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Abstract

Human languages vary in terms of which meanings they lexicalize, but this variation is constrained.
It has been argued that languages are under two competing pressures: the pressure to be simple (e.g.,
to have a small lexicon) and to allow for informative (i.e., precise) communication, and that which
meanings get lexicalized may be explained by languages finding a good way to trade off between
these two pressures. However, in certain semantic domains, languages can reach very high levels of
informativeness even if they lexicalize very few meanings in that domain. This is due to productive
morphosyntax and compositional semantics, which may allow for construction of meanings which are
not lexicalized. Consider the semantic domain of natural numbers: many languages lexicalize few nat-
ural number meanings as monomorphemic expressions, but can precisely convey very many natural
number meanings using morphosyntactically complex numerals. In such semantic domains, lexicon
size is not in direct competition with informativeness. What explains which meanings are lexicalized
in such semantic domains? We will propose that in such cases, languages need to solve a different
kind of trade-off problem: the trade-off between the pressure to lexicalize as few meanings as possible
(i-e, to minimize lexicon size) and the pressure to produce as morphosyntactically simple utterances as
possible (i.e, to minimize average morphosyntactic complexity of utterances). To support this claim,
we will present a case study of 128 natural languages’ numeral systems, and show computationally
that they achieve a near-optimal trade-off between lexicon size and average morphosyntactic complex-
ity of numerals. This study in conjunction with previous work on communicative efficiency suggests
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that languages’ lexicons are shaped by a trade-off between not two but three pressures: be simple, be
informative, and minimize average morphosyntactic complexity of utterances.

Keywords: Numerals; Number; Simplicity; Informativeness; Average morphosyntactic complexity;
Trade-off

1. Introduction

Human languages vary in terms of which meanings they lexicalize as simple morphemes. !
There are nonetheless important constraints on this variation: some meanings or meaning
types are very frequently lexicalized, while others very rarely. Such constraints have been
identified in both content and functional vocabulary. For instance, in the domain of con-
tent words, color terms have a well-established order of appearance in language evolution—
certain semantic contrasts must be established before others (Berlin & Kay, 1969). In addition,
color terms label only convex regions of the conceptual color space (Gérdenfors, 2014; Jiger,
2010). In the domain of function words, multiple semantic constraints have been identified for
quantificational determiners (Barwise & Cooper, 1981; Hackl, 2009; Horn, 1972; Keenan &
Stavi, 1986; Peters & Westerstéhl, 2006). For instance, no language lexicalizes a quantifica-
tional determiner whose meaning is not every (Horn, 1972). Where do these constraints come
from? Three prominent answers to this questions include learnability (e.g., certain mean-
ings are rarely or not lexicalized because they are harder to learn, cf. Chemla, Buccola, &
Dautriche, 2019; Hunter & Lidz, 2013; Maldonado & Culbertson, 2022; Steinert-Threlkeld
& Szymanik, 2019, 2020), syntax-semantics interface (e.g., certain meanings are not lexi-
calized because they would be degenerate due to how syntactic structures are semantically
interpreted, cf. Fox, 2002; Romoli, 2015), and communicative efficiency (e.g., certain mean-
ings are rarely or not lexicalized because lexicalizing them would not improve communicative
efficiency of a language, cf. Kemp & Regier, 2012 and much subsequent work).

In this paper, we will not discuss learnability and syntax-semantics interface explanations,
and will focus instead on the communicative efficiency explanation. According to the most
prominent version of the communicative efficiency explanation, languages are under the pres-
sure to be simple (e.g., to have a small lexicon) while simultaneously being under the pres-
sure to be informative, that is, to allow for precise communication. These two pressures are in
competition. For instance, if a language only has one word for colors, it will have a small lex-
icon, but it will not allow for very precise communication about colors. Adding more words
for various colors would allow for more precise communication, but at the cost of having a
larger lexicon. Natural languages have been argued to lexicalize the meanings which allow
them to achieve a good compromise between these two pressures, that is, fo optimize the sim-
plicity/informativeness trade-off (Denié, Steinert-Threlkeld, & Szymanik, 2021, 2022; Kemp
& Regier, 2012; Kemp, Xu, & Regier, 2018; Mollica et al., 2021; Regier, Kemp, & Kay,
2015; Steinert-Threlkeld, 2019, 2021; Uegaki, 2022; Xu, Regier, & Malt, 2016; Xu, Liu, &
Regier, 2020; Zaslavsky, Kemp, Regier, & Tishby, 2018; Zaslavsky, Maldonado, & Culbert-
son, 2021).
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However, in certain semantic domains, it is possible to reach very high levels of informa-
tiveness even if very few meanings from that semantic domain are lexicalized. This is due to
productive morphosyntax and compositional semantics, which may allow for construction of
meanings which are not lexicalized. Consider the semantic domain of natural numbers in lan-
guages with a so-called recursive numeral system?: these are languages in which (practically)?
any natural number meaning can be expressed precisely (e.g., English). Many such languages
lexicalize few natural number meanings, but can precisely convey (practically) any natural
number meaning using morphosyntactically complex numerals (e.g., sixty-one in English). In
such semantic domains, lexicon size is not in direct competition with informativeness. What
explains which meanings are lexicalized in these domains?

We will propose that, in semantic domains in which productive morphosyntax enables
precise communication even with very few lexicalized meanings, languages are under the
pressure to lexicalize as few meanings as possible (i.e, to minimize lexicon size) and the
pressure to allow for production of as morphosyntactically simple utterances as possible (i.e,
to minimize average morphosyntactic complexity of utterances). Lexicon size and average
morphosyntactic complexity of utterances are in competition in such domains: reducing aver-
age morphosyntactic complexity of utterances will often require lexicalizing more meanings,
and reducing the size of the lexicon will often result in needing utterances of greater mor-
phosyntactic complexity to communicate. We thus propose that, in such domains, languages
lexicalize those meanings which allow them to optimize the trade-off between lexicon size and
average morphosyntactic complexity of utterances.

We will evaluate this proposal within a case study on lexicalized number meanings in
languages with a recursive numeral system, and present evidence that recursive numeral sys-
tems indeed optimize the trade-off between lexicon size and average morphosyntactic com-
plexity of numerals. This conclusion is in tension with Xu et al. (2020), who have instead
argued that numeral systems—including recursive numeral systems—optimize the simplic-
ity/informativeness trade-off. We review their results in Section 4; we will argue that their
results show that other types of numeral systems optimize the simplicity/informativeness
trade-off, but that they do not show that recursive numeral systems optimize the simplic-
ity/informativeness trade-off.

Furthermore, we will discuss several other lines of work (Carcassi & Sbardolini, 2022;
Haspelmath, 2021; Mollica et al., 2021; Piantadosi, Tily, & Gibson, 2011; Zipf, 1949) which
share with the present work the idea that speakers attempt to minimize complexity of their
utterances, and explain in what way they are different from the proposal we are pursuing.

Finally, once our results are in place, we will abstract away from numeral systems and dis-
cuss which notion of communicative efficiency may explain what meanings get lexicalized
across semantic categories more generally. We will propose that, in light of the present case
study on numeral systems and the previous work on the simplicity/informativeness trade-off
optimization (e.g., Kemp & Regier, 2012), in order to explain which meanings get lexical-
ized across languages and across semantic domains, a more general approach may be that
languages are finding a good compromise between not two but three pressures: be simple, be
informative, and minimize average morphosyntactic complexity of utterances.
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2. Experiment

We will present an experiment investigating how close natural languages’ recursive
numeral systems are to trading off optimally between lexicon size and average morphosyn-
tactic complexity of numerals.

2.1. Natural languages

We assume that numerals across languages semantically denote numbers (e.g., the numeral
two denotes the number 2), noting that this is a simplification (see Bylinina & Nouwen,
2020; Spector, 2013). We collected cross-linguistic data on numerals denoting numbers 1—
99 and their morphosyntactic components in recursive numeral systems from the sample of
languages in the Numeral bases chapter in The World Atlas of Language Structures (WALS)
(Comrie, 2013). WALS language samples are compiled with an aim to maximize genealogi-
cal and areal diversity of languages in them (Comrie, Dryer, Gil, & Haspelmath, 2013)—we
can thus have some confidence that we will be analyzing a representative sample of world’s
languages’ recursive numeral systems.

