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Semi-Supervised and Unsupervised
Deep Visual Learning: A Survey
Yanbei Chen, Massimiliano Mancini, Xiatian Zhu, and Zeynep Akata

Abstract—State-of-the-art deep learning models are often trained with a large amount of costly labeled training data. However,
requiring exhaustive manual annotations may degrade the model’s generalizability in the limited-label regime.Semi-supervised learning
and unsupervised learning offer promising paradigms to learn from an abundance of unlabeled visual data. Recent progress in these
paradigms has indicated the strong benefits of leveraging unlabeled data to improve model generalization and provide better model
initialization. In this survey, we review the recent advanced deep learning algorithms on semi-supervised learning (SSL) and
unsupervised learning (UL) for visual recognition from a unified perspective. To offer a holistic understanding of the state-of-the-art in
these areas, we propose a unified taxonomy. We categorize existing representative SSL and UL with comprehensive and insightful
analysis to highlight their design rationales in different learning scenarios and applications in different computer vision tasks. Lastly, we
discuss the emerging trends and open challenges in SSL and UL to shed light on future critical research directions.

Index Terms—Semi-Supervised, Unsupervised, Self-Supervised, Visual Representation Learning, Survey
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1 INTRODUCTION

OVER the last decade, deep learning algorithms and
architectures [1], [2] have been pushing the state of

the art in a wide variety of computer vision tasks, i.e.
object recognition [3], retrieval [4], detection [5], to seg-
mentation [6]. To achieve human-level performance, deep
learning models are typically built by supervised training
upon a large amount of labeled training data. However,
collecting large labeled datasets is not only expensive and
time-consuming, but may also be legally prohibited due to
privacy, security, and ethics restrictions. Moreover, super-
vised DL models tend to memorize the labeled data and
incorporate the annotator’s bias, weakening their general-
ization to new scenarios with unseen data distributions.

Cheaper imaging technologies and more convenient ac-
cess to web data, makes obtaining large unlabeled visual
data no longer challenging. Learning from unlabeled data
thus becomes a natural and promising way to scale models
towards practical scenarios where it is infeasible to collect
a large labeled training set that covers all types of visual
variations in illumination, viewpoint, resolution, occlusion,
and background clutter induced by different scenes, cam-
era positions, times of the day, and weather conditions.
Semi-supervised learning [7], [8] and unsupervised learn-
ing [9], [10], [11], [12] stand out as two most representative
paradigms for leveraging unlabeled data. Built upon dif-
ferent assumptions, these paradigms are often developed
independently, whilst sharing the same aim to learn more
powerful representations and models using unlabeled data.

Figure 1 summarizes the two paradigms covered in this
survey, which both utilize unlabeled data for visual repre-
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Fig. 1: Semi-supervised and unsupervised learning.

sentation learning. According to whether label annotations
are given for a small portion or none of the training data, we
categorize the paradigms as semi-supervised learning, and
unsupervised learning as defined explicitly in the following.
(a) Semi-Supervised Learning (SSL) uses sparsely labeled

data and a large amount of auxiliary unlabeled data
often drawn from the same underlying data distribu-
tion as the labeled data. In closed-set SSL [8], [13], the
labeled and unlabeled data share label set from the
same domain. In open-set SSL [14], [15], the unlabeled
data may contain unknown and/or mislabeled classes.

(b) Unsupervised Learning (UL) uses unlabeled data with
no task-relevant label supervision. Once trained, the
model can be fine-tuned using labeled data to achieve
better model generalization in a downstream task [16].

Following the above definitions, let the sets of labeled
data and unlabeled data be denoted as Dl and Du. The
overall unified learning objective for SSL and UL is:

min
θ

λl

X

(x,y)∈DL

Lsup(x, y, θ) + λu

X

x∈DU

Lunsup(x, θ), (1)
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where θ refers to the model parameters of a deep neural net-
work (DNN); x is an input image and y is the corresponding
label; Lsup and Lunsup are the supervised and unsupervised
loss terms; λl and λu are balancing hyperparameters. In
SSL, both loss terms are jointly optimized. In UL, only the
unsupervised loss term is used for unsupervised model pre-
training (i.e., λl = 0). Although SSL and UL share the same
rationale of learning with an unsupervised objective, they
differ in the learning setup, leading to different unique chal-
lenges. Specifically, SSL assumes the availability of limited
labeled data, and its core challenge is to expand the labeled
set with abundant unlabeled data. UL assumes no labeled
data for the main learning task and its key challenge is to
learn task-generic representations from unlabeled data.

We focus on providing a timely and comprehensive
review of the advances in leveraging unlabeled data to
improve model generalization, covering the representative
state-of-the-art methods in SSL and UL, their application
domains, to the emerging trends in self-supervised learn-
ing. Importantly, we propose a unified taxonomy of the
advanced deep learning methods to offer researchers a sys-
tematic overview that helps to understand the current state
of the art and identify open challenges for future research.
Comparison with previous surveys. Our survey is related
to other surveys on semi-supervised learning [8], [13], [17],
self-supervised learning [18], or both topics [19]. While
these surveys mostly focus on a single particular learning
setup [8], [13], [17], [18], non-deep learning methods [8],
[13], or lacking a comprehensive taxonomy on methods and
discussion on applications [19], our work covers a wider
review of representative SSL and UL algorithms involving
unlabeled visual data. Importantly, we categorize the state-
of-the-art SSL and UL algorithms with novel taxonomies
and draw connections among different methods. Beyond
intrinsic challenges with each learning paradigm, we distill
their underlying connections from the problem and algo-
rithmic perspectives, discuss unique insights into different
existing techniques, and their practical applicability.
Survey organization and contributions. Our contributions
are three fold. First, to our knowledge, this is the first deep
learning survey of its kind to provide a comprehensive
review of three prevalent machine learning paradigms in
exploiting unlabeled data for visual recognition, including
semi-supervised learning (SSL, §2), unsupervised learning
(UL, §3), and a further discussion on SSL and UL (§4).
Second, we provide a unified, insightful taxonomy and anal-
ysis of the existing methods in both the learning setup and
model formulation to uncover their underlying algorithmic
connections. Finally, we outlook the emerging trends and
future research directions in §5 to shed light on those under-
explored and potentially critical open avenues.

2 SEMI-SUPERVISED LEARNING (SSL)
Semi-Supervised Learning (SSL) [8], [13] aims at exploiting
large unlabeled data together with sparsely labeled data.
SSL is explored in various application domains, such as
image search [20], medical data analysis [21], web-page
classification [22], document retrieval [23], genetics and
genomics [24]. More recently, SSL has been used for learning
generic visual representations to facilitate many computer

supervised loss 
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Fig. 2: Semi-supervised learning (SSL) aims to learn jointly
from a small set of labeled and a large set of unlabeled data.

vision tasks such as image classification [25], [26], image
retrieval [27], object detection [28], [29], semantic segmenta-
tion [30], [31], [32], and pose estimation [33], [34], [35]. While
our review mainly covers generic semi-supervised learners
for image classification [25], [26], [36], [37], the ideas behind
thembe generalized to solve other vision recognition tasks.

We define the SSL problem setup and discuss its assump-
tions in §2.1. We provide a taxonomy and analysis of the
existing semi-supervised deep learning methods in §2.2.

2.1 The Problem Setting of SSL

Problem Definition. In SSL (Figure 2), we often have access
to a limited amount of labeled samples Dl = {xi,l, yi}Nl

i=1

and a large amount of unlabeled samples Du = {xi,u}Nu
i=1.

Each labeled sample xi,l belongs to one of K class labels
Y = {yk}Kk=1. For training, the SSL loss function L for a
deep neural network (DNN) θ can generally be expressed as
Eq. (1), i.e., L = λlLsup + λuLunsup. In many SSL methods,
the hyperparameters λu in Eq. (1) is often a ramp-up weight-
ing function (i.e., λ = w(t) and t is training iteration), which
gradually increases the importance of the unsupervised loss
term during training [14], [36], [38], [39], [40]. At test time,
the model is deployed to recognize the K known classes.
Evaluation Protocol. To test the effectiveness of an SSL
model, two evaluation criteria are commonly adopted. First,
the model needs to outperform its supervised baseline
trained only on labeled data. Second, when increasing the
proportion of unlabeled samples in the training set, the
improved margins upon the supervised baseline should
increase accordingly. Overall, these improved margins in-
dicate the effectiveness and robustness of an SSL method.
Assumptions. The main assumptions for SSL include the
smoothness assumption [41] and manifold assumption [8],
[41] – the latter is also known as cluster assumption [42],
structure assumption [43], and low-density separation as-
sumption [44]. Specifically, the smoothness assumption con-
siders that the nearby data points are likely to share the
same class label. The manifold assumption considers data
points lying within the same structure (i.e., the same cluster
or manifold) should share the same class label. In other
words, the former assumption is imposed locally for nearby
data points, while the latter is imposed globally based on
the underlying data structure formed by clusters or graphs.

2.2 Taxonomy on SSL Algorithms

Existing SSL methods generally assume that the unlabeled
data is closed-set and task-specific, i.e., all unlabeled train-
ing samples belong to a pre-defined set of classes. The idea
shared by most existing works is to assign each unlabeled
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Fig. 3: In consistency regularization (§2.2.1) (a) input vari-
ations vs (b) model variations, where variations can be
induced by transformation on input data or model weights.

sample with a class label based on a certain underlying
data structure, e.g., manifold structure [41], [43], and graph
structure [45]. We divide the most representative semi-
supervised deep learning methods into consistency reg-
ularization, self-training, graph-based regularization, deep
generative models, and self-supervised learning below.

