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Introduction

This thesis is devoted to introduce and discuss the most noteworthy features of what it
will be referred to as a nonlinear eigenvalue. A ultimate definition of such a mathematical
object lacks in the literature, and may be missing also in the future. In fact, despite looking
as a contradictio in terminis (“eigentheories” are all-linear theories), the vague idiomatic ex-
pression of nonlinear eigenvalue does however arise naturally from the variational viewpoint.
During the last decades, non-linear eigenvalue problems captured the interest of several re-
searchers from different areas of mathematical analysis. The model problem is driven by the
so-called p-Laplacian, defined by

∆pu := div
(
|∇u|p−2∇u

)

for all smooth functions u : RN → R. Note that taking p = 2 one is back to the familiar
Laplace operator. Almost all features of a nonlinear eigenvalue problem are encoded in this
nonlinear operator, which is singular or degenerate depending on whether p < 2 or p > 2.
Several existence, uniqueness and stability results about the p-Laplacian are easily extended
to rather general nonliner partial differential equations.

In the thesis, an account is given also of the eigenvalues of some non-local operators.
After being studied for a long time in potential theory and harmonic analysis, fractional
operators defined via singular integrals are riveting attention since equations involving the
fractional Laplacian or similar nonlocal operators naturally surface in several applications.

A great attention in the thesis is devoted to carefully define a suitable notion of eigen-
values when the exponent itself p is replaced by a function p(x). The definition of p(x)-
eigenvalues seems to be new. The viscosity theory for second order differential equations
allows one to study the asymptotic behaviour of p(x)-eigenvalues as p(x) approaches a “vari-
able infinity” ∞(x). This passage to infinity is accomplished replacing the variable exponent
by jp(x) and sending j → ∞. The limit problem is identified, and it has a nice geometric
interpretation.

Owing to the importance of superposition principles in nature, the eigenvalues of linear
second order elliptic operators appear in areas of mathematical physics ranging from classical
to quantum mechanics. For example, the normal modes in the small oscillations near stable
equilibria are determined by eigenvalues. Furthermore, in a quantum system the eigenvalues
of Schrödinger operator represent the possible energy levels. Linear eigenvalues also play a

v



vi INTRODUCTION

crucial role for a better understanding of qualitative properties and long time behaviour of
solutions to several partial differential equations governing many physical phaenomena.

A model case of elliptic linear eigenvalue problem is given by the celebrated Helmholtz
equation

−∆u = λu, in Ω,

with the Dirichlet conditions u = 0 on the boundary ∂Ω of the open set Ω ⊂ RN . The
eigenvalues, i.e. the numbers λ such that the above problem is solvable, are the critical
values of the Dirichlet integral ∫

Ω

|∇u|2 dx

subject to the constraint ∫

Ω

u2 dx = 1.

Reading the other way round, by computing the first variation of the Rayleigh quotient
∫

Ω

|∇u|2 dx
∫

Ω

u2 dx

one ends up with an eigenvalue problem for the linear Laplace operator −∆. Note that
eigenfunctions can be multiplied by constants. In addition to that, the equation is also
additive. The linearity is due to the quadratic growth in the integrals. If the square is
replaced by a different power the linearity is destroyed. Nonetheless the homogeneity is
preserved.

The fact that the eigenfunctions may be multiplied by constants is an expedient feature
of the eigenvalue problems. Despite being non-linear, the problems considered in this thesis
do however satisfy this property. Let H(x, z) be convex, even and positively homogeneous of
degree p > 1 in the variable z ∈ RN . Then, the critical values λ of the variational integrals

∫

Ω

H(x,∇u) dx

subject to the constraint ∫

Ω

|u|p dx = 1

are the numbers λ such that the Euler-Lagrange equation

−1

p
div
(
∇zH(x∇u)

)
= λ|u|p−2u, in Ω,

admits a non-trivial weak solution attaining zero Dirichlet conditions on the boundary of Ω.
The equation fails to be linear unless p = 2. Nevertheless, if u is solves the equation, then
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so does cu. Thus the critical values λ of the quotient
∫

Ω

H(x,∇u(x)) dx
∫

Ω

|u(x)|p dx

will be called eigenvalues. The corresponding critical points solve the Euler-Lagrange equa-
tion and they are said to be eigenfunctions. The same names are used for critical values and
critical points of the quotient if the Dirichlet integral is replaced by the double integral

∫∫

RN×RN

|u(y)− u(x)|p K(x, y) dx dy

where K(x, y) is some convolution kernel that makes the integral meaningful. In that case
the (weak) Euler-Lagrange equation reads
∫∫

RN RN

|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x))K(x, y) dx dy = λ

∫

Ω

|u(x)|p−2u(x)ϕ(x) dx.

When p = 2, a suitable choice of the kernel leads to the eigenvalue problem for the linear
operator formally definded by

−(−∆)su(x) = Cs,N

∫

RN

u(x+ y) + u(x− y)− 2u(y)

|y|N+2s
dy,

where CN,s is some normalization constant. This is called the fractional s-Laplacian. For
some accounts about the integro-differential equation involving this non-local operator, the
interested reader is referred to the survey [F3] written with Enrico Valdinoci.

Basic preliminaries on nonlinear eigenvalues. It is well known that the Dirichlet
Laplace operator admits infinitely many eigenvalues

0 < λ1 ≤ λ2 ≤ . . . ≤ λn → ∞.

This basically relies on the Rellich compactness Theorem for the embedding of the Sobolev
space H1

0 (Ω) into L
2(Ω), which makes compact the “resolvent”, i.e. the self-adjoint operator

mapping each right hand side f ∈ L2(Ω) to the solution u ∈ H1
0 (Ω) of equation

−∆u = f, in Ω,

with Dirichlet boundary conditions on ∂Ω. Hence by spectral theorem the resolvent admits
a sequence of eigenvalues µn converging to zero, and the corresponding un’s are in fact
eigenfunctions of −∆ with eigenvalues λn = µ−1

n . Moreover, these eigenfunctions give an
Hilbert basis of L2(Ω).

To prove the existence of (nonlinear) eigenvalues obtained by minimizing non-quadratic
quotients, the lack of linearity makes a bit inefficient the standard methods used in the linear



viii INTRODUCTION

case, and tools of nonlinear analysis may be of help. There is no reliable spectral theory for
producing a “basis” of eigenfunctions. However, there is a plenty of classical procedures to
produce eigenvalues. The first chapter is focused on a well established formula for defining a
non-decreasing unbounded sequence of critical values of a convex p-homogeneous functional
F , defined on some Banach space X , along the one-codimensional manifold M = G−1({1}),
where G is another convex and p-homogeneous functional on X . Namely, one sets

λn = inf
f
max

ω
F(fω)

for all n ∈ N. Here ω ranges among all unit vectors in Rn and the infimum is performed on
the class of all odd continuous mappings ω 7→ fω from the unit sphere of Rn to M .

According to the main existence result of Chapter 1, the λn’s are critical values of F
along M provided that the Palais-Smale condition holds, see Theorem 1.3.3. Basically, that
compactness condition reads as follows:

F(un) → λ =⇒ un → u strongly

for all sequences such that the differential of F along M goes to zero in the cotangent norm.
This restriction induces the functional to be strongly coercive along sequences of almost
critical points. Very likely, the requirement should be fullfield if some strong monotonocity
of the differential holds. Namely, condition

〈F ′(un)−F ′(u), un − u〉 → 0 =⇒ un → u strongly

will do. The convexity of F gives the pairing a sign, but does not ensure that the above holds.
Nevertheless, in the applications the functionals have a nice modulus of strict convexity. That
allows to apply the full existence machinery. The results are applied in particular to the case
when

F(u,Ω) =

∫

Ω

H(x,∇u) dx, G(u,Ω) =
∫

Ω

|u(x)|pdµ

where µ stands either for the Lebesgue measure of for the (N − 1)-dimensional Hausdorff
measure of the boundary. In the second case Ω is assumed to be smooth enough and the
second integral is understood in the sence of traces.

Classical Elliptic Regularity for eigenfunctions. This chapter is devoted to survey-
ing the main achievements of regularity theory that are needed in the thesis. The strong
minimum principle for non-negative eigenfunctions u (i.e., either u > 0 or u ≡ 0) is of-
ten helpful. That is provided by Harnack inequality, which holds for the eigenfunctions if
the integral

∫
Ω
H(x,∇u) satisfies natural growth conditions. Moreover, the eigenfunctions

are Hölder continuous. The first section of the chapter summarizes these classical results.
Actually, most eigenvalue problems are solvable in C1,α, the eigenfunctions being analytic
functions out of their critical set and higher differentiability holds with some distinctions
between the singular (p < 2) and the degenerate case (p > 2), but those results are not used
anywhere in the thesis.
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Then explicit bounds for the eigenfunctions are provided. This discussion is restricted to
the caseH(z) = ‖z‖p where ‖·‖ denotes the norm associated with a (symmetric) convex body
in RN . Similar bounds hold valid if the Dirichlet integral is replaced by a Gagliardo-type
(semi)norm ∫∫

RN×RN

|u(y)− u(x)|p
|y − x|N+sp

dxdy

where s ∈ (0, 1).

Hidden convexity for eigenfunctions and applications. Chapter 3 is based on the
paper [F2] written with Lorenzo Brasco. The purpose is that of relating some well-known
facts about the positive eigenfunctions of the p-Laplacian to the convexity of the energy
functional

t 7−→
∫

Ω

H(x, γt(x)) dx

along suitable curves γ : [0, 1] → M laying on the level set M of G. Incidentally, such curves
are constant speed geodesics for a suitable distance between positive functions belonging to
M (different from the Finsler metric induced by the Sobolev space). In Theorem 3.2.1, this
geodesic convexity is used to trivialize the global analysis, proving that the energy functional
can not have any critical point, other than its global minimizer on M .

As a byproduct, the only possible eigenfunctions having constant sign are the ones asso-
ciated with λ1(Ω). This is a well known result which had been derived in various places for
the p-Laplacian

H(z) = |z|p, µ = LN

under different assumptions on the regularity of Ω (see [4, 61, 72] and [79] for example).
The most simple and direct proof of this fact was given by Kawohl and Lindqvist ([61]), in
turn inspired by [79]. The proof in [61] is based on a clever use of the equation, but it does
not clearly display the reason behind such a remarkable result.

The advantage of the viewpoint introduced in the paper [F2] is to reduce those well-known
uniqueness results to a convexity-based device which applies to rather general nonlinear
eigenvalue problems.

Spectral gap. This chapter focuses on the second variational eigenvalue λ2(Ω) of the
p-Laplacian (and similar nonlinear operators). Theorem 4.3.2 gives a new proof of the
existence of a spectral gap: there is no eigenvalue between λ1(Ω) and λ2(Ω). This fact had
been originally proved in [73].

Another very classical result in this topic is the so-called Mountain-Pass. Theorem 4.1.3
contains a simple (new) proof of this characterization of the second variational eigenvalue.
Namely

λ2(Ω) = inf
γ
max
u∈γ

∫

Ω

H(x,∇u) dx
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where γ ranges among all continuous paths on M connecting the first eigenfuction u1 to its
opposite function −u1. For the p-Laplacian, this formula is due to [32].

Then the attention is turned to λ2(Ω) in the case when Ω is a disconnected set. In this
case, the eigenvalues on the domain are obtained by gathering the eigenvalues on the single
connected components. Note that the first eigenvalue may be multiple (for example, that is
the case if Ω consists of two equal balls) or simple (think of two disjoint balls with different
radii). In the second case, it turns out that

λ2(Ω) = min
{
λ > λ1(Ω) : λ is an eigenvalue

}
.

This is proved in Theorem 4.1.3. Some care is taken about the consistency of the well-
posedness of the minimum. On the contrary, according to Theorem 4.3.3, if the first eigen-
value is multiple then the second variational eigenvalue “collapses” on the first one.

Optimization of low Dirichlet p-eigenvalues. This chapter concerns the stability of
optimal shapes for the second variational eigenvalue of the p-Laplacian. The results reported
were obtained in collaboration with Lorenzo Brasco in the paper [F5]. A quantitative version
of the so-called Hong-Krahn-Szego inequality for λ2(Ω) is derived in Theorem 5.3.1. As a
consequence, the disjoint union of two equal balls is proved to be a stable minimizer for the
second variational eigenvalue.

For n ≥ 3, very little is known about the spectral optimization problem of minimizing

(0.0.1) λn(Ω)

among all open sets Ω having a prescribed volume. Here λn(Ω) is the n−th variational
Dirichlet eigenvalue of the p−Laplace operator. Even in the linear case p = 2, existence,
regularity and characterization of optimal shapes for a problem like (0.0.1) are still open
issues. Concerning the existence, a general (positive) answer has been given only very
recently, independently by Bucur [21] and Mazzoleni and Pratelli [76].

On the contrary, the solutions to the problems

(0.0.2) min{λ1(Ω) : |Ω| = c}

and

(0.0.3) min{λ2(Ω) : |Ω| = c}

are well-known. Under the volume constraint, the first eigenvalue is uniquely minimized by
the ball of volume c. This is the Faber-Krahn inequality

(0.0.4) |Ω|p/Nλ1(Ω) ≥ |B|p/Nλ1(B).



INTRODUCTION xi

The second problem is uniquely solved by the union of two disjoint balls of the same
volume1. That amounts to say that inequality

(0.0.5) |Ω|p/Nλ2(Ω) ≥ 2p/N |B|p/Nλ1(B)

holds for all open set Ω of finite measure. In the linear case p = 2, This “isoperimetric”
property of balls has been discovered (at least) three times: first by Edgar Krahn ([64])
in the ’20s, but then the result has been probably neglected, since in 1955 George Pólya
attributes this observation to Peter Szego (see the final remark of [83]). However, almost in
the same years as Pólya’s paper, there appeared the paper [56] by Imsik Hong, giving once
again a proof of this result. It has to be noticed that Hong’s paper appeared in 1954, just
one year before Pólya’s one. For this reason, (0.0.5) is referred to as the Hong-Krahn-Szego
inequality.

The chapter then addresses some stability issues. Roughly speaking, a positive answer
to the question

λn(Ω) ∼= optimal
?

=⇒ Ω ∼= optimal

is given for n = 1, 2. Once the optimal shape Ω∗
n is known, that can be accomplished by

proving estimates of the type

|Ω|p/Nλn(Ω)− |Ω∗
n|p/N λn(Ω∗

n) ≥ Φ(d(Ω,On)),

where d(·,On) is a suitable “distance” from the “manifold” On of optimizers (open sets
having the same shape as Ω∗

n) and Φ is some continuous strictly increasing function, with
Φ(0) = 0.

Given an open set Ω ⊂ RN having |Ω| <∞, its Fraenkel asymmetry is defined by

A(Ω) = inf

{‖1Ω − 1B‖L1

|Ω| : B is a ball such that |B| = |Ω|
}
.

This is a scaling invariant quantity such that 0 ≤ A(Ω) < 2, with A(Ω) = 0 if and only
if Ω coincides with a ball, up to a set of measure zero. Note that the Fraenkel asymmetry
may be regarded to as an L1 distance from the set of balls. A quantitative version of the
Faber-Krahn inequality (0.0.4) in terms of A is provided in the paper [49] by Fusco, Maggi
and Pratelli and reads as follows

|Ω|p/Nλ1(Ω) ≥ |B|p/N
(
1 + CN,pA(Ω)2+p

)
.

In the planar case, the quantitative Faber-Krahn inequality was proved previously by Bhat-
tacharya in his paper [14] with the better exponent 3. Moreover, for convex sets Melas [75]

1On assuming an additional convexity constraint, the problem has been conjectured by Troesch [88] to be
solved by the convex envelope of the two balls, called stadium. That in fact is false, which was first proved by
Henrot and Oudet [55]. For a proof of this fact based on over-determined problems, see [43]. In fact in the
planar case the minimizer contains no arc of circle: according to [68], the sharp regularity of the minimizer
is C1,1/2
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had also provided a similar result. His estimate was given in terms of the Hausdorff asym-
metry, a sort of L∞ distance, which is natural under the convexity constraint. For the linear
Laplace operator, another proof was given by Hansen and Nadirashvili [52]. Eventually, the
quantitative estimate for the second eigenvalue of the Laplacian was also proved by some
probabilists (see Sznitman [86] for the planar case and Povel [84] in higher dimensional
spaces).

In the case of the Hong-Krahn-Szego inequality, the relevant notion of asymmetry is the
Fraenkel 2−asymmetry, introduced in [19]. It is defined for all open sets Ω of finite measure
by setting

A2(Ω) = inf

{‖1Ω − 1B1∪B2‖L1

|Ω| : B1, B2 balls such that |B1 ∩ B2| = 0, |Bi| =
|Ω|
2
, i = 1, 2

}
.

Then in Theorem 5.3.1 the following quantitative estimate

|Ω|p/Nλ2(Ω) ≥ 2p/N |B|p/N λ1(B) [1 + CN,pA2(Ω)
κ2 ] ,

is proved. The exponent κ2 depends on the dimension and on the sharp exponent κ1 for the
quantitative Faber-Krahn inequality. The analysis covers the whole range of p. Indeed, the
same proof can be adapted to cover the cases p = 1 and p = ∞ as well, when λ2 becomes
the second Cheeger constant and the second eigenvalue of the ∞−Laplacian, respectively.

Optimization of a nonlinear p-Stekloff eigenvalue. This chapter reports some re-
sults obtained in collaboration with Lorenzo Brasco in the paper [F4] about the optimization
of the first nontrivial eigenvalue σ2,p(Ω) of the so-called pseudo p−Laplacian operator

∆̃pu :=

N∑

i=1

∂

∂xi

(∣∣∣∣
∂u

∂xi

∣∣∣∣
p−2

∂u

∂xi

)
.

In the linear case p = 2 this operator coincides with the usual Laplacian and σ2(Ω) has
the value of the best constant in the following Poincaré-Wirtinger trace inequality

cΩ

∫

∂Ω

|u(x)− u∂Ω|2 dHN−1 ≤
∫

Ω

|∇u(x)|2 dx, u ∈ W 1,2(Ω),

where HN−1 stands for the (N − 1)−dimensional Hausdorff measure and u∂Ω denoted the
average of the trace of the function u on the boundary.

In analogy with the well-known Dirichlet and Neumann cases (see [54, Chapters 3 and
7]), one may be interested in the spectral optimization problem of maximizing2 σ2 under
volume constraint. A well-known result asserts that the (unique) solutions to this problem
are given by balls. This is the so-called Brock-Weinstock inequality (see [20, 91]). For ease of
completeness, it is worth mentioning that Weinstock’s result (valid only in dimension N = 2)
is even stronger, since it asserts that disks are still maximizers among simply connected set
of given perimeter. By observing that σ2 scales like a length to the power −1 and that

2On the contrary, it is not difficult to see that the problem of minimizing σ2 is always trivial.
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σ2(BR) = R−1 for a ball of radius R, the Brock-Weinstock inequality can be written in
scaling invariant form as follows

(0.0.6) σ2(Ω) ≤
(
ωN

|Ω|

) 1
N

,

where ωN is the measure of the N−dimensional ball of radius 1.
In the non-linear case p 6= 2, the pseudo p-Laplacian is an anisotropic operator, which

considerably differs from the more familiar p−Laplacian. Its first non-trivial eigenvalue
σ2,p(Ω) coincides with the best constant in

cΩ

[
min
t∈R

∫

∂Ω

|u+ t|p ̺ dHN−1

]
≤

N∑

i=1

∫

Ω

|uxi
|p dx, u ∈ W 1,p(Ω).

By adapting Brock’s method of proof (Theorems 6.5.2 and 6.5.3) it follows that

(0.0.7) σ2,p(Ω) ≤
( |Bp|

|Ω|

) p−1
N

,

where Bp is the N−dimensional ℓp unit ball, i.e. Bp = {x ∈ RN : |x1|p + · · ·+ |xN |p < 1}.
The previous inequality can be seen as a nonlinear counterpart of (6.5.3).

Anisotropic weighted Wulff inequalites. This chapter concerns the weighted
anisotropic perimeter discussed in the paper [F4] written with Lorenzo Brasco. Besides
recalling some basics about convex geometries in R

N , the main result discussed here is the
following weighted Wulff inequality

(0.0.8)

∫

∂Ω

V (‖x‖) ‖νΩ‖∗ dHN−1 ≥ N |K|1/N |Ω|N−1
N V

(
(|Ω|/|K|) 1

N

)

which is proved in Theorem 7.3.4, generalizing the results of [18]. Here ‖ · ‖ and ‖ · ‖∗ denote
two dual norms, respectively defined as the Minkowski gauge and the support function of a
convex body K, whereas νΩ stands for the outward pointing unit normal to the boundary
of the Lipschitz set Ω. The function V : R+ → R+ is called the weight. Equality can hold
if and only if Ω = K, up to a scaling factor. The proof of (0.0.8) is an adaptation of the
calibration technique used in [18]. Under suitable additional assumptions on the regularity of
the weight, Theorem 7.4.1 provides a quantitative version of the above anisotropic weighted
Wulff inequality, which reads as follows:

∫

∂Ω

V (‖x‖)‖νΩ‖∗dHN−1 ≥ Nω
1
N

K,N |Ω|1−
1
N

[
V

(( |Ω|
ωK,N

)) 1
N

+ CN,V,|Ω|

( |Ω∆(TΩK)|
|Ω|

)2
]
,

where ωK,N := |K| and TΩK is the dilation of K having the same volume as Ω.
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An eigenvalue problem with variable exponents. The last chapter concerns the
eigenvalue problem introduced in collaboration with Peter Lindqvist in the recent paper [F6]
about the minimization of the “Rayleigh quotient”

(0.0.9)
‖∇u‖p(x),Ω
‖u‖p(x),Ω

among all functions belonging to the Sobolev space W
1,p(x)
0 (Ω) with variable exponent p(x).

The norm is the so-called Luxemburg norm.

If p(x) = p, a constant in the range 1 < p < ∞, one reduces to the eigenvalue problem
for the Dirichlet p-Laplacian. It is decisive that homogeneity holds: if u is a minimizer, so
is cu for any non-zero constant c. On the contrary, the quotient

(0.0.10)

∫

Ω

|∇u|p(x) dx
∫

Ω

|u|p(x) dx

with variable exponent does not possess this expedient property, in general. Therefore its
infimum over all ϕ ∈ C∞

0 (Ω), ϕ 6≡ 0, is often zero and no mimizer appears in the space

W
1,p(x)
0 (Ω), except the trivial ϕ ≡ 0, which is forbidden. For an example, see [42, pp.

444–445]. A way to avoid this collapse is to impose the constraint
∫

Ω

|u|p(x) dx = constant.

Unfortunately, in this setting the minimizers obtained for different normalization constants
are difficult to compare in any reasonable way, except, of course, when p(x) is constant. For
a suitable p(x), it can even happen that any positive λ is an eigenvalue for some choice of
the normalizing constant. Thus (0.0.10) is not the proper generalization of the eigenvalue
problem for the p-Laplacian to the case of a variable exponent.

A way to avoid this situation is to use the Rayleigh quotient (0.0.9), where the notation

(0.0.11) ‖f‖p(x),Ω = inf

{
γ > 0 :

∫

Ω

∣∣∣∣
f(x)

γ

∣∣∣∣
p(x)

dx

p(x)
≤ 1

}

was used for the Luxemburg norm. This restores the homogeneity. In the integrand, the use
of p(x)−1 dx (rather than p(x)) has no bearing, but it simplifies the equations a little. The
existence of minimizers follows easily by the direct method in the Calculus of Variations.
The Euler-Lagrange equation is obtained by computing the first variation of the Luxembourg
norms and reads

(0.0.12) div

(∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2 ∇u

K

)
+
K

k
S
∣∣∣
u

k

∣∣∣
p−2 u

k
= 0,
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where the K, k, S are constants depending on u.
Then the passage to infinity is accomplished so that p(x) is replaced by jp(x), j =

1, 2, 3 . . . The viscosity theory for second order equations allows one to identify the limit
equation which is

(0.0.13) max

{
Λ∞ − |∇u|

u
, ∆∞(x)

( u

K

)}
= 0,

where

(0.0.14) K = ‖∇u‖∞,Ω, Λ∞ =
1

maxx∈Ω dist(x, ∂Ω)

and

(0.0.15) ∆∞(x)v =
n∑

i,j=1

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj
+ |∇v|2 ln

(
|∇v|

)〈
∇v,∇ ln p

〉
.

For a constant exponent, this has been treated first in [59] (see also [60, 58, 27]). An
interesting interpretation in terms of optimal mass transportation is given in [28]. According
to a recent manuscript by Hynd, Smart and Yu, there are domains such that there can exist
several linearly independent positive eigenfunctions, see [57]. Thus the eigenvalue Λ∞ is not
always simple.

If Λ∞ is given the value (0.0.14), the same as for a constant exponent, then the existence of
a non-trivial solution is guaranteed. A local uniqueness result also holds, cf. Theorem 8.4.4.
Namely, in a sufficiently interior domain the solution cannot be perturbed continuously.
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CHAPTER 1

Basic preliminaries on nonlinear eigenvalues

If X is a normed vector space, X∗ will denote the strong dual space, consisting of all
the linear functionals on X that are continuous with respect to the topology induced on X
by the norm and 〈 · , · 〉 will denote the duality pairing between X and X∗. If Y is another
normed space, then L(X, Y ) will stand for the space of all continuous linear mappings from
X to Y .

1. Differentiable functions

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed vector spaces, A ⊂ X , u an interior point of
A and v ∈ X . The directional derivative of a function J : A→ Y at u along the direction v
is defined by

∂vJ (u) = lim
t→0

J (u+ tv)− J (u)

t
,

provided the limit exists in Y .
The function J is said to be (Fréchet) differentiable at u if there exists a continuous and

linear mapping L ∈ L(X, Y ) such that the limit

(1.1.1) lim
h→0

J (u+ h)− J (u)− L(h)

‖h‖X
= 0

holds in Y . If there exists such a linear function L, then it is uniquely determined, is denoted

L = J ′(u),

and is said to be the (Fréchet) differential of J at u. Moreover,

‖J (u+ h)−J (u)‖Y ≤ ‖L(h)‖Y + o(‖h‖X),
as h→ 0 in Y and J is continuous at u.

The function J is called Gâteaux differentiable at u if there exists a linear mapping
T ∈ L(X, Y ) such that the limit

(1.1.2) lim
ε→0

J (u+ εv)− J (u)

ε
= T (v)

holds in Y . If there exists such a linear mapping T , then it is unique, we denote it by

T = DJ (u),
1
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and we call it the Gâteaux differential of J at u. Moreover,

‖J (u+ εv)− J (u)‖Y ≤ ε‖T (v)‖Y + o(ε),

as ε→ 0 and J is continuous along all the straight lines passing through u.
Clearly, if J is differentiable then it is Gâteaux differentiable and the two differentials

coincide, that is
DJ (u)[v] = J ′(u)(v),

for all v ∈ X , but the converse does not hold. For example, allthough the functional
J : X → R defined by J (u) = ‖u‖2 sin(1/‖u‖2), if u 6= 0, and J (0) = 0 is not differentiable
at the origin, all its directional derivatives at the origin do however exists and and depend
linearly on the direction (in fact, they are all equal to zero).

Of course, if J is Gâteaux differentiable at u then there exists the derivative of J along
all directions, and one has

∂vJ (u) = DJ (u)[v],

for all v ∈ X . Again, the converse does not hold, since the map v 7→ ∂vJ (u), which is
always homogeneous, may fail to be additive, even if there exists the directional derivative
of J along all directions. For example, the directional derivative ∂uJ (0) of an odd and
positively 1-homogeneous functional J : X → R equals the value J (u) that the functional
takes at u, hence its dependance on u must not be linear as soon as the functional itself is
nonlinear in u.

It is worth recalling that any linear mapping from X to Y such that (1.1.1) holds is
automatically continuous. Indeed,

L(v) = J (u+ v)− J (u) + o(‖v‖X),
as v → 0 in X . Thus, by the continuity at u of J , L is continuous at the origin. Being
L linear, the continuity of L follows. On the contrary, if X is infinite-dimensional, a linear
mapping T from X to Y may well fail to depend continuously on v even if (1.1.2) holds.

We recall a sort of mean value property holds for the functions admitting directional
derivatives. Namely, if there exists the directional derivative of J at the point u along the
direction v then the inequality

(1.1.3) ‖J (u+ tv)−J (u)‖Y ≤ t sup
s∈[0,t]

‖∂vJ (u+ sv)‖Y ,

holds for all t ≥ 0. One can employ (1.1.3) to prove the following criterion for the Fréchet
differentiability of functions, which is of remarkable use.

Proposition 1.1.1. Let X, Y be normed spaces, A ⊂ X, u an interior point of A, and let
J : A→ Y be Gâteaux differentiable in a neighborhood of u in X. If the Gâteaux differential
DJ is continuous at u, then J is Fréchet differentiable at u.

Proof. The proof is standard. For every s ∈ [0, 1], the function

Rs(v) = J (u+ sv)− J (u)− s∂vJ (u),
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is Gâteaux differentiable in a neighborhood of the origin sufficiently small, and

∂wRs(v) = s
(
∂wJ (u+ sv)− ∂wJ (u)

)
,

for all w ∈ X , provided ‖v‖X is small enough. Note that

Rt(sv) = Rts(v),

for all t ∈ [0, 1]. Thus, since R1(0) = 0, by (1.1.3) it follows that

‖R1(v)‖Y ≤ sup
s∈[0,1]

‖∂vR1(sv)‖Y = sup
s∈[0,1]

‖∂vRs(v)‖Y

≤ sup
s∈[0,1]

s ·
∥∥∂vJ (u+ sv)− ∂vJ (u)

∥∥
Y

≤ sup
s∈[0,1]

s · ‖DJ (u+ sv)−DJ (u)‖L(X,Y )‖v‖X

≤ sup
s∈[0,1]

‖DJ (u+ sv)−DJ (u)‖L(X,Y )‖v‖X,

provided ‖v‖X is sufficiently small. Since DJ is continuous at u,

‖DJ (u+ sv)−DJ (u)‖L(X,Y ) ≤ 2 max
‖w‖X≤ε

‖DJ (u+ w)‖L(X,Y ) < +∞,

provided ε is small enough. Thus, the above implies

lim
‖v‖X→0

‖R1(v)‖Y
‖v‖X

= 0,

which is precisely the Fréchet differentiability of J at u. �

Let X , Y be normed spaces. Recall that

‖P‖L2(X×X,Y ) = sup{‖P (u, v)‖X : ‖u‖X, ‖v‖X ≤ 1},
defines a norm on the vector space of all continuous mappings from X × X to Y that are
bilinear, that is linear in each variable. By setting

(
φ(P )(u)

)
(v) = P (u, v), u, v ∈ X,

for all P ∈ L(X ×X, Y ), one defines an isometry φ : L2(X ×X, Y ) → L(X,L(X, Y )).
Let A be an open set in X . A differentiable function J from A to Y be is said to be twice

(Fréchet) differentiable at u ∈ A if the function J ′ : A → L(X, Y ) is itself differentiable at
u. If this is the case, we denote by

J ′′(u)

the continuous and bilinear map which is uniquely associated with (J ′)′(u) via the isometry
L(X,L(X, Y )) ∼= L2(X × X, Y ) described above. It can be proved that J ′′(u), that we
call the second (Fréchet) differential of J at u, is in fact a symmetric bilinear form. The
n-th (Fréchet) differential of a mapping is defined inductively and is a symmetric continuous
n-linear mapping.
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Let X, Y be normed space and A ⊂ X be an open set. A function J : A → Y is said
to be of class Ck on A if its k-th differential is continuous on A. We say that ϕ is a Ck

diffeomorphism with its image if it is one-to-one it is of class Ck with its inverse function.

1.1. Local inversion of differentiable functions. If X, Y, Z are normed spaces u0 ∈
X, v0 ∈ Y and J : X × Y → Z is a function, we denote by J ′

X(u0, v0) the differential at u0
of the function u 7→ J (u, v0).

Theorem 1.1.2 (Implicit function theorem). Let X, Y, Z be Banach spaces, A an open
subset of X × Y , (u0, v0) ∈ A and J : X × Y → Z be a continuous function. Assume that
J ′

Y exists and is continuous in A. If the mapping J ′
Y (u0, v0) if an isomorphism from Y to Z

then there exist a neighborhood U of u0 in X, a neighborhood V of v0 in Y and a continuous
function φ : U → V such that

J −1({0}) = graph(φ).

If, in addition, J is of class Ck then so is φ. If this is the case, then

φ′(u0) = −
[
J ′

Y (u0, v0)
]−1 ◦ J ′

X(u0, v0).

Theorem 1.1.3 (Local inversion Theorem). Let X, Y be Banach spaces, A be an open subset
of X, u0 ∈ A and J a C1 function from A to Y . If J ′(u0) is an isomorphism from X to Y ,
then there exists an open neighborhood U of u0 such that the restriction of J to U is an C1

diffeomorphism with its image V and

(J −1)′(v0) =
(
J ′(u0)

)−1
.

We refer to [9] for the proof of the above classical theorems.

2. Constrained critical levels and eigenvalues

A topological spaceM is said to be a Ck Banach manifold modelled on the Banach space
X if there exist a set I, an open covering {Uı}ı∈I of M , a family of closed vector subspaces
Xı of X and a collection of mappings ϕı : Uı → Xı which are homeomorphisms with their
images, such that ϕı(Uı ∩ U) is open in X and ϕ ◦ ϕ−1

ı induces a Ck diffeomorphism of
ϕı(Uı ∩ U) onto ϕ(Uı ∩ U). The pairs (Uı, ϕı) are called charts.

When it happens that all the Xı’s are one-codimensional subspaces of X , M is said
to be a one-codimensional Banach manifold. Since in this Thesis we aim to adress some
issues regarding real eigenvalues, which are nothing but critical levels of functionals along
one-codimensional manifolds, we restrict ourselves to this case.

Let G : X → R be a C1 functional, such that the topological subspace M of X defined
by

(1.2.1) M =
{
u ∈ X : G(u) = 1

}
,

consists of regular points for G, that is Xu = ker G ′(u) 6= X , for all u ∈ M . Then M is a
one-codimensional C1 Banach manifold modelled on X . We call the tangent space to M at
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its point u the vector space

TuM =
{
ϕ ∈ X : 〈G ′(u), ϕ〉 = 0

}
,

consisting of all tangent vectors to M at u. That recovers the abstract definition via deriva-
tions. Obviously, the norm of X makes the tangent space at u a Banach space. The strong
dual of TuM is the cotangent space to M at u and is denoted by T ∗

uM . By Hahn-Banach
Theorem, it is isomorphic to a closed vector subspace of X∗ with the norm defined by

‖Λ‖∗ = max
{〈

Λ , ϕ
〉
: ϕ ∈ TuM, ‖ϕ‖X = 1

}
,

for all Λ ∈ T ∗
uM , where 〈·, ·〉 stands for the natural duality pairing.

If F : X → R is a C1 functional, then its restriction to M is also C1, its differential at
a point u ∈ M being nothing but the restriction F ′(u)|TuM of the differential F ′(u). Thus,
a number c is a critical value of F along M if F(u) = c and there exist a point u ∈M such
that

(1.2.2) 〈F ′(u), ϕ〉 = 0, for all ϕ ∈ TuM,

and if this happens u is called a critical point of F along M corresponding to the critical
value λ.

By Lagrange multipliers’ rule, a point u ∈ M is a critical point of F along M is such
that

(1.2.3) F ′(u) = λG ′(u),

in X∗ for some real number λ. Indeed, by (1.2.2) the kernel of F ′(u) contains the kernel of
G ′(u). These differentials are linear mappings. Hence there has to be a number λ such that
the diagram

X R

R

λ

G ′(u)

F ′(u)

is commutative, and (1.2.3) follows.

Let F , G be C1 functionals on a Banach space X . In addition, assume that both the
functionals are even and positive homogenous of degree p ≥ 1. Then M = G−1({1}) is a
regular one-codimensional manifold in X . Indeed, by the homogeneity it follows that

〈
G ′(u), u

〉
= pG(u) = p,

whence kerG ′(u) 6= X , for all u ∈M .
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Definition 1.2.1 (Nonlinear eigenvalues). Let F ,G be C1 even and positively homogeneous
functionals of degree p ≥ 1 on the Banach space X , and M = G−1({1}). A real number λ is
said to be an eigenvalue of the pair (F ,G) if there exists u ∈ X \ {0} such that

(1.2.4) 〈F ′(u), v〉 = λ〈G ′(u), v〉,
holds for all v ∈ X . If this is the case, then u is called an eigenvector corresponding to λ.

Note that eigenvectors and eigenvalues of the pair (F ,G) are precisely given by the critical
points and critical values F alongM . To see that, note that (1.2.2) holds for all eigenvectors
u ∈ M corresponding to the eigenvalue λ. Conversely, if u ∈ M is a constrained critical
point associated with the critical value c, then equation (1.2.4) holds with λ = c. Indeed,
there has to be λ such that (1.2.3) holds, and by plugging u = v in, one gets

λ =
1

p
λ 〈G ′(u), u〉 = 1

p
〈F ′(u), u〉 = F(u) = c.

3. Existence of eigenvalues: minimization and global analysis

We discuss the existence of eigenvalues for a pair (F ,G) of C1 functionals which are even
and positively homogeneous of degree p > 1. Min-max formulae of the type

λn = inf
f
max

ω

F(fω)

G(fω)
play a role. The maximum is taken among all unit vectors ω in Rn, whereas f ranges over all
odd and continuous mappings ω 7→ fω from the unit sphere Sn−1 of Rn into M = G−1({1}).
A mapping f from S

n−1 to M is said to be odd if f−ω = −fω, for all ω ∈ S
n−1.

