

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

COMPUTING THE ACCESSIBILITY RELATION
FOR THE AMBIENT CALCULUS

Radu Mardare and Corrado Priami

October 2003

Technical Report # DIT-03-054

.

Computing the accessibility relation for

the Ambient Calculus∗

Radu Mardare and Corrado Priami
University of Trento

Abstract

We present some algorithms to compute the reductions of Ambient
Calculus and to describe mobility and dynamic hierarchies of locations.
The main idea is to treat each ambient program as a complex of a set-
theoretical structure for describing the hierarchy of locations, a function
for naming the nodes of the structure, and a function for registering the
capabilities of each node. These complexes, named state-processes, can
be seen as states for a propositional branching tree logic built upon the
Ambient Calculus. We develop here, the algorithms for implementing
the accessibility relation between the states of this logic. Our algorithms
compute the evolution of the truth values for the atomical propositions
during the firing of capabilities. The model presented in this paper permits
to re-use algorithms for model checking temporal logic to approach the
Ambient Calculus.

1 Introduction

The Ambient Calculus [4] is a useful tool to study mobility when processes
may reside within a hierarchy of locations. For describing properties of mobile
computations as well as the hierarchy of locations and modifications of this
hierarchy in time it is necessary to develop a logic strongly based on Ambient
Calculus. Ambient Logic [3, 2] satisfies these requirements using two modalities,
one for spatial assertions and an other for temporal ones. Combining these two
is possible to obtain a quite expressive analysis of mobile computation. We
developed, in a companion paper [6], an alternative to this logic - a CTL* one
[5] - able to satisfy the same requirements.

There are many advantages in working with a temporal logic. First, the pos-
sibility of having path assertions together with state ones that allow to express
properties difficult to express with other modal logics [5]. Second, the possi-
bility of having model checking for our calculus reusing some software already
developed for temporal logics such as SMV, NuSMV, SiMpLer, VIS.

∗Work partially supported by the IST-FET project DEGAS and the MIUR-COFIN01
project MEFISTO.

1

The requirements of a propositional temporal logic model checker is to de-
scribe the possible states of the system, to assign truth values to atomical propo-
sitions for each state, and to describe the accessibility relation between states.
Fulfilling these requirements will be the subject of this paper.

We construct a model for Ambient Calculus that help us interpreting states.
We associate to each ambient calculus program a state-process, a set-theoretical
entity consisting of

1. a flat system of equations [1] that describes the hierarchical structure of
our program

2. a function that associates with each node of the structure a name of am-
bient or atomical process

3. a function that associates to each node a list of capabilities

In [6] we defined over state-processes a bisimulation relation and we proved that
this can depict the structural congruence over ambient processes. In this way,
the state-processes can speak for ambient processes up to the bisimulation level.

Further we will use the state-processes as states for our temporal logic.

2 State-Processes

In this section we will briefly recall the definition of state-processes and the
construction of a state-process for a given ambient process, for more see [6]. We
work inside Zermelo-Fraenkel system of Set Theory ZFC [1] with the Foundation
Axiom (FA). We assume a class 0 of urelements, set-theoretical entities which
are not sets (they do not have elements) but can be elements of sets. The
urelements together with the empty set ∅ will generate all the sets we will work
with (sometimes sets of sets).

Definition 2.1. A flat system of equations is a triple E = 〈X, A, e〉 with X ⊆ 0

and A, sets such that X ∩A = ∅, and a function e : X → P(X ∪A). X is called
the set of indeterminates of E , A is called the set of atoms of E . For each v ∈ X,
the set bv

def
= ev ∩X is called the set of indeterminates on which v immediately

depends. Similarly, the set cv
def
= ev ∩ A is called the set of atoms on which v

immediately depends (we wrote ev for e(v)). A solution to E is a function s with
domain X satisfying sx = {sy|y ∈ bx} ∪ cx for each x ∈ X. The solution-set of
a flat system E of equations is the set ss(E) = {sv|v ∈ X}.

