
Technical Report CoSBi 22/2008

Decision problems for Spatial Logics revisited

Radu Mardare

The Microsoft Research-University of Trento Centre for Computational and Systems Biology,
Trento, Italy

mardare@cosbi.eu

Alberto Policriti

Department of Mathematics and Computer Science,University of Udine

policriti@dimi.uniud.it

Decision problems for Spatial Logics revisited

Radu Mardare1, Alberto Policriti2,3
1The Microsoft Research-University of Trento, Italy

2Department of Mathematics and Computer Science,University of Udine
3Applied Genomics Institute, Udine, Italy

September 30, 2009

Abstract

Spatial Logics are modal logics developed for process-algebraic semantics. They have
been proposed for specifying concurrent properties of dynamic systems and have been
proved useful in a wide range of applications. Their expresivity often comes with the price
of undecidability, however, even against finite fragments of process calculi. This paper in-
vestigates the decidability of satisfiability, validity, and model checking for various Spatial
Logics against semantics based on a fragment of CCS that embodies the core features of
concurrent behaviors. We prove some decidability and undecidability properties for (com-
binations of) basic modal operators of spatial logics that entail some of the already known
results in the field and provide a taxonomy for this class of problems.

1 Introduction
The success of Process Algebras [2] in modelling a wide class of concurrent and distributed
systems from Computer Science and Artificial Intelligence to Systems Biology and Biochem-
istry, raises the necessity to develop analysis techniques for studying and predicting the be-
haviour of modelled systems. This is the origin of the idea of defining complex query lan-
guages specifically designed to express temporal and structural properties of the systems. The
dual nature of these calculi—algebraic/equational syntax versus coalgebraic operational se-
mantics, makes them particularly appropriate for a modal logic-based approach. The same
idea is also sustained by the important results obtained by using temporal logics for specifying
properties of dynamic systems.

In this context were proposed the process semantics for modal logics, which can be con-
sidered as a special case of Kripke semantics: it involves structuring a class of processes as a
Kripke model by endowing it with accessibility relations and then using the standard clauses of
Kripke semantics. The most obvious accessibility relations on processes are the ones induced

1

by action transitions α.P
α

toP and thus the corresponding (Hennessy-Milner) logic [11] was
the first process-based modal logic to be developed. Later, temporal [18], mobile, concurrent
[9, 16] and dynamic-epistemic [12, 13] features were added.

A relatively new type of process logics are the spatial logics [7, 3], which are particularly
tailored for capturing spatial and concurrent properties of processes. These are intensional
logics, [17], able to differentiate bisimilar processes with different structures. Various versions
of spatial logics for CCS, pi-calculus, ambient calculus, and other process algebras have been
developed. The peculiarity of this class of logics consists in the presence of the spatial oper-
ators, which are logical counterparts of the program constructors of process calculi. Thus, we
have a parallel operator meant to specify properties of complementary (parallel) modules of a
program; a process P has the property φ|ψ, if it can be split in two disjoint parts P ≡ Q|R s.t.
Q satisfies φ and R satisfies ψ. The guarantee operator . is the adjoint of parallel and contains
an implicit quantification over the possible contexts (characterized by some property) in which
a process can evolve. The spatial operators are further combined with temporal or different
types of dynamic operators expressing the transitions of the process. Thus, we can define op-
erators for simple action-transitions or for communications. Some spatial logics defined for
semantics on calculi with locations, such as ambient logic1 [7], also contain operators for nam-
ing or quantifying over locations. Name passing and name restrictions in process calculi can
be characterized logically too, by means of special operators [3].

The operators of spatial logics are similar to modal operators studied in other contexts. The
parallel operator, for instance, is just a modal operator of arity 3 that satisfies the axioms of
associativity, commutativity, and modal distribution [14]. Operators such as this have been
studied, e.g., in the context of Arrow Logic [1] where it entails undecidability for Kripke se-
mantics [10]. The parallel and the guarantee operators are also similar to operators of Relevant
and Substructural Logics [19]—the intentional conjunction and relevant implication respec-
tively. Similarities with operators of linear and intensional logics are also discussed in the
literature [7].

In spite of the similarities with other logics, the particular combination of modal oper-
ators proposed by spatial logics raises genuinely new problems concerning decidability and
complexity for satisfiability, validity, and model checking against the semantics on process al-
gebras. The utility in applications of the analysis involving spatial logic-based specifications
depends directly on the decidability and the computational costs of the analysis. In the litera-
ture the problems have been already approached, the state of the art in the field being more or
less defined on the lines of [4, 8].

This paper reconsiders the problem of decidability for spatial logics reporting new results,
some of them improving the state of art. The spatial logics we approach in this paper are
given for semantics based on a fragment of CCS [15] that embodies the core features of finite
concurrent behaviors. Spatial logics for the same semantics have been studied in [4] where it is
proved that combining the parallel and the guarantee operators with a modality �φ that encodes
the communication-based transitions and/or with second order constructs (involving dynamic
operators indexed by variables over actions, 〈x〉φ, and quantifiers for them, ∃x.φ) generate
undecidability for both validity/satisfiability and model checking.

1Ambient logic is a spatial logic defined over ambient calculus.

2

We first prove that the undecidability of satisfiability for spatial logics with second order
quantifiers derives from the undecidability of a more basic logic that contains second order
quantifiers but does not contain the guarantee or the parallel operators. Only the expressive
power of>|φ is sufficient to generate, in this context, undecidability for satisfiability (> stand-
ing for the Boolean constant “true”). Moreover, the model-checking problem remains unde-
cidable for any such logic, as long as it can express at least> .φ (which is less expressive than
the guarantee operator). On the other hand, we prove that the complete absence of guarantee
makes the model checking decidable.

Concerning logics without second order constructions, we prove that, in the logic studied
in [4], by replacing the operator � expressing a communication-based transition with a class of
modal operators of type 〈α, α〉, that expresses a communication by action α and its coaction,
we obtain a decidable logic that includes the parallel and the guarantee operators. The same
result is ensured by the replacing the �with the class 〈α〉 of dynamic operators encoding atomic
actions. We also show that, in absence of guarantee operator, the logic combining parallel and
� has the model-checking problem decidable.

All these results are collected in Table 1 that provides a taxonomy for this class of problems.
Before the results reported in this paper, only the cases PSL4 and SOL4 were known, [4].
For PSL1 and SOL0 the decidability of satisfiability against process semantics remain open
problems.

