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A B S T R A C T

An elastic disk is coated with an elastic rod, uniformly prestressed with a tensile or compressive axial force.
The prestress state is assumed to be induced by three different models of external radial load or by ‘shrink-
fit’ forcing the coating onto the disk. The prestressed coating/disk system, when loaded with an additional
and arbitrary incremental external load, experiences incremental displacement, strain, and stress, which are
solved via complex potentials. The analysis incorporates models for both perfect and imperfect bonding at
the coating/disk interface. The derived solution highlights the significant influence not only of the prestress
but also of the method employed to generate it. These two factors lead, in different ways, to a loss or an
increase in incremental stiffness for compressive or tensile prestress. The first bifurcation load of the structure
(which differs for different prestress generations) is determined in a perturbative way. The results emphasize
the importance of modelling the load and may find applications in flexible electronics and robot arms subject
to pressure or uniformly-distributed radial forces.
1. Introduction

Thermo-mechanical and chemical treatments of materials such as
surface hardening, welding, and contact with gears, rolling bars, or
manufacturing tools often induce residual stresses in materials and
components. Depending on their nature and how they interact with
applied loads, these stresses can sometimes be beneficial or detrimen-
tal to stiffness and strength (Jensen et al., 1990; Noyan and Cohen,
1991; Beuth, 1992; Jørgensen et al., 1995; Chen et al., 2022). In
particular, internal stresses in coatings and thin films are recognized
as the primary cause for loss of mechanical and adhesive properties,
possibly leading to failure. In other circumstances, residual stresses can
improve the mechanical performance of a piece, as happens for instance
in the well-known case of tempered glass. As related to growth and
sometimes remodelling, residual stresses are present in many biological
tissues (Humphrey, 2003), and particularly in arteries (Holzapfel and
Ogden, 2010), where they strongly influence the mechanical response.

Research on soft materials for applications in tissue mechanics and
soft devices has fostered research on residual stresses (defined as stress
states persisting even in the absence of external loads) in nonlinear
elasticity. This field has been theoretically developed in Hoger (1985,
1986), while wave propagation (concerning the possibility of detect-
ing residual stresses) has been analysed in Armenakas and Herrmann
(1963), Ogden and Steigmann (2002), Man and Lu (1987), Gei (2008),
Shams et al. (2011). Finally, simple shear, azimuthal shear, and torsion
of a cylinder have been investigated in Merodio et al. (2013).

E-mail address: bigoni@ing.unitn.it (D. Bigoni).

The present article investigates the response to incremental external
load of a mechanical system involving a prestressed and curved ele-
ment. The prestress can be residual stress induced by thermal loading
or by a forced insertion of a piece into another, or can be generated by
an external load, here considered of three different types (hydrostatic
pressure, centrally directed, and dead). Although they generate the
same prestress in the curved element, the three different loadings pro-
duce different incremental effects, thus leading to different incremental
stress states when perturbed through an additional incremental load,
externally applied to the system. The mechanical system considered
here is a linear elastic disk coated by a circular elastic rod, assumed
axially inextensible and prestressed in tension or compression, in an
arrangement similar to that analysed in Gaibotti et al. (2024), so
that the treatment includes perfect and imperfect bonding (the latter
meaning unprescribed slip in the tangential direction) between rod and
disk. The elastic rod is modelled within the (exact) second-order theory
of curved beams. The inner disk is solved via Kolosov–Muskhelishvili
complex potentials, thus leading to a general solution, holding for
every possible external load increment. The latter is assumed to be
superimposed to a possible pre-existing radial loading, which generates
the prestress state in the coating. The analysis shows that the prestress
has a strong effect on the stiffness of the coating/disk system, which
increases (decreases) for tensile (compressive) axial internal force. The
decrease of stiffness at the increase of compressive axial force in the
annular rod leads to a perturbative determination of the buckling
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condition obtained in Gaibotti et al. (2024) via bifurcation analysis.
These findings are not surprising, but have previously been analytically
investigated only on geometries simpler than that considered here,
typically, representing a stack of layers (Bigoni et al., 2008; Cai and
Fu, 2000; Gei and Ogden, 2002), or for circular geometry, but perfect
bonding between disk and coating and only pressure loading (Ogden
et al., 1997). The set-up of the mechanical problem proposed here is
sufficiently simple to make an analytical solution viable, which would
be otherwise awkward. However, the circular geometry analysed here
represents a model problem for the determination of the influence of
prestress or residual stress on the behaviour of a curved elastic system.
The presented results may find applications in the mechanics of coated
fibres or stented arteries.

2. The coating and the disk

The equations governing the behaviour of the annular rod modelling
the coating and of the inner elastic disk are summarized below, the
interested reader can find a detailed derivation in Gaibotti et al. (2024,
2022).

2.1. Statics and kinematics of a circular rod

The circular rod of radius 𝑅 considered here is modelled as axially
inextensible and unshearable, involving a linear relationship between
moment and curvature, ruled by the bending stiffness 𝐵 (equal to
the product between Young’s modulus, 𝐸c, of the rod and the second
moment of inertia of its cross-section, 𝐽 ). The elastic disk is made up
of a linear isotropic elastic material deformed in plane strain or plane
stress, characterized by the Kolosov constant

𝜅d = 3 − 4𝜈d for plane strain, 𝜅d = 3 − 𝜈d

1 + 𝜈d for plane stress, (1)

where the superscript ‘d’ stands for ‘disk’, having Poisson’s ratio equal
to 𝜈d.

In the plane spanned by the two orthogonal unit vectors 𝐞1 and 𝐞2,
he elastic rod, circular in its undeformed configuration, is assumed for
he moment to undergo a large deformation. The obtained nonlinear
ehaviour will be reduced later to the linearized incremental response,
eeded to account for the presence of prestress. The rod is parametrized
y the arc length 𝑠, singling out the unit tangent vector 𝐭0, the principal
nit normal 𝐧0, and the curvature 𝜅0 at every point 𝐱0 of the reference
onfiguration, together with the unit vector 𝐦0 = 𝐭0 × 𝐞3, where
3 = 𝐞1 × 𝐞2 is the out-of-plane unit vector. In polar coordinates, the
isplacement 𝐮 and its derivative with respect to 𝑠 can be defined as

= 𝑢𝑟𝐦0 + 𝑢𝜃 𝐭0,
𝜕𝐮
𝜕𝑠

=
(

𝜕𝑢𝜃
𝜕𝑠

+
𝑢𝑟
𝑅

)

𝐭0 +
(

𝜕𝑢𝑟
𝜕𝑠

−
𝑢𝜃
𝑅

)

𝐦0, (2)

so that, in the deformed configuration of the rod, the above-defined
kinematic descriptors become

𝐭 = 𝐭0 +
(

𝜕𝑢𝑟
𝜕𝑠

−
𝑢𝜃
𝑅

)

𝐦0, 𝜅 𝐧 =
(

1
𝑅
𝜕𝑢𝑟
𝜕𝑠

−
𝑢𝜃
𝑅

)

𝐭0 −
1
𝑅
𝐦0,

=
(

𝑢𝜃
𝑅

−
𝜕𝑢𝑟
𝜕𝑠

)

𝐭0 +𝐦0,
𝜕𝐦
𝜕𝑠

= 𝐭0 +
(

𝑢𝜃
𝑅

−
𝜕𝑢𝑟
𝜕𝑠

)

𝐦0,

(3)

here 𝑑𝑠 = 𝑅𝑑𝜃, being 𝜃 the circumferential angle measured positively
n a counter-clockwise direction, as depicted in Fig. 1.

