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We deal with the vanishing viscosity scheme for the transport/continuity equation 
∂tu + div(ub) = 0 drifted by a divergence-free vector field b. Under general Sobolev 
assumptions on b, we show the convergence of such scheme to the unique Lagrangian 
solution of the transport equation. Our proof is based on the use of stochastic 
flows and yields quantitative rates of convergence. This offers a completely general 
selection criterion for the transport equation (even beyond the distributional regime) 
which compensates the wild non-uniqueness phenomenon for solutions with low 
integrability arising from convex integration constructions, as shown in recent works 
[8,28–30], and rules out the possibility of anomalous dissipation.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

On étudie le schéma de viscosité évanescente pour l’équation de transport/continuité 
∂tu + div(ub) = 0 associée à un champ de vecteurs b qui a divergence nulle. Selon 
des hypothèses générales du type Sobolev sur b, nous montrons la convergence d’un 
tel schéma vers l’unique solution lagrangienne de l’équation de transport. La preuve 
que nous présentons est basée sur l’utilisation de flux stochastiques et donne des 
estimations quantitatives de la vitesse de convergence. Ceci mène à l’émergence d’un 
critère de sélection général pour l’équation de transport (même au-delà du régime 
distributionnel) qui compense le phénomène de non-unicité sauvage pour solutions 
à faible intégrabilité, qui ont été construites dans des travaux récents [8,28–30] avec 
des techniques d’intégration convexe. Cela exclut aussi la possibilité de dissipation 
anormale.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The goal of this paper is to exploit the advection-diffusion equation

∂tv + div(vb) = Δv

to set up the vanishing viscosity scheme for the linear transport/continuity equation

∂tu + div(ub) = 0

associated with a Sobolev, divergence-free vector field b. This is carried out in a framework of low inte-
grability for the solution that does not guarantee uniqueness at the level of transport/continuity equation. 
More precisely, for every ε > 0 we consider the unique solution vε to

∂tvε + div(vεb) = εΔvε

and establish quantitative convergence rates for vε → uL as ε ↓ 0, where uL is the Lagrangian solution of the 
transport equation, that is the solution transported by the flow of b. Such a result fits into a well understood 
physical mechanism (the zero diffusivity/viscosity limit) and has also its own, mathematical interest: similar 
schemes have been proposed over the years for different equations (see e.g. for hyperbolic conservation laws 
[4,20], for fluid-dynamics [27] and references therein).

The transport equation drifted by Sobolev vector fields

Given a vector field b : [0, T ] ×Td → Rd on the d-dimensional torus Td := Rd/Zd, we consider the initial 
value problem for the transport/continuity equation associated with b, i.e.

{
∂tu + div(ub) = 0
u|t=0 = u0,

(TE)

for a given initial datum u0 : Td → R. It is by now well known that (TE) is deeply connected with the 
ordinary differential equation associated to b and more precisely with the regular Lagrangian flow of b (see 
Definition 3.1 below). This concept has proven to be the right generalization of the classical notion of flow 
in connection with such problems (see e.g. [3,5]). If b ∈ L1

tW
1,p
x , existence and uniqueness of the regular 

Lagrangian flow X of b hold [17]: in turn, a straightforward computation allows to check that the transport 
of the initial datum along the characteristics selected by the regular Lagrangian flow always defines a solution 
to (TE). More precisely, the function uL(t, x) := u0(X−1(t, ·)(x)) is the unique distributional solution to 
(TE), whenever u0 ∈ Lq for some q ≥ 1 with 1/p + 1/q ≤ 1, see [17]. We will refer to uL as the Lagrangian 
solution.

The need for a selection criterion for (TE)
A few years ago, in a series of innovative contributions, Modena and Székelyhidi constructed a plethora 

of counterexamples, showing ill-posedness of the problem (TE). More precisely, in [29,30] the authors have 
produced divergence-free, Sobolev vector fields b ∈ CtW

1,p
x such that (TE) admits infinitely many distribu-

tional solutions u ∈ CtL
q
x, with 1/p+ 1/q > 1 +σ(d) and ub ∈ L1. Here σ(d) is a dimensional constant, which 

has been refined in [28] to σ(d) := 1/d. Yet the situation in the intermediate regime 1 < 1/p + 1/q ≤ 1 + σ(d)
is an open problem (see, however, [8]). Remarkably, in the works just mentioned, the authors build distri-
butional solutions that do not enjoy typical properties of smooth solutions, such as the conservation of the 
Lp norms. It is therefore natural to ask whether such solutions can be obtained as limit of (physically or 
numerically) significant approximation procedures, as for instance the vanishing viscosity method.
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Advection-diffusion equations and the vanishing viscosity scheme

Given a vector field b : [0, T ] × Td → Rd, one can consider the initial value problem for the advection-
diffusion equation associated with b, i.e.

{
∂tv + div(vb) = Δv

v|t=0 = v0,
(ADE)

where v0 : Td → R is a given initial datum. Due to the presence of the Laplacian, (ADE) is a second-order 
parabolic partial differential equation. If the vector field b is smooth, classical existence and uniqueness 
results are available and can be found in standard PDEs textbooks (see e.g. [19]). The problem (ADE) has 
been also studied outside the smooth framework in many classical references (besides quoting again [19], we 
mention the monograph [22] and the more recent book [23], which is intimately related to a fluid dynamics 
context). In particular, from [24] we know that if b ∈ L1

tW
1,1
x and v0 ∈ L∞, then there exists a unique 

solution v ∈ L∞
t L2

x ∩ L2
tH

1
x to (ADE). This allows one to set up the vanishing viscosity scheme and the 

main result of the paper is a quantitative version of the following theorem:

Selection Theorem (Vanishing viscosity for linear transport). Let b ∈ L1
tW

1,1
x be a divergence-free vector 

field on the torus Td and let u0 ∈ L1 be a given initial datum. Let (vε0)ε ⊂ L∞
x be any sequence of 

functions such that vε0 → u0 strongly in L1
x. Consider the vanishing viscosity solutions, i.e. the sequence 

(vε)ε>0 ⊆ L∞
t L∞

x ∩ L2
tH

1
x of solutions to

{
∂tvε + b · ∇vε = εΔvε in (0, T ) × Td

vε|t=0 = vε0 in Td.
(VV)

Then (vε)ε>0 converges in CtL
1
x to the Lagrangian solution uL to (TE).