Two main sources were used to collect the cross-linguistic data. The primary source were
descriptive grammars of individual languages, in most cases those referenced in Comrie
(2013). When no descriptive grammar of a language was accessible to us, we used as a
secondary source the data from the website https://lingweb.eva.mpg.de/channumerals/, main-
tained by Eugene Chan. This website is a collective effort of language scholars to docu-
ment world’s language’s numeral systems. Out of 172 recursive numeral systems in Com-
rie (2013), 44 were excluded due to: (i) challenges with data collection (when no com-
plete description of the numeral system was accessible to us) or (ii) challenges with data
interpretation. The challenge with data interpretation that led to the exclusion of certain
languages was, in all but two cases (Danish and Ainu), that morphosyntax and semantics
of numerals were sometimes misaligned (for instance, in Zoque, the numeral for number
9 is morphologically 6+4; this is dubbed “correct misinterpretation” in Hurford, 1975).
The challenge with data interpretation for Danish is explained in footnote 4 and the chal-
lenge with data interpretation for Ainu is explained in footnote 7. One hundred and twenty-
eight languages were thus included in the analysis: their list is in Appendix A. Descriptions
of the numeral systems of the 128 languages and the sources used for each language, as
well as scripts for all analyses reported in this paper, can be found in online Appendix at:
https://osf.io/gw2x3/.

For each of the 128 studied numeral systems, for each numeral denoting a number in
the range 1-99, its morphosyntactic components and their denotations were identified (cf.
Tables 1 and 2 for a few examples of numerals in Georgian and Fulfulde, respectively). These
numeral systems differ in terms of which number meanings they lexicalize. Some recurring
options are listed in (1). The generalization seems to be that (in most cases) they lexicalize
the following numbers from the range 1-99: (i) the first » numbers, with n varying across
languages, often the first five or the first 10, and (ii) a couple of additional numbers such as
10 and/or 20 as in (1b) or (1c¢).
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Table 1
Georgian numerals for numbers 6, 30, and 62. ¥ in the “Morphosyntactic make-up” column indicates that a mor-
pheme is covert, that is, it does not have a phonetic realization

Denotation (numeral) Morphosyntactic make-up Number of morphemes
6 (ekvsi) 6 (ekvsi) 1

30 (otsdaati) 20 (ots-) + (-da-) 10 (-ati) 3

62 (samotsdaori) 3 (sam-) - (¥) 20 (-ots-) + (-da-) 2 (-ori) 5

Table 2

Fulfulde numerals for numbers 6, 30, and 62. § in the “Morphosyntactic make-up” column indicates that a mor-
pheme is covert, that is, it does not have a phonetic realization

Denotation (numeral) Morphosyntactic make-up Number of morphemes
6 (jowe go’0) 5 (jowe) + (¥) 1 (go’0) 3
30 (chappande tatti) 10 (chappande) - (¥) 3 (tatti) 3
62 (chappande jowe go’o i didi) 10 (chappande) - (9) (5 (jowe) + 7

) 1 (go’0)) + (i) 2 (didi)

(1) Lexicalized numbers:
a. 1,2,3,4,5,6,7,8,9, 10 (74 languages)
b. 1,2,3,4,5,6,7,8,9, 10, 20 (20 languages)
c. 1,2,3,4,5,10 (9 languages)

Even when they lexicalize the same number meanings, languages sometimes make dif-
ferent choices in constructing morphosyntactically complex numerals. For instance, Kunama
and Fulfulde lexicalize number meanings in (1¢); Kunama constructs the numeral for number
9 as 10 — 1, while Fulfulde does it as 5 + 4. As another example, Greek and Georgian lexi-
calize number meanings in (1b); Greek constructs the numeral for number 45 as 4 - 10 + 5,
while Georgian does it as 2 - 20 4+ 5. Morphosyntactically complex numerals for numbers
1-99 across languages reveal that addition, multiplication, and subtraction are productively
involved in their construction* (cf. Hurford, 1975, 2007). Both number-denoting morphemes
and morphemes denoting arithmetic operators can in principle be phonetically overt or covert:
in practice, number-denoting morhemes are very rarely covert, while morphemes denoting
arithmetic operators often are.’ Furthermore, certain number-denoting morphemes play a spe-
cial role in the construction of morphosyntactically complex numerals (the so-called bases).
For instance, in “base-10 languages,” morphosyntactically complex numerals for numbers
up to 99 are in general constructed according to the morphosyntactic pattern x - /10 4+ n (e.g.,
Greek). On the other hand, in “base-20 languages,” morphosyntactically complex numerals
for numbers up to 99 are in general constructed according to the morphosyntactic pattern
x - 20 + n (e.g., Georgian). Many languages behave as “base-5 languages when it comes to
the composition of numerals for numbers 6-9, which they construct as 5 + n (e.g., Fulfulde).

Finding morphosyntactic components of numerals required studying the morphosyntactic
patterns for numerals in each of the 128 languages. In most languages, the relevant mor-
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phosyntacic patterns were explicitly described in the descriptive grammars we consulted, or
were otherwise easy to deduce from the list of numerals in the language. Some numerals may,
however, be an exception to an established morphosyntactic pattern in a language; we will
now describe how different types of exceptions were treated. We can categorize exceptions
into three types. Type 1: These are numerals which bear no connection whatsoever to mor-
phemes we may expect to find in them had the morphosyntactic patterns been respected. For
instance, English is a base-10 language, and we may thus expect to find morphemes for 1 and
10 in the numeral for 11. The numeral “eleven,” however, does not seem to bear any relation
to morphemes denoting 1 or 10. In such cases, we consider the numeral to be monomor-
phemic. Type 2: These are numerals in which some of the morphemes are clearly identifiable,
while others are not; we can, however, rely on the clearly identifiable morphemes to deduce
a full morphological analysis. For instance, in the English numeral twenty, the morpheme
-ty is clearly identifiable (it occurs also in thirty, forty, fifty, etc.), and we can thus conclude
that twen- is also a morpheme, in particular, that it is an allomorph (i.e., a variant phonetic
realization) of the morpheme fwo. Type 3: These numerals are in between Type 1 and Type
2: that is, we cannot divide them into substrings for which we can argue based on indepen-
dent evidence that they are morphemes, but we can nonetheless identify in them (phonetic
or orthographic, depending on the available data) elements of morphemes we may expect to
find in them had the morphosyntactic patterns been respected. For instance, in English twelve,
we seem to find some elements of the morpheme for number 2 (i.e., (fwe-?) may be another
allomorph of 2). We will refer to the cases of the Type 3 as unclear cases. Such unclear cases
were encountered in 34 languages, listed in Appendix B. In most of these 34 languages, only
1 or 2 numerals were concerned (e.g., in English, the only concerned numeral is twelve). We
opted to not exclude these 34 languages from the main analysis (however, the supplemen-
tary analysis with these 34 languages excluded is reported in Appendix B), but rather analyze
their unclear cases (very simplistically) as morphologically complex: that is, when a numeral
is an exception to an established morphosyntactic pattern in a language, but partially overlaps
in its phonetic or orthographic elements with some of the morpheme(s) which should have
been there if the morphosyntactic pattern was respected, we will assume that the numeral fol-
lows the morphosyntactic pattern but with phonetic variants not seen elsewhere. For instance,
we will assume that English twelve incorporates the morpheme for number 2 (fwe-?) and
10 (-lve?). As we explain in footnote 9, potential errors due to this simplification would not
qualitatively alter our conclusions; cf. also Appendix B.

2.2. Lexicon size and average morphosyntactic complexity

We consider that lexicon size of a language is the number of lexicalized meanings—rather
than the number of form-meaning pairs, for example, we consider that English has one lexical
item for 10 which can be phonetically realized in multiple ways (i.e., the morpheme ten
has allomorphs, in particular -feen and -ty). This is important to keep in mind as it affects
how our results should be interpreted: we will argue that languages optimize the trade-off
between the number of lexicalized meanings and average morphosyntactic complexity of
utterances, rather than the trade-off between the number of form-meaning pairs and average

85US017 SUOWIWOD BAIERID 3|cedl|dde 8y} Aq peuienob ae s9o1e YO ‘88N JO S9INJ 10} Akeid1]8UIIUO AB]IAN UO (SUONIPUOD-PUE-SWLBIALID A8 1M Afe.q Ul juo//Sdiy) SUORIPUOD pue S | 84} 88S " [1202/€0/8T] U0 ARiqiTauliuo A8 |Im ‘elfeleueiyood A 1zyeT SBoo/TTTT 0T/I0pAL0 A8 1M Aleiq uljuo//sdiy Woiy pepeojumoq '€ 'vZ0Z '60L9TSST



M. Denié, J. Szymanik/ Cognitive Science 48 (2024) 7 of 28

morphosyntactic complexity of utterances. Of course, an important question that remains
open is why languages sometimes have multiple phonetic realizations of a single meaning;
we will come back to this point in Section 2.4.4.

