place. The comparison between the average daily num-
ber of transiting vehicles during this period in 2020
and over the same time period in the three previous
years (2017–2019) evidences that in 2020 the number
of both light and heavy vehicles increased, respec-
tively, by 9% and 4%.

• 25 February–8 March (transition period): in this period
restrictions were introduced only in areas where
infected people were found. During this phase in 2020
the number of light vehicles diminished by 16%, while
heavy traffic increased by 4% with respect to the three
previous years.

• 9 March–2 June (lockdown): during this period heavy
restrictions were in place in the country; in 2020 the
traffic along the A22 motorway decreased by 38% for
heavy-duty vehicles and by 85% for light vehicles with
respect to the three previous years.

• 3 June–20 July (upturn): the possibility to move
between regions was restored and the borders with

Light
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Solid: 2020
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FIGURE 2 Time series of the

daily number of transiting vehicles

on the San Michele all'Adige-Egna

motorway stretch. The plot shows

weekly means, solid lines indicate

2020 values, while dashed lines
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Austria and Germany were re-opened. With the light-
ening of the restrictions, in 2020 the traffic increased
but still did not reach the levels of the three previous
years, showing a diminution for both light and heavy
vehicles of 30% and 16% respectively. During this
period the light vehicle traffic shows a progressive
increase also in 2017–2019, due to the touristic flow
related to summer holidays.

These periods are taken as a reference in the analyses
presented in the following parts of the paper, in particular
for the comparison between pollutant concentrations
observed in 2020 and in the three previous years.

4 | RANDOM FOREST
PROCEDURE

The predictive and meteorologically normalized time series
are obtained by exploiting the rmweather R package
(Grange et al., 2018; Grange & Carslaw, 2019), a random
forest code that uses the machine learning decision tree
technique for training and predictions. A decision tree
algorithm is a regression method based on binary splits:
observations are recursively divided into two different
groups generated using some intervals of values of the
independent variables. The process continues until all
groups consist of a single element or elements of the same
class (Ho, 1995). The number of splits can also be limited
by introducing more specific stopping rules, for example, a
minimum number of elements per group can be set in
order to prevent further splitting. Another method consists
in growing a full tree and then removing the splits that pro-
vide less information, this technique is called “pruning”. A
lower number of splits allows the decision trees to be not
too complex or too dependent on the input data (Song &
Ying, 2015). This whole process is called training and the
classification rules obtained from the initial data can then
be used to describe some new data and make predictions.
However, a single decision tree can be very complex and,
while it can perfectly describe the input data, it often fails
to interpret data that were not used in the training process
(Kotsiantis, 2013). This issue is called overfitting and it is
solved using a random forest algorithm, a code that grows
multiple decision trees and combines their predictions into
a single prediction that is more accurate than the ones
obtained with a single decision tree. This random forest
model also allows for determining the influence of each
independent variable on the dependent one. The procedure
used in this study is described in the following:

1. Dataset spitting: the input dataset consists of time
series indicating, for every day, the correspondent

values of pollutant concentration, meteorological and
time variables. This dataset is divided into two smaller
sets: the training and the testing sets. In particular,
80% of the days are used for training and the other
20% for testing.

2. Tree growing: 300 decision trees, having at least 5
nodes, are produced using 300 different growth data-
sets derived from the training set. Each growth dataset
is obtained using the bootstrap aggregation technique
(Breiman, 1996): the days are randomly sampled with
replacement from the training set and the indepen-
dent variables are sampled too. Each growth dataset
has the same number of observations of the training
set, but a smaller number of independent variables.
The fact that the number of observations used is the
same as the training set does not mean that all the
observations are used for each tree since, because of
the sampling with replacement, some are not selected
and some are selected multiple times. The number of
independent variables in the growth datasets is set
equal to the rounded value of the square root of the
total number of independent variables, following
Grange & Carslaw, 2019 and Falocchi et al., 2021. The
random sampling of both the dataset and the indepen-
dent variables allows the trees to be decorrelated from
one another, as they are grown using both different
data and variables. This group of trees constitutes the
random forest and its predictions are obtained by
combining via arithmetic mean the predictions of the
single trees.

