
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
Abstract—Recently, pan-sharpening methods based on deep 

learning (DL) have achieved state-of-the-art results. However, 
current existing DL-based pan-sharpening methods need to be 
trained repetitively for different satellite sensors to obtain 
satisfactory fusion performance and therefore require a large 
number of training images for each satellite. To deal with these 
issues, in this paper we propose a unified two-stage spatial and 
spectral network (UTSN) for pan-sharpening. A branch of 
networks is constructed for each different satellite, in which the 
spatial enhancement network (SEN) is shared to improve the 
spatial details in the fused images from different satellites. A 
spectral adjustment network (SAN) is employed to capture the 
spectral characteristics of the specific satellite. Through SAN, the 
spectral information in the intermediate image from SEN is 
refined to produce the final fusion results. Such a framework can 
integrate the datasets from different satellites together for 
sufficient training of SEN. The proposed method is able to achieve 
promising pan-sharpening results also for a new satellite with 
limited training images by only learning a new SAN on the 
few-shot datasets due to the simple but efficient structure of SAN. 
The experimental results show that the proposed method can 
produce state-of-the-art fusion results in both the standard and 
few-shot cases. The source code is publicly available at 
https://github.com/RSMagneto/UTSN. 
 
Index Terms—Pan-sharpening, spatial enhancement network, 
spectral adjustment network, few-shot learning, remote sensing. 

I. INTRODUCTION 
owadays, an increasing number of satellites have been 
launched into space. These satellites carry different kinds 

of imaging sensors for data collection of the observed scenes. 
The obtained remote sensing images can contain various 
information in different observation manners. For example, a 
multispectral (MS) image can provide abundant spectral 
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information coded in several bands. Sharp spatial details can be 
seen in a panchromatic (PAN) image. However, in general, the 
spatial resolution of a MS image is lower than that of a single 
band PAN image. This is caused by the essential tradeoff 
between spatial and spectral resolutions. Therefore, it is very 
difficult to obtain a high spatial and spectral resolution MS (HR 
MS) image due to physical limitations. To address the issue, 
image fusion techniques, also called pan-sharpening, have been 
developed in the literature to fuse the PAN and low spatial 
resolution MS (LR MS) images for the generation of the HR 
MS image. These techniques achieve an HR MS image with 
spatial and spectral resolutions of the PAN and LR MS images, 
respectively. Through pan-sharpening, more comprehensive 
scene information is described in the generated HR MS images, 
which will facilitate the subsequent tasks, such as change 
detection [1] and land cover classification [2]. 
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Fig. 1.  Normalized spectral responses of different satellites: (a) GeoEye-1; (b) 
QuickBird. 

Recently, deep learning (DL) has achieved considerable 
performance in the pan-sharpening field. For example, Ozcelik 
et al. [3] used the colorization scheme to fuse LR MS and PAN 
images. Xu et al. [4] designed an unfolding network to improve 
the spatial information in LR MS images. As more DL-based 
methods are proposed, the fusion performance of LR MS and 
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PAN images is further improved. However, it is necessary to 
further consider the issues related to the training and testing on 
multiple datasets from different satellites. For convenience, 
some pan-sharpening methods based on DL integrate the 
datasets from multiple satellites into a mixed dataset for 
training. Then, the LR MS and the PAN images to be fused 
from a specific satellite sensor are directly fed into the network 
trained on the mixed dataset for the fusion. Although many 
image pairs are included in the mixed dataset for training, the 
fusion result of a specific satellite sensor is influenced by the 

mapping information in the network learned from the data of 
the other satellite datasets. Fig. 1 displays an example of the 
spectral responses of different satellites. DL-based methods 
aim at learning a mapping function between the HR MS image 
and the pair of LR MS and PAN images. Due to the differences 
in the spectral response shown in Fig. 1, mappings for different 
satellites are distinct. Thus, when training on the dataset made 
up of the datasets from different satellites, the network will be 
affected by different spectral responses. 

(a) (b) (c) (d) (e)

Q4: 0.8096
SAM: 3.4559
ERGAS: 1.0905

Q4: 0.8160
SAM: 3.2114
ERGAS: 1.0017

 
Fig. 2.  Fusion results of PNN on different training datasets. (a) LR MS image; (b) PAN image; (c) Reference image; (d) Fused image on the mixed dataset; (e) 

Fused image on the dataset only from the GeoEye-1satellite. 
 

Moreover, for further analysis, Fig. 2 compares the fusion 
results of PNN [21] trained from different datasets. PNN is first 
learned on a mixed dataset, which is made up of 250 pairs of 
64 64×  LR MS and 256 256×  PAN images from the 
GeoEye-1 satellite and 250 LR MS and PAN image pairs with 
the same dimensions from the QuickBird satellite. Then, LR 
MS and PAN images in Figs. 2(a) and 2(b) are fed into the 
learned model to produce the fused image shown in Fig. 2(d). 
Then, another model of PNN is trained on the dataset only 
containing 500 LR MS and PAN image pairs from the 
GeoEye-1 satellite. The trained model is employed to fuse the 
images in Figs. 2(a) and 2(b). The fusion result is displayed in 
Fig. 2(e). Evaluation indexes are reported in Fig. 2 for a direct 
comparison. The indexes include global quality measurement 
(Q4) [5], spectral angle mapper (SAM) [6], and Erreur Relative 
Globale Adimensionnelle de Synthèse (ERGAS) [7]. Through 
comparison of the images in Figs. 2(d) and 2(e), one can see 
that the fusion result on the mixed dataset has inferior 
performance, which is caused by domain shift among different 
satellite datasets. Although the fused images are better if the 
test images and the training images are from the same satellite, 
this requires training the specific network for different satellites 
repeatedly. Repetitive training means more computational 
resources and limited operational flexibility. 

In addition, existing DL-based pan-sharpening methods 
cannot deal with the few-shot cases where for some satellites 
there are not enough MS and PAN images to construct the 
training datasets. For example, the training image pairs are 
often insufficient for newly launched satellites. If DL-based 
methods are trained on limited data, it is difficult to produce 
satisfactory fusion results. Although the model trained on the 
datasets from other satellites can be employed to deal with this 
case, the fusion result is influenced by distinct spectral 
responses, as analyzed in Fig. 1. 

To cope with the issues mentioned above, we propose a 
unified two-stage spatial and spectral network (UTSN), which 

improves the fusion performance and utilizes the datasets from 
different satellites for training simultaneously. In the proposed 
method, UTSN first utilizes the same spatial enhancement 
network (SEN) to enrich the spatial details in the fused image. 
Then a satellite-specific spectral adjustment network (SAN) is 
adopted to further improve the spectral information of the 
intermediate image from SEN. By SAN, the spectral 
information of the intermediate image is adjusted to adapt to the 
spectral response of the specific satellite. In UTSN, SEN is 
trained collaboratively by using the mixed dataset, which is 
made up of all datasets from different satellites. Then, the 
mixed dataset is divided into satellite-specific datasets for the 
training of the corresponding SANs. Through the training with 
the collaboration and division of datasets, a sufficiently 
effective SEN can be learned on the mixed dataset and UTSN 
can avoid the repetitive training of the whole model on different 
satellites. 