Average morphosyntactic complexity of numerals in a language L is computed according
to the formula in (2). In (2), ms_complexity(n, L) is the morphosyntactic complexity of the
numeral (i.e., the number of morphemes in it) of the language L denoting the number n and
P(n) is the probability that the number n needs to be communicated. For instance, average
morphosyntactic complexity of English is obtained as P(1) x the number of morphemes in
“one” 4+ P(2) x the number of morphemes in “two” + - -- 4+ P(99)x the number of mor-
phemes in “ninety-nine.” We assume that the probabilities that different numbers need to be
communicated follow a power-law distribution as in (3) (cf. Dehaene & Mehler, 1992; Pianta-
dosi, 2016; Xu et al., 2020). Qualitatively, this probability distribution captures that the larger
the number #n, the lower the need to talk about it.

average_ms_complexity(L) = Z P(n) - ms_complexity(n, L) 2)
nel1,99]

Prior over numbers: P(n) « n— 3)

The distribution in (3) is an idealization of a more complex cross-cultural reality: while pre-
vious work motivates that probabilities that different numbers need to be communicated gen-
erally follow such a distribution, there are also some deviations from this distribution across
languages (Dehaene & Mehler, 1992). First, numerals which can get round (i.e., approximate)
interpretation (e.g., numerals for 10, 20 in English) are used more frequently than expected
given (3) (Dehaene & Mehler, 1992). Importantly, for our purposes, however, Krifka (2007)
presents empirical evidence that the frequencies of numerals for 10, 20, and so on vary across
languages, and that they depend on the specifics of the numeral system, in particular, on what
base(s) the numeral system has. In other words, which number meanings are lexicalized as
bases may influence which expressions can get a round interpretation, and thus influence their
frequency. Because of this, and as our goal is to explain which meanings are lexicalized across
languages in the first place, using a prior which incorporates peaks on numbers such as 10,
20, and so on would lead to circularity—we thus use the idealized prior distribution in (3)
without such peaks. Second, certain numbers may be referred to more or less frequently than
expected given (3) in a language because of culture-specific reasons (e.g., number 13 may be
referred to less frequently than expected given (3) in cultures in which this number is con-
sidered unlucky). While these culture-specific variations should ideally be taken into account
when evaluating average morphosyntactic complexity of languages, we are not in a position
to evaluate per-language probability distributions for each of the 128 studied languages within
the scope of this study. We thus assume that the simplified/idealized prior in (3) holds for all
languages, noting that future research may refine this aspect of our work.

2.3. Approximating the Pareto frontier

In order to evaluate whether natural languages with a recursive numeral system optimize
the trade-off between lexicon size and average morphosyntactic complexity of numerals, we
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need to establish how close they are to the optimal solutions to the lexicon size/average mor-
phosyntactic complexity of numerals trade-off problem. The set of optimal languages—called
the Pareto frontier —is a set of (theoretically possible) languages for which there is no other
(theoretically possible) language which is better on one of the two dimensions (lexicon size,
average morphosyntactic complexity of numerals) without being worse on the other.

The space of theoretically possible languages is too large for an exhaustive search of opti-
mal languages. We thus use an evolutionary algorithm to approximate the Pareto frontier
(cf. Deni¢ et al., 2021, 2022; Steinert-Threlkeld, 2019, 2021), which involves generations of
many artificial languages (i.e., artificial recursive numeral systems). Before we explain how
the evolutionary algorithm works, we explain how artificial languages are generated.

We use the grammar proposed by Hurford (1975, 2007) for natural language numerals
generation to generate numerals of artificial languages. Hurford (1975, 2007) in his seminal
work proposes that number-denoting morphemes across languages are of the syntactic cate-
gory Digits (D) or Multipliers (M). Roughly, morphemes denoting numbers which are “bases”
as 10 or 20 in “base-10” or “base-20” languages are of the syntactic category M; other mor-
phemes are of the syntactic category D. He proposes that, across languages, numerals are
constructed according to the grammar in (4).% For instance, consider a language whose D =
{1,2,3,4,5,6,7,8,9}, M = {10} —in this language, 5-104+6,5-10—6,10+ 4,10 — 4
are examples of morphosyntactically well-formed expressions, while 5 - 2, 5 + 3 are exam-
ples of expressions which are not well-formed.”

NUMBER — D | PHRASE | PHRASE + NUMBER | PHRASE — NUMBER
PHRASE — M | NUMBER - M 4)

For our purposes, an artificial language consists of (a) a lexicon of number-denoting mor-
phemes, which are of category D or M (cf. the grammar in (4)), and (b) a set of numerals
for numbers 1-99 generated according to the morphosyntactic rules in (4) from the lexicon,
where each numeral is the shortest expression (or one of them, in case of a tie) for a given
number. For example, an artificial language L may have in its lexicon morphemes for 1, 2, 4,
6, 8, 10, such that 1, 2, and 4 are of category D and 6, 8, and 10 are of category M. Numerals
of L for other numbers in range 1-99 would be generated from these morphemes as explained
above. For instance, the numeral for number 16 in L would be randomly selected from one of
the three morphosyntactically simplest options: 10 4 6, 2 - 8, 8 4 8. These can be generated
by the grammar in (4) and are of equal morphosyntactic complexity (each has three mor-
phemes). On the other hand, 4 - 4 is not an option for numeral 16 in L because, even though
it would also have three morphemes, it cannot be generated by the grammar in (4) (because 4
is of category D in L). Similarly, 2 - 6 4+ 4 is not an option for number 16 in L because, even
though it can be generated by the grammar in (4), it is not one of the morphosyntactically
simplest options (it has five morphemes).

Due to computational constraints, two restrictions are imposed on the search for the short-
est expression for a given number in a language. (1) Expressions of depth x (i.e., expressions
with at most x number-denoting morphemes and x — 1 arithmetic operators) are incrementally
constructed from expressions of lower depths (e.g., expressions of depth 2 are constructed by
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combining expressions of depth 1). However, at all depths, the meaning of expressions is
restricted to be a natural number in [1, 200]. (2) If no expression for a number meaning is
found with a depth of at most 7, the search is abandoned, and the language is discarded
(extending the search to depths greater than 7 was impractical because of computational com-
plexity considerations).

The evolutionary algorithm works as follows. First, the generation O is created, which con-
sists of 2000 artificial languages. The lexicons of these artificial languages are generated by
drawing two random samples of numbers between 1 and 99; these stand for morphemes of
category D and M, respectively. As natural languages tend to have very few morphemes of
category M (often no more than 2), we restrict the size of the random sample for the category
M to at most 5 (no such restriction is imposed on the category D). The numerals for numbers
1-99 of these languages are generated as explained above. The dominant languages of a gen-
eration (those for which there is no language which is better on one dimension of lexicon size
and average morphosyntactic complexity without being worse on the other) each give rise
to an equal number of offspring languages, which are obtained via a small number of muta-
tions (between 1 and 3; these mutations include removing a number morpheme from D or M,
adding a number morpheme to D or M, and interchanging a number morpheme in D or M,
making sure that M is no larger than 5) from dominant languages. The dominant languages
from generation 0 together with their offspring languages constitute generation 1, whose size
is limited to 2000 languages. This process is repeated for 100 generations. Finally, the dom-
inant languages are selected from the union of the last generation and the natural languages.
Each of these dominant languages can be represented as a point in a two-dimensional (lexicon
size and average morphosyntactic complexity of numerals) space; we do spline interpolation
of these points to form a Pareto frontier.

2.4. Results

We will start by presenting the main result (Section 2.4.1). To preview, we find that natu-
ral languages’ recursive numeral systems are indeed (near-)optimal solutions to the lexicon
size/average morphosyntactic complexity of numerals trade-off problem. In Sections 2.4.2
and 2.4.3, we present supplementary analyses which allow to better understand the role of
different properties of natural languages’ recursive numeral systems in the aforementioned
trade-off optimization.