3. Random forest testing: the part of the input dataset
(20% in this case) not used for training is called Out-
of-Bag data and it is employed for testing the random
forest output. The model is used to predict the concen-
tration values from the independent variables, then
the predicted values are compared to the real ones.
The R2 coefficient and the root mean square error
(RMSE) are calculated to assess the accuracy of the
model.

4. Predictions: the trained random forest model can be
used to predict pollutant concentrations. For this pur-
pose, in this work the model is trained using data in
the time interval 2017–2019, while concentrations are
predicted for 2020. In this way, the model is expected
to predict a business-as-usual scenario, that is, the con-
centrations that would have been measured without
the restrictions introduced by the lockdown. Therefore,
the differences between predicted and observed con-
centrations can be interpreted, neglecting the possible
errors introduced by the statistical procedure used,
such as the effects of the COVID-19 pandemic on pol-
lutant concentrations. This comparison is presented
and commented on in Section 5.2.
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5. Normalization: the normalized time series are pro-
duced using the predictions of the random forest
model, trained over the entire time interval 2017–
2020. For each point of the series, all the independent
variables, except the Unix date, are sampled without
replacement from the input dataset 1000 times. These
samples, hence, have the same Unix date (the one of
that particular day), but each of them presents 1000
different values for the other independent variables.
The random forest model is used on all the samples,
obtaining 1000 different predictions. These predictions
are aggregated using a mean in order to get a single
concentration value: the normalized value for that
day. The complete normalized series is obtained by
repeating this procedure for all the days of the dataset.
Since the Unix date is kept fixed, while the contribu-
tions to the concentration caused by all the other
independent variables are averaged, the normalized
trend follows the partial dependence trend relative to
the Unix date. Finally, since the results of a single ran-
dom forest model depend on the initial choice of the
training/testing sets, 20 different models are produced
using an iterative process that repeats steps 1–3 and
5 for 20 times. The final results are then obtained as
the average of the output of the 20 models. This also
allows for evaluating uncertainty, which would have
been impossible to determine using only one model.
The normalized time series are presented in
Section 5.3.

5 | RESULTS

5.1 | Observed concentrations

5.1.1 | NO2

The calendar plots reported in Figure S1 show NO2 daily
concentrations measured during the periods January-July
2019 and January-July 2020 at BL107, with the colour
scale indicating the concentration values. It is already
clear from this first analysis that, starting from March,
NO2 concentrations were considerably lower in 2020
than in 2019, highlighting the effects of the strong
decrease in traffic emissions during the lockdown period.

Table 4 shows the comparison between the average
values of the measured NO2 and BC concentrations in
2020 and in 2017–2019 in the periods from 1 January to
24 February (unaltered) and from 9 March to 2 June
(lockdown). The first period was taken into account to
evaluate possible changes in concentrations not related to
the restrictions, hence allowing for a better contextualiza-
tion of the decrease caused by the lockdown. Table 4

indicates that, for each station, during this period the
average NO2 concentration was similar to that registered
during the three previous years. On the other hand, in
the lockdown period, a significant decrease at all the air
quality stations was detected, ranging between 38% and

TABLE 4 Comparison between NO2 and BC mean

concentration values for all the stations in the unaltered and

lockdown periods.

NO2

Unaltered
(1 January–
24 February)

Lockdown
(9 March–
2 June)

BL103

Mean 2017–2019 [μg m�3] 67.7 51.2

Mean 2020 [μg m�3] 67.6 26.7

Percentage change �0.2% �47.8%

BL107

Mean 2017–2019 [μg m�3] 69.7 48.2

Mean 2020 [μg m�3] 67.5 25.3

Percentage change �3.1% �47.6%

BL164

Mean 2017–2019 [μg m�3] 74.3 54.6

Mean 2020 [μg m�3] 76.5 30.6

Percentage change +3.1% �43.9%

Avio

Mean 2017–2019 [μg m�3] 64.7 44.7

Mean 2020 [μg m�3] 58.8 24.6

Percentage change �9.0% �44.9%

Mezzolombardo

Mean 2017–2019 [μg m�3] 34.8 18.0

Mean 2020 [μg m�3] 35.6 11.2

Percentage change +2.4% �38.0%

Cortina

Mean 2017–2019 [μg m�3] 46.6 23.3

Mean 2020 [μg m�3] 47.0 13.6

Percentage change +1.0% �41.6%

BC

Unaltered
(1 January–
24 February)