2.2.1 Consistency Regularization

Consistency regularization includes a number of successful
and prevalent methods [25], [26], [36], [38], [46], [47], [48],
[49], [50]. The basic rationale is to enforce consistent model
outputs under variations in the input space and (or) model
space. The variations are implemented by e.g. adding noise,
perturbations or forming variants of the same input or
model. Formally, the objective in case of input variation is:

min
θ

X

x∈D
d(p(y|x; θ), p̂(y|x̂; θ)), (2)

and in case of model variation is:

min
θ

X

x∈D
d(p(y|x; θ), p̂(y|x; θ̂)). (3)

In Eq. (2), x̂ = qx(x; ✏) is a variant of the original input x,
which is derived through a data transformation operation
qx(·, ✏) with ✏ being the noise added via data augmentation
and stochastic perturbation. Similarly, in Eq. (3), θ̂ = fθ(θ; ⌘)
is a variant of the model θ derived via a transformation func-
tion fθ(·; ⌘) with ⌘ being the randomness added via stochas-
tic perturbation on model weights and model ensembling
strategies. In both equations, the consistency is measured as
the discrepancy d(·, ·) between two network outputs p(y|·, ·)
and p̂(y|·, ·), typically quantified by divergence or distance
metrics such as Kullback-Leibler (KL) divergence [47], cross-
entropy [50], and mean square error (MSE) [36]. See Figure 3
for an illustration of consistency regularization.

2.2.1.1 Consistency regularization under input variations

Various strategies aim to generate different versions of the
same input (x̂ in Eq. (2)) enforcing consistency (distribu-
tional smoothness) under input variations as depicted in

Fig. 3 (a). Techniques range from simple random augmenta-
tion [36], [46], to more advanced transformations such as ad-
versarial perturbation [47], MixUp [25], [51], and automated
augmentation, e.g.RandAugment [52], CTAugment [26].
Random augmentation is a standard data transformation
strategy widely adopted [36], [38], [46] via adding Gaussian
noise and applying simple domain-specific jittering such as
flipping and cropping on image data. For instance, the Π-
model [36], [46], applies random data augmentation on the
same input and minimizes a consistency regularization term
(MSE) between two network outputs. Ensemble transforma-
tions [53] introduces more diverse data augmentation on
input images, including spatial transformations (i.e., projec-
tive, affine, similarity, euclidean) to modify the spatial aspect
ratio, and non-spatial transformations to change the color,
contrast, brightness, and sharpness. This way, the model
learns representations invariant to various transformations.
Adversarial perturbation augments the input data by
adding adversarial noise aiming to alter the model predic-
tions, e.g., reducing predictive confidence or changing the
predicted correct label [54]. Adversarial noise is introduced
for SSL to augment data and learn from the unlabeled data
with adversarial transformations [47], [49], [55], [56]. Virtual
Adversarial Training (VAT) [47], [55] is the first represen-
tative SSL method that perturbs input data adversarially. In
VAT, a small adversarial perturbation is added to each input
and a consistency regularization term (i.e., KL divergence)
is imposed to encourage distributional robustness of the
model against the virtual adversarial direction. Notably,
semi-supervised learning with adversarial perturbed unla-
beled data does not only improve model generalization, but
it also enhances robustness to adversarial attacks [56], [57].
MixUp is a simple and data-agnostic augmentation strat-
egy by performing linear interpolations on two inputs and
their corresponding labels [51]. It is also introduced as an
effective regularizer for SSL [25], [48]. The Interpolation
Consistency Training (ICT) [48] interpolates two unlabeled
samples and their network outputs. MixMatch [25] further
considers to mix a labeled sample and unlabeled sample as
the input, and the groundtruth label (of labeled data) and
the predicted label (of unlabeled data) as the output targets.
Both methods impose consistency regularization to guide
the learning of a mapping between the interpolated input
and interpolated output to learn from unlabeled data.
Automated augmentation learns augmentation strategies
from data to produce strong samples, alleviating the need
to manually design domain-specific data augmentation [52],
[58]. It is introduced for SSL by enforcing that the pre-
dicted labels of a weakly-augmented or clean sample and
its strongly augmented versions derived from automated
augmentation [26], [50] are consistent. Inspired by the ad-
vances of AutoAugment [58], ReMixMatch [26] introduces
CTAugment to learn an automated augmentation policy.
Unsupervised Data Augmentation (UDA) [50] adopts Ran-
dAugment [52] to produce more diverse and strongly aug-
mented samples by uniformly sampling a set of standard
transformations based on the Python Image Library. Later
on, FixMatch [37] unifies multiple augmentation strategies
including CTAugment [26], and RandAugment [52] and
produces even more strongly augmented samples as input.
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2.2.1.2 Consistency regularization under model variations

To impose the predictive consistency under model varia-
tions (i.e., variations made in the model’s parameter space)
as in Eq. (3), stochastic perturbation [59], [60], [61] and
ensembling [36], [38], [62] are proposed. Via non-identical
models they produce different outputs for the same input –
a new model variant is denoted by θ̂ in Eq. (3).
Stochastic perturbation introduces slight modifications on
the model weights by adding Gaussian noise, dropout, or
adversarial noise in a class-agnostic manner [59], [60], [61].
For example, Ladder Network injects layer-wise Gaussian
noises into the network and minimizes a denoising L2 loss
between outputs from the original network and the noisy-
corrupted network [60]. Pseudo-Ensemble applies dropout
on the model’s parameters to obtain a collection of models
(a pseudo-ensemble), while minimizing the disagreements
(KL divergence) between the pseudo-ensemble and the
model [59]. Similarly, Virtual Adversarial Dropout intro-
duces adversarial dropout to selectively deactivates net-
work neurons and minimizes the discrepancy between out-
puts from the original model and the perturbed model [61].
Worst-Case Perturbations (WCP) introduces both addictive
perturbations and drop connections on model parameters,
where drop connections set certain model weights to zero
to further change the network structure [63]. Notably, these
perturbation mechanisms promote the model robustness
against noise in network parameters or structure.
Ensembling learns a set of models covering different re-
gions of the version space [64], [65], [66], providing more
reliable predictions than a single model. For SSL, an ensem-
ble model is typically derived by computing an exponential
moving average (EMA) or equal average in the predic-
tion space or weight space [14], [36], [38], [40]. Temporal
Ensembling [36] and Mean Teacher [38] are two repre-
sentatives that first propose to ensemble all the networks
produced during training by maintaining an EMA in the
weight space [38] or prediction space [36]. Stochastic Weight
Averaging (SWA) [40] applies an equal average of the
model parameters in the weight space to provide a more
stable target for deriving the consistency cost. Later on,
Uncertainty-Aware Self-Distillation (UASD) [14] computes
an equal average of all the preceding model predictions
during training to derive soft targets as the regularizer.
Remarks. Consistency regularization can be treated as an
auxiliary task where the model learns from the unlabeled
data to minimize its predictive variance towards the vari-
ations in the input space or weight space. The predictive
variance is generally quantified as the discrepancy between
two predictive probability distributions or network out-
puts. By minimizing the consistency regularization loss, the
model is encouraged to learn more powerful representations
invariant towards variations added on each sample, without
utilizing any additional label annotation.

2.2.2 Self-Training
Self-training methods learn from unlabeled data by imputing
the labels for samples predicted with high confidence [22],
[23], [67]. It is originally proposed for conventional machine
learning models such as logistic regression [67], bipartite
graph [22] and Naive Bayes classifier [23]. It is re-visited

p(y|x; θ)θ

model
unsupervised loss

(a) entropy minimization 

x

input
sample

θ1 p1(y|x; θ1) d(·, ·)
z1

θ2 p2(y|x; θ2) d(·, ·)
z2

model 2 unsupervised loss 2

unsupervised loss 1model 1
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x
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d(·, ·)
unsupervised loss 

teacher model (pre-trained)

θs

θt

student model 

ps(y|x; θs)

zt

(c) distillation

x

input
sample

Fig. 4: In self-training, (a) the model prediction is enforced
to have low entropy, (b) two models learn from each other
and (c) the student model learns from the teacher model.

in deep neural networks to learn from massive unlabeled
data along with limited labeled data. We review three repre-
sentative lines of works in self-training, including entropy
minimization, co-training and distillation as follows. See
Figure 4 for an illustration of self-training.
Entropy minimization regularizes the model training based
on the low density separation assumption [44], [67], to
enforce that the class decision boundary is placed in the
low density regions. This is also in line with the cluster
assumption and manifold assumption [41], [43], which hy-
pothesizes that data points from the same class are likely to
share the same cluster or manifold. Formally, the entropy
minimization objective can be formulated as:

min
θ

X

x∈D

�
−

X
K
j=1p(yj |x; θ) log p(yj |x; θ)

�
, (4)

where K refers to the number of classes. p(yj |x; θ) is the
probability of assigning the sample x to the class yj . This
measures the class overlap. As a lower entropy indicates a
higher confidence in model prediction, minimizing Eq. (4)
enforces each unlabeled sample to be assigned to the class
predicted with the highest probability. Although entropy
minimization is originally proposed for logistic regression
to impute the labels of samples classified with high confi-
dence [67], it is later extended to train deep neural networks
in SSL setting by minimizing the entropy of the class assign-
ments either derived in the prediction space [25], [26], [37],
[47], [68] or the feature space [69], as detailed next.

Entropy minimization can be imposed in the prediction
space, e.g., Pseudo-Label [68] directly assigns each sample
to the class label predicted with the maximum probability,
which implicitly minimizes the entropy of model predic-
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tions. When pseudo labels are one-hot vectors, they could
easily cause error propagation due to the wrong label as-
signments. To alleviate this risk, MixMatch [25] uses an
ensemble of predictions over different input augmentations,
and softly sharpens the one-hot pseudo labels with a tem-
perature hyperparameter. Similarly, FixMatch [37] assigns
the one-hot labels only when the confidence scores of the
model predictions are higher than a certain threshold.