Definition 2.2. A state-process is a triple S = 〈E , f, F 〉 where:

• E = 〈X, A, e〉 is a flat system of equations over A;

• f : X∪A→ N is a function that associates to each v ∈ X∪A a name from
the set N = N ∪P ∪ (N×N), where N is the class of ambient names, P
is the class of atomical process names and N is the set of natural numbers
(the use of N × N as names, will help us to handle private names). f
satisfies f(X) ⊆ N ∪ (N× N) and f(A) ⊆ P;

2

• F : X ∪ A → Str, where Str = {c1, c2, c3, ...}∗ with c1, c2, c3, ... ∈
{ε, in n, out n, input n, output | n ∈ N ∪ (N× N)}

The intuition behind these definitions is that an ambient calculus program
is nothing more than a structure of type boxes inside boxes together with an
assignment of names (of ambients and unspecified processes) and an assignment
of capabilities to each node of the structure. A flat system of equations can
completely describe a boxes inside boxes structure [1], while the functions f and
F preserve the assignments information.

The way in which a flat system can describe a structure is by choosing
urelements, first for the first level ambients, then for their children, then for the
children of children, and so on, by induction on the structure of the ambient
program, until we touch the bottom level of the structure, i.e. an empty ambient
or an atomical process. Since ambient programs are finite, the look up of names
inside the ambients will finish after a finite number of steps.

For example, consider the ambient calculus program:

m [open n.Q | s [out m.in m.n [out s.open s.P | R]]] | n[P]. (2.1)

As a general rule, we embed our program into a master ambient1. Our program
become:

u[m[open n.Q|s[out m.in m.n[out s.open s.P |R]]]|n[P]] (2.2)

We choose an urelement α ∈ 0 and consider f(α) = u. u has two children, m
and n, both ambients. We choose an urelement β ∈ 0\{α} and then we choose
γ ∈ 0\{α, β}, and we define f(β) = m, f(γ) = n. Consider now the children of
m. We choose q ∈ 0\{α, β, γ}, f(q) = Q then δ ∈ 0\{α, β, γ, q} with f(δ) = s.
For the child of n we choose p ∈ 0\{α, β, γ, q, δ} and f(p) = P . Q is an atomical
process so, on this branch, the analysis is over. The ambient s has only one
child, an ambient named n, like an other ambient met already. The fact that we
already chose an urelement for an ambient with the same name, will not stop
us to choose a new urelement. So, we will choose a new µ ∈ 0 \ {α, β, γ, p, δ, q}
and f(µ) = n. Then, going to the children of this n, we choose p′ ∈ 0 \
{α, β, γ, q, δ, p, µ} with f(p′) = P and r ∈ 0 \ {α, β, γ, p, δ, q, µ, p′}, f(r) = R.
And the action of choosing urelements stops here because between the children of
the last n there is no ambient. Thus, we can define f : {α, β, γ, p, δ, q, µ, p′, r} →
N by: f(α) = u, f(β) = m, f(γ) = n, f(δ) = s, f(µ) = n, f(q) = Q, f(p) = P ,
f(p′) = P , f(r) = R, and {u, m, s, n} ⊆ N, {P,Q,R} ⊆ P.

Note that f is not injective because f(p) = f(p′) and f(γ) = f(µ).
We define X = {u ∈ 0 | f(u) ∈ N ∪ (N× N)} and A = {u ∈ 0 | f(u) ∈ P},

which in our example became: A = {p, q, p′, r} and X = {α, β, γ, δ, µ}.
We can define now a flat system of equations E = 〈X, A, e〉 with e : X →

P(X ∪A). For w ∈ X, ew
def
= {ev | v ∈ X, v is a child of w} ∪ {p | p ∈ A, p is a

child of w}. We have
1This is a technical trick that is not disturbing our analysis because of the rule (RedAmb):

P → Q ⇒ n[P] → n[Q], [4]

3

eα = {eβ , eγ} ∪ ∅ = {eβ , eγ} eβ = {eδ} ∪ {q} = {eδ, q} eγ = ∅ ∪ {p} = {p}
eδ = {eµ} ∪ ∅ = {eµ} eµ = ∅ ∪ {p′, r} = {p′, r}

These are the equations of our system. Now we have to define the function
F : X∪A→ Str where Str = {c1, c2, c3, ...}∗ with ci ∈ {ε, in n, out n, open n, input n, output/n ∈
N ∪ (N× N) for which ∃x ∈ X s.t. f(x) = n}. ci could take a finite number of
values that linearly depends on the number of ambients in our initial ambient
calculus formula. F will associate to each x ∈ X ∪A the string of prefixes found
in front of the ambient or atomical process associated to this x by f . Each
string, after a finite number of steps, will end up only with null capability ε.