Lockdown
(9 March–
2 June)

BL164 BCff

Mean 2017–2019 [ng m�3] 3291 2102

Mean 2020 [ng m�3] 3469 883

Percentage change +5.4% �58.0%

BL164 BCbb

Mean 2017–2019 [ng m�3] 957 255

Mean 2020 [ng m�3] 1061 218

Percentage change +10.8% �14.6%
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48%. As expected, the traffic stations show a larger per-
centage decrease than the rural ones, since they are more
influenced by traffic conditions. For the same reason,
between the two rural stations, the one exhibiting the
larger percentage diminution is Cortina, which is closer

to the motorway than Mezzolombardo (see Table 1).
Figure 3 shows the time series of NO2 concentrations
measured at all the air quality stations in the time span
of 2017–2020. In order to make the graphics clearer,
weekly average values are here reported. Being located
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FIGURE 3 Measured NO2

concentrations for all the stations.

The blue line indicates the weekly

mean and the grey shadow is the

correspondent standard deviation.

The time series start on 1st January

2017 and end on 20th July 2020,

with the exception of Cortina, for

which the available data extend only

to the end of May 2020.
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extremely close to the motorway, concentrations are gen-
erally higher at the traffic stations, with peaks of weekly
average values exceeding 100 μg m�3, while the maxi-
mum concentration measured by the rural stations, situ-
ated a few hundred metres away from the motorway,
does not exceed 75 μg m�3. In each plot an annual cycle
is clearly visible: concentrations are higher in winter and
lower in summer. As expected, the atmospheric stability
characterizing wintertime hinders dispersion, which is,
instead, promoted by the unstable atmospheric condi-
tions typical of the summer period. The only exception to
this cyclic behaviour is a summer peak measured at Mez-
zolombardo during 2018, whose cause is unknown. An
important decrease in NO2 concentrations during the
first months of 2020 (the lockdown period) is visible in
Figure 3, especially for the traffic stations. A decrease in
the concentrations was expected due to the end of the
winter period, but the comparison with the same months

of the previous years reveals a more marked drop
in 2020.

5.1.2 | Black carbon

Figure 4 shows the time series of the measured concen-
trations of the two BC components for BL103 and BL164.
For both stations, BCff is significantly higher than BCbb.
This is an obvious consequence of their position: since
they are both traffic stations, most of the BC is related to
vehicular emissions. The BCbb component, mainly
related to domestic heating emissions, reaches significant
values in winter (but still lower than BCff), while it is
very low in the warm months. Similar to the NO2 time
series (Figure 3), also the measured concentrations of
BCff exhibit a clear annual cycle, with higher values in
winter and lower values in summer. The same analysis
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FIGURE 4 Measured BC

concentrations at (a) BL103 and

(b) BL164. The trends of biomass

burning (bb) and fossil fuel (ff)

components are shown in blue and

red respectively. The time series

start on March 2017 and end on

20th July 2020, the lines indicate

weekly means and the shadowing

the correspondent standard

deviation.
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performed for NO2, comparing average observed concen-
trations in 2020 and in the three previous years in the
periods from 1 January to 24 February (unaltered) and
from 9 March to 2 June (lockdown), is repeated here for
the two BC components, but only for BL164 (Table 4).

BL103 is not considered due to the lack of data before
mid-2017 and in spring 2018, which does not allow the
calculation of robust statistics. During 2020 BCbb concen-
trations increased in the unaltered period and decreased
during the lockdown, with respect to the same periods of
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FIGURE 5 Predicted (red lines)

and measured (blue lines) NO2

concentrations for all the stations.

