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Abstract

Obesity is a major risk factor for multiple common chronic diseases. The

prevalence in European countries is high and a significant public health con-

cern. This thesis aims to explore the obesity landscape in the Cooperative

Health Research in South Tyrol (CHRIS) study. The first step was to charac-

terise the obese CHRIS population, taking into account the established body

mass index (BMI) classification from the World Health Organization (WHO)

and looking at metabolically healthy and unhealthy obesity. We investigated

the familial aggregation of these traits. We identified several families with

significant familial aggregation and observed varying degrees of overlap for

these traits in different families. The focus was then on implementing and ap-

plying a Genome-Wide Polygenic Score for obese participants. These scores

were computed for individuals based on the presence of different genetic

variants weighted according to their measured effects in genome-wide associ-

ation studies (GWAS). We then paid attention to the targeted metabolomics

data of the CHRIS study, to identify different serum metabolites associated

with metabolically healthy/unhealthy obesity, using logistic regression and

random forest methods to explore metabolic signatures to distinguish obe-

sity into metabolically healthy and metabolically unhealthy obesity. Several
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biomarkers were shown to be related to obesity, many of which confirmed by

existing evidence (such as BCAAs, tyrosine, and lysophosphatidylcholines).
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Chapter 1

Background

1.1 Introduction

A worldwide increase in the obesity prevalence of obesity is currently a major

concern, as overweight and obesity are known risk factors for multiple chronic

diseases and obesity is associated with all-cause mortality. Many of the causes

of overweight and obesity are preventable and reversible [1].

The EUREGIO Environment, Food Health (EUREGIO-EFH) initiative

has established a local partnership of the neighbouring regions of Trentino

and Alto Adige in Italy, and Tyrol in Austria, bringing together local strengths

in the fields of biomedicine, nutrition and food chemistry to address these

challenges. In this context, the goal of this thesis was to contribute to the ini-

tiative by exploring the obesity landscape in the region, based on data avail-

able from the CHRIS study. Considerable phenotypic variation is observed

among obese individuals, resulting in different health outcomes. We further

stratified obese individuals into metabolically healthy and unhealthy cate-
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gories and investigated familial aggregation (Chapter 2 ). We implemented

genomic-based methods to predict individuals at risk within the local pop-

ulation based on the CHRIS resource data (Chapter 3 ). With the recent

advent of precision medicine, clinical metabolomics is in the spotlight due to

its ability to provide molecular phenotyping of biofluids, cells or tissues. In

this context, metabolomics is increasingly being applied to diagnose disease

and understand disease mechanisms [2]. We investigated the metabolomic

markers associated with obesity and metabolic healthy and unhealthy obese

(Chapter 4 ), as we had the largest single-site targeted metabolomics data

sets.

1.2 The CHRIS study

The Cooperative Health Research in South Tyrol (CHRIS) study is a population-

based study taking place in the Val Venosta [3] (see Figure 1.1). The target

population is relatively stable, with low residential mobility across genera-

tions and with homogeneous lifestyle and environmental conditions [3].

The study started in 2011 and the first phase was completed in 2018 [3].

In 2015, the study had 5 000 participants (CHRIS II), while in 2017 there

were 10 518 participants (CHRIS III), increasing to 13 393 participants by

the end of the first phase in 2018 (CHRIS baseline). The adult subjects

were subjected to a core assessment protocol including an interview, self-

administered questionnaires, blood and urine sampling, anthropometry, and

ECG and blood pressure measurement, over an approximate duration of three

hours [3]. Over the course of ten years, more than 40% of the adult population
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in the target municipalities participated in the CHRIS study. The scientific

objective of the CHRIS study is to investigate the molecular and genetic

basis of common chronic conditions and their interaction with lifestyle and

environmental factors. The study is expected to enhance the development of

more effective approaches to disease prevention and early diagnosis [3].

As a prospective study, CHRIS research collected data about large fami-

lies’ clinical variables, medical histories, lifestyles (such as diet, physical ac-

tivity, exposure to cigarette smoke, etc.) as well as genomic and metabolomic

data from biobank samples, to determine if some of the afore mentioned fac-

tors, alone or combined with genetic background, can explain the causes,

severity or protection against some diseases.

1.3 Obesity

In order to determine how far an individual’s body weight varies from what

is normal or desirable for a person of the same height, the most commonly

used method is the body mass index (BMI), which is calculated by dividing

the body weight in kilograms by the square of the person’s height in meters

(kg/m2) [4]. The BMI provides a straightforward, inexpensive and useful

measure of overweight and obesity [5], however it offers no detailed insight

into body fat distribution or composition [6]. The association between body

composition and sex and age is well established. For instance, women tend to

store more fat subcutaneously than in the form of visceral adipose tissue [7]

and will tend to carry more body fat than men at the same BMI [8]. Other

common anthropometric measures of adiposity are waist and hip measure-
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Figure 1.1: The Val Venosta region with all the municipalities involved in
the CHRIS study
Reference source: From Pattaro et al. The Cooperative Health Research in South

Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J Transl Med.

2015;13: 348.

ments. The proportion of abdominal fat correlates with waist circumference

and waist-to-hip ratio (WHR) [9, 10]. WHR is a simple and convenient

way to estimate body fat distribution in epidemiological studies. WHR does

not distinguish between accumulations of deep abdominal (visceral) fat and

subcutaneous abdominal fat but is moderately associated with the amount

of abdominal visceral adipose tissue [11]. Bio-electrical impedance analysis

(BIA) can also establish body composition, with analysis of parameters in-

cluding fat mass content by running a small electrical current through the

body. Although BIA is simple and does not require special operator skills

or substantial patient involvement [12], it has some limits in terms of va-

12



lidity, especially as regards the hydration factor [13]. There is a relatively

high amount of extracellular water and total body water in obese individuals,

which may lead to overestimation of fat-free mass and underestimation of fat

mass [14].

Since people with excess visceral fat are at higher risk of obesity-related

diseases such as hypertension, type 2-diabetes and insulin resistance than

those with excess subcutaneous fat [15], more direct measures of fat dis-

tribution and composition are valuable. Dual-energy X-ray absorptiometry

(DXA) provides estimates on fat and lean mass in the whole body or in spe-

cific body segments [16], and imaging methods such as magnetic resonance

imaging (MRI) enable separate quantification of both visceral and subcu-

taneous adipose tissue [17]. These measures of body fat are more reliable

but not easy to collect in population studies, as they require considerable re-

sources as well as dedicated medical imaging facilities and staff. So, although

BMI cannot differentiate between fat and muscle weight associated with fat,

it provides the most useful population-level measure [18] and is an easy way

to assess relative weight, also being used in the definition of obesity by the

World Health Organization (WHO) [19]. The WHO classification of adult

underweight, overweight, and obesity based on BMI (see Table 1.1) are the

established reference standard.

The risk of unfavourable health outcomes for a slightly overweight indi-

vidual gradually and seriously increases with further weight gain, i.e. the

more overweight the individual is, the higher the likelihood of unfavourable

health conditions [20, 21].

The effects of obesity can be felt in almost every part of the body, and

13



Table 1.1: WHO BMI classification

Classification BMI (kg/m2)

Underweight < 18.50
Normal range 18.5 - 24.99
Overweight 25.00 - 29.99

Obese ≥ 30

the health effects related to obesity have been classified by WHO into four

major categories: cardiovascular problems (including hypertension, stroke,

and coronary heart disease); conditions associated with insulin resistance

(such as diabetes mellitus); certain types of cancer (particularly hormonally

related and large bowel cancer); and gallbladder disease [22, 23]. In addition

to body weight, the location of body fat, the degree of weight gain during

adulthood, and physical inactivity are factors that contribute to these adverse

health consequences.

The current obesity epidemic is to a large extent the result of complex

interplay between genetic, behavioural and environmental factors, includ-

ing economic growth, modernisation, urbanisation and, most importantly,

changes in lifestyle [24] with greater consumption of energy-dense and ultra-

processed foods and at the same time, decreased physical activity [25].

Changing unhealthy lifestyles can reduce the chances of developing over-

weight or obesity [26] but risk factors such as a person’s age (the risk of

unhealthy weight gain increases with age), family history or genetics, ethnic-

ity (overweight and obesity are highly prevalent in some ethnic groups), and

gender cannot be changed.

Obesity is usually associated with metabolic disorders and cardiometabolic
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diseases [27]. Nevertheless, not all obese people have metabolic complica-

tions, raising the question of whether metabolically healthy obese individuals

are a unique subgroup of people with obesity [28]. Metabolically healthy obe-

sity (MHO) has been characterised as the absence of components in metabolic

syndrome, such as insulin resistance, hypertension and an unfavourable in-

flammatory profile [29]; while metabolically unhealthy obesity (MUO) has

been associated with greater visceral abdominal fat, higher insulin levels and

lower baseline high-density lipoprotein cholesterol [30]. The prevalence of

MHO is currently in question [31, 32] and is even debatable [33]. MHO has

recently been found to have prognostic value in predicting coronary heart

disease, but a study shows that MHO individuals are still at higher risk

of coronary heart disease, cerebrovascular disease, and heart failure than

normal-weight metabolism-healthy individuals [33]. Weight loss intervention

may not improve cardiovascular risk in MHO individuals [34], a finding with

implications for obesity management.

Obesity, however, results from complex interactions between multiple

genes and environmental factors such as physical activity, socioeconomic sta-

tus, parent feeding behaviour, and diet. For this reason, obesity is mainly

considered as a multi-factorial disease [35].

1.3.1 The genetics of obesity

Heritability studies provide strong evidence of a genetic contribution to obe-

sity susceptibility [36], indeed fact obesity is influenced by hundreds of poly-

morphisms, each of which has a small impact [37].

The finding of common genetic variants associated with obesity and its
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traits accelerated significantly thanks to Genome-Wide Association Study

(GWAS) in 2007 [38]. GWAS explores associations between genetic vari-

ants across the genome, usually single nucleotide polymorphisms (SNPs),

and phenotypes using DNA microarrays 1. Therefore, GWAS examines the

association between a wide range of SNPs across the whole genome without

making assumptions about which genes or regions are likely to be associated

with the phenotype.

The fat mass and obesity-associated gene (FTO) has been identified as

an important locus harbouring common variants, with a clear impact on

obesity predisposition and fat mass at population level [39]. Furthermore,

FTO is highly expressed in the hypothalamus [40, 41] and controls appetite

and energy expenditure. More specifically, hypothalamic neurons alter their

own activities or those of their downstream targets in response to hormonal

and nutrient signals [42]. Moreover, glucose metabolism in the hypothalamus

plays a critical role in regulating food intake, energy expenditure, and carbo-

hydrates and lipid metabolism [43, 44]. Researchers have found that in obese

individuals, hypothalamic responses to glucose stimulation are lessened, sup-

porting the importance of hypothalamic glucose sensing in regulating energy

homeostasis [45].

1.3.2 Heritability of obesity

A population’s heritability is the proportion of the variation in a given trait

within a population that is not explained by the environment or random

chance. Studies of large families, twins, and adoptions enable an assessment

1DNA microarrays commonly detect SNPs, to analyse the DNA of thousands of people.
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of heritability and detect a strong genetic component in obesity (between

40 and 70 percent) [36]. Higher estimates of heritability for BMI between

mother-child pairs than between father-child pairs suggest that the uterine

environment of the mother may modify the genetic predisposition to obesity

in offspring [46]. As a result of maternal weight gain during pregnancy and

genetic factors, young children may develop obesity as adults [47]. Further-

more, genetic influences on obesity may also interact with sex and age. There

are genetic factors that affect obesity differently in men and women [48]. An

individual’s heritability estimate increases from infancy to childhood [49],

from childhood to preadolescence [50], and from preadolescence to adoles-

cence [51], reaching a plateau during adolescence and adulthood. In late

adulthood, however, it decreases slightly [52]. It is noteworthy that some

forms of obesity can also display a somewhat variable phenotype [53]. Gene-

gene interactions, mode of inheritance, and genetic heterogeneity can also be

linked to obesity phenotypic variability [54], as well as interactions with en-

vironmental factors [55]. Indeed, lifestyle factors such as stopping smoking,

sleep duration/quality, and psychosocial stress can significantly modify the

impact of obesity predisposition [56].