Name Signature Model Satisfiability
checking

PSL1 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ decidable unknown
PSL2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | φ . φ decidable decidable
PSL3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α, α〉φ | φ . φ decidable decidable
PSL4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ | φ . φ undecidable undecidable

SOL0 φ := 0, 1 | ¬φ | φ ∧ φ | ∃x.φ | 〈x〉φ decidable unknown
SOL1 φ := 0, 1 | ¬φ | φ ∧ φ | >|φ | ∃x.φ | 〈x〉φ decidable undecidable
SOL2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ decidable undecidable
SOL3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | > . φ undecidable undecidable
SOL4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | 〈x〉φ | � φ | φ . φ undecidable undecidable

Table 1: The decidability problems for spatial logics

2 Preliminaries on Process Algebra
In this section we recall a number of basic notions of process algebra, mainly to establish some
basic terminology and notations. We introduce a finite fragment of CCS calculus that will later
be used as semantics for spatial logics. This fragment is particularly interesting as it embodies
the core features of finite concurrent behaviors (it does not contain recursion) and, as semantics

3

for spatial logics, it is complex enough to cause undecidability for satisfiability/validity and
model checking with respect to some relevant spatial logics.

Definition 2.1 (CCS processes) Let Σ be a denumerable set of elements called actions and
0 6∈ Σ a special object called the null process. The class P of CCS processes is introduced
inductively for arbitrary α ∈ Σ, as follows.

P := 0 | α.P | P |P .

Definition 2.2 (Structural congruence) The structural congruence is the smallest congru-
ence relation on P closed to the algebraical constructures such that (P, |, 0) is an abelian
monoid with respect to ≡, i.e.

1. (P |Q)|R ≡ P |(Q|R) 2. P |0 ≡ P 3. P |Q ≡ Q|P
4. If P ≡ P ′, then for any α ∈ Σ and Q ∈ P, α.P ≡ α.P ′ and P |Q ≡ P ′|Q.

Definition 2.3 (Operational semantics) Let τ 6∈ Σ ∪ P and consider a function on Σ that
associates to each α ∈ Σ its complementary action α, such that α = α and α 6= α. The
operational semantics on P defines a labeled transition system T : P → (Σ ∪ {τ}) × P by

means of the rules in Table 2, where T(P) = (α,Q) is denoted by P
α
toQ for any α ∈ Σ,

T(P) = (τ,Q) is denoted by P
τ
toQ, and µ is used to denote arbitrary elements in Σ ∪ {τ}.

α.P
α

toP , α ∈ Σ α.P |α.Q
τ

toP |Q , α ∈ Σ

P≡ Q

P
µ

toP ′ Q
µ

toP ′, µ ∈ Σ ∪ {τ} P
µ

toP ′ P |Q
µ

toP ′|Q, µ ∈ Σ ∪ {τ}

Table 2: The transition system

In this paper we consider, in addition, the transitions labeled by pairs of complementary

actions (α, α) and defined by α.P ′|α.P ′′|P ′′′
α,α

toP ′|P ′′|P ′′′. This transition is still a communi-
cation but without the “anonymous status” that characterizes the τ transition. We will show
this transition particularly interesting from a logical perspective.

Hereafter, we call a process P guarded if P ≡ α.Q for some α ∈ Σ and we use the notation
P k def

= P |...|P︸ ︷︷ ︸
k

for k ≤ 1.

Definition 2.4 The set of actions Act(P) ⊂ Σ of an arbitrary process P ∈ P is defined,
inductively, as follows.
1)Act(0)

def
= ∅ 2)Act(α.P)

def
= {α} ∪ Act(P) 3)Act(P |Q)

def
= Act(P) ∪ Act(Q).

For a set Ω ⊆ Σ and a pair h,w of nonnegative integers we define the class PΩ
(h,w) of

processes having the actions from Ω and the syntactic trees bound by two dimensions: the

4

depth h of the tree and the widthw that represents the maximum number of structural congruent
processes that can be found in a node of the tree. PΩ

(h,w) is introduced inductively on h.
PΩ

(0,w) = {0};
PΩ

(h+1,w) = {(α1.P1)k1|...|(αi.Pi)ki , for kj ≤ w, αj ∈ Ω, Pj ∈ PΩ
(h,w),∀j = 1..i}.

If Ω ⊆ Σ is a finite set, then PΩ
(h,w) is a finite set of processes.

Hereafter, we introduce structural bisimulation, a relation on processes similar to the prun-
ing relation proposed for trees (static ambient processes) in [5]. This relation will play an
essential role in establishing the bounded model property for some spatial logics. The struc-
tural bisimulation is indexed by a class Ω ⊆ Σ of actions and by two nonnegative integers h,w.
Intuitively, two processes are Ω-structural bisimilar on size (h,w) if they look indistinguish-
able for an external observer that sees only the actions in Ω, does not follow a process for more
than h transition steps, and cannot distinguish more than w cloned parallel subprocesses of an
observed process.

Definition 2.5 (Ω-Structural Bisimulation) Let Ω ⊆ Σ and h,w two nonnegative integers.
The Ω-structural bisimulation on P, denoted by ≈Ω

(h,w), is defined inductively as follows.
If P ≡ Q ≡ 0, then P ≈Ω

(h,w) Q;
If P 6≡ 0 and Q 6≡ 0, then

P ≈Ω
(0,w) Q always.

P ≈Ω
(h+1,w) Q iff for any i ∈ 1..w and any α ∈ Ω:

• P ≡ α.P1|...|α.Pi|P ′ implies Q ≡ α.Q1|...|α.Qi|Q′, Pj ≈Ω
(h,w) Qj , j = 1..i;

• Q ≡ α.Q1|...|α.Qi|Q′ implies P ≡ α.P1|...|α.Pi|P ′, Qj ≈Ω
(h,w) Pj , j = 1..i.

We emphasize further some properties of Ω-structural bisimulation. The proofs of these
results can be found in Appendix.

[Equivalence] For a set Ω ⊆ Σ and nonnegative integers h,w, ≈Ω
(h,w) is an equivalence

relations on P.
[Congruence] Let Ω ⊆ Σ be a set of actions.

1. If P ≈Ω
(h,w) Q, then α.P ≈Ω

(h+1,w) α.Q.
2. If P ≈Ω

(h,w) P
′ and Q ≈Ω

(h,w) Q
′, then P |Q ≈Ω

(h,w) P
′|Q′.

For nonnegative integers h, h′, w, w′ we convey to write (h′, w′) ≤ (h,w) iff h′ ≤ h and
w′ ≤ w.

Let Ω′ ⊆ Ω ⊆ Σ and (h′, w′) ≤ (h,w). If P ≈Ω
(h,w) Q, then P ≈Ω′

(h′,w′) Q.
[Split] If P ′|P ′′ ≈Ω

(h,w1+w2) Q for some Ω ⊆ Σ, then there exists Q,Q′ ∈ P such that
Q ≡ Q′|Q′′ and P ′ ≈Ω

(h,w1) Q
′, P ′′ ≈Ω

(h,w2) Q
′′.