.1.1. Incremental equilibrium of the coating for three different radial loads
As illustrated in Fig. 1, the coating is modelled as a circular rod,

hich is subjected in its undeformed configuration to a uniform load
, acting radially and so producing only a uniform axial prestress, 𝑁0,
ithout shear force 𝑇0 and bending moment 𝑀0,
2

0 = −𝛱 𝑅, 𝑇0 =𝑀0 = 0, (4)
here 𝛱 is positive when directed towards the centre of the rod, in
hich case 𝑁0 is negative, i.e. compressive. From the circular reference

onfiguration, superimposed incremental deformations are analysed as
nduced by the application of an external incremental load �̇�𝛽 , to be
etailed below. Assuming the inextensibility of the rod, the incremental
inematics is governed by

𝜕5�̇�𝑟
𝜕𝜃5

+
(

2 + 𝛱𝑅3

𝐵

)

𝜕3�̇�𝑟
𝜕𝜃3

+
(

1 + 2𝛱𝑅
3

𝐵

)

𝜕�̇�𝑟
𝜕𝜃

−𝛱𝑅
3

𝐵
�̇�𝜃+S = 0, �̇�𝑟+

𝜕�̇�𝜃
𝜕𝜃

= 0,

(5)

where a superimposed dot denotes an incremental quantity and the
external load is specified through

S = −𝑅
4

𝐵

(

𝜕�̇�
𝜕𝜃

⋅𝐦0 + 2�̇� ⋅ 𝐭0
)

, (6)

unction of the incremental load �̇� applied to the rod. The latter is
ot only due to �̇�𝛽 , but also contains components due to both the
ncremental interaction with the disk (which produces incremental
raction when perturbed) and how the specific type of radial load
𝛱 ‘reacts’ to incremental deformation. In particular, the annular rod
enclosing the elastic disk is subject to a uniform radial load 𝛱 , selected
between different types, which may be generated by the environment
external to the disk/coating system or may be internally generated as a
traction exchange between coating and disk, consequent to a shrink-fit
or thermal operation. In particular, the radial force distribution 𝛱 may
be as follows.

• Applied by the external environment on the outer surface of the
coating. This 𝛱 can be of three different natures: (i.) hydrostatic
pressure, (ii.) centrally directed (towards the initial centre of the
disk), and (iii.) dead.

• Internally generated through traction exchange between coating
and disk as induced by a preliminary shrink-fit process or dif-
ferential variation of temperature between disk and coating. The
account of this process enables the determination of the specific
value of 𝛱 to be used for incremental analysis where it is treated
as a dead load, type (iii.) above.

The above loads define the reference configuration for the coated
disk system, so that the rod is uniformly prestressed by an axial force,
which can be either tensile or compressive, while the inner disk is either
unloaded or slightly loaded through a uniform mean stress. This refer-
ence configuration is perturbed through the application of an additional
incremental external load (preserving the overall equilibrium of the
coating/disk system) �̇�𝛽 , with tangential and radial components �̇�𝛽 and
�̇�𝛽 (Fig. 1),

�̇�𝛽 = �̇�𝛽 𝐭0 − �̇�𝛽𝐦0. (7)

The perturbation induces an incremental change in the reference
configuration, so that the external load 𝛱 and the internal tractions at
the disk/coating contact also produce increments of loads for the rod.
Summing up all these contributions, the incremental load for the rod,
�̇�, results as the sum

�̇� = �̇�𝛱 + �̇�𝛽 + �̇�𝜎 , (8)

where, introducing ℳ to rule the shear transmission properties at the
interface (ℳ = 1 for perfect bonding between disk and coating or
ℳ = 0 for slip contact),

�̇�𝜎 = −𝑏
(

�̇�𝑟𝑟𝐦0 +ℳ�̇�𝑟𝜃𝐭0
)

𝑟=𝑅 , (9)

is the incremental traction exchanged between disk and coating, where
𝑏 is the out-of-plane thickness of the coating and �̇�𝑟𝑟 and �̇�𝑟𝜃 are the
incremental stress components on the boundary of the disk. The term
�̇�𝛱 in Eq. (8) describes the behaviour of the radial load during the
increment, which may vary according to the specific dependence postu-

lated for the force on the deformation. The following three incremental
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𝐪

Fig. 1. Left: The elastic disk coated with a circular elastic rod and subject to an external (uniform and radial) load, 𝛱 , to which an incremental load, �̇�𝛽 , is superimposed. Right:
stress components transmitted between coating and disk. The incremental load has tangential and radial components �̇�𝛽 and �̇�𝛽 load, respectively, see Eq. (7)1. The radial external
load 𝛱 can assume three different forms: (i.) hydrostatic pressure, (ii.) centrally directed, and (iii.) dead. All three loads 𝛱 may generate the same axial prestress 𝑁0 in the
circular rod, the difference between them only appears in the increment.
loadings are included in the formulation, each defining the term �̇�𝛱 as

̇ 𝛱 = 𝛱 ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝜕�̇�𝑟
𝜕𝑠

−
�̇�𝜃
𝑅

)

𝐭0 when 𝛱 is a hydrostatic pressure (i.)

−
�̇�𝜃
𝑅

𝐭0 when 𝛱 is a centrally directed load (ii.)
𝟎 when 𝛱 is a dead load (iii.)

(10)

and hence, the term S in Eq. (6) becomes

S𝛱 = 𝛱𝑅3

𝐵
×

⎧

⎪

⎨

⎪

⎩

−
𝜕�̇�𝑟
𝜕𝜃

+ �̇�𝜃 when 𝛱 is a hydrostatic pressure (i.)
�̇�𝜃 when 𝛱 is a centrally directed load (ii.)
0 when 𝛱 is a dead load (iii.).

(11)

The hydrostatic pressure is a well-known type of load, which often
can simply be realized, while a centrally directed load, passing through
a fixed point (the centre of the circular ring, in the present case),
requires a rather complicated realization, for instance, through inex-
tensible cables. The most complicated loading condition for a circular
geometry is the simpler for a rectilinear rod, namely, the dead loading.
This can hardly be realized in a circular geometry, except when, instead
of an external load, the prestress 𝑁0 in the rod is generated through
a thermal variation (in the presence of a mismatch in the thermal
expansion coefficients of disk and rod) or a ‘shrink-fit’ forcing of
the coating on the disk. In this case, a residual stress, rather than a
prestress, is generated, producing a radial pressure 𝛱 on the coating,
but the equations governing the problem become the same as the dead
load, so that �̇� = 0.

