

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY
 �

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

SELF-CONFIGURING SOCIO-TECHNICAL SYSTEMS:
REDESIGN AT RUNTIME

Volha Bryl and Paolo Giorgini

July 2006

Technical Report # DIT-06-048

Self-Configuring Socio-Technical Systems: Redesign at Runtime

Volha Bryl Paolo Giorgini

Department of Information and Communication Technology,
University of Trento, Italy

Email: {bryl, paolo.giorginig}@dit.unitn.it

Abstract: Modern information systems are becoming more
and more socio-technical systems, namely systems composed
of human (social) agents and software (technical) systems
operating together in a common environment. The structure
of such systems has to evolve dynamically in response to the
changes of the environment. When new requirements are
introduced, when an actor leaves the system or when a new
actor comes, the socio-technical structure needs to be
redesigned and revised. In this paper, an approach to dynamic
reconfiguration of a socio-technical system structure in
response to internal or external changes is proposed. The
approach is based on planning techniques for generating
possible alternative configurations, and local strategies for
their evaluation. The reconfiguration mechanism is presented,
which makes the socio-technical system self-configuring, and
the approach is discussed and analyzed on a simple case
study.
Keywords: self-configuration, socio-technical systems,
planning, local strategies

1. Introduction

Socio-technical systems (STS), as opposed to the traditional
technical computer-based systems, include human agents as
an integral part of their structure. One important aspect of an
STS is its dynamicity: an STS operates in continuously
changing environments and, accordingly, its structure
changes dynamically. Unlike the technical computer-based
systems, an STS includes the knowledge of how the system
should be used to achieve some organizational objectives,
and is normally regulated and constrained by internal
organizational rules, external laws and regulations [16]. So
for example, a conference reviewing system, which consists
of both human agents and software components, has to
conform to the rules of the reviewing process. All this calls
for the new type of requirements that introduce the need of
highly adaptable and reconfigurable systems, see e.g. [17].

Recently, a lot of work has been devoted to the problem of
dynamic reconfiguration and adaptation of software systems
[10, 8, 4, 12, 9, 18]. Attempts to adjust the existing agent-
oriented methodologies, such as Gaia [8], or to create a
specialized ones, such as Adelfe [4], to develop adaptive
agents are described in the literature. All these proposals can
be grouped in approaches that consider the reconfiguration
process from the local and from the global perspective. Self-
configuration from the local perspective, i.e. on the level of
an individual agent, is related to the concept of self-
organization. Self-organization phenomena (see e.g. [20]) is

observed when some macroscopic system properties arise
(emerge) dynamically from the local micro-level interactions.
However, such perspective is sometimes not enough as it
does not allow to reach all the desired properties of an STS
which works in the dynamic environment [10]. For example,
the social behavior of being helpful, or following the imposed
external laws, is difficult to describe by the “individual
rationality” principle assumed by self-organization emergent
models. Another example is a scientific institution, which
could hardly function on the base of self-organization
principles, without any centralized authority. Differently, this
paper follows the approach presented in [10], which suggests
combining the perspective of individual agents with the
global one, in which reconfiguration is controlled centrally.

In this paper an approach to the problem of dynamic
reconfiguration of an STS structure in response to the internal
and/or environmental changes is proposed. The approach is
based on planning techniques (used to explore the space of
alternative configurations), combined with evaluating the
generated alternative in terms of local strategies of the system
actors. The approach comprises the following steps.

• Identify system actors, their goals, capabilities, and
interrelations.

• Select the initial configuration by the following three-
step iterative procedure: (i) construct the assignment of
goals to actors with the help of planning, so that all
goals are to be satisfied; (ii) evaluate the obtained
assignment with respect to local interests of the system
actors, in order to identify which actors will be
motivated to deviate from the assignment; (iii) in case
the deviation is inevitable, reformulate the planning
problem, and go to the construction of the next
assignment.

• Monitor the STS and the environment, in case of
changes assess whether the reconfiguration is
necessary. Reconfigure the system with the help of the
above described iterative procedure.