Furthermore, for the data from a newly launched satellite, 
only the corresponding SAN needs to be trained. The SEN 
learned from the mixed dataset can be directly employed and 
cascaded with the SAN of the new satellite to produce the 
fusion result. Note that, most of the parameters of UTSN are 
included in SEN, which is learned on the mixed dataset. In SAN, 
only a channel attention block is used, which includes a small 
number of parameters. So, SAN can be trained sufficiently 
when the data from the new satellite is insufficient or few-shot. 
In this way, the proposed UTSN has a good generalization 
ability to the newly launched satellites. Experimental results on 
datasets acquired by 4 satellites show the effectiveness of 
UTSN in standard and few-shot pan-sharpening cases. To the 
best of our knowledge, this is the first time that few-shot 
learning is considered for pan-sharpening. The contributions of 
the proposed UTSN can be summarized as follows: 

1) A unified framework is constructed to leverage all data 
from different satellites together for the learning of the network. 
In the framework, SEN is trained on the mixed dataset and is 
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shared among different satellites. We establish SEN to inject 
spatial details from the PAN image into the LR MS image level 
by level. To avoid the excessive injection of spatial information, 
the differences between the feature maps from different layers 
are added into LR MS images to preserve the subtle details in 
the fused image. Satellite-specific SAN then is used to adjust 
the spectral information in the result of SEN. 

2) The proposed UTSN can be easily extended to the fusion 
of LR MS and PAN from a new unseen satellite when the 
training data of this satellite is insufficient or few-shot. 
Specifically, the new satellite shares the same SEN with other 
satellites for the enhancement of spatial details. Then, a 
satellite-specific SAN is trained for this new satellite on its 
few-shot dataset owing to the lightweight model and simple 
structure of SAN. 

The remainder of the paper is organized as follows. In 
Section II, we present the proposed UTSN in terms of SEN, 
SAN, and loss functions. Section III demonstrates quantitative 
and qualitative results on different datasets. Finally, the 
conclusion is detailed in Section IV. 

II. RELATED WORK 
Due to the decent performance, pan-sharpening has attracted 

a great deal of attention and many pan-sharpening methods 
have been proposed [8]-[9], which can be mainly classified into 
four groups: 1) component substitution (CS) based methods, 2) 
multiresolution analysis (MRA) based methods, 3) degradation 
model (DM) based methods, and 4) DL-based methods. They 
are introduced successively in Sections II.A-II.D. Besides, 
Section II.E gives some methods related to transfer learning to 
present its development in remote sensing fields. 

A. CS-Based Methods 
For CS-based pan-sharpening methods, many transformation 

methods are considered to divide the interpolated LR MS image 
into spatial and spectral components. Then, the spatial 
component is substituted by the histogram-matched PAN 
image. For example, intensity-hue-saturation (IHS) [10] was 
usually used for the extraction of the intensity component. In 
principal component analysis (PCA) [11], the spatial 
component of the LR MS image was modeled by the first 
principal component. It is obvious that the quality of the fusion 
result will be better if the spatial component of the LR MS 
image is highly correlated with the corresponding PAN image. 
However, it is difficult for these transformations to separate the 
spatial and spectral information in the LR MS image accurately. 
A nonlinear version of IHS [12] was extended to synthesize the 
intensity component in local and global ways, which can reduce 
the spectral distortions in the fused image. Shahdoosti et al. [13] 
applied PCA to spatial and spectral domains for better 
information preservation. CS-based methods are simple and 
easy to carry out. But their fusion results often suffer from 
spectral distortions. 

B. MRA-Based Methods 
For the second kind of method, many MRA tools are utilized 

to extract the spatial details from the PAN image, because these 

details are missing in the LR MS image. For instance, Shah et al. 
[14] used contourlets to capture the discontinuities of the spatial 
structures in the PAN image. Xing et al. [15] constructed a 
series of multiscale geometric support tensor filters, which 
focused on the analysis of the directional information in spatial 
details. Besides, injection gains also have important influences 
on the fusion result. So, Restaino et al. [16] estimated more 
accurate injection gains to alleviate the spectral distortions in 
the fused image. In [17], robust regression was combined with 
the generalized Laplacian pyramid (GLP), and then different 
injection coefficients were computed for each cluster. 
Compared to the methods based on CS, MRA-based methods 
have a good ability to preserve spectral information, but some 
dissimilar artifacts may appear in the fusion result owing to the 
mismatched filters in spatial details. 

C. DM-Based Methods 
The DM-based methods assume that the spatial and spectral 

degradation results of the HR MS image are LR MS and PAN 
images, respectively. Therefore, the fusion result can be 
obtained by solving the degradation models [18]. Inspired by 
the image restoration task, a wide range of priors are imposed to 
regularize the solution space of the degradation models. Li et al. 
[19] first embedded the degradation models into the 
compressed sensing framework, where the sparsity was used 
decently to obtain better solutions. In [20], the relationships 
between LR MS and HR MS images were rewritten as the 
formulation of robust PCA [21], and the correlation among the 
bands of the MS image was characterized by low-rank 
properties. Subsequently, Zhang et al. [22] took the low-rank 
and sparse priors into account together to produce the fused 
image. In addition, other priors, such as non-negativity [23] and 
consistency priors [24], are also utilized in the third kind of 
method. Although these methods can enhance the spatial and 
spectral information in the fused images well, their 
computational complexity is non-negligible, which results from 
the iterative optimization algorithms. 

D. DL-Based Methods 
During the past several years, DL-based pan-sharpening 

methods have been greatly boosted due to the powerful learning 
capabilities of deep neural networks [25]. Masi et al. [26] first 
employed a convolution neural network (CNN) to cope with the 
pan-sharpening task and the network is dubbed as PNN. Then, 
an extended version of PNN was developed in [27] to improve 
the quality of the fused image. Wei et al. [28] introduced 
residual learning [29] into CNN to increase the depth of the 
network and then the fusion result is further enhanced owing to 
the high nonlinearity of the network. Wang et al. [30] presented 
a locally linear embedding residual network to exploit the 
geometric relationships in images. Moreover, Shao et al. [31] 
incorporated residual learning and generative adversarial 
network (GAN) [32] to enrich the spatial details in the fused 
image. GAN was also considered in [33] and different 
architectures were evaluated to obtain the desired HR MS 
image. Diao et al. [34] proposed a zero-reference GAN, which 
can fuse the LR MS and PAN images without training in 
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advance. Deng et al. [35] explored the combinations of CNN 
and the schemes of CS- and MRA-based methods. Wang et al. 
[36] constructed a high-pass modification block to enrich the 
spatial details in LR MS images more efficiently. Following the 
concept of image super-resolution (SR), Cai et al. [37] 
proposed a progressive fusion approach, which consisted of SR, 
pan-sharpening, and residual modules. An elaborate network 
was constructed in [38] to fuse PAN and LR MS images, in 
which a saliency cascade network was used to distinguish the 
regions with different textures. A dilated deformable CNN was 
equipped in this method to promote the receptive fields. 
Besides, Qu et al. [39] presented an unsupervised 
pan-sharpening network to reduce the demand for the HR MS 
image, where the spatial details and gains were calculated by a 
self-attention network. A multiscale dense network [40] was 
designed to extract the spatial and spectral information, in 
which the concatenated multiscale blocks captured the subtle 
features in LR MS and PAN images. Besides, more advanced 
networks, such as transformer [41]-[43], are also applied to this 
field. The methods above-mentioned produce good fusion 
results, but they train specific models for different datasets or 
integrate all datasets for training. The formulations lead to 
repetitive training or the neglect of spectral response 
differences between different satellites. To efficiently use all 
datasets and consider the spectral responses of different 
satellites, we built UTSN, in which SEN is trained on the mixed 
dataset and SANs corresponding to different satellites are 
designed for spectral adjustment. 