This is a well established method for producing eigenvalues of the pair (F ,G). The
procedure hardly would deserve a comment. Yet, for sake of completeness we discuss a proof
of this existence result in next section 3.1, nonetheless. The λn’s are almost critical levels,
see sections 3.2 and 3.3. The conclusion that they actually are eigenvalues holds provided
that a suitable compactness on the almost critical sequences is valid. This is discussed in
next section, see Theorem 1.3.3.

3.1. Palais-Smale condition and existence of eigenvalues. We introduce the fol-
lowing condition, which dates back to the work of Palais and Smale [81] on the generalized
Morse theory.

Definition 1.3.1. Let X be a Banach space, M a one-codimensional C1 regular manifold
in X , and Φ be a C1 functional on X .

(i) We call {uk}k∈N ⊂ M a (PS)λ sequence for Φ if

lim
k→∞

Φ(uk) = λ, lim
k→∞

‖Φ′(u)|TuM‖∗ = 0,

(ii) The functional Φ is said to satisfy the Palais-Smale condition at level λ on M if any
(PS)λ sequence has a strongly converging subsequence.
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Moreover, we say that Φ satisfy the Palais-Smale condition on M if it satisfies the Palais-
Smale condition on M at any level λ.

Remark 1.3.2. IfX ∼= R
m andM is, say, a smooth compact hypersurface, then by Bolzano–

Weierstrass Theorem any (PS)λ sequence admits a subsequence converging to a critical level.
The same conclusion can be drawn if X ∼= Rm, M is any compact hypersurface, and Φ is
bounded by below and coercive. As a matter of fact, if X is infinite dimensional then there
may well exist functionals Φ which are coercive, bounded from below and do not satisfy the
(PS) condition on some manifold M. For example, the coercive functional

∫

Ω

(
|∇u| − 1

)p
+
dx

does not satisfy the Palais-Smale condition on the Lp(Ω) sphere in W 1,p
0 (Ω).

The following theorem contains the existence result. This will be applied in Section 4 for
producing a sequence of variational eigenvalues of some nonlinear operators.

Theorem 1.3.3. Let X be a uniformly convex Banach space, F ,G be two even and positively
homogeneous C1 functionals of degreee p > 1 on X. For all n ∈ N, denote by Vn the set of
all odd and continuous mappings ω 7→ fω from Sn−1 to M = G−1({1}) and set

λn = inf
f∈Vn

max
ω∈Sn−1

F(fω).

Then, if F satisfies the Palais-Smale condition on M , the λn’s are an increasing divergent
sequence of eigenvalues of the pair (F ,G).

The proof of the theorem requires some technical results, that are discussed in next
section.

3.2. Deformations and pseudo-gradient vector fields. In order to prove Theo-
rem 1.3.3, a standard strategy is that of deforming the sublevels of the functional F in such
a way that the values around a noncritical level are suitably lowered down. This would
yield a contradiction if the λn’s were regular values. Namely, by deformation we mean the
following.

Definition 1.3.4. A continuous mapping η : M → M is said to be a deformation if it is
homotopic to the identity map, namely if there exists a continuous function H : [0, 1]×M →
M such that

H(0, u) = u, H(1, u) = η(u),

for all u ∈M .

The deformation η lowering the non-critical values down can be manifactured by pushing
the points of M forward via a gradient flow, provided that the functional is C1,1. Indeed, if
this is the case the first variation of the functional F defines a locally Lipschitz vector field.
Then, the associated initial value problem, accompanied by the initial condition given by a
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point u ∈ M , admits a unique solution Φt(u) by the classical Cauchy-Lipschitz theory for
ordinary differential equations. For small t > 0, this flow yields the desired deformation.

Since here the functional F may well be not sufficiently regular, the technique described
above can not be applied. Thus one needs the notion of pseudo-gradient vector field, which
seems to be due to Palais [80]. Recall that, in general, by vector field on M it is meant any
right inverse of the natural projection

π :
⋃

u∈M

{u} × TuM →M.

The disjoint union of the tangent spaces to M at its points is called the tangent bundle, is
denoted by TM and naturally inherits a Finsler metric structure from M . In fact, a vector
field V from M to TM is locally Lipschitz continuous if there exists, for every compact
subset K of M , a positive constant LK such that

‖V (u)− V (w)‖X ≤ LK‖u− w‖X,
for all u, w ∈ K.

Definition 1.3.5. Let Σ consist of all critical points of F on M . A locally Lipschitz vector
field V :M → TM is said to be a pseudo gradient vector field on M for F if

(1.3.1) ‖V (u)‖ ≤ 2‖F ′(u)|TuM
‖∗,

〈
F ′(u), V (u)

〉
≥ ‖F ′(u)|TuM

‖2∗,
for all u ∈M \ Σ.

A deformation can be constructed by considering the flow associated with a locally Lip-
schitz pseudo-gradient vector field on M , even if the functional F is merely of class C1, see
Proposition 1.3.9 below. The existence of pseudo-gradient vector fields being locally Lip-
schitz continuous is a little demanding even in the unconstrained case, for which we refer
to [8]. However, for sake of completness, we prove the following Lemma. The idea of the
proof is to patch all the steep directions tangent toM “pushed” by F ′ by a suitable partition
of unity, consisting of locally Lipschitz continuous functions.

Lemma 1.3.6. There exists an odd locally Lipschitz pseudo–gradient vector field on M for
F .

Proof. Let u be a regular point of F on M . Owing to the definition of

‖F ′(u)|TuM
‖∗ = sup

{
〈F ′(u), v〉 : v ∈ TuM, ‖v‖X = 1

}
,

there exists v ∈ TuM such that ‖v‖X = 1 and

(1.3.2)
2

3
‖F ′(u)|TuM

‖∗ < 〈F ′(u), v〉.
Note that the right hand side in (1.3.2) changes sign if u is replaced by −u. Indeed, the
differential F ′ is odd, since the functional F is even. Therefore, there exists an odd vector
field v :M → TM such that (1.3.2) holds with v = v(u), for all u ∈M .



3. EXISTENCE OF EIGENVALUES: MINIMIZATION AND GLOBAL ANALYSIS 9

Let now W :M → TM be the odd vector field defined by

W (u) =
3

2
‖F ′(u)|TuM

‖∗v(u),

for all u ∈M . Using (1.3.2),

〈F ′(u),W (u)〉 > ‖F ′(u)|TuM
‖2∗, ‖W (u)‖ < 2‖F ′(u)|TuM

‖∗.
Let us denote by Σ the set of all critical points of F onM . Since u ∈M \Σ was arbitrary

and F ′ is continuous, for every u ∈M \ Σ there exists a radius ̺ > 0 and a ball

B̺(u) = {w ∈M : ‖u− w‖X ≤ ̺} = {w ∈ X(Ω) : ‖u− w‖X ≤ ̺} ∩M
such that

(1.3.3) 〈F ′(w),W (u)〉 > ‖F ′(u)|TuM
‖2∗, ‖W (u)‖ < 2‖F ′(w)|TwM

‖∗,
for all w ∈ B̺(u). This defines an open covering M \Σ ⊂ ⋃u∈M B̺u(u), which can be refined
by taking a locally finite one, which we denote by

O = {B̺ı(uı) : ı ∈ I} .
We now consider the collection Osym of the balls

Bı := B̺ı(uı), and B−ı := B̺ı(−uı), ı ∈ I.

This is still a locally finite open convering of M \ Σ. Note that by construction one has

(1.3.4) u ∈ Bı ⇐⇒ −u ∈ B−ı,

for all ı ∈ I.
We now construct a partition of the unit associated with Osym, consisting of locally

Lipschitz continuous functions. Let dı (respectively, d−ı) denote the distance (induced by
the norm) to the complementary of the ball Bı (resp., B−ı). Namely, for every ı ∈ I,

dı(u) = inf
φ∈E\B̺ı(uı)

‖u− φ‖,

for all u ∈M \ Σ, and a similar formula holds for d−ı.
The distance functions to a subset of a metric space are always Lipschitz continuous.

Hence the functions defined, for every ı ∈ I, by setting

κı(u) =
dı(u)∑
∈I d(u)

, and κ−ı(u) =
d−ı(u)∑
∈I d(u)

,

for all u ∈M \Σ, are locally Lipschitz continuous, by composition. Indeed, the denominator
is always strictly positive, as the open covering is locally finite. Moreover,

∑
ı∈I κı(u) = 1.

Furthermore, by (1.3.4), for all points u ∈M and all indexes ı ∈ I one has

(1.3.5) κı(−u) = κ−ı(u).
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We claim that

V (u) =
∑

ı∈I

κı(u)W (uı), u ∈M \ Σ,

defines an odd locally Lipschitz continuous function.
Indeed, all the sums defining V are finite sums, as κ±ı(u) 6= 0 ⇔ u ∈ B±ı and u belongs

at most to a finite number of the balls. To prove the claim, it is then sufficient to prove that
V is odd. To this end, note that

V (−u) =
∑

ı∈I

κı(−u)W (uı) =
∑

−u∈Bı

κı(−u)W (uı) =
∑

u∈B−ı

κ−ı(u)W (uı).

The last equality follows by (1.3.4) and (1.3.5). On the other hand W is odd. Thus
∑

u∈B−ı

κ−ı(u)W (uı) = −
∑

u∈B−ı

κ−ı(u)W (−uı) = −
∑

ı∈I

κ−ı(u)W (−uı) = −V (u).

and the claim is proved.
Eventually, (1.3.3) entails (1.3.1) by a straightforward computation. �

By means of an odd pseudo–gradient vector field, an odd deformation may be manifac-
tured by taking the flow associated with the corresponding initial value problem. To this
aim, we need the following two elementary lemmas.

Lemma 1.3.7. Let Ψ :M → TM be a locally Lipschitz continuous vector field such that

(1.3.6) sup
w∈M

‖Ψ(w)‖X(Ω) < +∞.

For every u ∈M let α(u, t) denote the unique solution of the Cauchy problem

(1.3.7)






d

dt
α
(
u, t
)
= Ψ

(
α
(
u, t
))
,

α
(
u, 0
)
= u.

Then the maximal time

(1.3.8) sup
{
T > 0 : α(u, t) is defined for all t ≤ T

}

is equal to +∞ for all u ∈M, and the function x 7→ α(u(x), t) belongs to M , for all t > 0.

Proof. Let u ∈M . Arguing by contradiction, assume that the maximal time Tu defined
by (1.3.8) is finite. Then, one has

α(u, r)− α(u, s) =

∫ s

r

d

dt
α(u, t) dt =

∫ s

r

Ψ(α(u, t)) dt,
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for all 0 < r, s < Tu. Hence, by (1.3.6), there exists a positive constant C > 0 such that

∥∥α(u, tj)− α(u, tk)
∥∥
X
≤
∫ tk

tj

∥∥Ψ
(
α(u, t)

)∥∥
X
dt ≤ C|tj − tk|,

for all sequences (tm)m∈N ⊂ (0, Tu). Since all the Cauchy sequences converge in X , it follows
that the limit

lim
tրTu

α(u, t)

exists in X , let us denote it by vu. Note that the Cauchy problem




d
dt
β(vu, t) = Ψ(vu, t),

β(vu, Tu) = vu,

admits a solution β defined in a neighborhood (Tu − ε, Tu + ε) of the initial time Tu. Thus,
setting

γ(u, t) =






α(u, t), 0 < t ≤ Tu,

β(vu, t), Tu < t < Tu + ε,

it turns out that γ is a solution of the initial value problem (1.3.7), contradicting the definition
of Tu. �

Lemma 1.3.8. Let Ψ : M → TM be an odd locally Lipschitz continuous vector field such
that (1.3.6) holds. For all u ∈ M , let α(u, ·) : [0,∞) → M be the unique solution of the
differential equation dα/dt = Ψ(α), with the initial data α(0) = u. Then,

α(−u, t) = −α(u, t),
for all t ≥ 0 and all u ∈M .

Proof. Let us denote β(u, t) = −α(u, t). Then the conclusion readily follows by ob-
serving that

dβ

dt
= −dα

dt
= −Ψ(α) = Ψ(−α) = Ψ(β),

and β(0) = −α(0) = −u. �

Now we can prove the existence of a deformation.

Proposition 1.3.9. Let λ, δ > 0 be such that

(1.3.9)
∣∣∣F(u)− λ

∣∣∣ ≤ 2δ =⇒ ‖F ′(u)|TuM
‖∗ ≥ δ,
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for all u ∈M . Then, there exists an odd deformation η ∈ C(M,M) such that

F(u) ≤ λ + δ =⇒ F(η(u)) ≤ λ− δ(1.3.10)

F(u) ≤ λ− 2δ =⇒ η(u) = u,(1.3.11)

for all u ∈M .

Proof. We adapt the proof of [8, Lemma 8.4] from the “flat” to the constrained case.
All the details remain the same, but we report the proof for sake of completeness. Set

A = {u ∈M : λ− δ ≤ F(u) ≤ λ+ δ},
and

B = {u ∈M : F(u) ≤ λ− 2δ} ∪ {u ∈M : F(u) ≥ λ+ 2δ},
and define

dA(u) = inf
w∈A

‖u− w‖X , dB(u) = inf
z∈B

‖u− z‖X ,
for all u ∈ M . Note that dA, dB are Lipschitz continuous on M , being distance functions
from a subset of X . Moreover,

(1.3.12) dA(u) + dB(u) ≥ inf
w∈A
z∈B

‖w − z‖ > 0,

where the second inequality holds because F is continuous. Thus, the real-valued function
g defined on M by

g(u) =
dB(u)

dA(u) + dB(u)
,

for all u ∈ M , is also Lipschitz continuous by composition. Indeed, by (1.3.12) the denomi-
nator is always greater than a positive constant. Note also that

(1.3.13) 0 ≤ g(u) ≤ 1, g ≡ 0 on B, and g ≡ 1 on A.

Moreover, since the functional F is even, the function g is also even, i.e.

(1.3.14) g(−u) = g(u), for all u ∈M.

Let Σ denote the set of all critical points of F alongM and let V :M \Σ → TM be a locally
Lipschitz pseudo-gradient vector field on M for F , whose existence follows by Lemma 1.3.6.
Fix a function ξ : R → R such that ξ(t) = 1 for t ∈ [0, 1], and ξ(t) = 1/t for all t ≥ 1, and
define

(1.3.15) Ψ(u) =





−g(u)ξ
(
‖F ′(u)|TuM‖∗

)
V (u), u ∈M \ Σ,

0 u ∈ Σ,

for all u ∈M \ Σ.



3. EXISTENCE OF EIGENVALUES: MINIMIZATION AND GLOBAL ANALYSIS 13

By (1.3.9), Σ is contained in B, where g ≡ 0 by (1.3.13). Hence, Ψ is a locally Lipschitz
continuous. Moreover, note that

(1.3.16) sup
u∈M

‖Ψ(u)‖X < +∞.

Indeed, since V is a pseudogradient vector field for F on M , (1.3.1) holds. Thus

‖Ψ(u)‖X = g(u)ξ(‖F ′(u)|TuM‖∗)‖V (u)‖X ≤ 2,

for all u ∈M . Furthermore, by (1.3.14) and (1.3.15), it follows that Ψ is odd.
Thus, by Lemma 1.3.7 and Lemma 1.3.8, for every u ∈M the initial value problem

(1.3.17)






d
dt
α(u, t) = Ψ(α(u, t))

α(u, 0) = u,

admits a unique solution, which we denote by α(u, t), belonging to M and globally defined
for all t ≥ 0. Moreover,

(1.3.18) α(−u, t) = −α(u, t),
for all t ≥ 0 and all u ∈ M .

Let u ∈M . We claim that the function

t 7→ F
(
α(u, t)

)
,

is non-increasing. Indeed,

d

dt
F(α(u, t)) = 〈F ′(u),

d

dt
α(u, t)〉

= 〈F ′(u),Ψ(α(u, t))〉
= −g(α(u, t))ξ

(
‖F ′(α(u, t))‖∗

)〈
F ′(α(u, t)), V (u)

〉
,(1.3.19)

for all t ≥ 0. Recall that V is a pseudo-gradient vector field. Thus,

(1.3.20) ξ
(
‖F ′(α(u, t))|Tα(u,t)M‖∗

)〈
F ′(α(u, t)), V (u)

〉
≥ ‖F ′(α(u, t))|Tα(u,t)M‖∗,

for all t ≥ 0. Indeed, (1.3.20) follows by the definition of the auxiliary function ξ and the
second inequality of (1.3.1). Since g ≥ 0, (1.3.20) and (1.3.19) imply that

d

dt
F
(
α(t, u)

)
≤ 0,

for all t ≥ 0, and the claim is proved.
We now prove that the desidered odd deformation can be obtained by setting

η(u) = α(u, 2/δ), u ∈M.

The fact that η is odd is a consequence of (1.3.18), and one is left to prove that both
(1.3.10) and (1.3.11) hold. To do so, let u ∈M be fixed.
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First, let us prove that (1.3.10) holds. Arguing by contradiction, assume that there exists
u ∈ M such that F(u) ≤ λ+ δ and F(η(u)) > λ− δ. By the above claim, it follows that

(1.3.21) α(u, t) ∈ A, for all t ∈ [0, 2/δ].

Therefore, by (1.3.13), we have that g(α(u, t)) = 1, for all t ∈ [0, 2/δ]. Thus, by (1.3.9),

F(η(u))−F(u) =

∫ 2/δ

0

d

dt
F
(
α(u, t)

)
dt

=

∫ 2/δ

0

〈
F ′
(
α(u, t),

)
,
d

dt
α(u, t)

〉
dt =

∫ 2/δ

0

〈
F ′
(
α(u, t)

)
,Ψ
(
α(u, t)

)〉
dt

= −
∫ 2/δ

0

g(α(u, t))ξ
(
‖F ′(α(u, t))|Tα(u,t)M‖∗

)〈
F ′
(
α(u, t)

)
, V (α(u, t))

〉
dt

= −
∫ 2/δ

0

ξ
(
‖F ′(α(u, t))|Tα(u,t)M‖∗

)〈
F ′
(
α(u, t)

)
, V (α(u, t))

〉
dt

≤ −
∫ 2/δ

0

‖F ′(α(u, t))|Tα(u,t)M‖∗ dt ≤ −2

δ
δ2 = −2δ,

whence
F
(
η(u)) ≤ F

(
u)− 2δ ≤ λ+ δ − 2δ = λ− δ,

that is a contradiction. Since u ∈M was arbitrary, (1.3.10) is proved.
In order to prove (1.3.11), assume that u ∈ M is such that F(u) ≤ λ− 2δ. Recall that

the function t 7→ F(α(u, t)) is non-increasing. Thus,

α(u, t) ∈ B, for all t ∈ [0, 2/δ].

Then, by (1.3.13) one has that g(α(u, t)) ≡ 0. Hence,

F(η(u)) = F(u) +

∫ 2/δ

0

〈
F ′
(
α(u, t)

)
,Ψ
(
α(u, t)

)〉
dt = F(u).

Since u ∈M was arbitrary, (1.3.11) follows. �

3.3. Proof of Theorem 1.3.3. Using the odd and continuous deformation provided
by Proposition 1.3.9, the following theorem can be proved arguing by contradiction. Then
Theorem 1.3.3 plainly follows by the definition of Palais-Smale condition.

Theorem 1.3.10. Let X be a uniformly convex Banach space, F ,G be two even and posi-
tively homogeneous C1 functionals of degreee p > 1 on X. For all n ∈ N, denote by Vn the
set of all odd and continuous mappings ω 7→ fω from S

n−1 to M = G−1({1}) and set

λn = inf
f∈Vn

max
ω∈Sn−1

F(fω).

Then, there exist a sequence {uk}k∈N ⊂M such that

(1.3.22) F(uk) → λn, ‖F ′(uk)
∣∣
TuM

‖∗ → 0,
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as k → ∞.

Proof. The antithesis is the existence of a positive number δ bounding from below the
cotangent norm ∥∥∥F ′(u)

∣∣
TuM

∥∥∥
∗
≥ δ,

for all u ∈M such that

|F(u)− λn| ≤ 2δ.

Hence, by Proposition 1.3.9, there exists an odd deformation η ∈ C(M,M) such that

(1.3.23) F(u) ≤ λn + δ =⇒ F(η(u)) ≤ λn − δ,

for all u ∈M .
The number λn is defined as an infimum among connected and symmetric n-paths on

M . Hence there exists a sequence {fk}k∈N of odd and continuous mappings from the unit
sphere Sn−1 to M such that

(1.3.24) 0 ≤ Fn(fk)− λn ≤ 2−kδ,

for all k ∈ N, where

(1.3.25) Fn(fk) = max
ω∈Sn−1

F(fk(ω)), k ∈ N.

Let k ∈ N, and ωk be a unit vector in Rn realizing the maximum in (1.3.25). Now, on the
one hand, if ν ∈ Sn−1, then

F(fk(ν)) ≤ max
ω∈Sn−1

F(fk(ω)) = Fn(fk) ≤ λn + 2−kδ ≤ λn + δ.

Thus by (1.3.23)

F(η(fk(ν))) ≤ λn − δ.

Therefore by taking the maximum among all unit vectors ν ∈ Sn−1

Fn(η ◦ fk) = max
ν∈Sn−1

F(η(fk(ν))) ≤ λn − δ.

On the other hand, since η : M → M is odd and continuous, the composite function
gk = η◦fk is an odd and continuous mapping from Sn−1 toM , hence an admissible competitor
for the infimum definining λn and one has

Fn(η ◦ fk) = Fn(gk) ≥ inf
g∈Vn

Fn(g) = λn,

a contradiction. �

Theorem 1.3.3 plainly follows by the last theorem due to the definition of the Palais-Smale
condition.
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3.4. PS sequences and convex energies. In the following, we need the next two
technical lemmas. The first is a generalized Hölder inequality for convex homogeneous
functionals. The second is a sufficient condition for the convergence of convex and weakly
lower semicontinuous energies.

Lemma 1.3.11. Let u, v ∈ X. Let G be a Gâteaux differentiable, even convex and positively
p-homogeneous functional on a normed space X. Then

|〈G ′(u), v〉| ≤ pG(u)
p−1
p G(v) 1

p ,

for all v ∈ X.

Proof. Since G is positively homogeneous of degree p, one has

〈G ′(u), u〉 = pG(u).
The functional G is Gâteaux differentiable at u ∈ X . Thus

〈DG(u), v〉 = G(u+ t(v − u))− G(u)
t

+ o(1) + pJ (u)

as t→ 0+. But the convexity implies that

G(u+ t(v − u))− G(u) ≤ t
(
G(v)− G(u)

)
,

for all t ∈ [0, 1]. Thus sending t→ 0+ gives

〈DG(u), v〉 − G(v) ≤ (p− 1)G(u).
Note that the first summand in the left hand side is positively homogeneous of degree 1,
with respect to the variable v, whereas the second one is homogeneous of degree p. Thus,
one has

〈DG(u), v〉 s− G(v) sp ≤ (p− 1)G(u),
for all s > 0. Hence by elementary optimization

〈G ′(u), v〉 ≤ pG(u)
p−1
p G(v) 1

p

for all u, v ∈ X . Since the functional is even, by possibly replacing v by −v, the thesis
follows. �

Lemma 1.3.12. Let F be a convex and weakly lower semicontinuous functional on X. If
un ⇀ u weakly in X and

lim
n→∞

〈F ′(un), u− un〉 = 0

then F(un) → F(u) as n→ ∞.
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Proof. The proof is one line. By convexity one has

F(u) ≥ lim sup
n→∞

(F(un) + 〈F ′(un), u− un〉) = lim sup
n→∞

F(un).

On the other hand by the weak lower semicontinuity

F(u) ≤ lim inf
n→∞

F(un).

Thus F(un) → F(u). �

Lemma 1.3.13. Let F ,G be even, convex C1 functionals on a uniformly convex Banach
space X which are positively homogeneous of degree p > 1, and M = G−1({1}). Assume that
G is compact and F is coercive. Let {un}n∈N ⊂M be a sequence such that

lim
n→∞

F(un) = λ,(1.3.26)

lim
n→∞

‖F ′(un)|TunM‖∗ = 0.(1.3.27)

Then by possibly passing to a subsequence

(1.3.28) lim
n→∞

〈
F ′(un), u− un

〉
= 0.

Proof. Since F is coercive, the sequence un is bounded in X . By reflexivity, up to
relabelling there exists a weak limit u ∈ X . Then, the sequence of numbers

δn =
1

p
〈G ′(un), un − u〉

tends to zero as n → ∞. Indeed, G(u − un) → 0, since un − u ⇀ 0, and Lemma 1.3.11
implies

(1.3.29)
∣∣〈G ′(un), un − u〉

∣∣ ≤ pG(u− un)
1
p .

Note that

Pun(v) = v −
〈
G ′(un), v

〉

p
un,

defines an element of the tangent space TunM to M at its point un. Moreover,

Pun(u− un) = u− (1− δn)un.

Up to subsequences, inequality
∣∣〈F ′(un), ϕ

〉∣∣ ≤ 2−n‖ϕ‖X , for all ϕ ∈ TunM,

follows by (1.3.27). Plugging ϕ = Pun(u− un) in yields
∣∣〈F ′(un), u− (1− δn)un

〉∣∣ ≤ C 2−n.

The constant C > 0 is independent of n ∈ N. By sending n→ ∞ one gets (1.3.28). �
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Remark 1.3.14. If M is a C1 level set of some convex homogeneous compact functional G,
then convex homogeneous coercive energies F are weakly continuous along the Palais-Smale
sequences {un}n∈N on M . Indeed, by Lemma 1.3.12 condition (1.3.28) implies the conver-
gence F(un) → F(u) as n → ∞. Moreover, along Palais-Smale sequences the differentials
F ′ are strongly monotone in the following sense.

Theorem 1.3.15. Let F ,G be even, convex C1 functionals on a uniformly convex Banach
space X which are positively homogeneous of degree p > 1, and M = G−1({1}). Assume that
G is compact and F is coercive. Then

〈F ′(un)− F ′(u), un − u〉 → 0

for all a Palais-Smale sequences {un}n∈N on M .

Proof. Let {un}n∈N be a Palais-Smale sequence in M . Since F is coercive and it
is bounded on {un}n∈N by definition, up to relabelling we may assume that the sequence
converges weakly to some limit u ∈M . Then

〈F ′(u), u− un〉 → 0.

By Lemma 1.3.13, one also has 〈F ′(un), u− un〉 → 0. Subtracting concludes the proof. �

3.5. Comments on the variational eigenvalues. The min-max formula using odd
and continuous mappings defined on unit sphere seems to have been introduced in the
paper [37] (see also [30]). There exists another one, that relies on sophisticated topological
index theories involving the notion of Krasnoselskii genus (see Remark 1.3.16 below). In
that case, the infimum is taken among the objects having a prescribed genus, cf. equation
(1.3.30). At variance with that, the admissible competitors for the infimum defining the
λn’s are “parametric objects”, i.e. odd and continuous images of Sn−1. They can be seen
as symmetric, connected and compact “n-paths” along the “symmetric landscape” given by
the graph of the even functional F on M .

Remark 1.3.16. For reader’s convenience, we recall that the Krasnoselskii genus of a com-
pact, nonempty and symmetric subset A ⊂ X of a Banach space is defined by

γ(A) = inf
{
n ∈ N : ∃ a continuous odd mapp f : A→ S

n−1
}
,

with the convention that γ(A) = +∞, if no such an integer n exists. Using the Krasnoselskii
genus, an infinite sequence of critical values of F is usually produced as follows (see [50, 87])

(1.3.30) λ̃n = inf
γ(A)≥n

max
u∈A

F(u)

G(u) , k ∈ N.

It seems to be an interesting open problem to establish whether or not the two minimax
procedures actually give the same sets of values. It is known (see [37] and the reference

therein) that λ̃n ≤ λn, for all n ∈ N. So far, equality is known to hold only for n ∈ {1, 2}.
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M

f(S1)

Figure 1. How a path would look like if M was 2-dimensional

Remark 1.3.17. For example, consider (6.2.3) in the case n = 1. Any continuous odd
mapping f from S0 ∼= {±1} to M can be identified with the choice of an antipodal pair
uf ,−uf on the symmetric manifold M and the functional F is even, thus the infimum of

F1(f) = max{F(uf),F(−uf)} = F(uf),

among all the admissible pairs f = {uf ,−uf} ⊂ M is in fact the minimum of the Rayleigh
quotients.

In second place, in order to compute (6.2.3) when n = 2, one should minimize the
quantity

F2(f) = max
ω∈S1

F(fω),

among all odd and continuous mappings from the unit circle to M , compare with Figure 1.
In general, λn is obtained via minimization of the quantity

(1.3.31) Fn(f) = max
ω∈Sn−1

F(fω),

upon the class Vn of admissible n-paths.

4. Existence of eigenvalues for variational integrals

Let Ω be an open set having finite N -dimensional Lebesgue measure. We apply Theo-
rem 1.3.3 to the case of some functionals defined on W 1,p(Ω) by

F(u,Ω) =

∫

Ω

F (x, u(x),∇u(x)) dx

and

G(u,Ω) =
∫

Ω

G(x, u(x)) dx.
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In order to make sure that the min-max formula of Theorem 1.3.3 applies, some assumptions
on the the Lagrangians F,G are needed so that F satisfies the Palais-Smale condition on
M = G−1({1}). Namely,

F (x, u, z) = H(x,∇u) + b(x)|u|p, G(x, u) = ρ(x)|u|p,
where H : Ω× RN → R is a measurable function such that

(1.4.1) z 7→ H(x, z) is C1, convex, even and positively homogeneous of degree p > 1,

and 0 < c1 < b(x), ρ(x) < c2 < ∞ are measurable functions. Assume also that the growth
conditions

(1.4.2) c1(H)|z|p ≤ H(x, z) ≤ c2(H)|z|p,
hold for all (x, z) ∈ Ω× R

N . Moreover, suppose that such that
(1.4.3)

lim
n→∞

∫

Ω

〈
∇zH(x,∇un)−∇zH(x,∇u),∇un −∇u〉 dx = 0 ⇒ lim

n→∞

∫

Ω

|∇un −∇u|p dx = 0.

for all x ∈ Ω and all sequences {un}n∈N in M .

Theorem 1.4.1. Let X(Ω) be either W 1,p
0 (Ω) or1 W 1,p(Ω). Assume that the structure con-

ditions (1.4.1), (1.4.2) and (1.4.3) hold. For every n ∈ N define

(1.4.4) λn(Ω) = inf
f∈Cn

max
ω∈Sn−1

F(fω,Ω)

where Cn denotes the class of all odd and continuous mappings from Sn−1 to the C1 one-
codimensional manifold M = G−1({1}) of X(Ω). Then each λn(Ω) is an eigenvalue of the
pair (F ,G). Moreover,

0 ≤ λ1(Ω) ≤ λ2(Ω) ≤ . . . ≤ λn(Ω) ≤ . . .

and λn(Ω) → +∞ as n→ ∞.

Proof. The functionals F ,G are convex, even and positively homogeneous of degree
p > 1. By Theorem 1.3.3, it is enough to prove that F satisfies the Palais-Smale condition
on the manifold

M =

{
u ∈ X(Ω) :

∫

Ω

ρ(x)|u(x)|p dx = 1

}
.

To this aim, we use the structure assumptions. The growth conditions (1.4.2) in particular
imply that F is coercive. Hence every Palais-Smale sequence {un}n∈N is bounded in X(Ω)
and admits a weakly converging subsequence {unν}ν∈N. Since Ω has finite N -dimensional

1In the second case, assume also Ω has a Lipschitz boundary.
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Lebesgue measure the embedding of X(Ω) into Lp(Ω) is compact2. Then G is compact. Thus
by Theorem 1.3.15 the quantity
∫

Ω

〈
∇zH(∇unν)−∇zH(∇u),∇unν −∇u

〉
dx+

∫

Ω

b(x)
(
|unν |p−2unν − |u|p−2u

)
(un − u) dx

goes to zero as n → ∞. That implies the strong convergence of the sequence unν . Indeed,
by (1.4.3)

lim
ν→∞

∫

Ω

|∇unν −∇u|p dx = 0,

and

lim
ν→∞

∫

Ω

|unν − u|p dx = 0

by Proposition A.3.2. We divide the rest of the proof in steps.
The sequence is non-decreasing. Let n ∈ N and f : Sn−1 → M be a an odd continu-

ous mapping. Then, let E be an n-dimensional vector subspace of Rn+1 and consider the
restriction gE of f to the intersection Sn ∩ E ∼= Sn−1. One has

max
u∈f(Sn)

∫

Ω

F (x, u,∇u) dx ≥ max
u∈f(Sn∩E)

∫

Ω

F (x, u,∇u) dx

= max
u∈gE(Sn−1)

∫

Ω

F (x, u,∇u) dx

≥ inf
g∈Co(Sn−1;M)

max
u∈g(Sn−1)

∫

Ω

F (x, u,∇u) dx = λn(Ω).

Since f was arbitrary in Cn+1, passing to the infimum among all f ∈ Cn+1 yields

λn+1(Ω) ≥ λn(Ω).

The sequence is unbounded. To prove of this fact given below uses the argument of [50,
Proposition 5.4] (for a different proof, avoiding the use of Schauder bases, one could adapt
the argument of [F1, Theorem 5.2]).

Recall that the X(Ω) is denoting either W 1,p(Ω) or its closed vector subspace W 1,p
0 (Ω).

The Banach space X(Ω) admits a Schauder basis (see [47, 74]). Namely, there exists an
ordered countable set of elements {en}n∈N ⊂ X(Ω) with the property that for all u ∈ X(Ω),
we have

u =
∞∑

j=1

αj ej

for a (uniquely determined) sequence of scalars {αj}j∈N. Here the converge of the series
above has to be understood in the sense of the norm topology. Denote by

En = Vect({e1, . . . , en}),
2Here it is where the smoothness assumption on the boundary is necessary, if X(Ω) is denoting W 1,p(Ω).



22 1. BASIC PRELIMINARIES ON NONLINEAR EIGENVALUES

the linear envelope of the first n elements of the basis. Then it is clear that the union⋃
n∈NEn is dense in X(Ω). Set also

Fn = Vect({ek}k>n),

which is the topological supplement of the finite-dimensional vector space En, and define the
new sequence

µn(Ω) = inf
f∈Cn

max
u∈f(Sn−1)∩Fn−1

∫

Ω

F (x, u,∇u) dx, n ∈ N.

At first, we verify that such a sequence is actually well defined. Indeed, let f be an odd
and continuous map from the unit sphere S

n−1 to M and assume that the intersection
f(Sn−1) ∩ Fn−1 is empty: this implies that for every ω ∈ Sn−1, the element f(ω) always has
at least a nontrivial component on En−1. By composing f with the continuous odd operator

Pn−1 : X(Ω) → En−1,

given by the natural projection on the linear space En−1, the map Pn−1◦f is odd, continuous
and Pn−1 ◦ f(ω) 6= 0, for every ω ∈ S

n−1. That is, we constructed an odd continuous map
from Sn−1 to En−1 \ {0} ≃ Rn−1 \ {0}. That is in contradiction with Borsuk-Ulam theorem3.
Hence the image of any f ∈ Cn has to intersect Fn−1, for every n ∈ N.

Obviously µn(Ω) ≤ λn(Ω). Therefore it sufficies now to show that

lim
k→∞

µn(Ω) = +∞.

At this aim, assume by contradiction that µn(Ω) < µ, for all n ∈ N. Then, for every n ∈ N,
we can take a mapping f ∈ Cn and un ∈ f

(
Sn−1

)
∩ Fn−1 such that

(1.4.5)

∫

Ω

F (x, un,∇un) dx < µ.

Since un ∈ M for all n ∈ N, equation (1.4.5) implies that the sequence {un}n∈N is bounded
in X(Ω) and weakly converges (up to a subsequence) to some limit function u ∈M .

For every k ∈ N, consider the functional φk defined on X(Ω) by

φk(u) = αk, if u =
+∞∑

j=1

αjej ∈ X(Ω).

By definition of Schauder basis such functionals are linear and they also turn out to be
continuous, cf. [10, page 83]. Thus the weak convergence of the sequence {un}n∈N to u
implies that limn→∞〈φk, un〉 = 〈φk, u〉, for all k ∈ N. Since un ∈ Fn−1, we have that

φk(un) = 0, for every k ≤ n− 1.

3We recall that the Borsuk-Ulam states the following:

“for every continuous map f : Sn → Rn, there exists x0 ∈ Sn such that f(x0) = f(−x0)”.

Since our function Pn−1 ◦ f is odd, this would give that 0 ∈ Im(Pn−1 ◦ f), that is a contradiction.
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Thus φk(u) = 0 for all k ∈ N. This means that u = 0, contradicting the fact that u ∈M . �

Remark 1.4.2. Let Ω be a bounded Lipschitz open set. A close inspection shows that the
above proof can be repeated verbatim in the case when X(Ω) = W 1,p(Ω) and

G(u,Ω) =
∫

∂Ω

ρ(x)|u(x)|pdHN−1

for all u ∈ W 1,p(Ω) and 0 < c1 ≤ ρ(x) ≤ c2 < +∞ is a measurable function. The integral
has to be understood in the sense of traces.

Note that the Lagrangian function H has in particular to satisfy the strong convexity
condition (1.4.3). Owing to the elementary inequalites of the Appendix, one can to apply
the formula to produce eigenvalues of the two model operators: the p-Laplacian and the
pseudo p-Laplacian.