In our example F : X ∪A→ Str
F (α) = 〈ε, ε, ...〉 because there is no prefix in front of u = f(α);
F (β) = 〈ε, ε, ...〉 because there is no prefix in front of m = f(β);
F (γ) = 〈ε, ε, ...〉 because there is no prefix in front of n = f(γ) (n child of u);
F (δ) = 〈ε, ε, ...〉 because there is no prefix in front of s = f(δ);
F (µ) = 〈out m, in m, ε〉 because there are two prefixes, out m and in m, in this
order, in front of n = f(µ) (n child of s);
F (q) = 〈open n, ε〉 because there is only one prefix, open n, in front of Q = f(q);
F (p) = 〈ε, ε, ...〉 because there is no prefix in front of P = f(p);
F (p′) = 〈out s, open s, ε〉 because there are two prefixes, out s and open s, in
this order, in front of P = f(p′) (the child of the first n);
F (r) = 〈ε, ε, ...〉 because there is no prefix in front of R = f(r).

The prefix output will be used to encode the process 〈M〉. We will treat this
process as being output.M [], output will act like any other prefix and M [] will
be an empty ambient.

Concerning the new name situation, we will accept, as possible names of
ambients, ordered pairs of natural numbers. So, for the first new name found
in our analysis we will use the name 〈1, 1〉 in place of n2, for the second new
name we will use 〈2, 1〉, for the third 〈3, 1〉 and so on, each new name found
will receive 〈k, 1〉 meaning that it is the kth new name found. This approach
allows to combine our formula with others for which we already constructed
the state-process. In this way all the names in the second formula will receive
names as 〈k, 2〉 meaning that is the kth new name of the second formula, and
so on, the kth new name of the lth formula will receive the name 〈k, l〉.

Consider open n.P | (νn)(n[Q] | m[in n.P | R]) | n[S]
We treat this program like being:

open n.P | 〈1, 1〉[Q] | m[in 〈1, 1〉.P | R]) | n[S], where 〈1, 1〉 is a name of an
ambient. This attitude will not change the future of our program.

More details and the description of the relation between ambient processes
and state-processes are in [6].

For the sake of presentation we adopt the notation: 〈c1, c2, c3, ...cn〉− 〈c1〉 =
〈c2, c3, ...cn〉.

2We will replace in the ambient calculus formula, all the occurrences of n inside the scope
of (νn), being ambients or capabilities, with 〈1, 1〉

4

3 The Logic

To define a CTL* logic [5] we need a structure M = (S0,S,R,L) where S0 is
an initial state of our model, S is the class of all possible states in our model,
R ⊆ S×S is the accessibility relation between states, and L : S −→ P(AP) is
a function which associates to each state S ∈ S a set of atomical propositions
L(S) ⊆ P(AP) - that we interpret as the set of true atomical propositions in the
state S (AP will be the class of atomical propositions). All this construction,
together with the semantic and the syntax of our logic, is studied in [6]. The
purpose of this paper is to focus on describing the accessibility relation between
states and to provide some algorithms to calculate this.

Assume that S0 = 〈E0, f0, F0〉 is our initial state, with E0 =
〈
X0, A0, e

0
〉
.

Then we define S as the class of all state-processes S = 〈E , f, F 〉 with E =
〈X0, A0, e〉. Now we will define AP = {xiny | x, y ∈ X0 ∪A0}. In our logic xiny
is just an atomical proposition and x, y just letters. The cardinality of AP is
C2

card(X0∪A0)
which depends (polynomial) on the number of atomical processes

and ambients in the ambient process corresponding to S0.
Next we define L : S→ P(AP) by
L(S) = {xiny | x ∈ ey if x ∈ A or ex ∈ ey if x ∈ X}

From CTL* semantic we have M, S |= xiny iff xiny ∈ L(S), as expected.

4 Algorithms for the accessibility relation

The accessibility relation is defined, inductively, on the structure of the initial
state, by analyzing all of its possible derivatives. We have to analyze how the use
of the existing prefixes of the ambient process will influence the corresponding
state-processes. We define an algorithm of evolution of state-process for each
reduction rule of the ambient calculus. We use here two matrices that describe
the flat system E and the action of functions F and f , respectively.