For the precise statements of the quantitative results, we refer the reader to Section 4 and 5 below. We 
highlight the applicability range of such result, which is completely general: dealing with the (extreme) case 
of a W 1,1 field and an L1 solution (in space), we prove that the vanishing viscosity scheme always acts as a 
selection principle (even in an integrability regime where the product ub cannot be defined distributionally) 
and that the family (vε)ε always selects, in the limit, the Lagrangian solution uL. Observe that, for the 
Lagrangian solution, all its Lq-norms are conserved (recall that we assume the vector field to be divergence-
free). In particular, for u0 ∈ L2, our result rules out the possibility of anomalous dissipation in the vanishing 
viscosity limit, that is, it implies that

ε

T̂

0

‖∇vε‖2
L2 dt → 0, as ε → 0,

see Remark 4.3. As in the case of the advection-diffusion equation (ADE), distributional solutions of (TE)
exist even if we require only integrability assumptions on b. However, in contrast to the case of (ADE), 
for vector fields outside the Sobolev class there is a wide literature of counterexamples to the uniqueness 
for (TE), see for example [1,2,17,16]. There are many contexts in PDEs (conservation laws, fluid dynamics, 
etc...) in which the notion of distributional solution is too general to ensure uniqueness and therefore 
selection criteria are needed to characterize particularly meaningful solutions. The selection problem for the 
transport equation has already been posed in [9] (see also [15]) where the authors considered as a (non) 
selection criterion the smooth approximation of the vector field. In particular, it is shown that a smooth 
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approximation may produce different (Lagrangian) solutions in the limit if the vector field is not W 1,p

for any p. Moreover, results of Lagrangianity for weak solutions of the 2D Euler equations obtained via 
vanishing viscosity have been established in [12,13], see also [11] for the Lagrangianity of solutions obtained 
via vortex-blob approximations.

We present two proofs of the Selection Theorem. The first one, presented in Section 4, has a Lagrangian 
nature and is based on the use of stochastic flows ([7,10]). Moreover, in Section 5 we provide quantitative
rates of convergence of vε to uL and also quantitative (in the viscosity) stability estimates for solutions of 
the advection-diffusion equation. Such rates are compared with the ones obtained in the recent works [6]
and [31]. The second proof (which is contained in the Appendix) is more Eulerian in spirit and is a slightly 
expanded version of the one contained in DiPerna-Lions’ original contribution [17], based on a duality 
argument. We offer a comprehensive, detailed proof which ultimately reveals the complete generality of the 
vanishing viscosity scheme, which is able to bypass the distributional regime. In particular, we cover also 
the case p = 1 which was left somehow implicit in [17].
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2. Preliminaries and notations

We begin by fixing the notation and recalling some basic facts we will need in the following.

2.1. Notation

Throughout the paper, d ≥ 1 will be a fixed integer. We will denote by Td := Rd/Zd the d-dimensional 
flat torus and by L d the Lebesgue measure on it. We identify the d-dimensional flat torus with the cube 
[0, 1)d and we denote with d the geodesic distance on Td, which is given by

d(x, y) = min{|x− y − k| : k ∈ Zd such that |k| ≤ 2}.

We will use the letters p, q to denote real numbers in [1, +∞] and p′ will be the (Hölder) conjugate to p. 
We will adopt the customary notation for Lebesgue spaces Lp(Td) and for Sobolev spaces W k,p(Td); in 
particular, Hk(Td) := W k,2(Td). We will denote with ‖ ·‖Lp (respectively ‖ ·‖Wk,p , ‖ ·‖Hk) the norms of the 
aforementioned functional spaces, omitting the domain dependence when not necessary. Every definition 
below can be adapted in a standard way to the case of spaces involving time, like e.g. L1([0, T ]; Lp(Td)).

Equi-integrability
We recall the definition of equi-integrability for a family of functions in L1:
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Definition 2.1 (Equi-integrability). A family {ϕi}i∈I ⊂ L1(Td) is equi-integrable if for every ε > 0 there 
exists δ > 0 such that for every Borel set E ⊂ Td with L d(E) ≤ δ it holds

ˆ

E

|ϕi|dx ≤ ε for every i ∈ I.

The following well-known results offer useful criteria to check the equi-integrability of a family of functions 
in L1:

Theorem 2.2 (Dunford-Pettis, de la Vallée-Poussin). Let {ϕi}i∈I ⊂ L1(Td) be a bounded family. Then the 
following are equivalent:

(i) {ϕi}i∈I is equi-integrable;
(ii) {ϕi}i∈I is weakly sequentially pre-compact in L1(Td);
(iii) there exists a non-negative, increasing, convex function Ψ: [0, +∞) → [0, +∞) such that

lim
t→+∞

Ψ(t)
t

= +∞ and sup
i∈I

ˆ

Td

Ψ(|ϕi|)dx < +∞.

We finish this subsection with the following useful lemma.

Lemma 2.3. Let {ϕi}i∈I ⊂ L1(Td) be a bounded family. Then, {ϕi}i∈I is equi-integrable if and only if for 
any r ∈ (1, ∞] and ε > 0 there exist {g1

i }i∈I ⊂ L1(Td), {g2
i } ⊂ Lr(Td), and a constant Cε > 0 such that

fi = g1
i + g2

i , sup
i∈I

‖g1
i ‖L1 ≤ ε, sup

i∈I
‖g2

i ‖Lr ≤ Cε.

Proof. Let {ϕi}i∈I ⊂ L1(Td) be an equi-integrable sequence such that supi∈I ‖ϕi‖L1 ≤ C. Let ε > 0 be 
fixed and let δ > 0 as in Definition 2.1. Then, we define the set

Ai
δ :=

{
x ∈ Td : |ϕi(x)| > C

δ

}
,

and by Chebishev inequality we know that

sup
i∈I

L d(Ai
δ) ≤

δ

C
‖ϕi‖L1 ≤ δ.

So, by the equi-integrability

sup
i∈I

ˆ

Ai
δ

|ϕi|dx ≤ ε,

and it is now clear that, by defining g1
i = ϕiχAi

δ
and g2

i = ϕi(1 − χAi
δ
), we have that

sup
i∈I

‖gi‖L1 ≤ ε, sup
i∈I

‖g2
i ‖Lr ≤ Cε,

since Td has finite measure.
We now prove the opposite implication. Let r ∈ (1, ∞] and ε > 0 be fixed, we consider a decomposition 

such that
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‖g1
i ‖L1 ≤ ε/2, ‖g2

i ‖Lr ≤ Cε.

Let us check that we can take δ =
(

ε
2Cε

)r/(r−1)
in the definition of equi-integrability. Indeed, if A ⊂ Td is 

such that L d(A) ≤ δ, we have that

ˆ

A

|ϕi|dx ≤
ˆ

A

|g1
i |dx +

ˆ

A

|g2
i |dx ≤ ‖g1

i ‖L1 + ‖g2
i ‖LrL d(A)(r−1)/r ≤ ε/2 + ε/2 = ε. �

Some harmonic analysis tools
We will need to work with weak Lebesgue spaces, denoted by Mp(Td): for the sake of completeness, we 

recall here their definition and some useful lemmata.

Definition 2.4. Let u : Td → R be a measurable function. For any 1 ≤ p < ∞ we define

|||u|||pMp = sup
λ>0

{
λpL d

(
{x ∈ Td : |u(x)| > λ}

)}
,

and we define the weak Lebesgue space Mp(Td) as the set of the functions u : Td → R with |||u|||Mp < ∞. 
By convention, for p = ∞ we set M∞(Td) = L∞(Td).

Note that ||| · |||Mp is not subadditive, hence it is not a norm. As a consequence, Mp(Td) is not a Banach 
space. Moreover, since for every λ > 0

λpL d
(
{x ∈ Td : |u(x)| > λ}

)
=

ˆ

|u|>λ

λpdx ≤
ˆ

|u|>λ

|u(x)|pdx ≤ ‖u‖pLp ,

we have the inclusion Lp(Td) ⊂ Mp(Td) and in particular |||u|||Mp ≤ ‖u‖Lp . The following lemma shows 
that we can interpolate the spaces M1 and Mp, with p > 1, obtaining a bound on the L1 norm.