[Step-wise propagation] If P ≈Ω
(h,w) Q and P

α

toP ′ for some α ∈ Ω ⊆ Σ, then there exists

a transition Q
α

toQ′ such that P ′ ≈Ω
(h−1,w−1) Q

′; if P
α,α

toP ′, then there exists a transition Q
α,α

toQ′

such that P ′ ≈Ω
(h−2,w−2) Q

′.
As Σ is a denumerable set, assume a lexicographic order �⊆ Σ × Σ on it. Then, any

element α ∈ Σ has a successor denoted by succ(α) and any finite subset Ω ⊂ Σ has a maximum
element denoted by sup(Ω). We define Ω+ = Ω ∪ {succ(sup(Ω))}.

5

The next theorem states that for any finite set Ω of actions and any nonnegative integers
h,w, the equivalence relation ≈Ω

(h,w) partitions the class P of processes in equivalence classes
such that each equivalence class has a representative in the set PΩ+

(h,w). This set, by Lemma 2, is
finite.

[Representation Theorem] For any finite set Ω ⊆ Σ, any nonnegative integers h,w and any
process P ∈ P, there exists a process Q ∈ PΩ+

(h,w) such that P ≈Ω
(h,w) Q.

3 Spatial Logic
In this section we introduce spatial logics. In the literature two classes of such logics have been
studied. One class contains the propositional spatial logics (PSLs) that extend classic propo-
sitional logic with modal-spatial and dynamic operators. The other class consists of second
order spatial logics (SOLs) that are equipped with variables and quantifiers over modalities
which, by their nature, are second order variables and quantifiers. In this paper we study both
classes.

Definition 3.1 (Syntax of Spatial Logics) Let Σ and X be two disjoint denumerable sets.
Consider the modal logics defined for the set {0, 1} of atomic proposition, for arbitrary α ∈ Σ
and x, y ∈ X as follows.

PSL1 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ
PSL2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | φ . φ
PSL3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | 〈α, α〉φ | φ . φ
PSL4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | � φ | φ . φ

SOL0 φ := 0, 1 | ¬φ | φ ∧ φ | ∃x.φ | 〈x〉φ
SOL1 φ := 0, 1 | ¬φ | φ ∧ φ | >|φ | ∃x.φ | 〈x〉φ
SOL2 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ
SOL3 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | > . φ
SOL4 φ := 0, 1 | ¬φ | φ ∧ φ | φ|φ | ∃x.φ | 〈x〉φ | 〈x〉φ | � φ | φ . φ

The semantics of spatial logics is given over the class P of CCS processes taken as a frame.
In particular, a definition of the satisfiability operator, P |= φ that relates a process P ∈ P with
the property φ written in the syntax of PSLs, is given.

Definition 3.2 (Semantics of PSLs) Let P ∈ P and φ a formula of PSLi, i = 1..4. The
relation P |= φ is defined inductively as follows.

P |= 0 iff P ≡ 0.
P |= 1 iff there exists α ∈ Σ such that P ≡ α.P .
P |= ¬φ iff P 6|= φ.
P |= φ ∧ ψ iff P |= φ and P |= ψ.
P |= φ|ψ iff P ≡ Q|R, Q |= φ and R |= ψ.
P |= >|φ iff P ≡ Q|R and R |= φ.

P |= �φ iff there exists a transition P
τ
toP ′ and P ′ |= φ.

6

P |= 〈α〉φ iff there exists a transition P
α
toP ′ and P ′ |= φ.

P |= 〈α, α〉φ iff there exists a transition P
α,α

toP ′ and P ′ |= φ.
P |= φ . ψ iff for any Q, Q |= φ implies P |Q |= ψ.
P |= > . φ iff for any Q, P |Q |= ψ.

Observe that, equivalently, we can introduce the semantics in the modal logic fashion by defin-
ing a frame for PSLs as the structure
M = (P, i, (Rα)α∈Σ, (R(α,α))α∈Σ,Rτ ,R|,R.) where

i : P→ 2{0} is the interpretation function defined by i(P) = {0} for P ≡ 0 and i(P) = ∅ else;
(Rα)α∈Σ is a class of accessibility relations Rα ⊆ P × P indexed by actions and defined by

(P,Q) ∈ Rα iff P
α

toQ.
(R(α,α))α∈Σ is a class of accessibility relations indexed by pairs of complementary actions and

defined by (P,Q) ∈ R(α,α) iff P
α,α

toQ.

Rτ is an accessibility relationsRτ defined by (P,Q) ∈ Rα iff P
τ

toQ.
R| ⊆ P× P× P is a relation defined by (P,Q,R) ∈ R| iff P ≡ Q|R
R. ⊆ P× P× P is a relation defined by (P,Q,R) ∈ R. iff R ≡ P |Q.
In this presentation 〈α〉, 〈α, α〉 and � are modal operators of arity 2, while | and . are modal
operators of arity 3 having the semantics given as follows.
M, P |= 〈α〉φ iff there exists P ′ ∈ P s.t. (P, P ′) ∈ Rα andM, P ′ |= φ.
M, P |= 〈α, α〉φ iff there exists P ′ ∈ P s.t. (P, P ′) ∈ R(α,α) andM, P ′ |= φ.
M, P |= 〈α〉φ iff there exists P ′ ∈ P s.t. (P, P ′) ∈ Rτ andM, P ′ |= φ.
M, P |= φ|ψ iff there exist Q,R ∈ P s.t. (P,Q,R) ∈ R|,M, Q |= φ,M, R |= ψ.
M, P |= φ . ψ iff for Q,R ∈ P s.t. (P,Q,R) ∈ R.,M, Q |= φ impliesM, R |= ψ.
In this interpretation the fact that | and . are adjoint operators is revealed by the fact that
(P,Q,R) ∈ R| if (R,P,Q) ∈ R..

Before introducing the semantics of second order spatial logics (SOLs), we should stress
the fact that in our syntax X is a set of variables that will be interpreted over Σ. As usual,
we call an occurrence of a variable x ∈ X in a formula φ (written in the syntax of SOLi,
i = 0, . . . , 4) a free occurrence if it is not in the scope of a quantifier ∃x. We call a variable x
a free variable in a formula if it has at least one free occurrence2. A formula φ is closed if it
contains no free variables; else, we call it open. A valuation v : X ↪→ Σ is a partial function
that associates values in Σ to some variables in X . If v is a valuation, x ∈ X is a variable that
is not in the domain of v, and α ∈ Σ, we denote by v{x→α} the valuation v′ that extends v with
v′(x) = α.

The semantics of second order spatial logics (SOLs) is given by the satisfiability operator,
P, v |= φ that relates a process P ∈ P and valuation v : X → Σ interpreting the free variable
of φ, to a well formed formula φ of SOLi, i = 0, . . . , 4.