Consider the ambient process (2.2) already handled earlier. We have X =
{α, β, γ, δ, µ}, A = {q, p, p′, r} and f : A ∪X −→ N by: f(α) = u, f(β) = m,
f(γ) = n, f(δ) = s, f(µ) = n, f(q) = Q, f(p) = P , f(p′) = P , f(r) = R,
E = 〈X, A, e〉 where e : X −→ P (X ∪A) is defined by:

eα = {eβ , eγ} =⇒
{

eβ ∈ eα

eγ ∈ eα
=⇒

{
βinα is true
γinα is true

eβ = {eδ, q} =⇒
{

eδ ∈ eβ

q ∈ eβ
=⇒

{
δinβ is true
qinβ is true

eγ = {p} =⇒ { p ∈ eγ =⇒ { pinγ is true
eδ = {eµ} =⇒ { eµ ∈ eδ =⇒ { µinδ is true

eµ = {p′, r} =⇒
{

p′ ∈ eµ

r ∈ eµ
=⇒

{
p′inµ is true
rinµ is true

Hence E is described by the list of true atomical propositions. We construct
the first matrix, T1, by setting the entry of column x and row y to 1, if the
proposition xiny is true. All the empty entries are set to 0. See Example table1.

5

The second matrix, T2, has the same rows as T1 and as many columns as
the number of prefixes forming the largest sequential chain in the process plus
two. Actually, we have the first column, indexed by f , reporting the value of f
applied to the row index. The remaining columns define F . The last column is
filled by ε. In our example we have
f (α) = u, F (α) = 〈ε, ε, ...〉, f (β) = m, F (β) = 〈ε, ε, ...〉,
f (γ) = n, F (γ) = 〈ε, ε, ...〉, f (δ) = s, F (δ) = 〈ε, ε, ...〉,
f (µ) = n, F (µ) = 〈out m, in m, ε〉, f (q) = Q, F (q) = 〈open n, ε〉,
f (p) = P , F (p) = 〈ε, ε, ...〉, f (p′) = P , F (p′) = 〈out s, open s, ε〉,
f (r) = R, F (r) = 〈ε, ε, ...〉.
See Example table2 for the construction of the matrix T2.

Example table1 Example table2
T1 α β γ δ µ q p p′ r
α 0 1 1 0 0 0 0 0 0
β 0 0 0 1 0 1 0 0 0
γ 0 0 0 0 0 0 1 0 0
δ 0 0 0 0 1 0 0 0 0
µ 0 0 0 0 0 0 0 1 1
q 0 0 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 0 0
p′ 0 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0 0

T2 f F
α u ε ε ...
β m ε ε ...
γ n ε ε ...
δ s ε ε ...
µ n out m in m ε
q Q open n ε ...
p P ε ...
p′ P out s open s ε
r R ε ...

The two matrices T1 and T2 suffice to describe each state S. Now we define
the algorithm to compute the evolution of states under reductions.

Assume that the initial state S1 is described by the tables T1 and T2. The
algorithm will start by choosing randomly a row from table T2 such that its
first position of the F -part is a prefix c with c 6= ε and c 6= input3.

If c 6= ε and c 6= input then we will proceed to c-condition where we check
whether the condition depending on the entry c is true or not. If the condition
is true we proceed with c-reduction that is the part of the algorithm which
will update T1 and T2 to describe the next state S2. We will have different
c-condition and c-reduction for each type of prefix.

Denoting by S1 |=alg S2 that S2 is obtained from S1, in one step, using
our algorithm 4.1 instantiated with suitable c − condition and c − reduction
functions, we can define the accessibility relation between states as:

S1RS2 iff S1 |=alg S2

3This is a technical trick to avoid the choice of input and output prefixes in the same step

6

Algorithm 4.1 (General form of the accessibility algorithm).∣∣

begin
go:=true
while go do

begin
Row = {c | c is on the first row of F part of T2}
while Row 6= ∅ do

begin
choose c ∈ Row
if c 6= ε and c 6= input x then

begin
c-condition
if condition then

begin
c-reduction;
go:=false;
end;

else Row := Row \ {c}
end;

else Row := Row \ {c}
end;
go:=false;

end;
end.

In the next subsections we define, for any reduction rule of the ambient
calculus the corresponding c− condition and c− reduction functions.