Entropy minimization can also be imposed in the feature
space, as it is feasible to derive the class assignments based
on proximities to class-level prototypes (e.g., cluster centers)
in the feature space [69], [70]. In [69], a Memory module
learns a center per class that is derived based on proximities
to all the cluster centers. Each unlabeled sample is assigned
to the nearest cluster center by minimizing the entropy.
Co-training learns two or more classifiers on more than one
view of the same sample coming from different sources [7],
[22], [23], [71], [72]. Conceptually, a co-training frame-
work [22], [23] trains two independent classifier models on
two different but complementary data views and imputes
the predicted labels in a cross-model manner. It is later
extended for deep visual learning [71], [72], e.g., Deep Co-
training (DCT) [71] trains a network with two or more clas-
sification layers, and passes different views (e.g., the original
view and the adversarial view [73]) to individual classifiers
for co-training, while an unsupervised loss is imposed to
minimize the similarity of predictions from different views.
The basic idea of co-training can be extended from dual-
view [71] to triple [72] or multi-view [71] – e.g., in Tri-
training [72], three classifiers are trained together, with la-
bels assigned to the unlabeled data when two of them agree
on the predictions and the confidence scores are higher than
a threshold. Formally, the deep co-training objective is:

min
θ

X

x∈D
d(p1(y|x; θ1), z2) + d(p2(y|x; θ2), z1), (5)

where p1, p2 are predictions of two independent classifiers
θ1, θ2 trained on different data views. d(·, ·) introduces the
similarity metric to learn from the imputed targets z1, z2
from each other, e.g., cross-entropy on one-hot targets [72],
or Jensen-Shannon divergence between output targets [71].
Distillation is originally proposed to transfer the knowl-
edge learned by a teacher model to a student model, where
the soft targets from the teacher model (e.g., an ensemble of
networks or a larger network) can serve as an effective reg-
ularizer or a model compression strategy to train a student
model [74], [75]. Recent works in SSL use distillation to im-
pute learning targets on the unlabeled data for training the
student network [14], [34], [76]. Formally, an unsupervised
distillation objective is introduced on a student model θs to
learn from the unlabeled data as:

min
θ

X

x∈D
d(ps(y|x; θs), zt), (6)

where the student prediction ps is enforced to align with
the targets zt produced by a teacher model θt on either
the unlabeled data or all the data. Compared to co-training
(Eq. (5)), distillation in SSL (Eq. (6)) does not optimize
multiple networks simultaneously, but instead trains more
than one network in different stages. In distillation, the ex-
isting works can be further grouped into model distillation

θ

model build NN graph

unsupervised loss 

input
sample

Lunsup

x

Fig. 5: In graph-based regularization (§2.2.3) pseudo labels
are propagated over the Nearest Neighbor graph based on
neighbourhood consistency and an unsupervised regular-
ization term is imposed on the feature or prediction space.

and data distillation, which generate learning targets for
unlabeled data using the teacher model output or multiple
forward passes of the same input data, as detailed next.

In model distillation, labels from a teacher are assigned
to a student [14], [76]. The teacher model can be formed,
e.g., via a pre-trained model or an ensemble of models.
In Noisy Student Training [76], an iterative self-training
process iterates the teacher-student training by first training
a teacher to impute labels on unlabeled data for the student,
and reuses the student as the teacher in the next iteration. In
Uncertainty-Aware Self-Distillation (USAD) [14], the teacher
averages all the preceding network predictions to impute
labels on unlabeled data for updating the student network
itself. In model distillation, both soft targets and one-hot
labels from the teacher model can serve as the learning
targets on the unlabeled data [14], [76].

In data distillation, the teacher model predicts learning
targets on unlabeled data by ensembling the outputs of
the same input under different data transformations [34].
Specifically, the ensembled teacher predictions (i.e., soft
targets) are derived by averaging the outputs of the same
inputs under multiple data transformations; while the stu-
dent model is then trained with the soft targets. Data
distillation transforms the input data multiple times rather
than training multiple networks to impute the ensembled
predictions on unlabeled data. This is similar to consistency
regularization with random data augmentation; however,
in data distillation, two training stages are involved – the
first stage involves pre-training the teacher model; while
the second stage involves training the student network to
mimic the teacher model by distillation.
Remarks. Similar to consistency regularization, self-training
can be considered as an unsupervised auxiliary task learned
along with the supervised learning task. In general, it
also enforces the predictive invariance towards instance-
wise variations or the teacher’s predictions. However, self-
training differs in design. While consistency regularization
generally trains one model, self-training may require more
than one model to be trained, e.g., co-training requires
at least two models trained in parallel while distillation
requires to train a teacher and a student model sequentially.

2.2.3 Graph-based Regularization

Graph-based regularization is a family of transductive learning
methods originally proposed for non-deep semi-supervised
learning algorithms [41], [45], [77], such as transductive
Support Vector Machine [41] and Gaussian random field
model [77]. Most algorithms from this family build a
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weighted graph to exploit relationships among the data
samples. Specifically, both labeled and unlabeled samples
are represented as nodes, while the edge weights encode
the similarities between different samples. The labels can
be propagated over the graph based on the smoothness
assumption [41], i.e., neighboring data points should share
the same class label as shown in Figure 5.

A graph-based regularization term is used in model
optimization by imposing various forms of smoothness
constraints to minimize the pairwise similarities between
nearby data points. Graph-based regularization is later re-
formulated for semi-supervised learning with deep neural
networks, such as EmbedNN [43], Graph Convolutional
Network [78], [79], Teacher Graph [80], and Label Prop-
agation [81]. Although this line of works share the same
smoothness assumption for model optimization, graph-
based regularization can be imposed differently in either
the feature space or prediction space, detailed as follows.
Graph-based feature regularization is typically done by
building a learnable nearest neighbor (NN) graph that aug-
ments the original DNN to encode the affinity between
data points in the feature space, as represented by Em-
bedCNN [43] and Teacher Graph [80]. Each node in the
graph is encoded by the visual feature extracted from the
intermediate network layer or the output from the last layer;
while an affinity matrix Wij is computed to encode the pair-
wise similarities between all the nodes. To exploit unlabeled
data, a graph-based regularization term can be formed as
a metric learning loss, such as the margin-based contrastive
loss for Siamese networks [82], [83] which constrains feature
learning by enforcing the local smoothness:

min
θ

X

xi,xj∈D

(
∥h(xi)− h(xj)∥2, if Wij=1

max(0,m− ||h(xi)− h(xj)||)2, if Wij=0

(7)
ensuring that features h(xi), h(xj) of nearest neighbors (i.e.,
Wij=1) are close to and dissimilar pairs (i.e., Wij=0) are
away from each other with a distance margin m.

Beyond augmenting a DNN with a graph, a more flexible
way is to use graph convolutions, i.e., Graph Convolutional
Networks (GCN) [78], which derive new feature represen-
tations for each node subject to the graph structure [79].
Specifically, a GCN takes the data and affinity matrix as
input, and learns to estimate the class labels of unlabeled
data under a supervised cross-entropy loss on labeled data.
Graph-based prediction regularization operates in the pre-
diction space [81], as in Label Propagation [81]. Driven by
the same rationale of building a learnable NN-graph as
above, in label propagation, an NN-graph encidong the
similarity between data points is used to propagate the
labels from the labeled data to the unlabeled data based
on transitivity via with a cross-entropy loss. While being
similar to the approach Pseudo-Labels [68], the propagated
labels are derived with an external NN-graph that encodes
the global manifold structure. Further, label propagation on
the graph and the update of DNN are performed alterna-
tively to propagate more reliable labels.
Remarks. Graph-based regularization shares several simi-
larities with consistency regularization and self-training in
SSL. First, it introduces an unsupervised auxiliary task to

labeled sample

θD

discriminator

unlabeled sample
xG

Lsup

generator

θG

unsupervised loss
(minimax loss)

supervised loss 
xl

noise
z p(y|xG; θD)

p(y|xl; θD)
(real)

(fake)
real
fake

Fig. 6: In GAN-based deep generative models (§2.2.4), the
discriminator assigns the labeled samples to the K classes
and the generated unlabeled data to an auxiliary class (K +
1). At test time, the discriminator acts as the classifier.

train a DNN with propagated learning targets (e.g., pseudo
labels) on the unlabeled data. Second, its learning objective
can be formulated as a cross-entropy loss or metric learning
loss. Notably, while consistency regularization and self-
training are inductive approaches that estimate a learning
target per instance, graph-based regularization methods
are transductive approaches that propagate learning tar-
gets based on a graph constructed on the dataset. Beyond
concrete details, however, the three techniques all share the
same fundamental idea of seeking for unsupervised targets.