There exists a number of works which are, to some extent,
similar to the approach presented in this paper. [10] deals
with the problem of dynamic reorganization of agent
societies, and presents the classification of reorganization
situations. According to the authors, the paper is exploratory
in nature, and contains the discussion of the problem rather
then the possible solutions. In [12] Moise+ organizational
model is extended to support the reorganization of multi-
agent systems. The organization is represented along its
structural and functional dimensions, and the deontic relation
among these dimensions is defined. The reorganization

process is performed by the set of organization agents playing
the specific roles, such as OrgManager that is in charge of
managing the reorganization process, Monitor that is
monitoring the system, Designer that develops reorganization
proposals, and the like. However, no specific guidelines are
provided on how the new system configuration should be
constructed. [9] describes how to design adaptive multi-agent
systems using the organizational model that consists of a
structural and state models of an organization, and a
transition function from one organizational state to another.
The structural model contains the information about goals,
agent roles, organizational rules and laws. A state model is an
instance of an organization which includes a set of agents
together with the relationships between them and other
structural model components. A number of events called
reorganization triggers are described, which may cause the
system reorganization. The reorganization process is assumed
to be application specific, and the selection of an appropriate
configuration relies on maximizing a sort of utility function,
so called organization capability score. In [18] the techniques
for organization and reorganization of multi-agent systems in
the domain of oceanography are presented. The
reorganization is domain specific, and is based on
communication protocols, with the help of which groups of
agents cooperate and reorganize themselves in response to
the environmental changes.

The approach proposed in this paper differs from the
above described work as it provides, independently of the
domain, the concrete guidelines on how the reorganization
process could be organized. Another important point is the
automation support – the process of exploring the space of
alternative system configurations is performed automatically
with the help of planning techniques. Also the local strategies
of an STS actors are taken into account, which allows each
actor to evaluate the new configuration from the local
perspective, and deviate from it if the load/risk/complexity of
the new assignment is unacceptable for this actor. Taking the
local strategies of the system actors into consideration makes
our approach particularly useful for the socio-technical
systems, because strategic and rational behavior is intrinsic to
the human actors.

The rest of the paper is structured as follows. In Section 2
an illustrative example is presented, and then the procedure
of generation and evaluation of alternative configurations is
described, and it is shown how this procedure works with the
help of the above mentioned example. Then, in Section 3 the
reconfiguration mechanism is introduced, again illustrated
with the example. In Section 4 implementation issues are
discussed, which is followed by the conclusive remarks in
Section 5.

2. Approach

In this section first the example is introduced, which will be
used through all the paper. Then it is explained how to use
planning techniques for generating alternative configurations,
and finally the procedure for their evaluation is presented.

2.1 Example

The example presented in this section was selected to be
quite simple for the reasons of compactness and ease of
understanding.

Consider a small firm which sells office equipment to its
customers. The office equipment is supplied by two
companies, MediaMarket and HWStore, both having a
database containing information about supplied goods, their
technical characteristics and prices. To organize the placing
of orders for the sell items, the supporting software system of
the firm comprises a subcomponent, called search-and-order
multi-agent system (MAS), which consists of three agents, see
Fig. 1. These agents can process the user orders, i.e. search
for the required item in the supplier’s database, provide
information to the customer if the item was found, and
formulate the request to the supplier otherwise. Two of these
agents, AMM and AHWS, can work only with the database of
one supplier, MediaMarket and HWStore, respectively. In
other words, because of the (limited) capabilities AMM
possesses, it cannot work with HWStore database, and vice
versa. The third agent AUNIV is a reserve one, it can query both
databases, although, less efficiently than AMM and AHWS, and
is used when other agents are unable to hold numerous
requests of a user (a clerk of a firm).

Fig. 1. Search-and-order MAS.

In principle, AUNIV can be a human agent which is
exploited only if some critical situation occurs: satisfying the
customer’s request needs some specific human support (e.g.
making a phone call), or the software component fails and the
customer remains unserved, which violates the organizational
rules, etc. However, as the approach proposed in this paper
treats both artificial and human actors in a similar way,
human actors will not be introduced in the example due to the
space and simplicity reasons. Also note that the number of
suppliers is limited to two just for the sake of simplicity. In
reality in such a system there can be tens, or even hundreds
of different suppliers, and a limited number of agents, each
with different set of capabilities. Some of these agents are
more efficient when working with one specific “type” of
suppliers, while others are “universal”, i.e. can work with all
suppliers. The task of allocating the incoming orders in a
(sub)optimal way is indeed challenging – and this is what is
going to be automated with the help of the approach proposed
in this paper.

Suppose that initially, i.e. at time point t0, there are three
requests the agents have to satisfy. One query – “order a
computer monitor at a price less than 500$ of MediaMarket”

– is sent by a user to AMM, and the two – “order a keyboard at
a price less than 20$” and “order headphones of HWStore” –
are sent to AHWS. Even for this simple example there are a
number of alternative initial configurations. E.g. the query
“order a keyboard at a price less than 20$” could be
accomplished by searching either in the database of
MediaMarket or HWStore. Another source of alternatives is
whether to involve AUNIV in performing the queries or not.
Thus, the problem is how to assign queries to agents in a
(sub)optimal way.