2.2. The disk coated with the prestressed rod

2.2.1. Incremental applied load on the disk/coating system
Concerning the problem sketched in Fig. 1, the disk is characterized

by a shear modulus 𝜇d, Lamé constant 𝜆d, Young’s modulus 𝐸d, Pois-
son’s ratio 𝜈d and it is coated along its boundary 𝐿 by the circular rod
introduced in the previous section.

In a polar coordinates system (𝐞𝑟, 𝐞𝜃), the incremental displacement
of a point of the disk can be represented as

�̇�d = �̇�d
𝑟 𝐞𝑟 + �̇�

d
𝜃 𝐞𝜃 , (12)

where 𝑢d
𝑟 and 𝑢d

𝜃 are radial and tangential components.
Two initial stress configurations will be considered for the disk/

coating system, before an additional incremental load, �̇�𝛽 in Fig. 1, is
applied on its boundary. These are:
3

1. The radial load 𝛱 is acting on the external surface of the coating
and, as a consequence, a state of prestress is produced (in terms
of the internal force 𝑁0) in the coating, but inside of the disk the
material remains unstressed, because the coating is modelled as
an axially-inextensible rod, carrying 𝑁0 without deformation.

2. A uniform radial load is not applied on the external, but on the
internal surface of the coating, where a radial force distribution
𝛱 exists, acting on both coating and disk with an opposed sign,
as a consequence of a previous ‘shrink/fit’ or a thermal mismatch
operation on the disk/coating system. This operation is assumed
to generate a strong axial force 𝑁0 in the coating, but to leave
only a weak state of stress inside of the disk (that will be simply
summed to further incremental stress).

In the two above cases (1)-(2), the stress in the elastic disk is either
null or assumed small before the incremental deformation occurs. In
this circumstance, the equations of finite elasticity reduce to the linear
theory, so that the incremental response of the disk is governed by
Hooke’s law

�̇� = 𝜆d(tr 𝐃) 𝐈 + 2𝜇d 𝐃, (13)

where 𝐃 = (∇�̇� −∇�̇�𝑇 )∕2 is the Eulerian strain incremental tensor, and
the increments in the first Piola–Kirchhoff and Cauchy stresses coincide,
�̇� = �̇�. Note that in the above case (2) the incremental solution has to
be summed to the state of prestress in the disk, while in both cases the
incremental solution is superimposed on the prestress in the annular
coating.

In summary, the elastic disk is subject to incremental tractions,
transmitted from its interaction with the coating. An incremental load,
�̇�𝛽 in Fig. 1, is applied to the latter. This load is summed to a previously-
applied and uniformly-distributed radial load, 𝛱 in Fig. 1, which may
be induced by an either external or internal agent to the system. When
applied from the external environment, the radial force distribution 𝛱
does not produce any deformation in the disk and in the coating, due to
the assumption of inextensibility of the latter, where an axial prestress,
𝑁0 in Fig. 1 is only generated. Alternatively, the state of prestress is
produced by some shrink-fit operation, generating an internal radial
load𝛱 , which induces a prestress in the coating and is assumed to leave
the elastic disk only weakly prestressed. In all cases, the effects of the
prestress are implemented in the rod forming the coating, which obeys
the linearized equations governing prestressed circular rods, while the
elastic core inside the coating reacts linearly without a direct effect of
prestress. The elastic core may be either fully connected to the coating
or only radially bonded, to realize therefore a ‘slip contact’.

Implementing the incremental load (8) in Eq. (5) leads to the equa-

tions governing the incremental kinematics of the coating in contact
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with the disk
𝜕5�̇�c

𝑟

𝜕𝜃5
+
(

2 + 𝛱𝑅3

𝐵

) 𝜕3�̇�c
𝑟

𝜕𝜃3
+
(

1 + 2𝛱𝑅
3

𝐵

) 𝜕�̇�c
𝑟

𝜕𝜃

− 𝛱𝑅3

𝐵
�̇�c
𝜃 +S𝛱 +S𝜎 +S𝛽 = 0,

�̇�c
𝑟
𝑅

+
𝜕�̇�c
𝜃

𝜕𝑠
= 0,

(14)

where the superscript ‘c’ stands for ‘coating’ and

Sj = −𝑅
4

𝐵

(

𝜕�̇�j

𝜕𝜃
⋅𝐦0 + 2�̇�j ⋅ 𝐭0

)

, j = 𝛱, 𝜎, 𝛽. (15)

The derivatives involved in Eq. (15) assume the forms
𝜕�̇�𝜎

𝜕𝑠
= −

(

ℳ
𝜕�̇�𝑟𝜃
𝜕𝑠

+ 1
𝑅
�̇�𝑟𝑟

)

𝑟=𝑅
𝐭0 +

(

ℳ
𝑅
�̇�𝑟𝜃 −

𝜕�̇�𝑟𝑟
𝜕𝑠

)

𝑟=𝑅
𝐦0,

𝜕�̇�𝛽

𝜕𝑠
=
(

𝜕�̇�𝛽

𝜕𝑠
−
�̇�𝛽

𝑅

)

𝐭0 −
(

𝜕�̇�𝛽

𝜕𝑠
+
�̇�𝛽

𝑅

)

𝐦0,
(16)

while the terms S𝜎 and S𝛽 in Eq. (15) become

S𝜎 = 𝑅4𝑏
𝐵

(

𝑅
𝜕�̇�𝑟𝑟
𝜕𝑠

+ℳ�̇�𝑟𝜃

)

𝑟=𝑅
, S𝛽 = −𝑅

4

𝐵

(

−
𝜕�̇�𝛽

𝜕𝑠
+ �̇�𝛽

)

. (17)

When the coating is either perfectly bonded to the disk or radially
connected but tangentially disconnected, the following boundary condi-
tions (displacement continuity in the former case, partial continuity and
vanishing of shear stress in the latter) have to be imposed, respectively,

̇ c𝑟 = �̇�d
𝑟
|

|

|

𝑟=𝑅, and �̇�c
𝜃 = �̇�d

𝜃
|

|

|

𝑟=𝑅
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

perfect bonding

or �̇�𝑟𝜃
|

|

|

𝑟=𝑅 = 0
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
slip contact

. (18)

Moreover, the governing Eq. (14)1 can be rewritten as

𝜕5�̇�c
𝑟

𝜕𝜃5
+2

𝜕3�̇�c
𝑟

𝜕𝜃3
+
𝜕�̇�c
𝑟

𝜕𝜃
+𝛱𝑅

3

𝐵

(

𝜕3�̇�c
𝑟

𝜕𝜃3
+ 2

𝜕�̇�c
𝑟

𝜕𝜃
− �̇�c

𝜃

)