E. Transfer Learning 
The proposed UTSN can achieve simultaneous training of all 

data from different satellites owing to the introduction of SANs. 
Besides, we can extend the proposed UTSN to the dataset from 
the new unseen satellite only by sharing the same SEN with 
other existing satellite datasets and training a corresponding 
SAN on a few-shot dataset. Thus, it can be viewed as a new 
satellite-specific SAN constructed for further adaption to the 
data from the new satellite. To the best of our knowledge, the 
proposed UTSN is the first attempt to consider integrated 
training on all data from different satellites and few-shot 
learning on limited data for better generalization. According to 
the formulation, the proposed UTSN belongs to transfer 
learning. Researchers have so far not considered transfer 
learning in the pan-sharpening field. But transfer learning has 
been applied to other remote sensing fields. For example, Wang 
et al. [44] designed an adaptive learning strategy, which 
transfers the knowledge from a pre-trained model for the 
classification of remote sensing scenes. Ma et al. [45] 
introduced dual-branch attention into transfer learning to 
alleviate the issues of inter- and intra-class differences. Besides, 
transfer learning is also used for the classification of targets or 
pixels in images [46]-[47]. 

III. PROPOSED METHOD  
In this section, we introduce the proposed UTSN method and 

reformulate the training problem on the mixed dataset 

according to the proposed framework. Then, the architectures 
of SEN and SAN are described in detail. 

A. Overall Framework 
As introduced in Section I, we utilize a shared SEN to 

enhance the spatial details in the fusion image, and then use the 
satellite-specific SAN to adjust the spectral information in the 
intermediate image. The framework is presented in Fig. 3, 
where k is the index of the satellite sensor. K  is the number of 
all considered satellite sensors. For images to be fused from 
different satellites, SEN is considered to merge the spatial 
information in LR MS and PAN images. Then, the output of 
SEN is further refined by SAN to adapt to the specific 
properties of the considered satellite sensor. 

GeoEye-1

QuickBird

WorldView-4

SEN

SAN 1

SAN 2

SAN K

LR MS images PAN images

LR MS images PAN images

PAN imagesLR MS images

... ...

...

Fused images

Fused images

Fused images

QuickBird

GeoEye-1

WorldView-4

...SAN k

 
Fig. 3. Illustration of the framework of the proposed UTSN. 

According to the description in Fig. 3, the training task of the 
proposed UTSN can be formulated as: 

{ }

( )( )
0 1 2

0 1 2
, , ,...,

0 1 2
1 1

, , ,..., arg min

, , ; , , ,...,

K

k

K

NK
k k k
n n n K

k n
L f

θ θ θ θ
θ θ θ θ

θ θ θ θ
= =

=

= ∑∑ R L P




         (1) 

where 0θ  is the parameter of SEN. kθ  stands for the 

parameters of SAN for the kth satellite sensor. k
nL  and k

nP  are 
the nth pair of LR MS and PAN images from the kth satellite. 

k
nR  is the corresponding HR MS image. The number of 

training images from each satellite is denoted as kN . ( )f ⋅  
represents the mapping of UTSN. Compared with existing 
methods that learn independent models for different satellites, 
the parameters in the proposed framework can be jointly 
learned by minimizing the loss function  . 

B. SEN 
In UTSN, SEN is mainly responsible for the enhancement of 

spatial details in the fused images. To inject enough spatial 
details from PAN images, their feature maps can be directly 
combined with those of LR MS images. However, this would 
lead to local dissimilarities in the fused image [48]. Moreover, 
some spatial details may be injected repeatedly into the feature 
maps of the LR MS image. This would cause spatial artifacts in 
the fused images. 

We build SEN to enhance the spatial information of LR MS 
images, as shown in Fig.4. In SEN, the up-sampled LR MS and 
PAN images are concatenated together to reconstruct the fused 
image by CNN 1. CNN 1 is composed of seven convolution 
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layers in which the filter size is 3 3×  with stride 1. In the first 
six layers, convolution and ReLU are regarded as the basic 
convolution block. The last layer of CNN 1 contains four filters 
with a size of 3 3× . The number of filters in the last layer is 
equal to the number of bands in the MS image. Moreover, dense 
connections are introduced into CNN 1. Through dense 
connections, the feature maps from shallow layers are 
introduced into deep layers for the preservation of spatial 

information in the fused images. Batch normalization (BN) 
often used in DL-based methods is removed in the proposed 
SEN to improve its generalization ability [49]. As shown in Fig. 
1, we expect spectral differences for the images from different 
satellites. BN tends to normalize the images from different 
satellites into the same distribution, which will degrade the 
fusion performance of SEN. 
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Fig. 4. Architecture of the proposed SEN. 

In addition, we employ another CNN 2 with a similar 
architecture to focus on the extraction of spatial details in the 
PAN image. Then, these spatial details are injected into CNN 1 
for the spatial enhancement of the fused image. To avoid 
excessive injection of spatial details from the PAN image, we 
devise the injection connections shown in Fig. 4 as the link 
between the two CNNs. The subtraction among feature maps 
from different layers is introduced into SEN. As shown in Fig. 
4, injection connections for the ith layer can be written as: 

i i iM D T= −                                (2) 
where iM  denotes the features that will be injected into the ith 
layer of CNN 1. iD  is the output of the ith layer of CNN 2. 

1

1

i

i q
q

T D
−

=

= ∑  is the sum of feature maps from the 1st to the i-1th 

layers in CNN 2. For the injection in the first layer, 1T  will be 
zero. Through injection connections, the injected information at 
previous layers can be removed from the feature maps at the 
following layers. Then, spatial details in the fused image are 
enhanced well and the subtle structures in the fusion result are 
also preserved. Moreover, the spectral information of the LR 
MS image is also retained because only fine details are added to 
the feature maps for the reconstruction of the fused image. 

SEN is a common network and thus is trained by the mixed 
dataset from all satellites. So, the shared SEN can be learned 
by: 

( )( )
0

0 0 0
1 1

arg min , , ;
kNK

k k k
n n n

k n
L f

θ
θ θ

= =

= ∑∑ R L P              (3) 

where the mapping of SEN is denoted by ( )0f ⋅  and 0θ  stands 
for the parameters of the mapping. Since most of the parameters 

of the proposed UTSN are concentrated in SEN, the feature 
extraction capability of SEN will be more powerful by 
leveraging on all data. Besides, all data from different satellites 
are integrated for the training of SEN. Although the data from 
different satellites have distinct spatial resolutions, the patch 
recurrence property demonstrates that spatial patterns in images 
tend to recur many times at different scales [50]-[51]. Moreover, 
the spatial information of small-scale targets in HR images also 
can be learned from large-scale ones in LR images. Thus, we 
use the mixed dataset containing the data from different 
satellites for the training of SEN. 