2.2.4 Deep Generative Models
Deep generative models are a class of unsupervised learning
models that learn to approximate the data distributions
without labels [84], [85]. By integrating the generative unsu-
pervised learning concept into a supervised model, a semi-
supervised learning framework can be formulated to unify
the merits of supervised and unsupervised learning. Two
main streams of deep generative models we survey are Vari-
ational Auto-Encoders (VAEs) and Generative Adversarial
Networks (GANs), as detailed below. See Figure 6 for an
illustration of a GAN framework for SSL.
Variational auto-encoders (VAEs) are probabilistic models
based on variational inference for unsupervised learning of
a complex data distribution [84]. A standard VAE model
contains a network that encodes an input sample to a latent
variable and a network that decodes the latent variable to re-
construct the input; maximizing a variational lower bound.
In semi-supervised learning [86], [87], an unsupervised VAE
model is generally combined with a supervised classifier.
For instance, to predict task-specific class information re-
quired in SSL, Class-conditional VAE [86] and ADGM [87]
introduce the class label as an extra latent variable in the
latent feature space to explicitly disentangle the class in-
formation (content) and the stochastic information (style),
and impose an explicit classification loss on the labeled data
along with the vanilla VAE loss.
Generative adversarial networks (GANs) [85] learn to
capture the data distribution by an adversarial minimax
game. Specifically, a generator is trained to generate as
realistic images as possible while a discriminator is trained
to discriminate between real and generated samples. When
re-formulated as a semi-supervised representation learner,
GANs can leverage the benefits of both unsupervised gener-
ative modeling and supervised discriminative learning [88],
[89], [90], [91], [92], [93], [94], [95].

The generic idea is to augment the standard GAN
framework with supervised learning on the labeled real
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samples (i.e., discriminative) and unsupervised learning on
the generated samples. Formally, this enhances the original
discriminator with an extra supervised learning capability.
For example, Categorical GAN (CatGAN) [88] introduces
a K-class discriminator, and minimizes a supervised cross-
entropy loss on the real labeled samples, while imposing
a uniform distribution constraint on the generated samples
by maximizing the prediction’s entropy. Similarly, feature
matching GAN (FM-GAN) [89], ALI [90], BadGAN [91] and
Localized GAN [96] formulate a (K+1)-class discriminator
for SSL, whereby a real labeled sample xl is considered as
one of the K classes and a generated sample xG as the
(K + 1)th class. The supervised and unsupervised learning
objective for the (K+1)-class discriminator is formulated as;

max
θ

X

x∈D
log p(y|xl, y<K+1), (8)

max
θ

X

x∈D
log (1−p(y=K+1|xl))− log p(y=K+1|xG), (9)

where Eq. (8) is the supervised classification loss on the
labeled samples xl; Eq. (9) is an unsupervised GAN loss
that discriminates between the real labeled samples xl and
the generated fake samples xG from the image generator. To
constrain the generated samples, Localized GAN [96] intro-
duces a regularizer on the generator to ensure the generated
samples lie in the neighborhood of an original sample on
the manifold, training a locally consistent classifier from the
generated samples in a semi-supervised fashion.
Remarks. Unlike previously discussed discriminative SSL
techniques DGMs can naturally learn from unlabeled data
without the need to estimate their labels. In other words,
DGMs are native unsupervised representation learners. To
enable SSL in DGMs, the key in model reformulation is
thus to integrate the label supervision into training, e.g.,
adding a class label latent variable in VAEs or an extra class
discriminator in GANs. Further, one also needs to tackle
more difficult model optimization in a GAN framework.

2.2.5 Self-Supervised Learning

Self-supervised learning is a class of unsupervised repre-
sentation learners designed based on unsupervised surro-
gate (pretext) tasks [11], [97], [98], [99], [100], [101]. Self-
supervision differs from self-training algorithms in §2.2.2,
as self-supervised learning objectives are task-agnostic and
could be trained without any label supervision. The former
is originally proposed to learn from only unlabeled data
with task-agnostic unsupervised learning objectives, but it
is also explored for SSL [12], [102], [103]. In SSL, task-
agnostic self-supervision signals on all training data are
often integrated with a supervised learning objective on
labeled data. For instance, S4L [102] uses self-supervision
for SSL based on multiple self-supervision signals such as
predicting rotation degree [101] and enforcing invariance
to exemplar transformation [97] to train the model along
with supervised learning. SimCLR [12] and SimCLRv2 [103]
are follow-up works introducing self-supervised contrastive
learning for task-agnostic unsupervised pre-training, fol-
lowed by supervised or semi-supervised fine-tuning with
label supervision as the downstream task.

Remarks. A unique advantage of self-supervision for SSL
is that task-specific label supervision is not required dur-
ing training. While the aforementioned semi-supervised
learners typically solve a supervised task and an auxiliary
unsupervised task jointly, self-supervised semi-supervised
learners can be trained in a fully task-agnostic fashion.
This suggests the great flexibility of self-supervision for
SSL. Thus, the self-supervised training can be introduced as
unsupervised pre-training or as an auxiliary unsupervised
task solved along with supervised learning. Although self-
supervision is relatively new for SSL, it has been explored
for unsupervised learning as explained below.

3 UNSUPERVISED LEARNING (UL)
Unsupervised Learning (UL) aims to learn representations
without utilizing any label supervision. The learned repre-
sentation is not only expected to capture the underlying se-
mantic information, but also be transferable to tackle unseen
downstream tasks such as visual recognition, detection, and
segmentation [16], visual retrieval [104], and tracking [105].

UL is attractive in computer vision for multiple reasons.
First, due to costly label annotations, large labeled datasets
may not be available in many application scenarios, e.g.,
medical imaging [106]. Second, as there are often data/label
distribution drifts (or gaps) across tasks and application
scenarios, pre-training on a large labeled dataset cannot
always guarantee good model initialization for unseen sit-
uations [107]. Third, UL could supply strong pre-trained
models that may perform on par with or even outperform
supervised pre-training [12], [16], [108].
Remarks. UL and SSL share the same aim to learn from
unlabeled data, and leverage similar modeling principles
to formulate unsupervised surrogate supervision signals
without any label annotation. However, instead of assuming
the availability of task-specific information (i.e., class labels)
as in SSL, UL considers model learning from purely task-
agnostic unlabeled data. Given that unlabeled data are
abundantly available in different scenarios (e.g., Internet),
UL offers an appealing strategy to provide good pre-trained
models that could facilitate various downstream tasks.

Focusing on unsupervised visual learners trained on im-
age classification datasets, we define the UL problem setup
in §3.1, and provide a taxonomy and analysis of the existing
representative unsupervised deep learning methods in §3.2.

3.1 The Problem Setting of UL

Problem Definition. In UL, we have access to an unlabeled
dataset Du = {xi}Nu

i=1. As label information is unknown, the
UL loss function L for training a DNN θ can generally be
expressed as Eq. (1), i.e., L = λlLsup +λuLunsup with λl = 0.
In discriminative models, the unsupervised objective Lunsup
requires certain pseudo/proxy targets to learn semantically
meaningful and generalizable representations. In generative
models, Lunsup is imposed to explicitly model the data
distribution. See Figure 7 for an illustration of UL.
Evaluation Protocol. The performance of UL methods are
often evaluated via two protocols, commonly known as
the (1) linear classification protocol, and (2) fine-tuning on
downstream tasks. In (1), the pre-trained DNN is frozen
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unsupervised loss 

θ

model
xu

unlabeled sample
Lunsup

unsupervised pre-training (main task)

θ
labeled sample

xl

supervised fine-tuning (downstream task)

Lsup

supervised loss model

Fig. 7: Unsupervised learning trains a generalizable model
using purely unlabeled data. The model can later be fine-
tuned with labeled data and tested on a downstream task.

to extract the features for an image dataset, while a linear
classifier (e.g., a fully-connected layer or a kNN classifier)
is trained to classify the extracted features. In (2), the pre-
trained DNN is used to initialize a model and followed
by fine-tuning with a task-specific objective, e.g.fine-tuning
an unsupervised pre-trained object detector backbone (e.g.,
FasterR-CNN [109]) on object detection datasets (e.g., PAS-
CAL VOC [110]), or fine-tuning a segmentation model (e.g.,
Mask R-CNN [111]) with a pre-trained backbone on seg-
mentation datasets (e.g., COCO [112]).

3.2 Taxonomy on UL Algorithms
Existing unsupervised deep learning models can be mainly
grouped into three families: pretext tasks, discriminative
models and generative models. Pretext tasks and discrim-
inative models are also known as self-supervised learning,
which drive model learning by a proxy protocol/task and
construct pseudo label supervision to formulate unsuper-
vised surrogate losses. Generative models is inherently un-
supervised and explicitly models the data distribution to
learn representations without label supervision.

3.2.1 Pretext Tasks
Pretext Tasks refer to hand-crafted proxy tasks manually
designed to predict certain task-agnostic properties of the
input data, which do not require any label supervision for
training. By formulating self-supervised learning objectives
with free labels, meaningful visual representations can be
learned in a fully unsupervised manner. In the following, we
review pretext tasks introducing the self-supervision signals
at the pixel-level (Figure 8) or instance-level (Figure 9).
Pixel-level pretext task is generally designed as a dense
prediction task that aims to predict the expected pixel values
of an output image as a self-supervision signal [113], [114],
[115], [116], [117], [118], [119], [120]. Auto-Encoder [113],
[115] is one of the most representative and primitive unsu-
pervised models that learn representations by reconstruct-
ing input images. In addition to standard reconstruction,
pixel-level pretext tasks introduce more advanced image
generation tasks to hallucinate the pixel colour values of the
corrupted input images, as represented by three standard
low-level image processing tasks: (1) image inpainting [116],
[120] learns by inpainting the masked-out missing regions
in the input images, which is also known as masked auto-
encoders (MAE) [120]; (2) denoising [114] learns to denoise

θ d(·, ·)
model unsupervised loss 

(a) inpainting

θ d(·, ·)
model unsupervised loss 

(c) colorization

θ d(·, ·)
model unsupervised loss 

(b) denoising

x

x

x

x̂

x̂

x̂

Fig. 8: In pixel-level pretext tasks (§3.2.1), the aim is to
reconstruct the original image x̂ from a corrupted input x.
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Fig. 9: In instance-level pretext tasks (§3.2.1) the aim is to
predict the transformation on the input.