2.2 Generating alternative configurations

In our approach the configuration of an STS is described in
terms of dependencies among actors for goals. In this the
approach is following such frameworks as i* [21] and Tropos
[5], where the functional requirements to the system are
conceived as networks of delegation dependencies. Every
delegation involves two actors, where one actor delegates to
the other the fulfillment of a goal. The later actor, called
delegatee, can either fulfill the delegated goal, or further
delegate it, thus creating another delegation relation in the
network. In this paper it is proposed to frame the task of
constructing such networks as a planning problem: selecting
a suitable configuration corresponds to selecting a plan that
satisfies the goals of human and software actors.

The basic idea behind planning approach is to
automatically determine the course of actions (i.e. a plan)
needed to achieve a certain goal where an action is a
transition rule from one state of the system to another [19,
15]. Planning is useful in the situations where it is not
feasible to enumerate in advance the possible transitions from
the initial to the desired state [3]. Actions are described in
terms of preconditions and effects: if a precondition of an
action is true in the current state of the system, then the action
is performed. As a consequence of an action, the system will
be in a new state where the effect of the action is true. A
specification language is required to represent the planning
domain, i.e. the initial and the desired states of the system,
and the actions. Once the domain is described, the solution to
the planning problem is the (not necessarily optimal)
sequence of actions that allows the system to reach the
desired state from the initial state.

In Table 1 predicates used to describe the planning domain
are introduced. Predicates take variables of three types:
actors, goals and goal types. To typify goals, type predicate is
used. Actor capabilities are described with can_satisfy_gt
predicate, which means that an actor has enough capabilities
to satisfy any goal of a specific type. Social dependencies
among actors are reflected by can_depend_on predicate,
which means that one actor can delegate to another actor the
fulfilment of any goal. Predefined ways of goal refinement
are represented using and/or_decomposition predicates. The
initial desires of actors are represented with wants predicate.
When a goal is fulfilled, satisfied predicate becomes true for
it.

A plan, which is constructed to fulfill the goals of the
system actors, comprises the following actions.

• Goal satisfaction. An actor can satisfy a goal only if the
achievement of this goal is among its desires and it
actually possesses the capabilities to satisfy it.

Table 1: Predicates.

Goal Properties
type(g : goal, gt : gtype)
and_decompositionn(g : goal, g1 : goal, …, gn : goal)
or_decompositionn(g : goal, g1 : goal, …, gn : goal)
satisfied(g : goal)

Actor Properties
can_satisfy_gt(a : actor, gt : gtype)
can_depend_on(a : actor, b : actor)
wants(a : actor, g : goal)

• Goal delegation. An actor may have not enough

capabilities to achieve its goals by itself, and so it has to
delegate their satisfaction to other actors. The decision
on how to satisfy a goal – by its own capabilities or by
further delegation – is up to the delegatee.

• Goal decomposition/refinement. Two types of goal
refinement are supported: OR-decomposition, which
suggests the list of alternative ways to satisfy a goal,
and AND-decomposition, which refines a goal into
subgoals which all are to be satisfied in order to satisfy
the initial goal.

When the problem domain and the problem itself are
formally represented, a planner is used to produce a solution.
An important point of the approach is that it is not intended to
invent a special-purpose planning tool – instead, the idea is to
choose a suitable one among the available off-the-shelf
planners [15]. After analyzing a number of planners (see [7]
for the details), LPG-td [13] have been chosen for
implementing the planning domain, which is a fully
automated system for solving planning problems, which
supports PDDL 2.2 specification (Planning Domain
Definition Language) [11].

Let us illustrate how the planning part of the approach
works with the example described in Section 2.1.

The question is what the initial configuration of the
search-and-order MAS is. The formalization of this problem,
in terms of the predicates introduced above, is presented in
Fig. 2.

Fig. 2. Planning problem formalization.

The plan P0 generated by the planner is presented in Fig. 3.

Note, that there are several alternative configurations in
which all goals are satisfied, e.g. the goal OrderKeyboard can

be achieved by AMM by satisfying the OrderKeyboardOfMM
or-subgoal, instead of OrderKeyboardOfHWS; or the goal
OrderHeadphonesOfHWS can be delegated to AUNIV and
satisfied by it. The configuration presented in Fig. 3 is just
the first one generated by the planner, which means that it
was the first plan (e.g. the shortest one) the planner found to
satisfy all the goals. The idea is to take this first solution as a
starting point, evaluate it with respect to the individual
interests of each system actor (see Section 2.3 for the further
explanations), and ask the planner for the next solution only
if the current one appears to be unsatisfactory.