C. SAN 
SAN aims to adjust the spectral information of the result of 

SEN. For a specific satellite, SAN is trained to capture the 
spectral information of the MS image. SANs for different 
satellites share the same architecture shown in Fig. 5. Generally, 
MS images from different satellites have diverse spectral 
properties, which depend on the spectral responses of imaging 
sensors. For MS images, the spectral information is highly 
correlated to the dependencies or correlations among bands, 
which can be reflected by the relationships [52]. Thus, we 
introduce the attention mechanism [53] into the 
specific-satellite SAN to capture the correlations among the 
bands of the MS image. In Fig. 5, a global average pooling 
(GAP) is implemented on the feature map along the channel 
dimension to obtain a vector. Then, fully connected layers (FC) 
are considered to learn the interdependency of all elements in 
the vector. Finally, the interdependency learned from the vector 
is combined with each channel in the feature map. Through the 
channel attention module, the spectral information of MS 
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images is captured in feature space. Then, SAN for the kth 
satellite is trained by: 

( )( )
1

arg min , ;
k

k

N
k k

k n k n k
n

L f
θ

θ θ
=

= ∑ R H                 (4) 

where k
nH  is the output of SEN whose corresponding inputs are 

k
nL  and k

nP . ( )kf ⋅  is the mapping of the kth SAN with 

parameter kθ . Through SAN, we can obtain a spectral 

adjustment mask. The mask is then multiplied with k
nH  

element-by-element to generate the final fusion result k
nF : 

k k k
n n n=F S H                                 (5) 

where k
nS  is the spectral adjustment mask. Despite the simple 

architecture of SAN, the nonlinear relationships among the 
bands of the MS image are extracted efficiently. Due to the 
lightweight structure, SAN can be trained on a limited amount 
of data to deal with the few-shot case. Specifically, only a 
relatively few pairs of LR MS and PAN images are needed to 
train a specific SAN for a given satellite. Then, the shared SEN 
trained on the datasets from other satellites is used to produce 
the inputs of the specific SAN. This reduces the cost for the 
collection of a large number of image pairs. 

3×3 C
onv (32)

3×3 C
onv (4)

G
A

P

FC

Sigm
oid

FC

R
eLU

: Channel-wise multiplication : Element-wise multiplication 

channel attention module

Fig. 5. Architecture of proposed SAN. 

D. Loss Function 

In the proposed UTSN, we train the model with L2-norm, and 
the total loss is formulated as: 

2 2

1 1

kNK
k k k k k
n n n n nF F

k n= =

= − + −∑∑ H R S H R              (6) 

With the joint training of SEN and SAN, the spatial and spectral 
information for the dataset from each satellite can be learned 
efficiently. Finally, the fused image can be obtained by (7) for 
the nth image pair from the kth satellite. 

( )( )0 ,k k k
n k n nf f=F L P                      (7) 

IV. EXPERIMENTAL RESULTS 
In this section, we evaluate the proposed UTSN using 

reduced-scale and full-scale datasets. First, we validate the 
effectiveness of the proposed method on three reduced-scale 
datasets. Then, fusion experiments are conducted on the three 
full-scale datasets to compare the performance of all methods. 
The compared methods are modulation transfer function (MTF) 
-GLP with context-based decision (MTF-GLP-CBD) [54], 
Gram-Schmidt (GS) [55], low-rank pan-sharpening (LRP) [20], 

pan-sharpening network (PanNet) [56], CNN-based 
pan-sharpening (PNN) [26], two-stream fusion network (TFNet) 
[57], GAN-based pan-sharpening (PSGAN) [33], GAN with 
multiple discriminators (M-GAN) [3], and gradient projection 
based pan-sharpening neural network (GPPNN) [4]. The first 
three methods are classified as traditional methods, while the 
latter methods are based on DL. 

In the reduced-scale experiments, the results of all methods 
are assessed quantitatively by five reference-based metrics, 
such as Q4, SAM, universal image quality index (UIQI) [58], 
root mean squared error (RMSE), and ERGAS. Q4 and UIQI 
vary from 0 and 1. A larger Q4 or UIQI means better fusion 
performance. For SAM, RMSE, and ERGAS, their optimal 
value is 0, and smaller values imply an accurate reconstruction 
of the fused image. In addition, three no-reference metrics, Dλ , 

SD , and quality w/no reference (QNR) [59], are considered to 
evaluate the results in the full-scale experiments. Dλ  and SD  
measure the spectral and spatial distortions of the fused image, 
respectively. QNR is a global metric, whose best value is 1. 

Moreover, few-shot experiments are analyzed on the dataset 
of the Pléiades satellite that is not included in the satellite data 
used for the former experiments. Finally, ablation studies and 
network analysis are also introduced to provide a 
comprehensive evaluation of the proposed UTSN. 

A. Datasets and Design of Experiments 
For the training of the proposed UTSN, we build different 

datasets from three satellites, including QuickBird1, GeoEye-12, 
and WorldView-42. For these satellites, the acquired MS 
images are made up of four bands. Table I reports detailed 
information on these datasets. The ground sample distance 
(GSD) varies from 0.31m to 0.64m for different datasets. The 
sizes of PAN and LR MS images are 256 256×  and 64 64× , 
respectively. The PAN and LR MS image pairs for training are 
synthesized according to Wald’s protocol [7]. The original 
PAN and MS images are down-sampled to produce the 
reduced-scale counterparts with a factor of r. Here, the 
down-sample ratio is generally 4. Then, the original MS image 
is viewed as the reference image for the supervised training. 80% 
and 10% of data are selected from each satellite dataset for the 
composition of the mixed training and validation datasets of 
SEN, respectively. For the training and validation of SAN, a 
satellite-specific dataset is considered by choosing the 
corresponding image pairs from the mixed training dataset and 
validation dataset. Then, the remaining data are prepared for the 
test. For testing at full scale, each satellite dataset contains 15 
LR MS and PAN image pairs without reference images. Fusion 
experiments are conducted on reduced-scale and full-scale 
datasets. For the full-scale experiment, the model trained on the 
reduced-scale dataset is directly employed to fuse LR MS and 
PAN images at full scale because there are no reference images 
for training in the full-scale dataset. 

 
1 http://glcf.umiacs.umd.edu/data/quickbird/ 
2 https://resources.maxar.com/product-samples 
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TABLE I. DETAILS OF THE THREE CONSIDERED DATASETS. 

Dataset Number of 
image pairs 

Spatial resolution 
of the PAN image 

Spatial resolution 
of the LR MS image Time Location 

QuickBird 250 0.64 m GSD at nadir 2.56 m GSD at nadir Sept. 30, 2008 Xi’an, China 
GeoEye-1 302 0.46 m GSD at nadir 1.84 m GSD at nadir Feb. 24, 2009 Hobart, Australia 

WorldView-4 202 0.31 m GSD at nadir 1.24 m GSD at nadir Apr. 5, 2017 Acapulco, Mexico 
The DL-based methods compared in the section are trained 

on the three datasets from different satellites independently to 
produce better fusion results. So, each DL-based method has to 
be trained three times. For the proposed UTSN, the datasets 
from three satellites are collaboratively integrated as a mixed 
dataset for the training of SEN, and then the mixed dataset is 
divided to learn satellite-specific SANs. Traditional methods 
are executed on a computer with an Intel Core i7-6700 
processor, 3.4 GHz, and 16G memory by MATLAB R2017a. 
The training and test of all DL-based methods are performed on 
the same device with one NVIDIA 2080Ti GPU by PyTorch. 
The settings of compared methods based on DL are derived 
from their literature recommendations. For the proposed UTSN, 
the learning rate is set as 0.0002. We use Adam optimizer [60] 
to train the model for 800 epochs with batch size 4. For the 
few-shot experiment, the number of epochs for a specific SAN 
is 500. 