2.4.1. Trade-off results

The natural languages and the artificial languages generated through the 100 generations
of the evolutionary algorithm are plotted in Fig. 1.> The approximated Pareto frontier—that
is, the set of (nearly-)optimal solutions to the problem of trading off between lexicon size
and average morphosyntactic complexity of numerals—is plotted as the black curve in Fig. 1.
Fig. 2 represents a zoom into the region of Fig. 1 surrounding the natural languages. Two
natural languages—Fulfulde and Georgian—are labeled in Fig. 2 for illustration.
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Fig. 1. Experiment: Lexicon size and average morphosyntactic complexity of natural languages and of artificial
languages generated via an evolutionary algorithm.
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Fig. 2. Experiment: Lexicon size and average morphosyntactic complexity of natural languages and of artificial
languages generated via an evolutionary algorithm (zoom into the area surrounding natural languages). Two natural
languages—Fulfulde and Georgian—are labeled for illustration. Natural languages lie at or very close to the Pareto
frontier (black curve).

Critically, natural languages lie along or very close to the Pareto frontier in Fig. 2. This
speaks in favor of natural languages’ recursive numeral systems optimizing the trade-off
between lexicon size and average morphosyntactic complexity of numerals.’

Interestingly, there is some variation in terms of where along the Pareto frontier natural
languages lie. In other words, natural languages differ in terms of which optimal solution
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to the lexicon size/average morphosyntactic complexity of utterances trade-off problem they
are approaching. Take, for example, cases of Georgian and Fulfulde: a few examples of their
numerals are in Tables 1 and 2, respectively. We have seen that Georgian lexicalizes numbers
in (1b), while Fulfulde lexicalizes those in (1¢). The lexicon size of Georgian is thus 11, and
that of Fulfulde 6. The average morphosyntactic complexities of numerals of Georgian and
Fulfulde (computed according to the formula in (2)) are 1.13 and 1.28, respectively. In other
words, Fulfulde has a smaller lexicon size than Georgian, but Georgian has a lower average
morphosyntactic complexity of numerals than Fulfulde.

Finally, it is interesting to notice another property of the data in Fig. 2. Natural languages
lie along the region of the Pareto frontier where both average morphosyntactic complexity of
numerals and lexicon size are relatively low. There are (at least) two ways to interpret this
finding. The first is that there are levels of average morphosyntactic complexity of numerals
and lexicon size above which natural languages are, in a sense, not willing to go, even if it
is still possible to achieve Pareto-optimality with such higher levels of average morphosyn-
tactic complexity of numerals and lexicon size. In other words, in addition to optimizing the
trade-off between lexicon size and average morphosyntactic complexity of numerals, natu-
ral languages’ recursive numeral systems may also be under the pressure to keep lexicon
size and average morphosyntactic complexity of numerals below a certain threshold. Another
possibility is that natural languages are not only optimizing the trade-off between lexicon
size and average morphosyntactic complexity, but in fact minimizing the sum of (some func-
tion of) lexicon size and (some function of) average morphosyntactic complexity of numerals
(with “functions” modulating relative importances of lexicon size and average morphosyn-
tactic complexity). If this option is on the right track, one may propose that languages care
to minimize their overall complexity, which may have multiple components (such as lexicon
size and average morphosyntactic complexity of utterances). We leave for future work a more
detailed exploration of these various refinements of our proposal.

2.4.2. Natural languages versus optimal artificial languages

In the previous section, we have seen that natural languages are similar in how they trade
off between lexicon size and average morphosyntactic complexity to the languages which
optimally solve this trade-off problem (i.e., the languages on the approximated Pareto fron-
tier). The languages on the Pareto frontier are the dominant languages from the union of the
last generation found by the evolutionary algorithm and of natural languages. Languages at
the Pareto frontier may thus be natural or artificial.

In this section, we focus on the artificial languages on the Pareto frontier (henceforth
optimal artificial languages). Are there interesting differences between natural languages
(optimal or optimizing), and optimal artificial languages? In particular, is there more variety
in which number meanings are lexicalized in optimal artificial languages, and/or do they
construct their morphosyntactically complex numerals in more diverse ways than natural lan-
guages? If so, this would suggest that, while natural languages lexicalize number meanings
which allow them to optimize the lexicon size/average morphosyntactic complexity trade-off,
there may be additional cognitive or communicative pressures pushing natural languages
toward specific types of optimal solutions to the trade-off problem.
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Table 3
Lexicalized meanings in optimal artificial languages whose lexicon size < 10. Lexicalized meanings in bold are
of category M (bases)

Lexicon size Lexicalized meanings
2 1,3

3 1,2,3

4 1,2,3,10

5 1,2,3,4,10

6 1,2,3,4,5,15

7 1,2,3,4,5,6,15

8 1,2,3,4,5,6,10,19

9 1,2,3,4,5,6,7,10,25

Let us start with numbers that optimal artificial languages lexicalize. Table 3 lists lexi-
calized numbers in optimal artificial languages whose lexicon size < 10. These languages
have a lot in common with natural languages when it comes to the contents of their lexicons:
both natural languages and optimal artificial languages tend to lexicalize the first n numbers,
together with a couple of larger numbers, such as around 10 or around 20. There is nonethe-
less more diversity in which numbers around 10 or 20 are lexicalized in optimal artificial
languages than in natural languages. For instance, some of the optimal artificial languages
in Table 3 lexicalize 15, 19, or 25: while there are natural languages which lexicalize 15 in
our corpus (e.g., Mixtec, Drehy, Diola; cf. Appendix referenced in footnote 2.1), there is no
natural language in our corpus that lexicalizes 19 or 25. In other words, certain lexicalization
patterns which could be good solutions to the lexicon size/average morphosyntactic complex-
ity of numerals trade-off problem are not attested in natural languages (at least not in our
corpus of natural languages).

Second, optimal artificial languages may differ from natural languages in how they con-
struct their morphosyntactically complex numerals from the elements of the lexicon. To illus-
trate this difference, let us look into how the optimal artificial language which lexicalizes 5
numbers (i.e., 1, 2, 3, 4, 10, cf. Table 3) constructs numerals for numbers 10-20: these are
listed in Table 4.

Numerals in Table 4 differ from numerals in natural languages: intuitively, there is too
much variation in bases with which these numerals are constructed (e.g., numerals for 11, 13,
14, 15, and 19 are constructed with base 10, numerals for 12, 16, and 17 with base 4, and
numeral for 18 with base 2). In other words, there is not a unique morphosyntactic pattern
according to which numerals in Table 4 are constructed (cf. Section 2.1 for discussion of
morphosyntactic patterns in natural languages).

The source of this “unorderliness” is that, for each number, artificial languages select at
random one of the morphosyntactically simplest expressions for that number constructed
from the elements of their lexicon. For instance, as far as the artificial language in Table 4
18 concerned, the numeral for 12 could be constructed either as 3 -4 or as 10 + 2, as these
are both well-formed expressions in this language and they are equally morphosyntactically
complex.
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Table 4
Numerals for numbers 10-20 in the optimal artificial language which lexicalizes five numbers (1, 2, 3, 4, 10)
Numeral’s denotation Numeral’s morphosyntax
10 10
11 1041
12 3.4
13 10+3
14 1044
15 104243
16 4.4
17 4-4+1
18 10-1)-2
19 10+10—-1
20 2-10

Contrary to artificial languages, in most natural languages, there is (typically) exactly one
way to express each number. For instance, the French numeral for 40, quarente, is morphosyn-
tactically 4 - 10 (and 40 cannot be expressed as, for instance, equally morphosyntactically
complex 2 - 20 in French), while the French numeral for 80, quatre-vingt, is morphosyntacti-
cally 4 - 20 (and 80 cannot be expressed as, for instance, equally morphosyntactically complex
8 - 10 in French).'” This means that each natural language has additional constraints on the
application of morphosyntactic rules in (4). For instance, French speakers need to memorize
that, in the rule PHRASE — NUMBER - M (cf. (4)), M is 10 when they are constructing the
expression for 40, but 20 when they are constructing the expression for 80. Furthermore, such
constraints across languages most often apply not to a single numeral but to a sizeable range
of numerals (e.g., French speakers know that, in the rule PHRASE — NUMBER - M (cf. (4)),
M is 20 when they are constructing expressions for numbers in the range 80-99). This results
in natural languages recursive numeral systems exhibiting regular morphosyntactic patterns
for larger groups of numerals, unlike artificial languages (cf. Table 4).