Fig. 3. Initial configuration.

The graphical representation of the obtained configuration
is depicted in Fig. 4. Circles represent agents, with their goals
represented as ovals, goals with underlined description text in
the balloon of an agent means that these goals are to be
satisfied by this agent.

Fig. 4. Initial configuration of search-and-order MAS.

The approach described in this subsection was applied to
the design of secure systems [7].

2.3 Evaluating alternative configurations

After an alternative STS configuration has been generated by
the planner, it must be evaluated to check that it is not in
conflict with the individual interests of system actors. Actors
of a socio-technical system can be seen as players in a game-
theoretic sense as they are self-interested and rational. This
might, for example, mean that they want to minimize the load
imposed personally on them, i.e. to reduce the number and
the complexity of actions they are involved in. Ideas from
game theory [14] can be used to determine whether an
alternative satisfies all the system actors. Another way to say
it in game theoretic terms is “whether an alternative is an
equilibrium”. In particular, an alternative is an equilibrium if
no actor can do better with respect to its own goals by
adopting a different strategy for delegating goals/accepting
delegations/refining goals/etc. Within the framework, the
following evaluation schema is used.

First, for all actors ai, i=1..n and all goals gk, k=1..m,
where n and m are the number of actors and goals,
respectively, the costs are defined:

• csik is the cost for the actor ai of satisfying the goal gk;
• crik is the cost for the actor ai of decomposing (refining)

the goal gk;
• cdijk is the cost for the actor ai of delegating a goal gk to

the actor aj.
Costs are specific to a given STS and may reflect the

complexity of an action, the risks an actor could face
while/after the action is performed, etc. It is assumed that the
costs are explicitly given as an input, and do not change
while the system is functioning. Also note, that in this work
the focus is on the load constraints only, and not on the other
factors which may influence the player’s decision to deviate,
e.g. risk concerns.

Then, the cost of a given alternative P for the actor ai is
calculated by summing up the costs of actions in P which ai
is involved in, and is denoted by

+= �
∈Pgaadelegate

ijki
kji

cdPac
),,(

),(

(1)

��
∈∈

++
Pgasatisfy

ik
Pgggadecompose

ik
kiklkkil

cscr
),(),...,,,(1

where decomposel(ai, gk, gk1 ,..., gkl) stands for the
decomposition of gk into l subgoals gk1, ..., gkl.

After the costs are computed, for each actor the conditions
are defined upon which an actor decides whether to deviate
from an alternative P or not. In particular, the actor ai whose

predefined upper cost bound up
ic is greater than c(ai, P) will

be willing to deviate from P.
The evaluation procedure itself is the following.
• An alternative P is generated with the help of a planner.
• Cost c(ai, P) is calculated for each actor ai.
• Actor amin is identified whose value of c(amin, P) is

minimal among all actors who want to deviate from P.
• The first most expensive action dworst (an action with the

highest cost) is identified among the actions of P in
which amin is involved.

• Negation of dworst is added to the initial planning
problem, and replanning is performed. If no plan can be
found, the next dworst (an action with the next highest
cost) is identified.

Ideally, the process stops when an equilibruium-like
solution is found, i.e. no actors are willing to deviate from it.
If such a solution is impossible to find then the existing
constraints might be relaxed: load bounds decreased, or even
actors’ goals and capabilities revised. This problem will
likely need the interference of a human designer, and is not
addressed in this paper.

Let us come back to the search-and-order MAS example.
It is assumed that different order queries have different costs
for the three system agents, depending, e.g., on the
complexity of a query. The costs for AUNIV are higher, which
is caused by its “universality”, i.e. the ability to work with
both suppliers. Moreover, the order queries are subdivided
into two classes – “simple” and “complicated”. The cost of
the satisfaction of a simple query is lower than a
corresponding cost for the complicated query. An example of
a complicated query could be “order best-selling HDD of
HWStore”, as it requires obtaining the statistical information.

The cost of any delegation is equal to 1 unit, the cost of a
decomposition is equal to 2 units. For AMM and AHWS
performing simple order queries costs 10 units, performing
complicated ones – 15 units, for AUNIV – 15 and 20 units,
respectively. Tolerable bound of load for all three agents,
under which they are not willing to deviate from the imposed
reconfiguration plan, is equal to 30 units. In these conditions
the costs of the obtained initial configuration plan P0 (see
Section 2.2) are the following: c(AMM, P0)=10, c(AHWS,
P0)=2+10+10=22, and c(AUNIV, P0)=0. Due to simplicity of
the example, this first solution generated by the planner is
satisfactory from the point of view of all three agents, i.e. the
evaluation shows that the plan costs are within the tolerable
load bounds for each agent.