the partial destructed input; and (3) colorization [117], [118],
[119] aims to predict the colour values of the grayscale
images. These self-supervised models are trained with an
image generation task objective (e.g., a mean square error)
to enforce predicting the expected pixel values:

min
θ

X

x∈D
||Gθ(x)− x̂||2, (10)

where Gθ(·) is an image generation network (typically
implemented as an encoder-decoder network architecture)
trained to predict the expected output image x̂ per pixel.
Once trained, part of the network Gθ(·) (e.g., encoder)
can be used to initialize the model weights or extract the
intermediate features for solving the downstream task.
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Instance-level pretext tasks introduce sparse semantic la-
bels for each image sample by designing a surrogate proxy
task that can be solved per instance without any label an-
notations [11], [99], [100], [101], [121], [122]. In general, pre-
text tasks involve applying different image transformations
to generate diverse input variations, whereby an artificial
supervision signal is imposed to predict the applied trans-
formation on each instance. Among this line of works, the
representative ones consider mainly two classes of instance-
wise transformations on input images. The first one is classi-
fying global transformations, such as rotations [101], scaling
and tiling [100], where the learning objective is to recog-
nize the geometric transformation applied on an image.
The second one is predicting local transformations, such
as patch orderings [11] and patch re-orderings [99], [121],
[122], which cut each image into multiple local patches.
The goal of patch orderings is to recognize the order of a
given cut-out patch, while patch re-orderings, also known as
the jigsaw puzzles, permute the cut-out patches randomly
and the goal is to predict the permuted configurations. The
objective of an instance-level pretext task can be written as:

min
θ

X

x∈D
Lunsup(Φz(x), z, θ), (11)

where Lunsup(·) can be various loss functions (e.g., cross-
entropy loss [101]) that learn a mapping from a transformed
input image Φz(x) to a discrete category or a configuration
of the applied transformation z. Once trained, the represen-
tations are covariant with the transformations Φz(·), thus
being aware of the spatial context information, e.g., how an
image is rotated or how the local patches are permuted.
Remarks. Although self-supervised learning objectives of
pixel-level or instance-level pretext tasks are generally not
explicitly related to the downstream task objectives (e.g.,
image classification, detection and segmentation), they per-
mit to learn from unlabeled data by predicting the spatial
context or structured correlation in images, such as inpaint-
ing missing regions, and predicting the applied rotations.
As these self-supervision signals can implicitly uncover the
semantic content (e.g. human interpretable concepts [123])
or spatial context in images, they often yield a meaningful
pre-trained model for initialization in unseen downstream
tasks, or even serve as a flexible and effective regularizer
to facilitate other machine learning setups, such as semi-
supervised learning [102] and domain generalization [124].

3.2.2 Discriminative Models

Discriminative models hereby refer to the class of unsu-
pervised discriminative models that learn visual represen-
tations from the unlabeled data by enforcing invariance
towards various task-irrelevant visual variations at either
instance-level, neighbor-level or group-level. These visual
variations can be intra-instance variations such as different
views of the same instance [125], [126], [127], [128], [129], or
inter-instance variations between neighbor instances [130],
[131] or across a group of instances [132], [133], [134].

In the following, we review two representative classes
of unsupervised discriminative models that offer the state
of the art in unsupervised visual feature learning, includ-
ing instance discrimination (Figure 10) and deep clustering

θ

model
xu

unlabeled sample

negative pair

positive pair

positive pair negative pair

fθ(xu)feature

unsupervised loss: contrastive loss (infoNCE)

− log(
exp(sim( )),

+exp(sim( )), ,exp(sim( )),exp(sim( )) +⋯+
)

Fig. 10: The unsupervised discriminative model using con-
trastive learning (§3.2.2) aims to pull together the positive
pairs and push away the negative ones.

(Figure 11). The former imposes self-supervision by treating
each instance as a class, while the latter introduces supervi-
sion by considering a group of similar instances as a class.
Instance discrimination models learn discriminative repre-
sentations by enforcing invariance towards different view-
ing conditions, data augmentations or various parts of the
same image instance [12], [16], [97], [98], [103], [125], [126],
[127], [128], [129], [135], [136], [137], [138] – also known as
exemplar learning [97], [98].

The most prevalent scheme in instance discrimination
is contrastive learning, which was initially proposed to
learn invariant representations by mapping similar inputs
to nearby points in the latent space [82], [83]. The state-
of-the-art contrastive learning models for self-supervised
learning generally aim to obtain an invariance property by
optimizing a contrastive loss formulated upon the noise
contrastive estimation (NCE) principle [139], which maxi-
mizes the mutual information across different views. The
multi-view information bottleneck model [140] extends the
original information bottleneck principle to unsupervised
learning and trains an encoder to retain all the relevant in-
formation for predicting the label while minimizing the ex-
cess information in the representation. Formally, contrastive
learners such as SimLR [12] and MoCo [16] are optimized
by an instance-wise contrastive loss (i.e., infoNCE loss) [83]:

min
θ

X

xi∈D
−log

exp(fθ(xi) · fθ(x+
i )/τ)PM

j=1 exp(fθ(xi) · fθ(xj)/τ)
, (12)

where τ is a temperature, fθ is the feature encoder, i.e., a
DNN; fθ(xi), fθ(x

+
i ) are the feature embeddings of two dif-

ferent augmentations, or views of the same image; {xj}Mj=1

includes (M−1) negative samples and 1 positive (i.e., x+
i )

sample. Eq. (12) optimizes the network by enforcing the
positive pairs (i.e., embeddings of the same instance) to lie
closer, while pushing apart the negative pairs (i.e., embed-
dings of different instances). Minimizing the InfoNCE loss
is equivalent to maximizing a lower bound on the mutual
information between fθ(xi) and fθ(x

+
i ) [125].

To derive a tractable yet meaningful contrastive distribu-
tion in Eq. (12), a large amount of negative pairs are often
required per training batch. To this aim, existing state-of-the-
art methods are typically featured with different negative
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sampling strategies to collect more negative pairs. For in-
stance, a large batch size of 4096 is adopted in SimCLR [12].
In InstDis [136], MoCo [16], PIRL [138], and CMC [126], a
memory bank is used to maintain all the instance prototypes
by keeping moving average of their feature representations
over training iterations. Finally, running queue enqueues the
features of samples in the latest batches and dequeues the
old mini-batches of samples to store a fraction of sample’s
features from the preceding mini-batches [16], [138].

Inspired by deep metric learning, various training strate-
gies further boost contrastive learning. For instance, a hard
negative sampling strategy [141] mines the negative pairs
that are similar to the samples but likely belong to different
classes. For negative and/or positive pairs by adversarial
training [142] learn a set of “adversarial negatives” confused
with the given samples, or “cooperative positives” similar
to the given samples. These strategies improve contrastive
learning by finding better negative and positive pairs.

In addition to negative sampling, it is essential to apply
various image transformations for generating multiple di-
verse variants (i.e., views) of the same instance to construct
the positive pairs. The most typical way is to apply common
data augmentation such as random cropping and color jit-
tering [12], [16], [127], [136], [137], [138], or pretext transfor-
mation [138] like patch re-ordering [99] and rotation [101].
An alternative way is to artificially construct multiple views
of a single image by using different image channels like
luminance and chrominance [126], or by extracting the local
and global patches of the same image [125]. In a nutshell,
although there are different strategies in negative sampling
and image transformations to construct the negative and
positive pairs for contrastive learning, these strategies share
the same aim to learn visual representations invariant to
diverse input transformations [135], [138].

While contrastive learning approaches rely on obtaining
a sufficient amount of negative pairs to derive the con-
trastive loss (Eq. (12)), another alternative non-contrastive
scheme for instance discrimintation operates in a negative-
sample-free manner [143], [144], [145], as exemplified by
bootstrap (BYOL) [143] and simple siamese networks (Sim-
Siam) [144]). In particular, in BYOL and SimSiam, two views
(obtained from data augmentation) of the same images are
passed towards the networks and the mean squared error
is minimized between the representations of two views to
enforce invariances. Importantly, a stop gradient scheme is
adopted to prevent representational collapse, i.e. avoid map-
ping all the samples to the same representations. Another
related method is Barlow Twins [145], which computes a
cross-correlation matrix between the distorted versions of
a batch of training samples and enforce the matrix to be
an identity matrix, thus learning self-supervised representa-
tions invariant to different distortions. Although these non-
contrastive methods adopt other loss formulations, they
all share the similar spirit as contrastive learning given
that meaningful representations are learned by enforcing
invariances to different views of the same instance.
Deep clustering models learn discriminative representa-
tions by grouping similar instances from the same cluster
together [131], [132], [133], [134], [146], [147], [148], [149],
[150], [151]. In training, the entire dataset is generally di-
vided into groups by associating each instance to a certain
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ŷ cluster membership
(pseudo label)

fθ(xu)feature

p(y|xu; θ)

unsupervised loss 

Fig. 11: In unsupervised discriminative models using deep
clustering (§3.2.2), unlabeled samples are assigned to a set
of clusters by online or offline clustering, while the cluster
memberships are utilized as pseudo labels for training.

cluster centroid based on pairwise similarities. Although
clustering algorithms are longstanding machine learning
techniques [152], [153], [154], they have been re-designed to
be seamlessly integrated with DNNs to learn discriminative
representations without label supervision. Conceptually, the
cluster memberships can be considered as some pseudo
labels to supervise the model training, as written in Eq. (13).

min
θ

X

x∈D
Lunsup(x, ŷ, θ), (13)

where ŷ is the cluster membership of sample x, Lunsup(·, ·, θ)
is the loss function that constrains the mapping from x to y,
such as a classification loss. Deep clustering algorithms can
be further grouped into two categories according to whether
the assignments of cluster memberships are derived in an
offline or online manner, as detailed in the following.