B. Experiments on Reduced-Scale Datasets 
In this section, the experiments are conducted on the 

reduced-scale LRMS and PAN images from three satellites. Fig. 
6 shows the fusion results of all methods on the GeoEye-1 
dataset. We selected interesting regions from the fused images 
and magnified them for further visual analysis. Fig 6 also 
presents absolute error maps among the fused images and the 
reference image. From Fig. 6, we can see that the spatial details 

of the GS result in Fig. 6(e) are over-enhanced because the 
PAN image is regarded as the new spatial component directly. 
The result of LRP in Fig. 6(f) suffers from spectral distortions, 
especially in the vegetation area, which may result from the 
estimation error of the spectral degradation model in LRP. For 
the results of DL-based methods, spectral information is 
preserved well. But some spatial distortions appear in the result 
of PNN in Fig. 6(h) due to its simple architecture. Moreover, 
slight spectral distortions are found in the magnified region of 
the PSGAN result in Fig. 6(j). Obvious spectral distortions can 
be found in Fig. 6(k), which may be caused by the excessive 
constraint of the spectral loss. Compared with other results, the 
fused image derived by the proposed UTSN in Fig. 6(m) is 
better in terms of both spatial and spectral information. 
Moreover, from the absolute error maps of traditional methods 
in Fig. 6, one can see that there are larger reconstruction errors. 
DL-based methods have better reconstruction performance than 
other methods and the absolute errors of the proposed method 
are smaller than those of other methods. Table II lists the 
average evaluations of all methods on the simulated GeoEye-1 
dataset and the best values are labeled in bold. From the table, 
we can observe that the proposed UTSN provides the best 
values in terms of Q4, UIQI, RMSE, and ERGAS. The best 
SAM is produced by TFNet and the second-best SAM value is 
from our proposed UTSN. 

(g)(a) (b) (c) (d) (e) (f)

(h) (i) (j) (m)(l)(k)

 
Fig. 6. Qualitative comparison of the fused images from different methods on the GeoEye-1 dataset. (a) LR MS image; (b) PAN image; (c) Reference image; (d) 

MTF-GLP-CBD; (e) GS; (f) LRP; (g) PanNet; (h) PNN; (i) TFNet; (j) PSGAN; (k) M-GAN; (l) GPPNN; (m) Proposed UTSN. 
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The fusion results on the WorldView-4 dataset are displayed 
in Fig. 7. Similarly, Fig. 7 also demonstrates magnified regions 
and absolute error maps of the fused images for direct visual 
perception. From Fig. 7(d), spectral distortions can be observed 
in the result of MTF-GLP-CBD. The color of the vegetation 
areas in Fig. 7(d) is unnatural, which may be caused by the 
improper context division. Similarly, the spectral information 
of the vegetation areas in the result of LRP is distorted. For the 
PanNet result, the texture information of the tree areas is not 
consistent with that of the reference image. The reason for this 
is that the spatial details learned by PanNet are distorted. 

Results of other DL-based methods better preserve the spectral 
feature, and the fused image of the proposed method is closer to 
the reference image in terms of reconstruction precision. 
Moreover, the absolute error maps exhibit a similar trend. The 
absolute errors of MTF-GLP-CBD and GS are obvious. PNN, 
TFNet, PSGAN, and the proposed UTSN perform better in the 
vegetation regions but produce larger differences in the edges 
of road regions. When compared with other methods, the 
absolute errors of UTSN are closer to 0. The numerical metrics 
are reported in Table III. It shows that the proposed UTSN 
produces the best values for all metrics. 

TABLE II. QUANTITATIVE EVALUATIONS ON GEOEYE-1 DATASET 

Metric MTF-GLP 
-CBD GS LRP PanNet PNN TFNet PSGAN M-GAN GPPNN Proposed 

UTSN 
Q4 0.8048 0.7672 0.7435 0.7983 0.8186 0.8271 0.8186 0.8026 0.8073 0.8274 

SAM 4.7013 4.6604 5.3090 6.1171 3.1198 2.7926 3.3697 4.5152 4.0189 2.8076 
UIQI 0.9527 0.9404 0.9101 0.9533 0.9789 0.9825 0.9751 0.9538 0.9692 0.9837 

RMSE 25.4749 24.9112 49.7777 36.3701 16.5597 14.9036 18.2434 24.0138 19.7152 14.2591 
ERGAS 1.6543 1.6064 3.2810 2.3642 1.0688 0.9676 1.1850 1.5532 1.2790 0.9274 

(b)(a) (c) (d) (e) (f) (g)

(h) (i) (j) (m)(l)(k)

 
Fig. 7. Qualitative comparison of the fused images from different methods on the WorldView-4 dataset. (a) LR MS image; (b) PAN image; (c) Reference image; (d) 

MTF-GLP-CBD; (e) GS; (f) LRP; (g) PanNet; (h) PNN; (i) TFNet; (j) PSGAN; (k) M-GAN; (l) GPPNN; (m) Proposed UTSN. 

TABLE III. QUANTITATIVE EVALUATIONS ON WORLDVIEW-4 DATASET 

Metric MTF-GLP 
-CBD GS LRP PanNet PNN TFNet PSGAN M-GAN GPPNN Proposed 

UTSN 
Q4 0.8289 0.7953 0.8009 0.8677 0.8723 0.8767 0.8679 0.8679 0.8472 0.8795 

SAM 4.1402 3.9265 4.4397 4.9550 3.0100 3.0589 3.2032 3.3853 3.8474 2.7910 
UIQI 0.9414 0.9325 0.9332 0.9588 0.9646 0.9655 0.9639 0.9577 0.9452 0.9722 

RMSE 55.3963 54.8852 68.6143 53.5092 41.7399 42.2686 43.4857 47.0192 54.0462 37.7357 
ERGAS 1.9345 1.8790 2.3565 1.7376 1.3988 1.4233 1.4409 1.6086 1.7837 1.2640 

 
Fig. 8 shows the fusion results of all considered methods on 

an urban area in the QuickBird dataset. We also show the 
interesting regions and absolute error maps in Fig. 8. The edges 

of some objects are distorted in the results of MTF-GLP-CBD, 
GS, and LRP. For instance, we can see that the spatial details 
are lost in the magnified regions of Figs. 8(d)-(f). Moreover, 
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spectral distortions appear in the result of GS because the 
spatial component synthesized by GS is not matched with the 
PAN image. For the result of PNN in Fig. 8(h), some blurring 
effects can be seen. The performance of PNN may be 
constrained by the shallow structure of the network. Compared 
with the reference image, slight spectral differences can be seen 
in the TFNet result. Moreover, M-GAN produces some spectral 
distortions in its result. The result of GPPNN in Fig. 8(l) suffers 
from some spatial blurring effects, especially in the enlarged 
area. The result of the proposed UTSN in Fig. 8(m) shows that 
the spatial and spectral information in the fused image is more 

similar to that of the reference image in Fig. 8(c). From the 
absolute error maps, one can see that larger errors tend to 
appear on the edges of building areas for all methods. This is 
because sharp variations in these areas make accurate 
reconstruction more difficult. Moreover, the absolute error map 
of the proposed UTSN is more similar to that of the reference 
image. For the quantitative assessments, Table VI shows that 
the proposed UTSN achieves the best values, which reflects the 
high fidelity of the fused image in terms of spatial and spectral 
features. 