1.3.3 Metabolomics and obesity

Omics research is currently exploring how genetic effects on phenotype are

filtered through the metabolome, with metabolomics approaches playing a

valuable role in bridging the gap between genotype and phenotype. This can

be a powerful tool in informed decision-making and preventative healthcare

because metabolites play a key role as modulators of biological processes [57].
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For this reason, we also focused our attention on investigating the metabolomic

profiles of obese and metabolically healthy/unhealthy obese participants in

the CHRIS study. Characterisation of the metabolites associated with obe-

sity and metabolically healthy/unhealthy obesity can provide an insight into

the mechanisms that lead to this disease and its associated consequences,

as metabolomics indeed provides a better understanding of the molecular

events that control body weight [58]. Human serum metabolomics in partic-

ular can be used to discriminate the metabolic fingerprint of obese individuals

who are metabolically unhealthy, compared to metabolically healthy individ-

uals [59], as this fingerprint allows characterisation of the metabolism and

exposure [60].

There are numerous metabolites in the human metabolome. This makes

profiling them difficult due to the chemical diversity, abundance, and range

of concentration, so different methods have been developed for metabolite

profiling [61]. There are essentially two kinds of approaches: untargeted

screens that are discovery-oriented and profile thousands of chemical fea-

tures in a wide range of compounds for relative quantification, or targeted

approaches focusing on absolute quantification of specific compounds, hav-

ing the advantage of increased sensitivity and selectivity [62]. Some aspects

of these methods differ, such as sample preparation, experimental precision,

data interpretation, quantification level (relative or absolute), and metabo-

lites detected [63]. The metabolic changes associated with obesity have been

the subject of numerous reports and reviews both in humans and animals in

the last decade [64], and most of these reviews report the results of targeted

analyses based on LC-MS assay platforms (e.g., Biocrates, Metabolon) [65].
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Furthermore, the identification of metabolites associated with obesity can

provide an opportunity to gain new insight into metabolic profiling and

pathophysiological mechanisms [66]. Branched-chain amino acids (BCAAs),

including leucine (Leu), isoleucine (Ile), and valine (Val), are crucial for en-

ergy homeostasis, nutrition metabolism and gut health, immunity and dis-

ease [67]. These amino acids are associated with obesity, although changes in

acylcarnitine and phospholipid levels have also been detected in obese sub-

jects [60]. Metabolomics, especially when combined with multiple detection

technologies or using a multi-omics approach, is a valuable tool for exploring

obesity as well as metabolically healthy and unhealthy obesity. As a result of

metabolomic analysis, we have increased our knowledge of various metabolic

processes, such as how the metabolic network is affected by obesity. In

metabolomics, however, dietary influences are a major issue, which we have

taken into account by relating changes in biologically significant metabolites

to obesity. Despite fasting before serum collection, the metabolic profile can

be strongly affected by diet, particularly by energy metabolism and glucose

utilization [60]. Metabolic analysis thus provides insightful information about

the underlying processes in cells, disease, and consequently health. Studying

the metabolome provides a better understanding of the underlying biology at

all levels, from cellular to organismal level, by exploring the dynamics of cell

response to internal and external perturbation. This information can be used

to identify biomarkers and biological pathways that are active or inactive in

states of disease or health [68, 69].
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1.4 Data analysis strategies

Machine learning methods represent a powerful set of algorithms capable of

characterising, adapting, learning, predicting and analyzing data [70] thus

amplifying our understanding of obesity, metabolically healthy obesity and

metabolically unhealthy obesity and our capacity to identify metabolites as-

sociated with it. In our study, the focus was on the identification of metabo-

lites related to obesity and the prediction of obesity sub-types based on

metabolomic signatures using logistic regression models and random for-

est classifiers. The random forest algorithm has been widely adopted as a

biomarker detection tool in a wide range of studies related to metabolomics [71,

72] especially for estimates of variable importance for classification, due to

resilience to high dimensionality and generally good performance in compar-

ison to other approaches.

Prediction categories

Linear regression is the simplest and most widely used statistical tech-

nique for predictive modelling analysis. It is used to assess the relationship

between a continuous dependent variable and one or more independent vari-

ables [73]. The overall goal of linear regression is to find the line that best fits

the data points, to accurately predict output. If there are more than two in-

dependent variables in the model, it is then called multiple linear regression.

The form of linear regression equation is exemplified by formula 1.1.

y = a0 + a1x1 + ... (1.1)
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where y is the dependent variable, x1 is the independent variable, a1 is

the slope of the line, which can be positive or negative depending on the

relationship between the dependent and independent variables, and a0 is the

y-intercept [74].

Logistic regression is a method used to predict a dependent variable, given

a set of independent variables, so that the dependent variable is categorical

(0/1) [75] and it functions in very similar way to linear regression. When

analysing classification problems, this method is useful to determine whether

a new sample fits best into a given category [74]. The form of the linear

logistic equation is exemplified by formula 1.2, with output p between 0 and

1 for all values of independent variable x.

p =
1

1 + e−(a0+a1x)
(1.2)

Random forest is a classification algorithm consisting of many decision

trees and it is used in classification and regression problems [76]. Decision

trees seek to find the best split to subset the data, and they are typically

trained through the Classification and Regression Tree (CART) algorithm 2.

Based on the predictions of decision trees, the random forest algorithm cal-

culates the outcome chosen by the majority of decision trees avoiding the

limitations of decision trees and minimising over-fitting by increasing accu-

racy [77].

The random forest algorithm is often used in regression as well as in clas-

sification because it can handle data sets that contain continuous variables,

2The CART algorithm split the nodes by searching for the best homogeneity for subn-
odes, with the help of the Gini Index criterion.
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as in the case of regression, and categorical variables, as in the case of classi-

fication and it can handle non-linear parameters efficiently to provide better

accuracy [78].

The ROC (Receiver Operating Characteristic) curve and the AUC (Area

Under The Curve) 3 are used to assess model classification performance, while

the mean decrease in Gini coefficient is used to measure feature importance4.

Random forest allowed us to determine the most important predictors across

the explanatory variables by generating 100 decision trees and ranking the

variables by importance.

3AUC takes values from 0 to 1. An AUC of 0.5 suggests no discrimination between
classes, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more
than 0.9 is considered outstanding [79].

4The higher the value of the mean decrease Gini score, the higher the importance of
the variable in the model.
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Chapter 2

Obesity in the CHRIS study

2.1 Introduction

The aim of this chapter is to investigate obesity in the CHRIS baseline of

13 388 participants (this number refers to the participant data analysed).

The main focus was on evaluation of the quality of anthropometry data. In

the medical literature, we found only one paper published in 2012 [80] in

which weight was adjusted based on the average weight of the participants’

clothing. Based on this work we wondered whether our data were affected by

seasonality bias, due to the fact that CHRIS study participants were asked

to take off only their outerwear and shoes to collect anthropometry data.

More specifically, we investigated whether BMI was associated with ex-

ternal temperature or not (in this case adjusting the BMI for seasonality).

The purpose of data quality checks is to identify and fix bias or at least to

minimise its impact on the results of a study [81].

Another aim of this chapter was to investigate familial predisposition to
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obesity [82] in the CHRIS population, because this may be of great value

for better understanding obesity aetiology, supporting approaches to predict

outcomes and developing more effective preventive or therapeutic strategies.

2.2 Materials and methods

2.2.1 Anthropometry data

In the CHRIS study, four body composition measures were collected: body

weight, body fat percentage, visceral fat and BMI derived from weight and

height. Measurements were taken using an Omron BF508 1 monitor with

an accuracy of 0.1 kg. All measurements were taken once by trained nurses

or study assistants.

2.2.2 Effect of season on body weight

To verify if the seasonality of clothing weight affected BMI measurement,

we plotted the BMI of each participant for every week in each year that

the CHRIS study recruited participants, to investigate fluctuations in BMI,

also evaluating average BMI and the average for participants over each week.

Analysis of seasonality was carried out on CHRIS release III, made up of

10 517 participants, because at the time of analysis CHRIS follow-up had

not been completed, so we analysed data from 2011 to 2017.

As outside temperatures could affect the weight of participants’ clothes

and consequently BMI measurement, a linear model was applied to investi-

1Body composition was measured using bioimpedance.
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gate the significant effects of temperature on BMI.

Information regarding the temperature in Silandro 2 on the days when

the participants visited the CHRIS centre was not available in our database,

but could be downloaded from the province of Bolzano website 3, also pro-

viding the following information, recorded every 10 minutes: place where

the temperature was taken; date on which the temperature was taken; time

when the temperature was detected (from 00:00 am to 23:50 pm each day);

outside temperature 4.

2.2.3 Obesity in the CHRIS study

We analysed BMI data from the 13 388 adults who participated in the CHRIS

study. Women who were pregnant at the time of the interview, suspected to

be pregnant, or who did not provide information on pregnancy status were

excluded from the analysis. In total, we analysed 13 240 individuals.

In the CHRIS study, we classified the BMI of participants according to

the WHO classification (see Table 2.1).

Some of the CHRIS study participants with obesity seemed to be pro-

tected from many of the adverse metabolic effects of excess body fat and

were therefore considered to be metabolically healthy. Since metabolically

healthy obesity does not have a universally accepted definition, its preva-

lence varies widely in different studies. It has also been debated whether

metabolically healthy obesity (MHO) can be useful for prognosis or not,

2A small town with 6 256 inhabitants in the province of Bolzano.
3http://dati.retecivica.bz.it/it/dataset/misure-meteo-e-idrografiche/

resource/8cc47a38-1a93-47bf-871d-07b49dce56d0
4Outside temperature was measured in Celsius.
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Table 2.1: BMI classification in CHRIS according to WHO criteria

Classification BMI (kg/m2) Number of in-
dividuals

Percentage of
individuals

Underweight < 18.50 207 1.56%
Normal range 18.5 - 24.99 6234 47.08%
Overweight 25.00 - 29.99 4556 34.41%

Obese ≥ 30 2243 16.94%

mainly because it is likely to shift gradually towards metabolically unhealthy

obesity (MUO) [83]. We used the NCEP ATP III [84] definition to define

metabolically healthy/unhealthy obesity because it is consistent with the

data available from CHRIS participants, namely decreased HDL-cholesterol,

diagnosis of cardiovascular disease, diagnosis for peripheral vascular diseases,

high blood pressure, elevated triglyceride and elevated blood glucose. The

definition of metabolically healthy or unhealthy is almost the same for males

and females. The only difference concerns the high-density lipoprotein (HDL)

cholesterol levels considered unhealthy, lower for males (less than 40mg/dl),

and higher for females (50 mg/dl) (see Table 2.2).

We considered obesity and the presence of at least one of the six conditions

in defining MUO. When defining MHO it is necessary to be careful about

how to deal with missing values. Participants for whom we did not have any

information about the criteria we used to define MHO were excluded from

the analysis, so the people we considered to be MHO were those who had all

variables in a healthy range and did not have any missing values.