Corollary 1.4.3. Let Ω ⊂ RN with |Ω| < ∞ and 1 < p < ∞. Let ‖ · ‖ denote either
the euclidean norm or the ℓp norm in R

N . Then there exists a non-decreasing unbounded
sequence of eigenvalues for the Rayleigh quotient∫

Ω

‖∇u(x)‖p dx
∫

Ω

|u|p dx
, u ∈ W 1,p

0 (Ω).





CHAPTER 2

Classical elliptic regularity for eigenfunctions

Throughout this chapter there is no claim of originality. The results are extremely
classical. Yet, for sake of completeness it is worth to perform some explicit computations
nonetheless. Some well known tools of the classical elliptic regularity are used to give an
explicit bound for the eigenfunctions.

1. L∞ bounds

In this first section some explicit L∞ bounds are provided for the eigenfunctions related
to the variational integrals

F(u,Ω) :=

∫

Ω

H(x,∇u) dx

subject to the constraint

G(u,Ω) :=
∫

Ω

|u|q dx = 1.

Here Ω is an open set of finite Lebesgue measure in RN , 1 < p < N , 1 < q < p∗ := Np/(N−p)
and H is some convex and p-homogeneous C1 function. The p-growth conditions

(2.1.6) C1(H)|z|p ≤ H(x, z) ≤ C2(H)|z|p, z ∈ R
N ,

are assumed to be valid for all (x, z) ∈ Ω× RN with two suitable constants C1, C2 > 0.
Unless q = p, the problem is sligthly different from the ones adressed in the thesis. On

the other hand, even if q 6= p the scaling invariance of the Rayleigh quotient

(2.1.7)

∫

Ω

H(x,∇u) dx
(∫

Ω

|u(x)|q dx
) p

q

holds true and its critical levels have many features in common with the eigenvalues of the
corresponding problem with q = p. Minimizers and other stationary points of the quotient
satisfy the Euler-Lagrange equation

(2.1.8)
1

p

∫

Ω

〈
∇zH(∇u) , ∇ϕ

〉
dx = λ‖u‖p−q

Lq(Ω)

∫

Ω

|u|q−2uϕ dx

for all ϕ ∈ W 1,p
0 (Ω). Note that the problem is non-local if q 6= p.

25
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As a model case is obtained by the choice

(2.1.9) H(z) = ‖z‖, z ∈ R
N ,

where the symbol ‖·‖ is denoting a general norm associated with some convex body K in RN

(see Chapter 7). For further details the reader is referred to [F1], where the corresponding
eigenvalue problem was carefully discussed. Namely, for any critical point u of the Rayleigh
quotient the equation1

(2.1.10)
∫

Ω

‖∇u(x)‖p−1

〈
νK

(
∇u(x)

‖∇u(x)‖

)

∥∥∥νK
(

∇u(x)
‖∇u(x)‖

)∥∥∥
∗

,∇ϕ(x)
〉
dx = λ‖u‖p−q

Lq(Ω)

∫

Ω

|u(x)|q−2u(x)ϕ(x) dx,

holds for all ϕ ∈ W 1,p
0 (Ω). Here νK denotes the outward pointing unit normal to ∂K and

‖ · ‖∗ stands for the support function of the convex body K, cf. Chapter 7.

Theorem 2.1.1. Let Ω be an open set of finite measure in RN , 1 < p < ∞, 1 < q < p∗

and H : RN → R+ be a convex p-homogeneous C1 function. Let λ > 0 and u ∈ W 1,p
0 (Ω) be

a solution of the Euler-Lagrange equation (2.1.8). Then, there exists a positive constant M ,
independent of u, λ,Ω, such that

‖u‖L∞(Ω) ≤Mλ1/δp‖u‖L1(Ω),(2.1.11)

where δ = 1/N if q ≤ p, and δ = 1/q − 1/p+ 1/N otherwise.

Remark 2.1.2. There exists a constant c > 0, such that

(2.1.12) ‖w‖Lq(Ω) ≤ c|Aw|γ‖∇w ‖Lp(Ω),

for all w ∈ W 1,p
0 (Ω), where Aw = {x ∈ Ω : w(x) 6= 0}. Here

(2.1.13) γ =

{
1/N, if q ≤ p,

1/q − 1/p+ 1/N, if q > p.

For istance, one may take

(2.1.14) c =





(q − q/p+ 1)−1/q, if N = 1,

p(N − 1)/(N − p), if 1 ≤ p < N,

q(N − 1)/N, if p > N.

This is a consequence of the well-known Sobolev embedding of W 1,p
0 (Ω) into Lp∗(Ω) and the

Hölder inequality, that makes the volume term appear. Allthough in the case 1 < p < N
the constant c is not the sharp constant of the Sobolev inequality, the explicit value of c has
however no influence in the proof.

1To compute the Euler-Lagrange equation, formula (7.3.4) in Chapter 7 is helpful.
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Proof of Theorem 2.1.1. There is no restriction assuming (2.1.9), since the argu-
ment is the same as for a more general H . Then, let u be a solution of equation (2.1.10).
We first prove the quantitative bound (2.1.11).

To this aim, we assume without any loss of generality that u ≥ 0. Since the the purpose
is to prove the validity of the homogeneous estimate (2.1.11), one can also assume that

(2.1.15)

∫

Ω

|u(x)|q dx = 1.

Indeed, the general case follows by a simple scaling argument.
Since the first variation of the Rayleigh quotients has to vanish at the critical point u,

it follows that equation (2.1.10) holds for all ϕ ∈ W 1,p
0 (Ω), where νK denotes the outward

pointing normal at the boundary of the convex body K and ‖ · ‖∗ stands for the support
function associated with K. Here we used that u(x) ≥ 0 almost everywhere in Ω. Note that
also the term ‖u‖p−q

Lq(Ω) was ruled out via the normalization condition (2.1.15). Let k > 1 and

plug ϕ = (u− k)+ in as a test function. Then

(2.1.16)

∫

Ak

‖∇u(x)‖p dx = λ

∫

Ak

u(x)q−1
(
u(x)− k

)
dx,

where we set
Ak = {x ∈ Ω : u(x) > k}.

Note that

(2.1.17) k|Ak| ≤ ‖u‖L1(Ω),

for all k > 1. Let us consider the nonnegative function defined by

f(k) =

∫

Ak

(u− k) dx =

∫ +∞

k

|At| dt,

for all k > 1, and set

(2.1.18) ε =





pγ/(p− 1), if q ≤ p,

pγ/(q − 1), if q > p.

We claim that there exists a constant κ = Cλε/γp, with C independent of λ, such that

(2.1.19) f(k) ≤ κ
εk(−f ′(k))1+ε

holds for all numbers k larger than or equal to

(2.1.20) k0 = κ ‖u‖L1(Ω).

Indeed, by separating variables and integrating, by (2.1.19) one gets

k
ε

1+ε − k
ε

1+ε

0 ≤ κ
ε

1+ε

(
f(k0)

ε
1+ε − f(k)

ε
1+ε

)
,
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for all k > k0 such that f(k) > 0. By using (2.1.19) again, this implies that

k
ε

1+ε ≤ k
ε

1+ε

0 (1 + κ
ε|Ak0|ε),

for all k > k0 such that f(k) > 0. The rough estimate (2.1.17) combined with (2.1.20) gives
|Ak0 |ε < 1/κ, so that

κ|Ak0| ≤ 1,

whence

(2.1.21) k ≤ 2
1+ε
ε k0, whenever f(k) > 0,

This gives the desired estimate with the constant

(2.1.22) M = 2
1+ε
ε C1/ε,

and the claim is proved.
To sake of completeness, in order to get the decay estimate (2.1.19), it is worth to

distinguish whether q is above or below the threshold given by p, even though the proof is
quite the same. Let us first assume that q ≤ p. Then, by the equivalence of all norms on
R

N , there exists a positive constant c1 = c1(K) only depending on K such that
∫

Ak

‖∇u(x)‖p dx ≥
(
c1 c2|Ak|1/N

)−p
∫

Ak

(u− k)p dx,

for all k > 1, where c2 = c2(N, p, q) is given by (2.1.14). On the other hand, since q ≤ p, we
have that uq−1 ≤ up−1 on the set Ak, provided k ≥ 1. Thus,

∫

Ak

u(x)q−1(u(x)− k) dx ≤ cp3

(∫

Ak

(u− k)p dx+ kp−1

∫

Ak

(u− k) dx

)
,

for all k > 1, where c3 = c3(p) = 21−1/p. Now, we interpolate between the latter and the
former, by using the identity (2.1.16). Notice that by (2.1.17) we have that

1− λ(c1c2c3|Ak|1/N )p ≥ 1/2

as soon as k ≥ k0, where k0 is defined according to (2.1.20) setting

k0 = 2N/p(c1c2c3)
NλN/p ‖u‖L1(Ω) = κ‖u‖L1(Ω),

where
κ := 2

N
p (c1c2c3)

Nλ
N
p .

Thus, after a simple absorption, we get
∫

Ak

(u− k)p dx ≤ 2λ(c1c2c3)
p|Ak|p/Nkp−1

∫

Ak

(u− k) dx,

for all k ≥ k0. By using Hölder inequality on the left and dividing out, one obtains
(∫

Ak

(u− k) dx

)p−1

≤ 2λ(c1c2c3)
p|Ak|p/N+p−1kp−1
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whence, taking the (p− 1)-th root, it follows that
∫

Ak

(u− k) dx ≤ 2
1

p−1λ
1

p−1 (c1c2c3)
p

p−1 |Ak|
p

(p−1)N
+1k = Hε|Ak|ε+1k,

for all k ≥ k0, and the conclusion follows by the claim. Precisely, by (2.1.21) and (2.1.22)
we have that the function u only takes values less than MλN/p‖u‖L1(Ω), where

(2.1.23) M = 2N+1(c1c2c3)
N .

Let us pass to the case when q > p. On the one hand, there exists c1 = c1(K) such that

∫

Ak

‖∇u‖p dx ≥ (c1c2|Ak|γ)−p

(∫

Ak

(u− k)q dx

) p
q

,

where c2 = c2(N, p, q) is defined by (2.1.14) and γ = 1/q − 1/p+ 1/N . On the other hand,
∫

Ak

uq−1(u− k) dx ≤ cp3

(∫

Ak

(u− k)q dx+ kq−1

∫

Ak

(u− k) dx

)
,

where c3 = c3(p, q) = 2(q−1)/p. Similarly as above, we would like now to use identity (2.1.16)
and absorb an integral term in the left. To do so, we use that q > p to estimate from below

(∫

Ak

(u− k)q dx

) p
q

=

(∫

Ak

(u− k)q dx

) p−q
q
∫

Ak

(u− k)q dx ≥
∫

Ak

(u− k)q dx,

where we also used that ‖u‖p−q
Lq(Ω) = 1. Arguing now as above it follows that

∫

Ak

(u− k)q dx ≤ 2q−1λ(c1c2c3)
p|Ak|γp

∫

Ak

(u− k) dx kq−1,

for all k larger than or equal to

k0 = 2
1
γp (c1c2c3)

1
γ λ

1
γp ‖u‖L1(Ω) =: κ‖u‖L1(Ω).

Again, by using Hölder inequality on the left, after dividing out and taking the (q − 1)-th
root we end up with the decay estimate

∫

Ak

(u− k) dx ≤ 2
1

q−1λ
1

q−1 (c1c2c3)
p

q−1 |Ak|
γp
q−1

+1 k = κ
ε|Ak|ε k,

for all k ≥ k0. Once again, the conclusion follows by the claim, and, in the estimate (2.1.11),
we may take as a constant

M = 2
q+γp
γp (c1c2c3)

1/γ .

For the second part of the statement, the reader is referred to discussion in next section. �
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Remark 2.1.3. An interested reader may have noticed that nothing has been said about
the dependance on p, q, N of the constant M appearing in (2.1.11). A close direct inspection
in the proof above shows that setting

M = 2N(2−1/p)+1
(
cK · c(N, p, q)

)N
,

if q ≤ p, and

M = 2
2q−1+γp

γp

(
cK · c(N, p, q)

)1/γ
,

otherwise, will do. Here C(N, p, q) is defined in both cases according to (2.1.14) and

(2.1.24) cK = max
z∈K

|z|,

for istance cK = 1 in the case of the euclidean ball K = B(0, 1). If the p-th power of the
norm ‖·‖ is replaced by a more general Lagrangian satisfying the p-growth conditions (2.1.6),
then cK is replaced by C1(H).

A similar bound can be obtained for the fractional eigenfunctions discussed by Lindgren
and Lindqvist [70]. Recall that they are the stationary points of the non-local Rayleigh
quotient ∫∫

R2N

|u(y)− u(x)|p
|y − x|N+sp

dxdy
∫

RN

|u(x)|p dx
.

Theorem 2.1.4. Let Ω be a bounded Lipschitz set in RN , s ∈ (0, 1) and p ∈ (1,∞). Let u
be a stationary point of the non-local Rayileigh quotient with critical value λ. Then

‖u‖L∞(Ω) ≤ C‖u‖L1(Ω),

where the constant only depends on N, p, s, λ,Ω.

The decay estimate on the level sets
∫ +∞

k

|{u > t}| dt ≤ c k|{u > k}|1+ε

holds for all k > 0 with the exponent ε = sp/N(p − 1) and a constant c = c(N, p, s, λ,Ω).
Then the proof runs as in the local case.

2. Hölder continuity of eigenfunctions

The proof of the Harnack inequality below can be found in the Trudinder’s work [89].
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Theorem 2.2.1. Let Ω be a domain of finite measure in RN , 1 < p < N , 1 < q < p∗

and H : RN → R+ be a convex p-homogeneous C1 function satisfying the p-growth condi-
tions (2.1.6). Let B̺ be a ball such that the concentric ball B3̺ is contained in Ω and let u
be a non-negative solution of the Euler-Lagrange equation (2.1.8). Then

sup
B̺

u ≤ C inf
B̺

u,

where the constant C > 0 only depends on p, q, N , C1(H), C2(H) and the supremum of u on
B3̺.

The following strong minimum principle is a plain consequence of the Harnack inequality.

Theorem 2.2.2. Let u be a non-negative eigenfunction on a connected set Ω. Then

either u > 0 or u ≡ 0.

Another important consequence of the Harnack inequality is the Hölder continuity of the
eigenfunctions2.

Theorem 2.2.3. Let Ω be an open set of finite measure in RN , 1 < p < N and 1 < q < p∗.
Then the eigenfunctions are Hölder continuous.

Remark 2.2.4. A stronger regularity often holds. Namely, eigenfunctions also have Hölder
continuous derivatives. Thus, in fact, they are analytic out of the set where their gradient
vanishes, due to the classical uniformly elliptic regularity, see [51]. That is the case of the
standard p-Laplace operator ∆p. For the C1,α-solvability of the corresponding eigenvalue
problem, see [34, 69]. Then one could expect such a result to hold for similar nonlinear

operators, such as the pseudo p-Laplacian ∆̃p considered in Chapter 6.
However, we point out that the by now classical results of [34, 69] do not apply directly

to the case of ∆̃p, since the type of degeneracy is quite different. Low regularity (like L∞ or
C0,α) is assured by Theorem 2.2.3 above. On the contrary, higher regularity is not clear.

For example even the Lipschitz continuity of solutions seems not to be fully understood.
We mention [12] where that is proved for the case p ≥ 2 (see also [90] for some previous
results valid for p > 3).

Moreover, Dirichlet eigenfunctions attain their boundary values in the classical sense out
of a set small in p-capacity, and they are uniformly Hölder continuous with their derivatives
up to the boundary if Ω is smooth, cf. [89, Corollary 4.2]. Different boundary conditions
require another discussion.

It is worth pointing out that the eigenfunctions are quasiminimizers of some variational
integrals (possibly different from F and G) satisfying natural growth conditions, cf. [51,

2Actually, the Hölder regularity can be proved both for the solutions of the Euler equation and for the
quasiminimizers of the Rayileigh quotient by a different method, see the discussion after Theorem 2.2.3.
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Theorem 6.1]. Thus they belong to a De Giorgi class. Recall that this amounts to say that
a Caccioppoli inequality

(2.2.1)

∫

A(k,̺)

|∇u|p dx ≤ M

(R− ̺)p

∫

A(k,R)

(u− k)p dx+M |A(k, R)|1− 1
γ

holds for the (non-negative) eigenfunctions u, for all k, ̺ > 0. Here M > 0, γ > N/p are
suitable constants and A(k, r) denotes Br ∩ {u > k}, where Br is a small ball centered at
some point x0 ∈ Ω. Once that is proved, the Hölder continuity follows. For istance, see [51,
Theorem 7.6].

To get (2.2.1), one considers a cut off function ζ ∈ C∞(Ω), compactly supported at a ball
BR, such that ζ ≡ 1 in the concentric ball of radius ̺ < R and |∇ζ | ≤ 2/(R − ̺). Denote
H(z) = ‖z‖. Then the Euler equation (2.1.10) with ϕ = (u− k)+ζ

p gives
∫

A(k,R)

H(∇u)ζp dx ≤
∫

A(k,R)\A(k,̺)

∣∣〈∇zH(∇u),∇ζ〉
∣∣ζp(u− k) dx+ c

∫

A(k,R)

(u− k)ζp dx

where for istance c = λ|Ω|
p
q
−1‖u‖p−1

L∞(Ω). This choice is possible according to the previous

section. By Lemma 1.3.11 in Chapter 1, it follows that

〈∇zH(z), w〉 ≤ H(z)
p−1
p H(w)

1
p

for all z, w ∈ R
N . Applying Young inequality

H(z)
p−1
p H(w)

1
p ≤ p− 1

p
δH(z) +

1

δp−1p
H(w)

with z = ∇u and w = ∇ζ , one of the integrals is absorbed in the left hand-side and inequality
∫

A(k,R)

|∇u|pζp dx ≤ C1

∫

A(k,R)

H(∇u)ζp dx ≤C2

(∫

A(k,R)\A(k,̺)

|∇ζ |p(u− k)p dx

+
1

p

∫

A(k,R)

(u− k)pζp dx+
p− 1

p

∫

A(k,R)

ζp dx

)
(2.2.2)

holds for suitable constants C1, C2 > 0. Let γ > N/p. Since

1

γ
+
γp−N

γN
=

p

N
,

one has

|A(k, R)|p/N ≤ |Ω|1/γ |BR|
γp−N
γN .

In the right hand-side of (2.2.2), a term can be estimated further by Sobolev inequality

∫

A(k,R)

(u− k)pζp ≤ |A(k, R)| p
N

(∫
(u− k)p

∗

+ ζ
p∗
) p

p∗

≤ |Ω|1/γ |BR|
γp−N
γN

∫
|∇ ((u− k)+ζ) |p.
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Observe that the exponent (γp−N)/γN is positive. Therefore by taking R small enough the
latter can be absorbed in the left hand-side of (2.2.2) after adding the term

∫
|∇ζ |p(u− k)p+

to both sides, which yields
∫

A(k,̺)

|∇((u− k)+ζ)|p ≤ C

(∫
|∇ζ |p(u− k)p +

∫

A(k,R)

ζp dx

)
.

Since ∇ζ = 0 everywhere with the exception of the annulus A(k, R) \ A(k, ̺), where the
estimate |∇ζ | ≤ 2/(R−̺) is valid, the Caccioppoli inequality (2.2.1) follows from the latter.





CHAPTER 3

Hidden convexity for eigenfunctions and applications

Many variational eigenvalue problems have the following properties: all the positive eigen-
functions minimize the Rayleigh quotient and all the minimizer are proportional.

For istance, that is the case for the eigenvalue problem coming from the minimization of
the Rayleigh quotient (p > 1) ∫

Ω

|∇u|p dx
∫

Ω

|u|p dx

among all functions belonging to W 1,p
0 (Ω), i.e. the eigenvalue problem for the p-Laplace

operator

∆pu = div
(
|∇u|p−2∇u

)

with zero Dirichlet condition on the boundary. Besides, the same conclusion can be drawn
for different conditions, such as Neumann, on the boundary: in this case the Rayleigh
quotient is considered on the whole of W 1,p(Ω) and its minimization is trivally accomplished
by constant functions. Again, all the minimizers are proportional (of course all constants
are) and positive eigenfunctions can only correspond to the least eigenvalue. In fact, these
appear as expedient features of eigenvalue problems for other boundary conditions. They
hold true if the p-Laplacian is replaced by a slightly different operator (correspondingly, if
the Lagrangian density in the Rayleigh quotient is replaced by the p-th power of a different
norm of the gradient).

According to the small note [F2], the two uniqueness properties are derived by a general
principle based on the convexity of the energy

∫
Ω
|∇u|p along particular curves.

1. Hidden convexity Lemma

Let Ω be an open set in RN , p ≥ 1 and H : Ω× RN → R+ be a nonnegative measurable
function such that

(3.1.3) z 7−→ H(x, z) is convex and positively homogeneous of degree p

for almost all x ∈ Ω and b(x), ρ(x) are two non-negative bounded measurable functions
bounded away from zero on Ω.

35
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The curves of functions

(3.1.4) σt(x) =
(
(1− t) u0(x)

p + t u1(x)
p
) 1

p

, t ∈ [0, 1],

play an important role. Remarkably, they are constant speed geodesics on the manifold of
normalized positive Sobolev functions

M+ =

{
u ∈ W 1,p

0 (Ω) : u > 0,

∫

Ω

u(x)p ρ(x)dx = 1

}

equipped with the distance

d(u0, u1) =

(∫

Ω

∣∣u0(x)p − u1(x)
p
∣∣ ρ(x)dx

) 1
p

.

Indeed, we have

d(σt, σs) =

(∫

Ω

|σt(x)p − σs(x)
p|ρ(x) dx

) 1
p

= |t− s|
(∫

Ω

|u0(x)p − u1(x)
p|ρ(x) dx

) 1
p

= |t− s| d(u0, u1),

for all s, t ∈ [0, 1].

The convexity of a functional K defined on M+ along the curves t 7→ σt is equivalent to
a simple inequality.

Lemma 3.1.1. Let K : M+ → [0,+∞], u0, u1 ∈ M+ and σt be defined as in (3.1.4). Assume
that

K(ui) < +∞, i = 1, 2.

Then
the function t 7−→ K(σt) is convex

if and only if
K(σt) ≤ (1− t)K(u1) + tK(u0)

for all t ∈ [0, 1].

Proof. The proof is elementary. For all pair of functions u, v ∈ M+ and t ∈ (0, 1),
denote

σt[u, v] =
(
(1− t)vp + tup

) 1
p

.

A direct computation shows that

σ(1−λ) t0+λ t1 [u0, u1] = σλ

[
σt0 [u0, u1], σt1 [u0, u1]

]
,

for all λ ∈ [0, 1]. Therefore if one sets

t = λ, u = σt0 [u0, u1], and v = σt1 [u0, u1]
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inequality

K(σt[u, v]) ≤ (1− t)K(v) + tK(u)

reads

K(σ(1−λ) t0+λ t1 [u0, u1]) ≤ (1− λ)K(σt1 [u0, u1]) + λK(σt0 [u0, u1])

and this concludes the proof. �

The following simple lemma shall found an interesting application in next sections.

Lemma 3.1.2 (Hidden Convexity). Let Ω be an open set in RN , p > 1 and H : Ω×RN → R+

be a nonnegative measurable function such that (3.1.3) holds, and set

K(u,Ω) =

∫

Ω

H(x,∇u(x)) dx.

Let u, v ∈ W 1,p(Ω) be nonnegative functions and set

σt[u, v](x) =
(
tu(x)p + (1− t)v(x)p

) 1
p

,

for all x ∈ Ω and all t ∈ [0, 1].

(3.1.5) K(σt,Ω) ≤ (1− t)K(v,Ω) + tK(u,Ω), t ∈ [0, 1].

Proof. Let ε > 0. To abbreviate the notation, set uε = u + ε, vε = v + ε. Then the
formula (

(1− t)vpε + tupε

) 1
p

defines an element σε
t of W 1,p(Ω), that is given by the composition of the vector-valued

Sobolev map

Φε
t =

(
(1− t)

1
p vε, t

1
p uε

)
∈ W 1,p(Ω;R2),

with the ℓp norm, i.e. ‖(x, y)‖ℓp = (|x|p + |y|p)1/p. Indeed, recall that the latter is a C1

function outside the origin and

‖Φε
t‖ℓp ≥ ε,

for all t ∈ [0, 1], by construction. Thus the usual chain rule formula holds, and we obtain

∇σε
t (x) = σε

t (x)
1−p
[
(1− t)∇vε(x) vε(x)p−1 + t∇uε(x) uε(x)p−1

]

= σε
t (x)

[
(1− t) vε(x)

p

σε
t (x)

p
∇ log vε(x) +

t uε(x)
p

σε
t (x)

p
∇ log uε(x)

]

almost everywhere in Ω, for all t ∈ [0, 1]. Observe that the latter is a convex combination
of ∇ log uε and ∇ log vε. By the convexity and the homogeneity of the function H in the z
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variable it follows that

H(x,∇σε
t ) ≤ (1− t) vε(x)

pH
(
x,∇ log vε(x)

)
+ t uε(x)

pH
(
x,∇ log uε(x)

)

= (1− t)H
(
x,∇vε(x)

)
+ tH

(
x,∇uε(x)

)

= (1− t)H
(
x,∇v(x)

)
+ tH

(
x,∇u(x)

)
,(3.1.6)

for almost all x ∈ Ω, for all t ∈ [0, 1]. In the last passage we simply used the fact that
∇uε = ∇u and ∇vε = ∇v. Sending ε → 0+ gives

H
(
x,∇σt[u, v]

)
≤ (1− t)H

(
x,∇v(x)

)
+ tH

(
x,∇u(x)

)

almost everywhere in Ω, for all t ∈ [0, 1] and now (3.1.5) follows just by integrating over Ω
this inequality. �

The geodesic convexity property discussed above holds true if the variational energy
integral is replaced by a nonlocal functional, such as a fractional Gagliardo (semi)norm

(3.1.7) K(u,Ω) =

∫∫

RN×RN

∣∣u(y)− u(x)
∣∣p

|y − x|N+sp
dxdy

on W s,p(Ω). Here 0 < s < 1 and W s,p(Ω) stands for the fractional Sobolev space.

Lemma 3.1.3. Let Ω be an open set in RN , s ∈ (0, 1) and p ≥ 1. Let K be as in (3.1.7)
and

σt(x) =
(
(1− t)v(x)p + tu(x)p

) 1
p

,

for all x ∈ Ω and t ∈ [0, 1]. Then

K(σt,Ω) ≤ (1− t)K(v,Ω) + tK(u,Ω)

for all t ∈ [0, 1].

Proof. Since

σt =
∥∥∥
(
t
1
pu, (1− t)

1
pv
)∥∥∥

ℓp
,

the conclusion follows by the triangle inequality
∣∣‖ξ‖ℓp − ‖η‖ℓp

∣∣ ≤ ‖ξ − η‖ℓp

by taking ξ = (t1/pu(y), (1 − t)1/pv(y)) and η = (t1/pu(x), (1 − t)1/pv(x)) for x, y ∈ Ω and
integrating the resulting inequality against the kernel on RN × RN . �
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2. Uniqueness of positive eigenfunctions

In the present section, we apply the hidden convexity of eigenvalue problems to address
uniqueness issues. The core of the uniqueness proof is that any positive function may be
connected to the global minimizer of the Rayleigh quotient by a curve σt. By the convexity of
the energy along such curve, it will follow that all the positive eigenfunctions are minimizers
of the quotient, i.e. they correspond to the least eigenvalue. The assumptions on the
structure of the eigenvalue problem are rather mild. After the proof of the theorem and
some comments on its application, an analogous result for a nonlocal energy is discussed.

Theorem 3.2.1. Let Ω ⊂ RN be an open set, having finite measure and p > 1. Let H :
Ω× RN → R+ be a function such that

z 7→ H(x, z) is C1 convex and homogeneous of degree p, i.e.

H(x, tz) = |t|pH(x, z) for every t ∈ R, (x, z) ∈ Ω× RN .
(3.2.1)

Assume that the variational problem

(3.2.2) λ1(Ω) = min
u∈W 1,p

0 (Ω)

{∫

Ω

H
(
x,∇u(x)

)
+ b(x)|u(x)|pdx :

∫

Ω

|u(x)|pρ(x) dx = 1

}
,

admits at least one solution. If there exist λ and a strictly positive v ∈ W 1,p
0 (Ω) such that

(3.2.3)
1

p

∫

Ω

〈∇H(x,∇v),∇ϕ〉 dx+
∫

Ω

b |v|p−2 v ϕ dx = λ

∫

Ω

|v|p−2 v ϕρ(x) dx,

for all ϕ ∈ W 1,p
0 (Ω), then

(3.2.4) λ = λ1(Ω).

Proof. First of all, we can assume that v is normalized so as to be an admissible competi-
tor for the minimum problem defining λ1(Ω), since equation (3.2.3) is (p− 1)-homogeneous
and v 6≡ 0. Moreover, by testing the equation with ϕ = v and by homogeneity of H , we get

∫

Ω

H(x,∇v) + bvp dx =
1

p

∫

Ω

〈∇H(x,∇v),∇v〉 + b vp dx = λ.(3.2.5)

Then we take a minimizer u ∈ W 1,p
0 (Ω) for (3.2.4). Thanks to the homogeneity of H , we can

suppose that u ≥ 0 without loss of generality. Indeed, the function ũ = |u| is nonnegative
and still satisfies the constraint. Since H(x, z) = H(x,−z), we get H(x,∇ũ) = H(x,∇u)
almost everywhere and

(3.2.6)

∫

Ω

H(x,∇ũ(x)) + b(x) ũ(x)p dx =

∫

Ω

H(x,∇u(x)) + b(x)|u(x)|p dx = λ1(Ω).

For every ε ≪ 1, we set for simplicity

uε = u+ ε and vε = v + ε.
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To simplify the notation, let dµ(x) = ρ(x)dx. We claim that
∫

Ω

[
H(x,∇u(x))−H(x,∇v(x))

]
dx+

∫

Ω

b(x)
(
uε(x)

p − vε(x)
p
)
dx

≥ pλ

∫

Ω

v(x)p−1

(
σt(x)− vε(x)

t

)
dµ(x)

+ p

∫

Ω

b(x)
(
vε(x)

p−1 − v(x)p−1
) (σt(x)− vε(x)

t

)
dx,(3.2.7)

for all t ∈ [0, 1].
In order to prove the claim, one defines the usual curve of functions

σt(x) =
(
(1− t) vε(x)

p + t uε(x)
p
) 1

p

, x ∈ Ω, t ∈ [0, 1],

connecting the non-negative functions vε and uε (in fact they are strictly positive, which will
be used later in this proof). By applying Lemma 3.1.2 to the functional

∫

Ω

H(x,∇σt(x)) dx ≤ (1− t)

∫

Ω

H(x,∇vε(x)) dx+ t

∫

Ω

H(x,∇uε(x)) dx

= t

[∫

Ω

H(x,∇u(x)) dx−
∫

Ω

H(x,∇v(x)) dx
]

+

∫

Ω

H(x,∇v(x)) dx, t ∈ [0, 1],

where the fact that ∇uε = ∇u and ∇vε = ∇v was also used. Moreover,
∫

Ω

b(x)σt(x)
p dx = (1− t)

∫

Ω

b(x)vε(x)
p dx+ t

∫

Ω

b(x)uε(x)
p dx, t ∈ [0, 1].

Thus, one has
∫

Ω

[
H(x,∇u(x))−H(x,∇v(x))

]
dx+

∫

Ω

b(x)
(
uε(x)

p − vε(x)
p
)
dx

≥
∫

Ω

(
H(x,∇σt(x))−H(x,∇v(x))

t
+ b(x)

σt(x)
p − vε(x)

p

t

)
dx.(3.2.8)

By standard convexity, the inequalities

H(x,∇σt(x))−H(x,∇v(x)) ≥
〈
∇zH(∇v(x)),∇

(
σt(x)− vε(x)

)〉
,

and

σt(x)
p − vε(x)

p ≥ pvε(x)
p−1 (σt(x)− vε(x)) ,
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hold pointwise almost everywhere for all t ∈ [0, 1]. Hence, the right-hand side of (3.2.8) is
estimated from below by

∫

Ω

〈
∇zH(∇v(x)),∇

(
σt(x)− vε(x)

t

)〉
dx+ p

∫

Ω

b(x)vε(x)
p−1

(
σt(x)− vε(x)

t

)
,

for all t ∈ [0, 1]. In turn, by testing equation (3.2.3) with ϕ = σt(x) − vε(x), the latter can
be estimated from below by

pλ

∫

Ω

v(x)p−1

(
σt(x)− vε(x)

t

)
dµ(x)

+ p

∫

Ω

b(x)
(
vε(x)

p−1 − v(x)p−1
) (σt(x)− vε(x)

t

)
dx,

and the claim follows. Note that the left hand side in (3.2.7) is independent of t. Moreover,
by the concavity of the p-th root, one has

σt(x)− vε(x)

t
≥ u(x)− v(x), a.e. in Ω,

hence, the first (resp., the second) integrand appearing in the right hand side of (3.2.7)
can be estimated from below by a function, independent of t ∈ [0, 1], which does belong to
L1(Ω, dµ) (resp., to L1(Ω)), by Hölder inequality. Then, by Fatou’s Lemma, passing to the
inferior limit of both sides of (3.2.7) as t→ 0+ gives

∫

Ω

[
H(x,∇u(x))−H(x,∇v(x))

]
dx+

∫

Ω

b(x)
(
uε(x)

p − vε(x)
p
)
dx

≥ λ

∫

Ω

(
v(x)

vε(x)

)p−1

(uε(x)
p − vε(x)

p) dµ(x)

+

∫

Ω

b(x)

(
1−

(
v(x)

vε(x)

)p−1
)

(uε(x)
p − vε(x)

p) dx.(3.2.9)

By (3.2.5) and (3.2.6),

λ1(Ω)−λ ≥
∫

Ω

(
H(x,∇u)−H(x,∇v)

)
dx+

∫

Ω

b(upε − vpε) dx

+

∫

Ω

b(up − upε) dx+

∫

Ω

b(vpε − vp) dx.
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In the latter, the last term is positive hence it can be dropped and the inequality holds true.
Thus, by (3.2.9) it follows that

λ1(Ω)− λ ≥
∫

Ω

(
v

vε

)p−1

(upε − vpε ) dµ+

∫

Ω

b

(
1−

(
v

vε

)p−1
)
(upε − vpε) dx

+

∫

Ω

b(up − upε) dx.(3.2.10)

Here, by Dominated Convergence Theorem the right-hand side goes to zero as ε → 0+.
Indeed, in the second and third summand the integrands themselves go to zero. Since v > 0
in Ω, the first summand converges to

∫

Ω

(up − vp) dµ,

which is zero because of the normalization condition imposed on the functions u, v. Thus

λ1(Ω)− λ ≥ 0.

Note that the reverse inequality holds by minimality of λ1(Ω), so that the theorem is proved.
�

Remark 3.2.2. Note the requirement: the solution v to (3.2.3) has to be strictly positive
on Ω. That is not a big deal, since in many situations of interest Harnack’s inequality is at
disposal for the nonnegative minimizers of problem (3.2.2). For example the inequality is
valid for all the functionals of Calculus of Variations whose Lagrangian density H : Ω×R

N →
R+ is homogeneous and satisfies the growth conditions

c1 |z|p ≤ H(x, z) ≤ c2 |z|p, (x, z) ∈ Ω× R
N ,

with two positive constants c1 ≥ c2 > 0, see Theorem 2.2.1. According to Theorem 2.2.2,
Harnack inequality prevents nontrivial nonnegative solutions of (3.2.3) from vanishing at
interior points of Ω.

Corollary 3.2.3. Let Ω be an open set of finite measure in RN , λ be a real number and
u ∈ W 1,p

0 (Ω) be a non-trivial weak solution of the eigenvalue problem for the p-Laplacian

−∆pu = λ|u|p−2u, in Ω,

with Dirichlet conditions u = 0 on the boundary. Assume that u ≥ 0. Then λ = λ1(Ω),
where λ1(Ω) is the minimum of the Rayleigh quotient on W 1,p

0 (Ω).

Proof. Since u ≥ 0, then in fact u > 0 by the strong minimum principle, cf. Theo-
rem 2.2.2. Thus the Corollary follows by applying Theorem 3.2.1 with H(z) = |z|p. �

Several comments are appropriate.



3. UNIQUENESS OF GROUND STATES 43

Remark 3.2.4. Assume that Ω is a Lipschitz open set. In the proof of Theorem 3.2.1,
ρ(x)dx may be replaced by ρ(x)dHN−1(x) where ρ : ∂Ω → R is a bounded HN−1-measurable
function away from zero, provided that all the integrals of Sobolev functions with respect to
µ are understood in the sense of traces. This allows one to apply the uniqueness result of
Theorem 3.2.1 to the eigenvalue problem

{
∆pu = |u|p−2u, in Ω,

|∇u|p−2〈∇u, νΩ〉 = λ|u|p−2u, on ∂Ω

considered in [77]. The minimization of the corresponding Rayleigh quotient
∫

Ω

|∇u|p + |u|p dx
∫

∂Ω

|u|p dHN−1

yields the best constant in a Sobolev trace inequality.

Remark 3.2.5. Let Ω be a Lipschitz open set. By the proof of Theorem 3.2.1, it is clear that
the claim of the theorem holds true if we replace at each occurence W 1,p

0 (Ω) by the entire
Sobolev space W 1,p(Ω). This allows one to recover, for example, the case of the eigenvalue
problem for the p-Laplacian with either Neumann or Stekloff boundary conditions on the
boundary. But in those cases the conclusion is quite trivial: any eigenfunction having
constant sign (resp., constant sign on the boundary) of the Neumann (resp., Stekloff) p-
Laplacian is in fact a constant function.