(b)(a) (c) (d) (e) (f) (g)

(h) (i) (j) (m)(l)(k)

 
Fig. 8. Qualitative comparison of the fused images from different methods on the QuickBird dataset. (a) LR MS image; (b) PAN image; (c) Reference image; (d) 

MTF-GLP-CBD; (e) GS; (f) LRP; (g) PanNet; (h) PNN; (i) TFNet; (j) PSGAN; (k) M-GAN; (l) GPPNN; (m) Proposed UTSN. 

TABLE IV. QUANTITATIVE EVALUATIONS ON QUICKBIRD DATASET 

Metric MTF-GLP 
-CBD GS LRP PanNet PNN TFNet PSGAN M-GAN GPPNN Proposed 

UTSN 
Q4 0.9039 0.8970 0.9145 0.9428 0.9465 0.9468 0.9491 0.9402 0.9373 0.9496 

SAM 2.8042 2.7874 3.0420 2.9874 1.8703 2.0373 1.6968 2.5240 2.2680 1.6823 
UIQI 0.9484 0.9367 0.9411 0.9794 0.9852 0.9829 0.9873 0.9705 0.9765 0.9882 

RMSE 32.1656 29.9777 30.7646 29.0654 15.6712 16.9283 15.1797 22.9652 19.7050 15.1373 
ERGAS 1.5182 1.4043 1.4209 1.4293 0.7281 0.7867 0.7053 1.0561 0.9179 0.7041 

C. Experiments on Full-Scale Datasets 
In this section, we analyze the fusion results of all methods 

on the full-scale LRMS and PAN images from three satellites. 
Fig. 9 demonstrates the fusion results of all methods on the 
GeoEye-1 dataset. Compared with the LRMS image in Fig. 9(a), 
the fused images of all compared methods provide abundant 
spatial details. However, we can observe some spectral 
distortions from the MTF-GLP-CBD and LRP results in Figs. 
9(c) and 9(e). Moreover, some noise can be seen from the 
zoomed regions in Figs. 9(c) and 9(e). Similarly, the result of 
PSGAN in Fig. 9(i) is affected by the noise and its color 
information is not consistent with that of other fused images. 

Some spatial details are blurred in the PanNet result. The 
spectral information in the PNN result is also distorted because 
of the limited capacities of nonlinear learning. In addition, 
some spatial artifacts are observed from the result of GPPNN in 
Fig. 9(k), especially in the enlarged region. Compared with 
other methods, the result of the proposed UTSN method is 
superior in terms of spectral information, which reflects the 
better performance of SAN. For the values of the no-reference 
metrics in Table V, the proposed method obtains the best Dλ  
and QNR. Moreover, the difference between the proposed 
UTSN and PSGAN in terms of SD  is small. 
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Fig. 10 displays the fused images obtained by the compared 
methods on the WorldView-4 dataset. Some blurring effects 
can be observed in the results of MTF-GLP-CBD and LRP in 
Figs. 10(c) and 10(e). Obvious spectral distortions arise in the 
result of PNN in Fig. 10(g), which may be caused by the 
shallow architecture of PNN. We can find some spatial effects 
in the magnified areas of the fused images of TFNet and 
PSGAN. Particularly, the spatial information is sharply 
distorted in the building areas of Fig. 10(i). In the selected 
region of Fig. 10(k), we can find that the spatial information is 

destroyed, which may result from improper unfolding. 
Compared with other methods, one can see that our proposed 
UTSN better preserves the spatial structures in both smooth and 
edge areas. The corresponding quantitative results are reported 
in Table VI. Compared with other DL-based methods, The Dλ  
value of the proposed method is also close to its best 
counterpart. The best SD  and QNR are from M-GAN, but the 
values of the two metrices the proposed UTSN are close to 
those of M-GAN. 

(a) (b) (f)(c) (d) (e)

(g) (h) (i) (l)(k)(j)  
Fig. 9. Qualitative comparison of the fused images from different methods on the GeoEye-1 dataset. (a) LR MS image; (b) PAN image; (c) MTF-GLP-CBD; (d) GS; 

(e) LRP; (f) PanNet; (g) PNN; (h) TFNet; (i) PSGAN; (j) M-GAN; (k) GPPNN; (l) Proposed UTSN. 

TABLE V. QUANTITATIVE EVALUATIONS ON GEOEYE-1 DATASET 

Metric MTF-GLP 
-CBD GS LRP PanNet PNN TFNet PSGAN M-GAN GPPNN Proposed 

UTSN 
Dλ

 0.1495 0.0845 0.0869 0.0644 0.0824 0.0769 0.0936 0.1308 0.0924 0.0609 

SD  0.0755 0.0560 0.0930 0.0436 0.0447 0.0377 0.0396 0.0656 0.0468 0.0385 
QNR 0.7864 0.8642 0.8282 0.8949 0.8767 0.8883 0.8707 0.8124 0.8653 0.9030 

(a) (b) (d)

(h)

(c) (e) (f)

(g) (i) (l)(k)(j)  
Fig. 10. Qualitative comparison of the fused images from different methods on the WorldView-4 dataset. (a) LR MS image; (b) PAN image; (c) MTF-GLP-CBD; 

(d) GS; (e) LRP; (f) PanNet; (g) PNN; (h) TFNet; (i) PSGAN; (j) M-GAN; (k) GPPNN; (l) Proposed UTSN. 

TABLE VI. QUANTITATIVE EVALUATIONS ON WORLDVIEW-4 DATASET 

Metric MTF-GLP 
-CBD GS LRP PanNet PNN TFNet PSGAN M-GAN GPPNN Proposed 

UTSN 
Dλ

 0.1036 0.1090 0.1156 0.1020 0.1017 0.0725 0.0748 0.0774 0.0931 0.0715 

SD  0.1312 0.1280 0.1337 0.1643 0.0872 0.0829 0.1066 0.0657 0.0774 0.0911 
QNR 0.7793 0.7774 0.7668 0.7532 0.8205 0.8511 0.8275 0.8623 0.8366 0.8446 

 
The fusion results of the QuickBird dataset are reported in 

Fig. 11. In the source images used in Fig. 11, there are some 
vegetation and road areas. The results of MTF-GLP-CBD and 
GS in Figs. 11(c)-(d) show that the spectral features of 
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vegetation areas are distorted. The results of TFNet and 
PSGAN have inferior performance on the color of road areas, 
which is unnatural and not consistent with that in Fig. 11(a). 
Besides, some spatial artifacts are introduced into the result of 
PSGAN, especially in the car areas. These artifacts may result 
from the misalignment in the feature domain. For the result of 
M-GAN in Fig. 11(j), a performance similar to Fig. 8(k) is 

found, and some spectral distortions arise. The fusion result of 
the proposed UTSN in Fig. 11(l) shows a better performance in 
terms of spatial details. Table VII reports the full-scale 
quantitative metrics. The proposed method behaves better in 
terms of SD  and QNR, while the value of Dλ  is very close to 
the best value from PSGAN. 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (l)(k)(j)  
Fig. 11. Qualitative comparison of the fused images from different methods on the QuickBird dataset. (a) LR MS image; (b) PAN image; (c) MTF-GLP-CBD; (d) 

GS; (e) LRP; (f) PanNet; (g) PNN; (h) TFNet; (i) PSGAN; (j) M-GAN; (k) GPPNN; (l) Proposed UTSN. 
TABLE VII. QUANTITATIVE EVALUATIONS ON QUICKBIRD DATASET 

Metric MTF-GLP 
-CBD GS LRP PanNet PNN TFNet PSGAN M-GAN GPPNN Proposed 

UTSN 
Dλ

 0.0888 0.0842 0.1357 0.0632 0.0707 0.0636 0.0599 0.0856 0.0711 0.0686 

SD  0.0597 0.0996 0.1568 0.0441 0.0385 0.0714 0.0911 0.0541 0.0556 0.0363 
QNR 0.8593 0.8267 0.7317 0.8964 0.8950 0.8696 0.8547 0.8668 0.8790 0.8975 

 
D. Visualization of Intermediate Results 

(a) (c)(b)  
Fig. 12. Visualization of intermediate results. (a) Absolute error map of the 
result of SEN; (b) the absolute error map of the result of UTSN; (c) Spectral 

adjustment mask k
nS . 