Given the many serious health problems associated with obesity, studying

the phenotype of healthy/unhealthy obesity may provide new insights into
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Table 2.2: MUO individuals, defined as having a BMI ≥ 30 and ≥ 1 of the
listed conditions. All individuals with a BMI ≥ 30 who were not MUO were
considered to be MHO, but only if the listed conditions could be assessed
(no missing data)

MUO Criteria

Decreased
HDL-cholesterol

(sex Male and (HDL < 40 mg/dL or medi-
cation for blood lipids)) or (sex Female and
(HDL < 50 mg/dL or medication for blood
lipids))

Diagnosis for
cardiovascular

diseases

stroke or transient ischemic attack or is-
chemic heart disease or atrial fibrillation

Diagnosis for
peripheral

vascular diseases

claudication or peripheral arterial disease or
pulmonary embolus or blood clots in the
lungs or treatment for blood clots in the legs
called deep thrombosis or DVT

Blood pressure SBP ≥ 140 mmHg or DBP ≥ 90 mmHg or
medication for hypertension or medication
for high blood pressure

Elevated TGs triglycerides ≥ 150 mg/dL or lipid modify-
ing agents

Elevated blood
glucose

glucose ≥ 126 mg/dL or diabetes med-
ication or diabetes mellitus or glycated
haemoglobin ≥ 48 mmol/mol

the pathophysiology of obesity-related comorbidities and help identify obese

individuals at risk [85].
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2.2.4 Familial aggregation of obesity in the CHRIS

study

To analyse the familial clustering of phenotypes in CHRIS families, we used

an R/Bioconductor package, FamAgg package [86], to examine whether CHRIS

participants with obesity or MHO/MUO aggregated within clusters of close

relatives 5. Of the 13 388 CHRIS baseline participants, we used 12 398 phe-

notyped individuals included in reconstructed families for the analysis. The

families also included relatives of these CHRIS participants, with 24 173 in-

dividuals in total.

Pairwise relatedness was expressed as family-based kinship coefficient.

According to the definition of obesity [19], we identified 2082 cases in the

familial aggregation analysis. Similarly, 11 062 unaffected participants served

as controls, and after removing 724 singletons and 22 opt-outs from the

analysis in the control group, we ended up with 10 316 controls and 2 082

cases linked by 11 708 unphenotyped individuals.

The kinship sum can quantitatively identify individuals with a signifi-

cantly large number of affected individuals related by common ancestry [86,

87]. The empirical p-value for affected cases was adjusted using the Benjamini-

Hochberg test for multiple hypothesis testing and the false discovery rate was

set to 0.05, while to examine familiarity we plotted the results using Hap-

loPainter software v.1.043 [88]. The summary table provides an overview of

the composition of families with significant familial aggregation of obesity in

the CHRIS baseline. Family pedigree charts are commonly used to visualize

5Dr. Christian Weichenberger performed the familial aggregation analysis and collected
the results.
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the distribution of traits in families, but they can be problematic in terms

of safeguarding the privacy of the participants and their relatives, especially

if individuals are annotated with a visible trait like obesity. To describe

families with familiar aggregation, instead of the standard pedigree charts, a

summary table of each family has been provided to protect individual privacy.

2.2.5 GWAS of BMI

In most cases of human obesity, no single genetic cause can be identified [89].

To understand the genes and biological pathways that influence obesity in

the CHRIS population study and to help expand our understanding of the

biological processes underlying obesity, we performed a GWAS of BMI and

compared the results with existing information in the literature to support

candidate genes.

Genotyping data 6

In genotyping, the DNA sequence, the so-called genotype, is determined at

specific positions in the genome of an individual [90]. Sequence variations

in population samples identified through genotyping can be used as markers

in linkage and association studies to identify genes that may be relevant for

certain traits or diseases. Depending on the number of samples, the number

of genotypes to be tested, and the amount of sample material available, there

are a variety of approaches to SNP genotyping.

The CHRIS 10K genotype data covers 10 518 individuals, and was first

6Genotype data was first collected by the CHRIS study team, while quality control and
imputation were conducted by the Computational Genomics group led by Dr. Christian
Fuchsberger.
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collected with Illumina Human OmniExpressExon and Omni2.5Exome [91]

chip arrays in two batches covering 612 000 variants.

Following quality control, the two genotype datasets were merged and

imputed according to the TOPMed-r2 panel [92]. The TOPMed-r2 panel

is based on 97 256 reference samples with high-quality whole-genome se-

quence data in GRCh38 and consists of 308 107 085 genetic variants dis-

tributed across the 22 autosomal chromosomes. Imputation was conducted

using Michigan Imputation Server technology [93] which provides a web-

based service for imputation that facilitates access to imputation reference

panels [93]. GWAS of BMI was performed using EPACTS (Efficient and

Parallelizable association Container Toolbox) [94] software.

2.3 Results

2.3.1 Effect of season on body weight

Average BMI was consistent over the weeks and years, indicating that the

potential seasonal effects of clothing weight did not have a significant im-

pact on measured weight, otherwise we would have recorded considerable

differences, especially from winter to summer (see Figure 2.1).

The CHRIS study work programme started between 7:45 and 8:30 am,

so our participants’ clothing was influenced by the temperature outside. To

simplify the data, we took into account the temperature in Silandro between

6:00 and 8:00 am, which was the approximate period during which the partic-

ipants left home to go to the CHRIS study centre, and calculated the average.

This information was used as an independent variable in the linear model. In
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Figure 2.1: Weekly BMI for the years in which the CHRIS study was carried
out (data are taken from CHRIS release III)
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addition to temperature, we used sex and age as independent variables and

BMI as a dependent variable, as exemplified by the following formula 2.1:

BodyMassIndex ∼ meanTemperature+ age+ sex. (2.1)

The significance of the relationships was estimated with a t-statistic, and

a p-value below 0.05 was deemed significant. In our model the p-values

for the intercept, sex and age were extremely small (p-value < 2e-16***)

therefore significant, so the outcome suggests that sex and age are strongly

associated with BMI, while temperature is not. This model also underlines

that age and sex are factors that should be considered when dealing with

health, because they are key determinants significantly influencing health-

care-seeking behaviour [95].

2.3.2 Obesity in the CHRIS study

We observed a conspicuous number of overweight and obese individuals (see

Table 2.1). These numbers are in good agreement with previous European

population reports [85], where the percentage of obesity varied between 6%

and 20% [96].

The analysis was repeated, stratifying BMI by age group: 18-30; 30-40;

40-50; 50-60; ≥ 60 (see Figure 2.2). Overweight and obesity are prevalent in

middle adulthood. With age, there is a greater tendency to weigh more due

to a sedentary lifestyle, a decrease in muscle mass and the development of

possible health conditions. In addition, changes in metabolism and hormone

levels affect the rate and extent of fat accumulation [97]. This is the reason
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why BMI gradually increases from the age of 40 [98]. The dataset we analysed

consisted of 7 160 females and 6 080 males and average BMI was slightly

higher for males: 26.38 versus 25.27 (see Figure 2.3).

The majority of participants who were within the normal range were fe-

male, while the majority of participants who were overweight were male.

However, obesity prevailed in females (see Figure 2.4). These figures were to

be expected because there are gender differences in the storage and metabolism

of fat tissue. In women, the biological factor of menopause affects fat distri-

bution, which may increase the risk or exacerbate the negative health effects

of obesity [99].

Not all obesity is the same, and the CHRIS study has so far investi-

gated the largest number of MHO/MUO individuals as compared to other

published studies, highlighting its strength and potential relevance. We iden-

tified 1 645 participants who were metabolically unhealthy obese and 529 who

were metabolically healthy obese. The age prevalence for the MUO peaks at

age 60, while for the MHO it is 45 (see Figure 2.5). These data suggest that

the MHO represent a transient phenotype [100], due to likely development

of cardiometabolic abnormalities over time [101]. Early identification of the

MHO group is an opportunity for primary intervention.
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Figure 2.2: Stratified BMI WHO categories according to age group

Figure 2.3: BMI distribution according to sex. The dashed line shows the
average BMI in males and females
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Figure 2.4: Stratified BMI WHO categories according to the sex group
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Figure 2.5: Age distribution for the metabolically unhealthy and metaboli-
cally healthy obese

2.3.3 Familial aggregation of obesity in the CHRIS

study

The obesity trait is strongly influenced by genetics, so, to understand how it

is distributed in families we carried out famAgg analysis to see how the trait

(obesity, metabolically healthy obesity and metabolically unhealthy obesity)

clusters in families. The summary table for each family includes the following

information: the family column refers to a family identifier; age refers to the

age (binned in decades) of the individual giving rise to a significant hit in the

kinship sum test, this person being thought of as a central element connecting

a significant number of affected relatives and termed a significant hit ; nped

is the number of individuals in the family and nphe gives the number of

phenotyped individuals in the family. The remaining columns provide the

total number of individuals affected and phenotyped (in parentheses) with

different degrees of relationship to the significant hit: first, second, third,
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and higher than third-degree. For each degree, there is a pair of numbers N

(M), where N is the number of affected individuals and M is the number of

phenotyped individuals with a certain degree of relationship to the significant

hit.

We observed six families with significant familial aggregation of obesity

in the CHRIS baseline (see Table 2.3). In the 1ob family we observed 9

obese individuals related by common ancestry to the significant hit. Of these

10 obese individuals (including the significant hit), six belonged to a more

extreme obesity class II (BMI ≥ 35kg/m2), the obese individuals also tending

to be older, with eight over 40 years of age. It was also noticeable that out of

all 13 younger individuals (age < 40) related by ancestry to the significant hit,

only two were obese but seven were overweight, indicating that the tendency

for obesity was also apparent at younger ages. Noticeably, in both the 1ob

and 4ob families the distribution of obesity fitted an autosomal dominant

mode of inheritance, indicating potential monogenic forms of obesity.

We also observed three families with significant familial aggregation of

MUO (see Table 2.4). In the 1muo family we observed a wide range in the age

of affected individuals (from 34 to 75 years old). Interestingly all the obese

individuals in the family were MUO with a consistent obesity phenotype.

In the 2muo family we observed in total 10 MUO individuals, all related

by a common ancestor, but we also observed an MHO phenotype in one

additional young person (28 years old). Obesity in the 3muo family, where

we observed 10 MUO individuals, together with three additional MHO young

people, was not as uniform. There was an overlap between these families and

the familial aggregation results for obesity, with the 1muo, 2muo and 3muo
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families matching 1ob, 4ob and 6ob respectively. Noticeably, in these three

MUO families, the pattern of MUO fitted an autosomal dominant mode of

inheritance. Familial aggregation of MHO was also observed in two families

(see Table 2.5). In the 1mho family, both younger and older individuals were

affected by MHO (18 to 61 years old). In the main part of the family we

had six MUO individuals, all with a first, second or third-degree relationship

to the significant hit, obesity also being relatively uniform, with only one

additional MUO in this part of the family. This family overlapped with the

5ob family. The second 2mho family is more diverse, as we also observed

MUO in older individuals.

Taking into account the familial aggregation results for MUO and MHO,

in some families a stable MUO phenotype predominated for both younger

and older individuals (1muo and 2muo), while in other families we detected

a transient MHO phenotype with a mixture of older MUO and younger MHO

(3muo and 2mho), and in one case a more stable MHO obesity phenotype

that predominated over different age groups (1mho subset).
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Table 2.3: Significant familial aggregation of the obesity trait
family age nped nphe first second third higher
1ob 60s 46 31 6(7) 2(9) 1(10) 0(0)
2ob 60s 51 32 6(9) 1(8) 3(5) 0(4)
3ob 60s 93 70 4(5) 3(9) 5(11) 3(29)
4ob 70+ 41 31 4(4) 5(10) 1(9) 0(0)
5ob 40s 95 63 3(4) 3(4) 6(17) 9(25)
6ob 70+ 132 88 4(5) 2(9) 5(16) 2(40)

Table 2.4: Significant familial aggregation results of the metabolically un-
healthy obesity
family age nped nphe first second third higher
1muo 60s 46 31 6(7) 2(9) 1(10) 0(0)
2muo 70+ 41 31 4(4) 4(10) 1(9) 0(0)
3muo 70+ 132 87 4(5) 0(9) 4(16) 2(39)

Table 2.5: Significant familial aggregation results of the metabolically healthy
obesity
family age nped nphe first second third higher
1mho 40s 55 38 3(5) 1(8) 1(1) 1(15)
2mho 40s 130 93 2(5) 1(7) 0(15) 3(49)
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2.3.4 GWAS of BMI

The SNPs most strongly associated with BMI (p-value < 5 × 10−8) (see

Figure 2.6) were mapped to chromosome 16 where the FTO gene is also

allocated. FTO has previously been identified as an important locus har-

bouring common variants with a clear impact on obesity predisposition and

fat mass at population level [39]. To facilitate visualisation of the results we

used LocusZoom [102], which also gives useful information about the locus,

such as the location and orientation of the genes it includes, and the loca-

tion of markers associated with other traits near the SNPs of interest (see

Figure 2.7).