Definition 3.3 (Semantics) The relation P, v |= φ is defined inductively as follows.
P, v |= 0 iff P ≡ 0.

2As usual, we assume that variables occurring under different boundaries or both bound and free do not clash,
even if the same (meta) symbol x ∈ X is used to name them.

7

P, v |= 1 iff there exists α ∈ Σ such that P ≡ α.P .
P, v |= ¬φ iff P, v 6|= φ.
P, v |= φ ∧ ψ iff P, v |= φ and P, v |= ψ.
P, v |= φ|ψ iff P ≡ Q|R, Q, v |= φ and R, v |= ψ.
P, v |= >|φ iff P ≡ Q|R, Q, v |= φ.

P, v |= �φ iff P
τ
toP ′ and P ′, v |= φ.

P, v |= 〈x〉φ iff P
v(x)

to P ′ and P ′, v |= φ.

P, v |= 〈x〉φ iff P
v(x)

to P ′ and P ′, v |= φ.
P, v |= φ . ψ iff for any process P ′, v |= φ implies P ′|P, v |= φ.
P, v |= > . φ iff for any process P ′, P ′|P, v |= φ.
P, v |= ∃x.φ iff there exists α ∈ Σ such that P, v{α→x} |= φ.

In addition to the boolean operators we also introduce the next derived operators that will
be used both with PSLs and SOLs.

> def
= 0 ∨ ¬0 ⊥ def

= ¬> φ ‖ ψ def
= ¬(¬φ|¬ψ)

◦φ def
= (¬φ) .⊥ φ∀

def
= φ ‖ > α.φ

def
= 1 ∧ 〈α〉φ

In the light of the previous definition, > and ⊥ are just the boolean constants, hence >|φ
and>.φ are just particular cases of ψ|φ and ψ.φ respectively, defined for ψ = >. Notice that
in the logics where φ|ψ is a legal construction, 1 can be defined from 0 by 1

def
= ¬0 ∧ (0 ‖ 0).

Observe also that the operator ◦, definable in the logics where φ . ψ is a legal construction and
is a universal modality, as ◦φ encodes the validity of φ over P.

Definition 3.4 A formula φ of PSLs is satisfiable if there exists a process P ∈ P such that
P |= φ; it is valid (a validity) if for any process P ∈ P, P |= φ. A closed formula φ of SOLs is
satisfiable if there exists a process P ∈ P such that P, ∅ |= φ, where ∅ is the empty valuation;
it is valid (a validity) if for any process P ∈ P P, ∅ |= φ.

We denote the fact that φ is a validity by |= φ. Hereafter, we call the satisfiability problem
(validity problem) for a logic against a given semantics the problem of deciding if an arbitrary
formula is satisfiable (valid). The model checking problem for PSLs consists in deciding, for
an arbitrary formula φ and an arbitrary process P , if P |= φ. The same problem for SOLs
consists in deciding, for an arbitrary closed formula φ and an arbitrary process P , if P, ∅ |= φ.

Observe that Definition 3.4 implies that φ is a validity iff ¬φ is not satisfiable and reverse,
φ is satisfiable iff ¬φ is not valid. Consequently, satisfiability and validity are dual problems
implying that once one has been proved decidable/undecidable, the other shares the same prop-
erty.

4 Decision problems for Second Order Spatial Logics
In [4] it is proved that SOL4 is undecidable. The proof is based on the method proposed
previously in [8] where it is shown that the second order quantifiers (over ambient names) in

8

ambient logic, in combination with the parallel operator, can induce undecidability for satisfi-
ability. A corollary of this result is the undecidability of SOL2. In what follows, we use the
same method for proving a stronger result, i.e. that satisfiability for SOL1 is undecidable. This
result shows that even in absence of the parallel operator (as in SOL1, parallel can only appear
in constructions of type >|φ) second order quantification produces undecidability and implies
the undecidability of satisfiability for SOL2, SOL3 and SOL4.

In the second part of this section we will also approach the model checking problem and
prove that the situation is different. For SOL2 the model-checking problem is decidable (im-
plying decidability of model checking for both SOL1 and SOL0), while for SOL3 model
checking is undecidable (implying the undecidability of model checking for SOL4). This
shows that we do not need the entire expressivity of the guarantee operator in order to reach
undecidability of model checking: the presence of > . φ is sufficient. Notice that P, v |= > . φ
is equivalent to say that all processes having P as subprocess have the property φ under the
evaluation v, i.e. we face a universal quantification on the class of upper processes of P . The
satisfiability problem for SOL0 remains as an open problem.

4.1 The satisfiability problem
In what follows, we prove that the satisfiability problem of SOL1 is equivalent with the satisfi-
ability problem of a fragment of first order logic known to be undecidable for finite domains3.
This fragment is FOL introduced inductively, for a single binary predicate p(x, y) and for
x, y ∈ X , by:

f := p(x, y) | ¬f | f ∧ f | ∃x.f .
The semantics of FOL is defined for a finite domains D ⊆ Σ and for an interpretation

I ⊆ D × D of the predicate. The satisfiability relation is given as follows (for valuations
v : X → D).

(D, I), v |= p(x, y) iff (v(x), v(y)) ∈ I
(D, I), v |= ¬f iff (D, I), v 6|= f
(D, I), v |= f ∧ g iff (D, I), v |= f and (D, I), v |= g
(D, I), v |= ∃x.f iff there exists α ∈ D and (D, I), v{x→α} |= f .
It is known that satisfiability for FOL is undecidable. We will prove further that satisfiability

of FOL is equivalent with satisfiability for SOL1.

We begin by describing a special class P ⊆ P of processes that can be characterized by the
formulas of SOL1.

Consider the following derived operators in SOL1:
D(x) = 〈x〉0, R(x, y) = 1 ∧ 〈x〉〈y〉0 and

Model = [(1→ (∃xD(x)∨∃x∃yR(x, y)))|>] ∧ [∀x∀y((R(x, y)|>)→ (D(x)|>∧D(y)|>))]

We prove that the formula Model characterizes all processes of type
α1.0|...|αk.0 | αi1 .αj1 .0|...|αil .αjl .0 for i1, ..., il, j1, .., jl ∈ {1, ..k} and the process 0. This
class, which we denote by P , will play a major role in our proof.

3The same fragment of first order logic is used in [4] for proving the undecidability of SOL4.

