
An Integrated Dynamic Method for Allocating Roles and Planning
Tasks for Mixed Human-Robot Teams

Fabio Fusaro1,2∗, Edoardo Lamon1∗, Elena De Momi2, and Arash Ajoudani1

Abstract—This paper proposes a novel dynamic method
based on Behavior Trees (BTs) that integrates planning and
allocation of tasks in mixed human robot teams, suitable for
manufacturing environments. The Behavior Tree formulation
allows encoding a single job as a compound of different
tasks with temporal and logic constraints. In this way, instead
of formulating an offline centralized optimization problem,
the role allocation problem is solved with multiple simplified
online optimization sub-problems, without complex and cross-
schedule task dependencies. These sub-problems are defined
as Mixed-Integer Linear Programs (MILPs), that, according to
the worker-actions related costs and the workers’ availability,
allocate the yet-to-execute tasks among the available workers.
To characterize the behavior of the developed method, we
opted to perform different simulation experiments, in which the
results of the action-worker allocation and the computational
complexity are evaluated. The obtained results, due to the
nature of the algorithm and to the possibility of simulating the
agents’ behavior, illustrate adequately also how the algorithm
performs in real experiments.

I. INTRODUCTION
The increasing demand for flexible and highly reconfig-

urable production lines of small-medium size enterprises
needs industrial manipulators to be able to quickly adapt
to diversified manufacturing requirements. In this context,
torque-controlled collaborative robots (cobots), are not only
able to deal with complex tasks [1] and to execute safe
plans in human-populated and partially unstructured envi-
ronments [2], but also to offload workers from repetitive and
hard tasks [3].

Moreover, cobots are expected to be able to perform a wide
variety of tasks, both autonomously and in collaboration with
human co-workers, that can supervise and complement robot
performance with superior expertise and task understanding,
setting up proper mixed human-robot teams. This scenario
reveals two fundamental problems: how to systematically
assign a role to each member of the team to achieve a shared
goal, and how to adapt online the robot plan to dynamical
changes of role between the team agents.

In the literature, a common approach to model the prob-
lem of allocating roles in a team of agents is through
combinatory approaches. A formal analysis, comprehensive
of computational models, is presented first by Gerkey and
Matarić [4] and then updated by Korsah et al. [5]. Examples
of such methods, applied to human-robot mixed teams are

∗ Contributed equally to this work.
1- HRI2 Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Gen-

ova, Italy. 2- Department of Electronics, Information and Bioengineering,
Politecnico di Milano, Milano, Italy. fabio.fusaro@iit.it

This work was supported by the European Research Council’s (ERC)
starting grant Ergo-Lean (GA 850932).

Fig. 1. Scheme of the allocation and planning method. First from the user
interface, actions and workers information are defined offline. Next, the
BT is constructed using the received characterizations. Then, in the online
phase, the BT starts its execution and dynamically allocate the actions to the
workers, exploiting the Role Allocator. Finally, through the Agent Handler,
the BT either communicates the action to the human worker or makes the
robot executing the task.

represented by [6], [7]. In order to enable the algorithm
with dynamic behaviors, that can adapt the offline plan
with online contingencies, researchers started to add also
dynamic re-scheduler [8]. Another extensively used method
in human-robot teams is represented by AND/OR graphs, for
the ability to decompose assembly tasks [9], [10]. An online
scheduler based on time Petri nets is developed in [11], where
the robot adapts its schedule based on human activities.
In this direction, researchers started to study also which
features should be considered in such problems, adapting the
robot plan to human co-worker preferences, capabilities, and
ergonomics [12]–[16].

The main limitation of these approaches consists in the fact
that the task allocation and planning problems are solved in
two different phases, often using two completely different and
separated methods. The proposed method, instead, exploits
the strength of a centralized reactive and modular task plan-
ning method, in charge of scheduling the tasks executions,
with the advantages of a cost-based role allocator, that,

before the proper execution phase, solves dynamically the
problem of allocating a subset of actions to the agents. The
role of the task planner is to dynamically schedule different
tasks, ensuring that the task temporal and logic constraints,
in terms of sequence or parallel of tasks, are satisfied. In
this way, the planner reduces the centralized problem of
allocating all the tasks to all the agents to different sub-
optimal, but computationally less expensive, problems that
allocate a subset of tasks to the agents, without any constraint
generated by the plan.