3. Redesign at Runtime

In this section a centralized reconfiguration mechanism is
introduced, which is based on the planning-and-evaluation
approach proposed in the previous section. The
reconfiguration steps described below can be performed by
one special-purpose system actor, or a group of existing
system actors. Some implementation issues will be
overviewed in Section 4.

3.1 Reconfiguration Mechanism

The reconfiguration mechanism

• collects and manages the information about the system;
• evaluates the load imposed on each system actor based

on the local utilities of the actors to decide whether the
system needs to be redesigned in response to external or
internal changes;

• and, if the above evaluation shows that the
reconfiguration is needed, replans the system structure
in order to optimize the distribution of load imposed on
system actors.

It stores and updates
• the current problem definition problemDef, i.e. actor

and goal variables, and predicates (see Table 1)
describing them;

• the list of all goals G={gi, i=1..n} present in the system
together with their states (described in the next
paragraph), also for each goal the actor who initially
wanted it to be satisfied is stored;

• the current plan of actions, i.e. a list of actions D={dj,
j=1..m} generated during the last (re)design iteration
and not accomplished so far;

• archived data, e.g. actionLog.
To describe the states of the goals in G, the two of already

introduced predicates are used, namely, wants(a : actor, g :
goal) and satisfied(g : goal). In addition, a predicate
committed(a : actor, g : goal) is introduced. Predicate
committed(a, g) becomes true when a reconfiguration
mechanism is notified that a has committed to g, meaning
that a has taken a decision to satisfy g. This predicate is used
to support the minimal change principle during the
reconfiguration process. As it will be seen from the algorithm
presented in this section, the reconfiguration does not apply
to the committed goals, and thus, not all the STS structure is
revised each time. Note that satisfied(g) implies not
committed(a, g).

The reconfiguration algorithm is presented in Fig. 5, and is
organized in a way that a block corresponds to one internal or
environmental change. The notification about the change is
obtained either from the inside of the system or from the
environment. Each system actor is obliged to communicate to
some central point if it has committed to, or achieved a goal.
In order to avoid continuous replanning, a time slot � is
introduced, such that triggering events initiate evaluation and
replanning only if the time passed since the last replanning is
greater than � (line 0).

In the following each block is explained briefly.
• (lines 1–3) An actor a has committed to do a goal g. In

this case committed(a,g) is set to be true, and all
decompositions and delegations of g are moved to the
action log.

• (lines 4–8) An actor a has achieved a goal g. In this
case satisfied(g) is set to be true, and satisfaction action
is moved from D to the action log. Then it is evaluated
whether the actor that has satisfied the goal is “free
enough”, in a sense whether the total cost of the actions
in D it is involved in is less than a predefine threshold.
If it is the case, the replanning with non-committed
goals procedure ReplanWithG, presented in Fig. 6 and
described below, is performed.

• (lines 9–17) One of the imposed requirements is
relaxed, i.e. a goal g is no longer needed to be achieved.
It is assumed that g is not a subgoal of any other goal
present in the system. In this case the corresponding
variable g : goal and predicates in which g appears are
removed from the problem definition. All action
containing g are moved from D to the removed action
log. The same “removal procedure” is done for each
subgoal of g. Then it is evaluated whether any of the
system actors is “free enough” in the above defined
sense, and if such actors exist, the ReplanWithG
replanning procedure is performed.

• (lines 18–24) One of the existing actors leaves the
system. For each goal that was initially wanted by this
actor, the above described “removal procedure” is
performed. Then the corresponding variable a : actor
and predicates in which a appears are removed from the
problem definition, all actions containing a are moved
from D to the action log. All goals which was wanted
by a, or which a was committed to, are considered to be
new to the system, and the general replanning
procedure Replan, presented in Fig. 6 and described
below, is performed.

• (lines 25–27) A new actor joins the system. In this case
a new variable a : actor appears in the problem
definition together with the predicates describing the
properties of a. Then the ReplanWithG replanning
procedure is performed.

• (lines 28–30) A new requirement to the system has
been introduced, i.e. a new goal g is now to be satisfied.
In this case a new variable g : goal appears in the
problem definition together with the predicates
describing the properties of g, and for some actor a of
the system wants(a, g) becomes true. Then the Replan
replanning procedure is performed.