9

P, v |= Model iff either P ≡ 0, or there exist actions α1, ...αk ∈ Σ, and i1, ..., il, j1, .., jl ∈
{1, ..k} s.t. P ≡ α1.0|...|αk.0 | αi1 .αj1 .0|...|αil .αjl .0

Proof P, v |= (1 → (∃xD(x) ∨ ∃x∃yR(x, y)))|> iff for any Q s.t. P ≡ Q|R we have
that if Q |= 1 (i.e. Q ≡ α.Q′ for some α), then Q′ ≡ 0 or Q′ ≡ β.0. Hence, Q |= 1
implies Q ≡ α.0 or Q ≡ α.β.0 for some α, β ∈ Σ. Moreover, P, v |= ∀x∀y((R(x, y)|>) →
(D(x)|> ∧D(y)|>)) iff P ≡ α.β.0|Q implies P ≡ α.0|β.0|P ′. 2

Now, we describe a method for associating to each pair (D, I) used in the semantics of
FOL, a process P I

D ∈ P .
Let D ⊆ Σ be a finite set and I ⊂ D ×D a relation on D. Suppose that D = {α1, ...αk}

with k ≥ 1, and I = {(αi1 , αj1), (αi2 , αj2), ..., (αil , αjl)}, with i1, ..., il, j1, .., jl ∈ {1, ..k}. We
denote byDom(Σ) the class of these pairs (D, I). We associate to each pair (D, I) ∈ Dom(Σ)
the process P I

D ∈ P defined by
P I
D ≡ α1.0|...|αk.0 | αi1 .αj1 .0|...|αil .αjl .0.

Reverse, consider a process P ∈ P for which there exists α1, ...αk ∈ Σ, not necessarily
distinct, and i1, ..., il, j1, .., jl ∈ {1, ..k} s.t.

P ≡ α1.0|...|αk.0 | αi1 .αj1 .0|...|αil .αjl .0.
We take D = {α1, ...αk} and I = {(αi1 , αj1), (αi2 , αj2), ..., (αil .αjl)} and this is the pair we
associate to P . Notice that, by construction, if αi = αj then it appears in D only once and
similarly, if (αis , αjs) = (αit , αjt) for some s 6= t, then it is taken only once in I .

For proving the equivalence between the two decidability problems, we define the encoding
[] that associates each formula of FOL to a formula of SOL1, inductively as follows.

[p(x, y)] = R(x, y)|>
[¬f] = ¬[f]
[f ∧ g] = [f] ∧ [g]
[∃x.f] = ∃x.((D(x)|>) ∧ [f])
(D, I), v |= f iff PD

I , v |= [f].
Proof We prove it by induction on f ∈ FOL.
The case f = ¬g: (D, I), v |= ¬g iff (D, I), v 6|= g. Then the inductive hypothesis gives

PD
I , v 6|= [g] which is equivalent with PD

I , v |= ¬[g].
The case f = g ∧ h: (D, I), v |= g ∧ h iff (D, I), v |= g and (D, I), v |= h. Using the

inductive hypothesis, we obtain PD
I , v |= [g] and PD

I , v |= [h], i.e. PD
I , v |= [g] ∧ [h], meaning

that PD
I , v |= [f].

The case f = ∃x.g: (D, I), v |= ∃x.g iff there exists α ∈ D s.t. (D, I), v{x→α} |= g.
Further, the inductive hypothesis gives PD

I , v{x→α} |= [g]. But because PD
I ≡ α.0|P ′, we

obtain that PD
I , v{x→α} |= D(x)|>. Hence PD

I , v{x→α} |= D(x)|> ∧ [g] that implies PD
I , v |=

∃x.(D(x)|> ∧ [g]) that is equivalent with PD
I , v |= [f].

The case f = p(x, y): (D, I), v |= p(x, y) iff (v(x), v(y)) ∈ I . But this is equivalent with
PD
I ≡ v(x).v(y).0|P ′ that implies PD

I , v |= (1 ∧ 〈x〉〈y〉.0)|>, i.e. PD
I , v |= [f]. 2

Let f be a closed formula of FOL. Then f is satisfiable in FOL iff Model∧ [f] is satisfiable
in SOL1.

10

Proof Model characterizes the class P of processes. So, if there exists a model (D, I) ∈
Dom(Σ) such that (D, I), ∅ |= f , then PD

I , ∅ |= Model ∧ [f], where ∅ is the empty valuation.
Reverse, if there is a process P ∈ P that satisfies Model ∧ [f], then P, ∅ |= Model, i.e. P ∈ P
meaning that there exists (D, I) ∈ Dom(Σ) such that P ≡ PD

I . Then PD
I , ∅ |= [f] that implies

(D, I), ∅ |= f . 2

Theorem 4.1 For SOL1 validity and satisfiability are undecidable.

This result implies the undecidability of satisfiability for all the more expressive logics.

Corollary 4.1 The satisfiability is undecidable for SOL2 and SOL3.

4.2 The model-checking problem
With model checking the situation is different. The simple presence of second order quantifi-
cation does not imply undecidability, as for the case of satisfiability.

Theorem 4.2 For SOL2 model checking is decidable.

Proof For the beginning, observe that for arbitrary P , φ, v′ and α, β 6∈ Act(P)∪ dom(v′),
we have P, v′{x→α} |= φ iff P, v′{x→β} |= φ. Due to this property, it can be proved that in
deciding P, v |= φ it is sufficient to consider only valuations assigning values from Act(P) ∪
{α1, ..., αk} to free variables of φ, where αi 6∈ Act(P) for i = 1..k and k is the number of
distinct variables4 that appear in φ. Further, it is easy to prove that operators can be eliminated,
inductively, and the model-checking problem can be reduced, at each step, to a finite number
of model-checking problems involving subprocesses of P (which are finitely many, modulo
structural congruence) and subformulas of φ. 2

Corollary 4.2 The model-checking problems for SOL1 and SOL0 are decidable.

The presence in a logic of the operator > . φ is sufficient to turn the model-checking
problem undecidable. Notice that P, v |= > . φ involves a universal quantification over the
class of upper processes of P .

Theorem 4.3 For SOL3 model checking is undecidable.

Proof The proof is based on the observation, emphasized also in [8], that in any logic
which can express > . φ, the decidability of model-checking problem implies the decidability
of satisfiability. Hence, the undecidability of satisfiability implies undecidability of model
checking. Indeed, for an arbitrary formula φ in SOL3, it is trivial to verify that |= φ iff 0, ∅ |=
> . φ. As for SOL3 validity is undecidable, we obtain undecidability for model checking. 2

4This number can be defined inductively on the syntax of φ.

11

5 Decision problems for Propositional Spatial Logics
In this section we focus on propositional spatial logics. In [4] it has been proved that for PSL4

satisfiability, validity and model checking are both undecidable against the semantics presented
in Section 3. The proof is based on an equivalence between the satisfiability problem for SOL5

and satisfiability problem of PSL4. The result reveals that the combination of the modality �
based on τ -transition with the spatial operators | and ., generates undecidability.

