
npj | systems biology and applications Article
Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-024-00460-3

Robust parameter estimation and
identifiability analysis with hybrid neural
ordinary differential equations in
computational biology

Check for updates

StefanoGiampiccolo1,2, FedericoReali 1, AnnaFochesato1,3,5,Giovanni Iacca 2&LucaMarchetti 1,4

Parameter estimation is one of the central challenges in computational biology. In this paper, we
present an approach to estimatemodel parameters and assess their identifiability in caseswhere only
partial knowledge of the system structure is available. The partially known model is embedded into a
system of hybrid neural ordinary differential equations, with neural networks capturing unknown
systemcomponents. Integrating neural networks into themodel presents twomain challenges: global
exploration of the mechanistic parameter space during optimization and potential loss of parameter
identifiability due to the neural network flexibility. To tackle these challenges, we treat biological
parameters as hyperparameters, allowing for global search during hyperparameter tuning. We then
conduct a posteriori identifiability analysis, extending a well-established method for mechanistic
models. The pipeline performance is evaluated on three test cases designed to replicate real-world
conditions, including noisy data and limited system observability.

Mathematical and computational models are increasingly employed in the
study of biological systems1. These models not only facilitate the creation of
predictive and explanatory tools2 but also offer a means to understand the
interactions among the variables of the system3.

The well-established approach to develop a mathematical model for
biological systems, i.e., the mechanistic modeling approach4, relies on
encoding known biological mechanisms into systems of partial or ordinary
differential equations (PDE orODE) using suitable kinetic laws, e.g., the law
of mass action or Michaelis-Menten kinetics5. These equations typically
incorporate several unknown model parameters, making parameter esti-
mation a central challenge inmodel development6. The prevailing approach
to parameter estimation involves optimizing the model dynamics to align
with experimental data7. Various optimization techniques are employed for
this purpose, including linear andnonlinear least squaresmethods8,9, genetic
and evolutionary algorithms7, Bayesian Optimization10,11, control theory-
derived approaches12 and, more recently, physics-informed neural
networks6. The scarcity of experimental data and the measurement noise
often lead to non-identifiability issues, where the optimization problem
lacks a unique solution13. To address this challenge, variousmethods exist to

analyze the identifiability of model parameters. Structural identifiability
analysis14, performed before parameter estimation, analyzes the structure of
the model to determine if parameters can be uniquely estimated. On the
other hand, practical identifiability analysis15, conducted after parameter
estimation, evaluates how uncertainties in experimental measurements
affect parameter estimation.

Developing mathematical models and estimating model parameters
with themechanisticmodeling approachpresents significant challengesdue
to the need for a detailed understanding of the interactions between (and
within) biological systems. Complex biological systems often involve pro-
cesses at different scales, such as genetic, molecular, tissue, organ, or whole-
body, and such intricatemechanistic details are only partially known16,17. To
overcome the limits of mechanistic modeling, hybrid models that combine
mechanistic ODE-based dynamics with neural network components have
grown in popularity in various scientific domains18,19. The integration
between neural networks and ODE systems is known by different names,
such as Hybrid Neural Ordinary Differential Equations (HNODEs)20,
graybox modeling21,22, or universal differential equations23. In a HNODE,
neural networks are used as universal approximators to represent unknown
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portions of the system. Mathematically, HNODE can be formulated as the
following ODE:

dy
dt

ðtÞ ¼ f ðy;NNðyÞ; t; θÞ yð0Þ ¼ y0; ð1Þ

where NN denotes the neural network component of the model, f encodes
the mechanistic knowledge of the system, and θ represents a vector of
unknown mechanistic parameters. This approach has proven successful in
several fields, and early results in isolated and relatively simple scenarios
have shown promise in computational biology as well24,25. However, mod-
eling with HNODEs remains an active area of research, and best practices
for estimating mechanistic parameters and assessing their identifiability
within this framework remain to be outlined.

Mechanistic parameter estimation within the HNODE framework
presents significant challenges. Firstly, while model calibration in
mechanistic models usually relies on global optimization techniques to
explore the parameter search space9, training HNODEmodels necessitates
the use of local and gradient-based methods23. Secondly, incorporating a
universal approximator, such as a neural network, into a dynamical model
may compromise the identifiability of the HNODE mechanistic
components26,27. In this sense, the existing literature has focused on trying to
enforce the identifiability of the mechanistic parameters within a HNODE
by integrating a regularization term into the cost function28. Common
choices for this regularization term include minimizing the impact of the
neural network on the model28 or ensuring that the outputs of the neural
network and mechanistic part are uncorrelated26. However, these approa-
ches do not always guarantee the correct identification of the mechanistic

part, and theoutcomes dependon the specific regularization termused26. To
the best of our knowledge, the identifiability analysis of the mechanistic
parameters in a HNODE model has not been investigated in the literature
so far.

In this contribution, we present an end-to-end approach for
mechanistic parameter estimation and identifiability analysis in scenarios
where mechanistic knowledge about the system is incomplete. Initially, we
focus on tuning hyperparameters to embed our incomplete mechanistic
model into a HNODE model that is capable of effectively capturing the
experimental dynamics. Subsequently, we proceed to compute mechanistic
parameter estimates by training the HNODE model. Following parameter
estimation, we extend a well-established approach for mechanistic models
to assess the parameter identifiability a posteriori. For identifiable para-
meters, we finally estimate asymptotic confidence intervals (CIs).

The proposed approach has been tested in three different in silico
scenarios, that have been constructed by assuming a lack of information
about some portions of known mechanistic models. We aimed to replicate
typical conditions found in real-world scenarios, with a noisy and scattered
training set describing the time evolution of a subset of themodel variables.
Firstly, we consider the traditional Lotka-Volterra model for predator-prey
interactions. Despite being a relatively simple model, it shows the ability of
the approach to identify compensations between theneural network and the
mechanistic component of the HNODE model. Secondly, we evaluate the
performances of our approachonamodel for cell apoptosis29, known for the
non-identifiability of part of its parameters. Thirdly, we consider amodel of
oscillations in yeast glycolysis30, which has been frequently employed as a
benchmark for inference in computational systems biology due to its
nonlinear oscillatory dynamics.

Fig. 1 | Schematic representation of the workflow.
In the workflow schema, θM1 ; . . . ; θ
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Results
A schematic representation of the workflow is presented in Fig. 1. The input
of the pipeline consists of an incomplete mechanistic model containing
parameters to be estimated, along with a time series dataset containing
experimental observations of some of the system variables. By embedding
the incomplete model into a HNODE model, our approach enables para-
meter estimation and identifiability analysis.

The workflow starts by splitting the observation time points into
training and validation sets (Step 1). In the second step, using this
partition, we expand the incomplete mechanistic model into a
HNODEmodel. We employ Bayesian Optimization to simultaneously
tune the model hyperparameters and explore the mechanistic para-
meter search space (Step 2a). The model is then fully trained (Step 2b),
yielding mechanistic parameter estimates. In the next step (Step 3), we
assess the local identifiability at-a-point of the parameters. For the
locally identifiable ones, we proceed to estimate confidence intervals
(Step 4).