In particular, the centralized task planner is defined by
means of Behavior Trees (BTs), which triggers the action
execution of all the agents of the team. Differently from the
usual approach, where the behavior of each robotic agent is
ruled by its own planner, here the BT models the task instead
of the agent. The main advantage consists in the fact that,
in this way, each task can be delegated to a different agent,
according to the results of the Role Allocation node. In par-
ticular, thanks to the Agent Handler node, the tasks assigned
to the robotic agents will be directly executed through the
Action nodes, whereas the other ones will be delegated to
the human workers by means of the Human Communication
node. The architecture of the method is depicted in Figure 1.
On the other hand, the role allocation problem allows to
dynamically assign a suitable agent for each task. The suit-
ability is evaluated through the action-worker related costs,
which are used to describe how well an agent performs a task.
These costs should model both general kino-dynamic agent
features, tasks duration, availability, and also more specific
ones, such as expertise and ergonomics. In particular, by
taking into account tasks’ duration and agent availability, it is
also possible to dynamically schedule the tasks, to coordinate
agents’ effort. The method has been tested with simulation
experiments in which both the proposed BT structure and the
role allocation problem are evaluated. First, the computation
complexity of the whole framework is computed increasing
progressively the number of actions and workers. Then, three
variations of the allocation algorithm, with different values
of the agent-related availability cost, are compared.

To summarize, the contribution of this manuscript consists
of a generic method to manage complex decomposable jobs
with schedule constraints, able to optimally assign an agent
and plan every single task of the job for a heterogeneous
human-robot team. To enable the task planner to dynamically
decide which agent is the most suitable to allocate the task,
we created four new BT nodes to solve the sub-tasks role
allocation and the consequent agents’ handler and executor.

II. MODIFIED BTS WITH ROLE ALLOCATION
A. Preliminaries on Behavior Trees

A BT is a directed rooted tree, consisting of internal
nodes for control flow and leaf nodes for action execution
or condition evaluation. It is composed by parent and child
nodes that are adjacent pairs. The main node, root, is the only
one without parents and starts the execution of its children
by propagating a signal, called tick, through the tree. Once
the children are ticked, they immediately return a status to

TABLE I
BT NODE TYPES AND RETURN STATUS.

Type of Node Symbol Success Failure Running

Sequence →
All children
succeed One child fails

One child
returns
Running

Fallback ? One
child succeeds

All children
fail

One child
returns
Running

Decorator ♢ Custom Custom Custom

Parallel ⇉
≥M children

succeed
> N −M
children fail else

Condition True False Never

Action ▭ Upon
completion

Impossible to
complete

During
execution

the parent: if the child is executing returns RUNNING, if the
node completes the execution successfully returns SUCCESS,
otherwise, if it fails, returns FAILURE. There are two main
types of nodes: control and execution. The control ones are
divided into four standard categories (Sequence, Fallback,
Parallel, Decorator), while the execution ones in two (Action,
Condition). The standard types of nodes, with their symbol
and the return status depending on each case, are summarized
in Table I. Standard BTs were designed to control an agent
behavior, by reactively plan tasks to execute [17]. Thanks
to their design, they can generate different behaviors that
satisfy conditions evaluated online. Moreover, since they
allow the execution of tasks both in parallel and in sequence,
their adaptation to human-robot industrial tasks, such as
cooperative assemblies, looks promising.

B. Nodes for Role Allocation

To integrate the role allocation problem in a BT, the
standard usage of the method should have modified. First, it
is important to specify that, in our scheme, the BT controls
the job behavior, instead of the agent behavior, where a job
is represented by the set of tasks composing it plus their
temporal constraints. In this way, we exploit the BT to model
all the possible execution of a job, and only when one or
multiple tasks composing the job should be executed, the role
allocation problem is solved and, finally, the different agents
are informed of the results (see Figure 1). For this purpose,
we defined four custom nodes and a particular subtree, named
Planning and Allocation Handler, is designed.