In offline clustering, unsupervised training is alternated
between a cluster assignment step and a network training
step [131], [133], [146], [147], [148]. While the former es-
timates the cluster memberships of all the training sam-
ples, the latter uses the assignments as pseudo labels to
train the network. Representative offline clustering mod-
els include DeepCluster [132], JULE [147] and SeLa [148],
which mainly differ in the clustering algorithms. Specifi-
cally, DeepCluster [132], [133] groups visual features using
k-means clustering [153]. JULE [147] uses agglomerative
clustering [155] that merges similar clusters to iteratively
derive new cluster memberships. SeLa [148] casts clustering
as an optimal transport problem solved by Sinkhorn-Knopp
algorithm [156] to obtaining the assignments as pseudo
labels.

In online clustering, the cluster assignment step and
network training step are coupled in an end-to-end training
framework, as represented by IIC [157], AssociativeClus-
ter [158], PICA [149], and SwAV [134]. Compared to offline
clustering, online clustering could better scale to large-
scale datasets, as it does not require clustering the entire
dataset iteratively. This is typically achieved in two ways:
(1) training a classifier that parameterizes the cluster mem-
berships (e.g., IIC and PICA); (2) learning a set of cluster
centroids/prototypes (e.g., AssociativeCluster and SwAV).
For instance, IIC [157] learns the cluster memberships by
maximizing the mutual information between predictions
of an original instance and a randomly perturbed instance
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Fig. 12: In GANs (§3.2.3), a generator and a discriminator are
trained with a minimax game (Eq. (14)) whilst their interme-
diate features lead to discriminative visual representations.

obtained from data augmentation. SwAV [134] learns a set
of prototypes (i.e., cluster centroids) in the feature space and
assigns each sample to the closest prototype.
Remarks. Recent advances of discriminative unsupervised
models include both contrastive learning and deep cluster-
ing, which have set the new state of the art. On one side,
contrastive learning discriminates individual instances by
imposing transformation invariance at the instance-level.
Interestingly, this opposes some instance-level pretext tasks
that instead learn by predicting the applied transformations.
Contrastive learning also closely relates to consistency reg-
ularization in SSL in the sense of enforcing invariance to
transformations, although different loss functions are often
used. However, as shown in [144], a pairwise loss objective
– often used for consistency regularization in SSL – can be
also effective as contrastive loss (Eq. (12)). This suggests that
the essential idea behind them is identical – imposing trans-
formation invariance at instance level. Deep clustering, on
the other hand, discriminates between groups of instances
for discovering the underlying semantic boundaries, and
enforces group-level invariance. Consistency regularization
is also adopted by several deep clustering methods [149],
[157], conforming its generic efficacy beyond SSL. Lastly,
discriminative unsupervised learning can also be conducted
at both instance-level and group-level as in [150], [159].

3.2.3 Deep Generative Models

Deep generative models (DGMs) are unsupervised learners
explicitly modeling the data distribution [84], [85]. DGMs
are applicable for both semi-supervised and unsupervised
learning. A typical Generative Adversarial Network (GAN)
[88], [160], [161], [162], [163] contains a discriminator D to
differentiate real and fake samples, and a generator G that
can serve as an image encoder to capture the semantics in
latent space, as trained by a min-max game:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))],

(14)

where z is sampled from an input noise distribution pz(z).
GANs can learn representations at both the discriminator
and the generator level. See Figure 12 for an illustration of
deep generative model based on a GAN.

To learn representations at the discriminator-level, Deep
Convolutional GAN [164] adopts a pre-trained convolu-
tional discriminator to extract features for tackling a down-
stream image classification task. Later on, Self-supervised
GAN [162] and Transformation GAN [163] further imbue
the discriminator with a self-supervised pretext task to

learning

(b) global smoothness

learning

(a) local smoothness

Fig. 13: SSL and UL share (a) local and (b) global smoothness
assumptions. Unlabeled samples (grey dots) are assigned to
class labels depending on the decision boundaries derived
from the local or global smoothness assumptions.

predict the applied image transformation, thus enabling the
representations to capture latent visual structures.

To learn representations at the generator-level, Bidi-
rectional Generative Adversarial Networks (BiGAN) [160]
introduces an image encoder coupled with the generator,
which is trained with a joint discriminator loss to tie the data
distribution and the latent feature distribution together. This
allows the image encoder to capture the semantic variations
in its latent representation, and offer discriminative visual
representations for one nearest neighbor (1NN) classifica-
tion. To further improve BiGAN, BigBiGAN [161] adopts
more powerful discriminator and generator architectures
than BigGAN [165], together with an additional unary dis-
criminator loss to constrain the data or latent distribution
independently, therefore enabling more expressive unsuper-
vised representation learning at the generator-level.
Remarks. Although most state-of-the-art UL methods are
self-supervised models that solve pretext tasks or perform
unsupervised discriminative learning (as reviewed in §3.2.1
and §3.2.2), deep generative models are still an important
class of unsupervised learners owing to their native unsu-
pervised nature to learn expressive data representations in
a probabilistic manner. Further, they do not require manual
design of a meaningful discriminative learning objective,
while offering a unique ability to generate abundant data.

4 DISCUSSION ON SSL AND UL
In this section, we connect SSL and UL via further discus-
sion on their common learning assumptions (§4.1), and their
applications in different computer vision tasks (§4.2).

4.1 The learning assumptions shared by SSL and UL
As discussed in §2.1, the unsupervised learning objectives
in SSL are often formulated based on the smoothness as-
sumption [41]. Broadly speaking, the learning assumptions
of various discriminative SSL and UL algorithms can be
grouped into two types of smoothness assumptions, i.e.
local smoothness and global smoothness – as visually illus-
trated in Figure 13. In the following, we further elaborate
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these assumptions and discuss the different SSL and UL
algorithms that are built upon these assumptions.

4.1.1 Local Smoothness
There are two flavors of local smoothness assumption. First,
a sample xi is assumed to share the same class label as its
transformed variant x̂i (Eq. (15)). Second, a sample xi is
assumed to belong to the same class as its nearby sample
xj in the latent representation space (Eq. (16)). Given an
unlabeled sample xi, we can enforce local smoothness via:

min
θ

X

xi∈D
Lunsup(f(xi), f(x̂i)) (15)

min
θ

X

xi∈D
Lunsup(f(xi), f(xj)) (16)

where f(·) is the model that gives the specific output (such
as features or predictions). Lunsup(·) could be any similarity
metric quantifying the divergence/inconsistency between
two model outputs, such as a MSE, or contrastive loss.

Local smoothness among different views of the same
sample (Eq. (15)) can be achieved via the consistency regu-
larization techniques in SSL (§2.2.1, Figure 3). They enforce
predictive smoothness to the same samples under different
variations imposed at the input space and (or) model space,
given that the different transformed versions of the same
sample should lie in its own local neighborhood. Similarly,
the instance discrimination algorithms in UL also implicitly
enforce the same samples under different views or trans-
formations to have locally consistent representations, as
represented by contrastive learning which encourages local
invariances on each sample (§3.2.2, Figure 10).

Local smoothness among the nearby samples (Eq. (16))
can be imposed via the graph-based regularization tech-
niques in SSL. They often propagate the class labels to
the unlabeled samples using the labels of their neighbours
on the graph, as the nearby samples should likely share
the same class (§2.2.3, Figure 5). Similarly, neighbourhood
consistency is also explored in UL [130], [131], which forms
the semantic training labels by mining the nearest neighbors
of each sample based on feature similarity, given that nearest
neighbors are likely to belong to the same semantic class.

4.1.2 Global Smoothness
The global smoothness assumption indicates that a sample
xi could be assigned to a certain class (or target) zi based on
the underlying global structures captured by the model:

min
θ

X

xi∈D
Lunsup(f(xi), zi) (17)

where zi is the learning target (e.g. the cluster membership
or the most confident predicted class), which is derived
from the global class decision boundaries discovered during
training (Figure 13) whilst the decision boundaries are sup-
posed to lie in low density regions. Similar to Eq. (15) and
Eq. (16), Lunsup(·) is a similarity metric that quantifies the
inconsistency between the model output and the training
target, such as a cross-entropy loss. The global smoothness
assumption is also widely adopted in various SSL and UL
techniques to learn from the unlabeled samples with pseudo
learning targets, as detailed in the following.

The self-training techniques in SSL (§2.2.2, Figure 4) are
generally formulated based on global smoothness, as the
learning targets for unlabeled data are derived based on
the class decision boundaries discovered by the models. For
instance, in entropy minimization (Eq. (4), Figure 4 (a)), the
pseudo label is obtained as the class predicted with the high-
est confidence. In co-training and distillation (Eq. (5), Eq. (6),
Figure 4 (b)(c)), the learning targets come from the model co-
trained in parallel or pre-trained beforehand. Similarly, the
deep clustering algorithms in UL (§3.2.2, Figure 11) are also
proposed upon global smoothness, given that the cluster
memberships for unlabeled samples are acquired from an
online or offline clustering algorithm which uncovers the
latent class decision boundaries in the feature space.