In the rest of the section, we use the following notation. Let
yðt; θM ; θNN ; y0Þ 2 Rn, with n 2 Nþ, be the HNODE model defined by
the following differential equation:

dy
dt

¼ f Mðy; t; θMÞ þ NNðy; t; θNN Þ
yðt0Þ ¼ y0

8<
: ð2Þ

where y0 2 Rn stands for the initial conditions, fM and θM ¼ ðθM1 ; . . . ; θMs Þ
denote the mechanistic part of the model and the s 2 Nþ mechanistic
parameters to be estimated, respectively, while θNN represents the neural
network parameters.We denote the i-th component of themodel as yi(t, θM,
θNN, y0), with i = 1,…, n. Typically, only a subset of the system variables is
observable; we indicate this subset with O ⊆ {1,…, n}. We assume to have
access to the experimentalmeasurements of the observable variables atm+
1 time points t0,…, tm; ŷ

i
j ± σ̂

i
j indicates the observations of the i-th variable

at time tj, with the uncertainty reflecting the variability of themeasurement.
Additionally, we assume to have access to the initial conditions ŷi0 ± σ̂

i
0 of all

the variables.
The remainder of this section is organized as follows. First, we

present a detailed description of each step in the workflow. In the
subsequent subsections, we analyze the results of the pipeline across
various in silico test cases. The implementation details and algorithmic
setup for these test cases are outlined in theMethods Section. Given that
the training of HNODE extends the techniques used for Neural
Ordinary Differential Equations (NODE)31, we begin with an overview
of the methods employed for training NODE, which precedes the
description of the pipeline.

Background: NODE training
In this section, to discuss the NODE case, we assume that fM = 0 in Eq. (2),
indicating no mechanistic knowledge about the system. Under this
hypothesis, the vector field is entirely parameterized by the neural network
NN, and the ODE:

dy
dt ¼ NNðy; t; θNN Þ
yðt0Þ ¼ y0

(
ð3Þ

represents a NODE. Given a loss functionL, the training of the NODE can
be achieved through the minimization of the cost function:

CðθNN Þ ¼ 1
m

Xm
j¼1

X
i2O

Lðyiðtj; θNN ; y0Þ; ŷijÞ; ð4Þ

where yi is computed numerically by integrating Eq. (3).MinimizingC(θNN)
requires to back-propagate the error through theODEsolver algorithmused
for the numerical integration of y. By the chain rule, for a differentiable L,

this amounts to compute the gradients

∂yiðtj; θNN ; y0Þ
∂θNN

:

Chen et al.31 demonstrated that these gradients can be efficiently computed
using adjoint sensitivity32,33, treating the ODE solver as a black box. Adjoint
sensitivity requires a backward integration of the system and different
numerical methods have been proposed to efficiently calculate it23.

As in the traditional ODE case, stiffness constitutes a significant
challenge in the training of NODE34. However, as shown by Kim et al.35,
there are specificways to overcome this issue. These include employing deep
neural network architectures, ad hoc methods for computing adjoint sen-
sitivity, and a normalized loss function.

Step 1: training-validation split
In thefirst step of theworkflow, the observation time points are divided into
training and validation sets, indicated with ftjgj2T and ftjgj2V respectively.
The validation time points are chosen from t1, …, tm to ensure a homo-
geneous distribution along the observed trajectory.

Step 2: model expansion and parameter estimation
In this step, the incompletely specifiedmechanisticmodel is expanded into a
HNODE model through the use of neural networks to replace unknown
portions of the system. The estimates for mechanistic parameters are
derived by training the HNODE model.

The training of a HNODE model is analogous to that of NODE.
Adopting a loss function L, the most straightforward approach would be
minimizing the cost function:

CðθM ; θNN Þ ¼ 1
jTj � jOj

X
j2T

X
i2O

Lðyiðtj; θM ; θNN ; y0Þ; ŷijÞ: ð5Þ

Here, ∣T∣ and ∣O∣denote the cardinality ofT andO respectively. Gradients of
C(θM, θNN) with respect to mechanistic and neural network parameters are
calculated via adjoint sensitivitymethods. If the cost function defined by Eq.
(5) is employed, a single trajectory of y spanning from t0 to tm is computed at
each epoch of the training. This approach, known as single shooting, is often
suboptimal due to the potential risks of the training getting stuck in local
minima27.

Therefore,we adopt themultiple shooting technique (MS)36. InMS, the
time interval (t0, tm) is partitioned into different segments. Rather than
computing a single trajectoryofyon the entire training interval, a potentially
discontinuous trajectory yPW(t, θ

M, θNN) is reconstructed piece-wise by
solving an initial value problem on each segment, adding the states of the
system at the initial points of each segment as additional parameters to be
optimized. The cost function is then composed of two terms:

CðθM ; θNN Þ ¼ CFITðθM ; θNN Þ þ ρ � CDIS θM ; θNN
� �

: ð6Þ

In Eq. (6), CFIT measures the difference between the piecewise-defined
trajectory and the training data, CDIS measures the discontinuity of the
trajectory, andρ 2 R is ahyperparameter. ForCFIT, weuse the cost function
defined in Eq. (5), adopting the loss function

L yiPW tj; θ
M ; θNN

� �
; ŷij

� �
¼

yiPWðtj; θM ; θNN Þ � ŷij

� �2
= σ̂ ij

� �2
if σ̂ ij ≠ 0

yiPWðtj; θM ; θNN Þ � ŷij

� �2
if σ̂ ij ¼ 0

8><
>:

ð7Þ
inwhich the quadratic loss isweighted for the uncertaintymeasure if it is not
zero.CDIS is computedby summing the squared values of the discontinuities
at the extremes of the training interval partition. To prevent overfitting, in
the case of noisy training data, we add an L2 regularization term. Given this
cost function, the training is performed with a gradient-based optimizer,
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and gradients are computed using adjoint sensitivity methods. In our test
cases, we use the Adam optimizer37, and we refine the results with L-BFGS38

on training datasets without noise.
To define the segmentation of the time interval, we partition the

training set of time points into subsets containing the same number k of
items (excluding the last interval), where k is a hyperparameter.Whenusing
MS to train the model, we introduce as additional parameters to optimize
the state of the systemat the initial points of each segment. Theseparameters
are initializedwith themeasured states of the system at the time point when
the corresponding system variable is observable; otherwise, they are initi-
alized with the initial state of the variable.

How to tune the hyperparameters and explore the parameter
search space. The hyperparameters requiring tuning can be grouped
into three different macro-categories: the hyperparameters of the
architecture of the neural network, the starting values of the mechanistic
parameters to initiate the gradient-based optimization, and the hyper-
parameters related to the MS training. This latter category includes the
segmentation of the time interval (t0, tm) used to define the piecewise
trajectory, the weight factor ρ used in Eq. (6), the weight λ of the L2
regularization term, and the learning rate of the gradient-based method.
Incorporating the initial values of θM1 ; . . . ; θ

M
s into hyperparameter

tuning enables the integration of local gradient-based search with
Bayesian Optimization techniques, as proposed by Gao et al.39 The
objective is to globally explore the mechanistic parameter search space
during this step.