Each developed node has to communicate with the others
to share information and data. When the nodes are not
directly connected or the return values are not sufficient to
achieve desired behaviors, the BT exploits input/output ports.
Each port is defined by a unique name and can be used as
static to read elements that are input from the external in
the creation phase of the BT or as dynamic to read and/or
write data. The output ports write the elements into a shared
blackboard associating to each variable a fixed name.

The general structure of the BT developed to plan and
allocate tasks is shown in Figure 2. The tree shows the
combination of tasks in series and parallel, that ends with
a sequence. Before the execution layer, i.e. the action nodes,
we designed a fixed subtree where the Role Allocator node,
represented by the symbol W → A, is in charge of solving

……….…….….

ᴓ

W→A W→A

PAH PAH PAH PAH..…. ..….

Fig. 2. Planning and Allocation Behavior Tree. The structure of the BT is
composed by a sequence of Role Allocator nodes (W → A). Each allocator
node has the Planning and Allocation Handler subtree (PAH), shown in
Figure 3, as children.

┘

Agent
Handler

Human
Communica�on

?

?

┘

…….Robot
Ac�on

Robot
Ac�on

Fig. 3. Planning and Allocation Handler subtree. The developed structure,
using two fallbacks (?) and two inverters (¬) allows to manage the return
status of the Agent Handler node to either communicate the allocation to
the human or make the robot executing the sequence of primitive actions.

the allocation of such actions to the agents. The subtree
Planning and Allocation Handler, children of the Role
Allocator displayed in Figure 3, is in charge of delegating
the task to each agent. Each allocator node has a number of
children equal to the number of tasks that can be executed
in parallel.The custom nodes are explained in details in the
following subsections.

1) Role Allocator Node: This node is the parent of the
Planning and Allocation Handler subtree. It is defined as a
control node and shares few similarities with the parallel
node. The children of this node are the Planning and
Allocation Handler subtrees, one for each task that can be
executed in parallel. The node reads from the static input
port the info of the children’s actions that still have to be
executed, and the agents’ info. In this way, the node can
compute all the agents-task related costs, generate the role
allocation problem as explained in section III, and output the
result. Then, each allocated task ticks the related child. The
node is then executed again until all the tasks are completed.
The pseudocode of the Role Allocator node is synthesized
in Algorithm 1.

2) Agent Handler Node: This node is a custom condition
node and it is in charge of selecting the agent, according to
the allocation results. Specifically, the Agent Handler reads
the results and returns different status in case the task has
to be communicated to a human worker or it has to be
accomplished by a robot. Thanks to the structure of the
Planning and Allocation Handler subtree, if the node returns
FAILURE the BT ticks the Human Communication node
that is in charge to communicate the allocated action to
the human. While, if the node returns SUCCESS, the BT

Algorithm 1 Tick() function of the "RoleAllocator" node.
1: procedure ROLEALLOCATOR::TICK()
2: if action_to_be_allocated ≠ 0 then
3: [W , A] = Allocate()
4: setOutput([W , A])
5: end if
6: for [w, a] in [W , A] do
7: cℎild_idx← a.ID
8: end for
9: for idx in cℎild_idx do
10: if ¬ idx in executing_cℎild then
11: cℎild_status← cℎild(idx).T ick()
12: else
13: cℎild_status← cℎild(idx).Status()
14: end if
15: if cℎild_status == FAILURE then
16: CLEAR(executed_cℎild)
17: return FAILURE
18: else if cℎild_status == SUCCESS then
19: if ¬ idx in executed_cℎild then
20: ADD(idx IN executed_cℎild)
21: end if
22: if executed_cℎild.size() == cℎild.size() then
23: return SUCCESS
24: end if
25: end if
26: end for
27: return RUNNING
28: end procedure

ticks the Robot Action nodes that make the robot executing
the scheduled actions. The pseudocode of the Agent Handler
node is summarized in Algorithm 2.