In Fig. 6 the replanning procedures used through the
algorithm are introduced.

Fig. 5. Reconfiguration algorithm.

Fig. 6. Replanning procedures.

• ReplanWithG. First planning for all new goals and
goals in G, except for committed ones, is performed;
then the evaluation is done for the intermediate plan –
the new plan in which additional actions are included,
Satisfies(a,g) ∈ D, such that commited(a,g) is true. If
the evaluation is successful, D is replaced with the
intermediate plan.

• Replan. Planning is performed for the new goals, and
then the intermediate plan – D plus the new plan – is
evaluated. If the evaluation is successful, new actions
are added to D. If not the ReplanWithG is performed.

If it is still impossible to find a plan of actions to satisfy
the system goals, then the commitments of actors to goals
might be revised. However, this feature is not yet supported
by the framework, and is not addressed in this paper.

3.2 Example: reconfiguration process

Let us now illustrate the proposed procedure with the help of
the example presented in Section 2.1, and discussed in the
previous section. Here the reaction of the reconfiguration
mechanism to the two triggering events, occurred at the time
steps t1 and tk , is considered.

Step t1. Suppose that a new request has arrived to the
agent AHWS, “order speakers at price between 10 and 30$ of
HWStore”, which is classified as simple. Till that moment
AHWS has committed to “order headphones of HWStore”.

Replanning only for the new goal gives the resulting plan
P1 presented in Fig. 7.

Fig. 7. First plan at time step t1.

The costs for the obtained plan P1 are the following:
c(AMM, P1)=10, c(AHWS, P1)=2+10+10=32>30, and c(AUNIV,
P1)=0. As far as AHWS is not satisfied with the imposed load,
replanning for all the goals, except committed, is performed.

The resulting plan P2 is illustrated in Fig. 8.

Fig. 8. Second plan at time step t1.

The costs for the P2 are the following: c(AMM,
P2)=10+10=20, c(AHWS, P2)=2+1+10+10=23, and c(AUNIV,
P2)=0. As far as all c(.,P2)<30, the reconfiguration plan P2 is
adopted. The assignment structure is revised, and redesigned
as depicted in Fig. 9.

Step tk. Suppose that a new request has arrived to the
agent AHWS, “order best-selling HDD of HWStore”, which is
classified as complicated. Till this moment AMM has

committed to “order a keyboard at a price less than 20$ of
MediaMarket”, AHWS has committed to “order headphones of
HWStore”, and AUNIV has committed to a new simple “goal
from AMM”.

Fig. 9. First reconfiguration of search-and-order MAS.

Replanning only for the new goal gives the resulting plan
Pk presented in Fig. 10.

Fig. 10. First plan at time step tk.

The costs for the Pk are the following: c(AMM, Pk)=21,
c(AHWS, Pk)=23+15=38>30, and c(AUNIV, Pk)=15. As far as
AHWS is not satisfied with the imposed load, replanning for all
the goals, except committed, is performed.

The resulting plan Pk+1 is presented in Fig. 11.

Fig. 11. Second plan at time step tk.

The costs for the Pk+1 are the following: c(AMM, Pk+1)=21,
c(AHWS, Pk+1)=24, and c(AUNIV, Pk+1)=15+20=35>30. As far
as AUNIV is not satisfied with Pk+1, the replanning is
performed.

The resulting plan Pk+2 is illustrated in Fig. 12.

The costs for the Pk+2 are the following: c(AMM, Pk+2)=21,
c(AHWS, Pk+2)=10+2+1+15+1=29, c(AUNIV, Pk+2)=15+15=
30. As far as all c(., Pk+2) � 30, the reconfiguration plan Pk+2
is adopted. The assignment structure is revised, and
redesigned as depicted in Fig. 13.

Fig. 12. Third plan at time step tk.

Fig. 13. Second reconfiguration of search-and-order MAS.

4. General Architecture for Self-Configuring
Systems

To implement the presented approach, i.e. to add to a socio-
technical system the ability to self-configure, two-layered
multi-agent architecture is proposed, which is presented in
Fig. 14.

Fig. 14. Agents of the control layer.