Lemma 2.5. Let u : Td → [0, ∞) be a non-negative measurable function. Then for every p ∈ (1, ∞) we have 
the interpolation estimate

‖u‖L1 ≤ p

p− 1 |||u|||M1

[
1 + log

(
|||u|||Mp

|||u|||M1

)]
,

while for p = ∞ we have

‖u‖L1 ≤ |||u|||M1

[
1 + log

(
‖u‖L∞

|||u|||M1

)]
.

We recall the definition of the Hardy-Littlewood maximal function.

Definition 2.6. Let f ∈ L1(Td), we define Mf the maximal function of f as

Mf(x) = sup
r>0

1
L d(Br)

ˆ

Br(x)

|f(y)|dy for every x ∈ Td.

The following estimates hold.
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Lemma 2.7. For every 1 < p ≤ ∞ we have the strong estimate

‖Mf‖Lp ≤ Cd,p‖f‖Lp ,

while for p = 1 only the weak estimate

|||Mf |||M1 ≤ Cd‖f‖L1

holds.

Finally, we recall the following estimate on the different quotients of a W 1,1 function.

Lemma 2.8. Let f ∈ W 1,1(Td). Then there exists a negligible set N ⊂ Td such that

|f(x) − f(y)| ≤ C(d)d(x, y) (MDf(x) + MDf(y)) ,

for every x, y ∈ Td \ N , where Du is the distributional derivative of u.

3. The transport equation. Setup of the vanishing viscosity scheme

3.1. The transport equation and regular Lagrangian flows

In the following, we will consider the initial value problem for the transport/continuity equation

{
∂tu + div(bu) = 0 in (0, T ) × Td

u|t=0 = u0 in Td
(3.1)

where T > 0, b : [0, T ] × Td → Rd is a given divergence-free vector field and u0 : Td → R is the initial 
datum. We will work in Sobolev classes for the velocity field and the equation (3.1) will be understood in 
the sense of distributions. We explicitly observe that, since we are working on the torus, the integrability of 
b is sufficient to prevent the blow up of its trajectories and thus we can work with the regular Lagrangian 
flow of b:

Definition 3.1 (Regular Lagrangian flow). Let b ∈ L1((0, T ); L1(Td)) be a divergence-free vector field. A 
map X : (0, T ) × (0, T ) × Td → Td is a regular Lagrangian flow of b if the following conditions hold:

• for a.e. x ∈ Td and for any t ∈ [0, T ] the map s ∈ [0, T ] 
→ X(t, s, x) = Xt,s(x) ∈ Td is an absolutely 
continuous solution of

{
∂sXt,s(x) = b(s,Xt,s(x)) s ∈ [0, T ],
Xt,t(x) = x.

• For any t ∈ [0, T ] and s ∈ [0, T ] the map x ∈ Td 
→ Xt,s(x) ∈ Td is measure-preserving.

Existence and uniqueness of the regular Lagrangian flow of a Sobolev, divergence-free vector field b are 
ensured by [17] and therefore we can give the following definition:

Definition 3.2. Let b ∈ L1((0, T ); W 1,1(Td)) be a divergence-free vector field and let X : (0, T ) × (0, T ) ×
Td → Td be its regular Lagrangian flow. If u0 ∈ L1(Td), then the map
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uL(t, x) := u0(Xt,0(x))

is called Lagrangian solution to (3.1).

Observe that, under the assumption that b is divergence-free, if u0b ∈ L1(Td) then the Lagrangian 
solution is also a distributional solution to (3.1).

3.2. Setup of the vanishing viscosity scheme

For each ε > 0 we introduce the parabolic problem
{
∂tvε + b · ∇vε = εΔvε in (0, T ) × Td

vε|t=0 = vε0 in Td
(3.2)

being vε0 a suitable bounded approximation of the initial datum u0. We recall the following proposition.

Proposition 3.3 ([24, Proposition 5.3]). Let b ∈ L1((0, T ); W 1,1(Td)) be a divergence-free vector field and 
let v0 ∈ L∞(Td) be given. Then the problem

{
∂tv + div(bv) = Δv in (0, T ) × Td

v|t=0 = v0 in Td
(3.3)

admits a unique solution v ∈ L∞((0, T ); L2(Td)) ∩ L2((0, T ), H1(Td)). Furthermore, it holds v ∈
L∞((0, T ); L∞(Td)) and

‖v‖L∞((0,T );Ls(Td)) ≤ ‖v0‖Ls(Td) (3.4)

for any real number s ∈ [1, +∞].

In view of Proposition 3.3, the problem (3.2) admits a unique solution vε ∈ L∞((0, T ); L2(Td)) ∩
L2((0, T ), H1(Td)), hence the family (vε)ε>0 is well-defined. Our goal will be to establish compactness 
of the family (vε)ε>0 and characterize its limit points. We will show that a “selection principle” holds: the 
sequence (vε)ε always converges as ε → 0 to the Lagrangian solution to (3.1).

3.3. Stochastic flows

We now introduce the stochastic Lagrangian formulation of the system (3.2). Let (Ω, (Ft)t≥0, P ) be a 
given filtered probability space, and let W t be a Td-valued Brownian motion adapted to the backward 
filtration, i.e. for any fixed t ∈ [0, T ] and any s ∈ [0, t], the Brownian motion W s is such that W t = 0. We 
have the following definition.

Definition 3.4 (Stochastic flows). Let ε > 0 and let b ∈ L1((0, T ); L1(Td)) be a divergence-free vector field. 
A map Xε : (0, T ) × (0, T ) × Td × Ω → Td is a stochastic flow of b if

• for any t ∈ [0, T ], for any x ∈ Td and for a.e. ω ∈ Ω, the map s ∈ [0, t] 
→ Xε(t, s, x, ω) = Xε
t,s(x, ω) ∈ Td

is a continuous solution to{
dXε

t,s(x, ω) = b(s,Xε
t,s(x, ω))ds +

√
2ε dW s(ω), s ∈ [0, t),

Xε = x,
(3.5)
t,t
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• for any t ∈ [0, T ] and s ∈ [0, t] and a.e. ω ∈ Ω the map x ∈ Td 
→ Xε
t,s(x, ω) ∈ Td is measure preserving.

The celebrated Feynman-Kac formula, see [21], gives an explicit representation of the solution vε of (3.2)
in terms of the stochastic flow of b, that is

vε(t, x) = E[vε0(Xε
t,0(x))],

where we have used the standard notation E[f ] to denote the average with respect to P , that is

E[f ] :=
ˆ

Ω

f(ω)dP (ω).

We remark that by considering a divergence-free vector field b belonging to L1((0, T ); W 1,1(Td)) we have 
strong existence and pathwise uniqueness for (3.5): this means that we can construct a solution Xε to 
(3.5) on any given filtered probability space equipped with any given adapted Brownian motion, see [7]. We 
remark that, since we are working on the torus, the boundedness assumption in [7] can be dropped.