We investigated whether the results replicated findings from previous

studies, or whether there were any novel associations. For this purpose,

we used the SWISS v1.1.1 package [103] to look up the locus in the EBI

GWAS catalogue [104] with LD clumping set to r2 > 0.1, and distance-based

clumping set at 1Mb. Statistical significance was assessed at the p-value

threshold of 5 × 10−8.

Our results are consistent with previous reports and we did not find any

new significant associations. This is probably due to the relatively small

size of our study (10 518) compared to the largest BMI GWAS of 700 000

samples [105] reported in the literature.
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Figure 2.6: Manhattan plot for GWAS analysis of BMI in the CHRIS popu-
lation. The x-axis represents the genomic coordinates from each region of the
genome tested, organised by chromosome; the y-axis represents the p-value
for each individual nucleotide polymorphism
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Figure 2.7: LocusZoom plots showing the association (left y-axis; log10-
transformed p-values) with the BMI trait. The colour of the data points
represents the linkage disequilibrium between each SNP and the top SNPs.
The positions of genes are shown below the plot
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2.4 Conclusion

In this chapter we characterised obesity in the CHRIS population according

to WHO criteria, with 17% of the population studied classified as obese.

Obesity is not only a problem of individuals but also a generalised problem

for society and populations. This implies a need for population-based changes

in lifestyle for better prevention.

Obese people who do not have metabolic complications are defined as

metabolically healthy obese. This should not be considered a safe condition

not requirung obesity treatment, but should rather guide decision-making for

personalised and risk-stratified obesity treatment. For this scope, clearer and

more consistent diagnostic criteria would have obvious clinical implications,

such as improvement of risk stratification and more appropriate, cost-effective

forms of treatment.

It is not only the study of the obesity trait itself, but also analysis of

family aggregation that can be of great value for better understanding obesity

aetiology and for supporting approaches to predict outcomes and develop

more effective preventive or therapeutic strategies. It will be of great interest

to further explore potential genetic and lifestyle determinants (including diet

and physical activity) for stable MUO, transient MHO and stable MHO in

the future.

Furthermore, GWAS pinpoints common BMI alleles that occur in over

5% of the population. The role of FTO risk alleles in obesity is significantly

intensified by reduced physical activity and high-calorie diets.
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Chapter 3

Genome-Wide Polygenic Score

3.1 Introduction

The aim of this chapter is to evaluate the susceptibility to obesity and predict

BMI in the CHRIS population study, based on the individual’s genotype. To

achieve this goal we have used the genome-wide polygenic score (GPS), a

calculation that can be used to assess the genetic predisposition for a certain

complex condition or disease. When many genes and hundreds or thousands

of variants with small effects are involved, combining their effects can help de-

termine the predisposition for underlying conditions or disease [106]. Variants

identified by genome-wide association studies (GWAS) can therefore be com-

bined, in the simplest form in proportion to the effect size, to provide a GPS.

The GPS gives information about where an individual falls within a popu-

lation, for example within the top 10%. Identification of individuals at high

risk of developing disease brings multiple benefits to preventive approaches,

facilitating earlier lifestyle changes that bring positive health outcomes and
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delay disease progression [106, 107]. With this scope, the GPS can be used

as a tool to assess the risk of complex disease [108], but it is fundamental to

be aware of problems related to portability and interpretation. Individuals

with one genetic ancestry may have more predictive power than those with

another ancestry [109]. So, there is no good ”portability” of the score across

populations. The reason for this is that different populations display different

patterns of linkage disequilibrium and allele frequencies. The second prob-

lem is related to interpretation of the results, due to the fact that the GPS

requires extensive genotype data to have good prediction performance [110],

and furthermore it does not take into account the fact that the same variants

can have a different overall effect in different environments [111].

Despite the limitations of the GPS, the complexity of polygenic phe-

notypes makes it challenging to study each individual locus so GPSs have

become widely used in research on polygenic traits as a tool for representing

the genetic burden across the genome [112].

3.2 Materials and methods

The GPS provides an estimate of genetic impact on phenotypes. It is the

weighted sum of alleles that may contribute to phenotype, where x is the

genotype count and β is the effect size, as summarised in formula 3.1.

GPS =
∑

βx (3.1)

In general, the weight is derived from effect estimates from previous GWAS

studies. These effect estimates or GWAS data are described as base data.
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The raw genotypes used to make the prediction are known as the target

data. While the GPS model may not represent causal SNPs, it can represent

the genetic burden of an individual by using SNPs that are included in the

model.

Even though the GPS is a straight-forward concept, a few details must

be kept in mind:

• When the base and target data overlap, overfitting occurs [113]. The

model can underperform or be biased if the base and target popula-

tions have different allele frequencies, population structures, and envi-

ronmental factors. If there is a multi-ethnic population, great caution

is required to adjust possible confounding factors [114].

• The SNPs in linkage disequilibrium (LD) 1 will cause redundant sig-

nals in the GPS. The clumping method is the most widely used for

preventing redundant signals, with SNPs selected according to LD and

p-value. In this way, the correlation between the remaining SNPs is

reduced while the strongest statistical evidence is retained [115].

• In addition, the correction of missing SNPs needs to be carried out

excluding samples with too many missing SNPs. As indicated by for-

mula 3.2, when calculating the GPS, the raw
∑

βx should be divided

by the number of SNPs N (excluding all the missing SNPs) used in the

GPS.

1LD refers to the association between alleles at different loci.
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GPS =
1

N

∑
βx (3.2)

The GPS is the average genetic burden for non-missing SNPs.

P-value thresholding is the most common way to optimise the GPS. In

general, the smaller the p-value, the more likely the association between SNP

and trait and the more likely their inclusion will contribute to GPS predictive

ability. Those SNPs with p-values within the threshold deemed to have valid

estimates of effect size are included; all others are excluded. With the p-value

thresholding method, different p-value thresholds are used in order to gain

the best signal-to-noise ratio. On conclusion, the GPS result with the highest

signal-to-noise ratio is considered the best of all the iterations. Currently, the

most popular approach for calculating the GPS is to use p-value thresholding

on clumped SNPs (clumping + p-value thresholding) [116].

3.2.1 PRSice2

Our analysis was carried out on large-scale data using PRSice-2 [117], an effi-

cient and scalable program for automation and simplification of GPS analysis

of large-scale data. In PRSice-2, genotyped and imputed data are handled

for empirical association p-values free of overfitting, inheritance models are

supported, and multiple continuous and binary traits can be evaluated si-

multaneously [117]. Its predictive power is comparable to that of PRSice

and other GPS alternatives, LDpred [118] and lassosum [119], while being

dramatically faster and more memory-efficient [117].
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Input data:

Base data must be provided as a whitespace delimited file containing as-

sociation analysis results for SNPs on the base phenotype [120]. Columns

with the following header names are essential and must be present: SNP

name, effect allele, effect size estimate as an odds ratio (binary phenotype)

or continuous beta effect (continuous phenotype) and p-value for the associ-

ation. Other fields can be included, such as the chromosome number, base

pair position, reference allele and standard error [120]. As base data we

used the summary statistics generated in the Yengo et al. study [105], which

includes summary statistics from previous GWAS in the Genetic Investiga-

tion of ANthropometric Traits (GIANT) consortium [121, 122] studies with

new GWAS of height and BMI in ∼ 450 000 participants in the UK Biobank

(UKB). In total, the sample size included ∼ 700 000 participants with Eu-

ropean ancestry. Combined GWAS meta-analysis substantially increases the

number of GWAS signals associated with BMI. These data correspond to the

most powerful GWAS results available on the trait studied. The following

checks were made on the base data, according to the QC checklist present in

the GPS guideline paper [114]: heritability check - GWAS heritability data

should be greater than 0.05 ( h2
snp > 0.05); allele check - effect allele and

non effect allele to discover the correct direction; genome check - base and

target data must be on the same genome build; checking of duplicated and

ambiguous SNPs.
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Target data refer to imputed genotyping data from the CHRIS III study,

involving 10 758 participants 2. Since the base data come from genome build

hg19 3, we used the HRC imputation panel for the target data. In this way

the base and target SNP data had genomic positions assigned on the same

genome build.

Some of the individuals involved in the CHRIS study were present in

summary statistics in the Yengo et al. study [105], because a subsection of the

CHRIS study (overlapping with the MICROS study [123]) contributed to the

Locke et al. study [122], a study also taken into account by Yengo et al. [105]

(Locke et al. study + UKBiobank data). An overlap in base and target data

samples could substantially inflate the association between the GPS and the

trait tested in the target data, and therefore had to be eliminated [114].

Ideally, the base data must be cleared of overlapping samples and the GWAS

calculated again [114]. Since this was not possible because we had no access

to the public data resource, we decided to eliminate sample overlap in the

target data. We therefore removed the 704 individuals in the target data

who were also present in the base data, ending up with 10 054 individuals in

the target data. We also needed BMI phenotype information for these 10 054

individuals, and considering that we might want to account for age and sex

in the GPS, we incorporated both into the analysis.

2The target data set must be supplied in PLINK binary format, with the following
extensions: .bed - BED (Browser Extensible Data) is a text file used to store genomic
regions as coordinates and associated annotations; .bim - BIM is an extended variant
information file accompanying a .bed binary genotype table; .fam - FAM gives the ID, sex
and phenotype information for each individual.

3Homo sapiens (human) genome assembly GRCh37 (hg19) from the Genome Reference
Consortium.
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3.3 Results

After running PRSice2, we were able to explore the predictive power of the

GPS on BMI for 10 054 individuals in our independent test set, evaluating

whether the GPS could predict obesity in a test dataset of participants in

the CHRIS study, where the mean BMI was 25.79 kg/m2, and 17% met

the criteria for obesity. The GPS approximated normal distribution in the

population, the cut-off for the predictive test being expressed in the vertical

lines (see Figure 3.1). We considered the top 10% of the distribution to be

carriers of a high GPS with a strong probability of becoming obese or severely

obese (see Figure 3.1).

We next stratified the population according to GPS decile. The average

BMI was 28.3 kg/m2 for those in the top decile of the GPS and 23.74 kg/m2

for those in the bottom decile, a difference of 4.6 kg/m2. This means we

can observe a clear tendency to lower and higher BMI values at the two

extremes of the GPS (see Figure 3.2). At the top of the distribution, we can

see many overweight and obese participants, but also a conspicuous number

of individuals whose weight is in the normal range (see Figure 3.1). In the

lower part of the distribution, we can instead see a majority of participants

of normal weight and only a small fraction of overweight or obese individuals

(see Figure 3.1). Despite this, it is important to point out that a low-risk

score does not mean there is no risk of becoming overweight or obese.

To assess whether participants with a high GPS were also at a higher

risk of developing certain cardiometabolic diseases, we tested for a potential

association between a high GPS and both diabetes mellitus and coronary

artery disease. To do this we used logistic regression, taking the diseases as
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dependent variable and age, sex and binarized GPS (1 for the top decile of

the polygenic score, 0 for the rest) as independent variables. A high polygenic

score was associated with the cardiovascular diseases under consideration (p-

value 0.00839 for diabetes mellitus and 0.0296 for coronary artery disease).

Susceptibility to obesity was thus also associated with an increased risk of

debilitating diseases, which in turn decreases the quality and length of life.