The hyperparameters are tuned in two stages, described below.

Hyperparameter tuning - Stage 1. We simultaneously tune all hyper-
parameters, except for the L2 regularization factor λ, using the multi-
variate Tree-Structured Parzen Estimator (TPE)40,41. In each TPE trial,
the HNODE model is trained for a limited number of MS iterations.
The optimizationmetric during the TPE algorithm is the mean squared
error on the validation time points of the trajectory predicted by the
trained model:

1
jVj � jOj

X
j2V

X
i2O

yiðtj; θM ; θNN ; y0Þ � ŷij
σ̂ ij

 !2

:

As before, we employ a pure quadratic error when uncertainty indications
on measurements are absent.

Hyperparameter tuning - Stage 2. In the second stage, we fix the hyper-
parameters tuned in the first step and focus on tuning the L2 regularization
factor, λ, using a grid-search approach. In each trial during this step, the
HNODEmodel is trained for an extended number ofMS iterations, and we
continue to employ the same metric as in the previous step to evaluate
each trial.

The decision to split the tuning process into two stages is motivated by
the observation that the effects of overfittingmay not become apparentwith
a low number of iterations. Therefore, tuning λ in the initial stagemight not
be as effective. Conversely, conducting a large number of MS iterations in
the first stage would significantly increase computational costs.

How to deal with stiffness. Before starting the hyperparameter tuning
phase, the behavior of the HNODE model, whether stiff or non-stiff, is
unknown. To train a stiff HNODE model, we follow the guidelines
outlined for stiff NODE. This involves employing specialized techniques
such as ad hoc adjoint sensitivity methods, deeper neural network
architectures, stiff ODE solvers, and normalized loss functions. We do
not include all configurations used for stiff systems as hyperparameters to
tune, to prevent an excessive increase in the search space dimension.
Instead, we propose initiating the hyperparameter tuning with non-stiff
configurations and monitoring the integration of the HNODE model

during the first trials of the process, such as observing the number of steps
taken by the ODE solver to complete system integration. If stiffness is
detected, we finalize the tuning process and we train the HNODE model
using stiff configurations.

Step 3: local identifiability analysis
In this step, we investigate a posteriori the local identifiability of the
mechanistic parameters θM1 ; . . . ; θ

M
s estimated with the model training.

This is particularly important in HNODE models, as incorporating a uni-
versal approximator, such as a neural network, into a dynamicalmodelmay
compromise the identifiability of mechanistic parameters. The following
subsections introduce the foundational concepts for our approach and the
description of the workflow.

Local identifiability at-a-point and sloppy directions. We refer to the
combined neural network and mechanistic parameter estimates,
obtained through the training in Step 2, as the single vector:

θ ¼ ðθM ; θNN Þ ¼ ðθ1; . . . ; θpÞ:
We recall that the k-th parameter of themodel is locally identifiable at-

a-point42 in θ if

yiðtj; θ; y0Þ ¼ yiðtj; θ; y0Þ 8 j 2 f1; . . . ;mg; i 2 O

implies θk ¼ θk for all θ in a suitable neighborhood of θ (for a discussion of
the relationship between this and other definitions of parameter identifia-
bility, we refer to Supplementary Note 1).

To study the local identifiability, we quantify the change in the
HNODE model behavior, as parameters θ vary from θ, with the function:

χðθÞ ¼ 1
m

1
jOj
Xm
j¼1

X
i2O

yiðtj; θ; y0Þ � yiðtj; θ; y0Þ
γi

 !2

; ð8Þ

where γi ¼ maxjfjyiðtj; θ; y0Þjg is introduced tonormalize the contribution
to χ of each variable. In a neighborhood of θ, the function χ can be
approximated as:

χðθÞ � 1
2
� ðθ � θÞt �HχðθÞ � ðθ � θÞ;

where HχðθÞ denotes the Hessian matrix of χ in θ. If v is an eigenvector of
HχðθÞ and μ is the corresponding eigenvalue, for small values of α it holds:

χð�θ þ α � vÞ � 1
2
� α2 � μ: ð9Þ

Eq. (9) implies that the HNODE model behavior does not change
significantly when the parameters move along the direction identified
by v if μ is zero. In mechanistic models, the eigenvectors related to zero
or almost-zero eigenvalues are commonly called sloppy directions43–45.
Denoting with V0 the null space of Hχ, spanned by the eigenvectors
related to zero eigenvalues, and with VS the subspace spanned by the
remaining eigenvectors, each parameter θk of the model can be
decomposed as:

θk ¼ π0ðθkÞ þ πSðθkÞ with jjπ0ðθkÞjj2 þ jjπSðθkÞjj2 ¼ 1

where π0(θk) and πS(θk) denote the projection of θk onto V0 and VS

respectively. π0(θk) represents the local direction that maximizes the para-
meter perturbation without affecting the model behavior. Although one
might expect identifiability of θk to yield ∥π0(θk)∥2 = 0 and ∥πS(θk)∥2 = 1,
strict equalities generally do not hold. This is because, as observed by
Gutenkunst et al.43, each sloppy eigenvector typically encompasses mixed
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componentsof nearly allmodel parameters.Hence, 0<∥π0(θk)∥2 < 1 applies
to all model parameters.

How to assess the local identifiability at-a-point. Our approach
involves identifying mechanistic parameters θM1 ; . . . ; θ

M
s having a sig-

nificant projection onto the null subspace of the HNODE model. We
proceed as follows. First, we compute HχðθÞ with the Gauss-Newton
method:

Hk;l
χ ðθÞ ¼ 2

m � jOj
Xm
j¼1

X
i2O

1

ðγiÞ2
∂yi

∂θk
ðtj; θ; y0Þ � θk �

∂yi

∂θl
ðtj; θ; y0Þ � θl:

ð10Þ

In Eq. (10), we rescale the sensitivity coefficients tomake them independent
of the absolute values of the parameters46; this consideration is important
when simultaneously considering both neural network and mechanistic
parameters. HχðθÞ is a symmetric and positive semi-definite matrix. We
proceed to determine the null subspace ofHχðθÞ spannedby all eigenvectors
corresponding to eigenvalues μ ≤ ϵ. Here, ϵ is a hyperparameter embodying
the threshold used to distinguish zero eigenvalues in a numerical
environment. To discriminate whether there exists a direction in the
parameter search space along which we can significantly perturb the
parameter θMi without affecting themodel simulation, we analyze the norm
of the projection of θMi ontoV0. If it exceeds a predefined threshold δ, which
is a second hyperparameter of our approach, we classify the parameter as
non-identifiable.