4. A Lagrangian approach to the vanishing viscosity scheme

In this section, we aim at giving a proof (exploiting Lagrangian techniques) of the convergence of the 
vanishing viscosity scheme. In order to do that, we first establish some stability estimates between the 
stochastic and the deterministic flows.

Lemma 4.1. Let b ∈ L1((0, T ); W 1,p(Td)) be a divergence-free vector field, where p ≥ 1. Let X, Xε be, 
respectively, the regular Lagrangian flow and the stochastic flow of b. Then,

(i) if p = 1 and b ∈ Lq((0, T ) × Td) for some q > 1, then for every γ > 0 there exists a constant Cγ such 
that for a.e. t ∈ [0, T ] and s ∈ [0, t]

ˆ

Td

E[d(Xε
t,s(x),Xt,s(x))]dx ≤ C(T, q)

(
4
√
ε + Cγ

| ln ε| + 1
| ln√

ε|γ
[
1 + ln+

(
‖b‖Lq√

εγ

)])
. (4.1)

(ii) If p > 1, there exists a constant C(T, p) such that for a.e. t ∈ [0, T ] and s ∈ [0, t]

ˆ

Td

E[d(Xε
t,s(x),Xt,s(x))]dx ≤ C(T, p)

(
4
√
ε + ‖∇b‖L1Lp

| ln ε|

)
. (4.2)

Moreover, the estimates (4.1), (4.2) give the L1-convergence of Xε
t,s towards Xt,s as ε → 0.

Proof. We divide the proof in several steps.
Step 1. The case p = 1. For any t ∈ (0, T ), a.e. ω ∈ Ω and a.e. x ∈ Td, the difference of the flows Xε−X

satisfies the following S.D.E. for s ∈ [0, t]

{
d(Xε

t,s(x, ω) −Xt,s(x)) = (b(s,Xε
t,s(x, ω)) − b(s,Xt,s(x))) ds +

√
2εdW s(ω),

Xε
t,t(x, ω) −Xt,t(x) = 0.

(4.3)

We define the function qδ(y) = ln
(
1 + |y|2

2

)
and the related functional Qδ

ε as
δ
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Qδ
ε(t, s, x, ω) := qδ(Xε

t,s(x, ω) −Xt,s(x)) = ln
(

1 +
|Xε

t,s(x, ω) −Xt,s(x)|2
δ2

)
, (4.4)

where δ > 0 is a fixed parameter that will be chosen later. An application of Itô’s formula gives that

ˆ

Td

E
[
Qδ

ε(t, s, x)
]
dx =

tˆ

s

ˆ

Td

E
[
∇yqδ(t, τ,Xε

t,τ (x) −Xt,τ (x)) ·
(
b(τ,Xε

t,τ (x)) − b(τ,Xt,τ (x))
)]

dxdτ

+ ε

tˆ

s

ˆ

Td

E
[
∇2

yqδ(t, τ,Xε
t,τ (x) −Xt,τ (x))

]
dxdτ,

and from the inequalities
∣∣∣∣∇ ln

(
1 + |y|2

δ2

)∣∣∣∣ ≤ C

δ + |y| ,
∣∣∣∣∇2 ln

(
1 + |y|2

δ2

)∣∣∣∣ ≤ C

δ2 + |y|2 ,

we obtain the following bound

ˆ

Td

E
[
Qδ

ε(t, s, x)
]
dx ≤ ε(t− s)

δ2 + C

tˆ

s

ˆ

Td

E

[∣∣b(τ,Xε
t,τ (x)) − b(τ,Xt,τ (x))

∣∣
δ +

∣∣Xε
t,τ (x) −Xt,τ (x)

∣∣
]

dxdτ. (4.5)

We now use the characterization of the equi-integrability as in Lemma 2.3. We fix r > 1 and let γ > 0 a 
parameter that will be chosen later. Then, using Lemma 2.3 we decompose ∇b as

|∇b| = gγ1 + gγ2 ,

with

‖gγ1‖L1 ≤ γ, ‖gγ2‖Lr ≤ Cγ ,

where the constant Cγ is increasing as γ → 0. Finally, we introduce the function

ϕ(t, s, x, ω) := min
{ |b(s,Xε

t,s(x, ω))| + |b(s,Xt,s(x))|
δ

; gγ1 (s,Xε
t,s(x, ω)) + gγ1 (s,Xt,s(x))

}
.

Going back to (4.5), using the definition of ϕ, we get that

tˆ

s

ˆ

Td

E

[∣∣b(τ,Xε
t,τ (x)) − b(τ,Xt,τ (x))

∣∣
δ +

∣∣Xε
t,τ (x) −Xt,τ (x)

∣∣
]

dxdτ

≤
tˆ

s

ˆ

Td

E [ϕ(t, τ, x)] dxdτ

+
tˆ

s

ˆ

Td

E
[
gγ2 (τ,Xε

t,τ (x)) + gγ2 (τ,Xt,τ (x))
]
dxdτ.

Since gγ2 ∈ Lr((0, T ) × Td), by Holder inequality we have that
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tˆ

s

ˆ

Td

E
[
gγ2 (τ,Xε

t,τ (x)) + gγ2 (τ,Xt,τ (x))
]
dxdτ ≤ 2T (r−1)/rCγ . (4.6)

We now want to apply the interpolation inequality of Lemma 2.5 to ϕ: first, by using the measure preserving 
property of X and Xε, we have that

‖ϕ‖Lq ≤ C

δ
‖b‖Lq . (4.7)

Second, by Chebishev inequality

|||ϕ|||M1((0,T )×(0,T )×Td×Ω) ≤ C|||gγ1 |||M1((0,T )×Td) ≤ C‖gγ1‖L1((0,T )×Td). (4.8)

We apply Lemma 2.5 to ϕ. The fact that the function z ∈ [0, ∞) 
→ z
[
1 + ln+ (

C
z

)]
∈ [0, ∞) is non-

decreasing (where ln+(w) := max{0, ln(w)} for every w ≥ 0) and the bounds (4.7) and (4.8) give

‖ϕ‖L1((0,T )×(0,T )×Td×Ω) ≤ C
q

q − 1‖g
γ
1 ‖L1

[
1 + ln+

(
‖b‖Lq

‖gγ1 ‖L1

T 1− 1
q

δ

)]
. (4.9)

Substituting (4.6) and (4.9) in (4.5) we finally obtain

ˆ

Td

E
[
Qδ

ε(t, s, x)
]
dx ≤ εT

δ2 + 2T (r−1)/rCγ + Cq

q − 1γ
[
1 + ln+

(
‖b‖LqT 1− 1

q

δγ

)]
.