The lower layer, called the operational layer (OL), is
domain-specific, and comprises a set of agents aiming to
satisfy the goal of an STS (place the orders to the suppliers,
book the plane tickets, manage meeting agenda, etc.). On the
upper layer, called the control layer (CL), there sit four
agents – Monitor, Controller, Planner and Evaluator.
Monitor is responsible for the communication with the agents
of the operational layer, and the environment. The OL agents
notify the Monitor about the relevant changes. Controller,
Planner and Evaluator realize the domain-independent
procedures: reconfiguration, planning and evaluation,
respectively. The data they store and process (status of
system goals, formal definition of a planning problem, costs
of actions for each actor) is specific to a given STS.
Controller is following the reconfiguration mechanism
presented in Section 3.1, delegating planning and evaluation
tasks to Planner and Evaluator, respectively. The new system
configuration, produced by Controller, Planner and
Evaluator, is propagated to the OL agents by Monitor. The
separation of duties between the control layer agents is
detailed in Table 2.

Table 2. Agents of the control layer.

Agent Data Stored Actions Performed Communication

Monitor Read-only access
to problemDef, D,
G.

Monitors (listens) OL and the environment; notifies Controller
about triggering changes; propagates the new plan to OL agents.

Environment, OL
agents, Controller.

Controller problemDef,
actionLog,
removeActionLog,
G, D.

Follows the reconfiguration mechanism, exploiting Planner (to
initiate replanning) and Evaluator (to evaluate loads); updates
stored data structures; notifies Monitor about plan changes.

Monitor, Planner,
Evaluator.

Planner Domain definition,
read-only access to
problemDef.

Performs planning; tunes problemDef in accordance with
Evaluator’s results.

Controller,
Evaluator.

Evaluator

Action costs and
load bounds for
each OL agent.

Follows the evaluation procedure; evaluates OL agents load. Controller,
Planner.

The authors propose that the described multi-agent
architecture is to be implemented in JADE (Java Agent
DEvelopment framework) [1], FIPA-compliant [2]
framework for multi-agent systems development. Four agents
of the control layer will have the same functionality for any
domain-specific instance of the architecture. The Controller
agent will implement the reconfiguration algorithm presented
in Figure 5. The Monitor needs to implement the
communication with OL agents and the environment (e.g.
using standard FIPA protocols, like ContractNetProtocol).
The functionality of the Planner and Evaluator agents have
been already implemented in P-Tool, see [6] for the brief
description. P-Tool is an implemented prototype to support
the designer/requirements engineer in the process of
exploring and evaluating design alternatives. The tool has a
graphical interface for the input of actors, goals and their
properties. LPG-td planner is built in the tool, and is used to
generate requirements alternatives, and represents each
solution graphically using i*/Tropos notation [21, 5].

5. Conclusions

In this paper an approach to the problem of dynamic
reconfiguration of socio-technical information systems in
response to the internal and environmental changes has been
proposed. The procedure for exploring and evaluating
alternative system configurations has been described, which
is based on AI planning techniques and game theoretic
notions of an equilibrium and local strategies. Also the
reconfiguration mechanism has been presented, which is
based on the above planning-and-evaluation procedure. All
steps of the approach were illustrated with a simple but
illustrative example. Finally, the multi-agent architecture of a
self-configuring system was discussed, and it has been shown
how the approach can be implemented on the base of the
presented algorithm, and the previous work of the authors on
the automatic exploration of design alternatives.

The presented approach can be applied both to socio-
technical systems and to multi-agent systems, which
comprise only software agents. However, the application of
the approach to the former type of systems can be much more
beneficial, as dynamicity and the self-interested rational
behavior are among the STS intrinsic properties.

The proposed reconfiguration mechanism is limited in that
it supports only four types of triggering events, namely, the
situations when a new actor enters the system, or the existing
one leaves, when a new system goal is introduced, or one of
the old ones is satisfied. However, the formalization could be
quite easily extended to support the changes in the actors’
capabilities and commitments, failures when achieving goals,
etc. This is possible due to the flexibility of the PDDL
representation [11] of the problem and the planning domain.
This issue is planned to be addressed in the future work.
Among the other future work directions are providing the tool
support for the approach, and its verification with the help of
real-life case studies.

Acknowledgements

This work has been partially funded by EU Commission,
through the SENSORIA and SERENITY projects, by the
FIRB program of MIUR under the ASTRO project, and also

by the Provincial Authority of Trentino, through the
MOSTRO project. The authors also thank anonymous
reviewers of the paper for their valuable comments.

References

[1] JADE: Java Agent DEvelopment Framework website

http://jade.tilab.com/.
[2] FIPA: Foundation for Intelligent Physical Agents

http://www.fipa.org/.
[3] N Arshad, D Heimbigner, and A L Wolf, A planning

based approach to failure recovery in distributed systems.
In Proceedings of the 1st ACM SIGSOFT workshop on
Self-managed systems, New York, NY, USA, 2004.
ACM Press, pp. 8-12.