4.1 In-Reduction

(Red In): n[in m.P |Q]|m[R]]→ [m[n[P |Q]|R]]

We wrap the two sides of the rule within the master ambient u:

u[n[in m.P |Q]|m[R]]]→ u[[m[n[P |Q]|R]]]

The state-process for the initial state is
X = {α, β, γ}, A = {p, q, r} ⊆ 0, fS1 : X ∪ A −→ N , fS1(α) = u, fS1(β) =

m, fS1(γ) = n, fS1(p) = P , fS1(q) = Q, fS1(r) = R and FS1 : X ∪ A −→ Str,
FS1(p) = 〈in m, c1, c2, ...〉.

Informally, for the source state we have

S1: α [β [in m.p | q] | γ [r]]

7

with the equations system

eα = {eβ , eγ} =⇒
{

eβ ∈ eα

eγ ∈ eα
=⇒

{
βinα is true
γinα is true

eβ = {p, q} =⇒
{

p ∈ eβ

q ∈ eβ
=⇒

{
pinβ is true
qinβ is true

eγ = {r} =⇒ { r ∈ eγ =⇒ { rinγ is true

and matrices

Initial-In-table1 Initial-In-table2
T1 α β γ p q r
α 0 1 1 0 0 0
β 0 0 0 1 1 0
γ 0 0 0 0 0 1
p 0 0 0 0 0 0
q 0 0 0 0 0 0
r 0 0 0 0 0 0

T2 fS1 FS1

α u
β m
γ n
p P in m, c1, c2,...
q Q
r R

Informally, for the target state, we have:

S2: α [β [γ [p | q] | r]]

with the equations system:

eα = {eγ} =⇒ { eγ ∈ eα =⇒ { γinα is true

eγ = {eβ , r} =⇒
{

eβ ∈ eγ

r ∈ eγ
=⇒

{
βinγ is true
rinγ is true

eβ = {p, q} =⇒
{

p ∈ eβ

q ∈ eβ
=⇒

{
pinβ is true
qinβ is true

and the two matrices:

Final-In-table1 Final-In-table2
T1 α β γ p q r
α 0 0 1 0 0 0
β 0 0 0 1 1 0
γ 0 1 0 0 0 1
p 0 0 0 0 0 0
q 0 0 0 0 0 0
r 0 0 0 0 0 0

T2 fS1 FS1

α u
β m
γ n
p P c1, c2,...
q Q
r R

Therefore, the only changes are:
S1: βinγ true

βinγ false
=⇒ S2: βinγ false

βinγ true

FS2(p) = FS2(p)− 〈in m〉.
Further we develop the algorithm 4.2 for in-condition. First it computes

f−1
S1

(m) to check whether it can apply in m. If f−1
S1

(m) has many elements

8

it will choose randomly one: ν ∈ f−1
S1

(m) and it will test the correct nesting
of ambients to apply (Red − In). If the condition is not satisfied, then the
algorithm will choose another element and will continue in this way until the
correct nesting is satisfied for one element, if any, if not it will go further. Then
it will proceed to in-reduction to update T1 and T2 for S2.

Algorithm 4.2 (In-condition algorithm).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
condition:=true;
go:=true;
while go do

begin
if f−1

S1
(m) 6= ∅ then

choose ν ∈ f−1
S1

(m)
if parent(parent(p))=parent(ν) then

go:=false
else f−1

S1
(m) := f−1

S1
(m)\{ν}

else
begin
condition:=false;
go:=false;
end;

end;
end.

Some remarks: f−1
S1

(m) can be computed by checking in the column of fS1 ,
of table T2, where exactly m appears and by identifying the urelements for
which it is appearing. parent(α) can be found, in the matrix T1, by checking on
the column of α where 1 appears4. We can read, in the row where 1 appears,
which is the parent of α.

Algorithm 4.3 (In-reduction algorithm).∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
update T2: FS2(p) := FS1(p)− 〈in m〉

FS2(x) = FS1(x) for x 6= p
fS2(x) := fS1(x)

update T1: βinα := 0 (i.e. parent(p)in parent(parent(p)) becomes false)
βinγ := 1 (parent(p)inν becomes true)

end.