Algorithm 2 Tick() function of the "AgentHandler" node.
1: procedure AGENTHANDLER::TICK()
2: getInput([W , A])
3: for [w, a] in [W , A] do
4: if w.type == HUMAN then
5: return FAILURE
6: else if w.type == ROBOT then
7: return SUCCESS
8: end if
9: end for
10: end procedure

3) Robot Action Nodes: The action nodes are in charge to
trigger the activation of specific motions of the robots. The
node communicates directly with the robot motion planner
or with the controller, depending on the development of the
node itself. In our case, we defined a finite set of actions,
that represent motion primitives e.g. grasp, move, etc. The
advantage of primitive actions as nodes is that we do not need
to create an action for each robot or different specifications
of the primitive itself. A motion primitive has an interface,
where it is possible to define all the specific information
needed to be executed, position in space, force to be exerted,
etc., but it is implemented differently in each robot. Another
advantage consists in the fact that this action info can be used
not only in the execution phase but also by the role allocator
node to compute the execution costs. When the agent starts

the action execution, the node changes the worker availability
and outputs it in the blackboard. Each agent has its own port
to allow the execution of different actions in parallel avoiding
more than one node changing the status of the same worker.

4) Human Communication Node: The Human Communi-
cation node is the corresponding node to the Robot Action
for the human workers: it is in charge of communicating
to each human agent the action is asked to execute by
reading the allocation results. The communication means
can differ in relation to the environment and/or the workers’
equipment, e.g. displaying the information through a monitor
or wearable devices such as smartwatches or mixed reality
smartglasses [14].

III. ROLE ALLOCATION
A. Problem Statement

The multi-agent task allocation (MATA), considered as
a more general class of the well-known multi-robot task
allocation (MRTA), is the problem of determining which
agent, either human or robotic, is in charge of executing every
single task that is needed to achieve the team’s goal.

Before formalizing the role allocation problem, we need
to specify which are the main components of the problem.
Following the symbolism introduced in [14], we consider
a mixed human-robot team of workers, or agents, W =
{w1, ..., wn}, |W | = N . The goal is to complete a general
single job A that could be further decomposed into the
sequence and parallel of tasks, or actions, A = {a1, .., am},
|A| = M . The set of L actions that can be executed by
each agent wi ∈ W are Ai = {ai1, .., ail}, |Ai| = L, where
Ai ⊆ A. We want to obtain is the allocation of an agent
wi to each of the actions he is able to execute aij , denoted
wi → aij . The set of worker-action allocations is denoted
W → A.

B. Mathematical Model
In this work, the MATA problem is formalized as a

Mixed-Integer Linear Program. The most general scenario of
MATA problems in human-robot collaboration, according to
an adapted version of the taxonomy presented by Gerkey and
Matarić [4], is characterized by multi-task agents, i.e agents
that can execute multiple tasks simultaneously, multi-agent
tasks, i.e, tasks which requires multiple agents, and, finally,
time-extended assignments, i.e. the allocation considers also
future allocations. To the best of the authors’ knowledge,
a mathematical model that captures the features of such a
complex problem is still missing in literature [5]. However, in
our framework, thanks to the decomposition of the task that
BTs are able to achieve, the problem is extremely simplified.
First, each agent, by definition, can perform only a task at
once; second, each task requires a single agent. Moreover,
collaborative tasks, that require more than a single agent
at the same time, are already decomposed by the BT into
parallel tasks. By doing so, we have removed all the complex
and cross-schedule dependencies, i.e. the effective cost of
an agent for a task and the allocation constraints do not
depend on the schedules of other agents. In practice, the

BT Allocator node deals only with the allocation of a sub-
set of tasks, that are only the tasks that, according to the job
schedule represented by the BT, should be allocated within
the available agents, having as constraints, in the worst-
case scenario, intra-schedule dependencies, i.e. the agent
cost for an action depends on the other actions the agent
is performing. Hence, the problem of allocating L actions,
where L ≤ M , to N workers, can be formalized in the
following way.

Minimize:
∑

wi∈W

∑

aj∈A
(cij + �i)xij (1)

Subject to:
xij ∈ {0, 1} ∀wi ∈ W ,∀aj ∈ A
xij = 0 if aj ∉ Ai

∑

wi∈W
xij ≤ 1 ∀aj ∈ A

∑

aj∈A
xij ≤ 1 ∀wi ∈ W

∑

wi∈W

∑

aj∈A
xij = min (L,N)

∑

wi∈W

∑

aj∈A
tijxij ≤ Tk ∀k ∈ K

(2)

where cij represents the cost related to an agent wi in
executing the task aj , �i is the availability cost function, and
the xij represents the M ×N binary optimisation variables
of the problem, where xij = 1 means that the worker i is
assigned to action j (wi → aj).