We compared the results obtained thus far with those presented in the

Khera et al. study [124], which quantified and tested susceptibility to obesity

for ∼ 300 000 individuals (see Table 3.1). The study design was the same

but there were some differences: target data (the Kera et al. study [124] had

a larger number of variants); base data, we used the most recent summary

statistics present when the analysis was done [105]; there were fewer common

variants in the base and target data in the CHRIS study than in the Kera et

al. study [124] because the CHRIS study had fewer individuals; the average

age of participants was 57y in the Khera et al. study [124] while it was 46y

in CHRIS study. This difference in age also explains why mean BMI was

lower in the CHRIS study than in Khera et al. study [124]. In our study,

to calculate the GPS we decided to use PRSice2 [117] and not LDpred [118]

because it is more efficient and scalable. The correlation score in the Khera

et al. study [124] explains 29% of trait variance, while in the CHRIS study

it was only 18%.

Despite the limited sample sizes used for our study our results were

promising and helped us to understand individuals’ susceptibility to obesity.
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Table 3.1: Comparison of the Khera et al. and CHRIS studies
CELL – Khera et al. CHRIS study (release 3)

Target data ∼ 300 000 individual-level
genotype-phenotype data

∼ 10 000 individual-level
genotype-phenotype data

Base data 2 200 302 genetic variants on
BMI

(Locke et al., 2015)

2 336 270 genetic variants on
BMI

(Yengo et al., 2018)
Base data ethnicity European European
Common variants
(Base data and
Target data)

2 100 000 953 852

Participants mean age 57y 46y
Mean BMI 27.4 25.8

GPS algorithm LDpred
(Vilhjàlmsson et al., 2015)

PRSice2
(Choi et al., 2019)

Correlation score 0.292 0.182
Stratified population
according to GPS

decile

Average BMI was 30.0
kg/m2 for those in the top
decile of the GPS and 25.2

kg/m2 for those in the
bottom decile

Average BMI was 28.30
kg/m2 for those in the top
decile of the GPS and 23.7

kg/m2 for those in the
bottom decile
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Figure 3.1: We considered the top 10% of distribution to be ‘carriers’ of a
high genome-wide polygenic score (GPS). The x-axis represents the polygenic
score, with values scaled to a mean of 0 and standard deviation 1 to facilitate
interpretation. The histograms represent the distribution of BMI with a low
GPS, high GPS, and across the GPS
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Figure 3.2: We stratified CHRIS participants according to the GPS decile.
The x-axis represents the GPS decile and the y-axis mean BMI for each decile
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3.4 Conclusion

We derived and validated a GPS for predicting polygenic susceptibility to

obesity based on information from ∼ 1 million common genetic variations

and then tested the polygenic score obtained from participants in the CHRIS

study. GPS analysis of the CHRIS study did not provide any new informa-

tion, but strengthened previously known associations, and also helped to

assess which individuals have a high risk of becoming obese in our specific

population study. This analysis could have important potential implications

for clinical medicine, because it could allow us to identify individuals at risk

of developing obesity before the condition manifests itself. Unfortunately, in

the CHRIS study, we do not have a follow-up study so we cannot carry out

any prevention, thus we have made predictions but we do not know if the

predictions will be correct or not. In the future, it could also be interesting

to analyse individuals with a low polygenic score, because it is possible that

they are more likely to have monogenic causes of disease.
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Chapter 4

Metabolomic profiling of

obesity

4.1 Introduction

In this chapter, we investigate the metabolomic profiles of obese and metabol-

ically healthy/unhealthy obese participants in the CHRIS study. Metabolomics

is an appropriate approach for uncovering the differences in metabolism be-

tween each group of individuals [125], while the characterisation of metabo-

lites associated with obesity and metabolically healthy/unhealthy obesity

can provide an insight into the mechanisms leading to this disease and its as-

sociated consequences [126]. Nevertheless, characterisation of the metabolic

mechanisms underlying health disparity in metabolic diseases is still lacking

and we wish to know more, especially as regards our population study.

Performing longitudinal studies of large cohorts, as in the CHRIS study,

allows accurate identification and quantification of the different metabo-
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lites in serum biosamples, using a targeted quantitative approach such as

that provided by Biocrates. The Biocrates AbsoluteIDQ® p180 kit [127]

(Biocrates Life Sciences AG, Innsbruck, Austria) was used to collect targeted

metabolomics data on serum samples in the CHRIS baseline 1 [128]. The

kit covers multiple compound classes involved in various central metabolic

processes: 21 amino acids, 21 biogenic amines, 1 monosaccharide, 40 acylcar-

nitines, 90 glycerophospholipids (76 phosphatidylcholines and 14 lysophos-

phatidylcholines), and 15 sphingolipids. It has already been applied to many

other studies of human serum such as EPIC (European Prospective Investi-

gation into Cancer and Nutrition) [129, 130] and KORA (Cooperative Health

Research in the Region of Augsburg) [131].

The use of metabolomics data in the CHRIS study allowed us to achieve

three goals: to replicate previous analysis performed with different cohorts

(as a sort of validation study) but with a larger data set; to better characterise

the CHRIS metabolome; and to derive predictive models to discriminate

obesity subtypes.

4.2 Materials and methods

The general workflow characterising the acquisition and use of metabolic

data is complex and requires different skills for data acquisition and data

analysis. We summarise all the basic steps in Figure 4.1 and describe sample

preparation and data acquisition in Appendix A.

After data acquisition, Biocrates-based targeted metabolomics data from

1Serum collected after fasting (in the vast majority of cases).
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Figure 4.1: Main steps in obtaining metabolomics data.
LC-MS: liquid chromatography-mass spectrometry; FIA: flow injection anal-
ysis

the CHRIS study was processed with the BioCHRIStes R package 2 estabish-

ing a connection to a BioCHRIStes database containing Biocrates targeted

metabolomics data for the CHRIS population study. Data for the ∼ 7 000

CHRIS participants were bundled in the biochristes7500 R package, pro-

viding metabolite concentrations for CHRIS study participants. The data

were then normalised based on quality control (QC) samples to remove any

between-batch differences. As a result of normalisation, the average coeffi-

cient of variation (CV) across QC samples was reduced, without affecting the

CV of study samples [128]. To perform data analysis, we should have a data

matrix without missing information. For this reason, we assumed that most

2BioCHRIStes is an R package written by Dr. Johannes Reiner. Use of this package is
exclusive to EURAC.
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of the missing values (6 634 out of 1 208 550) were sign that the metabolites

were below the detection limit. In these cases, the missing values were re-

placed with random numbers taken from the uniform distribution, from half

of the smallest measured value to the smallest measured value for that ana-

lyte. Uniform distribution was defined with two parameters (minimum and

maximum) and all values between them had an equal probability of being

selected. Then, we conducted all analyses on log2-transformed metabolite

concentrations [128].

4.2.1 Clustering of analytes

After data quality checking and normalisation we had 175 metabolites (see

Appendix B) quantified in 6 872 CHRIS participants, 1 087 of whom obese:

775 metabolically unhealthy obese; 281 metabolically healthy obese. Before

identifying markers that discriminate obesity subgroups, we investigated the

correlation between the metabolites using the Pearson correlation coefficient.

If the degree of correlation between two or more independent metabolites is

high (between + 0.4 and + 1), there is a multicollinearity problem reducing

the precision of the estimated coefficients, which weakens the statistical power

of the regression model (see Figure 4.2). So, it is always worth paying a

little more attention during exploratory data analysis to uncover and address

multicollinearity.
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Figure 4.2: Hierarchical clustering of correlated/anti-correlated metabolites.
Correlation matrix of the 175 metabolites studied. Cross-sectional correlation
colours represent Pearson correlation coefficients

The most correlated metabolites came from glycerophospholipid and sph-

ingolipid classes, due to their similarities, as both classes indeed contain

fatty acids [132]. Furthermore, branched-chain amino acids (BCAAs), va-

line, leucine and isoleucine clustered together. These are essential amino

acids with protein anabolic properties carrying a range of signalling functions,

especially by activating the mTOR (mammalian target of rapamycin) [133]

signalling pathway which is essential for initiation of protein synthesis [134].
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Several acylcarnitines clustered together and they are anti-correlated with the

major lipid cluster. This was expected because an essential role of acylcar-

nitines is to regulate the balance of intracellular sugar and lipid metabolism [135].

As a key component of cell metabolism, acylcarnitines play an important role

in cell physiological activities [136].

4.2.2 Statistical analysis

To characterise the metabolites associated with obesity and metabolically

healthy/unhealthy obesity, logistic regression models were fitted separately

for each metabolite using obesity status (obese vs not obese, metabolically

unhealthy obese vs not metabolically unhealthy obese, metabolically healthy

obese vs not metabolically healthy obese, and metabolically unhealthy obese

vs metabolically healthy obese) as a dependent variable and the concentra-

tion of each individual metabolite, sex, age, and fasting status3 as indepen-

dent variables.

By using the Bonferroni correction method, p-values from all analyses

were adjusted for multiple testing. Then, to obtain comparable coefficients,

prior to logistic modelling all the variables were standardised to zero mean

and unit variance4. In autoscaled data, a difference of 1 corresponds to a

standard deviation of 1 and is called effect size.

Our next step was to define the criteria for selection of significant metabo-

lites. We evaluated whether we could combine the criteria for statistical sig-

3Binary fasting status was retrieved from self-reported fasting information, with 6415
participants declaring that they had not eaten within 12 h of blood sampling while 455
had eaten (2 participants were missing).

4Note that this does not influence the linear models since they are affine equivariant.
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nificance (the p-value) with another criterion that would allow us to establish

the metabolites most strongly associated with obesity status. So we required

the difference in the abundances of obesity subtypes to be at least twice as

large as the coefficient of variation for quality control samples. QC CHRIS

pool samples were evaluated for the coefficient of variation, representing the

technical variability observed for a particular metabolite. This method for

assessing which metabolites are associated with the trait of interest differs

from the methods presented in the literature, as it is more rigorous and allows

us to describe the data in a more solid way and with fewer false positives.

We also ran the random forest algorithm. We proceeded in the following

way for the entire data set: we randomly chose data for the test and the

remainder for a training set, then we built a random forest model on the

training set and lastly we estimated performance with the test. We repeated

the procedure 10 times (10 fold cross-validation). Cross validation ensures all

samples will appear in the training and test sets, so 100% of them are used

at some point for training and testing. To evaluate the overall performance

of our models, we averaged 10-fold validations.

4.3 Results

The logistic regression and random forest results were analysed, thus in-

vestigating how many and which metabolites discriminated between obese

and not obese, metabolically unhealthy obese and not metabolically un-

healthy obese, metabolically healthy obese and not metabolically healthy

obese, and metabolically healthy obese and metabolically unhealthy obese
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for each model.

4.3.1 Logistic regression

Model 1 : Discriminates obese from not obese using binary obesity status

as a dependent variable and one of the 175 metabolites at a time, sex, age

and fasting status a independent variables. The model identified 91 out of

175 significant metabolites (see Figure 4.3). Among the metabolites with

a stronger effect, we found glutamate as well as the branched-chain amino

acids (BCAAs) group of three essential amino acids (leucine, isoleucine and

valine) but also lysophosphatidylcholine, phenylalanine and tyrosine. Several

independent studies have linked BCAAs to the well-known consequences of

obesity: insulin resistance and diabetes [137]. Aromatic amino acids espe-

cially tyrosine and phenylalanine were strongly related to BMI and insulin re-

sistance [138]. Lysophosphatidylcholine acyl C18:2, lysophosphatidylcholine

acyl C18:1 and lysophosphatidylcholine acyl C17:0 were negatively correlated

with BMI, in agreement with several other studies [139] while phosphatidyl-

choline acyl-alkyl C38:3 was also positively associated with BMI. These re-

sults are in line with the findings published in 2021 by the University of

Milan’s Department of Clinical Sciences and Community Health [140].

Model 2 : Discriminates metabolically unhealthy obese from not metabol-

ically unhealthy obese using binary metabolically unhealthy obesity status

as a dependent variable and one of the 175 metabolites at a time, sex, age,

and fasting status as independent variables. The model identified 91 out of

175 significant metabolites (see Figure 4.4). We found glutamate, BCAAs,

phenylalanine and tyrosine. These results were similar to those obtained in
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the previous model (see Figure 4.3). Similar results were expected as the ma-

jority of obese people were metabolically unhealthy obese (775 out of 1 087

obese people were metabolically unhealthy obese).