Remark 3.2.6. The same conclusions as in Corollary 3.2.3 and Remark 3.2.4 can be drawn

for the positive eigenfunctions of the so called pseudo p−Laplacian ∆̃p, defined by

∆̃pu :=
N∑

i=1

∂xi

(
|∂xi

u|p−2 ∂xi
u
)
.

Here the eigenvalue problem (introduced in [12]) consists in finding the positive numbers
λ > 0, such that the equation

−∆̃pu = λ |u|p−2 u,

has nontrivial weak solutions inW 1,p
0 (Ω). In this case, Theorem 3.2.1 should be applied with

H(z) = ‖z‖p where ‖ · ‖ is the ℓp-norm in R
N . Other anisotropic operators can be treated

by taking a different norm.

3. Uniqueness of ground states

We apply the convexity of the energy

K(u,Ω) =

∫

Ω

H(x,∇u) dx
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along the curves σt to prove a further well-known uniqueness result: that all the minimizers
of the Rayleigh quotient are proportional. In next theorem we agree the following: depending
on whether the minimum (3.3.1) is taken over W 1,p

0 (Ω) or W 1,p(Ω), µ will denote either the
N -dimensional Lebesgue measure or a weighted (N − 1)-dimensional Hausdorff measure of
the boundary1. That allows one to apply the theorem to both to Dirichlet eigenvalues and
to different boundary conditions.

Theorem 3.3.1. Let the assumptions of Lemma 3.1.2 be valid. Assume, in addition, that
p > 1, z 7→ H(x, z) is strictly convex, and Ω is a connected open set where the variational
problem

(3.3.1) λ1(Ω) = min

{∫

Ω

H
(
x,∇u(x)

)
+ b(x)|u(x)|pdx :

∫

Ω

|u(x)|p dµ(x) = 1

}
,

admits at least one positive solution. Then all the positive minimizers are proportional.

Proof. Let u, v be two normalized positive minimizers. Since u, v > 0 one may repeat
verbatim the proof of Lemma 3.1.2 with ε = 0 to get

(3.3.2) H(x,∇ logσt) ≤
(1− t)vp

σp
t

H(x,∇ log v) +
tup

σp
t

H(x,∇ log u).

where σt = ((1 − t)vp + tup)
1
p . Note that for all t ∈ [0, 1] the function σt is an admissible

competitor for the minimum problem defining λ1(Ω). Thus
∫

Ω

H(x,∇σt) dx ≥ λ1(Ω).

On the other hand, by Lemma 3.1.2 one gets
∫

Ω

H(x,∇σt) + b(x)|σt(x)|p dx

≤ (1− t)

∫

Ω

H(x,∇v) + b(x)v(x)p dx+ t

∫

Ω

H(x,∇u(x)) + b(x)u(x)p dx = λ1(Ω).

Hence all the inequalities are in fact equalities. Therefore, (3.3.2) holds as an equality,
pointwise almost everywhere. Note that the right-hand side is a convex combination of two
values taken by H and

∇ log σt(x) =
(1− t)v(x)p

σt(x)p
∇ log v(x) +

tu(x)p

σt(x)p
∇ log u(x).

By the strict convexity of H it follows that

∇ log u = ∇ log v, a.e. in Ω

1In the second case, the boundary integrals are understood in the sense of the traces, and we also agree that
Ω should be at least Lipschitz.
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which is equivalent to say that ∇(u/v) = 0 a.e. in Ω. Since the domain is connected, it
follows that u and v are proportional. �

By the strong minimum principle of Theorem 2.2.2, the requirement that v > 0 is fullfield
by non-negative eigenfuctions provided that the Lagrangian function H satisfies natural p-
growth conditions. That is the case if H(z) = |z|p. Thus last theorem implies the corollary.

Corollary 3.3.2. Let Ω be an open connected set of finite measure in RN . Then the first
Dirichlet eigenvalue of the p-Laplacian

λ1(Ω) = min
u∈W 1,p

0 (Ω)

∫

Ω

|∇u|p dx
∫

Ω

|u|p dx

is simple, i.e. all the minimizers are proportional.

Remark 3.3.3. The same conclusion can be drawn if one replaces Dirichlet boundary value
problem with the one briefly discussed in Remark 3.2.4. Similarly, the simplicity of the first
eigenvalue holds true also if the p-Laplacian is replaced by the pseudo p-Laplacian.

4. Uniqueness of positive fractional eigenfunctions

Let s ∈ (0, 1) and Ω be an open set of finite measure. We use Lemma 3.1.3 to study
uniqueness issues for positive eigenfunctions of problem coming from the minimization of
the nonlocal Rayleigh quotient

∫∫

RN×RN

|u(y)− u(x)|p
|y − x|N+sp

dxdy

∫

RN

|u|p dx

on W s,p
0 (Ω). For a recent overview on the fractional Sobolev space, the reader is referred

to [36].

The strategy just amounts to adapt the proof of Theorem 3.2.1 to the variational double
integral

K(u,Ω) =

∫∫

RN×RN

|u(y)− u(x)|p
|y − x|N+sp

dxdy.
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By computing the first variation, the Euler equation satisfied by a critical point u ∈ W s,p
0 (Ω)

of the fractional Rayleigh quotient, corresponding to the critical value λ is

∫∫

RN RN

∣∣∣u(y)− u(y)
∣∣∣
p−2(

u(y)− u(x)
)(
φ(y)− φ(x)

)

|y − x|N+sp
dxdy = λ

∫

RN

|u(x)|p−2u(x)φ(x) dx,

(3.4.1)

for all φ ∈ C∞
0 (Ω).

The nonlocal Rayleigh quotient R attains its minimum λs1,p(Ω) which gives the least
eigenvalue. An introduction to fractional eigenvalues is provided in the paper [70], where
the following result is proved for large values of p. The proof given here considerabily lowers
the assumptions on that exponent.

Theorem 3.4.1. Let 1 < p < ∞, s ∈ (0, 1) and Ω be a bounded Lipschitz set in RN . Let
v ∈ W s,p

0 (Ω) be a solution of (3.4.1). If v > 0, then

λ = λs1,p(Ω)

where λs1,p(Ω) denotes the minimum of the fractional Rayleigh quotients R on W s,p
0 (Ω).

Proof. Assume that v ∈ W s,p
0 (Ω) is a strictly positive solution of (3.4.1). There is no

loss of generality if we assume that the function v is normalized in Lp(Ω). Let u ∈ W s,p
0 (Ω)

be a solution of the minimum problem

λs1,p(Ω) = min
{
K(u,Ω) : u ∈ W s,p

0 (Ω),

∫

Ω

|u(x)|p dx = 1
}

For the well-posedness of the minimization of the fractional Rayleigh quotient, we refer
to [70].

To simplify the notation a little, let uε and vε denote the functions u + ε and v + ε,
respectively. Set

σε
t (x) =

(
tuε(x)

p + (1− t)vε(x)
p
) 1

p

, x ∈ Ω, t ∈ [0, 1],

By Lemma 3.1.3, t 7→ σε
t is a curve of functions belonging to W s,p

0 (Ω) along which the the
energy is convex. Hence
∫∫

Rn Rn

|σε
t (y)− σε

t (x)|p
|y − x|N+sp

dxdy −
∫∫

Rn Rn

|v(y)− v(x)|p
|y − x|N+sp

dxdy,

≤ t



∫∫

Rn Rn

|u(y)− u(x)|p
|y − x|N+sp

dxdy −
∫∫

Rn Rn

|v(y)− v(x)|p
|y − x|N+sp

dxdy


 = t

(
λs1,p(Ω)− λ

)
,
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for all t ∈ [0, 1] and all ε ≪ 1. By the (standard) convexity of the map τ 7→ |τ |p, it follows
that the left-hand side in the latter can be estimated from below as it follows∫∫

Rn Rn

|σε
t (y)− σε

t (x)|p
|y − x|N+sp

dxdy −
∫∫

Rn Rn

|v(y)− v(x)|p
|y − x|N+sp

dxdy,

≥
∫∫

Rn Rn

|v(y)− v(x)|p−2(v(y)− v(x))

|y − x|N+sp

(
σε
t (y)− σε

t (x)− (v(y)− v(x))
)
dxdy,

for all t ∈ [0, 1] and ε ≪ 1. Moreover, since u, v ∈ W s,p
0 (Ω), the function σε

t also belong
to W s,p

0 (Ω). Thus, it does take sense to plug φ = σε
t − vε as a test function into the Euler-

Lagrange equation which holds for the eigenfunction v, whence the identity
∫∫

Rn Rn

|v(y)− v(x)|p−2(v(y)− v(x))

|y − x|N+sp

(
σε
t (y)− σε

t (x)−
(
vε(y)− vε(x)

))
dxdy,

= λ

∫

Ω

v(z)p−1 σε
t (z)− v(z) dz,

follows for all ε≪ 1. Here the fact that v(y)− v(x) = vε(y)− vε(x) was used. Thus,

λ

∫

Ω

v(z)p−1σ
ε
t (z)− vε(z)

t
dz ≤ λs1,p(Ω)− λ,

for all t ∈ [0, 1], and all ε≪ 1. Note that by the concavity of the p-th root, the integrand in
the latter is estimated pointwise almost everywhere in Ω from below by the function

v(z)p−1
(
uε(z)− vε(z)

)
,

which does belong to L1(Ω). Hence, by Fatou’s Lemma,

λ

∫

Ω

(
v(z)

v(z) + ε

)p−1 (
(u(z) + ε)p − (v(z)− ε)p

)
dz

≤ λ lim inf
t→0+

∫

Ω

v(z)p−1σ
ε
t (z)− vε(z)

t
dz ≤ λs1,p(Ω)− λ,

for all ε small enough. By dominated convergence Theorem and the normalization in Lp(Ω)
of both the functions u, v, sending ε→ 0+ yields

0 ≤ λs1,p(Ω)− λ.

The desired conclusion now follows, since λs1,p(Ω) is the least possible s-eigenvalue and the
converse inequality is obvious. �

For sake of completeness, we prove the following result.
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Theorem 3.4.2. Let Ω be a connected open set, 1 < p < ∞ and s ∈ (0, 1). Then all the
positive eigenfunctions corresponding to λs1,p(Ω) are proportional.

Proof. Let u, v be two positive normalized functions W s,p
0 (Ω) and σt denote the usual

constant speed geodesic connecting u to v. Recall the convexity inequality of Lemma 3.1.3

K(σt,Ω) ≤ (1− t)K(v,Ω) + tK(u,Ω).

If the equality holds, then for almost all x, y ∈ RN the triangle inequality
∣∣‖ξ‖ℓp − ‖η‖ℓp

∣∣ ≤ ‖ξ − η‖ℓp,
holds as an inequality with the choice

ξ =
(
t
1
pu(y), (1− t)

1
pv(y)

)
, η =

(
t
1
pu(x), (1− t)

1
pv(x)

)
.

Since p > 1 there exists α(x, y) ∈ R such that

u(y) = α(x, y)u(x), v(y) = α(x, y)v(x),

for almost all x, y ∈ RN . Therefore

u(y)

v(y)
=
u(x)

v(x)

and there is a constant β such that u = βv almost everywhere. �

Remark 3.4.3. It is worth pointing out that a stronger version of Theorem 3.4.2, claiming
that λs1,p(Ω) is simple, was proved in [70, Theorem 14] under the restriction that the exponent
p is large. Indeed this additional assumption assures the equivalence of weak and viscosity
solutions of the Euler-Lagrange equation associated with the fractional Rayleigh quotient.
In fact, a strong minimum principle is easily obtained for viscosity supersolutions, cf. [70,
Lemma 12].



CHAPTER 4

Spectral gap

One of the significant consequences of the uniqueness properties discussed in Chapter 3
is the existence of a gap between the least eigenvalue and the infimum of all the higher
eigenvalues. We will consider the Rayleigh quotient

F(u,Ω)

G(u,Ω)
where the functionals F ,G are defined by

F(u,Ω) =

∫

Ω

‖∇u(x)‖p dx, G(u,Ω) =
∫

Ω

|u(x)|p dµ(x),

for all functions u belonging to the Sobolev space W 1,p
0 (Ω). For the exponent, we assume

1 < p <∞ and Ω is any open set having finite Lebesgue measure in RN . Here µ is denoting
a measure with a density ρ(x) ∈ L∞(Ω) bounded away from zero. In the Dirichlet energy,
‖ · ‖ denotes a norm in RN .

Remark 4.0.4. We restrict our discussion to the case of Dirichlet boundary conditions.
As a matter of fact, the definition of eigenvalues on disconnected domains given here for
Dirichlet boundary condition may be rephrased to embrace different problems. Namely, the
proofs of this chapter can be repeated verbatim to deal with the case when the Lagrangian
of F(u,Ω) has an extra term b(x)|u|p, the functionals are acting on the whole of W 1,p(Ω)
and dµ = ρ(x)dHN−1, HN−1 being the restriction of the (N − 1)-dimensional Hausdorff
measure to the boundary ∂Ω. In that case, we agree that Ω is a bounded Lipschitz set and
the integrals are understood in the sense of traces.

1. A Mountain Pass lemma

The second variational eigenvalue

λ2(Ω) := inf
f : S1−→M

odd, continuous

max
u∈f(S1)

∫

Ω

‖∇u(x)‖p dx

admits a mountain-pass characterization, which holds no matter if Ω is connected or not.
Note that by the Poincaré inequality

{∫

Ω

‖∇u‖p dx
} 1

p

49
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defines an equivalent norm on the Sobolev space W 1,p
0 (Ω). First, one needs the following

preliminary result.

Lemma 4.1.1. Let u, v ∈M be non-negative functions. Then the curve γ : [0, 1] → M

γt(x) =
(
(1− t)v(x)p + tu(x)p

) 1
p

is continuous with respect to the W 1,p-topology.

Proof. First note that γ is Lipschitz continuous in the Lp topology: using the Hölder
continuity of the p-th root
∫

Ω

|γt−γs|p dx ≤
∣∣(1−s) 1

p−(1−t) 1
p

∣∣p
∫

Ω

|v|p dx+
∣∣t

1
p−s 1

p

∣∣p
∫

Ω

|u|p dx ≤ |t−s|
(∫

Ω

|u|p dx+ |v|p dx
)

for all t, s ∈ [0, 1]. Let s ∈ [0, 1] and 0 ≤ tν ≤ 1 be a sequence converging to s. The claim is
that

lim
ν→∞

∫

Ω

|∇γtν −∇γs|p dx = 0.

Recall that γt was used in Chapter 3 to prove some uniqueness results. In particular it was
shown that inequality

(4.1.2)

∫

Ω

‖∇γt(x)‖p dx ≤ (1− t)

∫

Ω

‖∇v(x)‖p dx+ t

∫

Ω

‖∇u(x)‖p dx

holds for all t ∈ [0, 1], so that

t 7−→
∫

Ω

‖∇γt(x)‖p dx

is a convex function, see Lemma 3.1.2. Since convex functions of one real variable are
continuous,

lim
ν→∞

∫

Ω

‖∇γtν‖p dx =

∫

Ω

‖∇γs‖p dx.

Therefore, to conclude it is sufficient to prove that ∂xi
γtν converges to ∂xi

γs weakly in Lp(Ω),
for all i = 1, . . . , N . But (4.1.2) implies that {γtν}ν is bounded in W 1,p

0 (Ω). Thus by possibly
passing to a subsequence ∂xi

γtν converges weakly in Lp(Ω) to some limit wi. Then the (weak)
convergence in Lp(Ω) of γtν to γs implies that in fact wi = ∂xi

γs, see Lemma A.3.1. �

The following lemma is helpful.

Lemma 4.1.2. Let u, v ∈ M , with v ≥ 0 on Ω and u satisfying one of the following
assumptions:

(i) u ≥ 0 on Ω;
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(iii) the positive and negative parts of u are both not identically zero and

(4.1.3)

∫

Ω

‖∇u+‖pℓp dx
∫

Ω

up+ dµ

≤

∫

Ω

‖∇u−‖pℓp dx
∫

Ω

up− dµ

,

Then there exists a continuous curve γ : [0, 1] → M , such that
∫

Ω

‖∇γt(x)‖pℓp dx ≤ max

{∫

Ω

‖∇u(x)‖pℓp dx,
∫

Ω

‖∇v(x)‖pℓp dx
}
, t ∈ [0, 1].

Proof. The proof is different in the two cases.
(i) Constant sign case. If u is positive on Ω, one considers the curve γ : [0, 1] → M defined
by

(4.1.4) γt(x) =
(
(1− t) u(x)p + t v(x)p

) 1
p

, x ∈ Ω, t ∈ [0, 1].

(ii) “Nodal” case. Suppose that u+ and u− are both non identically zero on Ω and that
(4.1.3) holds. Set

σt(x) =
u+(x)− cos(π t) u−(x)

‖u+ − cos(π t) u−‖Lp(Ω,dµ)

, t ∈
[
0,

1

2

]
.

Then σt is a continuous curve on M , connecting u to its (renormalized) positive part. Since
u+ and u− have disjoint supports

∫

Ω

‖∇σt‖p dx =

∫

Ω

‖∇u+‖p dx+ | cos(π t)|p
∫

Ω

‖∇u−‖p dx
∫

Ω

up+ dµ+ | cos(π t)|p
∫

Ω

up− dµ

.

Note that

h(s) =
a2 + s b2

c2 + s d2
, s ∈ R,

is increasing if b2/d2 ≥ a2/c2, so that h(0) ≤ h(1). Thus (4.1.3) implies
∫

Ω

‖∇σt‖p dx ≤
∫

Ω

‖∇σ0‖p dx =

∫

Ω

‖∇u‖p dx,

for all t ∈ [0, 1/2]. In order to conclude, it is now sufficient to connect the (renormalized)
positive part of u to v. To do so set

σ̃t(x) =

(
(2− 2 t)

u+(x)
p

‖u+‖pLp(Ω,dµ)

+ (2 t− 1) v(x)p

) 1
p

, t ∈
[
1

2
, 1

]
.
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This is a continuous curve. To see that, the convexity of the functional along this curve may
be exploited similarly as in step (i). Finally, one glues together the two curves defining

γt(x) = σt(x), t ∈
[
0,

1

2

]
and γt(x) = σ̃t(x), t ∈

[
1

2
, 1

]
,

and the desired conclusion follows. �

Some further notations are needed. Given a pair of functions u, v ∈M ∩W 1,p
0 (Ω), denote

by ΓΩ(u, v) the set of continuous (in the W 1,p topology) paths in M ∩W 1,p
0 (Ω) connecting u

to v, i.e.

ΓΩ(u, v) =
{
γ : [0, 1] →M ∩W 1,p

0 (Ω) : γ is continuous and γ(0) = u, γ(1) = v
}
.

Then λ2(Ω) has the following further characterization. This is a well-known result, see [32,
Theorem 3.1] for istance. The following proof contains an easier argument.

Theorem 4.1.3. Let Ω be an open set of finite measure in RN , not necessarily connected.
Then λ2(Ω) has the following mountain pass characterization

(4.1.5) λ2(Ω) = inf
γ∈ΓΩ(u1,−u1)

max
u∈γ([0,1])

∫

Ω

‖∇u(x)‖p dx.

If λ1(Ω) is not simple, this characterization is independent of the particular u1 we choose.

Proof. We distinguish two cases: either λ1(Ω) is simple or not.

Case λ1(Ω) simple. For every γ ∈ ΓΩ(u1,−u1), the closed path on M obtained by gluing
γ and −γ is in fact the image of some odd continuous mapping fγ from S1 to M . By the
definition of λ2(Ω),

λ2(Ω) ≤ max
u∈fγ(S1)

∫

Ω

‖∇u(x)‖p dx = max
u∈γ

∫

Ω

‖∇u(x)‖p dx.

We agree that u ∈ γ means u ∈ γ([0, 1]). Taking the infimum among all possible γ yields

λ2(Ω) ≤ inf
γ∈ΓΩ(−u1,u1)

max
u∈γ

∫

Ω

‖∇u(x)‖p dx.

To prove the reverse inequality take a minimizing sequence {fn}n∈N of odd continuous map-
pings from the unit circle to M , say

max
u∈fn(S1)

∫

Ω

‖∇u(x)‖p dx ≤ λ2(Ω) +
1

n
.

Now for every n ∈ N pick un ∈ fn(S
1) such that one of the hypotheses in Lemma 4.1.2

is satisfied1. Then there exists a continuous M-valued curve γn which connects the first

1Observe that it is always possible to make such a choice, since fn(S
k−1) is symmetric, i.e. if u ∈ fn(S

1),
then −u ∈ fn(S

1) as well.
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eigenfunction u1 to un accomplishing the bound
∫

Ω

‖∇γnt (x)‖p dx ≤
∫

Ω

‖∇un(x)‖p dx ≤ λ2(Ω) +
1

n
.

Symmetrically, the path −γn connects −u1 to −un ∈ fn(S
1). The estimate above holds true

on the new symmetrized path, since the functional is even. Therefore gluing the three paths
γn, −γn and fn one gets a continuous curve Σn ∈ ΓΩ(u1,−u1) such that

max
u∈Σn

∫

Ω

‖∇u(x)‖p dx ≤ λ2(Ω) +
1

n
.

Passing to the infimum over ΓΩ(u1,−u1) one obtains

inf
γ∈ΓΩ(u1,−u1)

max
u∈γ

∫

Ω

‖∇u‖p dx ≤ λ2(Ω) +
1

n
.

To conclude the proof in this case, send n→ ∞.

Case λ1(Ω) is multiple. Let Ω be not connected and let the first eigenvalue be not simple.
Let u1, u2 ∈ M be two linearly independent non-negative eigenfunctions corresponding to
λ1(Ω). Then the supports of u1 and u2 are included in different connected components of Ω.
For all t ∈ [0, 1] set

γt(x) =
cos(π t)u1(x) + t(1− t)u2(x)

(| cos(π t)|p + tp(1− t)p)1/p
.

It is easy to see that γ has the following properties

γt ∈M, for every t ∈ [0, 1], and γ0 = u1, γ1 = −u1,

i.e. the curve γ is admissible for the variational problem (4.1.5). In addition γ1/2 = u2.
Hence ∫

Ω

‖∇γt(x)‖p dx =
| cos(π t)|p λ1(Ω) + tp(1− t)pλ1(Ω)

| cos(π t)|p + tp(1− t)p
= λ1(Ω1)

for all t ∈ [0, 1]. The fact that the functions u1 and u2 have disjoint supports was used. It
follows that

inf
γ∈ΓΩ(u1,−u1)

max
t∈[0,1]

∫

Ω

‖∇γt(x)‖p dx ≤ λ1(Ω).

In fact the equality holds, since λ1(Ω) is the minimum of the Dirichlet energy onM . Moreover
λ1(Ω) = λ2(Ω), because of the multiplicity of the first eigenvalue. This shows that the
Mountain-Pass formula gives λ2(Ω). Observe that exchanging the role of u1 and u2 has no
bearing in the above. Thus in this case formula (4.1.5) is independent of the choice of the
particular first eigenfunction. �
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2. Low variational eigenvalues on disconnected domains

It is interesting to define and discuss the eigenvalues of the variational integrals

F(u,Ω) =

∫

Ω

‖∇u(x)‖pdx, G(u,Ω) =
∫

Ω

ρ(x)|u(x)|p dx

in the case of a disconnected open set Ω in RN . For istance, in some spectral optimization
problems with volume constraint the optimal shape is not connected.

Remark 4.2.1. The set of the eigenvalues on Ω is made of the collection of the eigenvalues
on each single connected component of Ω. The eigenvalues are obtained by gathering and
ordering increasingly the eigenvalues on the single pieces; correspondingly, each Dirichlet
eigenfunction on Ω is an eigenfunction on one of the connected components Ωi with zero
Dirichlet conditions on ∂Ωi and vanishes on the others.

For all domains Ω having finite N -dimensional Lebesgue measure, the minimum of the
Rayleigh quotient

λ1(Ω) := min
u∈W 1,p

0 (Ω)

∫

Ω

‖∇u(x)‖p dx
∫

Ω

|u(x)|p dx

is attained. This follows by a standard compactness argument. Note that it is still denoted
by the same symbol as the one used in the case of a connected domain. Besides, the minimum
is a positive number, since the inequality

∫

Ω

ρ(x)|u(x)|p dx ≤ C

∫

Ω

‖∇u(x))‖p dx

holds for all functions u ∈ W 1,p
0 (Ω) with the same constant C > 0. By the equivalence of

all norms in RN , this can be seen via a straighforward contradiction argument based on the
compactness of the Rellich-Kondrachev embedding of the Sobolev space W 1,p

0 (Ω) into Lp(Ω).
As a matter of fact, the constant C > 0 might depend on the set Ω. Nevertheless, a closer
inspection shows that in fact

∫

Ω

ρ(x)|u(x)|p dx ≤ C(N, p, q, a, ρ)|Ω| p
N

∫

Ω

‖∇u(x)‖p dx

where the constant now is independent of Ω. This can be rephrased by saying that in the
scaling invariant shape optimization problem

min
Ω

|Ω| p
N λ1(Ω)

the value of the minimum stays above some universal positive constant. As a consequence,

(4.2.1) |Ωi| → 0 =⇒ λ1(Ωi) → +∞.
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Let now Ω be a disconnected set having finite measure and Ωi be its connected components.
Then the first eigenvalue on Ω is the least value among the first eigenvalues on the single
connected components, i.e.

λ1(Ω) = min
i∈N

λ1(Ωi).

The well-posedness of the minimum and the equality follow by (4.2.1). Next proposition
summarizes some apparent features of the first eigenvalue on (possibly disconnected) do-
mains.

Proposition 4.2.2. Let Ω ⊂ RN be an open set, having finite measure. Let u ∈ W 1,p
0 (Ω)

be a Dirichlet eigenfunction relative to some eigenvalue λ. If u has constant sign in Ω, then
λ = λ1(Ω0) for some connected component Ω0 of Ω, i.e. u is a first eigenfunction of Ω0. In
particular λ = λ1(Ω) if Ω is connected.

Proof. Let first Ω be connected and u have constant sign on Ω, say u ≥ 0. Then in
fact u > 0 by the strong minimum principle of Theorem 2.2.2. Thus Theorem 3.2.1 implies
that u is a first eigenfunction.

On the other hand, if Ω is disconnected, then λ has to be a Dirichlet eigenvalue of a certain
connected component Ω0; correspondigly u is an eigenfunction of Ω0, having constant sign.
Then it sufficies to apply the first part to conclude. �
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3. The Spectral gap theorem

The second eigenvalue on Ω counted with multiplicity is defined as

(4.3.1) λ∗(Ω) :=






λ1(Ω), if λ1(Ω) is not simple,

min
{
λ > λ1(Ω) : λ is an eigenvalue

}
, if λ1(Ω) is simple.

This well posed, see Remark 4.3.1. In fact λ∗(Ω) is has precisely the value given by the
formula

λ2(Ω) := inf
f∈C

max
u∈f(S1)

∫

Ω

‖∇u(x)‖p dx,

where C = {f : S1 → M
∣∣ f odd, continuous} and M = {u ∈ W 1,p

0 (Ω) :
∫
Ω
ρ(x)|u|p dx = 1}.

Incidentally, by Theorem 4.1.3 that implies that λ∗(Ω) has the same value as the mountain
pass-type formula.

Remark 4.3.1. Let Ωi (i = 1, 2, . . .) be a labelling of the connected components of Ω, with
the convention that λ1(Ω) = λ1(Ω1). Then

λ∗(Ω) =






λ1(Ω), if ∃ i > 1: λ1(Ωi) = λ1(Ω),

min
{
min{λ1(Ωi) : i > 1}, λ2(Ω1)

}
, otherwise.

Note that the minimum inside is achieved by (4.2.1). Indeed, since |Ω| <∞, one has |Ωi| → 0
as i→ ∞. Hence λ1(Ωi) → +∞ as i→ ∞. This prevents the first eigenvalues λ1(Ωi) strictly
larger than the least one from accumulating to the value taken by λ1(Ω) = λ1(Ω1).

In the following, a proof of the existence of a spectral gap is given.

Theorem 4.3.2. Let Ω be an open set of finite measure, not necessarily connected. If λ1(Ω)
is simple, then there is a spectral gap, i.e.

(4.3.2) λ1(Ω) < λ2(Ω)

and

λ2(Ω) = min
{
λ > 0: λ is an eigenvalue larger than λ1(Ω)

}
.(4.3.3)

Proof. Assume that the first eigenvalue λ1(Ω) is simple. We divide the proof in steps.
Gap inequality. Its “eigenspace” intersects the manifold M in two opposite points, say
u1,−u1. If 0 < ε < 1/2 the sets2

B+
ε = {u ∈M : ‖u− u1‖Lp(Ω,dµ) < ε}, B−

ε = {u ∈M : ‖u+ u1‖Lp(Ω,dµ) < ε}
2For brevity we denote ‖φ‖pLp(Ω,dµ) =

∫
Ω |φ|p dµ.
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are disjoint. To prove inequality (4.3.2) one argues by contradiction assuming that the limit

(4.3.4) lim
j→∞

max
u∈fj(S1)

∫

Ω

‖∇u(x)‖p dx = λ1(Ω)

holds through a sequence fj ∈ C of odd and continuous mappings from S1 to M . Since
the functions fj are odd and continuous, their images fj(S

1) are symmetric and connected
subsets ofM . Then, for all j ∈ N one can pick an element uj of fj(S

1) which belongs neither
to B+

ε nor to B−
ε . The growth assumptions on the Lagrangian density H imply that the

sequence is bounded in W 1,p
0 (Ω). Indeed by (4.3.4)

sup
j∈N

∫

Ω

‖∇u(x)‖pdx < +∞.

Owing to Rellich Kondrachev theorem, up to relabelling the sequence there exists u ∈ M
such that uj converges to u weakly in W 1,p(Ω) and strongly in Lp(Ω). By the Dirichlet
integral is lower semicontinuous with respect to the weak convergence

∫

Ω

‖∇u(x)‖p dx ≤ lim inf
j→∞

∫

Ω

‖∇uj(x)‖p dx.

Using (4.3.4) again, it follows that u is a first eigenfunction, say u = u1. On the other hand

uj ∈ fj(S
1) \

(
B+

ε ∪ B−
ε

)
, j ∈ N,

hence ‖uj − u1‖Lp(Ω,dµ) ≥ ε for all j ∈ N. That gives the desired contradiction, since the
weighted Lp norm is continuous with respect to the Lp convergence.

Any nodal eigenvalue is larger or equal than λ2(Ω). The idea of the proof is from [58]. Let
λ be an eigenvalue and u ∈ W 1,p

0 (Ω) be an eigenfunction corresponding to λ. Assume that
u > 0 on A, u < 0 on B, where A,B ⊂ Ω are non-empty open sets and denote by uA = uχA

(resp., uB = uχB) the restriction of u to A (resp., to B). Testing the Euler-Lagrange equation
with ϕ = uA yields

∫

A

‖∇u(x)‖p dx = λ

∫

A

|u|p dµ.

A similar identity is obtained using uB rather than uA. The function f : S
1 → M defined by

f(α, β) = αuA + βuB,

for all (α, β) ∈ S
1, is odd and continuous. Thus the definition of λ2(Ω) implies that

max
(α,β)∈S1

∫

Ω

‖∇f(α, β)‖p dx ≥ λ2(Ω).
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On the other hand,∫

Ω

‖∇f(α, β)‖p dx = |α|p
∫

A

‖∇u(x)‖p + |β|p
∫

B

‖∇u(x)‖p

= λ
{
|α|p

∫

A

|u|p dµ+ |β|p
∫

B

|u|p dµ
}
= λ

for all (α, β) ∈ S1. Hence

max
(α,β)∈S1

∫

Ω

‖∇f(α, β)‖p dx = λ.

Thus λ ≥ λ2(Ω).
λ2(Ω) is the least higher eigenvalue. The purpose of the final step is to prove characteri-
zation (4.3.3). By Theorem 1.4.1, if Ω is connected there is nothing to prove. Indeed, in
that case any eigenfunction corresponding to λ2(Ω) has to change sign. Thus, assume that
Ω has a countable family of connected components Ωi. By definition of eigenvalues on a
disconnected set, we have λ1(Ω) = λ1(Ω1), up to relabelling. Now

λ∗(Ω) = min
{
λ > 0: λ is an eigenvalue larger than λ1(Ω)

}
.

It remains to show that λ∗(Ω) = λ2(Ω). Pick an eigenfunction u∗ corresponding to λ∗(Ω),
normalized so that it has unit norm in Lp(Ω, dµ). The following alternative holds:

either λ∗(Ω) = λ2(Ω1) or λ∗(Ω) = min
i>1

λ1(Ωi).

Assume that λ∗(Ω) = λ2(Ω1). By the first step λ2(Ω1) > λ1(Ω1), since Ω1 is connected.
Therefore, according to Proposition 4.2.2 u∗ has to change sign. Hence λ∗(Ω) ≥ λ2(Ω) by
the previous step. To prove the reverse inequality, note that the support of u∗ is contained
in Ω1 and

λ∗(Ω) = λ2(Ω1) = inf
f∈C1

max
u∈f(S1)

∫

Ω

‖∇u(x)‖p dx,

where C1 is the subfamily of C consisting of all odd and continuous M-valued mappings f
defined on S1 such that the function fω is only supported on the connected component Ω1,
rather than in the whole of Ω. Since the infimum is performed on a smaller family than the
one involved in the definition of λ2(Ω), one has

λ∗(Ω) ≥ λ2(Ω).

This concludes the proof for the first alternative.
Now, assume that λ1(Ω) = λ1(Ω1) and λ

∗(Ω) = λ1(Ω2). Pick an eigenfunction u∗ corre-
sponding to λ∗(Ω). Since u∗ is a first eigenfunction on Ω2, which is connected, up to a sign
u∗ > 0 due to the strong minimum principle. Let u1 be a (normalized) first eigenfunction
on Ω (i.e., on Ω1). Consider the continuous path γ : [0, 1] →M

γt(x) =
cos(π t)u1(x) + t(1− t)u∗(x)

(| cos(π t)|p + tp(1− t)p)1/p
, x ∈ Ω,
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for all t ∈ [0, 1]. It is easy to see that γ has the following properties

γt ∈ M ∩W 1,p
0 (Ω), for every t ∈ [0, 1], and γ0 = u1, γ1 = −u1.

Denote by f its odd extension to [−1, 1]. Up to a re-parametrization, f is an admissible
competitor for the infimum in the min-max formula, hence

λ2(Ω) ≤ max
0≤t≤1

∫

Ω

‖∇γt(x)‖p dx.

Note that u1 and u∗ have disjoint supports. Then

‖∇γt(x)‖p =
| cos(πt)|p‖∇u1(x)‖p + tp(1− t)p‖∇u∗(x)‖p

| cos(πt)|p + tp(1− t)p
, a.e. in Ω,

for all t ∈ [0, 1]. Integrating on Ω one gets

max
t∈[0,1]

∫

Ω

H(x,∇γt) = max
t∈[0,1]

| cos(πt)|pλ1(Ω1) + tp(1− t)pλ1(Ω2)

| cos(πt)|p + tp(1− t)p
= λ1(Ω2).

The fact that

max
t∈[0,1]

| cos(πt)|pA1 + tp(1− t)pA2

| cos(πt)|p + tp(1− t)p
= max{A1, A2}, A1, A2 > 0,

was used. Therefore λ2(Ω) ≤ λ1(Ω2) = λ∗(Ω). By the first step, λ2(Ω) > λ1(Ω). Since
by definition λ∗(Ω) is the least eigenvalue on Ω strictly larger than λ1(Ω), it follows that
λ2(Ω) = λ∗(Ω). �

To conclude the chapter, it is proved that the existence of several linearly independent
first eigenfunctions makes λ2(Ω) end in collapsing to the same value as λ1(Ω).

Theorem 4.3.3. Let Ω be a disconnected domain of finite Lebesgue measure. If λ1(Ω) is
not simple then λ2(Ω) = λ1(Ω).

Proof. The proof is from [F5]. Given two linearly independent first eigenfuctions u, v >
0, the continuous curve γ : [0, 1] →M defined by

γt(x) =
cos(πt)u(x) + t(1− t)v(x)
(
| cos(πt)|p + tp(1− t)p

) 1
p

joins u to −u. According to Theorem 4.1.3, the class of admissible competitors in the
mountain pass formula (4.1.5) is independent of the choice of the first eigenfuction. Thus γ
is an admissible competitor in that infimum problem so that

λ2(Ω) ≤
∫

Ω

‖∇γt(x)‖p dx = λ1(Ω).

Conversely, λ1(Ω) is the least eigenvalue, hence opposite inequality obviously holds. That
concludes the proof. �
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Summarizing, the second term λ2(Ω) in the sequence of variational min-max eigenvalues
recovers the value of the second eigenvalue counted with multiplicity defined by (4.3.1).

Corollary 4.3.4. Let Ω be an open set in RN , not necessarily connected. Then

λ2(Ω) =






min
{
λ > λ1(Ω) : λ is an eigenvalue

}
, if λ1(Ω) is simple,

λ1(Ω), otherwise.

Proof. The statement plainly follows by Theorems 4.3.2 and 4.3.3. �



CHAPTER 5

Optimization of low Dirichlet p-eigenvalues

In this chapter we shall focus on the nonlinear operator acting on scalar functions u
defined on some open set Ω in R

N , namely the so-called p-Laplacian

∆pu = div(|∇u|p−2∇u).
The operator relies on the variational integral

∫

Ω

|∇u|p dx

subject to the contraint ∫

Ω

|u|p dx = const .