Predictions were calculated for every

day of the series but here, for

graphical clarity, weekly means are

shown. The predicted series are

obtained by averaging the

predictions of every tree and the

grey shadow indicates the standard

deviation.
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the previous 3 years. However, the decrease during the
lockdown is not particularly significant, given the low
values of BCbb concentrations during this period of the
year. Moreover, the comparison with the BCff component
reveals that, while BCff also slightly increased during the
unaltered period, it experienced a much more significant
drop (58%) in the lockdown period.

5.2 | Business-as-usual predicted
concentrations

This section presents the results of the procedure
described in Section 4 (steps 1–4), applied to the data
introduced in Section 3, to obtain business-as-usual time
series of NO2 and BC concentrations. Moreover, in this
section, also two significant outputs of the random forest
algorithm, the partial dependence and the importance
plots, are presented, along with the error estimators (R2,
RMSE). The partial dependence plots show the behaviour
of the dependent variable (the concentration) as a func-
tion of each independent variable (meteorological and
temporal ones). The importance plots show the ranking
of the independent variables according to their impor-
tance, which is a measure of how much each of them
affects the value of the dependent variable. The impor-
tance of a variable is calculated by considering each tree
and the accuracy (RMSE) of its predictions on Out-of-Bag
data, then randomly permuting the values of the variable
in the Out-of-Bag data keeping all the other variables
the same and finding the accuracy of the predictions
using the permuted data (which is obviously lower
than the one relative to the original Out-of-Bag data).

The accuracy differences of all the trees are then aver-
aged and normalized by the standard error, obtaining the
importance. Hence, the variables having high importance
are those that cause a high decrease in the accuracy of
the predictions when their values are randomized and,

TABLE 5 R2 and RMSE values evaluated for NO2 and BC

concentrations on the test set in the 2017–2019 period at all the

stations.

NO2

Station R2 RMSE [μg m�3]

BL103 0.85 6.99

BL107 0.89 8.26

BL164 0.89 7.99

Avio 0.86 7.32

Mezzolombardo 0.91 5.34

Cortina 0.92 6.46

BC

Station R2 RMSE [ng m�3]

BL164 BCff 0.89 527

BL164 BCbb 0.95 139

TABLE 6 Comparison between NO2 and BC measured and

predicted concentration values for all the stations in the unaltered

and lockdown periods.

NO2

Unaltered
(1 January–
24 February)

Lockdown
(9 March–
2 June)

BL103

Predicted [μg m�3] 68.9 51.23

Measured [μg m�3] 67.6 26.7

Percentage change �1.9% �48.0%

BL107

Predicted [μg m�3] 70.5 46.7

Measured [μg m�3] 67.5 25.3

Percentage change �4.3% �45.8%

BL164

Predicted [μg m�3] 77.3 51.8

Measured [μg m�3] 76.5 30.6

Percentage change �1.0% �40.9%

Avio

Predicted [μg m�3] 62.6 44.4

Measured [μg m�3] 58.8 24.6

Percentage change �9.0% �44.6%

Mezzolombardo

Predicted [μg m�3] 34.2 17.2

Measured [μg m�3] 35.6 11.2

Percentage change +4.1% �34.9%

Cortina

Predicted [μg m�3] 44.6 22.3

Measured [μg m�3] 47.0 13.6

Percentage change +5.4% �39.0%

BC

Unaltered (1
January–24
February)

Lockdown
(9 March–
2 June)

BL164 BCff

Predicted [ng m�3] 3815 2124

Measured [ng m�3] 3469 883

Percentage change �8.9% �58.6%

BL164 BCbb

Predicted [ng m�3] 1078 307

Measured [ng m�3] 1061 218

Percentage change �2.4% �29.2%
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conversely, they are the ones that cause a high increase
in accuracy when they are correctly used for making
predictions.