1) Constraints Design: The problem constraints are ex-
ploited to ensure the feasibility of the problem:

∙ the first is representative of the binary nature of the
variables;

∙ the second one ensures that the solver does not allocates
a worker to an action that is not capable to execute;

∙ the third and fourth constraints ensures that to each agent
only one task is allocated, and the same task is not
allocated to two different agents.

∙ the fifth constraint ensures that there are exactly a
number of allocations equal to the number of agents N ,
in case N > L, where L are the tasks to be allocated,
and L otherwise;

∙ the budget constraint ensures limits to the number of
tasks assigned to each agent, where tij is the budget
that wi would spend for ai, and Tk is the budget limit
for the K joint agent-task constraints.

2) Costs Design: In this work, the optimization costs are
split into two main components: the agent-actions costs cij
and the agent-related availability cost �i. The first should
describe how capable is a worker in performing each task,
considering the kino-dynamics features of the agents, the
tasks duration, the human ergonomics, etc. The role and
the design of the costs for such problems has already been
described in our previous work [14] and, hence, it will not
be repeated here.

The availability value has been added to the cost function,
and not to the problem constraints, since some since we
cannot ensure that at least an agent is always available. In
case multiple agents are available, the allocator node tries
to assign the task to the agent whose cost is smaller. We
consider an agent available if it is present in the workcell and
if it is not occupied by any other task. One simple definition
of the availability activation is the following:

�i =

{

0, if wi is available;
�i, otherwise.

(3)

�i is the availability cost of wi. To ensure that the availability
weights more than the other costs, we set �i > max {cij}.
With this method, we are able to ensure that the allocation
node favors an available agent, minimizing in this way
the single-agent waiting times. In this case, the agent’s
suitability for the task is not considered. On the other hand,
in some situations, instead of allocating a task only among
the available agents, which might all be strongly unsuitable
for the task, it might be convenient to make the system wait
for the most suitable agent. For this reason, we modified the
binary nature of the availability to account for the remaining
execution time:

�i =

⎧

⎪

⎨

⎪

⎩

0, if wi is available;

�i
Taij−taij
Taij

, otherwise. (4)

where Taij is the nominal duration of aj performed by wi,
taij is the time spent by wi for aj from the beginning of aj ,

where taij ≤ Taij . In this way,
Taij−taij
Taij

= 1 if the task has
just started, and, as the agent finishes the task, it goes to 0.
To ensure that the two costs are comparable, �i = max {cij}.

IV. EXPERIMENTS
The performances of the proposed approach are evalu-

ated through simulation experiments. In order to analyze
the performances of the method, different experiments are
conducted varying the job characteristics, such as the num-
ber of actions in sequence, in parallel, and the number
of workers. The simulation experiments were run on a
laptop with an Intel Core i7-8565U 1.8 GHz × 8-cores
CPU and 8 GB RAM. The architecture has been devel-
oped in C++, on Ubuntu 18.04 and ROS Melodic, ex-
ploiting the BehaviorTree.CPP (https://github.com/
BehaviorTree/BehaviorTree.CPP) library to define
the BT nodes and the Osi (https://github.com/
coin-or/Osi) library with GLPK (GNU Linear Program-
ming Kit) solver to formalize the MATA problem.

First, the computational complexity of the whole proposed
method is evaluated. The computation time has been counted
from the initialization of the BT until the action execution,
excluded the execution time of the action, as the mean of 10
repetitions of the same BT. To generate different situations,
the number of tasks in sequence, in parallel, and the number
of agents is progressively increased. The tasks in parallel are

1 3 5 10 15 20 25 35 45 60 80 100
10

-2

10
-1

10
0

Fig. 4. Computational time (in log scale) of series (black) and parallel
(pink) actions and workers (cyan), with different number of variables.