The optimal shape Ω for the low eigenvalues of −∆p, with volume constraint, are exhibited
and the stability of optimizers is discussed.

Given an open set Ω ⊂ RN having finite measure and p ∈ (1,∞), we define the Lp unitary
sphere

Mp(Ω) = {u ∈ Lp(Ω) : ‖u‖Lp(Ω) = 1},
and we indicate with W 1,p

0 (Ω) the usual Sobolev space, given by the closure of C∞
0 (Ω) with

respect to the norm

‖u‖ =

(∫

Ω

|∇u(x)|p dx
)1/p

.

Recall that λ a Dirichlet eigenvalue of −∆p in Ω if there exists a non trivial u ∈ W 1,p
0 (Ω)

satisfying

(5.0.5) −∆pu = λ|u|p−2 u, in Ω

in a weak sense, i.e.
∫

Ω

〈|∇u(x)|p−2∇u(x),∇ϕ(x)〉 dx = λ

∫

Ω

|u(x)|p−2 u(x)ϕ(x) dx, for every ϕ ∈ W 1,p
0 (Ω).

Correspondingly u will be a Dirichlet eigenfunction of −∆p. In particular, observe that for
every such a pair (λ, u) there results

∫

Ω

|∇u(x)|p dx = λ

∫

Ω

|u(x)|p dx.

61
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Remark 5.0.5. Observe that even in this model equation general solutions of (5.0.5) are just
in C1,α. In fact, the second derivatives cannot exist in a weak sense either, unless 1 < p ≤ 2
(see [6]). Then eigenfunctions in general are not classical solutions of the equation (5.0.5).

Remark 5.0.6. If Ω is connected, then for all eigenfunctions u ≥ 0 the following alternative
holds: either u ≡ 0 or u > 0. This follows by a Harnack inequality, see Theorem 2.2.1.

Recall Theorem 1.4.1. It is possible to show the existence of a diverging sequence of
variational eigenvalues of −∆p

λ1(Ω) ≤ λ2(Ω) ≤ . . . ≤ λn(Ω) → ∞
In the following, a particular class of shape optimization problems involving this variational
spectrum of −∆p is considered. The variational eigenvalues are monotone decreasing with
respect to set inclusion in the sense that

Ω1 ⊂ Ω2 =⇒ λn(Ω1) ≥ λn(Ω2).

Their scaling properties read as follows:

λn(tΩ) = t−pλn(Ω), t > 0, n = 1, 2, . . .

In words, the eigenvalue scales as a length to the power p. In particular, the shape functional
Ω 7→ |Ω|p/N λn(Ω) is scaling invariant. Thus the two shape optimization problems

min{λn(Ω) : |Ω| = c} and min |Ω|p/N λn(Ω), n = 1, 2, . . .

are equivalent, in the sense that they both provide the same optimal shapes, up to a scaling.

Remark 5.0.7. Concerning the a priori regularity of the shape optimizing the n-th eigen-
value, one should expect significantly much weaker results than the classical ones for minimal
surfaces. Indeed, at variance with the shape functional given by the (distributional) perime-
ter, the eigenvalues are affected by dilations rather than oscillations concentrated on the
boundary.

Remark 5.0.8. In shape optimization problems, the dependance of the cost functional on
the admissible shapes is often given through a variational problem. That is the case for the
Dirichlet p-eigenvalues λn(Ω). A comment on the way how λn(Ω) depends on the shape Ω
is appropriate. The continuity of the eigenvalue with respect to Ω can be made rigorously
justified up to restricting to a suitable class A0 of open sets near to a given reference Ω0.
Namely, it is possible to define a notion of distance d0 such that

∣∣λn(Ω1)− λn(Ω2)
∣∣ . d0(Ω1,Ω2)

provided that the right hand side is sufficiently small. The interested reader is referred
to [24]. If both of Ω1 and Ω2 are contained in a small ε-neighborhood of the other, then
such estimates read ∣∣λn(Ω1)− λn(Ω2)

∣∣ . εα
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provided that Ω1,Ω2 are choosen in the subclass Aα
0 of shapes having C0,α boundaries. In

the linear case (p = 2) similar estimates become sharp, see [25] for details on this topic. We
mention the nice inequality

∣∣λn(Ω1)− λn(Ω2)
∣∣ . |Ω1∆Ω2|

which holds for all pairs of shapes sufficiently close to a reference Ω0.

The purpose of this chapter is to adress some issues related rather to the stability of the
eigenvalues than to their continuity. The two viewpoints are opposite in a sense. If this
chapter was the answer, then the question would be the following:

λn(Ω) ∼= optimal
?

=⇒ Ω ∼= optimal.

A positive answer is given for n = 1, 2.

Remark 5.0.9. In the case of low eigenvalues of the Dirichlet p-Laplacian, the optimal
shapes are known, see the discussion on Faber-Krahn and Hong-Krahn-Szego inequality
below. For a more general shape optimization problem, existence has to be proved before
adressing the stability issue, and regularity has to be discussed. Flexible tools are provided in
the framework of γ-convergence, for which the reader is referred to [54]. Concerning the n-th
Dirichlet eigenvalue of the (linear) Laplacian, the existence of an optimal shape under volume
constrained was recently established independentely by Mazzoleni and Pratelli in [76] and
Bucur [21]. The variational direct methods of spectral optimization provide as an optimizer
a capacitary measure rather than an open set. To prove that a general spectral optimization
problem is solvable in a set of (possibly smooth) open sets is an nowadays an outstanding
problem. This is again not necessary once the optimal shape is known.

1. Faber-Krahn inequality

The optimal shape for the first eigenvalue under volume constraint is well-known. As
one may expect, it is given by any ball. This is the celebrated Faber-Krahn inequality.
The classical proof combines the Schwarz symmetrization with the so called Pólya-Szegő
principle (see [54, Chapter 3], for example). Basically, if u is a first eigenfunction on a set
Ω of unit volume, by denoting u∗ its spherical rearrangement on the ball B of radius 1 then
Pólya-Szegő inequality yields

λ1(Ω) =

∫

Ω

|∇u|p dx
∫

Ω

|u|p dx
≥

∫

B

|∇u∗|p dx
∫

B

|u∗|p dx
≥ λ1(B).

A finer analysis shows that the only possible equality case is achieved by choosing Ω = B.
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Faber-Krahn Inequality. Let 1 < p < ∞. For every open set Ω ⊂ RN having finite
measure, we have

(5.1.1) |Ω|p/Nλ1(Ω) ≥ ω
p/N
N λ1(B),

where B is the N−dimensional ball of radius 1 and ωN := |B|. Moreover, equality sign in
(5.1.1) holds if and only if Ω is a ball.

In other words, for every c > 0 the unique solutions of the following spectral optimization
problem

min{λ1(Ω) : |Ω| = c},
are given by balls having measure c.

To make this section complete, it should be mentioned that a quantitative version of
Faber-Krahn inequality is at disposal. The Fraenkel asymmetry of an open set Ω ⊂ RN

having finite measure is defined by

A(Ω) = inf

{‖1Ω − 1B‖L1

|Ω| : B is a ball such that |B| = |Ω|
}
.

This is a scaling invariant quantity such that 0 ≤ A(Ω) < 2, with A(Ω) = 0 if and only if Ω
coincides with a ball, up to a set of measure zero. Then we recall the following quantitative
improvement of the Faber-Krahn inequality, proven in [14] (case N = 2) and [44] (general
case). For every Ω ⊂ RN open set with |Ω| <∞, we have

(5.1.2) |Ω|p/N λ1(Ω) ≥ ω
p/N
N λ1(B) [1 + γN,pA(Ω)κ1 ] ,

where γN,p is a constant depending only on N and p and the exponent κ1 = κ1(N, p) is given
by

κ1(N, p) =

{
3, if N = 2,

2 + p, if N ≥ 3.

Remark 5.1.1. One may ask wheter the exponent κ1 in (5.1.2) is sharp or not. By intro-
ducing the deficit

FK(Ω) :=
|Ω|p/N λ1(Ω)
ω
p/N
N λ1(B)

− 1,

one would like to prove the existence of suitable deformations {Ωε}ε>0 of a ball B, such that

lim
ε→0

FK(Ωε) = 0 and lim
ε→0

A(Ωε)
κ1

FK(Ωε)
= ℓ 6= {0,+∞}.

i.e. the asymmetry to the power κ1 and the deficit have the same decay rate to 0. At least
in the case p = 2, the answer should be no, since the conjectured sharp exponent is 2 (see
[15, pag. 56]), while κ1(N, 2) ≥ 3. At present, a proof of this fact still lacks.
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2. The Hong-Krahn-Szego inequality

In this section, we are going to prove that the disjoint unions of equal balls are the
only sets minimizing λ2 under volume constraint, i.e. we will prove the Hong-Krahn-Szego
inequality for the p−Laplacian. A key step in the proof is provided by the following technical
lemma. That is an extension of a similar result which holds in the linear case p = 2 (see [19,
Lemma 3.1], for example).

Lemma 5.2.1. Let Ω ⊂ RN be an open set with |Ω| <∞. Then there exists Ω+,Ω− disjoint
subsets of Ω such that

(5.2.1) λ2(Ω) = max{λ1(Ω+), λ1(Ω−)}.
Proof. Let us take u1, u2 ∈ Mp(Ω) ∩ W 1,p

0 (Ω) a first and second eigenfunction, re-
spectively: notice that if λ1(Ω) is not simple, we mean that u1 and u2 are two linearly
independents eigenfunctions corresponding to λ1(Ω). We can distinguish two alternatives:

(i) u2 is sign-changing;
(ii) u2 has constant sign in Ω.

Let us start with (i): in this case, u2 has exactly two nodal domains

Ω+ = {x ∈ Ω : u2(x) > 0} and Ω− = {x ∈ Ω : u2(x) < 0},
which by definition are connected sets. The restriction of u2 to Ω+ is an eigenfunction of
constant sign for Ω+, then Theorem 4.2.2 implies that u2 must be a first eigenfunction for
it. Replacing Ω+ with Ω−, the previous observation leads to

λ2(Ω) = λ1(Ω−) = λ1(Ω+).

which implies in particular (5.2.1) in this case.

In case (ii), let us set

Ω+ = {x ∈ Ω : |u1(x)| > 0} and Ω− = {x ∈ Ω : |u2(x)| > 0}.
Using Theorem 4.2.2, we have that Ω+ and Ω− have to be two distinct connected components
of Ω: in addition u1, u2 are eigenfunctions (with constant sign) of Ω+ and Ω−, respectively.
Then

λ1(Ω−) =

∫

Ω−

|∇u2(x)|p dx =

∫

Ω

|∇u2(x)|p = λ2(Ω).

Clearly, one also has λ1(Ω+) = λ1(Ω) ≤ λ2(Ω), which finally gives (5.2.1) also in this case. �

We are now ready for the main result of this section.

Theorem 5.2.2 (HKS inequality for the p−Laplacian). For every Ω ⊂ RN open set having
finite measure, we have

(5.2.2) |Ω|p/N λ2(Ω) ≥ 2p/N ω
p/N
N λ1(B),
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where B is the N−dimensional ball of radius 1 and ωN := |B|. Moreover, equality sign in
(5.2.2) holds if and only if Ω is the disjoint union of two equal balls.

In other words, for every c > 0 the unique solutions of the following spectral optimization
problem

min{λ2(Ω) : |Ω| = c},
are given by disjoint unions of two balls, both having measure c/2.

Proof. With the notation of Lemma 5.2.1, an application of the Faber-Krahn inequality
yields

(5.2.3) λ2(Ω) = max{λ1(Ω+), λ1(Ω−)} ≥ max{λ1(B+), λ1(B−)},
where B+, B− are balls such that |B+| = |Ω+| and |B−| = |Ω−|. Thanks to the scaling
properties of λ1, we have

λ1(B+) =

(
ωN

|Ω+|

)p/N

λ1(B) and λ1(B−) =

(
ωN

|Ω−|

)p/N

λ1(B),

so that from (5.2.3) we obtain

λ2(Ω) ≥ ω
p/N
N λ1(B) max{|Ω+|−p/N , |Ω−|−p/N}.

Finally, observe that since |Ω+|+ |Ω−| ≤ |Ω|, we get

(5.2.4) max{|Ω+|−p/N , |Ω−|−p/N} ≥
( |Ω|

2

)−p/N

,

which concludes the proof of the inequality.
As for the equality cases, we start observing that we just used two inequalities, namely

(5.2.3) and (5.2.4). On the one hand, equality in (5.2.3) holds if and only if at least one
among the two subsets is a ball, say Ω+ = B+, with λ1(B+) ≥ λ1(Ω−); on the other hand, if
equality holds in (5.2.4) then we must have |Ω+| = |Ω−| = |Ω|/2. Since Ω+ and Ω− have the
same measure and the one with the greatest λ1 is a ball, we can conclude that both have to
be a ball, thanks to the equality cases in the Faber-Krahn inequality. �

3. The stability issue

We now come to the question of stability for optimal shapes of λ2 under measure con-
straint. In particular, we will enforce the lower bound on |Ω|2/N λ2(Ω) provided by the
Hong-Krahn-Szego inequality, by adding a remainder terms in the right-hand side of (5.2.2).
At this aim, we need to introduce some further tools. In the case of the Hong-Krahn-Szego
inequality, the relevant notion of asymmetry is the Fraenkel 2−asymmetry, introduced in
[19]

A2(Ω) = inf

{‖1Ω − 1B1∪B2‖L1

|Ω| : B1, B2 balls such that |B1 ∩ B2| = 0, |Bi| =
|Ω|
2
, i = 1, 2

}
.

The main result of this section is the following quantitative version of Theorem 5.2.2.
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Theorem 5.3.1. Let Ω ⊂ RN be an open set, with |Ω| <∞ and p ∈ (1,∞). Then

(5.3.1) |Ω|p/Nλ2(Ω) ≥ 2p/N ω
p/N
N λ1(B) [1 + CN,pA2(Ω)

κ2 ] ,

with CN,p > 0 constant depending on N and p only and κ2 = κ2(N, p) given by

κ2(N, p) = κ1(N, p) ·
N + 1

2
.

Proof. Thanks to Lemma 5.2.1, we have existence of two disjoint sets Ω+,Ω− ⊂ Ω such
that (5.2.1) holds. We then set

δ+ = |Ω+| −
|Ω|
2
, δ− = |Ω−| −

|Ω|
2
,

and we observe that it must be δ+ + δ− ≤ 0, since |Ω+| + |Ω−| ≤ |Ω|. To simplify a bit
formulas, let us introduce the deficit functional

HKS(Ω) :=
|Ω|p/Nλ2(Ω)

2p/N ω
p/N
N λ1(B)

− 1.

In order to prove (5.3.1), we just need to show that

(5.3.2) HKS(Ω) ≥ CN,pmax

{
A(Ω+)

κ1 +

∣∣∣∣
δ+
|Ω|

∣∣∣∣ , A(Ω−)
κ1 +

∣∣∣∣
δ−
|Ω|

∣∣∣∣
}
,

then a simple application of Lemma 5.3.2 below will conclude the proof. To obtain (5.3.2), it
will be useful to distinguish between the case p ≤ N and the case p > N . For both of them,
we will in turn treat separately the case where both δ+ and δ− are non positive and the
case where they have opposite sign. Finally, since the quantities appearing in the right-hand
side of (5.3.2) are all universally bounded, it is not restrictive to prove (5.3.2) under the
additional assumption

(5.3.3) HKS(Ω) ≤ 1

4
.

Indeed, it is straightforward to see that if HKS(Ω) > 1/4 then (5.3.2) trivially holds with
constant

CN,p =
1

2

1

2κ1+1 + 1
> 0.

Case A: p ≤ N . In this case the proof runs very similarly to the linear case p = 2 treated
in [19]. We start applying the quantitative Faber-Krahn inequality (5.1.2) to Ω+. If we
indicate with B the ball of unit radius, recalling (5.2.1) and using the definition of δ+, we
find

γN,pA(Ω+)
κ1 ≤ |Ω+|p/N λ1(Ω+)

ω
p/N
N λ1(B)

− 1 ≤ (|Ω|+ 2 δ+)
p/N λ2(Ω)

2p/Nω
p/N
N λ1(B)

− 1
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Since p ≤ N , the power function t 7→ (|Ω|+ t)p/N is concave, thus we have

(|Ω|+ 2δ+)
p/N ≤ |Ω|p/N +

2p

N
|Ω|p/N δ+

|Ω| .

Using this information in the previous inequality, we get

γN,pA(Ω+)
κ1 ≤ HKS(Ω) +

2p

N

δ+
|Ω|

|Ω|p/N λ2(Ω)
2p/N ω

p/N
N λ1(B)

,

that we can rewrite as follows

(5.3.4) γN,pA(Ω+)
κ1 ≤ HKS(Ω) +

2p

N

δ+
|Ω| (HKS(Ω) + 1) .

Replacing Ω+ with Ω−, one obtains a similar estimate for Ω−.

Case A.1: δ+ and δ− are both non-positive. In this case, it is enough to observe that
HKS(Ω) ≥ 0 while δ+ ≤ 0, thus from (5.3.4) we get

γN,pA(Ω+)
κ1 +

2p

N

|δ+|
|Ω| ≤ HKS(Ω).

The same computations with Ω− in place of Ω+ yield (5.3.2).

Case A.2: δ+ and δ− have opposite sign. Let us assume for example that δ+ ≥ 0 and δ− ≤ 0:
the main difference with the previous case is that now the larger piece Ω+ could be so large
that the information provided by (5.2.1) is useless. However, estimate (5.3.4) still holds true
for both Ω+ and Ω−. Using this and the fact that δ+ + δ− ≤ 0, we can thus infer

HKS(Ω) ≥ −2p

N

δ−
|Ω| ≥

2p

N

δ+
|Ω| ,

i.e. the deficit is controlling the error term |δ+|/|Ω|. To finish, we still have to control the
asymmetry of the larger piece Ω+ in terms of the deficit: it is now sufficient to introduce the
previous information into (5.3.4), thus getting

γN,pA(Ω+)
κ1 ≤ HKS(Ω)(2 +HKS(Ω)).

Since we are assuming HKS(Ω) ≤ 1/4, the previous implies thatHKS(Ω) controlsA(Ω+)
κ1 ,

modulo a constant depending only on N and p. These estimates on Ω+, together with the
validity of (5.3.4) for Ω− and with the fact that δ− ≤ 0, ensure that (5.3.2) holds also in this
case.

Case B: p > N . Let us start once again with Ω+. Using (5.2.1) and the quantitative
Faber-Krahn (5.1.2) as before, we get

HKS(Ω) ≥ |Ω|p/N λ1(Ω+)

2p/N ω
p/N
N λ1(B)

− 1 ≥
[( |Ω|

2 |Ω+|

)p/N

(1 + γN,pA(Ω+)
κ1)− 1

]
.
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Then using the definition of δ+ and the convexity of the function t 7→ (1 + t)p/N (since
p > N), we have ( |Ω|

2 |Ω+|

)p/N

=

(
1− δ+

|Ω+|

)p/N

≥ 1− p

N

δ+
|Ω+|

.

Inserted in the previous estimate, this yields

(5.3.5) HKS(Ω) ≥
[
γN,p

(
1− p

N

δ+
|Ω+|

)
A(Ω+)

κ1 − p

N

δ+
|Ω+|

]
.

In the same way, using Ω− in place of Ω+, we obtain a similar estimate for Ω−.

Case B.1: δ+ and δ− are both non positive. In this case, in (5.3.5) we can drop the terms

− p

N

δ+
|Ω+|

γN,pA(Ω+)
κ1 and − p

N

δ−
|Ω−|

γN,pA(Ω−)
κ1 ,

since these are positive, thus we arrive once again at (5.3.2), keeping into account that

− δ+
|Ω+|

≥ − δ+
|Ω| and − δ−

|Ω−|
≥ − δ−

|Ω| .

Case B.2: δ+ and δ− have opposite sign. Let us suppose as before that δ+ ≥ 0 and δ− ≤ 0.
Now the main problem is the term in front of the asymmetry A(Ω+) in (5.3.5), which could
be negative. Since δ+ + δ− ≤ 0, applying (5.3.5) to Ω− we obtain

(5.3.6)
δ+
|Ω| ≤ − δ−

|Ω| ≤
N

p
HKS(Ω).

We then observe that if

(5.3.7) δ+ ≤ N

p

|Ω|
4
,

we have (
1− p

N

δ+
|Ω+|

)
≥ 1− 1

4

|Ω|
|Ω+|

≥ 1

2
,

thanks to the fact that |Ω| ≤ 2 |Ω+|, which easily follows from the assumption that δ+ ≥ 0.
From (5.3.5) we can now infer

HKS(Ω) ≥ γN,p

2
A(Ω+)

κ1 − p

N

δ+
|Ω+|

,

then (5.3.2) follows as before, using (5.3.6) and the fact that

− δ+
|Ω+|

≥ −2
δ+
|Ω| .

This would prove the thesis under the additional hypothesis (5.3.7): however, if this is not
satisfied, then (5.3.6) would imply HKS(Ω) > 1/4, which is in contrast with our assumption
(5.3.3). �
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The following technical Lemma of geometrical content completes the proof of Theorem
5.3.1. This is the same as [19, Lemma 3.3] and we omit the proof.

Lemma 5.3.2. Let Ω ⊂ RN be an open set, with finite measure. For every Ω+,Ω− ⊂ Ω
such that |Ω+ ∩ Ω−| = 0, we have

(5.3.8) A2(Ω) ≤ CN

(
A(Ω+) +

∣∣∣∣
1

2
− |Ω+|

|Ω|

∣∣∣∣ +A(Ω−) +

∣∣∣∣
1

2
− |Ω−|

|Ω|

∣∣∣∣
)2/(N+1)

,

for a suitable dimensional constant CN > 0.

4. Extremal cases: p = 1 and p = ∞
In the above a stability analysis was performed on the isoperimetric bound for the second

Dirichlet p–eigenvalue. To make this analysis more complete, is seems to be natural to give
a brief look at the asymptotics as p approaches the extrema of its range of admissible values,
namely p = 1 and p = ∞. In these cases some shape functionals of geometric flavour appear
in place of the eigenvalues of an elliptic operator.

To enter more in this question, some definitions are needed. For Ω ⊂ RN open set with
|Ω| < ∞, C1(Ω) and C2(Ω) stand for the first two Cheeger constants, which are defined
respectively by

C1(Ω) = inf
E⊂Ω

P (E)

|E| and C2(Ω) = inf

{
t :

there exist E1, E2 ⊂ Ω
such that E1 ∩ E2 = ∅ and max

i=1,2

P (Ei)

|Ei|
≤ t

}
.

Here P (E) equals the distributional perimeter of a set E if this is a finite perimeter sets and
is +∞ otherwise. Also, if |E| = 0 we use the convention P (E)/|E| = +∞.

By Λ1(Ω) one denotes the inverse of the radius r1 of the largest ball inscribed in Ω.
By Λ2(Ω) will denote the inverse of the largest positive number r2 such that there exist two
disjoint balls of radius r2 contained in Ω. It is remarkable to notice that Λ1 and Λ2 are indeed
two eigenvalues. Namely, they coincide with the first two eigenvalues of the ∞−Laplacian,
cf. Chapter 8.

Our interest in these quantities is motivated by the following Theorem, collecting various
results about the asymptotic behaviour of λ1 and λ2.

Limiting behaviour of eigenvalues. For every set Ω ⊂ RN , there holds

(5.4.1) lim
p→1+

λi(Ω) = Ci(Ω), i = 1, 2 and lim
p→∞

λi(Ω)
1/p = Λi(Ω), i = 1, 2.

Proof. The first fact is proven in [46] and [82], respectively. For the second, one can
consult [58] and the references therein. �

Remark 5.4.1. At this point, one could be tempted to use the previous results for λ1, in
order to improve inequality (5.1.2). For example, using the subadditivity of the function
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t 7→ (1 + t)1/p, it is not difficult to see that

lim
p→∞

FK(Ω)1/p ≥ |Ω|1/N Λ1(Ω)

ω
1/N
N

− 1 ≥ 1

2N
A(Ω),

where in the last inequality we used the (sharp) quantitative stability estimate1 for Λ1 (see
[58], equation (2.6)). Then one could bravely guess that for p “very large”, inequality (5.1.2)
has to hold with the exponent κ1(N, p) replaced by p, which is strictly small if N ≥ 3. This
would prove that (5.1.2) is not sharp, at least for N ≥ 3 and p going to ∞. Needless to say,
this argument (and the related one for p → 1) is only a heuristic one, since these limits are
not uniform with respect to the sets Ω.

In these extremal cases, the analogues of problem

min
{
λ2(Ω) : |Ω| = c

}

are

min
{
C2(Ω) : |Ω| = c

}
and min

{
Λ2(Ω) : |Ω| = c

}
.

Once again, they both have (unique) solution, that is given by any disjoint union of two
equal balls. For a proof of that in the first case, the reader can see [82, Proposition 3.14].
For the other problem, this statement plainly follows by the geometrical meaning of Λ2.
Therefore, the above rewrite scaling invariant form as

|Ω|1/N C2(Ω) ≥ 21/N Nω
1/N
N and |Ω|1/N Λ2(Ω) ≥ 21/N ω

1/N
N ,

respectively. Both the inequalities can be improved by a reminder term making them quan-
titative. This is proved in the following theorem.

Theorem 5.4.2. Let Ω be an open subset of RN having finite measure. Then

(5.4.2) |Ω|1/N C2(Ω) ≥ 21/N N ω
1/N
N

[
1 + hN A2(Ω)

N+1
]
,

where the constant hN > 0 only depens on the dimension N . Moreover, for Λ2 we have

(5.4.3) |Ω|1/N Λ2(Ω) ≥ 21/N ω
1/N
N

[
1 +

1

2N
A2(Ω)

]
.

Proof. To prove (5.4.2), we start defining

TΩ =

{
t > 0 : there exist Ω1,Ω2 ⊂ Ω disjoint and s.t. max

i=1,2

P (Ωi)

|Ωi|
≤ t

}
.

1The relation between the Fraenkel asymmetry α(Ω) as defined in [58] and our definition is given by A(Ω) =
2α(Ω). This explains the discrepancy between our constant 1/(2N) and the constant 1/N that can be found
in [58], equation (2.6).
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It is not difficult to see that if Ω is open, then TΩ 6= ∅, since Ω contains at least two disjoint
small balls, which are in particular two sets with positive measure and finite perimeter. Then
let us pick up a t ∈ TΩ. Correspondingly, there exist Ωt

+,Ω
t
− ⊂ Ω disjoint and such that

(5.4.4) t ≥ max

{
P (Ωt

+)

|Ωt
+|

,
P (Ωt

−)

|Ωt
−|

}
≥ max{C1(Ωt

+), C1(Ωt
−)},

where we used the straightforward estimate C1(E) ≤ P (E)/|E|, which is valid for every finite
perimeter set E. Now, we introduce the following quantity

DΩ(t) :=
|Ω|1/N max{C1(Ωt

+), C1(Ωt
−)}

21/N N ω
1/N
N

− 1,

and we proceed exactly as in Case A of the proof of Theorem 5.3.1. We only need to replace
HKS(Ω) by DΩ(t) and the quantitative Faber-Krahn inequality by the following (sharp)
quantitative Cheeger inequality (see [45]),

(5.4.5) |Ω|1/NC1(Ω) ≥ N ω
1/N
N

[
1 + γN A(Ω)2

]
,

where γN > 0 is a constant depending only on the dimension N . In this way, one arrives at
the estimate

DΩ(t) ≥ hN AN+1
2 (Ω), for every t ∈ TΩ,

that is
|Ω|1/N t

21/N N ω
1/N
N

− 1 ≥ hN AN+1
2 (Ω), for every t ∈ TΩ,

thanks to (5.4.4). Taking the infimum on TΩ on both sides and using the definition of second
Cheeger constant, we eventually prove the thesis.

In order to prove (5.4.3), let us take a pair of optimal disjoint balls B(x0, r), B(x1, r) ⊂ Ω,
whose common radius r is given by

Λ2(Ω) = r−1,

and set for simplicity O1 := B(x0, r) ∪B(x1, r), then obviously we have

|Ω \ O1| = |Ω| − 2ωN r
N .

Up to a rigid movement, we can assume that x0 = (M, 0, . . . , 0) and x1 = (−M, 0, . . . , 0), for
some M ≥ r, then for every t ≥ 1 we define the new centers x0(t) := (M +(t− 1) r, 0, . . . , 0)
and x1(t) := ((1− t) r −M, 0, . . . , 0): observe that xi(1) = xi, i = 0, 1. Finally, we set

Ot := B(x0(t), t r) ∪B(x1(t), t r), t ≥ 1,

i.e. for every t ≥ 1 this is a disjoint union of two balls of radius t r and moreover Ot ⊂ Os if
t < s.The latter fact implies that the function t 7→ |Ω ∩ Ot| is increasing, thus t 7→ |Ω \ Ot|
is decreasing. We exploit this fact by taking t0 > 1 such that |Ot0 | = |Ω|: then we have

|Ω| − 2ωN r
N = |Ω \ O1| ≥ |Ω \ Ot0 | ≥

1

2
A2(Ω) |Ω|,
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where in the last inequality we used that Ot0 is admissible for the problem defining A2(Ω).
From the previous, we easily obtain

|Ω|
rN

≥ 2ωN

(1− 1/2A2(Ω))
,

which finally gives (5.4.3), just by raising both members to the power 1/N , using the ele-
mentary inequality (1− t)−1/N ≥ 1 + 1/N t for t < 1 and recalling that r = Λ2(Ω)

−1. �

5. Sharpness of the estimates: examples and open problems

The estimates of Theorem 5.3.1 and 5.4.2 show that for every set the deficit dominates a
certain power κ of the asymmetry A2. In addition to this, the reader could ask the question
whether or not for some sets converging to the optimal shape (i.e. a disjoint union of two
equal balls) the deficit and Aκ

2 have the same decay rate. A positive answer to the question
would imply the sharpness of those estimates. The last section of the chapter is devoted to
discuss this interesting topic.

5.1. Quantitative Hong-Krahn-Szego inequality. This is quite a delicate issue.
First of all, observe that in contrast with the case of the Faber-Krahn inequality, the exponent
of the asymmetry κ2 blows up with N . For this reason, one could automatically guess that
κ2 is not the sharp exponent. However, it has to be noticed that this dependence on N is
directly inherited from the geometrical estimate (5.3.8), which is indeed sharp. Let us fix a
small parameter ε > 0 and consider the following set

Ωε = {(x1, x′) ∈ R
N : (x1 +1− ε)2 + |x′|2 < 1} ∪ {(x1, x′) ∈ R

N : (x1 − 1+ ε)2 + |x′|2 < 1},
which is just the union of two balls of radius 1, with an overlapping part whose area is of
order ε(N+1)/2. We set

Ωε
+ = {(x1, x′) ∈ Ωε : x1 ≥ 0} and Ωε

− = {(x1, x′) ∈ Ωε : x1 ≤ 0},
and it is not difficult to see that A(Ωε

+) = O(ε(N+1)/2), while on the contrary A2(Ω
ε) = O(ε)

which means

A2(Ω
ε)(N+1)/2 ≃ A(Ωε).

i.e. both sides in (5.3.8) are asymptotically equivalent, as the area of the overlapping region
goes to 0 (see [19, Example 3.4], for more details on this example). And in fact one can use
these sets Ωε to show that the sharp exponent in (5.3.1) has to blow-up with the dimension.
Also observe that in the proof of Theorem 5.3.1, the precise value of κ1 plays no role, so the
same proof actually gives (5.3.1) with

κ2 = (sharp exponent for (5.1.2))× N + 1

2
.

Though we strongly suspect this κ2 not to provide the right decay rate, currently we are not
able to solve this issue, which seems to be quite a changelling one even for p = 2.
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5.2. Second Cheeger constant. Also in this case, the exponent N+1 in (5.4.2) seems
not to be sharp in the decay rate of the deficit. In order to shed some light on this fact, we
estimate the deficit for C2 of the same set Ωε as before. First of all, thanks to the symmetries
of Ωε, it is not difficult to see that C2(Ωε) = C1(Ωε

+) = C1(Ωε
−). Then we have

hN A2(Ω
ε)N+1 ≤ |Ωε|1/N C2(Ωε)

21/N N ω
1/N
N

− 1 =
|Ωε|1/N C1(Ωε

+)

21/N N ω
1/N
N

− 1 ≤ |Ωε
+|1/N−1 P (Ωε

+)

N ω
1/N
N

− 1,

so that the deficit of this inequality is controlled from above by the isoperimetric deficit of
one of the two cut balls. We then estimate the right-hand side in the previous expression:
observe that setting ϑ = arccos(1− ε), we have for instance

P (Ωε
+) = NωN + ωN−1

[
(sinϑ)N−1 − (N − 1)

∫ sinϑ

0

tN−2

√
1− t2

d̺

]
,

and

|Ωε
+| = ωN − ωN−1

∫ 1

cosϑ

(1− t2)
N−1

2 dt,

then

P (Ωε
+) ≃ N ωN −N − 1

N + 1

ωN−1

2
ϑN+1 and |Ωε

+|1/N−1 ≃ ω
1−N
N

N

(
1 +

N − 1

N(N + 1)

ωN−1

ωN
ϑN+1

)
,

from which we can infer

|Ωε
+|1/N−1 P (Ωε

+)−N ω1/N ≃ N − 1

N + 1
ωN−1 ω

1−N
N

N ϑN+1 ≃ cN ε
N+1

2 .

In the end, we get

(5.5.1) C1A2(Ω
ε)N+1 ≤ |Ωε|1/N C2(Ωε)− 21/N N ω

1/N
N ≤ C2A2(Ω

ε)
N+1

2 ,

where we used that A2(Ω
ε) ≃ ε. Notice that this estimate implies in particular that, also in

this case, the sharp exponent is dimension-dependent and it blows up as N goes to ∞.

We point out that the previous computations give the correct decay rate to 0 of the
quantity C2(Ωε) − C2(B), which is O(ε(N+1)/2) = O(A2(Ωε)

(N+1)/2). Indeed, from the right-
hand side of (5.5.1) we can promptly infer that

C2(Ωε) = C1(Ωε
+) ≤ N + c ε

N+1
2 = C1(B) + c ε

N+1
2 .

Now assume that C1(Ωε
+) ≤ C1(B) + ω(ε) for some modulus of continuity ω such that

ω(ε) = o(ε(N+1)/2) as ε goes to 0, in this case we would obtain

0 ≤ |Ωε|1/N C1(Ωε
+)− 21/N N ω

1/N
N ≤ −K ε

N+1
2 ,

for some constant K > 0 independent of ε. This gives a contradiction, thus proving that

C2(Ωε)− C2(B) ≃ ε
N+1
2 .
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5.3. Second eigenvalue of −∆∞. On the contrary, it is not difficult to see that the
quantitative estimate (5.4.3) is sharp. By still taking the set Ωε as before, we observe that

Λ2(Ω
ε) = Λ1(Ω

ε
+) =

2

2− ε
≃ 1 +

ε

2
and |Ωε|1/N ≃ ω

1/N
N

(
1− ωN−1

ωN

2
N+1
2

N (N + 1)
ε

N+1
2

)
,

while A2(Ωε) = O(ε) as already observed. Then

|Ω|1/N Λ2(Ω)− ω
1/N
N ≃ A2(Ω),

proving the sharpness of (5.4.3). We remark that in this case the sharp exponent does not
depend on the dimension, in contrast with the cases p ∈ [1,∞).



CHAPTER 6

Optimization of a nonlinear anisotropic Stekloff p-eigenvalue

Let Ω be a bounded Lipschitz open set in RN . Then each function in W 1,p(Ω) has a trace
belonging to the fractional Sobolev spaces W 1−1/p,p(∂Ω). Recall that the embedding (trace
operator)

W 1,p(Ω) →֒ Lp(∂Ω)

is compact.
Next lemma is really elementary. The Sobolev space W 1,p(Ω) is endowed with the usual

norm

(6.0.1) ‖u‖W 1,p(Ω) =

(∫

Ω

|u(x)|p dx+
∫

Ω

|∇u(x)|p
) 1

p

but the following holds.

Lemma 6.0.1. Let 1 < p <∞ and Ω be an open bounded Lipschitz set in RN . Then

‖∇u‖Lp(Ω) + ‖u‖Lp(∂Ω), u ∈ W 1,p(Ω),

defines a norm on the Sobolev space W 1,p(Ω), which is equivalent to (6.0.1).

Proof. It is straightforward to check that the above quantity defines a norm. Then the
conclusion follows by combining the trace inequality

‖u‖Lp(∂Ω) ≤ cΩ‖u‖W 1,p(Ω),

and the following Poincaré inequality

‖u‖Lp(Ω) ≤ c̃Ω

(
‖∇u‖Lp(Ω) + ‖u‖Lp(∂Ω)

)
.

The latter in turn follows by a standard contradiction argument, exploiting the compact
embeddings W 1,p(Ω) →֒ Lp(Ω) and W 1,p(Ω) →֒ Lp(∂Ω). �

1. The Stekloff spectrum of the pseudo p-Laplacian

Let Ω be a bounded Lipschitz open set in RN and ̺ : ∂Ω → R be a measurable function
satisfying

(6.1.1) 0 < c1 ≤ ̺(x) ≤ c2 <∞, HN−1 − a.e. on ∂Ω.
76



1. THE STEKLOFF SPECTRUM OF THE PSEUDO p-LAPLACIAN 77

For every 1 < p <∞, we consider the pseudo p-Laplacian, i.e. the nonlinear operator

∆̃pu =

N∑

j=1

(
|uxj

|p−2uxj

)

xj

.