5.2.1 | NO2

The time series of measured and predicted NO2 concen-
trations are shown in Figure 5. In the time period from
2017 to 2019, the model is able to reproduce with good
accuracy the measured concentrations; this is an obvious

consequence of the training process: the model is built in
such a way that it can reproduce the concentrations mea-
sured during these years. The accuracy of the model is
quantitatively evaluated in Table 5, showing R2 coeffi-
cients and RMSEs calculated using the test sets (i.e., the
data not used for the training) in the time period from
2017 to 2019. All R2 coefficients are around 0.9, indicat-
ing a good agreement between measurements and predic-
tions, while RMSEs are, for NO2, always less than
8.5 μg m�3. The unaltered period in 2020 (as defined in
Section 3.4), which is not included in the training dataset,
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FIGURE 6 NO2 importance plots for all the stations.
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can also be considered as a validation period to evaluate
the ability of the random forest model to correctly predict
the observed concentrations. Figure 5 shows a good
agreement between predictions and measurements dur-
ing this period, highlighting that the model can be used
to evaluate business-as-usual scenarios at all the stations
analysed. This is confirmed by Table 6, which focuses on
2020 and presents the comparison between predicted and
measured mean concentration values in the unaltered
and lockdown periods. During the unaltered period, dif-
ferences between observed and predicted concentrations
are very small, generally between ±5%. On the other
hand, both Figure 5 and Table 6 evidence that, during
the lockdown period, the predicted concentrations are
about 35%–45% higher than the measured ones. These
predictions, neglecting the uncertainties connected to
possible model errors, represent the concentrations that
would have been measured, under the same meteorologi-
cal conditions of 2020, if the emissions were identical to
the previous years, that is, in a business-as-usual sce-
nario. The differences between predicted and measured
values are larger for the stations close to the motorway
(BL103, BL107, BL164, Avio) than for the rural stations
(Cortina, Mezzolombardo) and very similar to those pre-
sented in Table 4, referring to the comparison between
the concentrations observed in 2020 and those measured
in the previous 3 years. These results highlight that the
observed decreases in the concentrations are not signifi-
cantly affected by meteorological conditions, but can be
mainly ascribed to the decrease in the emissions due to

the restrictions introduced during the lockdown period.
These results are comparable to what was found by
Diémoz et al., 2021, who analysed the effects of lock-
down measures on pollutant concentrations in the
Aosta Valley, in the western Italian Alps, highlighting a
concentration decrease of 40%–50%. Similarly, Putaud
et al., 2021 found a decrease in NO2 concentrations of
30% and 40% in rural and urban background stations in
Lombardy (northern Italy), while Lonati & Riva, 2021
reported, in the Po Valley (northern Italy), a decrease in
NO2 concentrations of 35%–40%, with higher reductions,
close to 50%, at high-volume-traffic sites in urban areas.

Finally, it can be observed that, especially at the traf-
fic stations, the differences between observed and pre-
dicted concentrations tend to decrease at the end of the
analysed period, due to the partial recovery of the traf-
fic along the motorway (cf. Figure 2). Figure 6 shows
the importance plots for the independent variables for
all the stations. All the stations show a strong depen-
dence on temperature and Julian day. The partial
dependence plots for these two variables are shown in
Figure 7: they both follow the annual cycle, with high
concentrations on winter/cold days and low concentra-
tions on summer/hot days. The partial dependence plot
for temperature is similar to that found by Falocchi
et al., 2021: roughly constant for temperatures lower
than 2�C, then decreasing until 15�C and finally slightly
increasing for higher temperatures. Figure 6 also indi-
cates that the lapse rates have a major effect on the
measured concentration values, especially for the traffic
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FIGURE 7 NO2 partial

dependence plots for

(a) temperature and (b) Julian day

for all the stations.
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stations. In particular, the partial dependence plots for
the lapse rates are shown in Figure 8: as expected, nega-
tive/low lapse rate values correspond to higher concen-
trations, on the contrary, when the lapse rate becomes
more positive, concentrations decrease. Considering the
southern stations, (Mezzolombardo, BL164 and Avio)
the lapse rates calculated using data from surface
weather stations at different heights present higher
importance than the lapse rates calculated from the
temperature profiler measurements, being the profiler
representative of the meteorological conditions in
another stretch of the valley. Wind speed turns out to
be particularly important, especially at BL107 and Mez-
zolombardo. The partial dependence plot for this

variable is shown in Figure 9a: with strong wind speed,
concentration values decrease because of shear mixing
effects. Finally, Figure 9b shows the partial dependence
plot for global solar radiation, which is important for
Cortina and Mezzolombardo. In this case, concentra-
tions decrease with increasing radiation, as high radia-
tion values occur during summer when dispersion is
more efficient.