The two identified differences between natural and optimal artificial languages— namely,
that natural and optimal artificial languages differ in certain lexical and morphosyntactic
properties— suggest that considerations related to lexicon size, average morphosyntactic
complexity, and their trade-off are not the only pressures shaping natural languages’ recursive
numeral systems: there are other cognitive and/or communicative pressures (which may be
specific to numeral systems or applicable more generally across semantic categories) shaping
them. What may these pressures be? We discuss here two natural directions to be pursued in
future work.

First, we established above that in natural languages, there is (typically) exactly one way
to construct a numeral for any number, which demonstrates that each language has a set of
constraints for how the rules in (4) are applied to construct numerals. These additional con-
straints are something that needs to be memorized by a learner, and it is plausible that a
pressure to minimize the number and/or complexity of such constraints is an additional pres-
sure shaping specifically numeral systems. An important direction for future work would be to
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operationalize how to measure complexity of these constraints in language, and how to inte-
grate the pressure to minimize the complexity of these constraints within the model of lexicon
size/average morphosyntactic complexity trade-off optimization presented here, and evaluate
whether some of the differences between natural and optimal artificial languages disappear.

Second, it may be that numbers differ in how difficult they are to cognitively represent
independently of the numeral system used by the language. There are several ways to make
this hypothesis more concrete, depending on one’s approach to cognitive representations of
numbers. For instance, according to the language-of-thought approach (Fodor, 1975), some
numbers may be cognitive primitives, while others may be cognitively complex (even if they
were labeled by a single morpheme in some languages). For instance, 1, 2, and 3 may be
cognitive primitives, and the cognitive representation of 4 may be constructed as 3+1 or 2+2
(cf. Piantadosi et al., 2012). One could then hypothesize that languages are not exactly under
the pressures to minimize lexicon size and average morphosyntactic complexity, but rather
under the cognitive-representations versions of these pressures: namely, under the pressures
to minimize the size of cognitive representations of lexicalized items, and to mimimize aver-
age complexity of cognitive representations of expressions. For instance, if 1, 2, and 3 were
cognitive primitives, but 4 was not, lexicalizing 1, 2, or 3 would be less costly than lexical-
izing 4, and if 4 was lexicalized, constructing the numeral for five as (morpheme for) 3 +
(morpheme for) 2 would be cognitively less costly than constructing it as (morpheme for) 4
+ (morpheme for) 1. If one had a language-independent method to evaluate cognitive com-
plexities of various numbers, one could explicitly test this hypothesis, and evaluate whether
some of the differences between natural and optimal artificial languages disappear.

Critically for our purposes, the fact remains that natural languages are trading off nearly
optimally between lexicon size and average morphosyntactic complexity (cf. Section 2.4.1).
In other words, while exploring which additional cognitive and communicative pressures
push recursive numeral systems toward specific types of optimal solutions to the lexicon
size/average morphosyntactic complexity trade-off, and how they do so, are important direc-
tions for future work, our results demonstrate that the pressure to minimize lexicon size, the
pressure to minimize average morphosyntactic complexity, and their trade-off play a role in
shaping language’s lexicons.

2.4.3. Importance of lexicalized larger numbers

According to the results in Section 2.4.1, natural languages’ recursive numeral systems
trade off optimally between lexicon size and average morphosyntactic complexity of numer-
als. This suggests that the reason why languages lexicalize number meanings they do— that
is, the first n numbers, in addition to a few larger numbers such as 10 and 20 (and outside
of the 1-99 range, 100, 1000, 1000000), cf. Section 2.1 —is because these allow to con-
struct numerals using very few morphemes on average, in a way that optimizes the trade-off
between lexicon size and average morphosyntactic complexity of numerals.

Given the probability distribution in (3), according to which low numbers need to be com-
municated frequently, it is unsurprising that it may be a good strategy for languages to lexical-
ize the first » number meanings if their goal is to optimize the trade-off between lexicon size
and average morphosyntactic complexity. However, one may wonder whether lexicalizing

85US017 SUOWIWOD BAIERID 3|cedl|dde 8y} Aq peuienob ae s9o1e YO ‘88N JO S9INJ 10} Akeid1]8UIIUO AB]IAN UO (SUONIPUOD-PUE-SWLBIALID A8 1M Afe.q Ul juo//Sdiy) SUORIPUOD pue S | 84} 88S " [1202/€0/8T] U0 ARiqiTauliuo A8 |Im ‘elfeleueiyood A 1zyeT SBoo/TTTT 0T/I0pAL0 A8 1M Aleiq uljuo//sdiy Woiy pepeojumoq '€ 'vZ0Z '60L9TSST



M. Denié, J. Szymanik/ Cognitive Science 48 (2024) 15 of 28

w
=)

N
)

Language

n
o

artificial_evo_alg
artificial_first_n

A natural

N
[

Average morphosyntactic complexity

N
=)

0 5 10 15 20
Lexicon size

Fig. 3. Lexicon size and average morphosyntactic complexity of natural languages compared to artificial languages
generated via an evolutionary algorithm (artificial_evo_lang) as in Fig. 2, with 50,000 artificial languages which
lexicalize the first n numbers and at most 2 additional number meanings (artificial_first_n). Artificial_first_n lan-
guages are not all clustered close to the Pareto frontier (black curve), which demonstrates that lexicalizing the first
n numbers does not guarantee a nearly optimal lexicon size/average morphosyntactic complexity trade-off.

larger number meanings such as 10 and/or 20 plays an important role in the trade-off opti-
mization, given the probability distribution in (3), according to which large numbers rarely
need to be communicated. In other words, is lexicalizing the first # numbers—independently
of which larger numbers are lexicalized, if any at all —sufficient for languages to trade off
nearly optimally between lexicon size and average morphosyntactic complexity? Or is the
choice of which larger numbers they lexicalize important—that is, do they lexicalize some of
the larger numbers which significantly help with the trade-off optimization?

To investigate this, we generated a space of artificial languages with the following prop-
erties: (a) they lexicalize the first » numbers, with n between 2 and 10; (b) in addition to
these, they lexicalize at most two other numbers smaller than 100; (c) at most 2 of number
meanings they lexicalize are lexicalized as morphemes of category M. We sampled 50,000
languages from this space!! and analyzed their lexicon size/average morphosyntactic com-
plexity of numerals trade-off. We plot them in Fig. 3 (artificial_first_n languages) against the
natural and artificial languages from the main analysis (cf. Section 2.4.1). Critically, artifi-
cial_first_n languages are not all clustered close to the Pareto frontier (black curve) in Fig. 3.
Here are three examples of these far-from-optimal languages which lexicalize the first few
number meanings, simply to illustrate how these languages may look like. (i) A language
which lexicalizes 1, 2, 3, and 4 as morphemes of category D, and 23 and 58 as morphemes of
category M has average morphosyntactic complexity of 1.98, while the optimal language with
the same lexicon size has average morphosyntactic complexity 1.25. (ii) A language which
lexicalizes 1, 2, 3, 4, 5 as morphemes of category D, and 51 and 70 as morphemes of category
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M has average morphosyntactic complexity of 1.8, while the optimal language with the same
lexicon size has average morphosyntactic complexity 1.21. (iii) A language which lexicalizes
1, 2, 3,4, 5, 6 as morphemes of category D, and 45 and 65 as morphemes of category M
has average morphosyntactic complexity of 1.56, while the optimal language with the same
lexicon size has average morphosyntactic complexity 1.19.

This analysis demonstrates that lexicalizing the first » numbers does not guarantee a nearly
optimal lexicon size/average morphosyntactic complexity of numerals trade-off. In other
words, natural languages’ choices to lexicalize number meanings such as 10 and/or 20 (in
addition to the first » number meanings) are important choices from the perspective of lexi-
con size/average morphosyntactic complexity of numerals trade-off optimization.

2.4.4. Results summary and discussion

In Section 2.4.1, we establish that natural languages’ recursive numeral systems are indeed
(near-)optimal solutions to the lexicon size/average morphosyntactic complexity of numerals
trade-off problem.