Definition 6.1.1. A real number σ is said to be a Stekloff eigenvalue of the pseudo p-
Laplacian in Ω if the boundary value problem

(6.1.2)





−∆̃pu = 0, in Ω,
N∑

i=1

|uxi
|p−2uxi

νiΩ = σ|u|p−2u̺, on ∂Ω,

admits a nontrivial solution u. If this is the case, we say that u is a Stekloff eigenfunction
corresponding to σ. We also set

Sp(Ω) = {σ ∈ R : σ is a Stekloff eigenvalue},
to denote the Stekloff spectrum of the pseudo p−Laplacian on Ω.

Remark 6.1.2. Since the behaviour of the spectrum under varying weights is not investi-
gated here, the notation does not account for the choice of the function ̺ : ∂Ω → R.

The solutions u of the problem (6.1.2) are always understood in the weak sense, i.e.
u ∈ W 1,p(Ω) and

(6.1.3)

N∑

i=1

∫

Ω

|uxi
|p−2uxi

ϕxi
dx = σ

∫

∂Ω

|u|p−2uϕ ̺ dHN−1, for every ϕ ∈ W 1,p(Ω).

Observe that the integral on the right-hand side is well-defined, since the trace of a function
in W 1,p(Ω) belongs to Lp(∂Ω).

We start with the following basic result.

Lemma 6.1.3. Let 1 < p < ∞, Ω be a bounded open Lipschitz set and ̺ : ∂Ω → R be
such that (6.1.1) holds. There exists a least eigenvalue, given by σ = 0 and corresponding
to constant eigenfunctions. Moreover, any other eigenfunction whose trace does not change
sign on ∂Ω, is constant in Ω.

Proof. By testing ϕ = u, equation (6.1.3) implies
∫

Ω

‖∇u‖ℓp dx = σ

∫

∂Ω

|u|p ̺ dHN−1,

so that every eigenvalue must be positive. Moreover, it is easily seen that σ = 0 is an
eigenvalue and by the previous equality any corresponding eigenfunction is constant.
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Let us now prove the second part of the statement. Let u 6= 0 have a constant sign on
the boundary and assume, arguing by contradiction, that it corresponds to an eigenvalue
σ 6= 0. Inserting a constant test function in (6.1.3) we then obtain

∫

∂Ω

|u|p−1̺ dHN−1 = 0,

where we also used that u does not change sign on ∂Ω. Thus, u has a null trace on ∂Ω and
it solves in a weak sense the problem

{
∆̃pu = 0 in Ω,
u = 0 on ∂Ω.

Solutions to the latter problem are minimizers of the strictly convex energy

v 7→
∫

Ω

‖∇v‖pℓp dx,

on W 1,p
0 (Ω). Since the unique minimizer is given by the zero constant function, there must

hold u ≡ 0, a contradiction. Therefore, σ = 0 and u is a constant eigenfunction. �

Definition 6.1.4. If u is a Stekloff eigenfunction, call nodal domains the connected com-
ponents of {x ∈ Ω : u(x) 6= 0}. Observe that the latter is an open set, since each pseudo
p−harmonic function is locally Hölder continuous, as a local minimizer of

∫
Ω
‖∇v‖pℓp (see

[51, Theorem 7.6]). We also observe that each nodal domain is itself an open set. This
follows from the fact that the connected components of an open sets in RN are open as well.

The following property of eigenfunctions will be useful in the next section.

Lemma 6.1.5. Let u ∈ W 1,p(Ω) be a Stekloff eigenfunction, with eigenvalue σ > 0. Then u
has at least two nodal domains, both touching the boundary.

Proof. The fact that u has to change sign follows from Lemma 3.3. Now take

u+(x) = max{u(x), 0} and u−(x) = max{0,−u(x)},
and let Ω1,Ω2, . . . , be the nodal domains of u. Suppose that for some j we have Ωj ⋐ Ω.

Then the restriction of u to Ωj belongs to W
1,p
0 (Ωj) and it solves

−∆̃pu = 0, on Ωj ,

in the weak sense. This implies that u ≡ 0 on Ωj , hence contradicting the definition of nodal
domain. �

The whole collection Sp(Ω) of Stekloff eigenvalues forms a closed set.

Proposition 6.1.6. Let 1 < p < ∞, Ω ⊂ RN a bounded Lipschitz domain and ̺ : ∂Ω → R

be a function such that (6.1.1) holds. Then Sp(Ω) is a non empty closed subset of [0,∞).
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Proof. This is a standard proof. The fact that the collection of all the Stekloff eigen-
values is non empty and consists of nonnegative numbers is due to Lemma 6.1.3. In order to
prove the second part of the statement, we take a sequence of eigenvalues {σk}k∈N ⊂ Sp(Ω)
converging to some positive number σ and we let {uk}k∈N ⊂ W 1,p(Ω) be a sequence of
corresponding eigenfunctions, normalized by the condition

∫

∂Ω

|uk|p ̺ dHN−1(x) = 1, k ∈ N.

This implies in particular that

N∑

i=1

∫

Ω

|ukxi
|p dx = σk, k ∈ N,

so that the sequence {uk}k∈N is bounded in W 1,p(Ω), thanks to Lemma 6.0.1. Thus, by the
compactness of the embedding W 1,p(Ω) →֒ Lp(∂Ω), the sequence weakly converges (up to a
subsequence) to some limit function u in W 1,p(Ω). Moreover, this convergence is strong in
Lp(∂Ω). We have to show that u is an eigenfuction with eigenvalue σ: testing the equations
solved by uk with ϕ = uk − u, we then obtain

N∑

i=1

∫

Ω

(
|ukxi

|p−2 ukxi
− |uxi

|p−2 uxi

)
(ukxi

− uxi
) dx

= σk

∫

∂Ω

(
|uk|p−2 uk − |u|p−2 u

)
̺ dHN−1 −

N∑

i=1

∫

Ω

|uxi
|p−2 uxi

(
ukxi

− uxi

)
dx.

Then, by the strong convergence of {uk}k∈N ⊂ Lp(∂Ω), sending k to infinity yields

lim
k→∞

N∑

i=1

∫

Ω

(
|ukxi

|p−2 ukxi
− |uxi

|p−2 uxi

)
(ukxi

− uxi
) dx = 0.

Thanks to Proposition A.3.2, the previous gives the strong convergence of ∇uk to ∇u in
Lp(Ω). Since {uk}k∈N converges to u strongly in Lp(∂Ω), we also have

(6.1.4) lim
k→∞

∫

∂Ω

|uk − u|p ̺ dHN−1 = 0.

Thanks to these informations, we can now pass to the limit in the equation (6.1.3) satisfied
by uk, so to obtain that u is an eigenfunction as well, with eigenvalue σ. This shows that
σ ∈ Sp(Ω), which is then closed. �

2. Existence of an unbounded sequence

In this section, we will show that the spectrum Sp(Ω) contains an infinite sequence
of eigenvalues, diverging at ∞. The proof just amounts to apply Theorem 1.4.1 to the
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variational integral

(6.2.1) F(u,Ω) =

∫

Ω

‖∇u(x)‖pℓp dx, u ∈ W 1,p(Ω),

restricted to the manifold M defined by

(6.2.2) M =
{
u ∈ W 1,p(Ω) : G(u,Ω) = 1

}
, where G(u,Ω) =

∫

∂Ω

|u|p ̺ dHN−1.

By Co(S
n−1;M) we denote the set of all odd continuous mappings from the unit sphere Sn−1

to M .

Theorem 6.2.1. Given 1 < p < ∞, let Ω ⊂ RN be an open bounded connected set, having
Lipschitz boundary. Let also ̺ : ∂Ω → R be a function such that (6.1.1) holds. For every
k ∈ N, we define

(6.2.3) σn,p(Ω) = inf
f∈Co(Sk−1;M)

max
u∈f(Sn−1)

∫

Ω

‖∇u‖pℓp dx.

Then each σn,p(Ω) is a Stekloff eigenvalue of the pseudo p-Laplacian on Ω. Moreover,

(6.2.4) 0 = σ1,p(Ω) < σ2,p(Ω) ≤ . . . ≤ σn,p(Ω) ≤ . . .

and σn,p(Ω) → ∞ as n→ ∞.

Proof. Taking into account Remark 1.4.2, the proof is a straghtforward adaptation of
the one of Theorem 1.4.1 to this case. One is just left to prove the following two facts.

The first element is zero. To see that, note that any continuous odd mapping from S0 =
{1,−1} to M can be identified with the choice of an antipodal pair u,−u on the symmetric
manifoldM . This and the fact that the functional is even imply that if n = 1 formula (6.2.3)
gives the minimum of (6.2.1) on M . The latter is of course zero, corresponding to constant
functions.

The existence of a gap. The gap inequality 0 < σ2,p(Ω) can be proved as in Theorem 4.3.2. �

Remark 6.2.2. If Ω has m connected components Ω1, . . . ,Ωm, equation (6.2.3) still defines
an infinite sequence of eigenvalues, diverging at ∞, but in this case one has

σ1,p(Ω) = · · · = σm,p(Ω) = 0.

They correspond to the (normalized) piecewise constant eigenfunctions, which are given by

ci =

(∫

∂Ωi

̺(x) dHN−1(x)

)− 1
p

· 1Ωi
(x)

for i = 1 . . . , m.
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3. The first nontrivial eigenvalue

Number σ2,p(Ω) is actually the first nontrivial Stekloff eigenvalue of −∆̃p. In other words,
the first eigenvalue σ = 0 is always isolated in the spectrum and any other eigenvalue has to
be greater than σ2,p(Ω). Then the quantity σ2,p(Ω) can also be seen as the fundamental gap
of the pseudo p−Laplacian, with Stekloff boundary conditions.

Theorem 6.3.1. Let u ∈ W 1,p(Ω) be a Stekloff eigenfunction, with eigenvalue σ > 0. Then
we have σ ≥ σ2,p(Ω).

Proof. The proof is inspired to [58, Theorem 3.4]. First observe that the positive and
negative parts u+ and u− of u are both not identically zero, due to Lemma 6.1.5. Also, they
belong to W 1,p(Ω), hence they have a trace on the boundary ∂Ω. Moreover

trace|∂Ω(u+) = (trace|∂Ωu)+ and trace|∂Ω(u−) = (trace|∂Ωu)−.

Thus, using u+ and u− as test functions in (6.1.3) it follows that
∫

Ω

‖∇u+(x)‖pℓp dx = σ

∫

∂Ω

|u+(x)|p ̺(x) dHN−1(x)

and ∫

Ω

‖∇u−(x)‖pℓp dx = σ

∫

∂Ω

|u−(x)|p ̺(x) dHN−1(x).

Consider now the odd and continuous mapping f̃ : S1 → M defined by

f̃ω(x) =
ω1 u+(x)− ω2 u−(x)

|ω1|p
∫

∂Ω

|u+|p ̺ dHN−1 + |ω2|p
∫

∂Ω

|u−|p ̺ dHN−1
, ω = (ω1, ω2) ∈ S

1.

Choosing f = f̃ in the definition of σ2,p(Ω) yields

σ2,p(Ω) ≤ max
ω∈Sk−1

|ω1|p
∫

Ω

‖∇u+‖pℓp dx+ |ω2|p
∫

Ω

‖∇u−‖pℓp dx

|ω1|p
∫

∂Ω

|u+|p ̺ dHN−1 + |ω2|p
∫

∂Ω

|u−|p ̺ dHN−1
= σ,

and this concludes the proof. �

The rest of this section is devoted to providing alternative characterizations of σ2,p(Ω).
The first one is a mountain pass theorem. Given a pair of functions u, v ∈M , we denote by
ΓΩ(u, v) the set of all continuous paths in M , parametrized on [0, 1] and connecting u to v,
i.e.

ΓΩ(u, v) = {γ : [0, 1] →M : γ is continuous and γ(0) = u, γ(1) = v} ,
where continuity is understood in the norm topology of W 1,p. Then we have the following
alternative characterization for σ2,p(Ω).
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Theorem 6.3.2. Let Ω ⊂ RN be an open bouned connected Lipschitz set. Let us define the
constant function

c =

(∫

∂Ω

̺(x) dHN−1(x)

)− 1
p

∈ M.

Then the first nontrivial Stekloff eigenvalue has the following Mountain Pass characterization

(6.3.1) σ2,p(Ω) = inf
γ∈ΓΩ(c,−c)

max
u∈γ

∫

Ω

‖∇u‖pℓp dx.

A slightly different version of Theorem 6.3.2 was proved in Section 1 of Chapter 3, see
Theorem 4.1.3. In the case of Stekloff boundary the proof requires a minor adjustment.
Basically, one should prove the following modified version of Lemma 4.1.2.

Lemma 6.3.3. Let u, v ∈ M , with v ≥ 0 on Ω and u satisfying one of the following
assumptions:

(i) u ≥ 0 on Ω;
(iii) the positive and negative parts of u are both not identically zero and

(6.3.2) u+ 6≡ 0 on ∂Ω and

∫

Ω

‖∇u+‖pℓp dx
∫

∂Ω

up+ ̺ dHN−1
≤

∫

Ω

‖∇u−‖pℓp dx
∫

∂Ω

up− ̺ dHN−1
,

with the convention that (6.3.2) is satisfied if u− ≡ 0 on ∂Ω.

Then there exists a continuous curve γ : [0, 1] → M , such that
∫

Ω

‖∇γt(x)‖pℓp dx ≤ max

{∫

Ω

‖∇u(x)‖pℓp dx,
∫

Ω

‖∇v(x)‖pℓp dx
}
, t ∈ [0, 1].

Remark 6.3.4. Of course, the positivity of the function v in the previous Lemma can be
dropped and replaced by condition (6.3.2). We kept it just for ease of exposition.

In what follows, we will use the shortcut notation

(6.3.3) RΩ(u) =

∫

Ω

‖∇u‖pℓp dx
∫

∂Ω

|u|p̺ dHN−1
, u ∈ W 1,p(Ω) \ {0},

where it is understood that R(u) = +∞ whenever u has zero trace on the boundary. The
following is the main result of this section. It gives a simpler variational description of σ2,p(Ω)
just in terms of a minimization, rather than through a minimax procedure.

Theorem 6.3.5. Let Ω ⊂ RN be an open bounded Lipschitz set. Then the infimum

(6.3.4) inf
u∈W 1,p(Ω)\{0}

{
RΩ(u) :

∫

∂Ω

|u|p−2 u ̺ dHN−1 = 0

}
,
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is attained and coincides with σ2,p(Ω). Moreover, every minimizer of (6.3.4) is a Stekloff
eigenfunction.

Proof. If Ω is not connected, then the infimum in (6.3.4) is zero. In that case σ2,p(Ω) = 0
as well, see Remark 6.2.2. This concludes the proof in the case of a disconnected open set.

The suppose that Ω is connected. The infimum (6.3.4) is attained. Indeed, a standard
contradiction argument exploiting the compactness of the embedding W 1,p(Ω) →֒ Lp(∂Ω)
leads to the existence of a constant Cp,Ω such that

∫

∂Ω

|v|p ̺ dHN−1 ≤ Cp,Ω

∫

Ω

|∇v|p dx,

for all v ∈ W 1,p(Ω) verifying

(6.3.5)

∫

∂Ω

|v|p−2v ̺ dHN−1 = 0.

Then, by the equivalence of all norms in RN , it is not difficult to deduce that

RΩ(u) ≥ Cp,Ω > 0, for all ϕ ∈ W 1,p(Ω) satisfying (6.3.5),

possibly for a different constant Cp,Ω. This shows that the infimum (6.3.4) is strictly positive.
The existence of a minimizer is again a straightforward consequence of Lemma 6.0.1 and of
the compact embedding W 1,p(Ω) →֒ Lp(∂Ω).

Now denote by σ∗ the minimum value (6.3.4) and take a function u ∈ W 1,p(Ω) realizing it.
Then u minimizes the functional

v 7→
∫

Ω

‖∇v‖pℓp dx− σ∗

∫

∂Ω

|v|p ̺ dHN−1,

as well, among functions v ∈ W 1,p(Ω) satisfying the zero-mean condition (6.3.5). The Euler-
Lagrange equation corresponding to this problem is precisely given by (6.1.3), with σ = σ∗,
since the Lagrange multiplier corresponding to (6.3.5) is zero1. This in turn implies that σ∗

is a Stekloff eigenvalue.

Eventually, let u ∈ W 1,p(Ω) be an eigenfuction for some eigenvalue σ 6= 0. Testing equation
(6.1.3) with ϕ = u shows that RΩ(u) = σ. Similarly, by taking a constant test function in ϕ
in (6.1.3), it follows that u verifies (6.3.5). Therefore each nontrivial Stekloff eigenfunction
u is admissible for problem (6.3.4) and

σ∗ ≤ σ2,p(Ω).

By Theorem 6.3.1, the reverse inequality holds as well, since σ∗ > 0. �

1As a matter of fact, some care is needed for the singular case 1 < p < 2, see Lemma 6.3.7.
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Remark 6.3.6. The value (6.3.4) coincides with the best constant in the following Poincaré-
Wirtinger trace inequality

cΩ

[
min
t∈R

∫

∂Ω

|u+ t|p ̺ dHN−1

]
≤
∫

Ω

‖∇u‖pℓp dx, u ∈ W 1,p(Ω).

It is sufficient to observe that for every u ∈ W 1,p(Ω), the function t 7→ ‖u+ t‖pLp(∂Ω;̺) is C
1

strictly convex and coercive (see below), then the value

min
t∈R

∫

∂Ω

|u+ t|p ̺ dHN−1,

is uniquely realized and one has

t minimizes

∫

∂Ω

|u+ t|p ̺ dHN−1 ⇐⇒ u+ t is admissible in (6.3.4).

This section ends with the following technical result, which was used to deduce the
characterization of σ2,p given by Theorem 6.3.5.

Lemma 6.3.7 (Euler-Lagrange equation). Let Ω ⊂ RN be an open bounded set, having
Lipschitz boundary. Let u ∈ W 1,p(Ω) be a minimizer of the functional

Fp(v) =
1

p

∫

Ω

‖∇v‖pℓp dx−
σ

p

∫

∂Ω

|v|p ̺ dHN−1, v ∈ W 1,p(Ω),

on the set of admissible functions A =
{
v ∈ W 1,p(Ω) :

∫
∂Ω

|v|p−2 v ̺ dHN−1 = 0
}
. Then u

is a Stekloff eigenfunction with eigenvalue σ.

Proof. For p ≥ 2, observe thatA is a C1 manifold, thus the thesis is a plain consequence
of the Lagrange Multipliers Theorem. Indeed, in this case u has to satisfy

N∑

i=1

∫

Ω

|uxi
|p−2 uxi

ϕxi
dx− σ

∫

∂Ω

|u|p−2 uϕ ̺ dHN−1

+ µ

∫

Ω

|u|p−2ϕ ̺ dHN−1 = 0, for every ϕ ∈ W 1,p(Ω),

for some µ ∈ R. By choosing as ϕ any constant function and by using that u ∈ A, we can
then easily conclude that µ = 0, i.e. u satisfies (6.1.3).

For 1 < p < 2, some care is needed, since the constraint A is no more a C1 manifold and we
can not directly conclude as before. In this case, we modify the argument in [33], the only
difference being the fact that we are not assuming u to be in L∞(Ω). Let ϕ ∈ Lip(Ω) and
n ∈ N \ {0}, then the C1 convex function

hn(c) =

∫

∂Ω

∣∣∣∣u+
1

n
ϕ+ c

∣∣∣∣
p

̺ dHN−1, c ∈ R,
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is coercive, since we have

hn(c) ≥ 21−p |c|p
∫

∂Ω

̺ dHN−1 −
∫

∂Ω

∣∣∣∣u+
1

n
ϕ

∣∣∣∣
p

̺ dHN−1.

In particular, for every n ∈ N \ {0}, hn admits a minimum point cn, which thus satisfies
h′n(cn) = 0, that is

∫

∂Ω

∣∣∣∣u+
1

n
ϕ+ cn

∣∣∣∣
p−2 (

u+
1

n
ϕ+ cn

)
̺ dHN−1 = 0,

i.e. u+ 1/nϕ+ cn ∈ A. Moreover, as n goes to ∞, we can guarantee that the quantity n cn
stays uniformly bounded. More precisely, for every n ∈ N, there must exist xn ∈ ∂Ω such
that

(6.3.6) ϕ(xn) + n cn = 0.

Indeed, if this would not be true, then either ϕ(x)+n cn > 0 for every x ∈ ∂Ω or ϕ(x)+n cn <
0, thanks to the continuity of ϕ on ∂Ω. Since the function τ 7→ |u + τ |p−2 τ is strictly
increasing, we would obtain

0 =

∫

∂Ω

∣∣∣∣u+
1

n
ϕ+ cn

∣∣∣∣
p−2 (

u+
1

n
ϕ+ cn

)
̺ dHN−1 >

∫

∂Ω

|u|p−2 u ̺ dHN−1 = 0

or

0 =

∫

∂Ω

∣∣∣∣u+
1

n
ϕ+ cn

∣∣∣∣
p−2 (

u+
1

n
ϕ+ cn

)
̺ dHN−1 <

∫

∂Ω

|u|p−2 u ̺ dHN−1 = 0.

In both cases, we would get a contradiction, so (6.3.6) must be true. This in turn implies that,
possibly passing to a subsequence, the sequence {n cn}n∈N converges to some real number
C, as n goes to ∞. Using the minimality of u and the fact that u+1/nϕ+ cn is admissible,
we then get

0 ≤ lim
n→∞

Fp

(
u+

1

n
(ϕ+ n cn)

)
− Fp(u)

1

n

=
N∑

i=1

∫

Ω

|uxi
|p−2 uxi

ϕxi
dx

− σ

∫

∂Ω

|u|p−2 u (ϕ+ C) ̺ dHN−1.

Since u ∈ A, the previous is equivalent to

0 ≤
N∑

i=1

∫

Ω

|uxi
|p−2 uxi

ϕxi
dx− σ

∫

∂Ω

|u|p−2 uϕ ̺ dHN−1, ϕ ∈ Lip(Ω).

The same argument with −ϕ in place of ϕ shows that u satisfies equation (6.1.3), for every
Lipschitz test function. The conclusion then follows by exploiting the density of Lipschitz
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functions in W 1,p(Ω), which is true since Ω has Lipschitz boundary (see [51, Theorem 3.6]).
�

4. Halving pairs

The next result concerns some nodal properties of the first nontrivial eigenvalue. The
proof is inspired to the linear case (see [7, 65]).

Proposition 6.4.1. Let Ω ⊂ RN be an open and connected bounded set, having Lipschitz.
There exists a first nontrivial Stekloff eigenfunction w ∈ W 1,p(Ω) with exactly two nodal
domains.

Proof. Let us take u ∈ W 1,p(Ω) a first nontrivial eigenfuction, thanks to Lemma 6.1.5
we have that u has at least two nodal domains.

Let us now suppose that u has n ≥ 3 nodal domains, Ω1, . . . ,Ωn ⊂ Ω. We then take the
functions

vk = u · 1Ωk
, k = 1, 2,

i.e. the restrictions of u to Ω1 and Ω2, respectively and we define

w = α v1 + β v2.

This is a function in W 1,p(Ω) and observe that we can always choose α, β ∈ R such that
∫

∂Ω

|w|p−2w ̺ dHN−1(x) = 0.

By construction w is admissible for the variational problem (6.3.4) which gives σ2,p(Ω).
Moreover, we can infer∫

Ω

‖∇w‖pℓp dx = αp

∫

Ω1

‖∇v1‖p dx+ βp

∫

Ω2

‖∇v2‖p dx

= σ2,p(Ω)

[
αp

∫

∂Ω1∩∂Ω

|v1|p ̺ dHN−1 + βp

∫

∂Ω2∩∂Ω

|v2|p ̺ dHN−1

]

= σ2,p(Ω)

∫

∂Ω

|w|p ̺ dHN−1.

Owing to the characterization of Theorem 6.3.5 for σ2,p(Ω), we then get that w is a first
nontrivial Stekloff eigenfuction of Ω, having exactly two nodal domains. �

Remark 6.4.2. Very likely, the previous property is verified by every Stekloff eigenfunction
corresponding to σ2,p(Ω), i.e. every first nontrivial eigenfunction should have exactly two
nodal domains. The main obstruction to the proof is the lack of a unique continuation
principle for pseudo p−harmonics functions. Indeed, observe that in the previous proof we

constructed a function w which satisfies ∆̃w = 0 and identically vanishes on a open subset
of Ω, but we can not get a contradiction from this. We also like to point out that Harnack’s
inequality is of not use here, since we can not guarantee that ∂Ω1∩Ω does not coincide with
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∂Ω2 ∩ Ω. This is linked to the existence of the so-called Lakes of Wada, i.e. triples of open
connected sets in the plane, which share the same boundaries.

In the case of the second Dirichlet eigenvalue of the p−Laplacian, the use of the unique
continuation property can be avoided, as proved in [31]. However, this proof can not be
applied here either, since our eigenfunctions are not known to be in C1, as required by the
argument in [31].

Definition 6.4.3. Let Ω ⊂ RN be an open bounded connected set, with Lipschitz boundary.
Let us consider two open connected Lipschitz subsets Ω1,Ω2 ⊂ Ω, then (Ω1,Ω2) is said a
halving pair for Ω if the following conditions are satisfied:

(6.4.1) |Ω1 ∪ Ω2| ≤ |Ω|, Ω1 ∩ Ω2 = ∅ and HN−1(∂Ωi ∩ ∂Ω) > 0, i = 1, 2.

We also set

Hal(Ω) = {(Ω1,Ω2) halving pair of Ω}.
If Σ ⊂ Ω is such that Γ := ∂Σ ∩ Ω 6= ∅ and this is a Lipschitz surface, we also introduce

the following quantity

(6.4.2) Λp(Σ; Ω) = min
u∈W 1,p(Σ)\{0}

{
RΣ(u) : u = 0 on Γ

}
.

An optimal function in (6.4.2) is a weak solution of the following mixed Dirichlet-Stekloff
eigenvalue problem

(6.4.3)





−∆̃pu = 0, in Σ

u = 0, on Γ,
N∑

i=1

|uxi
|p−2 uxi

νiΩ = λ |u|p−2 u ̺, on ∂Ω ∩ ∂Σ,

with λ = Λp(Σ; Ω), i.e. a minimizer of (6.4.2) satisfies

N∑

i=1

∫

Ω

|uxi
|p−2 uxi

ϕxi
dx = Λp(Σ; Ω)

∫

∂Ω∩∂Σ

|u|p−2 uϕ ̺ dHN−1,

for every ϕ ∈ W 1,p(Σ) with ϕ = 0 on Γ.

Lemma 6.4.4. With the previous notation, for every p ∈ (1,∞) problem (6.4.2) admits a
unique positive solution u ∈ W 1,p(Σ) satisfying the normalization condition

∫

∂Ω∩∂Σ

|u(x)|p ̺ dHN−1(x) = 1.

Moreover, the boundary value problem (6.4.3) admits a positive (weak) solution if and only
if λ = Λp.
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Proof. Existence of a solution for this problem is straightforward. Positivity follows as
always by observing that for every admissible u, the function |u| is still admissible and

RΣ(|u|) = RΣ(u).

Uniqueness can be proved using the device of Belloni and Kawohl, that we already used in
Lemma 4.1.2. Suppose to have two distinct strictly positive2 solutions u0 and u1 such that

(6.4.4)

∫

∂Ω∩∂Σ

|ui(x)|p ̺ dHN−1(x) = 1, i = 0, 1.

As in Lemma 4.1.2, we set γt(x) = [(1− t) u0(x)
p + t u1(x)

p]1/p, for a given 0 < t < 1. This
still satisfies the normalization condition (6.4.4) and

(6.4.5) t 7→ RΣ(γt) is strictly convex on [0, 1].

Then γt is still a solution and we must have

RΣ(γt) = RΣ(u0) = RΣ(u1), t ∈ [0, 1].

This can hold if and only if u0 = µ u1 for some µ > 0 (see [11] for more details). By using
(6.4.4), we get µ = 1 and thus we obtain a contradiction.

The second part of the statement can be proved along the same lines of [F2, Theorem
3.1], still using property (6.4.5). One just needs to observe that every λ such that (6.4.3)
has a solution is a crititical value of

∫
Ω
‖∇u‖pℓp on the manifold

{
v ∈ W 1,p(Ω) : v = 0 on Γ and

∫

∂Ω

|v|p ̺ dHN−1 = 1

}
.

This concludes the proof. �

Using problem (6.4.3), we have yet another minimax characterization of σ2,p(Ω), this
time in terms of the eigenvalues Λp. For this, we assume some smoothness on the nodal
domains.

Proposition 6.4.5. Let Ω ⊂ RN be an open bounded connected set, having Lipschitz bound-
ary. Suppose that the nodal domains Ω+ and Ω− of a first nontrivial eigenfunction u belongs
to Hal(Ω). Then there holds

(6.4.6) σ2,p(Ω) = min
{
max{Λp(Ω1; Ω),Λp(Ω2; Ω)} : (Ω1,Ω2) ∈ Hal(Ω)

}
.

The minimum above is realized by the pair (Ω+,Ω−) and

(6.4.7) Λp(Ω+; Ω) = RΩ+(u) = RΩ−
(u) = Λp(Ω−; Ω).

2Strict positivity is a consequence of Harnack’s inequality. Indeed, as already observed, a pseudo p−harmonic
function is a local minimizer of the Dirichlet energy

∫
Ω
‖∇u‖pℓp dx. Then Harnack’s inequality for these

functions is a consequence of [51, Theorem 7.11].
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Proof. Let us take a halving pair (Ω1,Ω2) and ui ∈ W 1,p(Ωi) such that ui = 0 on
∂Ωi ∩ Ω, with

∫

Ωi

‖∇ui(x)‖pℓp dx = Λp(Ωi; Ω) and

∫

∂Ωi∩∂Ω

|ui(x)|p ̺ dHN−1(x) = 1, i = 1, 2.

Then we can choose two parameters α1, α2 ∈ R in such a way that

v(x) =
2∑

i=1

αi ui(x) · 1Ωi
(x), x ∈ Ω,

satisfies the zero-mean condition (6.3.5). Thus, we can infer

σ2,p(Ω) ≤
αp
1

∫

Ω1

‖∇u1(x)‖pℓp dx+ αp
2

∫

Ω2

‖∇u2(x)‖pℓp dx

αp
1 + αp

2

=
αp
1 Λp(Ω1; Ω) + αp

2 Λp(Ω2; Ω)

αp
1 + αp

2

≤ max{Λp(Ω1; Ω),Λp(Ω2; Ω)},

and since this is true for every halving pair (Ω1,Ω2), this remains true taking the infimum
over Hal(Ω).

Let us now take an eigenfunction u ∈ W 1,p(Ω) relative to σ2,p(Ω), i.e. a minimizer of (6.3.4).
By Proposition 6.4.1, we can choose it in such a way that it has two nodal domains Ω+ and
Ω−, both touching the boundary of Ω. Using the equation, we then have

RΩ+(u) = RΩ−
(u) = σ2,p(Ω).

By definition of Λp and the hypothesis on Ω+,Ω−, we then get

Λp(Ω+; Ω) ≤ RΩ+(u) and Λp(Ω−; Ω) ≤ RΩ−
(u),

so that

max{Λp(Ω+; Ω), Λp(Ω−; Ω)} ≤ σ2,p(Ω).

This concludes the proof of (6.4.6) and shows that the minimum is realized by the pair
(Ω+,Ω−). In order to prove (6.4.7), it is sufficient to observe that u restricted to Ω+ is
a positive solution of (6.4.3), with λ = σ2,p(Ω). By the second part of Lemma 6.4.4, we
can infer that Λp(Ω+; Ω) = RΩ+(u). The same observation applies to Ω−, thus leading to
(6.4.7). �

5. An upper bound for σ2,p

In this section we prove an upper bound for σ2,p(Ω), in terms of geometric quantities.
For this, we need the following simple result. It guarantees that the coordinate functions
ϕj(x) = xj , j = 1, . . . , N are always admissible in (6.3.4), modulo a translation.
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Lemma 6.5.1. Let Ω ⊂ RN be a bounded open set, having Lipschitz boundary. Let ̺ :
∂Ω → R be a function satisfying (6.1.1). Then there exists z ∈ RN such that the translated
set Ω′ = Ω− z satisfies

(6.5.1)

∫

∂Ω′

|xi|p−2 xi ̺(x+ z) dHN−1(x) = 0,

for all i = 1, . . . , N.

Proof. It is not difficult to see that the function

g(y) =

N∑

i=1

1

p

∫

∂Ω

|xi − yi|p ̺(x) dHN−1(x), y = (y1, . . . , yN) ∈ Ω,

is C1 and that it admits a global minimum point. Thus there exists z such that
∫

∂Ω

|xi − zi|p−2 (xi − zi) ̺(x) dHN−1(x) = 0, i = 1, . . . , N.

Let us now make the change of variable y = x− z. By defining Ω′ = Ω− z, the above reads
∫

∂Ω′

|yi|p−2 yi ̺(y + z) dHN−1(y) = 0, i = 1, . . . , N,

which concludes the proof. �

The following is the main result of this section, dealing with the case of a general weight
̺. This is the nonlinear counterpart of Brock’s inequality for the first nontrivial Stekloff
eigenvalue of the Laplacian (compare with [20, Theorem 1]). Its proof crucially exploits the
weighted Wulff inequality derived in Theorem 7.3.4 and Corollary 7.4.2 of the Appendix.

Theorem 6.5.2. Let 1 < p < ∞ and p′ = p/(p− 1). Let Ω ⊂ RN be an open bounded set,
having Lipschitz boundary and ̺ a function satifying (6.1.1). Then there holds

(6.5.2) σ2,p(Ω) ≤




∫

∂Ω

̺(x)−
1

p−1 ‖νΩ(x)‖p
′

ℓp′
dHN−1(x)

N |Ω|




p−1

.

Proof. Let z ∈ RN be as in Lemma 6.5.1 and let us set Ω′ = Ω− z. By the characteri-
zation (6.3.4) of σ2,p(Ω), we obtain

σ2,p(Ω) ≤

∫

Ω′

‖∇ϕi(x)‖pℓp dx
∫

∂Ω′

|ϕi(x)|p ̺(x+ z) dHN−1(x)
=

|Ω|∫

∂Ω′

|xi|p ̺(x+ z) dHN−1(x)
, i = 1, . . . , N,
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where ϕi(x) = xu, as before. Taking the sum over i = 1, . . . , N , we obtain

σ2,p(Ω) ≤
N |Ω|∫

∂Ω′

‖x‖pℓp ̺(x+ z) dHN−1(x)

,

then we observe that by Hölder inequality, we have

∫

∂Ω′

‖x‖pℓp ̺(x+ z) dHN−1(x) ≥

(∫

∂Ω′

‖x‖ℓp ‖νΩ′(x)‖ℓp′ dHN−1(x)

)p

(∫

∂Ω′

̺(x+ z)−
1

p−1 ‖νΩ′(x)‖p′
ℓp′
dHN−1(x)

)p−1 .

Note that νΩ′(x) = νΩ(x+ z). Set

Pp,β(Ω
′) =

∫

∂Ω′

‖x‖βℓp ‖νΩ′(x)‖ℓp′ dHN−1(x),

The weighted Wulff inequality

Pp,β(Ω
′) ≥ N |Bp|

1−β
N |Ω′|N+β−1

N ,

is proved in Corollary 7.4.2 of next chapter. Taking β = 1, one gets

σ2,p(Ω) ≤
N |Ω|(∫

∂Ω′

‖x‖ℓp ‖νΩ′(x)‖ℓp′ dHN−1(x)

)p

(∫

∂Ω

̺(x)−
1

p−1 ‖νΩ(x)‖p
′

ℓp′
dHN−1(x)

)p−1

≤ N |Ω|
Np |Ω|p

(∫

∂Ω

̺(x)−
1

p−1 ‖νΩ(x)‖p
′

ℓp′
dHN−1(x)

)p−1

,

which gives the desired estimate. �

A significant and intrinsic instance of weight function ̺ verifying (6.1.1) is given by

̺(x) = ‖νΩ(x)‖ℓp′ , x ∈ ∂Ω.

In this case, a more elegant and simpler bound is possible, that should be compared with
the Brock-Weinstock inequality

(6.5.3) σ2(Ω) ≤
(
ωN

|Ω|

) 1
N

.

Theorem 6.5.3. Let Ω ⊂ RN be an open bounded set, having Lipschitz boundary. Then
there holds

(6.5.4) σ2,p(Ω) ≤
( |Bp|

|Ω|

) p−1
N

,

where Bp = {x ∈ RN : ‖x‖ℓp < 1}.
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Proof. Again, we take ϕi(x) = xi, i = 1, . . . , N , then up to a translation of Ω (which
does not affect σ2,p(Ω)), we can suppose that (6.5.1) is satisfied. We again obtain

σ2,p(Ω) ≤

∫

Ω

‖∇ϕi(x)‖pℓp dx
∫

∂Ω

|ϕi(x)|p ‖νΩ(x)‖ℓp′ dHN−1(x)

=
|Ω|∫

∂Ω

|xi|p ‖νΩ(x)‖ℓp′ dHN−1(x)

, i = 1, . . . , N.

that is, summing up over i = 1, . . . , N , we have

σ2,p(Ω) ≤
N |Ω|∫

∂Ω

‖x‖pℓp ‖νΩ(x)‖ℓp′ dHN−1(x)
.