+S𝛱+S𝜎+S𝛽 = 0, (19)

hich is valid for all load types listed in Eq. (11) and for all the inter-
ace conditions specified with Eqs. (18), except for the combination of
ead load and slip interface, when S𝛱 = 0 in Eq. (14) and ℳ = 0
n Eq. (17)1. In the latter case, the following equation governs the
roblem

𝜕6�̇�c
𝑟

𝜕𝜃6
+
(

2 + 𝛱𝑅3

𝐵

) 𝜕4�̇�c
𝑟

𝜕𝜃4
+
(

1 + 2𝛱𝑅
3

𝐵

) 𝜕2�̇�c
𝑟

𝜕𝜃2

+ 𝛱𝑅3

𝐵
�̇�c
𝑟 +

𝑅5

𝐵

(

𝑏
𝑅
𝜕2�̇�𝑟𝑟
𝜕𝜃2

+
𝜕2�̇�𝛽

𝜕𝜃2
−
𝜕�̇�𝛽

𝜕𝜃

)

= 0. (20)

.2.2. Complex variable formulation for the disk
In a complex variable formulation, the disk is a simple connected

ircular region, bounded by a non-intersecting smooth curve 𝐿, so that
very point can be represented through the complex variable 𝑧 = 𝑥1 +
𝑖𝑥2, where 𝑥1 and 𝑥2 are the coordinates of the point and 𝑖 =

√

−1 is the
imaginary unit. Moreover, denoting with 𝑟 the distance from the point 𝑧
to the origin 𝑧𝑐 = 0 and with 𝜃 the angle (positive when anticlockwise)
between 𝑥1 and the radius 𝑟, in a polar coordinate system (𝑟, 𝜃) it is
𝑧 = 𝑟𝑒𝑖𝜃 . Following Mogilevskaya et al. (2018), the following notation
is introduced

𝑔(𝑧) = 𝑅
𝑧

= 𝑅
(𝑥1 + 𝑖𝑥2)

, 𝑔′(𝑧) = − 1
𝑅
𝑔2(𝑧), 𝑔′′(𝑧) = 2

𝑅2
𝑔3(𝑧),

𝑔(𝑧) = 𝑅2

𝑟2
𝑔−1(𝑧), 𝑟 =

√

𝑥21 + 𝑥
2
2.

(21)

here a prime denotes the derivative with respect to 𝑧 and a super-
mposed bar the complex conjugate. By setting 𝑟 = 𝑅 in Eqs. (21), the
ollowing relations for points 𝜏 = 𝑅𝑒𝑖𝜃 on the boundary of the disk can
e derived

(𝜏) = 𝑅
𝜏
, 𝑔(𝜏) = 𝑅

𝜏
= 𝑔−1(𝜏), 𝑔′(𝜏) = − 1

𝑅
𝑔2(𝜏). (22)

The elastic displacement and stress fields can be determined every-
where in the disk via Kolosov–Muskhelishvili complex potentials 𝜑(𝑧)
4

and 𝜓(𝑧) as (Muskhelishvili, 1959)

⎧

⎪

⎨

⎪

⎩

2𝜇d𝑢d(𝑧) = 𝜅d𝜑(𝑧) − 𝑧𝜑′(𝑧) − 𝜓(𝑧),

𝜎d
11 + 𝜎

d
22 = 4 Re

(

𝜑′(𝑧)
)

,

𝜎d
22 − 𝜎

d
11 + 2𝑖𝜎d

12 = 2
[

𝑧𝜑′′(𝑧) + 𝜓 ′(𝑧)
]

,

(23)

here the prime indicates derivation with respect to the variable 𝑧
hile Re and Im denote real and the imaginary parts, respectively. The

omponents of the incremental Eulerian strain tensor 𝐃 are linked to
he complex potentials through

𝐷d
11 +𝐷

d
22 = 21 − 2𝜈d

𝜇d Re
(

𝜑′ (𝑧)
)

,

𝐷d
22 −𝐷

d
11 + 2𝑖𝐷d

12 =
1
𝜇d

[

𝑧𝜑′′ (𝑧) + 𝜓 ′ (𝑧)
]

.
(24)

At every point 𝜏 = 𝑅𝑒𝑖𝜃 on the boundary of the disk the following
omplex Fourier representation for the displacement is introduced

d
1 (𝜏) + 𝑖 𝑢

d
2 (𝜏) =

∞
∑

𝑛=1
𝐴−𝑛 𝑔

𝑛(𝜏) +
∞
∑

𝑛=0
𝐴𝑛 𝑔

−𝑛(𝜏), (25)

here 𝑢d
1 (𝜏) and 𝑢d

2 (𝜏) are displacement components and 𝐴±𝑛 are com-
lex coefficients for the moment unknown. The radial and tangential
omponents of the displacement are represented as

d
𝑟 (𝜏) =

1
2

[

𝑢d (𝜏) 𝑔 (𝜏) + 𝑢d(𝜏) 𝑔−1(𝜏)
]

, 𝑢d
𝜃 (𝜏) =

1
2𝑖

[

𝑢d(𝜏) 𝑔(𝜏) − 𝑢d(𝜏) 𝑔−1(𝜏)
]

.

(26)

qs. (25) and (26) lead to

2𝑢d
𝑟 (𝜏)

2𝑖 𝑢d
𝜃 (𝜏)

}

=
∞
∑

𝑛=1
𝐴−𝑛 𝑔

𝑛+1(𝜏) +
∞
∑

𝑛=0
𝐴𝑛 𝑔

−(𝑛−1)(𝜏)

±
∞
∑

𝑛=1
𝐴−𝑛 𝑔

−(𝑛+1)(𝜏) ±
∞
∑

𝑛=0
𝐴𝑛 𝑔

𝑛−1(𝜏). (27)

The complex combination of the stresses acting at a point 𝜏 ∈ 𝐿 of
the disk can be introduced

𝜎d
𝑟𝑟(𝜏) + 𝑖 𝜎

d
𝑟𝜃(𝜏) =

∞
∑

𝑛=1
𝐵−𝑛 𝑔

𝑛(𝜏) +
∞
∑

𝑛=0
𝐵𝑛 𝑔

−𝑛(𝜏), (28)

here the complex coefficients 𝐴±𝑛 and 𝐵±𝑛 are interrelated as
Zemlyanova and Mogilevskaya, 2018)

−1 = 0, 𝐵0 =
4𝜇d

(

𝜅d − 1
)

𝑅
Re

(

𝐴1
)

,

𝐵−𝑛 =
2𝜇d

𝑅
(𝑛 − 1)𝐴1−𝑛, for 𝑛 ≥ 2, 𝐵𝑛 =

2𝜇d

𝜅d𝑅
(𝑛 + 1)𝐴𝑛+1, for 𝑛 ≥ 1.

(29)

he applied external load is represented by the following complex
eries

𝛽 (𝜏) + 𝑖 𝑝𝛽 (𝜏) =
∞
∑

𝑛=1
𝐷−𝑛 𝑔

𝑛(𝜏) +
∞
∑

𝑛=0
𝐷𝑛 𝑔

−𝑛(𝜏), (30)

here 𝐷±𝑛 are complex coefficients that are known once the shape of
he external load 𝐪𝛽 is prescribed.