In Section 2.4.2, we discuss how optimal artificial languages look like. This allows to high-
light two important differences between optimal artificial languages and natural languages.
In particular, certain lexicalization patterns which could be good solutions to the lexicon
size/average morphosyntactic complexity trade-off problem are not attested in natural lan-
guages (e.g., solutions which include lexicalizing numbers such as 19 and 25, cf. Table 3).
Furthermore, natural languages have more regular morphosyntactic patterns than optimal arti-
ficial languages. These two identified differences between natural and optimal artificial lan-
guages suggest that there are additional cognitive and/or communicative pressures pushing
natural languages toward specific types of optimal solutions to the lexicon size/average mor-
phosyntactic complexity trade-off problem.

In Section 2.4.3, we zoom into the specific numbers natural languages choose to lexicalize
and investigate their role in the lexicon size/average morphosyntactic complexity trade-off
optimization. Namely, we have seen in Section 2.1 that natural languages often lexicalize (a)
the first n numbers, for example, first five or first 10 numbers, and (b) a couple of additional
numbers, such as 10 and/or 20. In Section 2.4.3, we show that the lexicon size/average mor-
phosyntactic complexity trade-off optimization is not driven only by property (a), but also by
(b). In other words, natural languages make good choices from the trade-off perspective for
which numbers to lexicalize in addition to the first » numbers.

It is important to reiterate that we have operationalized lexicon size in this study as the
number of lexicalized meanings, and not the number of form-meaning pairs. This is impor-
tant to keep in mind because morphemes across languages—including number-denoting
morphemes—may have allomorphs (variant phonetic realizations) (e.g., we have seen in Sec-
tion 2.2 that the morpheme ten in English has allomorphs -feen and -ty). According to our
results then, which meanings are lexicalized is shaped by the optimization of the trade-off
between the number of lexicalized meanings and average morphosyntactic complexity of
utterances (rather than by the optimization of the trade-off between the number of form-
meaning pairs and average morphosyntactic complexity of utterances). While in this project
we have focused on the question of which meanings are lexicalized across languages, a related
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but separate question which has not been addressed is: which meanings have multiple pho-
netic realizations in a language, and why (essentially, why is there allomorphy across lan-
guages?). This is an important question for future work.

To summarize, we have learnt that natural languages’ recursive numeral systems optimize
lexicon size (as number of lexicalized meanings)/average morphosyntactic complexity of
numerals trade-off, and that the numbers they lexicalize are good choices from the perspec-
tive of that trade-off optimization. The trade-off optimization can thus explain in part why
natural languages lexicalize the numbers they do, as well as the range of variation we see
across languages in numbers they lexicalize.

3. Discussion: Previous work on minimization of utterance complexity

As mentioned in Introduction, several other lines of work incorporate the idea that speakers
attempt to minimize complexity of their utterances. We will now discuss these proposals in
detail, and explain in what way they differ from the proposal we are pursuing.

3.1. Zipf (1949) and related work

Multiple studies have found that meanings that are conveyed more frequently tend to be
associated to shorter forms (with length often operationalized as the number of phonemes)
(Haspelmath, 2021; Mollica et al., 2021; Piantadosi et al., 2011; Zipf, 1949). For instance,
in recent work, Mollica et al. (2021) conduct two types of analyses: the first type of anal-
ysis shows that languages lexicalize meanings which allow them to optimize the simplic-
ity/informativeness trade-off; the second type of analysis shows that the forms attached to
lexicalized meanings are such that average phonetic length of utterances is minimized. Asso-
ciation of shorter forms to more frequent meanings is an instance of Zipf’s principle of least
effort (Zipf, 1949), according to which humans are prone to spending the least amount of
effort to accomplish a task.

The pressure to minimize average morphosyntactic complexity of utterances can be viewed
as another instance of the same principle. The novelty of our proposal is in showing that
this pressure plays a role in determining which meanings get lexicalized, and not only how
long forms are associated with lexicalized meanings. According to our proposal, this pressure
on its own does not suffice to explain which meanings are lexicalized across languages: we
have shown that, in semantic domains in which productive morphosyntax enables precise
communication, languages lexicalize meanings which allow them to optimize the trade-off
between this pressure and the pressure to minimize lexicon size.

3.2. Carcassi and Sbardolini (2022)

Another recent proposal gives a central role to utterance complexity in explaining typologi-
cal patterns, focusing on the semantic domain of Boolean connectives (Carcassi & Sbardolini,
2022). They aim to explain the so-called nand-puzzle: across languages, connectives and and
or are often lexicalized; in addition to them, the negated disjunction nor is sometimes lexi-
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calized, but a negated conjunction *nand is never lexicalized (Horn, 1972). According to the
proposal by Carcassi and Sbardolini (2022) (but see Bar-Lev & Katzir, 2023; Enguehard &
Spector, 2021; Incurvati & Sbardolini, 2023; Katzir & Singh, 2013; Uegaki, 2022, a.o. for
competing proposals), the systems of Boolean connectives are optimal solutions to two pres-
sures. The first pressure is to minimize production effort when expressing observations (what
we have called average morphosyntactic complexity). For instance, if languages do not lexi-
calize nand, they have to use syntactically more complex not (A and B) instead of A nand B
to express the observation that at least one of A and B is false: lexicalizing nand thus reduces
average morphosyntactic complexity. The second pressure, labeled conceptual complexity in
Carcassi and Sbardolini (2022), relates to how sentences with connectives are used to update
the information shared by conversational participants (= context), which is modeled as the
set of possible worlds (Stalnaker, 1978, 1999). According to their proposal, upon accepting a
sentence A nor B, the conversational participants update the context C as follows: first, they
restrict C to the set of worlds where A is false, and then they further restrict C to the set of
worlds where B is false. On the other hand, upon accepting a sentence A nand B, the conversa-
tional participants update the context C as follows: first, they consider a hypothetical context
C', obtained by restricting the original context C to the set of worlds where A is true, fol-
lowed by a further restriction of C’ to the set of worlds where B is true. They then remove the
hypothetical context C’ from the original context C. Carcassi and Sbardolini (2022) assume
that how context is updated by A nand B is more conceptually complex than how context
is updated by A nor B because of the creation of the hypothetical context C" in the former
but not in the latter case. They propose that languages are under pressure to minimize the
total conceptual complexity of contextual updates of the connectives they lexicalize. They
argue that the nand-puzzle can be explained on the assumption that languages optimize the
trade-off between average morphosyntactic complexity and the total conceptual complexity
of contextual update procedures of lexicalized connectives.

Our proposal shares with Carcassi and Sbardolini (2022) the idea that languages are under
the pressure to minimize average morphosyntactic complexity. Where the two proposals differ
is what the competing pressure is: in our case, the pressure to minimize how many meanings
are lexicalized, while in Carcassi and Sbardolini (2022), the competing pressure relates to
another aspect of language use, namely, how conversational participants proceed to update
contextual information when they hear an expression.

3.3. Memory/computation trade-off optimization in morphological processing

The work on psycholinguistic processing of morphologically complex expressions has
studied the trade-off between memory and computation (e.g., Frauenfelder & Schreuder,
1992, and much related work, including more recently, e.g., Kuperman, Bertram, &
Baayen, 2010; O’Donnell, Snedeker, Tenenbaum, & Goodman, 2011 and O’Donnell, 2015).
The central question in that line of work is: which morphologically complex linguistic expres-
sions are retrieved from memory as a chunk, rather than computed morphosyntactically at
each use? Of course, language users must store in memory morphologically simple linguistic
expressions, such as “walk,” and the past tense morpheme “-ed.” But do they also store in
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their memory “walked,” so that when they construct a sentence “John walked,” they retrieve
“walked” as a chunk, rather than construct it as “walk”+‘“ed”? One response is that complex
expressions are stored in memory in a way that optimizes the memory/computation trade-off
in language processing (e.g., O’Donnell et al., 2011; O’Donnell, 2015). Simplifying a lot,
if some morphologically complex expression needs to be used very frequently, we are more
likely to store it in memory as a chunk and retrieve it as a whole in language use. At least
some English speakers (those who use the linguistic expression “walked” a lot) will end up
storing it as a chunk in their memory.