5.2.2 | Black carbon

The random forest algorithm was applied to both BCbb

and BCff components. Only results for BL164 are
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FIGURE 8 NO2 partial

dependence plots for the lapse rates

for all the stations: (a1) lapse rate

calculated from the temperature

profiler for the lowest 500 m AGL,

(a2) lapse rate calculated from the

temperature profiler for the lowest

100 m AGL, (b1) lapse rate

calculated using measurements at

Brentonico, (b2) lapse rate

calculated using measurements at

Malga Zugna, (c1) lapse rate

calculated using measurements at

Faedo, (c2) lapse rate calculated

using measurements at Cima

Paganella.
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presented here, since the lack of data before mid-2017
and in spring 2018 at BL103 did not allow for satisfactory
training of the random forest algorithm at this air quality
station. The time series of measured and predicted con-
centrations of the two BC components at this station are
shown in Figure 10. As for NO2, the machine learning
algorithm is able to reasonably reproduce the observed
concentrations of both BC components both in the train-
ing period from 2017 to 2019 and during the unaltered
period in 2020, highlighting that this methodology can be
safely adopted to evaluate the effects of the lockdown
restrictions on BC concentrations. The RMSE and R2

values evaluated on the test set in the 2017–2019 period
are shown in Table 5, highlighting, also in this case, a sat-
isfactory agreement between measurements and predic-
tions. During the lockdown period, the predicted
concentrations are always higher than the observations
for both components (Table 6). This behaviour is particu-
larly evident for BCff, which, as expected, behaves simi-
larly to NO2, since both these pollutants mainly originate
from traffic. The BCbb component shows a smaller but
significant difference between predictions and measure-
ments. The decrease in concentrations observed during
the lockdown period is also in this case comparable to
that evaluated from observations (Table 4) for BCff, while
slightly higher for BCbb. However, accurate evaluations
of the trend of the BCbb component can be problematic
along a busy road, since in this context it represents a
small fraction of the total BC and, as a consequence, the
uncertainties connected to the application of the random

forest algorithm may be proportionally more significant.
Moreover, the measurements of the two main BC compo-
nents can be compromised by the presence of brown car-
bon, which is another type of light-absorbing
carbonaceous aerosol (Andreae & Gelencsér, 2006). Simi-
larly to BC, brown carbon can be produced by the com-
bustion of biomass and fossil fuels, but can also be
originated from soils and bioaerosols or formed through
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(b)FIGURE 9 NO2 partial

dependence plots for (a) wind speed

and (b) global solar radiation for all

the stations.
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secondary processes and photo-activated chemical reac-
tions (Wong et al., 2017). Brown carbon particles have a
brown-yellow colour and their absorption efficiency, with
respect to BC, is negligible at visible wavelengths but
becomes significant towards UV wavelengths (Yan
et al., 2018). It is then possible that the presence of this
brown carbon component affected the measurements,
especially the ones made at 470 nm (the shortest wave-
length), and this affected in turn the calculated fractions
of BCbb and BCff.

The results obtained in the present study confirm, as
expected, that lockdown measures had a stronger impact
on BCff, as shown for example by Goel et al., 2021 in
Dehli, even if our findings cannot be generalized, as only
BC data from a traffic site were analysed. However,
results highlight that, close to the motorway, also BCbb

experienced a slight decrease, differently from what was
suggested by Gualtieri et al., 2020, who analysed PM data
in six Italian cities.