In this section, we use the images in Figs. 8(a) and 8(b) from 
the QuickBird dataset as an example to validate the effect of 
SAN. In Fig. 12(a), the absolute error map is derived from the 
difference between the output of SEN and the reference image 
in Fig. 8(c). Fig. 12(b) shows the absolute error map of the 
output of UTSN, which is exactly the difference map between 
the fused image in Fig. 8(k) and the reference image in Fig. 8(c). 
Compared with the error map in Fig.12(a), we can see that the 
reconstruction errors in Fig. 12(b) are smaller through the 
spectral adjustment of SAN. Moreover, the spectral adjustment 
mask k

nS  is also displayed in Fig. 12(c). We can see that the 
adjustment values in Fig. 12(c) are close to 1. Thus, the result of 
SEN is refined by the spectral adjustment mask from SAN. 

E. Few-shot Case 
In this section, the experiments are conducted to validate the 

effectiveness of the proposed UTSN in few-shot cases. We use 
the Pléiades dataset3 as the few-shot test dataset. The Pléiades 
dataset is captured from Melbourne, Australia. In the few-shot 
case, only few pairs of LRMS and PAN images from the 
Pléiades dataset are collected. Thus, the SEN trained on the 
other satellites listed in Table I is shared with the Pléiades 
satellite. Then, a new satellite-specific SAN is introduced after 
training on the few-shot dataset of the Pléiades satellite. SAN is 
light-weighted and can be trained well on the limited dataset. 
Specifically, we set the number of few-shot image pairs from 
the Pléiades dataset I as 1, 2, 10, and 15 for the validation of the 
proposed UTSN. Then, I pairs of LRMS and PAN images are 
employed to learn a specific SAN for the Pléiades satellite. For 
the test, the LRMS and PAN images from the Pléiades satellite 
are first fed into the SEN trained on the mixed dataset from the 
three existing satellites. The result of SEN is then refined by the 
SAN of the Pléiades satellite. Besides, for a more 
comprehensive comparison, we also train the DL-based 
methods mentioned above on the few-shot dataset of the 
Pléiades satellite. Here, 15 image pairs are used for the training 
of these DL-based methods. 

The reduced-scale fusion results from the Pléiades dataset 
are shown in Fig. 13. From Fig. 13, we can find that DL-based 
 
3 https://earth.esa.int/eogateway/catalog/pleiades-esa-archive 
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methods trained on the limited dataset cannot fuse LR MS and 
PAN images well. Their results suffer from some blurring 
effects and spectral losses. For the proposed UTSN, we only 
train the satellite-specific SAN in the few-shot case using I 
pairs of LRMS and PAN images from the Pléiades satellite. 
One can see that the proposed UTSN can produce comparable 
fusion results with only one shot (I=1) when compared with 
other DL-based methods. Moreover, with more training images, 
the proposed UTSN can produce more abundant spatial details 
in the fused images. Table VIII provides the objective 
evaluations, which are consistent with the analysis in Fig. 13. 
Although DL-based methods trained on 15 image pairs can 
produce plausible results, they cannot be trained sufficiently, 
which limits their performance. Because of the lightweight 
model, SAN is trained better and produces better fusion results. 

Fig. 14 illustrates the fusion results of all methods on the 
full-scale Pléiades dataset. From Fig. 14(i), it can be found that 
serious spectral distortions occur when LR MS and PAN 
images are directly fused by SEN trained on the mixed dataset 
from other satellites. This is due to the differences between the 
spectral responses of different satellites. However, it should be 
noted that SEN can enhance the spatial details of LR MS 
images efficiently although the data from the Pléiades satellite 
dataset is not used for the training of SEN. Therefore, SEN can 
deal with images from different spatial resolutions. After 
training a new SAN on the few-shot dataset from the Pléiades 
satellite, the spectral information in Fig. 14(i) is adjusted to the 
characteristics of the Pléiades satellite. The results in Table IX 
show that the QNR value of the proposed UTSN increases by 
increasing the number of training images. The spectral metric 
decreases first and then increases by increasing I. 

(l) (m) (n)(j)

(c)

(k)

(a) (b) (d) (e) (f) (g)

(h) (i)  
Fig. 13. Qualitative comparison of the fused images on the few-shot Pléiades dataset. (a) LR MS image; (b) PAN image; (c) Reference image; (d) PanNet; (e) PNN; 

(f) TFNet; (g) PSGAN; (h) M-GAN; (i) GPPNN; (j) SEN; (k) I=1; (l) I=2; (m) I=10; (n) I=15. 
TABLE VIII. QUANTITATIVE EVALUATIONS IN THE FEW-SHOT CASE ON THE PLÉIADES DATASET 

Metric PanNet PNN TFNet PSGAN M-GAN GPPNN SEN I=1 I=2 I=10 I=15 

Q4 0.8783 0.9138 0.9110 0.9178 0.9144 0.9107 0.8484 0.9186 0.9194 0.9177 0.9198 
SAM 6.4638 5.0016 4.6051 4.5950 4.7643 5.6569 8.3811 4.4392 4.3567 4.6836 4.5481 

UIQI 0.9667 0.9647 0.9734 0.9734 0.9761 0.9700 0.8958 0.9755 0.9742 0.9753 0.9769 
RMSE 42.8475 44.4884 36.8599 37.1269 36.8489 39.6629 80.8292 35.8874 36.8174 35.9082 34.5568 

ERGAS 1.9259 1.9010 1.5618 1.6379 1.6037 1.6881 3.4995 1.5421 1.5756 1.5486 1.4864 

(a) (b)

(l) (m)(i) (k)(j)

(c) (d) (e) (f) (g)

(h)  
Fig. 14. Qualitative comparison of the fused images on the few-shot Pléiades dataset. (a) LR MS image; (b) PAN image; (c) PanNet; (d) PNN; (e) TFNet; (f) 

PSGAN; (g) M-GAN; (h) GPPNN; (i) SEN; (j) I=1; (k) I=2; (l) I=10; (m) I=15. 
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TABLE IX. QUANTITATIVE EVALUATIONS IN THE FEW-SHOT CASE ON PLÉIADES DATASET 
Metric PanNet PNN TFNet PSGAN M-GAN GPPNN SEN I=1 I=2 I=10 I=15 

Dλ  0.0453 0.0473 0.0624 0.0525 0.0119 0.0260 0.0674 0.0252 0.0243 0.0239 0.0277 

SD  0.0443 0.0321 0.0149 0.0114 0.0547 0.0561 0.0575 0.0355 0.0358 0.0357 0.0308 

QNR 0.9125 0.9221 0.9236 0.9367 0.9340 0.9194 0.8790 0.9402 0.9408 0.9412 0.9423 

(c) (d) (e) (f) (g)(a) (b)

 

Fig. 15. Ablation study of the contribution of different modules. (a) LR MS image; (b) PAN image; (c) Reference image; (d) w/o dense connections; (e) w/o 
injection connections; (f) w/o channel attention module; (g) complete UTSN. 