That line of work has thus established the existence of memory/computation trade-off opti-
mization bias in morphological processing. This connects to our work in an interesting way.
What we have shown is that lexicon size/average morphosyntactic complexity of utterances
trade-off optimization—which is essentially memory/computation trade-off optimization—
ends up shaping the primitives (monomorphemic expressions) of the linguistic system, and
explains typological diversity in what these primitives are. It is conceivable that this is an
outcome of the accumulated effect in the course of language evolution of the aforementioned
morphological processing bias. To explore this possibility, an interesting direction for future
work may be to directly model the evolution of numeral systems across generations, with
language users biased to optimize memory/computation trade-off in their morphological pro-
cessing, and examine whether this (possibly together with some additional assumptions about
how language transmission proceeds) results in numeral systems which optimize the lexicon
size/average morphosyntactic complexity trade-off.

4. Discussion: Xu et al. (2020)

Xu et al. (2020) analyze the simplicity/informativeness trade-off in 24 restricted and six
recursive numeral systems. Restricted numeral systems do not have numerals for all num-
bers: most of them have numerals for only the first few numbers, and use a quantifier such
as many for any higher number. For instance, the language Krenak only has numerals for
numbers 1-3 (Hammarstrom, 2010), and the language Rama only has numerals for num-
bers 1-5 (Grinevald, 1990). Furthermore, the few numerals in restricted numeral systems are
often monomorphemic —in other words, the use of morphosyntax for numeral construction
is often limited. Recursive numeral systems are considered by Xu et al. (2020) to be maxi-
mally informative when it comes to communicating about number meanings, while restricted
numeral systems have lower degrees of informativeness. On the other hand, according to
Xu et al.’s (2020) approach to measuring complexity, the six studied recursive numeral sys-
tems are more complex than most of the 24 studied restricted numeral systems. Simplifying
somewhat, this is because they assume that the complexity measure of a language should
incorporate both the complexity of the lexicon and the complexity of morphosyntactic rules.
As recursive numeral systems always have morphosyntactic rules for building numerals but
restricted numeral systems often do not have any, recursive numeral systems tend to have a
greater measure of complexity than restricted numeral systems. Recursive numeral systems
are thus more complex and more informative than restricted numeral systems in Xu et al.’s
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Fig. 4. Reproduction of fig. 4b from Xu et al. (2020) plotting complexity and communicative cost (the opposite
of simplicity and informativeness) measures of natural languages’ numeral systems (red, green, and blue circles)
and artificial (hypothetical) numeral systems. Blue circles represent the six natural languages’ recursive numeral
systems, and the blue line are hypothetical recursive numeral systems. The Pareto-optimal recursive numeral
system 1is the left-most point of the blue line, and natural languages’ recursive numeral systems are not clustered
close to it.

(2020) study. Xu et al. (2020) further argue that natural languages’ numeral systems optimize
the simplicity/informativeness trade-off, without making a distinction between restricted and
recursive languages.

Their conclusion may seem to be in tension with our findings. However, a careful exami-
nation of Xu et al.’s (2020) results reveals that, while restricted numeral systems are indeed
close to being Pareto-optimal in trading off simplicity and informativeness, recursive numeral
systems are not. Given that recursive numeral systems are maximally informative, if they were
optimizing the simplicity/informativeness trade-off, we would expect to find them in the prox-
imity of the minimally complex numeral system which is maximally informative. According
to Xu et al.’s (2020) results (cf. fig. 4b in Xu et al., 2020, reproduced here as Fig. 4), the max-
imally informative system with minimal complexity has complexity ~ 50. Strikingly, the six
recursive numeral systems examined by Xu et al. (2020) have much higher complexity than
that, ranging between ~ 75 and =~ 150. The results of Xu et al. (2020) thus also do not sup-
port the hypothesis that recursive numeral systems optimize the simplicity/informativeness
trade-off —in other words, there is no tension between the results of Xu et al. (2020) and our
findings. Importantly, however, Xu et al.’s (2020) conclusions still hold for restricted numeral
systems which are much closer to being Pareto-optimal than recursive numeral systems (cf.
Fig. 4). We will now discuss the implications of their result for restricted systems and our
result for recursive systems for the larger question: what pressures determine which mean-
ings get lexicalized across semantic domains and languages?
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5. Discussion: Three pressures

Recursive and restricted numeral systems are, in a sense, two extremes. In recursive
numeral systems, languages allow to unambiguously express (practically) any number mean-
ing if we consider both morphosyntactically simple and morphosyntactically complex expres-
sions. Such languages lexicalize those meanings which allow them to optimize the trade-off
between lexicon size and average morphosyntactic complexity of numerals.

In restricted numeral systems, number meanings are typically conveyed using one of the
few (often monomorphemic) numerals, and in most cases it is not possible to unambiguously
single out a number meaning with an expression of a language. Such languages lexicalize
those meanings which allow them to optimize the simplicity/informativeness trade-off (cf.
Section 4).

However, many semantic domains in many languages are arguably in-between these
two extremes. Consider, for example, colors: morphosyntactically complex expressions can
improve how precisely we communicate about colors compared to the communication with
monomorphemic color terms only, but the improvement is arguably limited (e.g., blue-green,
dark-blue). What approach should one pursue to explain which meanings get lexicalized in
such domains?

The results on restricted and recursive numeral systems provide evidence that (at least)
three pressures are shaping which meanings get lexicalized across languages: minimize com-
plexity of the lexicon, minimize average morphosyntactic complexity of utterances, and max-
imize informativeness. It is plausible to expect that these pressures are not specific to the
semantic domain of number, that is, they are applicable across semantic domains and lan-
guages. We thus propose the following hypothesis to be pursued in future work: languages
lexicalize those meanings which allow them to be optimal solutions to the three pressures.
In the extreme case where any meaning can be conveyed precisely and informativeness is
maximal (as in recursive numeral systems), this reduces to finding optimal solutions to the
lexicon size/average morphosyntactic complexity of utterances trade-off problem, for which
we have seen evidence in the present study. In the other extreme case where interlocutors
communicate about meanings from a semantic domain using single monomorphemic words
only (as is arguably most often the case in restricted numeral systems), this reduces to finding
optimal solutions to the simplicity of the lexicon/informativeness trade-off problem, as in Xu
et al. (2020).

What semantic domain could be investigated as a case study of the interaction of the three
pressures? The aforementioned color domain could be a good starting point, for multiple rea-
sons. (i) The meaning space for colors has been usefully formalized in multiple works (e.g.,
Steinert-Threlkeld & Szymanik, 2019; Zaslavsky et al., 2018), building on cognitive models
of human color representations. (ii) In many if not all natural languages, not every element of
the color meaning space (i.e., not every color nuance) can be expressed precisely, be it with a
morphosyntactically simple or a morphosyntactically complex expression, which paves way
for the role of informativeness maximization in lexicalization. (iii) Morphosyntactically com-
plex expressions in many languages improve how precisely we can communicate about colors
(e.g., blue-green, dark-blue), which paves way for the role of average morphosyntactic com-
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plexity minimization in lexicalization. Here is one possible starting point for such a case study.
Languages may differ in whether they employ syntactic strategies for color modification, and
if so, how complex these strategies are (e.g., if they allow for expressions such as blue-green,
dark-blue, between blue and green). One could investigate whether and how the meanings of
lexicalized color terms vary with availability and complexity of syntactic color modification
across languages. For instance, if simple syntactic modification strategies are available in a
language, one may expect the language to divide their color space into fewer basic color cat-
egories. If so, that would be initial evidence of morphosyntactic considerations playing a role
in the lexicalization of color terms. One could then build on that finding, as well as on the
findings about the role of simplicity of the lexicon and informativeness in the lexicalization of
color terms (Zaslavsky et al., 2018), to develop and test a three-pressures interaction model.
We hope to pursue this avenue in future work.

6. Conclusion

In this paper, we ask what explains which meanings are lexicalized across languages. We
pursue the explanation according to which languages lexicalize meanings which allow them
to support efficient communication. We, however, argue for a refinement of what it means
for a language to support efficient communication. In particular, the standard approach to
communicative efficiency — the simplicity/informativeness trade-off optimization approach
— cannot explain which meanings are lexicalized in semantic domains in which lexicon size
and informativeness are not in direct competition. Using recursive numeral systems as a case
study, we have argued that in such domains languages lexicalize meanings which allow them
to optimize the lexicon size/average morphosyntactic complexity of utterances trade-off.