Model 3 : Discriminates metabolically healthy obese from not metabol-

ically healthy obese using binary metabolically healthy obesity status as a

dependent variable and one of the 175 metabolites at a time, sex, age, and

fasting status as independent variable. The model identified 33 out of 175

significant metabolites (see Figure 4.5). Lysophosphatidylcholines were neg-

atively correlated with healthy obesity. These results reflect the biology be-

cause the plasma lipidome can be altered in obese unhealthy individuals due

to several diseases such as type 2 diabetes and coronary artery disease [141].

Model 4 : Discriminates metabolically unhealthy obese from metabolically

healthy obese using binary metabolically healthy/unhealthy obesity status as

a dependent variable and one of the 175 metabolites at a time, sex, age, and

fasting status as independent variables. This model did not take into account

the metabolic data for 6 872 participants but only the data of metabolically

healthy and unhealthy obese participants. We therefore had 1 056 partic-

ipants in total, of whom 775 were metabolically unhealthy obese and 281

metabolically healthy. The model identified 17 out of 175 significant metabo-

lites. Looking at the seventeen metabolites (see Figure 4.6) we identified sig-

nificant associations with the essential branched-chain amino acids isoleucine,

leucine and valine which had previously been associated with obesity [140]

and metabolic health [142, 143]. In agreement with these previous studies,

we observed that the metabolically unhealthy obese phenotype is associated

with higher levels of branched-chain amino acids. Several sphingomyelines
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are also significantly associated, and sphingolipid metabolism is known to be

affected in obese subjects [144]. We also saw an effect of propenoylcarnitine,

a short chain acylcarnitine. Another short chain acylcarnitine (propionyl-

carnitine) had already been associated with metabolically unhealthy central

obesity in a study with a small sample size [145].

In each model, the most significant metabolites included glutamate, which

is a by-product of branched-chain-amino-acid (BCAA) catabolism and was

shown to increase in obese individuals [146], BCAAs, which play a critical role

in the regulation of energy homeostasis, nutrition metabolism, gut health,

immunity and disease, and contribute to impaired glucose metabolism, espe-

cially in obese individuals [133], lysophosphatidylcholines, which are signifi-

cantly negatively associated with obesity and related abnormal metabolism [141]

and sphingolipids, involved in obesity-mediated inflammation and cardiovas-

cular diseases [147].

Thanks to these four models we also found metabolites that were unique

to the obese, metabolically unhealthy obese, and metabolically healthy obese

(see Figure 4.7).

4.3.2 Random forest

In this section, in addition to obesity status/health, age, sex and fasting

status, we also used visceral fat 5 as a predictor. Visceral fat is reported as

a characteristic of the MUO phenotype [148] and it would be of interest to

know if it is relevant for classification.

Model 1 : Discriminates obese from not obese. The results are shown

5Visceral fat is the fat that surrounds abdominal organs.
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in Figure 4.8. The model was able to discriminate between obese individ-

uals and not obese individuals, and it is interesting to note that the most

important predictors were glutamate, BCAAs, aromatic amino acids and

lysophosphatidylcholine, those present in logistic regression model 1. Fur-

thermore, age as a predictor was associated with increased obesity, being a

major contributor to insulin resistance and metabolic syndrome [149]. The

addition of visceral fat as a predictor (see Figure 4.9) increased the perfor-

mance of the model and was the most important variable. A summary of

prediction results for the classification model is presented in Appendix C.

Model 2 : Discriminates metabolically unhealthy obese from not metabol-

ically unhealthy obese. The results are shown in Figure 4.10 and were compa-

rable with those obtained in the previous model (see Figure 4.8), because, as

already explained in logistic regression model 2 above, the majority of obese

people were metabolically unhealthy obese (775 out of 1 087 obese people

were metabolically unhealthy obese). The model was able to discriminate

between metabolically unhealthy obese individuals and not metabolically

unhealthy obese individuals, and the addition of visceral fat improved the

model (see Figure 4.11). A summary of prediction results for the classifica-

tion model is presented in Appendix C.

Model 3 : Discriminates metabolically healthy obese from not metaboli-

cally healthy obese. The results are shown in Figure 4.12. The performance

of the model was lower than the two models above because the dataset used

was unbalanced: 281 metabolically healthy individuals vs 6591 not metabol-

ically healthy individuals. In this model, visceral fat again improved the

performance of the model (see Figure 4.13). A summary of prediction results
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for the classification model is presented in Appendix C.

Model 4 : Discriminates metabolically unhealthy obese from metabolically

healthy obese. The results are shown in Figure 4.14. Including visceral fat

(see Figure 4.15) did not improve model performance. Despite this, in both

models (with and without visceral fat), the most important variable was age,

confirming the data presented in chapter 2, namely MHO is a trait that

can be transient with increasing age [100] due to the likely development of

cardiometabolic abnormalities over time [101].

Of the 17 significant compounds in logistic regression model 4 (see Fig-

ure 4.6), eight are among the top 20 important features in random forest

model 4 (see Figure 4.15). These include glutamate, the branched-chain

amino acid and isoleucine, which are associated with higher levels in MUO.

Among these overlapping eight compounds we also observed three phos-

phatidylcholines (PC aa C32:1, PC ae C34:3 and PC ae C34:2) and a sph-

ingomyelin (SM (OH) C22:2). A tendency for MHO to be associated with

higher levels of phospholipids composed of more unsaturated fatty acids (PC

ae C34:3, PC ae C34:2, SM (OH) C22:2), and lower levels of phospholipids

with more saturated fatty acids (PC aa C32:1) was noticeable in relation to

the MUO phenotype. In the future it would be of interest to investigate the

potential relationship between saturated, monounsaturated and polyunsat-

urated fatty acid dietary intake and MUO/MHO phenotypes in the CHRIS

study, and further clarify the role of dietary fat composition in metabolic

health [150].

A summary of prediction results for the classification model is presented

in Appendix C.
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Figure 4.3: Significant metabolites associated with obese - not obese. The odds
ratio is the standardised effect size of the log-transformed units of each metabolite

68



PC ae C38:0
PC ae C40:2

Orn
C5:1

PC ae C34:0
t4−OH−Pro

PC ae C42:1
PC ae C42:0

SM C18:1
PC aa C36:3

C5−OH (C3−DC−M)
PC ae C36:0

lysoPC a C28:1
PC ae C34:1
PC aa C36:0
PC ae C40:3
PC aa C38:0

SDMA
Ser

C4:1
SM (OH) C16:1

PC ae C36:1
SM C24:1

PC aa C40:2
SM (OH) C14:1

PC aa C36:4
PC ae C36:3
PC ae C32:2
PC ae C44:3

Gln
C3:1

PC ae C40:4
lysoPC a C20:4

PC ae C30:0
PC ae C32:1

Trp
PC aa C42:2

SM (OH) C22:2
PC aa C34:4
PC ae C40:5
PC aa C40:5

C6 (C4:1−DC)
PC aa C42:1

Serotonin
PC aa C40:6

lysoPC a C16:0
PC aa C40:1
PC ae C42:2

C4
Pro

PC ae C40:1
lysoPC a C28:0

SM C16:0
PC aa C42:0
PC ae C44:5
PC ae C40:6

lysoPC a C18:0
Asn
Cit

PC ae C38:2
PC aa C40:4
PC ae C44:4
PC ae C44:6
PC ae C34:2
PC aa C32:1

lysoPC a C24:0
PC ae C42:5
PC ae C42:4
PC aa C38:4

Lys
C0

Asp
PC ae C42:3
PC ae C36:2

Kynurenine
Gly
C3
C5

PC ae C34:3
Ala
H1

Phe
PC aa C38:3

lysoPC a C17:0
lysoPC a C18:1

Tyr
Leu

lysoPC a C18:2
Val
Ile

Glu

0 1 2 3
Odds ratio (95% CI)

m
et

ab
ol

ite
s

Figure 4.4: Significant metabolites associated with metabolically unhealthy - not
metabolically unhealthy obese. The odds ratio is the standardised effect size of
the log-transformed units of each metabolite
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Figure 4.5: Significant metabolites associated with metabolically healthy - not
metabolically healthy obesity. The odds ratio is the standardised effect size of the
log-transformed units of each metabolite
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Figure 4.6: Significant metabolites associated with metabolically unhealthy -
metabolically healthy obesity. The odds ratio is the standardised effect size of
the log-transformed units of each metabolite
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Figure 4.7: The Venn Diagram shows the number of metabolites shared and not
shared by obese, MUO and MHO
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Figure 4.8: Discriminating obese status. The box plot represents the mean de-
crease Gini score for the top 20 variables. The red line in the AUC and the red
dots on the mean decrease Gini represent the mean
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Figure 4.9: Discriminating obese status with the addition of visceral fat. The box
plot represents the mean decrese Gini score for the top 20 variables. The red line
in the AUC and the red dots on the mean decrease Gini represent the mean
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Figure 4.10: Discriminating metabolic unhealthy obese status. The box plot
represents the mean decrese Gini score for the top 20 variables. The red line in
the AUC and the red dots on the mean decrease Gini, represent the mean

75



Figure 4.11: Discriminating metabolic unhealthy obese status with the adding of
visceral fat. The box plot represents the mean decrese Gini score for the top 20
variables. The red line in the AUC and the red dots on the mean decrease Gini,
represent the mean
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Figure 4.12: Discriminating metabolic healthy obese status. The box plot repre-
sents the mean decrease Gini score for the top 20 variables. The red line in the
AUC and the red dots on the mean decrease Gini represent the mean
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Figure 4.13: Discriminating metabolic healthy obese status with the addition of
visceral fat. The box plot represents the mean decrease Gini score for the top 20
variables. The red line in the AUC and the red dots on the mean decrease Gini
represent the mean
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Figure 4.14: Discriminating metabolic unhealthy - healthy obese status. The box
plot represents the mean decrease Gini score for the top 20 variables. The red line
in the AUC and the red dots on the mean decrease Gini represent the mean
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Figure 4.15: Discriminating metabolic unhealthy - healthy obese status with the
addition of visceral fat. The box plot represents the mean decrease Gini score
for the top 20 variables. The red line in the AUC and the red dots on the mean
decrease Gini represent the mean
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4.4 Conclusion

The results of our analysis underline the relationships between obesity sta-

tus and obesity health, showing signs of alteration in the regulation of en-

ergy homeostasis, nutrition metabolism, and disease thanks to the signifi-

cant metabolites from each model: BCAAs (some of these biomarkers are

often associated with metabolically unfavourable markers, especially lipid

metabolism, and may be useful for distinguishing obese individuals), lysophos-

phatidylcholines (markers linked to cardiovascular disease) and sphingolipids

(fat metabolism and obesity-related complications are affected by sphin-

golipids).

Based on metabolomics, the CHRIS dataset allowed us to perform the

largest study of metabolically healthy and metabolically unhealthy obese and

this underlines the strength of the study. Additionally, we were able to depict

independent metabolite patterns in metabolically healthy and metabolically

unhealthy obese participants. However, our study, had some limitations. The

models were not adjusted for medication, smoking and alcohol intake. Fu-

ture work should explore their potential effect on the metabolomics profiles,

bearing in mind that while the medication data in the CHRIS baseline is ex-

tensive and relatively reliable, smoking and alcohol intake are self reported

and subject to strong bias.

We discovered which metabolites are associated with obesity and the

different type of obesity, but we did not test causality. In the future, it

would be interesting to study the cause and effect between metabolites and

obesity traits to discover if a change in one metabolite causes a change in the

obesity trait or vice-versa, with established approaches such as Mendelian
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randomization.