The importance plots for the two BC components
are shown in Figure 11: temperature, Julian day and
lapse rates are among the variables that have the great-
est impact on BC concentrations, for both components,
similar to NO2. For these variables, the partial dependence
trends (Figures 12 and S2) are overall similar to those
obtained for NO2 (Figures 7 and 8). Considering the partial
dependence plots for the temperature and the Julian day
(Figure 12), it is interesting to notice that BCbb displays a
completely flat behaviour at high temperatures, in contrast
with the increase occurring at about 25�C for both NO2

and BCff. This is caused by the fact that, with high temper-
atures, domestic heating is basically absent, and, conse-
quently, concentrations of BCbb remain low and constant.
On the other hand, the similar behaviour of NO2 and
BCff partial dependence plots confirms that these two
pollutants present the same main emission source, that
is, vehicular traffic. Figure 11 highlights that wind speed
has significant importance as well, especially for BCff.

FIGURE 11 BC importance plots for BL164.
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The partial dependence plots for this variable and for
global solar radiation (Figure S3) once again resemble
those found for NO2 (Figure 9), with concentrations
decreasing when wind speed and global solar radiation
values increase.

5.3 | Normalized concentrations

The machine learning algorithm was also applied to pro-
duce meteorologically normalized time series (Section 4,
steps 1–3, 5) of both NO2 and BC concentrations. In this
section, one normalized time series for each pollutant
(BL103 for NO2 and BL164 for BC) is presented and
commented on.

5.3.1 | NO2

The NO2 normalized time series for BL103 is shown in
Figure 13a. Being the effects of the meteorological vari-
ability on observed concentrations removed, the normal-
ized time series is much smoother than the original one,
and in particular, the annual cycle, which was clearly evi-
dent in Figure 3, is no longer appreciable. For the year
2020, the normalized series reflects the progressive intro-
duction of restrictions to circulation. In fact, the concen-
tration is roughly constant until the end of February, and
then it starts to decrease when the first restriction

measures were introduced. On the other hand, on 9th
March, in connection with the beginning of the lock-
down period, an abrupt drop in the normalized concen-
trations can be clearly seen. During this phase, the
normalized concentrations remain constant at low levels,
increasing only after 3rd June, that is, the beginning of
the upturn period. The drop in the normalized concentra-
tions on 9th March is around 12 μg m�3. On the other
hand, in the time span of 2017–2019, the normalized con-
centrations experience a progressive decrease of about
7 μg m�3, probably due to the renewal of the car fleet
observed along this motorway (De Biasi, 2021). In fact,
newer vehicles, especially heavy-duty vehicles, produce
lower emissions. It can be then stated that the results
obtained with the abrupt emission diminution caused
by the lockdown will be achieved in around 5 years with
the current rate of reduction of the emissions due to the
car fleet renewal. Grange et al., 2021 presented the
results of a similar estimate for different European cit-
ies, concluding that the effects of the lockdown will be
achieved on average in 7.6 years considering the current
rate of NO2 reduction. The shorter time period esti-
mated here may be due to the fact that the long-term
decrease in NO2 concentrations is more significant in
the present case study, as NO2 concentrations close to
the motorway are strongly influenced by the emissions
of heavy vehicles, which experienced a strong reduction
in the last few years after the introduction of the Euro
VI technology (Grigoratos et al., 2019).
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5.3.2 | Black carbon

Figure 13b shows the normalized time series of the two BC
components for BL164. In the first months of 2020, BCff

shows a behaviour quite similar to the NO2 normalized
series. In particular, after an initial phase in which normal-
ized concentrations are almost constant, they slightly
decrease during the transition period, until the abrupt drop
on 9th March. Normalized concentrations then remain
almost constant at low values during the lockdown period,
and slightly increase at the very end of the series. The nor-
malized concentrations of BCbb, instead, show negligible
variations throughout the same time period. This confirms
the considerations reported in the previous sections: BCff,
strongly depending on traffic, is heavily influenced by the
lockdown restrictions, whereas the effects on BCbb, depend-
ing mainly on space heating, are less significant. Similar to
NO2, in the time span of 2017–2019 the normalized concen-
trations of BCff progressively decrease by about 200 ng m

�3,
thanks to the renewal of the car fleet. On the other hand,
the drop due to the lockdown is around 700 ng m�3, so pro-
portionally more significant than for NO2. Finally, no signif-
icant trends for BCbb are appreciable in the time span of
2017–2019, highlighting that the emissions of this pollutant
have been almost constant during this period and that no
long-term trend is present for this variable.