Next, by defining

Aδ(t, s) :=
{

(x, ω) ∈ Td × Ω : d(Xε
t,s(x, ω),Xt,s(x)) >

√
δ
}
, (4.10)

we obtain that

sup
t,s∈(0,T )

(
L d ⊗ P

)
(Aδ(t, s)) ≤

C

| ln δ|

ˆ

Td

E

[
ln

(
1 +

(d(Xε
t,s(x),Xt,s(x)))2

δ2

)]
dx (4.11)

≤ C

| ln δ|

ˆ

Td

E
[
Qδ

ε(t, s)
]
dx

≤ C(T, q, r)
(

ε

δ2| ln δ| + Cγ

| ln δ| + 1
| ln δ|γ

[
1 + ln+

(
‖b‖Lq

δγ

)])
,

where we have used that d(x, y) ≤ |x − y| for any x, y ∈ Td. Therefore,
ˆ

Td

E[d(Xε
t,s(x),Xt,s(x))]dx =

ˆ

(Td×Ω)\Aδ(t,s)

d(Xε
t,s(x, ω),Xt,s(x))dP (ω)dx

+
ˆ

Aδ(t,s)

d(Xε
t,s(x, ω),Xt,s(x))dP (ω)dx

≤
√
δ +

(
L d ⊗ P

)
(Aδ(t, s))

(4.12)

where we have used that L d ⊗ P is a probability measure on Td × Ω and the distance d on the torus is 
bounded. Finally, we choose δ =

√
ε and plugging (4.11) in (4.12), we get that
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ˆ

Td

E[d(Xε
t,s(x),Xt,s(x))]dx ≤ C(T, q, r)

(
4
√
ε + Cγ

| ln ε| + 1
| ln√

ε|γ
[
1 + ln+

(
‖b‖Lq√

εγ

)])
,

and we conclude the proof of the estimate (4.1) by taking r = ∞.
Step 2. The case p > 1. The proof easily follows from the arguments of Step 1. Since ∇b(t, ·) ∈ Lp(Td)

for a.e. t ∈ (0, T ), we apply Lemma 2.3 pointwise in time choosing r = p, gγ1 = 0, γ = 0, gγ2 (t, ·) = |∇b(t, ·)|
and Cγ(t) = ‖∇b(t, ·)‖Lp . In particular, note that the bound in (4.6) changes into

tˆ

s

ˆ

Td

E
[
gγ2 (τ,Xε

t,τ (x)) + gγ2 (τ,Xt,τ (x))
]
dxdτ ≤ 2‖Cγ‖L1 = 2‖∇b‖L1Lp ,

and by substituting in (4.1) we get (4.2).
Step 3. Convergence of the flows. We now prove the convergence of Xε

t,s towards Xt,s as ε → 0. If p > 1
it follows directly by (4.2) by letting ε → 0. Then we analyze the case (i): the strategy is to choose properly 
the parameter γ in (4.1) independently from ε. In these regards, note that the last term on the right-hand 
side of (4.1) is uniformly bounded in γ for ε small and converges to 0 as γ → 0. Hence, for any given η > 0
there exists γ0 independent from ε such that for all γ ≤ γ0

C(T, q)
| ln√

ε| γ
[
1 + ln+

(
‖b‖Lq√

εγ

)]
<

η

3 .

Now that the constant γ is fixed, and so is Cγ , we can infer that there exists ε0(M) > 0 such that for all 
ε ≤ ε0(γ)

C(T, q)
(

4
√
ε + Cγ

| ln ε|

)
<

2
3η,

and this concludes the proof of the convergence of the flows. �
The convergence result for ε → 0 to the Lagrangian solution reads as follows:

Theorem 4.2. Let u0 ∈ L1(Td) be a given initial datum and let b be a divergence-free vector field such that

• either b ∈ L1((0, T ); W 1,p(Td)) for some p > 1,
• or b ∈ L1((0, T ); W 1,1(Td)) ∩ Lq((0, T ) × Td) for some q > 1.

Let (vε0)ε ⊂ L∞(Td) be any sequence of functions such that vε0 → u0 strongly in L1(Td). Then the sequence 
(vε)ε>0 ⊂ L∞((0, T ); L∞(Td)) ∩ L2((0, T ); H1(Td)) of solutions to (3.2) converges in C([0, T ]; L1(Td)) to 
the (unique) Lagrangian solution to (3.1).

Proof. First of all, as already observed, from Proposition 3.3 we deduce that for every fixed ε > 0 there 
exists a unique function vε ∈ L∞((0, T ); L∞(Td)) ∩ L2((0, T ); H1(Td)) solving (3.2). Moreover, by the 
Feynman-Kac formula we know that vε satisfies

vε(t, x) = E[vε0(Xε
t,0(x))].

On the other hand, the Lagrangian solution to (3.1) is given by

uL(t, x) = u0(Xt,0(x)).
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Having both vε and uL a representation formula in terms of the flow, we use the stability of the flows to 
prove the convergence in the inviscid limit. We consider a sequence un

0 of Lipschitz approximations of u0, 
then for any t ∈ (0, T ) we have that

‖vε(t, ·) − uL(t, ·)‖L1 = ‖E[vε0(Xε
t,0)] − u0(Xt,0)‖L1

≤
ˆ

Td

ˆ

Ω

|vε0(Xε
t,0(x, ω)) − u0(Xε

t,0(x, ω))|dP (ω)dx

+
ˆ

Td

ˆ

Ω

|un
0 (Xε

t,0(x, ω)) − u0(Xε
t,0(x, ω))|dP (ω)dx

+
ˆ

Td

|un
0 (Xt,0(x)) − u0(Xt,0(x))|dx

+
ˆ

Td

ˆ

Ω

|un
0 (Xε

t,0(x, ω)) − un
0 (Xt,0(x))|dP (ω)dx.

In particular, by using that un
0 is Lipschitz and the measure preserving property of the flows, we get that

‖vε(t, ·) − uL(t, ·)‖L1 ≤ ‖vε0 − u0‖L1 + 2‖un
0 − u0‖L1 + Cn‖E[d(Xε

t,0,Xt,0)]‖L1 . (4.13)

We first fix n big enough, independently from t and ε, in order to make the second term in (4.13) as small 
as we want. Then the conclusion follows from Lemma 4.1. �
Remark 4.3 (No anomalous dissipation). If u0 ∈ L2(Td), Theorem 4.2 gives that (vε)ε converges in 
C([0, T ]; L2(Td)) to the Lagrangian solution of (3.1). In particular, from the identity

1
2‖vε(t, ·)‖

2
L2 + ε

tˆ

0

‖∇vε(s, ·)‖2
L2ds = 1

2‖vε(0, ·)‖
2
L2

valid for every ε > 0 we deduce that

ε

tˆ

0

‖∇vε(s, ·)‖2
L2ds → 0, as ε → 0 (4.14)

for every t > 0. This means that no anomalous dissipation is possible for the vanishing viscosity limit in 
the case either b ∈ L1((0, T ); W 1,p(Td)) for some p > 1, or b ∈ L1((0, T ); W 1,1(Td)) ∩ Lq((0, T ) × Td)
for some q > 1 and u ∈ L∞((0, T ); L2(Td)), even though the solution lacks the integrability required for 
the DiPerna-Lions’ theory to apply. We also remark that, using the results contained in Section 5, one can 
provide a quantitative rate for the convergence (4.14).

In a similar spirit, if u0 ∈ Lq(Td), we obtain that

‖u(t, ·)‖Lq(Td) = ‖u0‖Lq(Td) for every t > 0,

and more generally all Casimirs of the solution obtained as vanishing viscosity limit are conserved, that is 
for every f it holds

ˆ
f(u(t, x)) dx =

ˆ
f(u0(x)) dx for every t > 0.
Td Td
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On the other hand, vector fields in the class L1((0, T ); Cα(Td)), with d ≥ 2 and α ∈ [0, 1), may exhibit 
anomalous dissipation as shown in [18].