For a circular elastic disk, the expressions for the complex potentials
(𝑧) and 𝜓(𝑧) appearing in Eqs. (23) assume the form (Mogilevskaya
t al., 2008)

(𝑧) =
2𝜇d

𝜅d − 1
Re

(

𝐴1
)

𝑔−1(𝑧) +
2𝜇d

𝜅𝑑

∞
∑

𝑛=1
𝐴𝑛+1 𝑔

−(𝑛+1)(𝑧),

(𝑧) = −
2𝜇d

𝜅d − 1
Re

(

𝐴1
) 𝑧𝑐
𝑅

−
2𝜇d

𝜅d

[

𝑧𝑐
𝑅

+ 𝑔(𝑧)
] ∞
∑

𝑛=1
(𝑛 + 1)𝐴𝑛+1 𝑔−𝑛(𝑧)

− 2𝜇d
∞
∑

𝑛=2
𝐴1−𝑛 𝑔

−(𝑛−1)(𝑧),

(31)



International Journal of Solids and Structures 295 (2024) 112796M. Gaibotti et al.

f
i
a
d
b

3

3

c
d
p

s
M

S

−

i

T
0
I
(
s
e
m
f

and hence, the elastic fields on the boundary and within the disk are
known once coefficients 𝐴±𝑛 are found as functions of the known coef-
icients 𝐷±𝑛. For brevity, only the case of perfect bonding condition at the
nterface will be presented in the following, where conditions (18)1−2
re enforced. The other case of slip interface will not be reported, but its
erivation follows a procedure analogous to that developed for perfect
onding.

. Analytic solution for the disk with prestressed coating

.1. Complex Fourier series form of the governing equations

The complex counterpart of Eq. (5)2, representing the inextensibility
onstraint, can be determined using the series representation for the
isplacement, Eq. (27), from which, collecting the terms with the same
ower of 𝑔±𝑛(𝜏), it follows (Gaibotti et al., 2022)

Re
(

𝐴1
)

= 0, 𝐴2 = 0, 𝐴𝑛+1 =
𝑛 − 1
𝑛 + 1

𝐴1−𝑛 for 𝑛 ≠ 0 and 𝑛 ≠ −1.

(32)

From Eqs. (11) and (17)1 for 𝑟 = 𝑅, adopting the Fourier series
representation introduced before, the terms S𝛱 and S𝜎 in Eq. (14)1
become (Gaibotti et al., 2024)

S𝛱 (𝜏) = 𝜉 𝛱𝑅
3

2𝑖 𝐵

{ ∞
∑

𝑛=1
(−𝑛)𝛼

[

𝐴−𝑛 𝑔
𝑛+1(𝜏) − 𝐴−𝑛 𝑔

−(𝑛+1)(𝜏)
]

+
∞
∑

𝑛=0
𝑛𝛼

[

𝐴𝑛 𝑔
−(𝑛−1)(𝜏) − 𝐴𝑛 𝑔𝑛−1(𝜏)

]

− (𝛼 − 𝜉)
[

𝐴0 𝑔(𝜏) − 𝐴0 𝑔
−1(𝜏)

]}

,

S𝜎 (𝜏) = 𝑅4𝑏
2𝑖 𝐵

{ ∞
∑

𝑛=1
(𝑛 +ℳ)

[

𝐵−𝑛 𝑔
𝑛(𝜏) − 𝐵−𝑛 𝑔

−𝑛(𝜏)
]

−
∞
∑

𝑛=0
(𝑛 −ℳ)

[

𝐵𝑛 𝑔
−𝑛(𝜏) − 𝐵𝑛 𝑔𝑛(𝜏)

]

}

,

(33)

where (i.) 𝜉 = 𝛼 = 1 for hydrostatic pressure, (ii.) 𝜉 = 1, 𝛼 = 0 for
centrally directed load, and (iii.) 𝜉 = 0 for dead load. Isolating the real
and the imaginary parts in Eq. (30) yields

2 �̇�𝛽 (𝜏)

2𝑖 �̇�𝛽 (𝜏)

}

=
∞
∑

𝑛=1
𝐷−𝑛 𝑔

𝑛(𝜏) +
∞
∑

𝑛=0
𝐷𝑛 𝑔

−𝑛(𝜏) ±
∞
∑

𝑛=1
𝐷−𝑛 𝑔

−𝑛(𝜏) ±
∞
∑

𝑛=0
𝐷𝑛 𝑔

𝑛(𝜏),

(34)

o that expression (96)2, 𝑑𝜏∕𝑑𝑠 = 𝑖 𝑔−1(𝜏) in Zemlyanova and
ogilevskaya (2018), provides for the term S𝛽 in Eq. (14)1

𝛽 (𝜏) = 𝑅4

𝐵

( ∞
∑

𝑛=1
(𝑛 − 1)𝐷−𝑛 𝑔

𝑛(𝜏) −
∞
∑

𝑛=0
(𝑛 + 1)𝐷𝑛 𝑔

−𝑛(𝜏)

−
∞
∑

𝑛=1
(𝑛 − 1)𝐷−𝑛 𝑔

−𝑛(𝜏) +
∞
∑

𝑛=0
(𝑛 + 1)𝐷𝑛 𝑔

𝑛(𝜏)

)

.

(35)

From Gaibotti et al. (2024) the following terms appearing in
Eq. (19) are identified as

𝜕5�̇�𝑟
𝜕𝜃5

+ 2
𝜕3�̇�𝑟
𝜕𝜃3

+
𝜕�̇�𝑟
𝜕𝜃

= 1
2𝑖

{ ∞
∑

𝑛=1
𝑛2 (𝑛 + 1) (𝑛 + 2)2

[

𝐴−𝑛 𝑔
𝑛+1 − 𝐴−𝑛 𝑔

−(𝑛+1)
]

−
∞
∑

𝑛=3
𝑛2 (𝑛 − 1) (𝑛 − 2)2

[

𝐴𝑛 𝑔
−(𝑛−1) − 𝐴𝑛 𝑔𝑛−1

]

}

,

𝜕3�̇�𝑟
𝜕𝜃3

+ 2
𝜕�̇�𝑟
𝜕𝜃

− �̇�𝜃 =
1
2𝑖

{ ∞
∑

𝑛=1
𝑛
(

𝑛2 − 3𝑛 + 1
)

[

𝐴𝑛 𝑔
−(𝑛−1)(𝜏) − 𝐴𝑛 𝑔𝑛−1

]

−
∞
∑

𝑛=1
𝑛
(

𝑛2 + 3𝑛 + 1
)

[

𝐴−𝑛 𝑔
𝑛+1 − 𝐴−𝑛 𝑔

−(𝑛+1)
]

}

,

(36)
5

so that a substitution of expressions (36), (33) and (35) leads to the
following form of Eq. (19)