Using the isoperimetric property of Bp given by Corollary 7.4.2, this time with β = p, we
eventually obtain the thesis. �

Remark 6.5.4. We conjecture the bounds (6.5.2) and (6.5.4) to be “isoperimetric” as in
the linear case, that corresponds to the Brock-Weinstock inequality (6.5.3). In other words,
we conjecture that equality holds in (6.5.4) if and only if Ω = Bp, up to dilations and
translations. For (6.5.2) one also needs to require

̺(x) = c ‖νΩ(x)‖ℓp′ , x ∈ ∂Ω.

To prove this conjecture, one would need to show that σ2,p(Bp) = 1, i.e. the coordinate

functions ϕi(x) = xi, i = 1, . . . , N are first nontrivial eigenfuctions of −∆̃p on Bp. It is easily
seen that x1, . . . , xN are indeed Stekloff eigenfunctions on Bp, with corresponding eigenvalue
1. Of course, it could happen that σ2,p(Bp) < 1. To conclude, it would be sufficient to
prove the existence of a first nontrivial eigenfunction having {xj = 0} as nodal line, for some
j = 1, . . . , N . The thesis would then follows from Lemma 6.4.4 and Proposition 6.4.5.



CHAPTER 7

Anisotropic weighted Wulff inequalities

1. Basics on convex bodies

For more details on this topic, the reader may consult [85]. Let K ⊂ R
N be a

bounded convex set containing the origin as an interior point. Consider the subadditive
and 1−positively homogeneous function defined by

‖x‖ = inf{λ > 0 : x ∈ λK},
for all x ∈ RN . The convex body K turns out to be the unit ball for this “norm”, called the
Minkowski gauge associated with K. Actually, this is a norm if and only if K is symmetric
with respect to the origin in RN . Otherwise ‖− x‖ may happen to be different from ‖x‖ for
some x ∈ RN . The dual “norm” is defined by setting

‖ξ‖∗ = max
x∈K

〈x, ξ〉,

for all ξ ∈ RN . That is sometimes called support function of K. Then the polar set K∗ is
usually defined as the unit ball for ‖ · ‖∗, i.e.

K∗ = {ξ ∈ R
N : ‖ξ‖∗ ≤ 1}

and it is often referred to as the Wulff shape associated with K. By definition, we have the
following general version of the Cauchy-Schwarz inequality

(7.1.1) |〈x, ξ〉| ≤ ‖x‖ ‖ξ‖∗, x, ξ ∈ R
N ,

with equality if and only if ξ belongs to the normal cone NK(x/‖x‖) toK at the point x/‖x‖.
In particular, if K is C1, equality holds if and only if ξ = t νK(x/‖x‖), for some t ≥ 0.

2. Differentiation of norms

For the convenience of the reader, some basic facts of convex analysis are recalled. If

F : RN → R ∪ {+∞}
is a convex lower semicontinuous proper function, then for all x, ξ ∈ RN

ξ ∈ ∂F (x) if and only if F (x) + F ∗(ξ) = 〈x, ξ〉
where F ∗ denotes the Legendre-Fenchel conjugate of F and ∂F (x) is the subdifferential of
F at the point x.

93



94 7. ANISOTROPIC WEIGHTED WULFF INEQUALITIES

Lemma 7.2.1. The map x 7→ ‖x‖ is convex and thus differentiable almost everywhere.
Namely

(7.2.1) ∇‖x‖ =

νK

(
x

‖x‖

)

∥∥∥∥νK
(

x

‖x‖

)∥∥∥∥
∗

and

〈
νK

(
x

‖x‖

)
, x

〉
=

∥∥∥∥νK
(

x

‖x‖

)∥∥∥∥
∗

‖x‖,

almost everywhere.

Proof. Choosing F (x) = ‖x‖, it is easy to see that its Legendre-Fenchel conjugate
function is given by F ∗(ξ) = δK∗(ξ), i.e. the indicator function of the polar set K∗. This
yields

ξ ∈ ∂‖x‖ if and only if ‖ξ‖∗ ≤ 1 and 〈ξ, x〉 = ‖x‖.
In particular, if x 6= 0 and ξ ∈ ∂‖x‖, by (7.1.1) we get

‖x‖ = 〈ξ, x〉 ≤ ‖x‖ ‖ξ‖∗ ≤ ‖x‖,
i.e. ‖ξ‖∗ = 1 and equality holds in (7.1.1). This implies that if x 6= 0, the subdifferential of
∂‖x‖ is characterized by

(7.2.2) ξ ∈ ∂‖x‖ if and only if ‖ξ‖∗ = 1 and ξ ∈ NK

(
x

‖x‖

)
.

Since for almost every x ∈ RN we have

∂‖x‖ = {∇‖x‖} and NK

(
x

‖x‖

)
=

{
z ∈ R

N : z = t νK

(
x

‖x‖

)
for some t ≥ 0

}
,

the characterization (7.2.2) gives the first relation in (7.3.4).

Observe that the second relation in (7.3.4) comes again from the cases of equality in the
Cauchy-Schwarz inequality, by simply noticing that

〈
νK

(
x

‖x‖

)
, x

〉
=

〈
νK

(
x

‖x‖

)
,
x

‖x‖

〉
‖x‖.

This concludes the proof. �

3. Weighted Wulff Inequalities

Let ‖ · ‖ denote the Minkowski gauge associated with a convex body K in RN and denote
by ‖ · ‖∗ its support function. Some preparatory facts about the theory of convex bodies
are recalled in Chapter 7. Given Ω ⊂ RN a bounded open Lipschitz set, if we define its
anisotropic perimeter by

PK(Ω) =

∫

∂Ω

‖νΩ(x)‖∗ dHN−1,
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we have the classical Wulff inequality

(7.3.1) PK(Ω) ≥ N |K| 1
N |Ω|N−1

N .

Recalling that PK(K) = N |K|, the previous is equivalent to say that K minimizes PK ,
among sets with given measure. Moreover, strict equality holds in (7.3.1), if Ω is not a scaled
and translated copy of K. See for example [44] for a detailed study of Wulff inequality.

Definition 7.3.1. Let V : [0,+∞) → [0,+∞) a Borel function such that V (0) = 0. For
every Ω ⊂ RN open bounded Lipschitz set, we define its weigthed anisotropic perimeter by

PV,K(Ω) =

∫

∂Ω

V (‖x‖) ‖νΩ(x)‖∗ dHN−1(x).

Remark 7.3.2. When K coincides with the unit ball of the Euclidean norm | · |, it easily
seen that ‖x‖ = ‖x‖∗ = |x| and PV,K coincides with the weighted perimeter

∫

∂Ω

V (|x|) dHN−1(x),

already studied in [13, 18].

Let us now further suppose that V ∈ C1([0,∞)), V (t) > 0 for t > 0 and it satisfies the
following condition

(7.3.2) v(t) := V ′(t) + (N − 1)
V (t)

t
, is non decreasing on (0,+∞).

We consider the vector field

W (x) = V (‖x‖) x

‖x‖ , x ∈ R
N ,

with the convention that W (0) = 0. The crucial property of W is expressed by the following
Lemma, which extends to the anisotropic case a straightforward calculation of the Euclidean
one.

Lemma 7.3.3. With the previous notations, there holds

(7.3.3) divW (x) = v(‖x‖), x ∈ R
N \ {0}.

In particular, divW is a non decreasing function of ‖ · ‖.
Proof. First of all, we observe that x 7→ ‖x‖ is convex and thus differentiable almost

everywhere. Namely,

(7.3.4) ∇‖x‖ =

νK

(
x

‖x‖

)

∥∥∥∥νK
(

x

‖x‖

)∥∥∥∥
∗

and

〈
νK

(
x

‖x‖

)
, x

〉
=

∥∥∥∥νK
(

x

‖x‖

)∥∥∥∥
∗

‖x‖,
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where these relations hold almost everywhere. We refer to Section 2 for a proof of the
identify (7.3.4) Observe that (7.3.3) is a simple consequence of (7.3.4). Indeed, using these
we get

divW (x) = V ′(‖x‖)
〈
∇‖x‖, x

‖x‖

〉
+N

V (‖x‖)
‖x‖ − V (‖x‖) 〈∇‖x‖, x〉

‖x‖2

= V ′(‖x‖) ‖x‖+ (N − 1)
V (‖x‖)
‖x‖ = v(‖x‖), for a.e. x ∈ R

N ,

which gives the desired result. �

Next theorem is the main result of the chapter. The idea of the proof is completely
borrowed from the paper [18] by Brasco, De Philippis and Ruffini, who studied the isotropic
case.

Theorem 7.3.4 (Weighted Wulff inequality). Let Ω ⊂ RN be an open bounded Lipschitz
set. Then we have

(7.3.5) PV,K(Ω) ≥ N |K| 1
N |Ω|1− 1

N V

(( |Ω|
|K|

) 1
N

)
,

with equality if and only if Ω coincides with K, up to dilations. In other words, K is the
only minimizer of PK,V , under measure constraint, i.e.

(7.3.6) PV,K(K) = min{PV,K(Ω) : |Ω| = |K|}.
Proof. It is easily seen that (7.3.5) and (7.3.6) are equivalent, so let us suppose that

|Ω| = |K|. We divide the proof in two steps: first we prove the inequality, then we detect
the cases of equality.

Inequality. By using the Divergence Theorem and Lemma 7.3.3 we get
∫

Ω

v(‖x‖) dx =

∫

Ω

divW (x) =

∫

∂Ω

V (‖x‖)
〈

x

‖x‖ , νΩ(x)
〉
dHN−1(x)

=

∫

∂Ω

V (‖x‖)
[〈

x

‖x‖ , νΩ(x)
〉
− ‖νΩ(x)‖∗

]
dHN−1(x)

+ PV,K(Ω),

while integrating v over K yields∫

K

v(‖x‖) dx =

∫

K

divW (x) =

∫

∂K

V (‖x‖) 〈x, νK(x)〉 dHN−1(x)

=

∫

∂K

V (‖x‖) ‖νΩ(x)‖∗ dHN−1(x) = PV,K(K),

since by definition ‖x‖ = 1 on ∂K. Subtracting the two equalities, we get

(7.3.7) PV,K(Ω)− PV,K(K) = I1(Ω) + I2(Ω)
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where we set

I1(Ω) =

∫

∂Ω

V (‖x‖)
[
‖νΩ(x)‖∗ −

〈
x

‖x‖ , νΩ(x)
〉]

dHN−1(x),

and

I2(Ω) =

∫

Ω

v(‖x‖) dx−
∫

K

v(‖x‖) dx.

It is not difficult to see that both quantities are positive. For the first, this is a simple
consequence of the Cauchy-Schwarz inequality (7.1.1); for the second, we just observe that

(7.3.8) I2(Ω) =

∫

Ω\K

[v(‖x‖)− v(1)] dx+

∫

K\Ω

[v(1)− v(‖x‖)] dx

thanks to the fact that |K \ Ω| = |Ω \K|, since K and Ω have the same measure. On the
other hand, there holds

Ω \K ⊂ {x : ‖x‖ ≥ 1} and K \ Ω ⊂ {x : ‖x‖ ≤ 1},
then by using the monotone behaviour of v, we can infer I2(Ω) ≥ 0. Thus (7.3.7) shows that
K minimizes PV,K among sets with given measure.

Cases of equality. Let us suppose that PV,K(Ω) = PV,K(K). Again by (7.3.7) we can infer

I1(Ω) = 0 = I2(Ω).

If the function v is strictly increasing, then the previous and (7.3.8) easily imply that
|Ω∆K| = 0, i.e. Ω has to coincide with K. On the contrary, if v is simply a non decreasing
functions, the proof is a bit more complicated. In this case, the information I2(Ω) = 0
is useless and we need to exploit the first one i.e. I1(Ω) = 0. Keeping into account that
V (t) > 0 for t > 0, from the latter we can infer that

(7.3.9) ‖νΩ(x)‖∗ =
〈

x

‖x‖ , νΩ(x)
〉
, for HN−1−a.e. x ∈ ∂Ω.

This implies that the standard anisotropic perimeter of Ω can be written as

PK(Ω) =

∫

∂Ω

‖νΩ(x)‖∗ dHN−1(x) =

∫

Ω

div

(
x

‖x‖

)
dx =

∫

Ω

N − 1

‖x‖ dx,

where we used the computations of Lemma 7.3.3, with V ≡ 1. We now observe that the last
integrand is a strictly decreasing function of ‖ · ‖. Then using that K = {x : ‖x‖ ≤ 1} and
that |Ω| = |K|, we have

∫

Ω

N − 1

‖x‖ dx ≤
∫

Ω∩K

N − 1

‖x‖ dx+ (N − 1) |Ω \K|

=

∫

Ω∩K

N − 1

‖x‖ dx+ (N − 1) |K \ Ω| ≤
∫

K

N − 1

‖x‖ dx,
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with strict inequality if |Ω∆K| 6= 0. This implies that PK(Ω) ≤ PK(K) and PK(Ω) < PK(K)
as soon as |Ω∆K| 6= 0. Appealing to the Wulff inequality (7.3.1). Therefore |Ω∆K| = 0,
that is Ω coincides with K also in this case. �

4. Stability issues

The results of previous section nay be enforced under the additional assumptions that V
is a C2 function and

(7.4.1) v′(t) > 0, for all t > 0,

where v(t) is as in (7.3.2). If that is the case, then the weighted Wulff estimate holds in the
following stronger version.

Theorem 7.4.1 (Quantitative weighted Wulff inequality). The minimizer K of PV,K with
volume constraint is stable. Namely, let Ω be a bounded Lipschitz open sets in RN , set
ωK,N = |K| and denote by TΩK the dilation of K whose volume TN

Ω ωK,N equals |Ω|. Then

PV,K(Ω) ≥ Nω
1
N

K,N |Ω|1−
1
N

[
V

(( |Ω|
ωK,N

)) 1
N

+ CN,V,|Ω|

( |Ω∆(TΩK)|
|Ω|

)2
]
.

Proof. The proof is essentially the same as in the isotropic case treated in [18]. Consider
the term denoted by

I2(Ω) =

∫

Ω\K

[v(‖x‖)− v(TΩ)] dx+

∫

K\Ω

[v(TΩ)− v(‖x‖)] dx

in the first step of the proof above. Besides being non-negative, it can be further estimated
from below. The notations ωK,N = |K|

|TΩ ·K| = |Ω|

and

T =

(
TN
Ω +

|Ω \K|
ωK,N

) 1
N

were introduced. The anisotropic annulus

A = {x ∈ R
N : TΩ < ‖x‖ < T}

has the same volume as the sets Ω \K and K \ Ω, by construction. Thus,

I2(Ω) ≥
∫

Ω\K

[v(‖x‖)− v(TΩ)] dx ≥
∫

A

[v(‖x‖)− v(TΩ)] dx,
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since v(t) is decreasing and |A \ Ω| = |Ω \ (A ∪K)|. Changing variables
∫

A

[v(‖x‖)− v(TΩ)] dx =

∫

∂K

‖νK(ω)‖∗dHN−1

∫ T

TΩ

tN−1[v(t)− v(TΩ)] dt

=

∫

∂K

〈νK , ω〉dHN−1

∫ T

TΩ

tN−1[v(t)− v(TΩ)] dt

= N |K|
∫ T

TΩ

tN−1[v(t)− v(TΩ)] dt

where in the last passage the divergence theorem was used. In the last integral, the difference
may be estimated from below by elementary mean value theorem. This is made possible by
assumption (7.4.1). Therefore, to conclude, one can argue as done in the paper [18]. �

Some significant instances of functions V satisfying our hypothesis (7.3.2) are given by
convex powers, i.e.

V (t) = tβ, t ≥ 0,

for every β ≥ 1. In particular, choosing as K the unit ball Bp of the ℓ
p norm centered at the

origin, i.e.
Bp =

{
x ∈ R

N : ‖x‖ℓp < 1
}

and using the distinguished notation

(7.4.2) Pp,β(Ω) =

∫

∂Ω

‖x‖βℓp ‖νΩ(x)‖ℓp′ dHN−1(x),

we have the following particular case of Theorem 7.3.4, that we enunciate as a separate
result.

Corollary 7.4.2. Let p ≥ 1 and β ≥ 1, for every Ω ⊂ RN open bounded Lipschitz set, we
have

Pp,β(Ω) ≥ N |Bp|
1−β
N |Ω|N+β−1

N ,

with equality if and only if Ω coincides with Bp, up to dilations.





CHAPTER 8

An eigenvalue problem with variable exponents

1. Preliminaries

An expedient feature of many eigenvalue problems is that the eigenfunctions may be
multiplied by constants. That is the case for the non-linear problem in this chapter. Consider
the problem of minimizing the “Rayleigh quotient”

(8.1.1)
‖∇u‖p(x),Ω
‖u‖p(x),Ω

among all functions belonging to the Sobolev space W
1,p(x)
0 (Ω) with variable exponent p(x).

Here Ω is a bounded domain in RN and the variable exponent p(x) is a smooth function
with

1 < p− ≤ p(x) ≤ p+ <∞.

The norm is the so-called Luxemburg norm.

If p(x) = p, a constant in the range 1 < p <∞, the problem reduces to the minimization
of the Rayleigh quotient

(8.1.2)

∫

Ω

|∇u|p dx
∫

Ω

|u|p dx

among all u ∈ W 1,p
0 (Ω), u 6≡ 0. It is decisive that homogeneity holds: if u is a minimizer, so

is cu for any non-zero constant c. At variance with that, that is not the case for the quotient

(8.1.3)

∫

Ω

|∇u|p(x) dx
∫

Ω

|u|p(x) dx

with variable exponent, in general. Therefore its infimum over all ϕ ∈ C∞
0 (Ω), ϕ 6≡ 0, is

often zero and no minizer appears in the space W
1,p(x)
0 (Ω). An explicit example is discussed

in [42, pp. 444–445]. Unfortunately, even if imposing the constraint
∫

Ω

|u|p(x) dx = constant

101
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avoids this collapse, the minimizers obtained for different normalization constants are difficult
to compare in any reasonable way, except, of course, when p(x) is constant. For a suitable
p(x), it can even happen that any positive λ is an eigenvalue for some suitable choice of the
normalizing constant. Thus (8.1.3) is not a proper generalization of (8.1.2), which has a well
defined spectrum.

A way to avoid this situation is to use the Rayleigh quotient (8.1.1), where the notation

(8.1.4) ‖f‖p(x),Ω = inf

{
γ > 0 :

∫

Ω

∣∣∣∣
f(x)

γ

∣∣∣∣
p(x)

dx

p(x)
≤ 1

}

was used for the Luxemburg norm. This restores the homogeneity. In the integrand, the
use of p(x)−1 dx, rather than dx, has no bearing, but it has the advantage of simplifying the
equations a little.

Remark 8.1.1. Needless to say, many open problems remain. To mention one, for a finite
variable exponent p(x) it is not clear whether or not the first eigenvalue (the minimum of
the Rayleigh quotient) is simple. The methods of chapter 3 do not work well, except fot the
case of a constant exponent. There are also many annoying gaps in the theory available at
present: due to the lack of a proper Harnack inequality, it is not possible to assure that the
limit of the jp(x)-eigenfunctions is strictly positive. A discussion about analogous difficulties
can be found in [1]. In the present chapter only positive eigenfunctions are considered.

Throughout the chapter, Ω denotes a given bounded domain in RN and that the variable
exponent p(x) is in the range

(8.1.5) 1 < p− ≤ p(x) ≤ p+ <∞,

Moreover, it is assumed that p(x) belongs to C1(Ω) ∩W 1,∞(Ω). Thus ‖∇p‖∞,Ω <∞. Such
assumptions are not sharp, but they make the exposition easier.

Definition 8.1.2. A measurable function u : Ω → R is said to belong to the space Lp(x)(Ω)
if ∫

Ω

|u(x)|p(x) dx < +∞.

One says that u ∈ W 1,p(x)(Ω) if u and its distributional gradient ∇u are measurable functions
satisfying ∫

Ω

|u|p(x) dx <∞,

∫

Ω

|∇u|p(x) dx <∞.

The reader is referred to [42] and the monograph [35] about these spaces. The norm of
the space Lp(x)(Ω) is defined by (8.1.4). This is a Banach space. So is W 1,p(x)(Ω) equipped
with the norm

‖u‖p(x),Ω + ‖∇u‖p(x),Ω.
Smooth functions are dense in W 1,p(x)(Ω), and so one can define the space W

1,p(x)
0 (Ω) as the

completion of C∞
0 (Ω) in the above norm.
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The following properties are used later.

Lemma 8.1.3 (Sobolev). The inequality

‖u‖p(x),Ω ≤ C‖∇u‖p(x),Ω
holds for all u ∈ W

1,p(x)
0 (Ω); the constant is independent of u.

In fact, even a stronger inequality is valid.

Lemma 8.1.4 (Rellich-Kondrachev). Given a sequence uj ∈ W
1,p(x)
0 (Ω) such that

‖∇uj‖p(x),Ω ≤ M , j = 1, 2, 3, . . . , there exists a u ∈ W
1,p(x)
0 (Ω) such that ujν → u strongly in

Lp(x)(Ω) and ∇ujν ⇀ ∇u weakly in Lp(x)(Ω) for some subsequence.

Eventually, from now on notation ‖ · ‖p(x) will be used in place of ‖ · ‖p(x),Ω, provided that
this causes no confusion.

One has to identify the space
∞⋂

j=1

W 1,jp(x)(Ω).

According to the next lemma, it turns out to be independent of the variable exponent p(x).
Actually, this limit space is nothing else than the familiar W 1,∞(Ω).

Lemma 8.1.5. If u is a measurable function in Ω, then

lim
j→∞

‖u‖jp(x) = ‖u‖∞.

Proof. The proof is elementary. We use the notation

M = ‖u‖∞ = ess sup
x∈Ω

|u(x)|,

Mj = ‖u‖jp(x),
and we claim that

lim
j→∞

Mj =M.

If M = 0, then there is nothing to prove. Then, assume M > 0.
To show that lim supj→∞Mj ≤ M , one only has to consider those indices j for which

Mj > M . Then, since p(x) > 1,

1 =

(∫

Ω

∣∣∣∣
u(x)

Mj

∣∣∣∣
jp(x)

dx

jp(x)

) 1
j

≤ M

Mj

(∫

Ω

dx

jp(x)

) 1
j

,

and the inequality follows.
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To show that lim infj→∞Mj ≥ M , assume first that M < ∞. Given ε > 0, there
is a set Aε ⊂ Ω such that meas(Aε) > 0 and |u(x)| > M − ε in Aε. We claim that
lim infj→∞Mj ≥M − ε. Ignoring those indices for which Mj ≥M − ε, we have

1 =

(∫

Ω

∣∣∣∣
u(x)

Mj

∣∣∣∣
jp(x)

dx

jp(x)

) 1
j

≥
(∫

Aε

∣∣∣∣
u(x)

Mj

∣∣∣∣
jp(x)

dx

jp(x)

) 1
j

≥ M − ε

Mj

(∫

Aε

dx

jp+

) 1
j

,

and the claim follows. Since ε was arbitrary the Lemma follows. The case M = ∞ requires
a minor modification in the proof. �

2. The Euler Lagrange equation

Define

(8.2.1) Λ1 = inf
v

‖∇v‖p(x)
‖v‖p(x)

,

where the infimum is taken over all v ∈ W
1,p(x)
0 (Ω), v 6≡ 0. One gets the same infimum by

requiring that v ∈ C∞
0 (Ω). The Sobolev inequality (Lemma 8.1.3)

‖v‖p(x) ≤ C‖∇v‖p(x),
where C is independent of v, shows that Λ1 > 0.

To establish the existence of a non-trivial minimizer, we select a minimizing sequence of
admissible functions vj normalized so that ‖vj‖p(x) = 1. Then

Λ1 = lim
j→∞

‖∇vj‖p(x).

Recall the Rellich-Kondrachev Theorem for Sobolev spaces with variable exponents

(Lemma 8.1.4). Hence, we can extract a subsequence vjν and find a function u ∈ W
1,p(x)
0 (Ω)

such that vjν → u strongly in Lp(x)(Ω) and ∇vjν ⇀ ∇u weakly in Lp(x)(Ω). The norm is
weakly sequentially lower semicontinuous. Thus,

‖∇u‖p(x)
‖u‖p(x)

≤ lim
ν→∞

‖∇vjν‖p(x)
‖vjν‖p(x)

= Λ1.

This shows that u is a minimizer. Notice that if u is a minimizer, so is |u|. We have proved
the following proposition.

Proposition 8.2.1. There exists a non-negative minimizer u ∈ W
1,p(x)
0 (Ω), u 6≡ 0, of the

Rayleigh quotient (8.1.1).

In order to derive the Euler-Lagrange equation for the minimizer(s), we fix an arbitrary
test function η ∈ C∞

0 (Ω) and consider the competing function

v(x) = u(x) + εη(x),

and write
k = k(ε) = ‖v‖p(x), K = K(ε) = ‖∇v‖p(x).
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A necessary condition for the inequality

Λ1 =
K(0)

k(0)
≤ K(ε)

k(ε)

is that
d

dε

(
K(ε)

k(ε)

)
=
K ′(ε)k(ε)−K(ε)k′(ε)

k(ε)2
= 0, for ε = 0,

provided that the derivative does exist. Thus the necessary condition of minimality reads

(8.2.2)
K ′(0)

K(0)
=
k′(0)

k(0)
.

The existence of the derivatives here is understood. The proof of this fact is postponed in
Lemma 8.2.5. We claim that

(8.2.3)
K ′(0)

K(0)
=

∫

Ω

K−p(x)|∇u|p(x)−2
〈
∇u,∇η

〉
dx

∫
Ω

∣∣∇u
K

∣∣p(x) dx
.

To see that formally one differentiates the identity
∫

Ω

∣∣∣∣
∇u(x) + ε∇η(x)

K(ε)

∣∣∣∣
p(x)

dx

p(x)
= 1

with respect to ε. Differentiation under the integral sign is justifiable. Therefore
∫

Ω

|∇u+ ε∇η|p(x)−2
〈
∇u+ ε∇η,∇η

〉

K(ε)p(x)
dx =

∫

Ω

|∇u+ ε∇η|p(x)
K(ε)p(x)+1

K ′(ε) dx

and the conclusion follows by taking ε = 0. A similar calculation yields

(8.2.4)
k′(0)

k(0)
=

∫

Ω

k−p(x)|u|p(x)−2u η dx

∫
Ω

∣∣u
k

∣∣p(x) dx
.

For a rigorous proof of (8.2.3) and (8.2.4) the reader is referred to Lemma 8.2.5. Inserting
the results into (8.2.2), one arrives at equation

div

(∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2 ∇u

K

)
+
K

k
S
∣∣∣
u

k

∣∣∣
p−2 u

k
= 0,

in weak form, viz.
∫

Ω

∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2〈∇u

K
,∇η

〉
dx = Λ1S

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)−2 u

k
η dx, η ∈ C∞

0 (Ω),
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where K = ‖∇u‖p(x), k = ‖u‖p(x) and

(8.2.5) S =

∫

Ω

∣∣∣∣
∇u
K

∣∣∣∣
p(x)

dx

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)

dx

.

Here Λ1 = K/k.

The weak solutions with zero boundary values are called eigenfunctions, except u ≡ 0.
The reader is referred to [7, 3, 40, 41, 53] about regularity theory.

Definition 8.2.2. A function u ∈ W
1,p(x)
0 (Ω), u 6≡ 0, is an eigenfunction if the equation

(8.2.6)

∫

Ω

∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2〈∇u

K
,∇η

〉
dx = ΛS

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)−2 u

k
η dx

holds whenever η ∈ C∞
0 (Ω). Here K = Ku, k = ku and S = Su. The corresponding Λ is the

eigenvalue.

Remark 8.2.3. According to [3, 41, 40], the weak solutions of equations like (8.2.6) are
continuous if the variable exponent p(x) is Hölder continuous. Thus the eigenfunctions are
continuous.

If Λ1 is the minimum of the Rayleigh quotient in (8.2.1), we must have

Λ ≥ Λ1,

in (8.2.6), thus Λ1 is called the first eigenvalue and the corresponding eigenfunctions are
said to be first eigenfunctions. To see this, take η = u in the equation, which is possible by
approximation. Then we obtain, upon cancellations, that

Λ =
K

k
=

‖∇u‖p(x)
‖u‖p(x)

≥ Λ1.

We shall restrict ourselves to positive eigenfunctions.

Theorem 8.2.4. There exists a continuous strictly positive first eigenfunction. Moreover,
any non-negative eigenfunction is strictly positive.

Proof. The existence of a first eigenfunction was clear, since minimizers of (8.2.1) are
solutions of (8.2.6). But if u is a minimizer, so is |u|, and |u| ≥ 0. Thus we have a non-
negative one. By Remark 8.2.3 the eigenfunctions are continuous. The strict positivity then
follows by the strong minimum principle for weak supersolutions in [53]. �
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2.1. Regularity of the p(x)−norm. This subsection is devoted to prove that the
quantities computed above are meaningful. Note that formula

(8.2.7)
d

dε

K(ε)

k(ε)

∣∣∣∣∣
ε=0

= 0

takes sense if and only if both the functions K(ε), k(ε) are differentiable at ε = 0, where

K := K(0) > 0, k := k(0) > 0.

Conversely, if this is the case then there exists the partial derivative at u of the p(x)−norm
along the direction η. Recall that

K(ε) = ‖∇u+ ε∇η‖p(x), k(ε) = ‖u+ εη‖p(x)
for a given η ∈ C∞

0 (Ω). Then (8.2.7) follows as a necessary condition for the minimality of
u along the line passing through u with the same direction as η.

Lemma 8.2.5. Let p(x) > 1. Then K and k are differentiable at ε = 0, and their derivatives
are respectively given by

(8.2.8) K ′(0) = K(0)

∫

Ω

∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2〈∇u

K
,
∇η
K

〉
dx

∫

Ω

∣∣∣∣
∇u
K

∣∣∣∣
p(x)

dx

and

(8.2.9) k′(0) = k(0)

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)−2 u

k

η

k
dx

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)

dx

.

Proof. For all a, b ∈ R and all p > 1 one has

|b|p − |a|p =
∫ 1

0

d

dt

∣∣a+ t(b− a)
∣∣p dt = p(b− a)

∫ 1

0

|a+ t(b− a)|p−2
[
a+ t(b− a)

]
dt.

By the definition of the p(x)-norm k(ε) of u+ εη, it follows that
∫

Ω

∣∣∣∣
u+ εη

k(ε)

∣∣∣∣
p(x)

dx

p(x)
= 1,

∫

Ω

∣∣∣
u

k

∣∣∣
p(x) dx

p(x)
= 1.

Subtracting the last two identities and using a = (u+ εη)/k(ε), b = u/k, p = p(x) gives

0 =

∫

Ω

∣∣∣∣
u+ εη

k(ε)

∣∣∣∣
p(x)

dx

p(x)
−
∫

Ω

∣∣∣
u

k

∣∣∣
p(x) dx

p(x)

=

∫

Ω

(
u+ εη

k(ε)
− u

k

)∫ 1

0

∣∣∣∣
u+ εη

k(ε)
+ t

(
u+ εη

k(ε)
− u

k

)∣∣∣∣
p(x)−2[

u+ εη

k(ε)
+ t

(
u+ εη

k(ε)
− u

k

)]
dtdx
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After dividing out ε and moving a term one gets

k(ε)− k

ε

1

k(ε)

∫

Ω

u

k

∫ 1

0

∣∣∣∣
u+ εη

k(ε)
+ t

(
u+ εη

k(ε)
− u

k

)∣∣∣∣
p(x)−2[

u+ εη

k(ε)
+ t

(
u+ εη

k(ε)
− u

k

)]
dtdx

=

∫

Ω

η

k(ε)

∫ 1

0

∣∣∣∣
u+ εη

k(ε)
+ t

(
u+ εη

k(ε)
− u

k

)∣∣∣∣
p(x)−2[

u+ εη

k(ε)
+ t

(
u+ εη

k(ε)
− u

k

)]
dtdx

By the (Lipschitz) continuity of the norm, the quantity k(ε) depends continuously on ε.
Thus the quantity

u+ εη

k(ε)
− u

k

converges to zero pointwise a.e. in Ω, as ε → 0. Hence, by dominated convergence theorem
the integrals have their obvious limits as ε→ 0, and the derivative of k at zero exists, taking
the value

lim
ε→0

k(ε)− k

ε
=

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)−2 u

k
η dx

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)

dx

.

This proves that the formula for k′(0) is valid. The proof for K ′(0) runs at the same way. �

2.2. The equation in non-divergence form. The procedure to consider the asymp-
totic case when the variable exponent approaches ∞ via the sequence p(x), 2p(x), 3p(x) . . .
will require viscosity solutions. Thus we first verify that the weak solutions of the equation
(8.2.6), formally written as

div

(∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2 ∇u

K

)
+ ΛS

∣∣∣
u

k

∣∣∣
p−2 u

k
= 0,

are viscosity solutions. Given u ∈ C(Ω) ∩ W
1,p(x)
0 (Ω), we fix the parameters k = ‖u‖p(x),

K = ‖∇u‖p(x) and S. Replacing u by a function φ ∈ C2(Ω), but keeping k,K, S unchanged,
we formally get

∆p(x)φ− |∇φ|2 log(K)
〈
∇φ,∇p(x)

〉
+ Λp(x) S|φ|p(x)−2φ = 0,

where

∆p(x)φ = div
(
|∇φ|p(x)−2∇φ

)
= |∇φ|p(x)−4

{
|∇φ|2∆φ+

(
p(x)− 2

)
∆∞φ

+ |∇φ|2 ln
(
|∇φ|

)〈
∇φ,∇p(x)

〉}
,

and

∆∞φ =
n∑

i,j=1

∂φ

∂xi

∂φ

∂xj

∂2φ

∂xi∂xj

is the ∞-Laplacian. The relation Λ = K/k was used in the simplifications.
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Let us abbreviate the expression as

F (x, φ,∇φ,D2φ) =

|∇φ|p(x)−4
{
|∇φ|2∆φ+

(
p(x)− 2

)
∆∞φ+ |∇φ|2 ln

(
|∇φ|

)〈
∇φ,∇p(x)

〉

− |∇φ|2 log(K)
〈
∇φ,∇p(x)

〉}
+ Λp(x) S|φ|p(x)−2φ = 0.(8.2.10)

where we deliberately take p(x) ≥ 2. Notice that

F (x, φ,∇φ,D2φ) < 0

exactly when

∆p(x)

(
φ

K

)
+ ΛS

∣∣∣∣
φ

k

∣∣∣∣
p(x)−2

φ

k
< 0.

Recall that k,K, S where dictated by u.
Let φ ∈ C2(Ω) and x0 ∈ Ω. We say that φ ∈ C2(Ω) touches u from below at the point

x0, if φ(x0) = u(x0) and φ(x) < u(x) when x 6= x0.

Definition 8.2.6. Suppose that u ∈ C(Ω). We say that u is a viscosity supersolution of the
equation

F (x, u,∇u,D2u) = 0

if, whenever φ touches u from below at a point x0 ∈ Ω, we have

F (x0, φ(x0),∇φ(x0), D2φ(x0)) ≤ 0.

We say that u is a viscosity subsolution if, whenever ψ ∈ C2(Ω) touches u from above at a
point x0 ∈ Ω, we have

F (x0, ψ(x0),∇ψ(x0), D2ψ(x0)) ≥ 0.

Finally, we say that u is a viscosity solution if it is both a viscosity super- and subsolution.

Several remarks are appropriate. Notice that the operator F is evaluated for the test
function and only at the touching point. If the family of test functions is empty at some
point, then there is no requirement on F at that point. The definition makes sense for a
merely continuous function u, provided that the parameters k,K, S,Λ have been assigned
values. We always have ∇u available for this in our problem.

Theorem 8.2.7. The eigenfunctions u are viscosity solutions of the equation

F (x, u,∇u,D2u) = 0.

Proof. This is a standard proof. The equation

(8.2.11)

∫

Ω

∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2〈∇u

K
,∇η

〉
dx = ΛS

∫

Ω

∣∣∣
u

k

∣∣∣
p(x)−2 u

k
η dx
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holds for all η ∈ W
1,p(x)
0 (Ω). We first claim that u is a viscosity supersolution. Our proof is

indirect. The antithesis is that there exist a point x0 ∈ Ω and a test function φ ∈ C2(Ω),
touching u from below at x0, such that F (x0, φ(x0),∇φ(x0), D2φ(x0)) > 0. By continuity,

F (x, φ(x),∇φ(x), D2φ(x)) > 0

holds when x ∈ B(x0, r) for some radius r small enough. Then also

(8.2.12) ∆p(x)

(
φ(x)

K

)
+ ΛS

∣∣∣∣
φ(x)

k

∣∣∣∣
p−2

φ(x)

k
> 0,

in B(x0, r). Denote

ϕ = φ+
m

2
, m = min

∂B(x0,r)
(u− φ).

Then ϕ < u on ∂B(x0, r) but ϕ(x0) > u(x0), since m > 0. Define

η =
[
ϕ− u

]
+
χB(x0,r).