Step 4: CI estimation
In the final step of our pipeline, we estimate CIs for the locally identifiable
parameters. Several methods for estimating parameter CIs in mechanistic
models have been proposed. We employ the Fisher Information Matrix
(FIM)-based approach47. We assume that our observed data follow inde-
pendent Gaussian distributionsNðyij; σ ijÞ, and that our parameter estimator
is an approximation of the maximum likelihood estimator, as proposed in
Yazdani et al.6. Therefore, we can approximate the observed FIM as:

FIMk;lðθÞ ¼
X
j

X
i2O

1

ðσ̂ iÞ2
∂yi

∂θk
ðtj; θ; y0Þ �

∂yi

∂θl
ðtj; θ; y0Þ: ð11Þ

The pseudo-inverse of the FIM provides a lower bound for the covariance
matrix of our estimators48. Consequently, we can define a lower bound σMi
for the standarddeviationof the estimator of theparameter θMi by taking the
square roots of the elements on thediagonal of FIM−1.Wecan thencompute
the lower bound for the α-level confidence intervals of θMi as:

θ
M
i �Φ1þα

2
� σMi ; θ

M
i þΦ1þα

2
� σMi

� �
;

where Φx represents the x quantile of a standard Gaussian distribution.

Lotka-Volterra test case
In this section, we analyze the performance of the pipeline using a test case
based on the Lotka-Volterra predator-prey model, which describes the
temporal dynamics between two species, where one preys upon the other49.
Although it is based on a relatively simple system, this test case offers the
opportunity to evaluate the effectiveness of our approach in detecting
compensationsbetween theneural network and themechanistic parameters
of the model. Additionally, it allows for a discussion on why we opt not to
enforce the identifiability of themechanistic parameters through the use of a
regularizer in the cost function, as proposed by Yin et al.28.

The full mechanistic model is defined by the following system ofODE:

dy1ðtÞ
dt ¼ αy1 � βy1y2

dy2ðtÞ
dt ¼ γy1y2 � δy2;

(
ð12Þ

where y1 represents the prey population, and y2 represents the predator
population. In this context, we assume a lack of information regarding the
interaction terms between the two species (βy1y2 and γy1y2). By replacing
them with a neural network NN : R2 ! R2, we have the following
HNODE model:

dy1ðtÞ
dt ¼ αy1 þ NNð½y1; y2�; θNN Þ½1�

dy2ðtÞ
dt ¼ NNð½y1; y2�; θNN Þ½2� þ δy2:

(
ð13Þ

Ourobjective is to estimate andassess the identifiability of theprey birth rate
α, assuming we know the predator decay rate δ. To generate in silico the
observation datasets, we numerically integrate Eq. (12) over the interval
from t = 0 to t = 5 years (the initial conditions and parameters are provided
in Supplementary Note 2) and sample the states every 0.25 years (resulting
in 21 observed time points). We test our pipeline on a noiseless dataset
(denoted with DS0.00), and on a dataset in which each time series is per-
turbed with a zero-mean Gaussian noise with a standard deviation equal to
5% of its min-max variation (denoted with DS0.05). The pipeline is run
independently on the two datasets. Our search space for the mechanistic
parameter is ½α � 10�2; α � 102�, where α is the ground truth value used for
generating the in silico observations.

We run the pipeline assuming non-stiff configurations, employing an
explicit Runge-Kutta ODE solver50 and the Interpolating Adjointmethod23

to compute adjoint sensitivity. Additionally, the search space for the neural
network architecture is restricted to shallow networks (at most 3 hidden
layers) with tanh as the activation function. The tuned hyperparameters,
together with the search spaces, are reported in Supplementary Table 3. The
dynamics predicted by the fully trained HNODE models are illustrated in
Fig. 2, demonstrating the effective fitting to the observation data points. The
resulting α estimates are reported in Table 1.

To assess the identifiability of α, we analyze its projection onto the null
subspace ofHχ (Fig. 3). In bothHNODEmodels, the normof the projection
exceeds δ, indicating the non-identifiability of the mechanistic parameter.
These projections consist of both α and neural network parameters, sug-
gesting a compensation between the neural network and the mechanistic
parameter. This alignswith our expectations, as thefirst equation of Eq. (13)
consists of a sum between a neural network and a mechanistic term
involving α. It is thus plausible that the neural network, with its approx-
imation properties, could adapt to changes in the mechanistic parameter α.

In this simple scenario, we aim to demonstrate qualitatively that the
projection of the mechanistic parameter onto the null subspace of Hχ

effectively embodies a compensation between the mechanistic parameter
and the neural network. To achieve this, we analyze the model behavior
when the parameters of the trainedHNODEmodel are perturbed along the
direction identified by the projection (Fig. 4). The analysis reveals that,
despite the sensitivity of the model dynamics to changes solely in the
parameter α, moving along the projection allows a significant alteration of
the value of α without impacting the overall model dynamics.

Such compensation hinders the identifiability of α, and our workflow
terminates at this point. We conclude by showing that, in this scenario, the
regularizationof the cost functionproposedbyYin et al.28 doesnot ensure an
accurate estimationofα. Their proposed regularization involvesminimizing
the contribution of the neural network in the HNODE model. Mathema-
tically, this approach consists of adding the following regularizer to the cost
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function:

RðθNN Þ ¼
X
t2X

jjNNð½y1ðtÞ; y2ðtÞ�; θNN Þjj2;
jjðdy1dt ;

dy2
dt Þjj2

where X is a grid of time points on the integration interval. To demonstrate
that in this case this approach would not be effective, we sampled 50 values
forαwithin the interval [0.013, 3] and trained theHNODEmodel keepingα
fixed. This resulted in obtaining a neural network parameterization θNNα for
each α, yielding a profile for the regularizer:

R : α ! RðθNNα Þ:

For α ≤ 2, the value of α is not correlated with the ability of the HNODE
model to fit the data (Supplementary Fig. 1), suggesting that the compen-
sation holds in this region. If the inclusion of the regularizer enables the
accurate estimation of α, the ground truth value α should correspond to the
minimum of the regularizer profile R. However, our analysis indicates that
this is not the case (Fig. 5). Therefore, in this scenario, using the regularizer
would result in a biased estimation of the parameter.

Cell apoptosis test case
The second test case is based on amodel for cell death in apoptosis29, which
constitutes a core sub-network within the signal transduction cascade that
regulates programmed cell death. This model is known for the structural
and practical non-identifiability of part of its parameters6. The equations

defining the model are as follows:

dy1ðtÞ
dt ¼ �k1y4y1 þ kd1y5

dy2ðtÞ
dt ¼ kd2y5 � k3y2y3 þ kd3y6 þ kd4y6

dy3ðtÞ
dt ¼ �k3y2y3 þ kd3y6

dy4ðtÞ
dt ¼ kd4y6 � k1y4y1 þ kd1y5 � k5y7y4 þ kd5y8 þ kd2y5

dy5ðtÞ
dt ¼ �kd2y5 þ k1y4y1 � kd1y5

dy6ðtÞ
dt ¼ �kd4y6 þ k3y2y3 � kd3y6

dy7ðtÞ
dt ¼ �k5y7y4 þ kd5y8 þ kd6y8

dy8ðtÞ
dt ¼ k5y7y4 � kd5y8 � kd6y8:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð14Þ

Table 1 | Lotka-Volterra, estimated values of the prey birth
rate α

Target Dataset Estimate

1.3 DS0.00

DS0.05

0.804
0.744

a b

Fig. 3 | Identifiability analysis of α in the Lotka-Volterra test case. Squarednormof
the projections of the parameterαonto thenull subspace ofHχ for themodels trained on
DS0.00 andDS0.05 (panels a andb respectively). The total height of the bar corresponds to
the squared normof theprojection, while thedifferent components of the projection are
depicted in different colors. The red line indicates the threshold to determine the
identifiability of the parameter (0.05). Parameterswith a squared normof the projection
exceeding this threshold are classified as locally non-identifiable.