∞
∑

𝑛=1
𝑛2 (𝑛 + 1) (𝑛 + 2)2

[

𝐴−𝑛 𝑔
𝑛+1(𝜏) − 𝐴−𝑛 𝑔

−(𝑛+1)(𝜏)
]

∞
∑

𝑛=3
𝑛2 (𝑛 − 1) (𝑛 − 2)2

[

𝐴𝑛 𝑔
−(𝑛−1)(𝜏) − 𝐴𝑛 𝑔𝑛−1(𝜏)

]

+ 𝛱𝑅3

𝐵

{ ∞
∑

𝑛=1
𝑛
(

𝑛2 − 3𝑛 + 1
)

[

𝐴𝑛 𝑔
−(𝑛−1)(𝜏) − 𝐴𝑛 𝑔𝑛−1(𝜏)

]

−
∞
∑

𝑛=1
𝑛
(

𝑛2 + 3𝑛 + 1
)

[

𝐴−𝑛 𝑔
𝑛+1(𝜏) − 𝐴−𝑛 𝑔

−(𝑛+1)(𝜏)
]

}

+ 𝑏𝑅
4

𝐵

{ ∞
∑

𝑛=1
(𝑛 +ℳ)

[

𝐵−𝑛 𝑔
𝑛(𝜏) − 𝐵−𝑛 𝑔

−𝑛(𝜏)
]

−
∞
∑

𝑛=0
(𝑛 −ℳ)

[

𝐵𝑛 𝑔
−𝑛(𝜏) − 𝐵𝑛 𝑔𝑛(𝜏)

]

}

+𝑅
4

𝐵

[ ∞
∑

𝑛=1
(𝑛 − 1)𝐷−𝑛 𝑔

𝑛(𝜏) −
∞
∑

𝑛=0
(𝑛 + 1)𝐷𝑛 𝑔

−𝑛(𝜏) −
∞
∑

𝑛=1
(𝑛 − 1)𝐷−𝑛 𝑔

−𝑛(𝜏)

+
∞
∑

𝑛=0
(𝑛 + 1)𝐷𝑛 𝑔

𝑛(𝜏)

]

+S𝛱 = 0. (37)

Using Eqs. (29) and collecting terms with the same power in 𝑔±𝑛(𝜏)
n Eq. (37), the following cases can be distinguished:

• For 𝑛 = 0 and 𝑛 = 1

(𝜉 − 1)𝛱 Im(𝐴1) −𝑅 Im(𝐷0) = 0, 𝛱 𝜉(𝛼 − 𝜉)𝐴0 + 2𝑅𝐷1 = 0, (38)

• For 𝑛 ≥ 2

𝐴1−𝑛 = −
𝑅4𝜅d

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

2(𝑛 − 1)
[

𝐵𝜅d𝑛2(𝑛2 − 1) −𝛱𝑅3𝜅d
(

𝑛2 − 1 − 𝛶 (𝑛, 𝛼, 𝜉)
)

+ 𝑏𝜇d𝑅3𝛹 (𝑛,ℳ)
] ,

(39)

where

𝛶 (𝑛, 𝛼, 𝜉) =
𝜉
2
[

(−1)𝛼(𝑛 − 1)𝛼−1 − (𝑛 + 1)𝛼−1
]

, 𝛹 (𝑛,ℳ) = (𝑛+ℳ)𝜅d+𝑛−ℳ.

(40)

he denominator in Eq. (39), for a radial compressive load, 𝛱 >
, may vanish and the corresponding elastic fields become singular.
n particular, for a given set of material and geometric parameters
𝐸c, 𝐸d, 𝜅d, 𝑅, 𝑏, 𝐽 ) a limit value 𝛱cr exists for which the incremental
olution for the disk/coating system bifurcates. After this limit value is
xceeded, any solution for the coated disk is unstable and thus not any-
ore valid. The value of the dimensionless bifurcation radial load, as a

unction of the wave number 𝑛, was found in Gaibotti et al. (2024) as

𝛱(𝑛)𝑅3

𝐵
=
𝑛2

(

𝑛2 − 1
)

+
𝜇d𝑏𝑅3

𝜅d𝐵
𝛹 (𝑛,ℳ)

(

𝑛2 − 1
)

− 𝛶 (𝑛, 𝛼, 𝜉)
, 𝑛 ≥ 2, (41)

from which the critical value for the radial load 𝛱cr corresponds to the
integer number 𝑛 minimizing 𝛱(𝑛).
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3.2. Elastic fields within the prestressed coated disk and internal forces in
the coating

Using Eqs. (32) and (39) for the coefficients 𝐴±𝑛, the complex
otentials and their derivatives involved in Eqs. (31) assume the form

(𝑧) = 𝜇d𝑅4
∞
∑

𝑛=2

1
𝛤 (𝑛 + 1)

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

𝑔−(𝑛+1)(𝑧),

𝜑′(𝑧) = 𝜇d𝑅3
∞
∑

𝑛=2

1
𝛤

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

𝑔−𝑛(𝑧),

′′(𝑧) = 𝜇d𝑅2
∞
∑

𝑛=2

1
𝛤
𝑛
[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

𝑔−(𝑛−1)(𝑧),

𝜓(𝑧) = −𝜇d𝑅4
∞
∑

𝑛=2

1
𝛤 (𝑛 − 1)

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

× (𝑛 − 1 + 𝜅d) 𝑔−(𝑛−1)(𝑧),

′(𝑧) = −𝜇d𝑅3
∞
∑

𝑛=2

1
𝛤

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

(𝑛 − 1 + 𝜅d) 𝑔−(𝑛−2)(𝑧),

(42)

here

= 𝐵𝜅d𝑛2(𝑛2 − 1) −𝛱𝑅3𝜅d(𝑛2 − 1 − 𝛶 (𝑛, 𝛼, 𝜉)) + 𝑏𝜇d𝑅3𝛹 (𝑛,ℳ). (43)

The elastic fields at every point 𝑧 within the disk can be evaluated
y substituting Eqs. (42) into the Kolosov–Muskhelishvili formulae
23). This leads to

d(𝑧) = 𝑅4

2

∞
∑

𝑛=2

1
𝛤

⎧

⎪

⎨

⎪

⎩

−
𝜅d

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

𝑔−(𝑛+1)(𝑧)

(𝑛 + 1)

+

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

[

𝑟2(𝑛 − 1) − 𝑅2(𝑛 − 1 + 𝜅d)
]

𝑅−2𝑛 𝑔𝑛−1(𝑧)

(𝑛 − 1)𝑟−(2𝑛−2)

⎫

⎪

⎬

⎪

⎭

,

𝜎d
11(𝑧) + 𝜎

d
22(𝑧)

4𝜇𝑅3
= Re

[ 1
𝛤

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

𝑔−𝑛(𝑧)
]

,

𝜎d
11(𝑧) − 𝜎

d
22(𝑧) + 𝑖𝜎

d
12(𝑧)

2𝜇𝑅3
= −

∞
∑

𝑛=2

1
𝛤

[

(𝑛 − 1)𝐷−𝑛 + (𝑛 + 1)𝐷𝑛

]

×
[

𝑟2𝑛 − 𝑅2(𝑛 − 1 + 𝜅d)
]

𝑔−(𝑛−2)(𝑧).