Remark 4.4. Comparing the statements of the Selection Theorem given in the Introduction with The-
orem 4.2, one can observe that in the latter we need to make, in the case b ∈ L1((0, T ); W 1,1(Td)), the 
additional integrability assumption b ∈ Lq((0, T ) ×Td) for some q > 1. This is necessary to apply Lemma 4.1
which, in turn, yields quantitative convergence rates, as it will be shown in the next section. However, if 
one dispenses with quantitative estimates, this additional assumption can be dropped and the Selection 
Theorem holds as stated in the Introduction. We refer the reader to the Appendix A for the qualitative 
proof (without the additional technical integrability assumption), which is a minor refinement of the original 
argument of [17].

5. Rates of convergence

The goal of this section is to show that Lagrangian techniques are particularly useful in order to obtain 
explicit rates of convergence for the vanishing viscosity limit. To find such rates, we need slightly stronger 
integrability/regularity assumptions on the data. The first result deals with bounded initial data.

Proposition 5.1. Let b ∈ L1((0, T ); W 1,p(Td)) be a divergence-free vector field with p > 1 and u0 ∈ L∞(Td)
be a given initial datum. Let (vε0)ε ⊂ L∞(Td) be any sequence of functions such that vε0 → u0 strongly in 
L1(Td) and let vε and u be the unique solutions of (3.2) and (3.1) with initial datum vε0 and u0 respectively. 
Then, there exist ε̄ and a continuous function φu0 : R+ → R+ with φu0(0) = 0, such that for any 1 ≤ q < ∞

sup
t∈(0,T )

‖vε(t, ·) − u(t, ·)‖Lq ≤ C(T, p, q, ‖u0‖L∞ , ‖∇b‖L1Lp)
(
δ(ε) + 1

| ln δ(ε)| + φu0(δ(ε))
)1/q

, (5.1)

for any ε ≤ ε̄, where

δ(ε) := max{
√
ε, ‖vε0 − u0‖L1}. (5.2)

Proof. We show the estimate (5.1) in the case q = 1, the general case will follow by a straightforward 
interpolation of the spaces L1(Td) and L∞(Td). Since u0 ∈ L∞(Td) ⊂ L1(Td), using the continuity of 
translations in L1 we can infer that there exists a continuous function φu0 as in the statement of the 
theorem and h0 > 0 such that

‖u0(· + h) − u0‖L1 ≤ φu0(h), for all h ≤ h0.

Then, for any δ ≤ h0, we can compute

‖vε(t, ·) − u(t, ·)‖L1 = ‖E[vε0(Xε
t,0)] − u0(Xt,0)‖L1

≤ ‖E[vε0(Xε
t,0)] − u0(Xε

t,0)‖L1

+
¨

Aδ(t,0)

|u0(Xε
t,0(x, ω)) − u0(Xt,0(x))|dP (ω)dx

+
¨

(Td×Ω)\Aδ(t,0)

|vε0(Xε
t,0(x, ω)) − u0(Xt,0(x))|dP (ω)dx

≤ ‖vε0 − u0‖L1 + 2‖u0‖L∞L d ⊗ P (Aδ(t, 0)) + φu0(δ)
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≤ ‖vε0 − u0‖L1 + 2C(T, p)‖u0‖L∞

(
ε

δ2| ln δ| + ‖∇b‖L1Lp

| ln δ|

)
+ φu0(δ),

where the set Aδ is defined as in (4.10) and in the last line we have used the estimate in Lemma 4.1. The 
proof follows by choosing δ(ε) as in (5.2) and δ(ε̄) = h0. �

It is clear that the rate provided by Proposition 5.1 is not completely explicit for two reasons: on the one 
hand, the convergence of the initial datum depends upon the choice of the approximation vε0; on the other 
hand, the function φu0 is implicitly related to the regularity of the initial datum. For the former issue, since 
we deal with bounded initial datum, existence and uniqueness of solutions of (3.2) and (3.1) are guaranteed 
by [24, Proposition 5.3] and [17], thus we do not need the approximating sequence vε0. Concerning the latter 
issue, the function φu0 can be explicitly constructed once the regularity of u0 is known. Motivated by the 
results in [6], we provide the following example.

Corollary 5.2. Let u0 ∈ H1(Td). Assume that the hypothesis of Theorem 5.1 holds with vε0 = u0. Then,

sup
t∈(0,T )

‖vε(t, ·) − u(t, ·)‖L2 ≤ C√
| ln ε|

, (5.3)

where the constant C > 0 depends on T, p, ‖u0‖L∞ , ‖∇u0‖L2 , ‖∇b‖L1Lp .

Proof. It is enough to compute the function φu0 . We have that

‖u0(· + h) − u0‖L2 ≤ h‖∇u0‖L2 ,

and then we conclude by applying Proposition 5.1 with δ =
√
ε and φu0(δ) = δ‖∇u0‖L2 . �

It is interesting to compare the rate given by Corollary 5.2 and the one in [6, Theorem 3.3]. Under the 
same assumption on the initial datum, Corollary 5.2 provides a rate of convergence for a more general class 
of vector fields, namely b ∈ L1((0, T ); W 1,p(Td)) with p > 1 instead of b ∈ L∞((0, T ); W 1,p(Td)) with p > 2. 
On the other hand, we do not improve completely the rate in [6]: the rate in (5.3) is better if 2 ≤ p ≤ 3, 
while it is worst for p > 3. We also observe that a key tool in [6] is a propagation-of-regularity result, which 
is not needed in our argument.

We finally show how with these techniques it is possible to give a quantitative stability estimate for 
advection-diffusion equations. We address this issue motivated by the recent results in [31]:

Lemma 5.3. Let b ∈ L1((0, T ); W 1,p(Td)) be a divergence-free vector field, where p > 1. Let Xε1
t,s, X

ε2
t,s be 

the stochastic flows of b associated respectively to ε1, ε2 > 0. Then,
ˆ

Td

E[d(Xε1
t,s(x),Xε2

t,s(x))]dx ≤ C(T, p)
(

4
√

|ε1 − ε2| +
‖∇b‖L1Lp

| ln |ε1 − ε2||

)
. (5.4)

Proof. We just sketch the proof since it follows the same computations of Step 2 in Lemma 4.1. Notice that 
the S.D.E. solved by the difference Xε1

t,s −Xε2
t,s is

{
d(Xε1

t,s(x, ω) −Xε2
t,s(x, ω)) = (b(s,Xε1

t,s(x, ω)) − b(s,Xε2
t,s(x, ω))) ds + (

√
2ε1 −

√
2ε2)dW s(ω),

Xε1
t,t(x, ω) −Xε2

t,t(x, ω) = 0.