4.2 Out-Reduction

(Red Out) : m [n [out m.P Q] R] −→ m [R] n [P Q]

4if α is not the master ambient, it appears once

9

We wrap the two sides of the rule within the master ambient u: u [m [n [out m.P Q] R]] −→
u [m [R] n [P Q]]. The state-process for the initial state is:

X = {α, β, γ}, A = {p, q, r} ⊆ 0, fS1 : X ∪ A −→ N , fS1(α) = u, fS1(β) =
m, fS1(γ) = n, fS1(p) = P , fS1(q) = Q, fS1(r) = R and FS1 : X ∪ A −→ Str,
FS1(p) = 〈out m, c1, c2, ...〉.

Informally we have:
S1: α [β [γ [out m.p q] r]] with the equations system

eα = {β} =⇒ { eβ ∈ eα =⇒ { βinα is true

eβ = {eγ , r} =⇒
{

eγ ∈ eβ

r ∈ eβ
=⇒

{
γinβ is true
rinβ is true

eγ = {p, q} =⇒
{

p ∈ eγ

q ∈ eγ
=⇒

{
pinγ is true
qinγ is true

and matrices

Initial-Out-table1 Initial-Out-table2
T1 α β γ p q r
α 0 1 0 0 0 0
β 0 0 1 0 0 1
γ 0 0 0 1 1 0
p 0 0 0 0 0 0
q 0 0 0 0 0 0
r 0 0 0 0 0 0

T2 fS1 FS1

α u
β m
γ n
p P out m, c1, c2,...
q Q
r R

S2: α [β [r] γ [p q]] with the equations system

eα = {eβ , eγ} =⇒
{

eβ ∈ eα

eγ ∈ eα
=⇒

{
βinα is true
γinα is true

eβ = {r} =⇒ { r ∈ eβ =⇒ { rinβ is true

eγ = {p, q} =⇒
{

p ∈ eγ

q ∈ eγ
=⇒

{
pinγ is true
qinγ is true

and matrices

Final-Out-table1 Final-Out-table2
T1 α β γ p q r
α 0 1 1 0 0 0
β 0 0 0 0 0 1
γ 0 0 0 1 1 0
p 0 0 0 0 0 0
q 0 0 0 0 0 0
r 0 0 0 0 0 0

T2 fS1 FS1

α u
β m
γ n
p P c1, c2,...
q Q
r R

Therefore, the only changes are:
S1: γinα true

γinβ false
=⇒ S2: γinα false

γinβ true

FS2(p) = FS2(p)− 〈out m〉.

10

Algorithm 4.4 (Out-condition algorithm).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
condition:=true;
go:=true;
while go do

begin
if f−1

S1
(m) 6= ∅ then

choose ν ∈ f−1
S1

(m)
if parent(parent(p))=ν then

go:=false
else f−1

S1
(m) := f−1

S1
(m)\{ν}

else
begin
condition:=false;
go:=false;
end;

end;
end.

Algorithm 4.5 (Out-reduction algorithm).∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
update T2: FS2(p) := FS1(p)− 〈out m〉;

FS2(x) = FS1(x) for all x 6= p ;
fS2(x) := fS1(x);

update T1: γinα := 0
γinβ:= 1

end.

4.3 Open-Reduction

(Red Open) : open n.P n [Q] −→ P Q

We wrap the two sides of the rule within the master ambient u:
u [open n.P n [Q]] −→ u [P Q]

X = {α, β}, A = {p, q} ⊆ 0, fS1 : X ∪ A −→ N , fS1(α) = u, fS1(β) = n,
fS1(p) = P , fS1(q) = Q, FS1(p) = 〈open n, c1, c2, ...〉.

S1: α [open n.p β [q]]

eα = {p, eβ} =⇒
{

p ∈ eα

eβ ∈ eα
=⇒

{
qinα is true
βinα is true

eβ = {q} =⇒ { q ∈ eβ =⇒ { qinβ is true

S2: α [p q]

eα = {p, q} =⇒
{

p ∈ eα

q ∈ eα
=⇒

{
pinα is true
qinα is true

11

The changes:
S1: βinα true

qinα false
qinβ true

=⇒
S2: βinα false

qinα true
qinβ false

FS2(p) = FS2(p)− 〈open n〉.