(44)

Internal forces in the prestressed coating loaded by the incremental
applied load can be evaluated using Eqs. (3.14) derived and reported
in Gaibotti et al. (2024), which are

�̇� = −𝐵
(

𝜕2�̇�𝑟
𝜕𝑠2

+
�̇�𝑟
𝑅2

)

,

̇ = −𝐵
(

1
𝑅2

𝜕�̇�𝑟
𝜕𝑠

+
𝜕3�̇�𝑟
𝜕𝑠3

)

−𝛱𝑅
(

𝜕�̇�𝑟
𝜕𝑠

−
�̇�𝜃
𝑅

)

,

̇ = −𝑅
[

𝐵
(

𝜕4�̇�𝑟
𝜕𝑠4

+ 1
𝑅2

𝜕2�̇�𝑟
𝜕𝑠2

)

+𝛱𝑅
(

𝜕2�̇�𝑟
𝜕𝑠2

+
�̇�𝑟
𝑅2

)

+ �̇�𝛽 + 𝑏�̇�𝑟𝑟

]

.

(45)

4. A case study: the coated disk subject to two opposite force
distributions

4.1. Model for the applied external load

Following Gaibotti et al. (2022), the theoretical framework devel-
oped in the preview sections is now particularized to the case of a
coated disk loaded by two opposite self-equilibrated force distributions
�̇�𝛽 , of incremental nature, applied along an arc length 𝑠 = 𝛾𝑅, where

is the angle centred along the upper and lower part of the vertical
iameter of the disk (see the inset in Fig. 4). From expression (8)1,
ssuming �̇�𝛽 = 0, the value of the complex coefficients 𝐷 involved
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±𝑛
Table 1
Coefficients 𝐴0 and Im(𝐴1) determined to exclude rigid body roto-translations of the
coated disk under applied load.

Hydrostatic pressure Centrally directed Dead
𝜉 = 𝛼 = 1 𝜉 = 1, 𝛼 = 0 𝜉 = 0

𝐴0 unrestricted − 2𝑅
𝛱
𝐷1 unrestricted

Im(𝐴1) unrestricted unrestricted −𝑅 Im(𝐷0)

in the complex Fourier representation of the applied incremental load,
Eq. (30), can be generated using the Eq. (68) derived and reported
in Gaibotti et al. (2022), which now becomes

∫

𝜋+𝛾
2

𝜋−𝛾
2

�̇�𝛽𝑒−𝑚𝑖𝜃 𝑑𝜃 + ∫

3𝜋+𝛾
2

3𝜋−𝛾
2

�̇�𝛽𝑒−𝑚𝑖𝜃 𝑑𝜃

= ∫

2𝜋

0

[ ∞
∑

𝑛=1
𝐷−𝑛 𝑒

−(𝑛+𝑚) 𝑖𝜃 +
∞
∑

𝑛=0
𝐷𝑛 𝑒

−(𝑛−𝑚) 𝑖𝜃

]

𝑑𝜃. (46)

For a fixed integer 𝑚 in Eq. (46) one non-vanishing coefficient is gen-
erated and its value can be computed by inverting the same equation,
which gives

𝐷𝑚 = 1
2𝜋

{

∫

𝜋+𝛾
2

𝜋−𝛾
2

�̇�𝛽𝑒−𝑚𝑖𝜃 𝑑𝜃 + ∫

3𝜋+𝛾
2

3𝜋−𝛾
2

�̇�𝛽𝑒−𝑚𝑖𝜃 𝑑𝜃

}

. (47)

In the case that the applied incremental loading �̇�𝛽 is constant, the
above equation reduces to the explicit form

𝐷𝑚 = 𝑖
�̇�𝛽

2𝑚𝜋
(

1 + 𝑒𝑖𝑚𝜋
) (

1 − 𝑒𝑖𝑚𝛾
)

𝑒−𝑖
𝑚
2 (3𝜋+𝛾), 𝑚 ≠ 0,

𝐷0 = �̇�𝛽
𝛾
𝜋
.

(48)

.2. Fixing the rigid body roto-translations

Once the coefficients 𝐷±𝑛 are generated, the value of the complex
oefficients 𝐴±𝑛 can be derived from Eq. (39). However, the coefficient
0 and the imaginary part of 𝐴1 remain unknown as they rule rigid
ody roto-translations, so that their expressions can be computed,
ollowing the same procedure adopted and described in Mogilevskaya
t al. (2008).

When the prestress in the coating is generated by a radial loading of
he ‘central direction’ type (𝜉 = 1, 𝛼 = 0), a rigid rotation is a solution,
hile rigid translations are not. For dead radial load (𝜉 = 0), rigid

ranslations are solutions, but not rigid rotations, Singer and Babcock
1970). Finally, for hydrostatic pressure (𝜉 = 𝛼 = 1) rigid rotations
nd translations are always solutions. In these three cases of different
pplied radial loads, from Eqs. (38), requirements about the values of
0 and Im(𝐴1) are found and reported in Table 1.

When coefficients 𝐴0 and/or Im(𝐴1) are unrestricted, their expres-
ions are obtained by imposing displacements as derived and reported
n Gaibotti et al. (2022), so obtaining 𝐴0 = 0 and the following
xpression for the imaginary part of 𝐴1

Im(𝐴1) = −2 Im
( 1
𝑛 + 1

𝐴1−𝑛

)

. (49)

4.3. Results for the coated disk at different levels of prestress, subject to
opposite force distributions

All the three different types of radial loads considered in the present
article, Eq. (10), are investigated, to generate in the coating the same
level of prestress (in the figures these are labelled as ‘Hydrostatic’,
‘Centrally-directed’, and ‘Dead’). The prestress is assumed to be a
fraction of the critical load for bifurcation 𝛱cr, Eq. (41).

In particular, four values of prestress are analysed:

(i.) null, 𝛱 = 0;
(ii.) low, 𝛱∕𝛱 = 0.1;
cr
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Fig. 2. Incrementally deformed shape of the coating for two values of the ratio 𝐸d∕𝐸c = {0.15, 0.25}, upon application of the incremental load �̇�𝛽 = {𝜇d𝑏∕(150𝛾), 𝜇d𝑏∕(250𝛾)},
respectively, in the presence of a prestress of different intensity, 𝛱∕𝛱cr (0.1 green, 0.5 blue and 0.8 red line). Different types of radial loads are considered to produce the same
prestress: hydrostatic pressure, centrally directed and dead load. The brown line refers to the case of the coated disk without prestress.
Fig. 3. Incrementally deformed shape of the coating for two values of the ratio 𝐸d∕𝐸c = {0.15, 0.25}, upon application of the incremental load �̇�𝛽 = {𝜇d𝑏∕(150𝛾), 𝜇d𝑏∕(250𝛾)},
respectively, in the presence of a prestress 𝛱∕𝛱cr = 0.8. Different types of radial loads are considered to produce the same prestress: hydrostatic pressure, centrally directed and
dead load. Level sets of the displacements are reported internally to the disk.
(iii.) medium, 𝛱∕𝛱cr = 0.5;
(iv.) close to the critical load of the disk/coating system, 𝛱∕𝛱cr = 0.8.