4.1.3 Connections between SSL and UL
Common learning rationales in SSL and UL. As ana-
lyzed in §4.1.1 and §4.1.2, most SSL and UL algorithms
are formulated based on the same local smoothness or
global smoothness assumption. These algorithms both de-
sign visual learning objectives that enforce invariance or
equivariance towards different transformations applied on
the input data, as represented by consistency regularization
in SSL (§2.2.1) and instance discrimination in UL (§3.2.2).
Typical transformation strategies can range from simple
data augmentation [36], [38], [46], to more complex trans-
formations such as adversarial perturbations [47], [49], [55],
[56], rotations [101] and patch reordering [99], autoencoding
transformations [166], [167] and automated augmentation
[26], [37], [50]. On one side, most of these SSL and UL
methods hinge on learning representations invariant to data
augmentation and perturbations by assigning the same
underlying labels to the augmented and perturbed data
samples. On the other side, other SSL and UL methods
consider learning representations equivariant to different
transformations such as rotations and patch re-ordering by
learning to predict the type of transformations.

Many state-of-the-art SSL and UL methods can be well
related with the same underlying learning assumptions,
given that they introduce similar objectives to learn from
the unlabeled samples. In essence, the learning rationales
of these SSL and UL methods could be broadly categorized
as: (1) impose the consistency among different transformed
versions of the same sample (Eq. (15)), (2) enforce the
smoothness between a sample and its neighbouring one
(Eq. (16)), and (3) derive learning targets for the unlabeled
samples based on global decision boundaries (Eq. (17)).
The similarities and differences between problem setups.
In the problems setups, SSL and UL are similar in the sense
that both labeled and unlabeled data are often involved in
their training protocols before evaluating their generalized
model performance on the test set. In particular, the SSL
paradigm adopts one-stage training and uses both labeled
and unlabeled data during training (Figure 2); while most
existing UL protocols consider two-stage training (Figure 7)
– one stage for pre-training with unlabeled data and another
stage for fine-tuning with labeled data on a downstream task.

In brief, when it comes to training protocols, UL differs
from SSL in several ways: (1) the labeled data and unlabeled
data are not given together at once; (2) unlabeled and
labeled datasets may have different distributions. These
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properties make UL a more generic learning paradigm to
leverage different unlabeled datasets. Nevertheless, how
unsupervised pre-training upon different forms of unla-
beled data benefits the model generalization on specific
downstream tasks remains an open research question. For
instance, it remains unclear how an unsupervised model
pre-trained on natural colour images could generalize to a
downstream task that has a different data distribution such
as grayscale images in medical imaging. In this regard, SSL
provides a more reliable learning paradigm, given that the
label set offers the prior knowledge for the models and (or)
the model designers to select the useful set of unlabeled
samples that are similar to the labeled data distribution.

4.2 Applied SSL and UL in Visual Recognition

In §2 and §3, we mainly present the SSL and UL methods
for standard image classification. However, their underlying
learning rationales can be generalized to other challenging
computer vision tasks, e.g., semantic segmentation [31],
[168], object detection [29], [169], unsupervised domain
adaptation [124], [170], pose estimation [33], 3D scene un-
derstanding [171], video recognition [104], [172], etc. In the
following, we review three core visual recognition tasks that
widely benefit from SSL and UL methods to exploit unla-
beled data: semantic segmentation (§4.2.1), object detection
(§4.2.2), and unsupervised domain adaptation (§4.2.3).

4.2.1 Semantic Segmentation
Semantic segmentation aims to assign a semantic class label
for each pixel in an input image. It is a core computer
vision task that could be beneficial to various real-world
applications such as medical image analysis [173], [174],
[175] and autonomous driving [176], [177]. Supervised se-
mantic segmentation requires tedious and expensive pixel-
wise label annotations, e.g. manually annotating one single
natural image in Cityscapes needs 1.5 hours [176].

To reduce the annotation costs in semantic segmentation,
a group of works consider only a small set of the training
data annotated with per-pixel semantic labels while the
rest of the training data being unlabeled – known as semi-
supervised semantic segmentation. These works generally
inherit similar learning rationales as SSL or UL for image
classification, and adapt techniques such as consistency
regularization [178], [179], [180], [181], self-training [168],
[174], [182], [183], [184], [185], [186], GAN frameworks [187],
[188] in SSL, or contrastive learning [189], [190], [191], [192]
in UL to learn from unlabeled images. Nevertheless, un-
supervised loss terms in semantic segmentation are often
required to impose in a per-pixel manner to align with the
pixel-wise learning objective in semantic segmentation. In
the following, we discuss the three most representative lines
of state-of-the-art methods driven by recent advances in SSL
and UL for semi-supervised semantic segmentation.

Consistency regularization (§2.2.1) can be generalized for
pixel-wise tasks by formulating the consistency loss (Eq. (2),
Eq. (3)) at the pixel level. In a similar spirit as the standard
consistency regularization in SSL, recent works in semi-
supervised semantic segmentation [178], [179], [180], [181]
resort to enforcing pixel consistency among the images
before and after perturbations, whilst perturbations being

introduced at the input space [178] or feature space [179].
For instance, the first consistency regularization method in
semantic segmentation [178] applies CutMix [193] to perturb
the input images with partial corruption, and imposes pixel-
level loss terms to ensure the uncorrupted regions in per-
turbed images should have consistent pixel-wise predictions
as the same regions in original images. A cross-consistency
training [179] instead applies feature perturbations by in-
jecting noise into network’s activations and enforces pixel
consistency between the clean and perturbed outputs.

Self-training algorithms (§2.2.2) are adapted for semi-
supervised semantic segmentation [168], [174], [182], [183],
[184], [185], [186], where pseudo segmentation maps on un-
labeled images are propagated using a pre-trained teacher
model [185], or a co-trained one [168]. For example, a
self-training method [185] propagates pseudo segmentation
labels with two steps – (1) assigning pseudo labels on un-
labeled pixels with a pre-trained teacher model; and (2) re-
training a student model with the re-labeled dataset – until
no more performance gain is achieved. Another self-training
approach [168] adopts a co-training scheme, training two
models with the segmentation predictions from each other.

Contrastive learning is widely used in UL and adapted to
learn from unlabeled data in semantic segmentation [189],
[190], [191], [192]. To formulate the contrastive loss (Eq. (12))
per pixel, we needs meaningful positive and negative pairs
w.r.t. the pixels spatial locations. For this aim, a directional
context-aware contrastive loss [189] is proposed to crop two
patches from one image, and take features at the same
location as a positive pair and the rest as negative pairs.
Another pixel contrastive loss [191] is introduced to align
features before and after a random color augmentation,
where features at the same location are positive pairs, and
sampling a fixed amount of negatives from different images.

4.2.2 Object Detection

Object detection aims to predict a set of bounding boxes
and the corresponding class labels for the objects of interest
in an image. It is an important computer vision task that
widely impacts different applications such as detection of
vehicles [194], logos [195], and text [196]. Supervised object
detection requires costly annotation efforts – annotating the
bounding box of a single object takes up to 42 seconds [197].

To boost model generalizations, recent works exploited
a set of completely unlabeled images (without bounding
box or class label information) and a small set of labeled
data – known as semi-supervised object detection. These
works mainly reformulate two streams of SSL techniques,
including consistency regularization [29], [169], [198], [199],
[200], [201] and self-training [34], [202], [203], [204], both
of which introduce the learning targets for both bounding
boxes and class labels to learn from the unlabeled data.

Consistency regularization (§2.2.1) is introduced for semi-
supervised object detection to propagate the soft label and
bounding boxes assignment on unlabeled images based on
dual consistency constraints on classification and regres-
sion [29], [169], [198], [199], [200], [201]. One line of works
apply data augmentation such as random flipping [169]
and MixUp [51] to generate augmented views of unlabeled
images and encourage the predicted bounding boxes and its
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class labels remain consistent for the different views. Com-
pared to standard consistency regularization, these methods
especially need re-estimating the bounding box location in
an augmented image, such as flip the bounding box [169],
or calculate the overlapped bounding boxes of two mixed
images in MixUp [51]. Another line of works follow a
teacher-student training framework and impose teacher-
student consistency [29], [199], [200], [201] similar to Mean
Teacher [38]. The teacher model is derived either from the
student model via exponential mean average (EMA) [29],
[199], [201], or by applying non-maximum suppression
(NMS, a filtering technique for refining the detected bound-
ing boxes) on the instant model outputs [200] to obtain the
pseudo bounding boxes and label annotations for training.

Self-training algorithms (§2.2.2) are also introduced to
annotated unlabeled images for object detection [34], [202],
[203], [204]. To improve the quality of pseudo labels, recent
works propose interactive self-training to progressively re-
fine the pseudo labels with NMS [202], or quantify model
uncertainty to select or derive more reliable pseudo la-
bels [203], [204] to learn from unlabeled data.

4.2.3 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) is a special case of
SSL where the labeled (source) and unlabeled (target) data
lie in different distributions, a.k.a. different domains. UDA
is essential for visual recognition [205], as the statistical
properties of visual data are sensitive to a wider variety of
factors, e.g., illumination, viewpoint, resolution, occlusion,
times of the day, and weather conditions. While most UDA
methods focus on tackling the domain gap between the
labeled and unlabeled data, SSL and UL algorithms can also
be adapted to learn from unlabeled data in UDA, as follows.

Consistency regularization (§2.2.1) is shown to be effective
in UDA, where various UDA approaches apply input trans-
formations or model ensembling to simulate variations in
input or model space [38], [206], [207]. To generate input
variations, dual MixUp [206] integrates category-level and
domain-level MixUp to regularize the model with con-
sistency constraints, thus learning from unlabeled data to
enhance domain-invariance. To generate model variations,
self-ensembling [207] utilizes the Mean Teacher [38] to im-
pute unlabeled training targets in target domain.