a

b

Fig. 2 | Dynamics predicted by the HNODEmodel in the Lotka-Volterra test case. The dynamics predicted by the HNODEmodel trained onDS0.00 andDS0.05 (shown in
panels a and b respectively) are compared with the original model. The points represent the observations of the system, divided into training and validation sets.

https://doi.org/10.1038/s41540-024-00460-3 Article

npj Systems Biology and Applications |          (2024) 10:139 6

www.nature.com/npjsba


In this context, we assume a lack ofmechanistic knowledge about the entire
equation related toy4.We selected this variable tomaximize the challenge, as
the corresponding equation contains the highest number of non-linear
terms in the system. Our objective is to estimate all the parameters of the
model. We assume knowledge of the variables directly influencing the
dynamics of y4; thus, wemodel the unknownderivative of y4 with the neural
network:

dy4ðtÞ
dt

¼ NNð½y1; y4; y5; y6; y7; y8�; θNN Þ:

As in Lotka-Volterra, we assume a search space for the mechanistic para-
meters ranging from 10−2 to 102 times the ground truth value for each
parameter. These ground truth values, derived from the values used by
Aldridge et al.29, are specified in Supplementary Note 6, together with an
analysis of the stiffness of the ODE system.

In the first scenario, we assume that all the system variables are
observable. The observations are generated by numerically integrating
Eq. (14) from 0 to 16 hours, with the parameters and initial conditions
outlined in Supplementary Note 6. The trajectory is sampled every
0.8 hours, resulting in 21 observed time points. Similar to the previous
test case, we consider a datasetDS0.00 without noise, and a datasetDS0.05
in which each time series is perturbed with zero-mean Gaussian noise
with a standard deviation equal to 5% of its min-max variation. In this
test case, after observing the integration in the first trials of the
hyperparameter tuning, we manually switched to stiff configurations.
These configurations include utilizing the TRBDF251 implicit Runge-
Kutta ODE solver and the QuadratureAdjoint35 method for adjoint
sensitivity computation. Additionally, the neural network architecture
search spaces are expanded to include a deeper neural network (up to 6
hidden layers), with gelu as the activation function. The hyperpara-
meters selected by the pipeline are reported in Supplementary Table 8,
and the dynamics for y4, y5, y6, and y7 predicted by the trained HNODE
models are presented in Fig. 6 (Supplementary Figs. 3 and 4 for the
dynamics of all the variables). The trained HNODE model effectively
fits the data.

With the trained HNODE models, we proceed to the identifiability
analysis and the CI estimations of the mechanistic parameters of the model
(Table 2). Two of the model parameters, kd2 and kd4, are classified as
identifiable, and this is empirically confirmed by the accuracy of their

a

b

Fig. 4 | Qualitative inspection of the compensation in the Lotka-Volterra
test case. The dynamics predicted by the HNODE models trained on DS0.00 and
DS0.05 (panels a and b respectively) are compared with the dynamics obtained

perturbing the α value by 10% along the projection onto the null subspace ofHχ, and
with the dynamics obtained perturbing solely α by 10%.

Fig. 5 | Profile of the regularizer in the Lotka-Volterra test case. The profiles of
R(α) for themodels trained onDS0.00 andDS0.05 are plotted in the interval [0, 3]. The
vertical dashed line denotes the ground truth value of α.

https://doi.org/10.1038/s41540-024-00460-3 Article

npj Systems Biology and Applications |          (2024) 10:139 7

www.nature.com/npjsba


estimates (maximum relative error of 0.38% when estimated on the dataset
without noise and 5.08% on the dataset with noise).

To understand why the other mechanistic parameters are classified as
not identifiable, we analyze the components of the projections on the null
subspace of Hχ. The analysis reveals the absence of neural network para-
meter components in both theHNODEmodels (Fig. 7 for themodel trained
on DS0.00, Supplementary Fig. 2 for analogous results obtained with the
model trainedonDS0.05). This implies that the parameternon-identifiability
is not caused by compensations due to the neural network. Notably, the
projections of parameters k1 and kd1 show almost equal contributions from
both the parameters, and the same holds for the parameters k3 and kd3. This
suggests the existence of local compensations between k1 and kd1, as well as
between k3 and kd3.

To assess the existence of such compensations and to evaluate the
performance of our approach with a larger number of identifiable para-
meters, we fix kd1 and k3 to their ground truth values (36.0 h−1 and
24.48 cell ⋅ h−1 ⋅ 10−5 ⋅molecules−1 respectively29) and execute the pipeline.

The selected hyperparameters are listed in Supplementary Table 9; the
dynamics predicted by the HNODEmodels effectively fit the experimental
data (Supplementary Figs. 6 and 7). The results show that in this condition
the identifiability of kd1 and kd3 is restored, allowing for the estimation of
four model parameters with low relative error (Table 3).

Tomimicmore realistic conditions in the second scenario, keeping kd1
and k3 fixed to their ground truth values, we suppose that only the variables
y5 and y6 are observable. We selected these variables because, within the
mechanistic model, they represent the minimal subset that maximizes the
number of identifiable parameters (Supplementary Note 16). The in silico
observations are generated as in the first scenario.However, since only 2 out
of 8 model variables are observable, trajectories are sampled every 0.4 hour
to maintain a comparable amount of information in the training set,
resulting in 42 time points. The hyperparameters tuned in the pipeline are
listed in Supplementary Table 10, and the dynamics of the observable
variables predicted by the HNODE models are shown in Supplementary
Figs. 9 and 10.

a

b

Fig. 6 | Dynamics predicted by the HNODEmodel in the cell apoptosis test case,
first scenario. The dynamics of y4, y5, y6, and y7 predicted by the HNODE model
trained on DS0.00 and DS0.05 (shown in panels a and b respectively) are compared

with the originalmodel. The points represent the observations of the system, divided
into training and validation sets.
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In this scenario kd2, kd3, and kd4 are still identifiable (Table 4), and
can be accurately estimated (maximum relative error of 0.17% when
estimated on the dataset without noise, 11.64% on the dataset with
noise), whereas k1 is not. The analysis of the components of the
projections of the mechanistic parameters onto the null space of Hχ

suggests that the non-identifiability of k1 in this scenario is caused

by a compensation between k1 and the neural network (Fig. 8 and
Supplementary Fig. 8).

Yeast glycolysis model
The last test case is based on a model of oscillations in yeast glycolysis30,
which has been frequently employed as a benchmark for inference in

Fig. 7 | Identifiability analysis of mechanistic
parameters in the cell apoptosis test case, first
scenario (DS0.00). Squared norm of the projections
of the mechanistic parameters onto the null sub-
space ofHχ for themodel trained onDS0.00. The total
height of the bar corresponds to the squared norm of
the projection, while the different components of the
projection are depicted in different colors. The red
line indicates the threshold to determine the iden-
tifiability of the parameter (0.05). Parameters with a
squared norm of the projection exceeding this
threshold are classified as locally non-identifiable.