Upon the application of any of the radial loads, the inner disk
remains unloaded, so that the response of the coating/disk system is
perturbed by applying an additional incremental load �̇�𝛽 uniformly
distributed on a small arc, assumed of 4◦ and approximated using the
first 100 terms in the series representation, Eq. (48).

The incremental solution can be expressed in a dimensionless form
as
𝐮
𝑅

and 𝝈
𝜇d ,

so that these quantities depend upon 3 nondimensional parameters
𝐵

𝜇d𝑏𝑅3
, 𝛱

𝜇d𝑏
, and 𝜅d.

The examples below are limited for brevity to the case of perfect
bonding between coating and disk and the Kolosov constant is fixed
as 𝜅d = 2. Moreover, rather than express the results as functions of the
remaining two of the above parameters, it was decided to introduce the
more intuitive ratio between Young’s moduli of the disk and coating,
𝐸d∕𝐸c, and to assume 2(1+𝜈d)𝐽∕(𝑏𝑅3) = 0.001. The results are reported
in Figs. 2–3.

The external deformed shape of the coated disk is reported in Figs. 2
and 3, for different values of prestress in the former case, at fixed
prestress 𝛱∕𝛱 = 0.8 in the latter, where the deformed inner circles
7

cr
are also reported (the colour is proportional to the intensity of the
field). In both cases two values of the ratio 𝐸d∕𝐸c are considered,
namely 𝐸d∕𝐸c equal 0.15 and 0.25.

Both figures show that the compressive prestress decreases the
stiffness of the system, which tends to vanish when the prestress in the
coating approaches the bifurcation 𝛱∕𝛱cr = 1. The reported examples
are all compared for the same fraction of prestress compared to the
critical value, so that the differences are due to the particular type of
radial load. The latter strongly affects the incremental deformation and
the shape of the incrementally deformed solid.

The incremental displacement at the centre of the coating (under
the resultant 𝐹 of the applied incremental load) is reported in Fig. 4
as a function of the prestress 𝛱∕𝛱cr, including also the tensile case
(negative values of 𝛱). Results are given for 𝐸d∕𝐸c = {0.15, 0.25}.

The figure shows that the first bifurcation load is obtained in a
perturbative way, so that the critical load corresponds to the asymptote
of the graphs. In particular, the critical bifurcation occurs at 𝑛 = 5
for 𝐸d∕𝐸c = 0.15 and 𝑛 = 6 for 𝐸d∕𝐸c = 0.25. The situation is
detailed in Fig. 5, referred only to the case of hydrostatic pressure
load. Here, at the increase of the prestress, the first bifurcation load
is approached for both values of 𝐸d∕𝐸c, but for 𝐸d∕𝐸c = 0.25 the
deformed mode approaches the bifurcation mode 𝑛 = 6, while in the
other case the bifurcation mode is not correctly approached and the
deformation remains symmetric, although 𝑛 = 5. However, in the latter
case, when the bifurcation prestress is surpassed, the stiffness of the
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Fig. 4. Incremental displacement (divided by 𝑅 and positive when towards the centre of the disk) of the point on the coating located under the resultant 𝐹 of the incremental
load �̇�𝛽 (distributed on an arch 𝛾 = 4◦) as a function of the prestress 𝛱∕𝛱cr, ranging from tensile (negative values) to compressive (positive values). The differently coloured curves
refer to different types of radial loads, all providing the same prestress ratio 𝛱∕𝛱cr in the coating. The asymptote of the curves denotes the critical load for bifurcation.
Fig. 5. Incrementally deformed configurations of the coated disk for different ratios of 𝛱∕𝛱cr (from null prestress on the left to near-buckling pre-stress on the right) and for
𝐸d∕𝐸c = 0.15 (upper part) and 𝐸d∕𝐸c = 0.25 (lower part). The cases reported correspond to a pre-stress in the coating generated by hydrostatic pressure and the blue (red) colour
highlights compressive (tensile) incremental tractions in the coating. Note that in the lower part, the bifurcation mode 𝑛 = 6 is approached, while in the upper part, the deformation
remains symmetric even if the bifurcation mode is odd, 𝑛 = 5.
system becomes negative, thus showing that the critical load has been
exceeded.

The level sets of the dimensionless von Mises stress inside the disk
generated by the application of the incremental load are depicted in
Fig. 6, for 𝐸d∕𝐸c = 0.25 and two values of prestress (compressive
𝛱∕𝛱cr = 0.5 and tensile 𝛱∕𝛱cr = −0.5). In the figure identical colours
correspond to the same level of von Mises stress in all quadrants and
for both figures on the right and the left. Results highlight the fact that
a coating subject to tensile prestress produces a shield to the inner core,
which is less stressed than in the case in which the prestress is absent.

5. Conclusions

States of prestress or residual stress in solids can originate from
different sources, such as thermal mismatch, shrink-fit operations, but
also external pre-loads, namely, loads already acting before any further
8

increment of load is superimposed. The mentioned sources play an
important role in the incremental behaviour of a solid, as shown
in the present article through the investigation of the response of
an elastic disk with prestressed coating, the latter modelled through
an elastic circular (unshearable and inextensible) rod. Based on the
main assumptions that the prestress state is negligible in the disk
but affects the coating and that the latter is axially inextensible, an
incremental solution, found analytically via complex potentials, has
been proposed when the prestressed coated disk is subjected to an
arbitrary incremental load distribution. The presented results show the
importance of several effects related to: (i.) the type of radial load
acting to generate the prestress before the incremental load is applied;
(ii.) the interfacial conditions between coating and bulk solid; (iii.)
the stiffening or weakening induced by prestress; (iv.) the possibility
of approaching bifurcation loads and modes through a perturbative
technique.
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Fig. 6. Level sets for dimensionless von Mises stress inside a coated disk, induced by the application of the incremental load �̇�𝛽 , superimposed to a radial load producing the
prestress in the coating. The prestress (compressive on the left and tensile on the right) in the coating is induced by different radial loadings. Results are compared to the case of
the coated disk without prestressed for 𝐸d∕𝐸c = 0.25. Note that the coating shields the stress inside the disk particularly when the prestress is tensile.
The use of stiff coatings is common in several man-made and
natural systems, where interfacial conditions, type of loading, and state
of prestress play an important role. The presented results may find
applications in biomechanics and in the field of deformable solids used
for mechanical actuation or load bearing.
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