Initial-Open-table1 Initial-Open-table2
T1 α β p q
α 0 1 1 0
β 0 0 0 1
p 0 0 0 0
q 0 0 0 0

T2 fS1 FS1

α u
β n
p P open n, c1, c2,...
q Q

Final-Open-table1 Final-Open-table2
T1 α β p q
α 0 0 1 1
β 0 0 0 0
p 0 0 0 0
q 0 0 0 0

T2 fS1 FS1

α u
β n
p P c1, c2,...
q Q

In spite of the fact that, in S2, the ambient n, alias β, disappears we keep it
in our tables. This is important for the situations in which many urelements are
associated with n, i.e. n appears in many places. But the fact that β is still in
our matrices does not change S2 at all. If we look to T1 for S1, not the column,
nor the row of β contains 1, so β is not parent and not child, not element of a
set and does not contain elements, i.e. does not exist!

Algorithm 4.6 (Open-condition algorithm).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
condition:=true;
go:=true;
while go do

begin
if f−1

S1
(n) 6= ∅ then

choose ν ∈ f−1
S1

(m)
if parent(p)=parent(ν) then

go:=false
else f−1

S1
(m) := f−1

S1
(m)\{ν}

else
begin
condition:=false;
go:=false;
end;

end;
end.

12

Algorithm 4.7 (Open-reduction algorithm).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
update T2: FS2(p) := FS1(p)− 〈open m〉,

FS2(x) = FS1(x) for x 6= p
fS2(x) := fS1(x)

update T1: βinα:= 0
qinα:= 1
qinβ := 0

end.

4.4 Communication-reduction

We distinguish two main cases:

1. when the name of an ambient is sent: 〈n〉 (x).x [P] R −→ n [P] R

2. when the name sent is part of a capability 〈n〉 (x) in x.P R −→ in n.P R

We will treat separately each case, because in the first one we have to chose
an urelement for x while in the second not. This will determine different changes
in T1. In the end we will have only one algorithm for communication that
will solve both cases. Moreover, if will imagine the case of combining the two
situations, our algorithm will compute properly the target state.

Case1: 〈n〉 (x).x [P] R −→ n [P] R

We treat x as any other ambient name.
We wrap both states in the master ambient: u [〈n〉 (x).x [P] R] −→ u [n [P] R]

X = {α, β, κ}, A = {p, r}, fS1 : A∪X −→ N , fS1(α) = u, fS1(β) = n, fS1(κ) =
x, fS1(p) = P , fS1(q) = Q, FS1 : X ∪ A −→ Str, FS1(β) = 〈output, ε, ε, ...〉,
FS1(κ) = 〈input x, c1, c2, ...〉

S1: α [output.β [] input x.κ [p] r]

eα = {eβ , eκ, r} =⇒

 eβ ∈ eα

eκ ∈ eα

r ∈ eα

=⇒

 βinα is true
κinα is true
rinα is true

eβ = ∅
eκ = {p} =⇒ { p ∈ eκ =⇒ { pinκ is true

Initial-Comm1-table1 Initial-Comm1-table2
T1 α β κ p r
α 0 1 1 0 1
β 0 0 0 0 0
κ 0 0 0 1 0
p 0 0 0 0 0
r 0 0 0 0 0

T2 fS1 FS1

α u
β n output, ε, ε, ...
κ x input x, c1, c2, ...
p P
r R

13

S2: α [β [p] r]

eα = {eβ , r} =⇒
{

eβ ∈ eα

r ∈ eα
=⇒

{
βinα is true
rinα is true

eβ = {p} =⇒ { p ∈ eβ =⇒ { pinβ is true

Final-Comm1-table1 Final-Comm1-table2
T1 α β κ p r
α 0 1 0 0 1
β 0 0 0 1 0
κ 0 0 0 0 0
p 0 0 0 0 0
r 0 0 0 0 0

T2 fS1 FS1

α u
β n c′1, c

′
2, ...

κ x ε, ε, ...
p P
r R

The changes:
S1: κinα true

pinβ false
pinκ true

=⇒
S2: κinα false

pinβ true
pinκ false

FS2(κ) = 〈ε, ...〉.
FS2(β) = (FS1(κ)− 〈input x〉) (x← fS1(β)) where f (x) (x← y) denotes

the substitution of x by y in all occurrences of x in f(x). In our case, in
the string FS1(κ)− 〈input x〉 all occurrences of x are replaced by n = fS1(β).