Table 2 | Cell apoptosis, first scenario - estimated values of mechanistic parameters

Par. Target Dataset Estimate Rel. err. Id. CI

k1 9.61 ⋅ 10−1 DS0.00

DS0.05

2.76 ⋅ 101

5.28 ⋅ 101
2768.72%
5397.02%

kd1 3.60 ⋅ 101 DS0.00

DS0.05

1.82 ⋅ 103

3.45 ⋅ 103
4963.72%
9496.00%

kd2 2.88 ⋅ 101 DS0.00

DS0.05

2.87 ⋅ 101

2.73 ⋅ 101
0.38%
5.08%

✓
✓

(2.84 ⋅ 101, 2.90 ⋅ 101)
(2.43 ⋅ 101, 3.04 ⋅ 101)

k3 2.45 ⋅ 101 DS0.00

DS0.05

4.72 ⋅ 102

1.42 ⋅ 103
1827.91%
5693.37%

kd3 1.80 ⋅ 102 DS0.00

DS0.05

3.53 ⋅ 103

1.22 ⋅ 104
1862.51%
6675.29%

kd4 3.60 DS0.00

DS0.05

3.59
3.69

0.25%
2.61%

✓
✓

(3.55, 3.63)
(3.30, 4.08)

k5 2.52 ⋅ 104 DS0.00

DS0.05

1.17 ⋅ 106

4.36 ⋅ 103
4562.35%
82.68%

kd5 6.01 ⋅ 10−2 DS0.00

DS0.05

6.52 ⋅ 10−1

6.01
984.49%
9900.00%

kd6 6.01 ⋅ 10−1 DS0.00

DS0.05

4.56 ⋅ 101

6.01 ⋅ 101
7489.27%
9900.00%

The symbol✓ denotes the identifiable parameters according to our method. CIs for the model trained on DS0.00 are computed assuming an uncertainty equal to 0.5% of the min-max of each time series.

Table 3 | Cell apoptosis, first scenario, assuming kd1 and k3 fixed to their ground truth values - estimated values of mechanistic
parameters

Par. Target Dataset Estimate Rel. err. Id. CI

k1 9.61 ⋅ 10−1 DS0.00

DS0.05

9.60 ⋅ 10−1

9.75 ⋅ 10−1
0.14%
1.42%

✓
✓

(9.47 ⋅ 10−1, 9.73 ⋅ 10−1)
(8.45 ⋅ 10−1, 1.10)

kd2 2.88 ⋅ 101 DS0.00

DS0.05

2.87 ⋅ 101

2.72 ⋅ 101
0.29%
5.53%

✓
✓

(2.84 ⋅ 101, 2.90 ⋅ 101)
(2.45 ⋅ 101, 2.99 ⋅ 101)

kd3 1.80 ⋅ 102 DS0.00

DS0.05

1.80 ⋅ 102

2.03 ⋅ 102
0.04%
12.88%

✓
✓

(1.78 ⋅ 102, 1.83 ⋅ 102)
(1.77 ⋅ 102, 2.29 ⋅ 102)

kd4 3.60 DS0.00

DS0.05

3.60
3.67

0.08%
2.05%

✓
✓

(3.56, 3.63)
(3.30, 4.05)

k5 2.52 ⋅ 104 DS0.00

DS0.05

1.46 ⋅ 105

3.98 ⋅ 105
479.74%
1481.24%

kd5 6.01 ⋅ 10−2 DS0.00

DS0.05

9.64 ⋅ 10−1

6.01 ⋅ 10−4
1503.46%
99.00%

kd6 6.01 ⋅ 10−1 DS0.00

DS0.05

2.91 ⋅ 101

6.01 ⋅ 10−3
4742.70%
99.00%

The symbol✓ denotes the identifiable parameters according to our method. CIs for the model trained on DS0.00 are computed assuming an uncertainty equal to 0.5% of the min-max of each time series.
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computational systems biology6,52. The model is described by the following
system of ODE:

dy1ðtÞ
dt ¼ J0 � k1y1y6

1þðy6=K1Þq
dy2ðtÞ
dt ¼ 2 k1y1y6

1þðy6=K1Þq � k2y2ðN � y5Þ � k6y2y5
dy3ðtÞ
dt ¼ k2y2ðN � y5Þ � k3y3ðA� y6Þ

dy4ðtÞ
dt ¼ k3y3ðA� y6Þ � k4y4y5 � κðy4 � y7Þ

dy5ðtÞ
dt ¼ k2y2ðN � y5Þ � k4y4y5 � k6y2y5

dy6ðtÞ
dt ¼ �2 k1y1y6

1þðy6=K1Þq þ 2k3y3ðA� y6Þ � k5y6
dy7ðtÞ
dt ¼ ψκðy4 � y7Þ � ky7:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð15Þ

In this test case, we assume a complete absence of mechanistic knowledge
concerning y1.This variablehasbeen chosen tomaximize the challenge, as its
nonlinear oscillatory dynamics have proven to be particularly difficult for
automatic identification of dynamical systems53. Our objective is to estimate
all the parameters of the systems (except J0, which appears only in the
derivative of y1, and therefore is not present in theHNODEmodel).As in the
cell apoptosis case, we assume a knowledge of the variables directly influ-
encing the dynamics of y1, thus the equation of y1 will be approximated by a
neural network depending solely on y1 and y6. Given the greater number of
system parameters compared to the first two test cases, we assume a search
space ranging from 10−1 to 101 times the ground truth value for each
mechanistic parameter. These ground truth values, derived from the values
employed by Ruoff et al.30, are specified in Section Supplementary Note 18.

In the first scenario, we assume that all system variables are observable.
Theobservations are generatedbynumerically integratingEq. (15) from0 to
6 min, using the parameters and initial conditions specified in

Supplementary Note 18. The trajectory is sampled every 0.8 min (21
observation time points). We consider observation datasets with and
without noise, labeled as DS0.00 and DS0.05 respectively. The noise dataset
(DS0.05) is generated as in the two previous test cases. We execute the
pipeline, switching to stiff configurations (as described for the cell apoptosis
case) after observing the first trials of the initial step. The tuned hyper-
parameters are listed in Supplementary Table 17. The trained HNODE
modelsfit the observations (Fig. 9 for thedynamics of the variables y1 and y2,
Supplementary Figs. 11 and 12 for all the model variables).

In the noiseless case, the pipeline assesses the identifiability of all the
parameters, whereas, in the presence of noise, k1 is classified as not identi-
fiable. By comparing the norm of the projections of the mechanistic para-
meters onto the null space ofHχ (Supplementary Fig. 13), we can notice that
also when estimated onDS0.00, the norm of the k1 projection falls just below
our identifiability threshold. In both cases, the projections of k1 are com-
posed by k1 itself and by the neural network parameters, thus embodying a
potential compensationbetween k1 and theneural network.This is plausible
since the parameter k1 in theHNODEmodel directlymultiplies the variable
y1 parameterized by the neural network.