all children of the same allocation node, hence increasing
parallel tasks means increasing the size of the MILP. On the
other hand, the tasks in sequence are not in parallel with any
task, and, hence, increasing the number of tasks in sequence
means increasing the number of MILPs to solve. While the
number of tasks increases, the number of workers is fixed
to 4. Both actions in parallel and in series are increased
from 1 to 100. The results in Figure 4 show that the trend
of the computation time, increasing the number of actions
both series and parallel, can be approximated with a linear
function. It is interesting to notice that, even if the trends
are similar, in this specific scenario, it is faster to solve
a N-sized MILP than N MILPs. This, however, does not
imply that solving the offline centralized problem is faster
than the decomposed sub-problems since the centralized
one should include all the task temporal constraints. A
different simulation is conducted to estimate the evolution
of the computation time increasing the number of workers,
keeping the number of actions fixed. In this case, the BT
is constructed to have 11 Role Allocator nodes in sequence,
each one with: 12, 8, 10, 12, 8, 10, 12, 8, 10, 5, 5 number of
parallel actions, respectively. Again, the number of workers
is increased starting from 1 until 100, and, as can be noticed
in Figure 4 in cyan, increasing the number of agents the
computation time decreases. This is because the number of
actions executed in parallel increases with the workers until
the maximum degree of parallelism is reached. Specifically,
this happens when the agents are 15 and, hence, are more
than the maximum number of actions in parallel, i.e. 12.
From that value on, the computation time is approx. constant.

Then, the allocation approach is validated with a single
fixed job. The goal is to run the allocation method for the
same job with different costs, to validate the different design
of the availability cost �i explained in subsubsection III-
B.2. The job is made of a total of 14 actions, combined
in a sequence of 4 different sets of actions that can be
executed in parallel. For this reason, 4 Role Allocator nodes
are present in the BT. Each node has 3, 4, 5, and 2 actions as
children, respectively. The number of workers is fixed to 4.
The agent-actions related costs cij , for simplicity, are defined
as the time (taij) required by the worker wi to execute the
action aj . First, we compute the allocation with availability
cost defined in Equation 4. The results in Table II show

https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/coin-or/Osi
https://github.com/coin-or/Osi

Time Availability

4

3

2

1

Binary Availability

4

3

2

1

Without Availability

40 60 80 100 120

4

3

2

1

Fig. 5. Detail of the Gantt charts related to the allocation of actions a8−a12:
in the top plot the availability cost �i is computed as in Equation 4, in the
middle one as in Equation 3 and in the bottom one �i = 0.

that, in general, the algorithm picks always the agent that
minimizes the total execution time. These results are then
compared with the same allocation method computed with
the binary availability Equation 3 and without any availability
cost (�i = 0). The results differ for the allocation of action
a12 (see Figure 5). Without considering the availability of
the agents, the action a12 is assigned to the worker w3
minimizing only the agent-actions related costs cij . This,
however, is not optimal since w3 is occupied by another
task. In the case of the binary availability, the action a12
is assigned to the worker w2, since he’s the first available
after finishing a10. But, even if the w2 starts before, the
execution time required by him to achieve a12 is higher than
the expected waiting time for the execution of a8 by w1
plus the following a12, that is the solution proposed with
availability cost in Equation 4. Consequently, this solution
minimizes also the overall duration of that set of tasks, and
also the waiting time for the other agents for the next task.
It can be noticed that actions a8, a9, a10 and a11 starts at
the same time because are defined as parallel actions but in
series with the previous ones, hence, these can start only
when all the previous ones are completed.

V. CONCLUSIONS
In this work, we proposed a novel integrated method

to allocate and plan tasks for mixed human-robot teams.
The method extends the standard formulation of BTs with
custom reusable nodes that enable to dynamically generate
and solve different MILPs. The results showed the crucial
role of the cost definition in the allocation behavior. For
these reasons, further metrics should be evaluated with the
method, to reduce the agent workload by optimizing the
human ergonomics. Furthermore, future studies will compare
the method with other state-of-the-art approaches, focusing
not only on the computational complexity but also on the
intuitiveness and user-friendliness assessment of the interface
to generate the job. Finally, the effectiveness of the allocation
method should be evaluated with real experiments in multi-
human and multi-robot teams.

REFERENCES

[1] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Ko-
suge, and O. Khatib, “Progress and prospects of the human–robot
collaboration,” Autonomous Robots, vol. 42, pp. 957–975, 2018.