(c) (d) (e) (g)(f)(a) (b)

 
Fig. 16. Influence of the number of basic convolution blocks in SEN. (a) LR MS image; (b) PAN image; (c) Reference image; (d) J=3; (e) J=4; (f) J=5; (g) J=6 

(UTSN). 

F. Ablation Study 

In this section, the ablation study is carried out on the 
QuickBird dataset to assess the effectiveness of different 
modules in the proposed UTSN. Specifically, we remove dense 
connections, injection connections, and the channel attention 
module from the proposed UTSN. Fig. 15 displays the fusion 
results of different configurations. The absolute error maps 
between the reference image and the fused images are also 
given in the second row of Fig. 15. From the figure, we can see 
that the ablation results are similar. However, we can observe 
that the reconstruction errors are smaller from the second row 
of Fig. 15 when dense connections, injection connections, and 
the channel attention module are introduced into the proposed 
UTSN. The numerical differences are given in Table X. When 
dense or injection connections are removed, the spatial details 
in the fused image cannot be enhanced well. Without the 
channel attention module, the spectral information in the fused 
image is degraded. The complete UTSN improves the 
quantitative performance is improved with the introduction of 
different modules, which verify the effectiveness of these 
modules. 

TABLE X. QUANTITATIVE EVALUATIONS OF ABLATION STUDY ON 
QUICKBIRD DATASET 

Metric w/o dense 
connections 

w/o 
injection 

connections 

w/o channel 
attention 
module 

complete 
UTSN 

Q4 0.9474 0.9474 0.9468 0.9496 
SAM 1.9952 1.8187 1.8058 1.6823 
UIQI 0.9847 0.9857 0.9856 0.9882 

RMSE 16.0677 15.4793 15.3956 15.1373 
ERGAS 0.7420 0.7185 0.7148 0.7041 

G. Investigation on Network Architecture 
In this section, we analyze the influence on the fusion results 

of the number of basic convolution blocks J in SEN. Fig. 16 
illustrates the fusion results and absolute error maps of different 
blocks on the GeoEye-1 dataset. One can see that by increasing 
J, the fusion results in Fig. 16 become clearer and the spectral 
information is better preserved. The reconstruction errors are 
also reduced because a deeper network means better 
capabilities of nonlinear approximation. Table XI shows that 
the quantitative metrics become better with larger J. Although 
the proposed UTSN with more basic convolution blocks 
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produces better fusion results, the increasing parameters and 
computational complexity cannot be ignored. Thus, we use 
SEN with 6 basic convolution blocks to achieve the fusion of 
LRMS and PAN images. 
TABLE XI. INFLUENCES OF THE NUMBER OF BASIC CONVOLUTION BLOCKS 

ON GEOEYE-1 DATASET 
Metric J=3 J=4 J=5 J=6 

Q4 0.8228 0.8264 0.8270 0.8274 
SAM 3.2252 2.8440 2.8348 2.8076 
UIQI 0.9795 0.9830 0.9832 0.9837 

RMSE 16.3050 14.6045 14.5208 14.2591 

ERGAS 1.0581 0.9485 0.9433 0.9274 

H. Model Size and Complexity 

Table XI reports the model size of all DL-based 
pan-sharpening methods mentioned above. It can be observed 
that the model sizes of PanNet and PNN are smaller than that of 
the proposed UTSN. However, the pan-sharpening 
performance of the proposed UTSN is better than those of the 
PanNet and the PNN. Compared with other methods, the TFNet 
and the PSGAN contain more parameters to be trained. 
Sufficient data have to be collected for the training of these 

models. For the proposed UTSN, the model is composed of 
SEN and SAN. However, most of the parameters of UTSN are 
from SEN which is trained on the mixed dataset from all 
satellites. Only the SAN parameters are learned from the 
satellite-specific dataset. From Fig. 5, we can find that the 
structure of SAN is simple and only two convolution layers and 
two FC layers contain learnable parameters. Only 3412 
parameters are induced in SAN. Because of the small model 
size, the training of SAM can be achieved on the few-shot 
datasets, which improves the flexibility and generalization of 
the proposed UTSN. 

Table XIII lists the training time and test time of all 
DL-based methods. From Table XIII, we can find that the 
training time of our proposed UTSN is longer than that of other 
methods. However, it should be noted that the proposed UTSN 
is trained on the integrated dataset including all datasets 
reported in Table I. For compared DL-based methods, they are 
trained three times independently on the three datasets in Table 
I. Therefore, the training time of our method is less than the 
total time of other DL-based methods, such as M-GAN and 
GPPNN, on the three datasets. Thanks to the formulation of 
UTSN, the datasets from different satellites can be integrated 
for training. 

TABLE XII. MODEL SIZES OF DL-BASED PAN-SHARPENING METHODS. 

Method PanNet PNN TFNet PSGAN M-GAN GPPNN 
Proposed 

UTSN 
SEN SAN 

#Para. 0.15M 0.08M 2.36M 2.62M 15M 0.12M 0.25M 3412 

TABLE XIII. TRAINING TIME AND TEST TIME OF DL-BASED PAN-SHARPENING METHODS. 
Dataset  Time PanNet PNN TFNet PSGAN M-GAN GPPNN Proposed UTSN 

QuickBird Training (h) 23.58 13.87 14.15 30.99 33.85 38.49 
96.43 GeoEye-1 Training (h) 28.37 13.92 14.76 31.63 34.11 36.85 

WorldView-4 Training (h) 26.07 13.94 14.75 31.89 33.82 28.15 
QuickBird Test (s) 1.31 0.35 0.87 0.66 0.77 0.98 1.03 
GeoEye-1 Test (s) 1.42 0.44 0.88 0.72 0.82 1.01 1.11 

WorldView-4 Test (s) 1.84 0.52 0.89 0.78 0.81 1.12 1.09 
 

V. CONCLUSIONS  
Deep neural networks can boost the pan-sharpening 

performance efficiently. However, for obtaining satisfying 
results, they have to be trained on satellite-specific datasets 
repetitively, which requires a large amount of data. In this paper, 
we have proposed a unified framework to leverage the data 
from different satellites collaboratively for pan-sharpening. 
Specifically, the data from different satellites are employed to 
train a shared SEN, which is designed to enrich the spatial 
details of the fused image. Then, a specific SAN is trained for 
each satellite to capture the spectral information in MS images. 
Equipped by the shared SEN and satellite-specific SAN, the 
proposed UTSN produces better fusion results than other 
DL-based methods. Moreover, the experimental results also 
demonstrate that in the few-shot case, the proposed UTSN can 
adapt to a new satellite with only a few, (e.g., 15), pairs of 
LRMS and PAN images. In the proposed work, we only 
consider the satellites collecting 4-band MS images. The 

proposed UTSN cannot be trained on an integrated dataset 
including 4-band MS images and 8-band MS images because 
the numbers of bands in MS images are not equal. For example, 
WorldView-2 and WorldView-4 provide 8-band MS images 
and 4-band MS images, respectively. So, the datasets from the 
two satellites cannot be combined into a mixed dataset. For 
future work, we will consider more efficient networks to 
integrate 4-band MS images and 8-band MS images for 
training. 
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