Our work in combination with previous work thus evidences that there are (at least) three
pressures shaping lexicons of natural languages: minimizing lexicon size, maximizing infor-
mativeness, and minimizing average morphosyntactic complexity of utterances. A more gen-
eral proposal for how supporting efficient communication shapes which meanings get lexi-
calized across languages may thus be that languages lexicalize those meanings which allow
them to solve the trade-off problem between these three pressures in a (nearly) optimal way.
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Notes

1 We consider that a meaning is lexicalized if there is a simple morpheme carrying this
meaning in a language. Whether this morpheme can or cannot stand alone as a single
word is not part of our criterion for lexicalization. For instance, English lexicalizes the
number meaning six into a morpheme which can stand alone as a single word, and it
lexicalizes plural meaning in a morpheme -s, among others, which cannot stand alone
as a single word.

2 We will use the the term “number” for arithmetic values, and the term “numeral” for lin-
guistic expressions denoting numbers. For instance, in English, the numeral one denotes
the number 1.

3 Whether recursive numeral systems truly allow to express any natural number, or (just)
a very large range of natural numbers, possibly differs across languages. Greenberg
(1990) argues that even recursive numeral systems have a ceiling, that is, the largest
number that can be generated by that system—for example, in his variety of (Ameri-
can) English, Greenberg (1990) claims this number to be 10°® — 1. Comrie (2020) on
the other hand claims that his variety of (British) English allows reference to any nat-
ural number. For the purposes of our study, it will not matter much whether recursive
numeral systems allow to refer to any natural number, or (just) to a very large range of
natural numbers: as we will explain later on, we will investigate numeral expressions
cross-linguistically for numbers up to 100, and all studied languages had all numerals
in that range.

4 In the Danish numeral system, a morpheme denoting the fraction half is used to
construct certain complex numerals; for instance, the numeral fifty in Danish con-
tains morphemes three, half, and twenty ((three - half) - twenty). This suggests that
there is a limited use of division too involved in the composition of numerals. As,
to our knowledge, the extent to which division can be used productively in numeral
systems is not well understood (cf. Hurford, 1975, 2007), we assume for simplic-
ity that division is not available, and exclude Danish from the corpus of natural
languages.

5 We postulate covert morphemes only when this is necessary to account for the semantics
of numerals; for instance, to account that the meaning of the Fulfulde numeral jowe
go’o (6) is computed from the meaning of jowe (5) and go’o (1) (cf. Table 2), we need
to assume that these are combined by an addition operator, which is introduced by a
covert morpheme.

6 Hurford (1975) further assumes that the generation of syntactic structures by (4) may for
certain numerals—for example, English -feen numerals—be followed by a linearization
operation “switch” which inverses the linear order of two sister nodes. As this lineariza-
tion operation does not affect the number of morphemes in a numeral, we will disregard
it for the purpose of our analysis. It would of course be interesting to understand the
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11

source of such linearization constraints for numerals, but we will not have anything to
contribute about it within this paper.

All numerals in all natural languages in this study can be constructed using the gram-
mar in (4). One language in WALS corpus, Ainu, has numerals which cannot be derived
by this grammar. Hurford (1975) is aware of this and discusses the case of Ainu at
length; he considers different extensions of the grammar in (4) to accommodate Ainu
but provides arguments against each of them, thus leaving the problem of Ainu unre-
solved. Because we will rely on the grammar in (4) to generate artificial languages and
to estimate the Pareto frontier (cf. Section 2.3), we excluded Ainu from the corpus of
natural languages.

Jittering was applied to points corresponding to artificial and natural languages in
Figs. 1, 2, 3, and B1 to facilitate visualizing individual points (languages).

Recall that, when morphologically analyzing unclear cases of natural languages’
numerals, we adopted the following simplification: if a numeral is an exception to an
established morphosyntactic pattern in a language, but partially overlaps in its (phonetic
or orthographic, depending on the available data) elements with morpheme(s) which
should have been there if the morphosyntactic pattern was respected, we assume that
the numeral follows the morphosyntactic pattern but with phonetic variants not seen
elsewhere (cf. Section 2.1). Of course, at least some of these unclear cases, which will
be analyzed as morphologically complex, may be monomorphemic in reality. In other
words, for some of the 34 languages with (typically just 1 or 2) unclear cases, we may be
somewhat underestimating their lexicon size and somewhat overestimating their aver-
age morphosyntactic complexity. This means that the correct position of some of these
34 languages would be slightly down-right-wards from where they are plotted in Figs. 1
and 2. It is easy to see that, even if all natural languages plotted in Figs. 1 and 2 were to
shift slightly down-right-wards, they would nonetheless remain relatively close to the
Pareto frontier. It turns out, therefore, that the error introduced by our simplification in
practice would not qualitatively alter our conclusions. For completeness, however, see
Appendix B with the supplementary analysis in which the 34 languages with unclear
cases are excluded.

These data are restricted to the variety of French spoken in France; numerals in other
varieties of French are constructed differently.

Due to computational constraints, it was not possible to analyze the entire space of such
languages. Numerals for numbers 1-99 in the sampled languages are generated in the
same way as for artificial languages in the main analysis (cf. Section 2.3).
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Appendix A: 128 studied natural languages

Abkhaz, Abun, Acoma, Albanian, Arabic (Egyptian), Arawak, Archi, Armenian (East-
ern), Aymara, Bagirmi, Bambara, Basaa, Basque, Batak (Karo), Bawm, Berber Middle
Atlas (Tamazigt), Bribri, Burmese, Burushaski, Cahuilla, Chamorro, Chinantec (Lealao),
Chuukese, Chuvash, Comanche, Damana, Diola-Fogny, Drehu, English, Evenki, Ewe, Fijian,
Finnish, French, Fulfulde, Garo, Georgian, German, Goajiro, Gola, Greek (Modern), Guarani,
Haida, Hausa, Hebrew, Hindi, Hmong Njua, Huave, Hungarian, Hunzib, Hupa, Igbo, Indone-
sian, Ingush, Iraqw, Irish, Japanese, Jaqaru, Kabardian, Kana, Kannada, Kanuri, Kayah
Li (Eastern), Khalaj, Khalkha (Mongolian), Khanty, Kilivila, Kiribati (Gilbertese), Korean,
Koromfe, Koyraboro Seni, Kunama, Lak, Lakhota, Lango, Latvian, Lavukaleve, Lega, Lez-
gian, Malagasy, Mandarin, Mangab-Mbula, Maori, Mapudungun, Mixtec (Atatlahuca), Mix-
tec (Chalcatongo), Nahuatl (Sierra de Zacapoaxtla), Nama Hottentot (Khoekhoe), Navajo,
Ndyuka (Aukan), Nenets (Tundra), Nez Perce, Nivkh, Nkore-Kiga, Noon, Nubian (Don-
golese), Oneida, Oromo (Harar), Otomi (Mezquital), Paiwan, Persian, Pohnepeian, Quechua
Imbabura, Quileute, Rapanui, Russian, Sahu, Sango, Sapuan, Sorbian Upper, Spanish,
Supyire, Swahili, Taba-East Makian, Tagalog, Tarahumara (Western), Telugu, Thai, Tommo
So Dogon, Tsez, Tuareg, Tukang Besi, Turkish, Vietnamese, Yagua, Yakut, Yucatec, Zulu

Appendix B: 34 languages with unclear cases

Below is a list of 34 languages in which the morphosyntactic content of some of the numerals
was difficult to determine (when a numeral is an exception to an established morphosyntactic
pattern in a language, but partially overlaps in its [phonetic or orthographic, depending on the
available data] elements with morpheme(s) which should have been there if the morphosyn-
tactic pattern was respected).

34 languages with unclear cases: Arabic (Egyptian), Archi, Armenian, Chinantec (Lealao),
Chuukese, Chuvash, English, Ewe, Hausa, Hindi, Hungarian, Ingush, Kannada, Khalkha
(Mongolian), Khanty, Koromfe, Kunama, Lak, Lezgian, Ndyuka, Nez Perce, Nkore Kiga,
Oneida, Oromo, Otomi, Persian, Quileute, Rapanui, Russian, Spanish, Swahili, Telugu,
Tukang Besi, Turkish

For completeness, we exclude these 34 languages from the original 128 plotted in Fig. 2,
and include the updated plot (with 94 natural languages) in Fig. B1.
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Fig. B1. Experiment: Lexicon size and average morphosyntactic complexity of natural languages without unclear
cases (N = 94) and of artificial languages generated via an evolutionary algorithm (zoom into the area surround-
ing natural languages). Two natural languages—Fulfulde and Georgian —are labeled for illustration. Natural
languages lie at or very close to the Pareto frontier (black curve).
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