TABLE II
ALLOCATION RESULTS OF THE ACTIONS OF THE SIMULATED JOB.

Action tw1
(s) tw2

(s) tw3
(s) tw4

(s) Worker allocated
a1 20 13 15 15 w2
a2 17 20 22 16 w4
a3 10 12 17 11 w1
a4 13 15 9 21 w3
a5 22 18 24 18 w4
a6 11 9 15 15 w2
a7 17 23 18 16 w1
a8 30 54 48 57 w1
a9 66 27 60 39 w2
a10 60 66 39 75 w3
a11 63 48 57 42 w4
a12 45 51 42 54 w1
a13 14 17 9 16 w3
a14 21 10 15 18 w2

[2] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger,
“Collision detection and reaction: A contribution to safe physical
human-robot interaction,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008, pp. 3356–3363.

[3] W. Kim, J. Lee, L. Peternel, N. Tsagarakis, and A. Ajoudani,
“Anticipatory robot assistance for the prevention of human static
joint overloading in human–robot collaboration,” IEEE Robotics and
Automation Letters, 2018.

[4] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[5] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

[6] C. Ferreira, G. Figueira, and P. Amorim, “Scheduling human-robot
teams in collaborative working cells,” International Journal of Pro-
duction Economics, vol. 235, p. 108094, 2021.

[7] M. C. Gombolay, C. Huang, and J. Shah, “Coordination of human-
robot teaming with human task preferences,” in 2015 AAAI Fall
Symposium Series, 2015.

[8] A. Pupa, W. Van Dijk, and C. Secchi, “A human-centered dynamic
scheduling architecture for collaborative application,” IEEE Robotics
and Automation Letters, pp. 1–1, 2021.

[9] L. Johannsmeier and S. Haddadin, “A hierarchical human-robot
interaction-planning framework for task allocation in collaborative
industrial assembly processes,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 41–48, Jan 2017.

[10] K. Darvish, E. Simetti, F. Mastrogiovanni, and G. Casalino, “A hi-
erarchical architecture for human–robot cooperation processes,” IEEE
Transactions on Robotics, vol. 37, no. 2, pp. 567–586, 2021.

[11] A. Casalino, A. M. Zanchettin, L. Piroddi, and P. Rocco, “Optimal
scheduling of human-robot collaborative assembly operations with
time petri nets,” IEEE Transactions on Automation Science and
Engineering, 2019.

[12] M. Gombolay, A. Bair, C. Huang, and J. Shah, “Computational
design of mixed-initiative human–robot teaming that considers human
factors: situational awareness, workload, and workflow preferences,”
The International journal of robotics research, vol. 36, no. 5-7, pp.
597–617, 2017.

[13] G. Michalos, J. Spiliotopoulos, S. Makris, and G. Chryssolouris, “A
method for planning human robot shared tasks,” CIRP journal of
manufacturing science and technology, vol. 22, pp. 76–90, 2018.

[14] E. Lamon, A. De Franco, L. Peternel, and A. Ajoudani, “A capability-
aware role allocation approach to industrial assembly tasks,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3378–3385, 2019.

[15] I. El Makrini, K. Merckaert, J. De Winter, D. Lefeber, and B. Van-
derborght, “Task allocation for improved ergonomics in human-robot
collaborative assembly,” Interaction Studies, vol. 20, no. 1, pp. 102–
133, 2019.

[16] F. Fusaro, E. Lamon, E. De Momi, and A. Ajoudani, “A human-
aware method to plan complex cooperative and autonomous tasks
using behavior trees,” in 2020 IEEE-RAS International Conference
on Humanoid Robots (Humanoids 2020), 2021, p. forthcoming.

[17] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An
introduction. CRC Press, 2018.

	INTRODUCTION
	MODIFIED BTs with ROLE ALLOCATION
	Preliminaries on Behavior Trees
	Nodes for Role Allocation
	Role Allocator Node
	Agent Handler Node
	Robot Action Nodes
	Human Communication Node

	ROLE ALLOCATION
	Problem Statement
	Mathematical Model
	Constraints Design
	Costs Design

	EXPERIMENTS
	CONCLUSIONS
	References