Then, by defining the function qδ(y) = ln
(
1 + |y|2

2

)
and the related Qδ

ε ,ε as
δ 1 2
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Qδ
ε1,ε2(t, s, x, ω) := qδ(Xε1

t,s(x, ω) −Xε2
t,s(x, ω)) = ln

(
1 +

|Xε1
t,s(x, ω) −Xε2

t,s(x, ω)|2
δ2

)
,

when we apply Itô’s formula the contribution of the stochastic part is different, namely

ˆ

Td

E
[
Qδ

ε1,ε2(t, s, x)
]
dx ≤ |ε1 − ε2|(t− s)

δ2 + C

tˆ

s

ˆ

Td

E

[∣∣b(τ,Xε1
t,τ (x)) − b(τ,Xε2

t,τ (x))
∣∣

δ +
∣∣Xε1

t,τ (x) −Xε2
t,τ (x)

∣∣
]

dxdτ.

The conclusion follows by defining the set Aδ as

Aδ(t, s) :=
{

(x, ω) ∈ Td × Ω : d(Xε1
t,s(x, ω),Xε2

t,s(x, ω)) >
√
δ
}
,

and doing the same computations as in Step 2 of Lemma 4.1. �
Then, the estimate on the flows yields the following rate of convergence for solutions of (3.2).

Proposition 5.4. Let b ∈ L1((0, T ); W 1,p(Td)) be a divergence-free vector field with p > 1 and u0 ∈ L∞(Td). 
Let εn be a sequence such that εn → ε > 0 and let vεn , vε the unique solutions of (3.2) with initial datum 
u0 and viscosity εn, ε, respectively. Then, there exist N(u0, T ) and a continuous function φu0 : R+ → R+

with φu0(0) = 0, such that

sup
t∈(0,T )

‖vεn(t, ·) − vε(t, ·)‖L1 ≤ C

(
1

| ln |εn − ε|| + φu0

(√
|εn − ε|

))
, (5.5)

for any n ≥ N(u0, T ), where the constant C depends upon T, p, ‖u0‖L∞ , and ‖∇b‖L1Lp .

Proof. The proof follows by arguing exactly as in the one of Proposition 5.4 and using Lemma 5.3. �
One can compare the rate given by Proposition 5.4 with the ones in [25] and [31]. The rate in (5.5)

depends upon φu0 and cannot be better than O
(

1
| ln |εn−ε||

)
, but provides convergence in the strong norm 

C([0, T ]; L1(Td)). On the other hand, the rates of [25] and [31] are of order 
√
|εn − ε| and |εn − ε|, respec-

tively, but they are given for a logarithmic distance which instead metrizes weak convergence.

Appendix A. An Eulerian approach to the vanishing viscosity scheme

The goal of this appendix is to give a detailed proof of the following result, which is refinement of [17, 
Theorem IV.1]:

Theorem Appendix A.1. Let b ∈ L1((0, T ); W 1,1(Td)) be a divergence-free vector field and let u0 ∈ L1(Td)
be a given initial datum. Let (vε0)ε ⊂ L∞(Td) be any sequence of functions such that vε0 → u0 strongly 
in L1(Td). Then the sequence (vε)ε>0 ⊆ L∞((0, T ); L∞(Td)) ∩ L2((0, T ); H1(Td)) of solutions to (3.2)
converges in C([0, T ]; L1(Td)) to the (unique) Lagrangian solution to (3.1).

We begin with the following simple remark:

Remark Appendix A.2 (Equation with a forcing term). The same conclusions of Proposition 3.3 apply as 
well to the equation with a forcing term. More precisely, if χ ∈ C∞((0, T ) × Td) is a smooth function and 
v0 ∈ L∞(Td), then the problem
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{
∂tv + b · ∇v = Δv + χ in (0, T ) × Td

v|t=0 = v0 in Td

has a unique solution v ∈ L∞((0, T ); L2(Td)) ∩L2((0, T ), H1(Td)). Observe also that via the transformation 
v(t, x) 
→ v(T − t, −x) we deduce well-posedness results also for the backward equation

{
−∂tv − b · ∇v = Δv + χ in (0, T ) × Td

v|t=T = vT in Td.
(A.1)

Notice that if vT = 0 then the problem (A.1) admits a unique solution in L∞((0, T ); L∞(Td)) and that it 
holds

‖v‖L∞((0,T );L∞(Td)) ≤ C(‖χ‖C0(Td)) < +∞.

Proof of Theorem Appendix A.1. We split the proof in several steps.
Step 1. Parabolic well-posedness and compactness (equi-integrability). We begin with the study of the 

problem (3.2). From Proposition 3.3, we deduce that for every fixed ε > 0 there exists a unique function 
vε ∈ L∞((0, T ); L∞(Td)) ∩ L2((0, T ); H1(Td)) solving (3.2), which moreover satisfies

‖vε‖L∞((0,T );Ls(Td)) ≤ ‖vε0‖Ls(Td),

for any s ∈ [1, +∞]. Since u0 ∈ L1, the family (vε)ε is in general not equi-bounded neither in 
L∞((0, T ); L∞(Td)) nor in L2((0, T ); H1(Rd)). However, since vε0 → u0 strongly in L1(Rd), we get for 
s = 1

‖vε‖L∞((0,T );L1(Td)) ≤ ‖vε0‖L1(Td) ≤ C < +∞ (A.2)

for some constant C > 0 independent of ε. This is, however, still not sufficient to obtain weak compactness in 
L1, as we need to show the equi-integrability of the family (vε)ε>0. To do so, we argue in the following way: 
since vε0 → u0 strongly in L1(Td), by Theorem 2.2, there exists a convex, increasing function Ψ: [0, +∞] →
[0, +∞] such that Ψ(0) = 0 and

lim
s→∞

Ψ(s)
s

= ∞ and sup
ε>0

ˆ

Rd

Ψ(|vε0(x)|) dx =: C < ∞. (A.3)

Without loss of generality, we can assume that Ψ is smooth. By an easy approximation argument, we can 
multiply the equation (3.2) by Ψ′(|vε|) and we obtain

d

dt

ˆ

Td

Ψ(|vε(τ, x)|) dx + ε

ˆ

Td

Ψ′′(|vε(τ, x)|)|∇(|vε|)|2 dx = 0.

The convexity of Ψ and an integration in time on (0, t) give

ˆ

Td

Ψ(|vε(t, x)|) dx ≤ C,

where C is the same constant as in (A.3). Since t is arbitrary,
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sup
t∈(0,T )

ˆ

Td

Ψ(|vε(t, x)|) dx ≤ C. (A.4)

Since the constant C is independent of ε, we can resort to Point (iii) of Theorem 2.2 and we infer that 
the family (vε)ε>0 is weakly-precompact in L∞((0, T ); L1(Td)). Therefore, there exists a function uV ∈
L∞((0, T ); L1(Td)) such that vε ⇀ uV in L∞((0, T ); L1(Td)) (up to a non-relabeled subsequence).