Now η ≥ 0. If η 6≡ 0, we multiply (8.2.12) by η and we integrate by parts to obtain the
inequality

∫

Ω

∣∣∣∣
∇φ
K

∣∣∣∣
p(x)−2〈∇φ

K
,∇η

〉
dx < ΛS

∫

Ω

∣∣∣∣
φ

k

∣∣∣∣
p(x)−2

φ

k
η dx

We have ∇η = ∇φ −∇u in the subset where ϕ ≥ u. Subtracting equation (8.2.11) by the
above inequality, we arrive at

∫

{ϕ>u}

〈∣∣∣∣
∇φ
K

∣∣∣∣
p(x)−2 ∇φ

K
−
∣∣∣∣
∇u
K

∣∣∣∣
p(x)−2 ∇u

K
,
∇φ
K

− ∇u
K

〉
dx

< S

∫

{ϕ>u}

(∣∣∣∣
φ

k

∣∣∣∣
p(x)−2

φ

k
−
∣∣∣
u

k

∣∣∣
p(x)−2 u

k

)(
ϕ− u

k

)
dx,

where the domain of integration is comprised in B(x0, r). The last integral is negative since
φ < u. The first one is non-negative due to the elementary inequality

〈
|b|p−2b− |a|p−2a, b− a

〉
≥ 0,

which holds for all p > 1 because of the convexity of the p-th power. We can take p = p(x).
It follows that ϕ ≤ u in B(x0, r). This contradicts ϕ(x0) > u(x0). Thus the antithesis was
false and u is a viscosity supersolution.

In a similar way we can prove that u is also a viscosity subsolution. �
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3. Passage to infinity

In the limit procedure as jp(x) → ∞, the distance function

δ(x) = dist(x, ∂Ω)

plays a crucial role. Write

(8.3.1) Λ∞ =
‖∇δ‖∞
‖δ‖∞

=
1

R

where R is the radius of the largest ball inscribed in Ω, the so-called inradius. Recall that δ
is Lipschitz continuous and |∇δ| = 1 a.e. in Ω.

In fact, Λ∞ is the minimum of the Rayleigh quotient in the ∞-norm:

(8.3.2) Λ∞ = min
u

‖∇u‖∞
‖u‖∞

,

where the minimum is taken among all u ∈ W 1,∞
0 (Ω). To see this, let ξ ∈ ∂Ω be the closest

boundary point to x ∈ Ω. By the mean value theorem

|u(x)| = |u(x)− u(ξ)| ≤ ‖∇u‖∞|x− ξ| = ‖∇u‖∞δ(x).
It follows that

Λ∞ =
1

‖δ‖∞
≤ ‖∇u‖∞

‖u‖∞
.

Consider

(8.3.3) Λjp(x) = min
v

‖∇v‖jp(x)
‖v‖jp(x)

, (j = 1, 2, 3 . . .)

where the minimum is taken over all v in C(Ω)∩W 1,jp(x)
0 (Ω). When j is large, the minimizer

uj (we do mean ujp(x)) is continuous up to the boundary and uj |∂Ω = 0. This is a property

of the Sobolev space.

Proposition 8.3.1.

(8.3.4) lim
j→∞

Λjp(x) = Λ∞.

Proof. Assume for simplicity that∫

Ω

dx

p(x)
= 1.

The Hölder inequality implies that

‖f‖jp(x) ≤ ‖f‖lp(x), l ≥ j.

Let uj be the minimizer of the Rayleigh quotient with the jp(x)-norm normalized so that
‖uj‖jp(x) = 1. Thus,

Λjp(x) = ‖∇uj‖jp(x).
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Since Λjp(x) is the minimum, we have

Λjp(x) ≤
‖∇δ‖jp(x)
‖δ‖jp(x)

,

for all j = 1, 2, 3 . . . Then, by Lemma 8.1.5,

lim sup
j→∞

Λjp(x) ≤
‖∇δ‖∞
‖δ‖∞

= Λ∞.

It remains to prove that

lim inf
j→∞

Λjp(x) ≥ Λ∞.

To this end, observe that the sequence ‖∇uj‖jp(x) is bounded. Using a diagonalization
procedure one can extract a subsequence ujν such that ujν converges strongly in each fixed
Lq(Ω) and ∇ujν converges weakly in each fixed Lq(Ω). In other words,

ujν → u∞, ∇ujν ⇀ ∇u∞, as ν → ∞,

for some u∞ ∈ W 1,∞
0 (Ω). By the lower semicontinuity of the norm under weak convergence

‖∇u∞‖q ≤ lim inf
ν→∞

‖∇ujν‖q
For large indices ν, we have

‖∇ujν‖q ≤ ‖∇ujν‖jνp(x) = Λjνp(x).

Therefore,

‖∇u∞‖q ≤ lim inf
ν→∞

Λjνp(x)

Finally, letting q → ∞ and taking the normalization into account (by Ascoli’s Theorem,
‖u∞‖∞ = 1) we obtain

‖∇u∞‖∞
‖u∞‖∞

≤ lim inf
ν→∞

Λjνp(x),

but, since u∞ is admissible, Λ∞ is less than or equal to the above ratio. This implies that

lim
ν→∞

Λjνp(x) = Λ∞.

By possibly repeating the above, starting with an arbitrary subsequence of variable ex-
ponents, it follows that the limit (8.3.4) holds for the full sequence. This concludes the
proof. �

Using Ascoli’s theorem it is assured that the convergence ujν → u∞ is uniform in Ω.
Thus the limit of the normalized first eigenfunctions is continuous and

u∞ ∈ C(Ω) ∩W 1,∞
0 (Ω),

with u∞|∂Ω = 0, u∞ ≥ 0, u∞ 6≡ 0. However, the function u∞ might depend on the particular
sequence extracted.
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Theorem 8.3.2. The limit of the normalized first eigenfunctions is a viscosity solution of
the equation

(8.3.5) max

{
Λ∞ − |∇u|

u
,∆∞(x)

( u
K

)}
= 0,

where K = ‖∇u‖∞.

Remark 8.3.3. The limit u of the normalized first eigenfunctions is a non-negative function.
At the points where u > 0, the equation above means that the largest of the two quantities
is zero. At the points where u = 0, we agree that there is no requirement1.

Proof of Theorem 8.3.2. One begins with the case of viscosity supersolutions. If
φ ∈ C2(Ω) touches u∞ from below at x0 ∈ Ω, we claim that

Λ∞ ≤ |∇φ(x0)|
φ(x0)

, and ∆∞(x0)

(
φ(x0)

K

)
≤ 0,

where K = Ku∞
. We know that uj is a viscosity (super)solution of the equation

∆jp(x)u− |∇u|jp(x)−2 lnKj

〈
∇u, j∇p(x)

〉
+ Λ

jp(x)
jp(x)Sjp(x)|u|jp(x)−2u = 0

where Kj = ‖∇uj‖jp(x) and

Sjp(x) =

∫

Ω

∣∣∣∣
∇uj
Kj

∣∣∣∣
jp(x)

dx

∫

Ω

∣∣∣∣
uj
kj

∣∣∣∣
jp(x)

dx

.

We have the trivial estimate
p−

p+
≤ Sjp(x) ≤

p+

p−
.

We need a test function ψj touching uj from below at a point xj very near x0. To construct
it, let B(x0, 2R) ⊂ Ω. Obviously,

inf
BR\Br

{
u∞ − φ

}
> 0,

when 0 < r < R. By the uniform convergence,

inf
BR\Br

{
u∞ − φ

}
> uj(x0)− u∞(x0) = uj(x0)− φ(x0),

provided j is larger than an index large enough, depending on r. For such large indices,
uj − φ attains its minimum in B(x0, R) at a point xj ∈ B(x0, r), and letting j → ∞, we see
that xj → x0, as j → ∞. Actually, j → ∞ via the subsequence jν extracted, but we drop
this notation. Define

ψj = φ+
(
uj(xj)− φ(xj)

)
.

1When u < 0 this is not the right equation, but we keep u ≥ 0.
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This function touches uj from below at the point xj . Therefore ψj will do as a test function
for uj. We arrive at

|∇φ(xj)|jp(xj)−4

{
|∇φ(xj)|2∆φ(xj)

+ (jp(xj)− 2)∆∞φ(xj) + |∇φ(xj)|2 ln
(
|∇φ(xj)|

)〈
∇φ(xj), j∇p(xj)

〉}

≤ −Λ
jp(xj)

jp(xj)
Sjp(xj)|φ(xj)|jp(xj)−2φ(xj)

+ |∇φ(xj)|jp(xj)−2 lnKj

〈
∇φ(xj), j∇p(xj)

〉
.(8.3.6)

First, we consider the case ∇φ(x0) 6= 0. Then ∇φ(xj) 6= 0 for large indices. Dividing by

(jp(xj)− 2)|∇φ(xj)|jp(xj)−2

one obtains

|∇φ(xj)|2∆φ(xj)
jp(xj)− 2

+ ∆∞φ(xj) + |∇φ(xj)|2 ln |∇φ(xj)|
〈
∇φ(xj),

∇p(xj)
p(xj)− 2/j

〉

≤ lnKj

〈
∇φ(xj),

∇p(xj)
p(xj)− 2/j

〉
−
(
Λjp(xj)φ(xj)

|∇φ(xj)|

)jp(xj)−4

Λ4
jp(x)Sjp(xj)φ(xj)

3.

In this inequality, all terms have a limit except possibly the last one. Thus, in order to avoid
a contradiction

(8.3.7) lim sup
j→∞

Λjp(xj)φ(xj)

|∇φ(xj)|
≤ 1.

Therefore

(8.3.8) Λ∞φ(x0)− |∇φ(x0)| ≤ 0,

as desired. Taking the limit it follows that

∆∞φ(x0) + |∇φ(x0)|2 ln
∣∣∣∣
∇φ(x0)
K∞

∣∣∣∣
〈
∇φ(x0),∇ ln p(xj)

〉
≤ 0.

Second, consider the case ∇φ(x0) = 0. Then the last inequality above is evident. Now
the inequality

Λ∞φ(x0)− |∇φ(x0)| ≤ 0

reduces to φ(x0) ≤ 0. But, if φ(x0) > 0, then φ(xj) 6= 0 for large indices. Ac-
cording to inequality (8.3.6) we must have |∇φ(xj)| 6= 0 and so we can divide by
(jp(xj) − 2)|∇φ(xj)|jp(xj)−2 and conclude from (8.3.7) that φ(x0) = 0, in fact. This shows
that u∞ is a viscosity supersolution.
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In the case of a subsolution one has to show that for a test function ψ touching u∞ from
above at x0 at least one of the inequalities

Λ∞ψ∞(x0)− |∇ψ(x0)| ≥ 0

or

∆∞ψ(x0) + |∇ψ(x0)|2 ln
∣∣∣∣
∇ψ(x0)
K∞

∣∣∣∣
〈
∇ψ(x0),∇ ln p(x0)

〉
≥ 0

is valid. We omit this case, since the proof is pretty similar to the one for supersolutions. �

4. Local uniqueness

The existence of a viscosity solution to the equation

max

{
Λ∞ − |∇u|

u
,∆∞(x)

(
u

‖∇u‖∞

)}
= 0

was established in section 3. The question of uniqueness is a more delicate one.
In the special case of a constant exponent, say p(x) = p, there is a recent counterexample

in [57] of a domain (a dumb-bell shaped one) in which there are several linearly independent
solutions in C(Ω) ∩W 1,∞

0 (Ω) of the equation

max

{
Λ− |∇u|

u
,∆∞u

}
= 0, Λ = Λ∞.

It is decisive that they have boundary values zero. According to [59, Theorem 2.3], this
cannot happen for strictly positive boundary values, which excludes eigenfunctions. This
partial uniqueness result implied that there are no positive eigenfunctions for Λ 6= Λ∞,
cf. [59, Theorem 3.1].

Let us return to the variable exponents. Needless to say, one cannot hope for more than
in the case of a constant exponent. Actually, a condition involving the quantities min u,
maxu, max |∇ ln p| taken over subdomains enters. This complicates the matter and restricts
the result.

Consider first a normalized strictly positive viscosity solution u of the equation

(8.4.1) max

{
Λ∞ − |∇u|

u
, ∆∞(x)u

}
= 0.

Now K = ‖∇u‖∞ = 1. The normalization is used in no other way than that the constant
K is erased. This equation is not a “proper” one2 and the first task is to find the equation
for v = ln(u).

Lemma 8.4.1. Let C > 0. The function

v = ln(Cu)

2A term used in the viscosity theory for second order equations
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is a viscosity solution of the equation

max

{
Λ− |∇v|,∆∞v + |∇v|2 ln

( |∇v|
C

)
〈∇v,∇ ln p〉+ v|∇v|2〈∇v,∇ ln p〉

}
= 0.(8.4.2)

We need a strict supersolution (this means that the 0 in the right hand side has to be
replaced by a negative quantity) which approximates v uniformly. To this end we use the
approximation of unity introduced in [59]. Let

g(t) =
1

α
ln
(
1 + A(eαt − 1)

)
, A > 1, α > 0,

and keep t > 0. The function
w = g(v)

will have the desired properties, provided that v ≥ 0. This requires that

Cu(x) ≥ 1,

which cannot hold globally for an eigenfunction, because u = 0 on the boundary. This obsta-
cle restricts the method to local considerations and forces to limit the following constructions
to subdomains.

We use a few elementary results:

0 < g(t)− t <
A− 1

α
,

A−1(A− 1)e−αt < g′(t)− 1 < (A− 1)e−αt,

g(t)− t <
A

α
(eαt − 1)(g′(t)− 1),(8.4.3)

g′′(t) = −α(g′(t)− 1)g′(t),

0 < ln g′(t) < g′(t)− 1.

In particular, g′(t)− 1 will appear as a decisive factor in the calculations. The formula

(8.4.4) ln g′(t) = lnA− α(g(t)− t)

is helpful.
In the next lemma our choice of the parameter α is not optimal, but it is necessary to

take α > 1, at least. For convenience, one sets α = 2.

Lemma 8.4.2. Take α = 2 and assume that 1 < A < 2. If v > 0 is a viscosity supersolution
of equation (8.4.2), then w = g(v) is a viscosity supersolution of the equations

Λ− |∇w|
g′(v)

= 0,

and

∆∞w + |∇w|2 ln
(∇w
C

)
〈∇w,∇ ln p〉+ w|∇w|2〈∇w,∇ ln p〉+ |∇w|4 = −µ,



4. LOCAL UNIQUENESS 117

where

µ = A−1(A− 1)|∇w|3e−2v
{
Λ− ‖e2v∇ ln p‖∞

}
,

provided that
‖e2v∇ ln p‖∞ < Λ.

Remark 8.4.3. One can further estimate µ and replace it by a constant, viz.

A−1Λ3(A− 1)e−2‖v‖∞
{
Λ− ‖e2v∇ ln p‖∞

}
,

but the pointwise estimate is favourable.

Proof. The proof below is only formal and should be rewritten in terms of test functions.
One only has to observe that an arbitrary test function ϕ touching w from below can be
represented as ϕ = g(φ) where φ touches v from below.

First one computes the expressions

∇w = g′(v)∇v,
∆∞w = g′(v)2g′′(v)|∇v|4 + g′(v)3∆∞v,

|∇w|2 ln
( |∇w|

C

)
〈∇w,∇ ln p〉

= g′(v)3
{
|∇v|2 ln

( |∇v|
C

)
〈∇v,∇ ln p〉+ |∇v|2 ln(g′(v))〈∇v,∇ ln p〉.

Then, using that v is a supersolution, it follows that

∆∞w + |∇w|2 ln
( |∇w|

C

)〈
∇w,∇ ln p

〉

= g′(v)2g′′(v)|∇v|4 + g′(v)3
{
∆∞v + |∇v|2 ln

( |∇v|
C

)〈
∇v,∇ ln p

〉}

+ g′(v)3|∇v|2 ln(g′(v))
〈
∇v,∇ ln p

〉

≤ g′(v)2g′′(v)|∇v|4 + g′(v)3
{
− v|∇v|2

〈
∇v,∇ ln p

〉
− |∇v|4

}

+ g′(v)3|∇v|2 ln(g′(v))
〈
∇v,∇ ln p

〉
.

Let us collect the terms appearing on the left-hand side of the equation for w. Using the
formulas (8.4.3) for g′′(v) and ln

(
g′(v)

)
one arrives at

∆∞w + |∇w|2 ln
( |∇w|

C

)〈
∇w,∇ ln p

〉
+ |∇w|4 + w|∇w|2

〈
∇w,∇ ln p

〉
,

≤ g′(v)3|∇v|3
(
g′(v)− 1

){
− |∇v|+ |∇ ln p|

}
+ g′(v)3|∇v|3

(
g(v)− v

)
|∇ ln p|,
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after some arrangements. Since

g(t)− t <
A

2
(e2t − 1)(g′(t)− 1) ≤ (e2t − 1)(g′(t)− 1),

collecting all the terms with the factor |∇ ln p| separately and observing that 1+(e2t−1) = e2t,
one sees that the right-hand side is less than

g′(v)3|∇v|3
(
g′(v)− 1

)
{−|∇v|+ |e2v∇ ln p|} ≤ |∇w|3A−1(A− 1)e−2v{−Λ + |e2v∇ ln p|},

since the expression in braces is negative. �

We abandon the requirement of zero boundary values. Thus Ω below can represent a
proper subdomain. Eigenfunctions belong to a Sobolev space but we cannot ensure this for
an arbitrary viscosity solution. This requirement is therefore included in our next theorem.

Theorem 8.4.4. Suppose that u1 ∈ C(Ω) is a viscosity subsolution and that u2 ∈ C(Ω) is
a viscosity supersolution of equation (8.4.1). Assume that at least one of them belongs to
W 1,∞(Ω). If u1(x) > 0 and u2(x) ≥ m2 > 0 in Ω, and

(8.4.5) 3

∥∥∥∥∥

(
u2
m2

)2

∇ ln p

∥∥∥∥∥
∞

≤ Λ,

then the following comparison principle holds:

u1 ≤ u2 on ∂Ω =⇒ u1 ≤ u2 in Ω.

Proof. Define
v1 = ln(Cu1), v2 = ln(Cu2),

with C = 1/m2. Then v2 > 0, but v1 may take negative values. We define

w2 = g(v2), α = 2, 1 < A < 2.

If v2 ≥ v1, we are done. If not, consider the open subset {v2 < v1} and denote

σ = sup
{
v1 − v2

}
> 0.

Note that σ is independent of C. (The antithesis was that σ > 0.) Then, taking A = 1 + σ,

v2 < w2 < v2 +
A− 1

2
= v2 +

σ

2
.

Note that v1 − w2 = v1 − v2 + v2 − w2 ≥ v1 − v2 − σ/2. Taking the supremum on the
subdomain U = {w2 < v1} we have

sup
U

{
v1 − w2} ≥ σ

2
> 0 = max

∂U

{
v1 − w2

}

and U ⋐ Ω, i.e. U is strictly interior. Moreover,

(8.4.6) sup
{
v1 − w2

}
≤ 3σ

2
.
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In order to obtain a contradiction, we double the variables and write

Mj = max
U×U

{
v1(x)− w2(y)−

j

2
|x− y|2

}
.

If the index j is large, the maximum is attained at some interior point (xj , yj) in U ×U . The
points converge to some interior point, say xj → x̂, yj → x̂, and

lim
j→∞

j|xj − yj|2 = 0.

This is a standard procedure. According to the “Theorem of Sums“, cf. [29] or [63], there
exist symmetric n× n-matrices Xj and Yj such that

(
j(xj − yj),Xj

)
∈ J2,+

U v1(xj),
(
j(xj − yj),Yj

)
∈ J2,−

U w2(yj),
〈
Xjξ , ξ

〉
≤
〈
Yjξ , ξ

〉
, when ξ ∈ R

n.

The definition of the semijets and their closures J2,+
U , J2,−

U can be found in the above men-
tioned references3. The equations have to be written in terms of jets.

We exclude one alternative from the equations. In terms of jets

Λ− |∇w2|
g′(v2)

≤ 0 reads Λ− j|xj − yj|
g′(v2(yj))

≤ 0

and, since v2 > 0, g′(v2(yj)) > 1, and so

Λ < j|xj − yj|.

This rules out the alternative Λ − |∇v1(xj)| ≥ 0 in the equation for v1, which reads Λ −
j|xj − yj| ≥ 0. Therefore we must have that ∆∞v1 + · · ·+ |∇v1|4 ≥ 0, i.e.

〈
Xj j(xj − yj), j(xj − yj)

〉
+ j2|xj − yj|2 ln

(
j|xj − yj|

C

)〈
j(xj − yj),∇ ln p(xj)

〉

+ v1(xj)j
2|xj − yj|2 ln

(
j|xj − yj|

C

)〈
j(xj − yj),∇ ln p(xj)

〉
+ j4|xj − yj|4 ≥ 0.

3Symbolically the interpretation is: j(xj − yj) means ∇v1(xj) and ∇w2(yj), Xj means D2v1(xj), and Yj

means D2w2(yj).
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The equation for w2 reads
〈
Yj j(xj − yj), j(xj − yj)

〉
+ j2|xj − yj |2 ln

(
j|xj − yj|

C

)〈
j(xj − yj),∇ ln p(yj)

〉

+ w2(yj)j
2|xj − yj|2 ln

(
j|xj − yj|

C

)〈
j(xj − yj),∇ ln p(yj)

〉
+ j4|xj − yj|4

≤ −A−1σ j3|xj − yj|3e−2v2(yj)
{
Λ−

∥∥e2v2∇ ln p
∥∥
∞,U

}
.

Subtracting the last two inequalities, we notice that the terms j4|xj −yj |4 cancel. The result
is

〈(
Yj − Xj

)
j(xj − yj), j(xj − yj)

〉

+ j2|xj − yj|2 ln
(
j|xj − yj|

C

)〈
j(xj − yj),∇ ln p(yj)−∇ ln p(xj)

〉

+ j2|xj − yj|2
〈
j(xj − yj), w2(yj)∇ ln p(yj)− v1(xj)∇ ln p(xj)

〉

≤ −A−1σ j3|xj − yj|3 e−2v2(yj)
{
Λ−

∥∥e2v2∇ ln p
∥∥
∞,U

}
.

The first term, the one with matrices, is non-negative and can be omitted from the inequality.
Then we move the remaining terms and divide by j3|xj − yj|3 to get

A−1 σ e−2v2(yj)
{
Λ−

∥∥e2v2∇ ln p
∥∥
∞,U

}

≤
∣∣∣∣ln

j|xj − yj|
C

∣∣∣∣
∣∣∇ ln p(yj)−∇ ln p(xj)

∣∣+
∣∣w2(yj)∇ ln p(yj)− v1(xj)∇ ln p(xj)

∣∣

A uniform bound

Λ ≤ j|xj − yj| ≤ L

is needed. The inequality with Λ was already clear. Using the definition of Mj , one can take

L = 2‖v1‖∞,U or L = ‖w2‖∞,U ≤ 4‖v2‖∞,U .

Thus, taking the limit as j → ∞ we use the continuity of ∇ ln p to arrive at

A−1 σ
{
Λ−

∥∥e2v2∇ ln p
∥∥
∞,U

}
≤ e2v2(x̂)

∣∣w2(x̂)∇ ln p(x̂)− v1(x̂)∇ ln p(x̂)
∣∣.

Recall (8.4.6). Since A = 1 + σ, the above implies that

A−1 σ
{
Λ−

∥∥e2v2∇ ln p
∥∥
∞,U

}
≤ ‖e2v2∇ ln p‖∞,U

3σ

2
.

Divide out σ. Now A−1 ≥ 1/2. The final inequality is

Λ ≤ 3‖e2v2∇ ln p‖∞,U .
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Thus there is a contradiction, if the opposite inequality is assumed to be valid. Recall that

e2v1 =

(
u2
m2

)2

to finish the proof.
�

Corollary 8.4.5. Local uniqueness holds. In other words, in a sufficiently small interior
subdomain we cannot perturb the eigenfunction continuously.

Proof. We can make
max
U

u

min
U
u

as small as we please, by shrinking the domain U . Thus condition (8.4.5) is valid with the
L∞ norm taken over U . �

5. Discussion about the one-dimensional case

In the one-dimensional case an explicit comparison of the minimization problem for the
two Rayleigh quotients (8.1.1) and (8.1.3) is possible. Let Ω = (0, 1) and consider the limits
of the problem coming from minimizing either

(I)
‖u′‖jp(x)
‖u‖jp(x)

or

(II)

∫ 1

0

|v′(x)|jp(x) dx
∫ 1

0

|v(x)|jp(x) dx
, with

∫ 1

0

|v(x)|jp(x) dx = C,

as j → ∞. In the second case the equation is

min

{
Λ− |v′|

v
, (v′)2v′′ + (v′)3 ln(|v′|) p

p′

}
= 0

for v > 0 (v(0) = 0, v(1) = 0, ‖vp‖∞ = C).
The Luxemburg norm leads to the same equation, but with

v(x) =
u(x)

‖u′‖∞
=
u(x)

K

as in equation (8.3.5). Thus all the solutions violating the condition ‖v′‖∞ = 1 are ruled
out. This is the difference between the two problems.
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Let us return to (II). The equation for v (without any normalization) can be solved.
Upon separation of variables, we obtain

v(x) =






∫ x

0

e
A

p(t) dt, when 0 ≤ x ≤ x0,

∫ 1

x

e
A

p(t) dt, when x0 ≤ x ≤ 1,

where the constant A is at our disposal and the point x0 is determined by the continuity
condition ∫ x0

0

e
A

p(t) dt =

∫ 1

x0

e
A

p(t) dt.

Clearly, 0 < x0 < 1. Now Λ is determined from

v′(x−0 )

v(x0)
= Λ = −v

′(x+0 )

v(x0)
.

Provided that the inequality

|v′(x)|
v(x)

≥ Λ (0 < x < 1, x 6= x0)

holds, the number Λ is an eigenvalue for the non-homogeneous problem. What about the
value of A? Given C, we can determine A from

max
0<x<1

v(x)p(x) = C.

At least for a suitable p(x), we can this way reach any real number A and therefore Λ can
take all positive values, as C varies.

The problem in the Luxemburg norm is different. If u is an eigenfunction and

v =
u

‖u′‖∞
,

then 0 ≤ v′(x) ≤ 1 in some interval (0, x0). But the equation leads to

u′(x)

‖u′‖∞
= e−

A1
p(x) , A1 ≥ 0,

in (0, x0) and

− u′(x)

‖u′‖∞
= e−

A2
p(x) , A2 ≥ 0,

in (x0, 1). (In fact, A1 = A2). But this is impossible at points where the left-hand side is
±1, unless at least one of the constants A1, A2 is zero, say that A1 = 0. Then u(x) = x when
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0 ≤ x ≤ x0. The determination of Λ from the equation

1

x0
= Λ =

e−A2/p(x0)

x0
,

forces also A2 = 0. It follows that

u(x) = δ(x), Λ = Λ∞ = 2

is the only positive solution of the equation (0.0.13). In this problem Λ is unique. Recall
that δ is the distance function.





APPENDIX A

Elementary inequalities in RN

1. The case p ≥ 2

Lemma A.1.1.

(A.1.1) |z − w|p ≤ 2p−2〈|z|p−2z − |w|p−2w, z − w〉

(A.1.2)
∣∣∣|z|

p−2
2 z − |w| p−2

2 w
∣∣∣
2

≤ p2

4
〈|z|p−2z − |w|p−2w, z − w〉

(A.1.3)
∣∣|z|p−2z − |w|p−2w

∣∣ ≤ (p− 1)
(
|z| p−2

2 + |w| p−2
2

) ∣∣∣|z|
p−2
2 z − |w| p−2

2 w
∣∣∣

Remark A.1.2. By means of (A.1.1) and Cauchy-Schwartz inequality, we obtain

(A.1.4) |z − w|p ≤ 2p−2
∣∣∣|z|

p−2
2 z − |w| p−2

2 w
∣∣∣
2

.

Indeed, (A.1.1) implies

|z − w|p ≤ 2p−2|z − w|
∣∣|z|p−2z − |w|p−2w

∣∣ ,
that is

|z − w|p−1 ≤ 2p−2
∣∣|z|p−2z − |w|p−2w

∣∣ ,
and replacing p with (p+ 2)/2 and raising at the power 2, we obtain (A.1.4).

2. The case 1 < p < 2

Lemma A.2.1. Let 1 < p < 2, then for every z, w ∈ RN with |z| + |w| > 0 we have

(A.2.5) |z − w|2 (|z|+ |w|)p−2 ≤ 1

p− 1
〈|z|p−2z − |w|p−2w, z − w〉.

Proof. Given z, w ∈ RN and t ∈ [0, 1], we set zt = (1− t)w + tz, then we have

|z|p−2z − |w|p−2w =

∫ 1

0

d

dt

(
|zt|p−2 zt

)
dt

= (p− 2)

∫ 1

0

|zt|p−4 〈zt, z − w〉 zt dt+
∫ 1

0

|zt|p−2 (z − w) dt

(A.2.6)

125



126 A. ELEMENTARY INEQUALITIES IN R
N

then taking the scalar product with z − w and using that p− 2 < 0, we get

〈|z|p−2z − |w|p−2w, z − w〉 ≥ (p− 1)|z − w|2
∫ 1

0

|zt|p−2 dt.

We can conclude by simply using that

|zt| ≤ |z|+ |w|,

and then raising to the power p− 2 and integrating. �

Lemma A.2.2. Let 1 < p < 2, then for every z, w ∈ RN with |z| + |w| > 0 we have

(A.2.7)
∣∣|z|p−2z − |w|p−2w

∣∣ ≤ 22−p 3− p

p− 1
|z − w| (|z|+ |w|)p−2.

Proof. Observe that from (A.2.6) using Cauchy-Schwarz inequality we obtain

∣∣|z|p−2z − |w|p−2w
∣∣ ≤ (3− p) |z − w|

∫ 1

0

|zt|p−2 dt.

We can conclude the proof by showing the validity of the following inequality

(A.2.8)

∫ 1

0

|zt|p−2 dt ≤ 22−p

p− 1
(|z|+ |w|)p−2.

In order to prove (A.2.8), we first observe that for every z, w ∈ RN \ {0} we have

|zt| = |(1− t)w + tz| ≥
∣∣∣∣(1− t)w − t

|z|
|w|w

∣∣∣∣ ,

which is true by simple computations: indeed, we have
∣∣∣∣(1− t)w − t

|z|
|w|w

∣∣∣∣
2

= (1− t)2|w|2 + t2|z|2 − 2t(1− t)|w||z|

≤ (1− t)2|w|2 + t2|z|2 + 2t(1− t)〈z, w〉 = |(1− t)w + tz|2.

Recalling that p− 2 < 0, this implies that we have

|zt|p−2 ≤
∣∣∣∣(1− t)w − t

|z|
|w|w

∣∣∣∣
p−2

.

Let us now set λ = |z|/|w|, then we have

∫ 1

0

|zt|p−2 dt ≤
∫ 1

0

|(1− t)w − tλw|p−2 dt = |w|p−2

∫ 1

0

|1− (λ+ 1)t|p−2 dt.
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and we only need to compute the integral in the right-hand side:
∫ 1

0

|1− (λ+ 1)t|p−2 dt =

∫ 1
λ+1

0

(1− (λ+ 1)t)p−2 dt+

∫ 1

1
λ+1

((λ+ 1)t− 1)p−2 dt

=
1

p− 1

λp−1 + 1

λ+ 1
=

|w|2−p

p− 1

|z|p−1 + |w|p−1

|z|+ |w| .

Finally, it is only left to observe that we have

|z|p−1 + |w|p−1

|z|+ |w| ≤ 22−p (|z|+ |w|)p−1

|z|+ |w| = 22−p (|z|+ |w|)p−2,

where we used the concavity of the function t 7→ tp−1. Putting all together, we have concluded
the proof. �

Lemma A.2.3. Given 1 < p < 2, we set q = p/(p − 1). Then for every z, w ∈ RN with
|z|+ |w| > 0 we have

(A.2.9)
∣∣|z|p−2z − |w|p−2w

∣∣q ≤ C |z − w|2 (|z|+ |w|)p−2,

for a suitable constant C which only depends on p.

Proof. Let us set C = 2q(2−p) (3− p)q (p− 1)−q, then taking (A.2.7) and raising to the
power q we have

∣∣|z|p−2z − |w|p−2w
∣∣q ≤ C |z − w|q (|z|+ |w|)q(p−2)

= C |z − w|2 |z − w|q−2 (|z|+ |w|)q(p−2)

≤ C |z − w|2(|z| + |w|)q(p−2)+(q−2) = C |z − w|2 (|z|+ |w|)p−2,

which concludes the proof, where we used the simple computations q(p−2)+q−2 = p−2. �

Lemma A.2.4. Let 1 < p < 2 and set q = p/(p− 1). Then for every z, w ∈ RN there holds

(A.2.10)
∣∣|z|p−2z − |w|p−2w

∣∣q ≤ C 〈|z|p−2z − |w|p−2w, z − w〉,
for a suitable constant C which only depends on p.

Proof. It is enough to combine (A.2.9) with (A.2.5) and observe that when |z|+ |w| = 0
there is nothing to prove. �
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3. A useful compactness criterion

We apply the inequalities above so as to provide a sufficient condition for the strong
convergence in the Sobolev space W 1,p

0 (Ω). Here Ω is some given open set of finite measure.
The first lemma is elementary.

Lemma A.3.1. If uν is a bounded sequence in W 1,p(Ω) and uν ⇀ u weakly in Lp(Ω) then
∂xi
uν ⇀ ∂xi

u weakly in Lp(Ω) for all i ∈ {1, . . . , N}.
Proof. The weak convergence of the sequence in Lp(Ω) implies

lim
ν→∞

∫

Ω

∂xi
uν ϕdx = − lim

ν→∞

∫

Ω

uν ∂xi
ϕdx = −

∫

Ω

u ∂xi
ϕdx =

∫

Ω

∂xi
uϕ dx

for all ϕ ∈ C∞
c (Ω). The fact that ∂xi

f is the weak derivative of f was used. On the other
hand, given a function ϕ ∈ Lp′(Ω) and a sequence {ϕk}k converging to ϕ in Lp′(Ω), one has

∫

Ω

(
∂xi
uν − ∂xi

u
)
ϕdx =

∫

Ω

(
∂xi
uν − ∂xi

u
)
ϕk dx+

∫

Ω

(
∂xi
uν − ∂xi

u
)(
ϕ− ϕk

)
dx.

Since ϕk is smooth the first summand in the right hand side goes to zero. The second one
can be made suitably small by Hölder inequality, since the sequence uν is bounded. This
concludes the proof. �

The following sufficient condition for the strong Lp-convergence of weakly converging se-
quences is due to the elementary inequalities (A.1.1), (A.2.5), in turn related to the convexity
of the mapping t 7→ |t|p,
Proposition A.3.2. Let {fν}ν∈N ⊂ Lp(Ω) be such that

(A.3.11) lim
ν→∞

∫

Ω

(
|fν |p−2 fν − |f |p−2 f

)
(fν − f) dx = 0, for every i = 1, . . . , N,

for some function f ∈ Lp(Ω). Then {fν}ν∈N converges in Lp(Ω) to f .

Proof. We have two distinguish between two cases. If p ≥ 2, then by A.1.1, it follows
directly that

lim
ν→∞

∫

Ω

|fν − f |p dx = 0, for every i = 1, . . . , N.

For 1 < p < 2, we start observing that the hypothesis implies

(A.3.12)

∫

Ω

|fν |p dx ≤ C, for every ν ∈ N.

Indeed, by means of Young inequality we can infer
∫

Ω

(
|fν |p−2 fnu− |f |p−2 f

)
(fν − f) dx ≥

(
1− εp

p
− εq

q

) ∫

Ω

|fν|p dx

+

(
1− ε−p

p
− ε−q

q

) ∫

Ω

|f |p dx,
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where we set q = p/(p−1). Then, by taking ε small enough, (A.3.11) implies (A.3.12). Now
use inequality (A.2.5) raised to the power p/2 to get

∫

Ω

|fν − f |p dx ≤ C

∫

Ω

(1 + |fν |2 + |f |2) (2−p) p
4

[(
|fν |p−2 fν − |f |p−2 f

)
(fν − f)

]p
2 dx.

An application of Hölder inequality with exponents 2/(2− p) and 2/p yields
∫

Ω

|fν − f |p dx ≤ C

[∫

Ω

(1 + |fν |2 + |f |2) p
2 dx

] 2−p
2

×
[∫

Ω

(
|fν |p−2 fν − |f |p−2 f

)
(fν − f) dx

]p
2

.

The conclusion is now an easy consequence of (A.3.11) and (A.3.12). �

Combining Proposition A.3.2 and Lemma A.3.1 one can prove the following:

Proposition A.3.3. Let uν be a sequence converging weakly to u in W 1,p
0 (Ω). If

lim
ν→∞

∫

Ω

(
|∂xi

uν|p−2∂xi
uν − |∂xi

u|p−2∂xi
u
)
(∂xi

uν − ∂xi
u) dx = 0

then uν converges to u strongly in W 1,p
0 (Ω).

The above Proposition entails that the maps H(z) = ‖z‖pℓp satisfies the assumption
(A.3.13)

lim
ν→∞

∫

Ω

〈
∇zH(∇uν)−H(∇u),∇uν −∇u

〉
dx = 0 ⇒ lim

ν→∞

∫

Ω

|∇uν −∇u|p dx = 0

for all weakly convergent sequences {uν}ν∈N ⊂ W 1,p
0 (Ω). A similar condition can be proved

if H(z) = |z|p.
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[64] Krahn, E., Über Minimaleigenschaften der Krugel in drei un mehr Dimensionen. Acta Comm. Univ.
Dorpat., A9 (1926), 1–44.

[65] Kuttler, J.R. & Sigillito, V.G., An inequality for a Stekloff eigenvalue by the method of defect.
Proc. AMS, 20 (1969), 357–360.
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