Self-training (§2.2.2) has been also useful for UDA. Sim-
ilar to SSL, self-training for UDA include three streams of
techniques to impute pseudo labels on the unlabeled target
samples, including entropy minimization, pseudo-label and
co-training. To ensure the effectiveness, self-training meth-
ods are often coupled with domain distribution alignment
for reducing the domain shift. For instance, entropy mini-
mization (Eq. (4)) is adopted for UDA [208], [209], [210], in
combination with distribution alignment techniques such as
domain-specific batch normalization layers [208], aligning
second-order statistics of features [209], or adversarial train-
ing and gradient synchronization [210]. Co-training (Eq. (5))
is also introduced for UDA, which imputes training targets
from multiple co-trained classifiers to learn from unlabeled
data and match cross-domain distributions [211].

Deep generative models (DGMs), as a class of models for
SSL and UL (§2.2.4, §3.2.3), are widely adopted for UDA.
Differently from UDA methods reducing the domain shift at

the feature level, DGMs provide a complementary solution
to mitigate the domain discrepancy at pixel level by cross-
domain image-to-image translation. The majority of these
frameworks are based on GANs, such as PixelDA [212],
generate to adapt [213], and GANs with cycle-consistency
like CyCADA [214], SBADA-GAN [215], and CrDoCo [216].
These models typically learn a real-to-real [214], [215], [216]
or synthetic-to-real [212], [213] mapping, rendering the style
of the labeled source to the unlabeled target domain, thus
offering synthetic training data with pseudo labels.

Self-supervised learning popularized in SSL and UL
(§2.2.5, §3.2.1), is also introduced in UDA to construct auxil-
iary self-supervised learning objectives on unlabeled data.
Self-supervised models often address the UDA problem
by self-supervision coupled with a supervised objective
on the labeled source data [124], [217], [218]. The pioneer
work in this direction is JiGen [124], which learns jointly
to classify objects and solve the jigsaw puzzles [99] pretext
task to achieve better generalization in new domains. Re-
cent works [124], [217], [218] explored other self-supervised
pretext tasks such as predicting rotation [217], [218], and
patch ordering [124]. Besides pretext tasks, recent UDA
methods also explored discriminative self-supervision sig-
nals based on clustering or contrastive learning. For in-
stance, DANCE [170] performs neighborhood clustering by
assigning the target samples to a “known” class prototype in
the source domain or its neighbor in the target domain. Gra-
dient regularized contrastive learning [219] leverages the
contrastive loss to push unlabeled target samples towards
the most similar labeled source ones. Similarly, [220] aligns
target domain features to class prototypes in the source
domain via a contrastive loss, minimizing the distances be-
tween cross-domain samples likely sharing the same class.

5 EMERGING TRENDS AND OPEN CHALLENGES

In this section, we discuss the emerging trends in SSL and
UL from unlabeled data, covering three directions, namely
open-set (§5.1), incremental (§5.2) and multi-modal (§5.3)
learning. We detail recent advances and open challenges.

5.1 Open-Set Learning from Unlabeled Data

In §2, we review works addressing the relatively simple
closed-set learning in SSL, which assume that unlabeled
data share the same label space as the labeled one. However,
this closed-set assumption may greatly hinder the effective-
ness of SSL in leveraging real-world uncurated unlabeled
data that contains unseen classes, i.e., out-of-distribution
(OOD) samples (also known as outliers) [39]. When apply-
ing most existing SSL methods to open-set learning with
noisy data, their performance degrade significantly, as OOD
samples may cause catastrophic error propagation.

A line of works propose to address a more complex open-
set SSL scenario [14], [15], [221], [222], [223], [224], where
the unlabeled set contains task-irrelevant OOD data. In this
setup (so-called open-world SSL), unlabeled samples are
not all beneficial. To prevent possible performance hazards
caused by unlabeled OOD samples, recent advances in
SSL propose various sample-specific selection strategies to
discount their importance or usage [14], [15], [221]. The
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pioneer works including UASD [14] and DS3L [15] propose
to impose a dynamic weighting function to down-weight
the unsupervised regularization loss term proportional to
the likelihood that an unlabeled sample belongs to an
unseen class. Follow-up works resort to curriculum learn-
ing [221] by training an OOD classifier to detect and discard
the potentially detrimental samples. More recently, Open-
Match [222] propose to train a set of one-vs-all classifiers for
detecting inliers and outliers and regularize the model with
a consistency constraint on only the unlabeled inliers.
Open Challenges. The open-set SSL calls for integrating
OOD detection [225] or novel class discovery [226] with SSL
in a unified model to advance selective exploitation of noisy
unlabeled data. Moreover, a more recent work propose a
universal SSL benchmark [223] which further extends the
distribution mismatch problem in open-set setup as subset
or intersectional class mismatch, and feature distribution
mismatch. These more realistic setups pose multiple new
challenges, including confidence calibration of DNN for
OOD detection [225], [225], [227], [228], imbalanced class
distribution caused by real-world long-tailed unlabeled
data [229], [230], and discovery of unseen classes [226],
[231], [232]. Although recent advances in open-set SSL have
explored OOD detection, the other challenges remain to be
resolved to exploit real-world unlabeled data.

5.2 Incremental Learning from Unlabeled Data

Existing works on SSL and UL often assume all unlabeled
training data is available at once, which however may
not always hold in practice due to privacy concerns or
computational constraints. In many realistic scenarios, we
need to perform incremental learning (IL) with new data
to update the model incrementally without access to past
training data. Here we review research directions on IL from
unlabeled data [233], [234] and discuss its open challenges.

Incremental learning (IL) from unlabeled data has been
investigated in a semi-supervised fashion [233]. IL (also
known as continual learning and lifelong learning [235])
aims to extend an existing model’s knowledge without
accessing the previous training data. Most existing IL ap-
proaches use regularization objectives to not forget old
knowledge, i.e., reducing catastrophic forgetting [236]. To
this aim, unlabeled data is often used in IL to prevent catas-
trophic forgetting by estimating the importance weights
of model parameters for old tasks [237], or formulating
a knowledge distillation objective [233] to consolidate the
knowledge learned from old data. Recently, multiple works
explore IL from unlabeled data that comes as a non-
stationary stream [234], where the class label space may vary
over time [238]. In this setting, the goal is to learn a salient
representation from continuous unlabeled data streams. To
expand the representations for novel classes and unlabeled
data, several strategies are adopted to dynamically update
representations in the latent space, such as creating new cen-
troids by online clustering [238] and updating mixture-of-
Gaussians [234]. Some recent works apply self-supervised
techniques on the unlabeled test-data [239], [240], [241], to
overcome possible shifts in the data distribution [242].
Open Challenges. Incremental learning from unlabeled
data requires solving multiple challenges, such as catas-

trophic forgetting [233], modeling new concepts [234], [238]
and evolving data streams [242]. Without access to all the
unlabeled training data at once, addressing these challenges
is nontrivial as directly applying many existing SSL and
UL methods could not guarantee good generalization per-
formance, e.g.pseudo labels may suffer the confirmation
bias problem [243] when classifying unseen unlabeled data.
Incremental learning from a stream of potentially non-i.i.d.
unlabeled data remains an open challenge.

5.3 Multi-Modal Learning from Unlabeled Data

A growing number of works combine visual and non-
visual modalities (e.g., text, audio) to form discriminative
self-supervision signals that enable learning from multi-
modal unlabeled data. To bring vision and language for
unsupervised learning, variants of vision and language
BERT models (e.g., ViLBERT [244], LXMERT [245], VL-
BERT [246], Uniter [247]) are built upon the transformer
blocks [248] to jointly model images and natural language
in an unsupervised way. Specifically, the visual, linguistic
or their joint representations can be learned in an unsuper-
vised manner by solving the Cloze task in natural language
processing which predicts the masked words in the input
sentences [249], or by optimizing a linguistic-visual align-
ment objective [245], [250]. Another line of works utilize
the language supervision (e.g.from narrated materials [251],
[252], [253], [254]) to guide unsupervised representation
learning by aligning images and languages in the shared
latent space, as exemplified by CLIP [253] and ALIGN [254].

Similarly, to combine audio and visual modalities for
unsupervised learning, existing works exploit the natural
audio-visual correspondence in videos to formulate various
self-supervised signals, which predict the cross-modal corre-
spondence [255], [256], align the temporally corresponding
representations [252], [257], or cluster their representations
in a shared audio-visual latent space [172], [258]. Several
works further explore audio, vision and language together
for unsupervised representation learning by aligning dif-
ferent modalities in a shared latent space [259] or in a
hierarchical one for audio-vision and vision-language [251].
Open Challenges. The success of multi-modal learning
from unlabeled data often relies on assuming that different
modalities are semantically correlated. For instance, when
clustering audio and video data for unsupervised repre-
sentation learning [172], or transferring text knowledge to
unlabeled images [260], the two modalities are assumed to
share similar semantics. However, this may not hold in real-
world data, leading to degraded performance [252], [261].
Thus, it remains an open challenge to learn from multi-
modal unlabeled data with semantic gap across modalities.

6 CONCLUSION

Learning visual representations with limited or no manual
supervision is critical for scalable computer vision appli-
cations. Semi-supervised learning (SSL) and unsupervised
learning (UL) models provide feasible and promising solu-
tions to learn from unlabeled visual data. In this comprehen-
sive survey, we have introduced unified problem definitions
and taxonomies to summarize and correlate a wide variety
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of recent advanced and popularized SSL and UL deep learn-
ing methodologies for building superior visual classification
models. We believe that our concise taxonomies of existing
algorithms and extensive discussions of emerging trends
help to better understand the status quo of research in
visual representation learning with unlabeled data, as well
as to inspire new learning solutions for major unresolved
challenges involved in the limited-label regime.
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