Step 2. Identification of the limit via duality I. We now want to exploit a duality argument. Let χ ∈
C∞((0, T ) × Td) be arbitrary. By Remark Appendix A.2, for every ε > 0, there exists a unique function 
ϑε ∈ L∞((0, T ); L∞(Td)) ∩ L2((0, T ); H1(Td)) solving

{
−∂tϑε − b · ∇ϑε = εΔϑε + χ in (0, T ) × Td

ϑε|t=T = 0 in Td.
(A.5)

The family (ϑε)ε>0 is uniformly bounded in L∞((0, T ); L∞(Td)) so, up to a subsequence, the family (ϑε)ε>0
converges in C([0, T ]; w∗ − L∞(Td)) to a function ϑ ∈ C([0, T ]; w∗ − L∞(Td)) solving the backward, inho-
mogeneous transport equation

{
−∂tϑ− b · ∇ϑ = χ in (0, T ) × Td

ϑ|t=T = 0 in Td.
(A.6)

By [17], the problem (A.6) is well-posed in L∞((0, T ); L∞(Td)) and thus ϑ coincides with the unique solution 
to (A.6) which lies in C([0, T ]; L∞(Td)). In addition, this implies that the whole sequence (ϑε)ε>0 converges 
to ϑ (in other words, the passage to a subsequence is not needed). For future use, observe that it also holds 
that

ϑε(0, ·) ∗
⇀ ϑ(0, ·) in w∗ − L∞(Td) (A.7)

and via a straightforward computation one also obtains the Duhamel representation formula

ϑ(t,X0,t(x)) =
T̂

t

χ(s,X0,s(x)) ds, ∀x ∈ Td, t ∈ [0, T ]. (A.8)

Step 3. Identification of the limit via duality II. We now consider the regularized versions of problems 
(3.2) and (A.5). Let ρ be a non-negative, radially symmetric convolution kernel and set for ε, δ > 0

vδε := vε ∗ ρδ, ϑδ
ε := ϑε ∗ ρδ.

The smooth functions vε,δ and ϑε,δ solve respectively the problems

{
∂tv

δ
ε + b · ∇vδε = rε,δv + εΔvδε in (0, T ) × Td

vδε |t=0 = vε,δ0 in Td
(A.9)

and
{
−∂tϑ

δ
ε − b · ∇ϑδ

ε = rε,δϑ + εΔϑδ
ε + χδ in (0, T ) × Td

ϑδ
ε|t=T = 0 in Td,

(A.10)

where
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χδ := χ ∗ ρδ

and the commutators are defined as

rε,δv := b · ∇vδε − (b · ∇vε) ∗ ρδ and rε,δϑ := b · ∇ϑδ
ε − (b · ∇ϑε) ∗ ρδ.

Multiplying (A.9) times ϑδ
ε, applying Fubini’s Theorem and integrating by parts in time and space we 

obtain

0 =
¨

(0,T )×Td

[
(∂tvδε)ϑδ

ε + b · (∇vδε)ϑδ
ε − rε,δv ϑδ

ε − ε(Δvε)ϑδ
ε

]
dtdx

=
¨

(0,T )×Td

vδε
[
−∂tϑ

δ
ε − b · ∇ϑδ

ε − εΔϑδ
ε

]
dt dx−

ˆ

Td

vε,δ(0, x)ϑδ
ε(0, x) dx

−
¨

(0,T )×Td

rε,δv ϑδ
ε dtdx

(A.10)=
¨

(0,T )×Td

vδε(r
ε,δ
ϑ + χδ) dt dx−

ˆ

Td

vε,δ(0, x)ϑδ
ε(0, x) dx−

¨

(0,T )×Td

rε,δv ϑδ
ε dtdx

=
¨

(0,T )×Td

vδεχ
δ dtdx +

¨

(0,T )×Td

(vδεr
ε,δ
ϑ − rε,δv ϑδ

ε) dtdx−
ˆ

Td

vε,δ(0, x)ϑδ
ε(0, x) dx

=: (I) + (II) + (III).

Keeping ε > 0 fixed, we now send δ → 0. The two commutators can be written in the form

rε,δv (t, x) =
ˆ

Td

vε(t, x + δy)
[
b(t, x + δy) − b(t, x)

δ

]
· ∇ρ(y) dy

and

rε,δϑ (t, x) =
ˆ

Td

ϑε(t, x + δy)
[
b(t, x + δy) − b(t, x)

δ

]
· ∇ρ(y) dy.

Since vε, ϑε ∈ L∞((0, T ); L∞(Td)), arguing as in the proof of Proposition 3.3, we can conclude that both 
rε,δv and rε,δϑ converge to 0 strongly in L1((0, T ) × Td) as δ → 0. This observation, combined with the 
uniform L∞ bounds on vδε and ϑδ

ε, shows that (II) → 0 as δ → 0.
For the term (I), instead, we can use the strong convergence of vδε → vε and the uniform convergence of 

χδ → χ. Finally, for (III), by standard results about convolutions

vε,δ(0, ·) → vε0

strongly in L1(Td) as δ → 0; furthermore, we have

ϑδ
ε(0, ·) → ϑε(0, ·)

weakly∗ in L∞(Td) as δ → 0. Such convergence follows from a standard argument in the framework of 
evolutionary PDEs (see e.g. [14, Lemma 3.7]) which establishes, in particular, the weak continuity in time 
of the solutions to advection-diffusion or transport equations.



P. Bonicatto et al. / J. Math. Pures Appl. 167 (2022) 204–224 223
Thus, for any ε > 0, it holds

¨

(0,T )×Td

vε(t, x)χ(t, x) dtdx =
ˆ

Td

vε0(x)ϑε(0, x) dx.

We now send ε → 0, getting

¨

(0,T )×Td

uV(t, x)χ(t, x) dtdx =
ˆ

Td

u0(x)ϑ(0, x) dx. (A.11)

In the last passage, we have used:

• vε ⇀ uV weakly in L∞((0, T ); L1(Td));
• vε0 → u0 strongly in L1(Td);
• ϑε(0, ·) ⇀ ϑ(0, ·) weakly∗ in L∞(Td) by (A.7).

Step 4. Duality of the Lagrangian solution. A direct computation shows that the Lagrangian solution uL

satisfies
¨

(0,T )×Td

uL(t, x)χ(t, x) dtdx =
¨

(0,T )×Td

u0(Xt,0(x))χ(t, x) dtdx

=
T̂

0

ˆ

Td

u0(y)χ(t,X0,t(y)) dt dy

=
ˆ

Td

u0(y)
T̂

0

χ(t,X0,t(y)) dt dy

(A.8)=
ˆ

Td

u0(x)ϑ(0, x) dx.

(A.12)

Hence, comparing (A.11) and (A.12), we obtain

¨

(0,T )×Td

(uV(t, x) − uL(t, x))χ(t, x) dtdx = 0.

Being χ ∈ C∞((0, T ) × Td) arbitrary, we have thus obtained uV = uL a.e. and this concludes the proof.
Step 5. Upgrade to strong convergence. The convergence of (vε)ε>0 to the Lagrangian solution is strong 

in C([0, T ]; L1(Td)). This follows from [10, Lemma 3.3]: indeed, the regularity assumption (H1’) of [10, 
Lemma 3.3] includes the case b ∈ L1((0, T ); W 1,1(Td)), and the growth assumption (H2) is trivially satisfied 
as already remarked in Section 3. �

We observe that Theorem Appendix A.1, together with the same arguments of Remark 4.3, implies that 
no anomalous dissipation is possible for the vanishing viscosity limit in the case b ∈ L1((0, T ); W 1,1(Td))
and u ∈ L∞((0, T ); L2(Td)), even though the solution lacks the integrability required for the DiPerna-Lions’ 
theory to apply.
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