In this section we show that the combination of the two spatial operators and a transition-
based modality does not always produce undecidability. We will show that for PSL2 and PSL3

both the satisfiability/validity and model-checking problems are decidable. PSL2 contains
dynamic operators indexed by actions 〈α〉 that reflect the interleaving semantics of CCS. PSL3

is closer to PSL4 as it expresses communications by the dynamic operators 〈α, α〉. But while
the communications reflected by � have an anonymous status, the communications expressible
in PSL3 can also specify the pairs of actions involved. Observe that � can be seen as an
existential quantifier over the class of 〈α, α〉 and in this sense PSL4 has a second-order nature
that might explain its undecidability.

In the second part of the section we consider the logic PSL1 which combines the communication-
based modal operator � with the parallel operator. We prove that for this logic the model-
checking problem is decidable. The satisfiability for PSL1 remains as an open problem.

5.1 Decidability of PSL2 and PSL3

In this subsection we prove that for PSL2 and PSL3 satisfiability/validity problems are de-
cidable. The proofs are based on the bounded model property technique which consists in
showing that, given a formula φ of PSL2 or PSL3, we can identify a finite class of processes
Pφ, bound by the dimension of φ, such that if φ has a model in P, then it has a model in Pφ.
Thus, the satisfiability problem in P is equivalent with the satisfiability in Pφ. This result can
be further used to prove the decidability of satisfiability for the two logics. Indeed, as Pφ is
finite, checking the satisfiability of a formula can be done by exhaustively verifying it for all
the processes in Pφ.

The method adapted for spatial logics was first proposed in [6] and reused in [5] for the
case of static ambient logic. It consists in identifying a structural equivalence on processes,
sensitive to the dimension of the logical formulas, that relates two processes whenever they
satisfy the same formulas of a given size. In our case this relation is the structural bisimulation
defined in Section 2.

Definition 5.1 (Size of a formula) The sizes of a formula of PSL3, denoted by φ = (h,w),
is defined inductively on the structure of a formula. In what follows, suppose that φ = (h,w)
and ψ = (h′, w′).

1. 0
def
= (1, 1). 2. ¬φ def

= φ.

3. φ ∧ ψ def
= (max(h, h′),max(w,w′)). 4. 〈α〉φ def

= (h+ 1, w + 1).

5. φ . ψ
def
= (max(h, h′), w + w′). 6. φ|ψ def

= (max(h, h′), w + w′).

7. 〈α, α〉φ def
= (h+ 2, w + 2).

12

Definition 5.2 The set of actions of a formula φ, act(φ) ⊆ Σ is given by:

1. act(0)
def
= ∅ 2. act(¬φ) = act(φ)

3. act(φ ∧ ψ)
def
= act(φ) ∪ act(ψ) 4. act(〈α〉φ)

def
= {α} ∪ act(φ)

5. act(φ . ψ)
def
= act(φ) ∪ act(ψ) 6. act(φ|ψ)

def
= act(φ) ∪ act(ψ)

7. act(〈α, α〉φ)
def
= {α, α} ∪ act(φ).

The next Lemma states that a formula φ of PSL2 or PSL3 expresses a property of a process
P up to ≈act(φ)

φ . A sketch of its proof can be found in Appendix.
The next assertion is true for PSL2 and PSL3.

If P ≈act(φ)
φ Q, then P |= φ iff Q |= φ.

This result guarantees the bounded model property for both PSL2 and PSL3.

Theorem 5.1 (Bounded model property) The next assertion is true for PSL2 and PSL3.
If P |= φ, then there exists Q ∈ Pact(φ)+

φ such that Q |= φ.

Proof The results are direct consequences of Lemma 2 and Lemma 5.1. 2

Theorem 5.2 (Decidability) For PSL2 and PSL3 validity and satisfiability are decidable
against process semantics.

Proof The decidability of satisfiability derives, for both logics, from the bounded model
property. Indeed, if φ has a model, by Lemma 5.1, it has a model in Pact(φ)+

φ . As act(φ) is

finite, by Lemma 2, Pact(φ)+

φ is finite. Hence, checking for membership is decidable.
The decidability of validity derives from the fact that φ is valid iff ¬φ is not decidable. 2

5.2 The model-checking problems
We focus now on the model-checking problems. We start by stating the decidability of model
checking for PSL2 and PSL3.

Theorem 5.3 For PSL2 and PSL3 model checking is decidable against process semantics.

Proof Given the process P and the formula φ, we show inductively on the structure of φ
that P |= φ is decidable, by showing that the problem can be reduced, step by step, to a finite
number of model checking problems involving subformulas of φ. The only interesting case is
φ = φ1.φ2. Due to the bounded model property, P |= φ1.φ2 iff for anyQ ∈ Pact(φ1)+

φ1
we have

that Q |= φ1 implies P |Q |= φ2. As there are only a finite number of processes Q ∈ Pact(φ1)+

φ1
,

we are done. 2

Theorem 5.4 For PSL1 model checking is decidable against process semantics.

13

Proof As before, we reduce the problem P |= φ to a finite number of model checking
problems involving subprocesses of P (as in this case we do not have .) and subformulas of φ.
The only difference w.r.t. PSL2 or PSL3 is case φ = �ψ. We have P |= �ψ iff there exists a

transition P
τ

toP ′ such that P ′ |= ψ. But the number of processes P ′ such that P
τ

toP ′ is finite
modulo structural congruence. Hence, also in this case, the problem can be reduced to a finite
number of model checking problems that refers to ψ. 2

6 Conclusive remarks
Our original goal was to complete Table 1 and, save the decidability of satisfiability for PSL1

and SOL0, we succeeded. The results reported here improve some known results, e.g. the
undecidability of satisfiability of SOL1 explains the known undecidability of SOL4 reported
in [4] (and of SOL4 anticipated in [8]) and the undecidability of model checking of SOL3 is
liked to the undecidability of model checking for SOL4.

The results on the decidability of propositional spatial logics proved in this paper are, to
the best of our knowledge, original. The fact that PSL3 is decidable shows that the communi-
cation in combination with spatial operators can still be used without losing decidability. The
decidability of SOL2 is useful for applications in which interleaving semantics is relevant.

Notice that in light of Table 1, the undecidability of satisfiability seems generated either
by the combination of second order quantifiers with >|φ, or by the combination of � and ..
Undecidability of model checking seems generated by the presence of > . φ in the context of
undecidable satisfiability.

References
[1] J. van Benthem, Language in action. Categories, Lambdas and Dynamic Logic, Elsevier

Science Publisher, 1991

[2] J.A. Bergstra, A. Ponse, S.A. Smolka (eds.), Handbook of Process Algebra, North Hol-
land, Elsevier, 2001.