This study therefore evaluated the metabolomic profile of the CHRIS co-

hort, composed of obese and metabolically healthy/unhealthy obese subjects,

using a validated targeted approach.
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Chapter 5

Conclusions

This PhD thesis gives a detailed overview of obesity in the CHRIS popula-

tion. Thanks to the data available I performed a broad analysis, covering

genetics, family history and metabolomics. I relied on the CHRIS study

data to develop models for stratifying obesity subtypes. More specifically I

implemented logistic regression models to explore associations and I trained

and tested classifiers for predicting MUO and MHO based on metabolomic

signatures and identified relevant metabolites for obesity stratification. In

agreement with previous studies [140, 142, 143] I report significant asso-

ciations between metabolically unhealthy obesity and higher levels of es-

sential branched-chain amino acids (BCAA), including isoleucine, which is

also among the most important features for classification with random for-

est models. These results confirm the association between isoleucine and

metabolic health in obese individuals, based on the largest sample size to

date. It has been reported that genes related to BCAA catabolism are more

down-regulated in the adipose tissue of MUO individuals in comparison to

83



MHO [151], resulting in the higher circulating levels of these amino acids

in MUO. These higher BCAA levels might impact metabolic health by ac-

tivating mTOR signalling, causing insulin resistance and impaired glucose

metabolism [152], while isoleucine has recently been reported to partially

mediate the relationship between visceral adipose tissue volume and car-

diometabolic risk [142].

Obesity is a complex trait; future efforts should extend the genomics and

metabolomics models to integrate new proteomics datasets available only re-

cently, as well as life-style factors like diet and physical activity that have also

been collected within the CHRIS study. As regards this last point, it would

be of interest to investigate the role of diet on metabolic unhealthy obesity

and to what extent this effect is mediated by the metabolic signatures of

MUO identified within this project. More specifically, adherence to specific

diets can be quantified to characterize dietary patterns and investigate their

association with MUO. Mediation analysis can then be performed to inves-

tigate to what extent circulating levels of isoleucine mediate the association

between these diet patterns and MUO. The work would greatly benefit once

the CHRIS study metabolomics collection is extended to better overlap with

the GA2LEN food frequency questionnaire, increasing the dataset size for

such analysis. In addition, the ongoing CHRIS follow-up study is collecting

updated health data on the CHRIS baseline participants. The new infor-

mation will allow the development of predictive models for health outcomes,

and better characterise and discriminate stable and transient metabolically

healthy obese phenotypes, a key issue that requires further investigation.
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Appendix A

Sample preparation and data

acquisition

• Serum samples were prepared using the AbsoluteIDQ® p180 kit from

Biocrates;

• Samples were handled according to a protocol provided by Biocrates;

• Sample aliquots were then transferred into two distinct 96-well plates

and filled with LC-MS and FIA-specific dilution solutions;

• Sciex Analyst 1.7 software was used for instrument control and data

collection;

• Each sample was analysed with absolute quantification. LC-MS/MS

technology was used for amino acids and biogenic amines, while FIA-

MS/MS was used for cylcarnitines, glycerophospholipids, sphingolipids

and 1 sum of hexoses.
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Appendix B

List of Metabolites

Analyte Name Analyte Class Biochemical Name

Ala Amino acids Alanine

Arg Amino acids Arginine

Asn Amino acids Asparagine

Asp Amino acids Aspartate

Cit Amino acids Citrulline

Gln Amino acids Glutamine

Glu Amino acids Glutamate

Gly Amino acids Glycine

His Amino acids Histidine

Ile Amino acids Isoleucine

Leu Amino acids Leucine

Lys Amino acids Lysine
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Analyte Name Analyte Class Biochemical Name

Met Amino acids Methionine

Orn Amino acids Ornithine

Phe Amino acids Phenylalanine

Pro Amino acids Proline

Ser Amino acids Serine

Thr Amino acids Threonine

Trp Amino acids Tryptophan

Tyr Amino acids Tyrosine

Val Amino acids Valine

Ac-Orn Biogenic amines Acetylornithine

ADMA Biogenic amines Asymmetric dimethylarginine

alpha-AAA Biogenic amines Alpha-aminoadipic acid

c4-OH-Pro Biogenic amines Cis-4-hydroxyproline

Carnosine Biogenic amines Carnosine

Creatinine Biogenic amines Creatinine

DOPA Biogenic amines Dihydroxyphenylalanine

Dopamine Biogenic amines Dopamine

Histamine Biogenic amines Histamine

Kynurenine Biogenic amines Kynurenine

Met-SO Biogenic amines Methioninesulfoxide

Nitro-Tyr Biogenic amines Nitrotyrosine

PEA Biogenic amines Phenylethylamine
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Analyte Name Analyte Class Biochemical Name

Sarcosine Biogenic amines Sarcosine

Serotonin Biogenic amines Serotonin

Spermidine Biogenic amines Spermidine

Spermine Biogenic amines Spermine

t4-OH-Pro Biogenic amines Trans-4-hydroxyproline

Taurine Biogenic amines Taurine

SDMA Biogenic amines Symmetric dimethylarginine

Putrescine Biogenic amines Putrescine

C0 Acylcarnitines Carnitine

C10 Acylcarnitines Decanoylcarnitine

C10:1 Acylcarnitines Decenoylcarnitine

C10:2 Acylcarnitines Decadienylcarnitine

C12 Acylcarnitines Dodecanoylcarnitine

C12-DC Acylcarnitines Dodecanedioylcarnitine

C12:1 Acylcarnitines Dodecenoylcarnitine

C14 Acylcarnitines Tetradecanoylcarnitine

C14:1 Acylcarnitines Tetradecanoylcarnitine

C14:1-OH Acylcarnitines Hydroxytetradecenoylcarnitine

C14:2 Acylcarnitines Tetradecadienylcarnitine

C14:2-OH Acylcarnitines Hydroxytetradecadienylcarnitine

C16 Acylcarnitines Hexadecanoylcarnitine

C16-OH Acylcarnitines Hydroxyhexadecanoylcarnitine
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Analyte Name Analyte Class Biochemical Name

C16:1 Acylcarnitines Hexadecenoylcarnitine

C16:1-OH Acylcarnitines Hydroxyhexadecenoylcarnitine

C16:2 Acylcarnitines Hexadecadienylcarnitine

C16:2-OH Acylcarnitines Hydroxyhexadecadienylcarnitine

C18 Acylcarnitines Octadecanoylcarnitine

C18:1 Acylcarnitines Octadecenoylcarnitine

C18:1-OH Acylcarnitines Hydroxyoctadecenoylcarnitine

C18:2 Acylcarnitines Octadecadienylcarnitine

C2 Acylcarnitines Acetylcarnitine

C3 Acylcarnitines Propionylcarnitine

C3-OH Acylcarnitines Hydroxypropionylcarnitine

C3:1 Acylcarnitines Propenoylcarnitine

C4 Acylcarnitines Butyrylcarnitine

C3-DC (C4-OH) Acylcarnitines Hydroxybutyrylcarnitine

C4:1 Acylcarnitines Butenylcarnitine

C5 Acylcarnitines Valerylcarnitine

C5-M-DC Acylcarnitines Methylglutarylcarnitine

C5-OH (C3-DC-M) Acylcarnitines Hydroxyvalerylcarnitine

C5:1 Acylcarnitines Tiglylcarnitine

C5:1-DC Acylcarnitines Glutaconylcarnitine

C6 (C4:1-DC) Acylcarnitines Hexanoylcarnitine

C5-DC (C6-OH) Acylcarnitines Glutarylcarnitine
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Analyte Name Analyte Class Biochemical Name

C6:1 Acylcarnitines Hexenoylcarnitine

C7-DC Acylcarnitines Pimelylcarnitine

C8 Acylcarnitines Octanoylcarnitine

C9 Acylcarnitines Nonaylcarnitine

lysoPC a C14:0 Glycerophospholipids Lysophosphatidylcholine-acyl-C14:0

lysoPC a C16:0 Glycerophospholipids Lysophosphatidylcholine-acyl-C16:0

lysoPC a C16:1 Glycerophospholipids Lysophosphatidylcholine-acyl-C16:1

lysoPC a C17:0 Glycerophospholipids Lysophosphatidylcholine-acyl-C17:0

lysoPC a C18:0 Glycerophospholipids Lysophosphatidylcholine-acyl-C18:0

lysoPC a C18:1 Glycerophospholipids Lysophosphatidylcholine-acyl-C18:1

lysoPC a C18:2 Glycerophospholipids Lysophosphatidylcholine-acyl-C18:2

lysoPC a C20:3 Glycerophospholipids Lysophosphatidylcholine-acyl-C20:3

lysoPC a C20:4 Glycerophospholipids Lysophosphatidylcholine-acyl-C20:4

lysoPC a C24:0 Glycerophospholipids Lysophosphatidylcholine-acyl-C24:0

lysoPC a C26:0 Glycerophospholipids Lysophosphatidylcholine-acyl-C26:0

lysoPC a C26:1 Glycerophospholipids Lysophosphatidylcholine-acyl-C26:1

lysoPC a C28:0 Glycerophospholipids Lysophosphatidylcholine-acyl-C28:0

lysoPC a C28:1 Glycerophospholipids Lysophosphatidylcholine-acyl-C28:1

PC aa C24:0 Glycerophospholipids Phosphatidylcholine-diacyl-C24:0

PC aa C26:0 Glycerophospholipids Phosphatidylcholine-diacyl-C26:0

PC aa C28:1 Glycerophospholipids Phosphatidylcholine-diacyl-C28:1

PC aa C30:0 Glycerophospholipids Phosphatidylcholine-diacyl-C30:0
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Analyte Name Analyte Class Biochemical Name

PC aa C30:2 Glycerophospholipids Phosphatidylcholine-diacyl-C30:2

PC aa C32:0 Glycerophospholipids Phosphatidylcholine-diacyl-C32:0

PC aa C32:1 Glycerophospholipids Phosphatidylcholine-diacyl-C32:1

PC aa C32:2 Glycerophospholipids Phosphatidylcholine-diacyl-C32:2

PC aa C32:3 Glycerophospholipids Phosphatidylcholine-diacyl-C32:3

PC aa C34:1 Glycerophospholipids Phosphatidylcholine-diacyl-C34:1

PC aa C34:2 Glycerophospholipids Phosphatidylcholine-diacyl-C34:2

PC aa C34:3 Glycerophospholipids Phosphatidylcholine-diacyl-C34:3

PC aa C34:4 Glycerophospholipids Phosphatidylcholine-diacyl-C34:4

PC aa C36:0 Glycerophospholipids Phosphatidylcholine-diacyl-C36:0

PC aa C36:1 Glycerophospholipids Phosphatidylcholine-diacyl-C36:1

PC aa C36:2 Glycerophospholipids Phosphatidylcholine-diacyl-C36:2

PC aa C36:3 Glycerophospholipids Phosphatidylcholine-diacyl-C36:3

PC aa C36:4 Glycerophospholipids Phosphatidylcholine-diacyl-C36:4

PC aa C36:5 Glycerophospholipids Phosphatidylcholine-diacyl-C36:5

PC aa C36:6 Glycerophospholipids Phosphatidylcholine-diacyl-C36:6

PC aa C38:0 Glycerophospholipids Phosphatidylcholine-diacyl-C38:0

PC aa C38:1 Glycerophospholipids Phosphatidylcholine-diacyl-C38:1

PC aa C38:3 Glycerophospholipids Phosphatidylcholine-diacyl-C38:3

PC aa C38:4 Glycerophospholipids Phosphatidylcholine-diacyl-C38:4

PC aa C38:5 Glycerophospholipids Phosphatidylcholine-diacyl-C38:5

PC aa C38:6 Glycerophospholipids Phosphatidylcholine-diacyl-C38:6
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Analyte Name Analyte Class Biochemical Name