The identifiable parameters are estimated with a maximum relative
error of 1.94% (Table 5) on DS0.00, with the ground truth value of the
parameter always falling within the estimated CIs. When estimated on
DS0.05, themaximum relative error of the identifiable parameter estimates is
52.60%, with the CIs containing the relative ground truth value for 11 out of
12 parameters. Given the challenge of discerning whether the relative error
of parameter estimates originates from the lack ofmechanistic knowledge or
from the noise in the observation dataset, we attempted to estimate all
parameter values using the fully mechanistic model on dataset DS0.05. The
outcomes indicate that the mean and maximum relative errors obtained
with our pipeline are consistent with what is obtained with the fully
mechanistic model (Supplementary Note 24).

Fig. 8 | Identifiability analysis of mechanistic
parameters in the cell apoptosis test case, second
scenario (DS0.00). Squared norm of the projections
of the mechanistic parameters onto the null sub-
space ofHχ for themodel trained onDS0.00. The total
height of the bar corresponds to the squared norm of
the projection, while the different components of the
projection are depicted in different colors. The red
line indicates the threshold to determine the iden-
tifiability of the parameter (0.05). Parameters with a
squared norm of the projection exceeding this
threshold are classified as locally non-identifiable.

Table 4 | Cell apoptosis, second scenario - estimated values of mechanistic parameters

Par. Target Dataset Estimate Rel. err. Id. CI

k1 9.61 ⋅ 10−1 DS0.00

DS0.05

1.32
1.18

37.32%
23.06%

kd2 2.88 ⋅ 101 DS0.00

DS0.05

2.88 ⋅ 101

2.95 ⋅ 101
0.16%
2.60%

✓
✓

(2.45 ⋅ 101, 3.32 ⋅ 101)
( − 6.86 ⋅ 101, 1.28 ⋅ 102)

kd3 1.80 ⋅ 102 DS0.00

DS0.05

1.80 ⋅ 102

2.01 ⋅ 102
0.17%
11.64%

✓
✓

(1.76 ⋅ 102, 1.85 ⋅ 102)
(1.60 ⋅ 102, 2.42 ⋅ 102)

kd4 3.60 DS0.00

DS0.05

3.60
3.90

0.03%
8.22%

✓
✓

(3.56, 3.64)
(3.42, 4.37)

k5 2.52 ⋅ 104 DS0.00

DS0.05

1.79 ⋅ 106

2.62 ⋅ 103
7012.35%
89.59%

kd5 6.01 ⋅ 10−2 DS0.00

DS0.05

6.01 ⋅ 10−4

4.93
99.00%
8095.41%

kd6 6.01 ⋅ 10−1 DS0.00

DS0.05

6.01 ⋅ 10−3

6.01 ⋅ 101
99.00%
9900.00%

The symbol✓ denotes the identifiable parameters according to our method. CIs for the model trained on DS0.00 are computed assuming an uncertainty equal to 0.5% of the min-max of each time series.
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In the second scenario, we assume that only the variables y5 and y6
are observable. We chose these variables because, in the original model,
all parameters are identifiable when y5 and y6 are observed

6. Following a
consistent approach with the previous test case, the in silico observa-
tions are generated as in the first scenario, with the sampling frequency
halved to 0.4minutes, resulting in 42 observed time points. The pipeline

is run analogously to the first scenario. The tuned hyperparameters
are listed in Supplementary Table 18, and the dynamics predicted by
the HNODE model (Supplementary Figs. 14 and 15) fit the
experimental data.

Similar to the first scenario, the results regarding parameter
identifiability vary when the parameters are estimated on DS0.00 and

a

b

Fig. 9 |Dynamics predicted by theHNODEmodel in the yeast glycolysis test case,
first scenario.The dynamics of y1 and y2 predicted by theHNODEmodel trained on
DS0.00 and DS0.05 (shown in panels a and b respectively) are compared with the

original model. The points represent the observations of the system, divided into
training and validation sets.

Table 5 | Yeast glycolysis, first scenario: estimated values of mechanistic parameters

Par. Target Dataset Estimate Rel. err. Id. CI

k1 1.00 ⋅ 102 DS0.00

DS0.05

1.02 ⋅ 102

1.25 ⋅ 102
1.94%
25.43%

✓ (8.46 ⋅ 101, 1.19 ⋅ 102)

K1 5.20 ⋅ 10−1 DS0.00

DS0.05

5.25 ⋅ 10−1

4.65 ⋅ 10−1
0.95%
10.61%

✓
✓

(4.86 ⋅ 10−1, 5.67 ⋅ 10−1)
(1.58 ⋅ 10−1, 1.37)

q 4.00 DS0.00

DS0.05

4.04
3.79

1.02%
5.33%

✓
✓

(3.87, 4.21)
(2.16, 5.42)

k2 6.00 DS0.00

DS0.05

5.96
9.16

0.68%
52.60%

✓
✓

(4.68, 7.24)
(9.16 ⋅ 10−1, 1.99 ⋅ 101)

N 1.00 DS0.00

DS0.05

1.00
7.04 ⋅ 10−1

0.13%
29.61%

✓
✓

(8.20 ⋅ 10−1, 1.18)
(1.0 ⋅ 10−1, 1.34)

k6 1.20 ⋅ 101 DS0.00

DS0.05

1.19 ⋅ 101

9.84
0.57%
17.97%

✓
✓

(1.16 ⋅ 101, 1.23 ⋅ 101)
(7.11, 1.26 ⋅ 101)

k3 1.60 ⋅ 101 DS0.00

DS0.05

1.59 ⋅ 101

1.38 ⋅ 101
0.59%
13.76%

✓
✓

(1.56 ⋅ 101, 1.62 ⋅ 101)
(1.12 ⋅ 101, 1.64 ⋅ 101)

A 4.00 DS0.00

DS0.05

4.00
4.43

0.02%
10.69%

✓
✓

(3.98, 4.02)
(4.21, 4.65)

k4 1.00 ⋅ 102 DS0.00

DS0.05

9.94 ⋅ 101

1.02 ⋅ 102
0.64%
1.75%

✓
✓

(9.73 ⋅ 101, 1.01 ⋅ 102)
(8.50 ⋅ 101, 1.18 ⋅ 102)

κ 1.30 ⋅ 101 DS0.00

DS0.05

1.29 ⋅ 101

1.15 ⋅ 101
0.49%
11.84%

✓
✓

(1.26 ⋅ 101, 1.33 ⋅ 101)
(8.98, 1.39 ⋅ 101)

k5 1.28 DS0.00

DS0.05

1.28
1.31

0.03%
2.40%

✓
✓

(1.26, 1.30)
(1.17, 1.45)

ψ 1.00 ⋅ 10−1 DS0.00

DS0.05

1.00 ⋅ 10−1

1.31 ⋅ 10−1
0.09%
30.55%

✓
✓

(9.55 ⋅ 10−2, 1.05 ⋅ 10−1)
(8.13 ⋅ 10−2, 1.80 ⋅ 10−1)

k 1.80 DS0.00

DS0.05

1.80
2.08

0.02%
15.78%

✓
✓

(1.76, 1.84)
(1.68, 2.48)

The symbol✓ denotes the identifiable parameters according to our method. CIs for the model trained on DS0.00 are computed assuming an uncertainty equal to 0.5% of the min-max of each time series.
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DS0.05 (Table 6). When the parameters are estimated using the dataset
without noise, the pipeline classifies six parameters as identifiable.
However, when estimated using DS0.05, the parameters K1 and k4,
classified as identifiable on DS0.00, are classified as non-identifiable. By
analyzing the projections of the parameters onto the null subspace ofHχ

(Fig. 10), we can notice thatK1 is classified as non-identifiable onDS0.05,
but its projection falls just above the threshold. Conversely, parameter
k4 is classified as identifiable onDS0.00, yet its projection falls just below
the threshold. Interestingly, on both datasets, the neural network
parameters significantly contribute to the projection of nearly all non-

identifiable mechanistic parameters, except for k2 and N. This obser-
vation is consistent with our findings on the cell apoptosis test case:
when the unknown variable y1 is not observable, the neural network can
compensate for changes in mechanistic parameters, also not directly
linked to y1 in the HNODE model.