[3] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I), Information and
Computation vol. 186/2, 2003

[4] L. Caires and E. Lozes, Elimination of Quantifiers and Decidability in Spatial Logics for
Concurrency, In Proc. of CONCUR’2004, LNCS vol.3170, 2004

[5] C. Calcagno, L. Cardelli and A. D. Gordon, Deciding validity in a spatial logic for trees,
Journal of Functional Programming, Vol. 15, 2005

[6] C.Calcagno, et al. Computability and complexity results for a spatial assertion language
for data structures, In Proc. of FSTTCS01, LNCS, vol. 2245, 2001

14

[7] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile Ambients,
In Proc. 27th ACM Symposium on Principles of Programming Languages, 2000

[8] W. Charatonik, J.M. Talbot, The decidability of model checking mobile ambients, In Proc.
of the 15th International Workshop on Computer Science Logic, LNCS vol.2142, 2001

[9] M. Dam, Model checking mobile processes, Information and Computation vol.129(1),
1996

[10] V. Gyuris, Associativity does not imply undecidability without the axiom of Modal Dis-
tribution, In M. Marx, et.al eds., Arrow Logic and Multi-Modal Logic, CSLI and FOLLI,
1996

[11] M. Hennessy and R. Milner, Algebraic laws for Nondeterminism and Concurrency, Jour-
nal of JACM vol. 32(1), 1985

[12] R. Mardare, Observing distributed computation. A dynamic-Epistemic approach, In Proc.
CALCO’07, LNCS vol.4624, 2007

[13] R. Mardare and C. Priami, Decidable extensions of Hennessy-Milner Logic, In Proc.
FORTE’06, LNCS vol.4229, 2006

[14] R. Mardare, A. Polocriti, Towards a complete axiomatization for Spatial Logics,
TechRep. CoSBi, TR-03-2008, reachable from www.cosbi.eu

[15] R. Milner, A Calculus of Communicating Systems, Springer-Verlag New York, Inc., 1982

[16] R. Milner, J. Parrow and D. Walker, Modal logics for mobile processes, TCS vol.114,
1993

[17] D. Sangiorgi, Extensionality and Intensionality of the Ambient Logics, In Proc. of the
28th ACM Annual Symposium on Principles of Programming Languages, 2001

[18] C. Stirling, Modal and temporal properties of processes, Springer-Verlag New York, Inc.,
2001

[19] A. Urquhart, Semantics for Relevant Logics, Journal of Symbolic Logic, 37(1), 1972

15

Appendix
In this appendix we present some of the proofs of the main lemmas presented in the paper.

Proof [Proof of Lemma 2]
2. We prove it by induction on h. The case h = 0 is immediate.

For the case h+ 1, suppose that P ≈Ω
(h+1,w) P

′ and Q ≈Ω
(h+1,w) Q

′.
Consider any i = 1..w, and any α ∈ Ω such that P |Q ≡ α.R1|...|α.Ri|Ri+1. Suppose,

without loss of generality, that Rj are ordered in such a way that there exist k ∈ 1..i, P ′′, Q′′

such that P ≡ α.R1|...|α.Rk|P ′′, Q ≡ α.Rk+1|...|α.Ri|Q′′ and Ri+1 ≡ P ′′|Q′′. Because k ∈
1..w, from P ≈Ω

(h+1,w) P
′ we have P ′ ≡ α.P ′1|...|α.P ′k|P0 such that Rj ≈Ω

(h,w) P
′
j for j = 1..k.

Similarly, from Q ≈Ω
(h+1,w) Q

′ we have Q′ ≡ α.Q′k+1|...|α.Q′i|Q0 such that Rj ≈Ω
(h,w) Q

′
j for

j = (k + 1)..i. Hence, P ′|Q′ ≡ α.P ′1|...|α.P ′k|α.Q′k+1|...|α.Q′i|P0|Q0 with Rj ≈Ω
(h,w) P

′
j for

j = 1..k and Rj ≈Ω
(h,w) Q

′
j for j = (k + 1)..i.

2

Proof [Proof of Lemma 2]
We prove it by induction on h. The case h = 0 is trivial.

The case h+ 1: Suppose that P ′|P ′′ ≈Ω
(h+1,w) Q. Let w = w1 + w2.

Following an idea proposed in [5], we say that a process P is in Ω(h,w)-normal form if
whenever P ≡ α1.P1|α2.P2|P3 for α1, α2 ∈ Ω and P1 ≈Ω

(h,w) P2 then P1 ≡ P2. Note that
P ≈Ω

(h+1,w) α1.P1|α2.P1|P3. This shows that for any P , any Ω and any (h,w) we can find a P0

such that P0 is in (h,w)-normal form and P ≈Ω
(h+1,w) P0.

We can suppose, without loosing generality, that the canonical representations of P ′, P ′′

and Q are5: P ′ ≡ (α1.P1)k
′
1|...|(αn.Pn)k

′
n|P1, P ′′ ≡ (α1.P1)k

′′
1 |...|(αn.Pn)k

′′
n|P2 and Q ≡

(α1.P1)l1|...|(αn.Pn)ln|Q1, where P1, P2, Q1 have all the guarded subprocesses prefixed by ac-
tions that are not in Ω. For each i ∈ 1..n, we split li = l′i + l′′i in order to obtain a splitting
of Q. We define the splitting of li such that (αi.Pi)

k′
i ≈h+1,w1 (αi.Pi)

l′i and (αi.Pi)
k′′

i ≈h+1,w2

(αi.Pi)
l′′i . We do this as follows:

If k′i + k′′i < w1 + w2 then P ′|P ′′ ≈wh+1 Q implies li = k′i + k′′i , so we can choose l′i = k′i
and l′′i = k′′i .

If k′i + k′′i ≥ w1 + w2 then P ′|P ′′ ≈wh+1 Q implies li ≥ w1 + w2. We meet the following
subcases:

• k′i ≥ w1 and k′′i ≥ w2. We choose l′i = w1 and l′′i = li − w1 (note that as li ≥ w1 + w2,
we have l′′i ≥ w2).

• k′i < w1, then we must have k′′i ≥ w2. We choose l′i = k′i and l′′i = li − k′i. So l′′i ≥ w2 as
li ≥ w1 + w2 and l′i < w1.

• k′′i < w2 is similar with the previous one. We choose l′′i = k′′i and l′i = li − k′′i .

Now, for Q′ ≡ (α1.P1)l
′
1|...|(αn.Pn)l

′
n and Q′′ ≡ (α1.P1)l

′′
1 |...|(αn.Pn)l

′′
n , the result is verified.

2

5Else we can replace P ′, P ′′ with (h+ 1, w)-related processes having the same (h,w)-normal forms

16

Proof [Proof of Lemma 2]
Because P ≈Ω

(h,w) Q, α ∈ Ω and P ≡ α.P ′|P ′′, we obtain that Q ≡ α.Q′|Q′′ with
P ′ ≈Ω

(h−1,w) Q
′. We prove that P ′|P ′′ ≈Ω

(h−1,w−1) Q
′|Q′′.