[4] C Bernon, M P Gleizes, S Peyruqueou, and G Picard,
Adelfe: A methodology for adaptive multi-agent systems
engineering. In Proceedings of ESAW’02, 2002, pp. 156-
169.

[5] P Bresciani, P Giorgini, F Giunchiglia, J Mylopoulos,
and A Perini, Tropos: an agent-oriented software
development methodology. JAAMAS, Vol. 8, No. 3,
2004, pp. 203-236.

[6] V Bryl, P Giorgini, and J Mylopoulos, Requirements
analysis for socio-technical systems: exploring and
evaluating alternatives. Technical Report DIT-06-006,
University of Trento, 2006.

[7] V Bryl, F Massacci, J Mylopoulos, and N Zannone,
Designing security requirements models through
planning. In Proceedings of CAiSE'06, 2006, pp. 33-47.

[8] L Cernuzzi and F Zambonelli, Dealing with adaptive
multi-agent organizations in the gaia methodology. In
Proceedings AOSE’05, 2005, pp. 217-228.

[9] S A DeLoach and E Matson, An organizational model
for designing adaptive multiagent systems. In
Proceedings of AAAI’04 Workshop on Agent
Organizations, 2004, pp. 66-73.

[10] V Dignum, L Sonenberg, and F Dignum, Towards
dynamic reorganization of agent societies. In
Proceedings of Workshop on Coordination in Emergent
Agent Societies, 2004.

[11] S Edelkamp and J Hoffmann, Pddl2.2: the language for
the classical part of the 4th international planning
competition. Technical Report 195, University of
Freiburg, 2004.

[12] J F Hübner, J S Sichman, and O Boissier, Using the
Moise+ for a cooperative framework of MAS
reorganisation. In Proceedings of SBIA’04, 2004, pp.
506-515.

[13] LPG Homepage. LPG-td Planner.
http://zeus.ing.unibs.it/lpg/.

[14]] M J Osborne and A Rubinstein, A course in game
theory. MIT Press, 1994.

[15] J Peer, Web Service Composition as AI planning – a
survey. Technical report, University of St. Gallen, 2005.

[16] I Sommerville, Software engineering (7th ed.). Addison-
Wesley, 2004.

[17] R Sterritt, C Rouff, J L Rash, W Truszkowski, and M G
Hinchey, Self*- properties in Nasa mission. In Software
Engineering Research and Practice, 2005, pp. 66-72.

[18] R Turner and E Turner, A two-level, protocol-based
approach to controlling autonomous oceanographic

sampling networks. IEEE Journal of Oceanic
Engineering, Vol. 26, No. 4, 2001, pp. 654-666.

[19] D S Weld, Recent advances in AI planning. AI
Magazine, Vol. 20, No. 2, 1999, pp. 93-123.

[20] T D Wolf and T Holvoet, Towards a methodology for
engineering self-organising emergent systems. Self-
Organization and Autonomic Informatics (I), Vol. 135,
No. 1, 2005, pp. 18-34.

[21] E S-K Yu, Modelling strategic relationships for process
reengineering. PhD thesis, University of Toronto, 1996.

Author Bios

Volha Bryl is currently a PhD student at the ICT Doctorate
School in Information and Communication Technologies at
the University of Trento, Italy. She received the 5-year-
degree in Applied Mathematics and Computer Science from
the Belarusian State University (Minsk, Belarus) in 2003. Her
research interests lie in the area of multi-agent systems and
agent-oriented software engineering; in particular, she works
with the goal-oriented requirements analysis and design in
the light of Tropos, an agent-based oriented software
engineering methodology. She was also been involved in the

development of ToothAgent, a multi-agent architecture
aimed at supporting virtual communities of co-located users.

Paolo Giorgini is a researcher at the University of Trento.
He received his PhD degree from the Computer Science
Institute of the University of Ancona (Italy) in 1998. After,
that he joined the University of Trento as a pos-doc
researcher. In December 1998 he was a visiting researcher at
the Computer Science Department of the University of
Toronto (Canada), and more recently he was a visiting
researcher at the Software Engineering Department of the
University of Technology in Sydney. He has worked on the
development of requirements and design languages for agent-
based systems, and the application of knowledge
representation techniques to software repositories and
software development. He is one of the founders of Tropos,
an agent-based oriented software engineering methodology.
His publication list includes more than 130 refereed journal
and conference proceedings papers and eight edited books.
He has contributed to the organization of several international
conferences as a chair and a program committee member, and
he is Co-editor in the Chief of the International Journal of
Agent-Oriented Software Engineering (IJAOSE).