Before writing the algorithm, we will analyze the other kind of communica-
tion also:

Case 2: (x).in x.P 〈n〉 R −→ in n.P R

first step: u [(x).in x.P 〈n〉 R] −→ u [in n.P R]

X = {α, β}, A = {p, r} ⊆ 0, fS1 : X ∪ A −→ N , fS1(α) = u, fS1(β) = n,
fS1(p) = P , fS1(r) = R, FS1(β) = 〈output, ε, ...〉, FS1(p) = 〈input x, in x, c1, c2, ...〉

Because x is not an ambient, nor an atomical process in our formula, we will
not choose an urelement for it.

S1: α [input x.in x.p output.β [] r]

eα = {p, eβ , r} =⇒

 p ∈ eα

eβ ∈ eα

r ∈ eα

=⇒

 pinα is true
βinα is true
rinα is true

eβ = ∅

Initial-Comm2-table1 Initial-Comm2-table2
T1 α β p r
α 0 1 1 1
β 0 0 0 0
p 0 0 0 0
r 0 0 0 0

T2 fS1 FS1

α u
β n output, ε, ε, ...
p P input x, in x, c1, c2, ...
r R

14

S2: α [in n.p r]

eα = {p, r} =⇒
{

p ∈ eα

r ∈ eα
=⇒

{
pinα is true
rinα is true

Final-Comm2-table1 Final-Comm2-table2
T1 α β p r
α 0 0 1 1
β 0 0 0 0
p 0 0 0 0
r 0 0 0 0

T2 fS1 FS1

α u
β n ε, ε, ...
p P in x, c′1, c

′
2, ...

r R

The changes:
S1: βinα true −→ S2: βinα false
FS2(β) = FS1(β)− 〈output〉, FS2(p) = (FS1(p)− 〈input x〉) (x← f(β))
Now we will construct the algorithms. It is possible to treat both cases of

communication together.

Algorithm 4.8 (communication-condition).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
condition:=true;
go:=true;
Input := {ν ∈ X ∪A | FS1(ν) = 〈input x, ...〉}
while go do

begin
if Input 6= ∅ then

choose ν ∈ Input
if parent(ν)=parent(β) then

go:=false
else Input := Input\{ν}

else
begin
condition:=false;
go:=false;
end;

end;
end.

15

Algorithm 4.9 (communication-reduction algorithm).∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

begin
if f(ν) = x then (we are in the first case)

update T2: FS2(β) := (FS1(κ)− 〈input x〉) (x← fS1(β))
FS2(κ) := 〈ε, ε, ...〉
fS2(x) := fS1(x)

update T1: xinα := 0
pinβ := 1
pinκ := 0

else (we are in the second case)
update T2: FS2(β) := FS1(β)− 〈output〉

FS2(p) := (FS1(p)− 〈input x〉) (x← fS1(β))
fS2(x) := fS1(x)

update T1: βinα := 0
end.

5 Conclusions

Our approach to Ambient Calculus opens the perspective of using model check-
ing algorithms (or software) developed for temporal logics for analyzing mobile
computations. This is because we found a way of implementing the informa-
tion behind the ambient processes, in the form of state-processes described by
two matrices, and we constructed the algorithms to calculate the accessibility
relation between states. Moreover, our algorithms have no problems from the
complexity point of view.

Having the description of the states, together with the algorithms for acces-
sibility relation, all we have to do for having model checking for mobile com-
putations, is to use further the algorithms for model checking CTL* (a CTL is
possible also, see [6]) and we intend to study further this possibility.

References
[1] J. Barwise and L. Moss. Vicious Circles. On the Mathematics of Non-Wellfounded Phe-

nomena. CLSI Lecture Notes Number 60 Stanford: CSLI Publication, 1996.

[2] L. Cardelli and A.D. Gordon. Ambient logic. http://www.luca.demon.co.uk/.

[3] L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile ambients. pages
365–377, 2000.

[4] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, Special
Issue on Coordination, D. Le Mtayer Editor, pages 177–213, June 2000.

[5] E. A. Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science,
B: Formal Models and Sematics:995–1072, 1990.

[6] R. Mardare and C. Priami. A propositional branching temporal logic for ambient calculus.
Technical report, Dipartimento di Informatica e Tlc, University of Trento, 2003. Available
at www.dit.unitn.it following the link Publications.

16