Consider β ∈ Ω and i = 1..w − 1 such that: P ′|P ′′ ≡ β.P1|...|β.Pi|P ?. We can suppose
that, for some k ≤ i, we have P ′ ≡ β.P1|...|β.Pk|P+, P ′′ ≡ β.Pk+1|...|β.Pi|P− and P ? ≡
P+|P−. Because P ′ ≈Ω

(h−1,w) Q
′ and k ≤ i ≤ w − 1, we obtain that Q′ ≡ β.Q1|...|β.Qk|Q+

with Pj ≈Ω
(h−2,w) Qj for j = 1..k. Further we distinguish two cases.

1. If α 6= β, then we have P ≡ β.Pk+1|...|β.Pi|(P−|α.P ′) and because P ≈Ω
(h,w) Q, we

obtain Q ≡ β.Rk+1|...|β.Ri|R? with Rj ≈Ω
(h−1,w) Pj for j = k + 1..i. But Q ≡ α.Q′|Q′′

and because α 6= β, we obtain Q′′ ≡ β.Rk+1|...|β.Ri|R+ that gives us in the end Q′|Q′′ ≡
β.Q1|...|β.Qk|β.Rk+1|...|β.Ri|(R+|Q+), with Pj ≈Ω

(h−2,w) Qj for j = 1..k (hence, Pj ≈Ω
(h−2,w−1)

Qj) and Pj ≈Ω
(h−1,w) Rj for j = k + 1..i (hence, Pj ≈Ω

(h−2,w−1) Rj).
2. If α = β, then we have P ≡ α.Pk+1|...|α.Pi|α.P ′|P− and as P ≈Ω

(h,w) Q and i ≤ w− 1,
we obtain Q ≡ α.Rk+1|...|α.Ri|α.R′|R?, with Rj ≈Ω

(h−1,w) Pj for j = k+ 1..i and R′ ≈Ω
(h−1,w)

P ′. Because P ′ ≈Ω
(h−1,w) Q

′ and ≈Ω
(h,w) is an equivalence relation, we can suppose that6 R′ ≡

Q′ . Consequently, Q ≡ α.Rk+1|...|α.Ri|α.Q′|R? that gives Q′′ ≡ α.Rk+1|...|α.Ri|R?, which
entails further Q′|Q′′ ≡ α.Q1|...|α.Qk|α.Rk+1|...|α.Ri|(R?|Q+) with Pj ≈Ω

(h−2,w) Qj for j =

1..k (hence, Pj ≈Ω
(h−2,w−1) Qj) and Pj ≈Ω

(h−1,w) Rj for j = k+ 1..i (hence, Pj ≈Ω
(h−2,w−1) Rj).

All these prove that P ′|P ′′ ≈Ω
(h−1,w−1) Q

′|Q′′.
The communication case goes similarly. 2

Proof [Proof of Lemma 2] We construct Q inductively on h. For the case P ≡ 0 we take
Q ≡ P , as 0 ∈ PΩ+

(h,w).
Suppose P 6≡ 0. Let β = succ(sup(Ω)). In the case h = 0 we just take Q ≡ β.0.
The case h+ 1. Suppose, without loss of generality, that

P ≡ (α1.P1)k1 |...|(αn.Pn)kn|(γn+1.Pn+1)kn+1 |...|(γn+m.Pn+m)kn+m

where α1, ..αn ∈ Ω with αi.Pi 6≡ αj.Pj for i 6= j, and γn+1, ..γn+m ∈ Σ\Ω with γi.Pi 6≡ γj.Pj
for i 6= j.

Let P ′j for j = 1..n be the processes constructed at the previous inductive step such that
Pj ≈Ω

(h,w) P
′
j with P ′j ∈ PΩ+

(h,w) - their existence is guaranteed by the inductive hypothesis.
Let li = min(ki, w) and consider the process P ′ ≡ (α1.P

′
1)l1|...|(αn.P ′n)ln|β.0. It is trivial to

verify that P ′ is a process that fulfills the requirements of the lemma, i.e. P ≈Ω
(h,w) P

′ and
P ′ ∈ PΩ+

(h,w). 2

Proof [Proof of Lemma 5.1] Induction on the structure of φ. We show here only the
nontrivial cases.

The case φ = 〈α〉ψ: P |= 〈α〉ψ iff P
α

toP ′ and P ′ |= ψ. Suppose that ψ = (h,w). Then
φ = (h + 1, w + 1). Because α ∈ act(φ) and P ≈act(φ)

(h+1,w+1) Q, we obtain applying Lemma

6Indeed, if α.Q′ is a subprocess of R? then we can just substitute R′ with Q′; if α.Q′ ≡ α.Rs, then
Q′ ≈Ω

(h−1,w) Ps and as Q′ ≈Ω
(h−1,w) P

′ and P ′ ≈Ω
(h−1,w) R

′ we derive R′ ≈Ω
(h−1,w) Ps and Q′ ≈Ω

(h−1,w) P
′, so

we can consider this correspondence.

17

2 that Q
α

toQ′ and P ′ ≈act(φ)
(h,w) Q′. We can apply the inductive hypothesis, as P ′ |= ψ and we

obtain Q′ |= ψ. Then Q |= φ.
The case φ = 〈α, α〉ψ: can be prove as the previous one using the second part of Lemma2.
The case φ = ψ1|ψ2: P |= ψ1|ψ2 iff P ≡ S|R, S |= φ1 and R |= ψ2. Suppose that

ψ1 = (h1, w1) and ψ2 = (h2, w2). Then φ = (max(h1, h2), w1 + w2). Applying Lemma 2
for P ≈act(φ)

(max(h1,h2),w1+w2) Q, we obtain that Q ≡ S ′|R′ such that S ≈act(φ)
(max(h1,h2),w1) S

′ and

R ≈act(φ)
(max(h1,h2),w2) R

′. Further Lemma 2 gives S ≈act(ψ1)
(h1,w1) S

′ and R ≈act(ψ2)
(h2,w2) R

′. Further, the
inductive hypothesis gives S ′ |= ψ1 and R′ |= ψ2, i.e. Q |= ψ1|ψ2.

The case φ = ψ1 . ψ2: P |= ψ1 . ψ2 iff any R |= ψ1 implies P |R |= ψ2. But P ≈act(φ)
φ Q

and R ≈act(φ)
φ R implies, by Lemma 2, that P |R ≈act(φ)

φ Q|R. Further P |R ≈act(ψ2)
ψ2

Q|R
and because P |R |= ψ2, we can apply the inductive hypothesis deriving Q|R |= ψ2. Hence,
R |= ψ1 implies Q|R |= ψ2, i.e., Q |= ψ1 . ψ2. 2

18