PC aa C40:1 Glycerophospholipids Phosphatidylcholine-diacyl-C40:1

PC aa C40:2 Glycerophospholipids Phosphatidylcholine-diacyl-C40:2

PC aa C40:3 Glycerophospholipids Phosphatidylcholine-diacyl-C40:3

PC aa C40:4 Glycerophospholipids Phosphatidylcholine-diacyl-C40:4

PC aa C40:5 Glycerophospholipids Phosphatidylcholine-diacyl-C40:5

PC aa C40:6 Glycerophospholipids Phosphatidylcholine-diacyl-C40:6

PC aa C42:0 Glycerophospholipids Phosphatidylcholine-diacyl-C42:0

PC aa C42:1 Glycerophospholipids Phosphatidylcholine-diacyl-C42:1

PC aa C42:2 Glycerophospholipids Phosphatidylcholine-diacyl-C42:2

PC aa C42:4 Glycerophospholipids Phosphatidylcholine-diacyl-C42:4

PC aa C42:5 Glycerophospholipids Phosphatidylcholine-diacyl-C42:5

PC aa C42:6 Glycerophospholipids Phosphatidylcholine-diacyl-C42:6

PC ae C30:0 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C30:0

PC ae C30:1 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C30:1

PC ae C30:2 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C30:2

PC ae C32:1 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C32:1

PC ae C32:2 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C32:2

PC ae C34:0 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C34:0

PC ae C34:1 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C34:1

PC ae C34:2 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C34:2

PC ae C34:3 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C34:3

PC ae C36:0 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C36:0
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Analyte Name Analyte Class Biochemical Name

PC ae C36:1 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C36:1

PC ae C36:2 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C36:2

PC ae C36:3 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C36:3

PC ae C36:4 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C36:4

PC ae C36:5 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C36:5

PC ae C38:0 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C38:0

PC ae C38:1 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C38:1

PC ae C38:2 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C38:2

PC ae C38:3 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C38:3

PC ae C38:4 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C38:4

PC ae C38:5 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C38:5

PC ae C38:6 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C38:6

PC ae C40:1 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C40:1

PC ae C40:2 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C40:2

PC ae C40:3 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C40:3

PC ae C40:4 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C40:4

PC ae C40:5 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C40:5

PC ae C40:6 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C40:6

PC ae C42:0 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C42:0

PC ae C42:1 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C42:1

PC ae C42:2 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C42:2

PC ae C42:3 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C42:3
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Analyte Name Analyte Class Biochemical Name

PC ae C42:4 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C42:4

PC ae C42:5 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C42:5

PC ae C44:3 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C44:3

PC ae C44:4 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C44:4

PC ae C44:5 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C44:5

PC ae C44:6 Glycerophospholipids Phosphatidylcholine-acyl-alkyl-C44:6

SM (OH) C14:1 Sphingolipids Hydroxysphingomyeline-C14:1

SM (OH) C16:1 Sphingolipids Hydroxysphingomyeline-C16:1

SM (OH) C22:1 Sphingolipids Hydroxysphingomyeline-C22:1

SM (OH) C22:2 Sphingolipids Hydroxysphingomyeline-C22:2

SM (OH) C24:1 Sphingolipids Hydroxysphingomyeline-C24:1

SM C16:0 Sphingolipids Sphingomyeline-C16:0

SM C16:1 Sphingolipids Sphingomyeline-C16:1

SM C18:0 Sphingolipids Sphingomyeline-C18:0

SM C18:1 Sphingolipids Sphingomyeline-C18:1

SM C20:2 Sphingolipids Sphingomyeline-C20:2

SM C22:3 Sphingolipids Sphingomyeline-C22:3

SM C24:0 Sphingolipids Sphingomyeline-C24:0

SM C24:1 Sphingolipids Sphingomyeline-C24:1

SM C26:0 Sphingolipids Sphingomyeline-C26:0

SM C26:1 Sphingolipids Sphingomyeline-C26:1

H1 Sugars Hexose
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Appendix C

Confusion matrix

We had a confusion matrix for each of the ten cross-validation runs. We

summarised the ten runs in a single line by taking the medians of the true

positive (tp), false positive (fp), true negative (tn) and false negative (fn).
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Comparisons tp fp tn fn

Obese vs not obese 8.5 138 425.5 20

Obese vs not obese with visceral fat 85 88 482.5 14.5

Metabolically unhealthy obese vs not

metabolically unhealthy obese

63.5 158.5 437 12

Metabolically unhealthy obese vs not

metabolically unhealthy obese with

visceral fat

64.5 101.5 487.5 8.5

Metabolically healthy obese vs not

metabolically healthy obese

19.5 245 393 9

Metabolically healthy obese vs not

metabolically healthy obese with vis-

ceral fat

22 204.5 437.5 4.5

Metabolically unhealthy obese vs

metabolically healthy obese

19.5 18.5 56 8

Metabolically unhealthy obese vs

metabolically healthy obese with

visceral fat

22.5 24.5 49 6.5
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K. H. Pietiläinen, A. Rissanen, S. Saarni, T. I. A. Sørensen, G. C. M.

Van Baal, and J. R. Harris, “Sex differences in heritability of BMI:

a comparative study of results from twin studies in eight countries,”

Twin Res., vol. 6, no. 5, pp. 409–421, Oct. 2003.

[49] E. W. Demerath, A. C. Choh, S. A. Czerwinski, M. Lee, S. S. Sun,

W. C. Chumlea, D. Duren, R. J. Sherwood, J. Blangero, B. Towne,

and R. M. Siervogel, “Genetic and environmental influences on infant

weight and weight change: the fels longitudinal study,” Am. J. Hum.

Biol., vol. 19, no. 5, pp. 692–702, Sep. 2007.

[50] C. M. A. Haworth, S. Carnell, E. L. Meaburn, O. S. P. Davis,

R. Plomin, and J. Wardle, “Increasing heritability of BMI and stronger

associations with the FTO gene over childhood,” Obesity (Silver

Spring), vol. 16, no. 12, pp. 2663–2668, Dec. 2008.

[51] H.-R. Lajunen, J. Kaprio, A. Keski-Rahkonen, R. J. Rose, L. Pulkki-

nen, A. Rissanen, and K. Silventoinen, “Genetic and environmental

effects on body mass index during adolescence: a prospective study

among finnish twins,” Int. J. Obes. (Lond), vol. 33, no. 5, pp. 559–567,

May 2009.

[52] C. Nan, B. Guo, C. Warner, T. Fowler, T. Barrett, D. Boomsma,

T. Nelson, K. Whitfield, G. Beunen, M. Thomis, H. H. Maes, C. Derom,
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M. C. Almaraz, N. Colomo, I. Esteva de Antonio, M. S. R. de Adana,

F. J. Chaves, S. Morcillo, S. Valdés, and G. Rojo-Mart́ınez, “Metaboli-

cally healthy but obese, a matter of time? findings from the prospective

114

https://genome.sph.umich.edu/wiki/EPACTS


pizarra study,” J. Clin. Endocrinol. Metab., vol. 98, no. 6, pp. 2318–

2325, Jun. 2013.

[101] S. L. Appleton, C. J. Seaborn, R. Visvanathan, C. L. Hill, T. K. Gill,

A. W. Taylor, R. J. Adams, and North West Adelaide Health Study

Team, “Diabetes and cardiovascular disease outcomes in the metaboli-

cally healthy obese phenotype: a cohort study,” Diabetes Care, vol. 36,

no. 8, pp. 2388–2394, Aug. 2013.

[102] R. J. Pruim, R. P. Welch, S. Sanna, T. M. Teslovich, P. S. Chines,

T. P. Gliedt, M. Boehnke, G. R. Abecasis, and C. J. Willer, “Locus-

Zoom: regional visualization of genome-wide association scan results,”

Bioinformatics, vol. 26, no. 18, pp. 2336–2337, Sep. 2010.

[103] https://github.com/statgen/swiss.

[104] A. Buniello, J. A. L. MacArthur, M. Cerezo, L. W. Harris, J. Hayhurst,

C. Malangone, A. McMahon, J. Morales, E. Mountjoy, E. Sollis, D. Su-

veges, O. Vrousgou, P. L. Whetzel, R. Amode, J. A. Guillen, H. S. Riat,

S. J. Trevanion, P. Hall, H. Junkins, P. Flicek, T. Burdett, L. A. Hin-

dorff, F. Cunningham, and H. Parkinson, “The NHGRI-EBI GWAS

catalog of published genome-wide association studies, targeted arrays

and summary statistics 2019,” Nucleic Acids Res., vol. 47, no. D1, pp.

D1005–D1012, Jan. 2019.

[105] L. Yengo, J. Sidorenko, K. E. Kemper, Z. Zheng, A. R. Wood, M. N.

Weedon, T. M. Frayling, J. Hirschhorn, J. Yang, P. M. Visscher, and

GIANT Consortium, “Meta-analysis of genome-wide association stud-

115

https://github.com/statgen/swiss


ies for height and body mass index in 700000 individuals of european

ancestry,” Hum. Mol. Genet., vol. 27, no. 20, pp. 3641–3649, Oct. 2018.

[106] A. V. Khera, M. Chaffin, K. G. Aragam, M. E. Haas, C. Roselli, S. H.

Choi, P. Natarajan, E. S. Lander, S. A. Lubitz, P. T. Ellinor, and

S. Kathiresan, “Genome-wide polygenic scores for common diseases

identify individuals with risk equivalent to monogenic mutations,” Nat.

Genet., vol. 50, no. 9, pp. 1219–1224, Sep. 2018.

[107] S. Chowdhury, T. Dent, N. Pashayan, A. Hall, G. Lyratzopoulos,

N. Hallowell, P. Hall, P. Pharoah, and H. Burton, “Incorporating ge-

nomics into breast and prostate cancer screening: assessing the impli-

cations,” Genet. Med., vol. 15, no. 6, pp. 423–432, Jun. 2013.

[108] J. L. Slunecka, M. D. van der Zee, J. J. Beck, B. N. Johnson, C. T.

Finnicum, R. Pool, J.-J. Hottenga, E. J. C. de Geus, and E. A. Ehli,

“Implementation and implications for polygenic risk scores in health-

care,” Hum. Genomics, vol. 15, no. 1, p. 46, Jul. 2021.

[109] A. R. Martin, M. Kanai, Y. Kamatani, Y. Okada, B. M. Neale, and

M. J. Daly, “Clinical use of current polygenic risk scores may exacerbate

health disparities,” Nat. Genet., vol. 51, no. 4, pp. 584–591, Apr. 2019.

[110] F. Dudbridge, “Power and predictive accuracy of polygenic risk scores,”

PLoS Genet., vol. 9, no. 3, p. e1003348, Mar. 2013.

[111] A. C. F. Lewis and R. C. Green, “Polygenic risk scores in the clinic: new

perspectives needed on familiar ethical issues,” Genome Med., vol. 13,

no. 1, p. 14, Jan. 2021.

116



[112] D. J. M. Crouch and W. F. Bodmer, “Polygenic inheritance, GWAS,

polygenic risk scores, and the search for functional variants,” Proc.

Natl. Acad. Sci. U. S. A., vol. 117, no. 32, pp. 18 924–18 933, Aug.

2020.

[113] N. R. Wray, J. Yang, B. J. Hayes, A. L. Price, M. E. Goddard, and

P. M. Visscher, “Pitfalls of predicting complex traits from SNPs,” Nat.

Rev. Genet., vol. 14, no. 7, pp. 507–515, Jul. 2013.

[114] S. W. Choi, T. S.-H. Mak, and P. F. O’Reilly, “Tutorial: a guide to

performing polygenic risk score analyses,” Nat. Protoc., vol. 15, no. 9,

pp. 2759–2772, Sep. 2020.

[115] A. T. Marees, H. de Kluiver, S. Stringer, F. Vorspan, E. Curis,

C. Marie-Claire, and E. M. Derks, “A tutorial on conducting genome-

wide association studies: Quality control and statistical analysis,” Int.

J. Methods Psychiatr. Res., vol. 27, no. 2, p. e1608, Jun. 2018.
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J. Gräßler, H. Grönberg, C. J. Groves, G. Gusto, J. Haessler, P. Hall,

T. Haller, G. Hallmans, C. A. Hartman, M. Hassinen, C. Hayward,

N. L. Heard-Costa, Q. Helmer, C. Hengstenberg, O. Holmen, J.-J. Hot-
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