6 | CONCLUSIONS

Data from six air quality stations located in the Alpine
Adige valley were analysed in order to evaluate the

effects of the restrictions introduced to prevent the
spread of the COVID-19 pandemic on NO2 and black
carbon concentrations at different distances from the
A22 Italian motorway. Two different black carbon com-
ponents were considered: the one related to fossil fuel
combustion (BCff) and the one related to biomass burning
(BCbb). The analysis was performed considering different
time periods, defined on the basis of the changes in the
restrictions imposed by the government and the conse-
quent variations in the traffic load along the motorway. In
order to take into account the effects of the variability of
meteorological conditions on the measured concentra-
tions, a random forest algorithm was applied, to obtain
business-as-usual and meteorologically normalized time
series of both NO2 and BC concentrations.

The analysis of observed concentrations highlighted
that, during the period without restrictions, both NO2

and BC concentrations in 2020 presented similar values
to those relative to the same period of the previous
3 years. On the other hand, during the period with the
heaviest restrictions, NO2 concentrations dropped by 38–
48% with respect to the previous 3 years, BCff (mainly
related to traffic) exhibited similar behaviour, plummet-
ing by 58%, whereas BCbb (mainly produced by domestic
heating) experienced only a slight decrease, highlighting
that the emission sources of this pollutant were not sig-
nificantly affected by the restrictions. Considering NO2,
the highest reductions were observed at the stations
located close to the motorway, which were most affected
by the huge traffic drop. However, the concentration
decrease was significant also considering rural back-
ground stations, highlighting a general reduction of
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FIGURE 13 Normalized series for (a) NO2 at BL103 and (b) the two BC components at BL164. Background colours indicate the periods
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concentration levels on the floor of the Adige valley.
These results were confirmed by the predictive business-
as-usual time series, which allowed for obtaining an esti-
mate of the daily concentration values that would have
been measured in 2020 if the emissions were comparable
to those of the previous 3 years. It was found that, for
both NO2 and BC, observed and predicted concentrations
presented similar values in the first period of 2020 when
the restrictions had not yet been introduced and the traf-
fic load along the motorway was similar to the previous
3 years. The good agreement between observed and pre-
dicted values during this testing period assured that this
methodology can be safely adopted to evaluate the effects
of the restrictions on pollutant concentrations. On the
other hand, the predicted values were higher than the
measured ones during the period with the restrictions for
all the pollutants considered here. For NO2 and BCff the
differences between measurements and predictions were
huge, as expected, since both these pollutants are mainly
produced by vehicular traffic. Moreover, these values
were very similar to those obtained from the first analy-
sis of observed concentrations. For BCbb, the difference
found was smaller, especially considering absolute
values, due to the low concentrations of this BC compo-
nent in spring. Considering normalized time series, the
analysis for NO2 showed an abrupt drop in correspon-
dence of the day on which the heavy restrictions were
introduced. This drop was found to be equivalent to the
diminution that would be obtained in 5 years following
the current rate of concentration decrease induced by
the vehicle fleet renewal. The BCff normalized time
series was very similar, with an important drop in con-
nection with the beginning of the lockdown period, con-
firming that these two pollutants share the same main
emission source: the traffic. The BCbb normalized trend,
instead, showed no significant variations during the
lockdown period, indicating the different origins of this
pollutant.

The results found in the present work confirm that
the COVID-19 lockdown measures had a strong
impact on the emissions of traffic-related pollutants,
with a significant decrease in concentrations also at
rural background stations, located at a considerable
distance from the main sources. This highlights that
the reduction of traffic-related emissions has a positive
impact not only in the near-road environment but also
on a wider spatial scale, including the whole floor of a
main Alpine valley. However, it is also clear that poli-
cies aiming at improving air quality conditions should
take into account also other factors, including biomass
burning, which still remains one of the most impor-
tant pollutant sources in Alpine valleys (Urgnani
et al., 2022).
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