The identifiable parameters are estimated with a maximum relative
error of 9.26% on DS0.00. On the dataset with error DS0.05 the identifiable
parameters are estimatedwith amaximum relative error of 11.05%. In both
cases, the ground truth value consistently fallswithin the confidence interval
estimated.

Table 6 | Yeast glycolysis, second scenario: estimated values of mechanistic parameters

Par. Target Dataset Estimate Rel. err. Id. CI

k1 1.00 ⋅ 102 DS0.00

DS0.05

5.42 ⋅ 101

7.02 ⋅ 101
45.77%
29.84%

K1 5.20 ⋅ 10−1 DS0.00

DS0.05

5.20 ⋅ 10−1

7.91 ⋅ 10−1
0.04%
52.12%

✓ (2.50 ⋅ 10−1, 1.08)

q 4.00 DS0.00

DS0.05

3.63
4.44

9.26%
11.05%

✓
✓

(1.49, 5.76)
(9.45 ⋅ 10−1, 7.94)

k2 6.00 DS0.00

DS0.05

1.04 ⋅ 101

2.52
74.00%
57.96%

N 1.00 DS0.00

DS0.05

6.61 ⋅ 10−1

2.26
33.94%
126.02%

k6 1.20 ⋅ 101 DS0.00

DS0.05

1.17 ⋅ 101

1.07 ⋅ 101
2.49%
10.74%

✓
✓

(9.58, 1.38 ⋅ 101)
(4.71, 1.67 ⋅ 101)

k3 1.60 ⋅ 101 DS0.00

DS0.05

1.63 ⋅ 101

5.98 ⋅ 101
1.61%
273.76%

✓ (1.29 ⋅ 101, 1.96 ⋅ 101)

A 4.00 DS0.00

DS0.05

4.00
3.79

0.00%
5.27%

✓
✓

(3.90, 4.10)
(3.39, 4.19)

k4 1.00 ⋅ 102 DS0.00

DS0.05

1.06 ⋅ 102

1.94 ⋅ 102
6.26%
93.70%

κ 1.30 ⋅ 101 DS0.00

DS0.05

1.19 ⋅ 101

4.35 ⋅ 101
8.83%
234.70%

k5 1.28 DS0.00

DS0.05

1.33
1.35

3.74%
5.48%

✓
✓

(1.25, 1.41)
(1.05, 1.65)

ψ 1.00 ⋅ 10−1 DS0.00

DS0.05

1.17 ⋅ 10−1

3.97 ⋅ 10−1
16.89%
297.04%

k 1.80 DS0.00

DS0.05

2.21
6.65

23.02%
269.66%

The symbol✓ denotes the identifiable parameters according to our method. CIs for the model trained on DS0.00 are computed assuming an uncertainty equal to 0.5% of the min-max of each time series.

Fig. 10 | Identifiability analysis of mechanistic
parameters in the yeast glycolysis test case, second
scenario. Squared norm of the projections of the
mechanistic parameters onto the null subspace ofHχ

for the model trained on DS0.00 and DS0.05 (panels
a and b respectively). The total height of the bar
corresponds to the squared norm of the projection,
while the different components of the projection are
depicted in different colors. The red line indicates
the threshold to determine the identifiability of the
parameter (0.05). Parameters with a squared norm
of the projection exceeding this threshold are clas-
sified as locally non-identifiable.

a

b
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Discussion
We have introduced a pipeline for estimating mechanistic parameters and
discussing their local identifiability within an incompletely specified
mechanistic model. This workflow leverages the HNODE framework to
embed the original model into a larger model, in which the unknown
portions of the system are described by neural networks. The primary
novelties of our work lie in our approach to conducting a global exploration
of the mechanistic parameter search space and our method to evaluate the
parameter identifiability. First, we include the initial values of mechanistic
parameters into the hyperparameters to be tuned. This involves combining
BayesianOptimization with gradient-based search, with the goal of globally
exploring the parameter search space. Second, to assess the local identifia-
bility at-a-point of the parameters, we extend a classical approach for
identifiability analysis in mechanistic models. Notably, identifiability ana-
lysis for HNODE models has not been previously investigated in the lit-
erature, which has predominantly focused on ensuring the identifiability of
the mechanistic component through regularization of the training cost
function26,28.

The primary limitations of our work include: (1) the assumption of
having access to initial conditions for all state variables within systems, even
under partial observability; (2) the computational cost associated with the
hyperparameter tuning phase; (3) the intrinsic local nature of identifiability
analysis; (4) the arbitrary selection of hyperparameters, ϵ and δ, for iden-
tifiability analysis; and (5) the methodology employed for estimating con-
fidence intervals. All these limitations are discussed in the following
paragraphs.

We assume knowledge of the initial states of all system variables,
possibly with noise, even when only a subset of them is observable. In real-
world scenarios, this assumption may not always be valid. While in certain
cases, scientists have concrete physical insights into the system initial state,
in others, initial concentrations need to be estimated alongside the para-
meters. Notably, this limitation is shared by other approaches to system
identification6.

The initial phase of hyperparameter tuning and exploration of the
mechanistic search space is themost computationally expensive step within
the pipeline (for a discussion of the computational times required to run the
pipeline across the different test cases, see Supplementary Note 26). We
employed the TPE algorithm, and this algorithm has proven effective even
in high-dimensional parameter search spaces, as evidenced by the Yeast
Glycolysis test case, featuring 13 mechanistic parameters and 6 hyper-
parameters. However, employing the TPE algorithm entails sequentially
repeating the training of the candidate HNODE model, each time with a
limited number of epochs. It is important to note that the problem of
hyperparameter tuning is a long-standing problem and different approa-
ches have been proposed for this goal54. These approaches range from
randomand grid search toBayesian optimization and genetic algorithms: in
this work, we did not conduct a comparative analysis of TPE performance
against other hyperparameter tuning methods.

The local nature of our identifiability analysis implies that it might
overlook parameter non-identifiability if distinct parameterizations leading
to similar model simulations are isolated in the search space, as separate
local minima of the cost function.

The hyperparameters ϵ and δ used for identifiability analysis, although
related, have different meanings. The threshold ϵ intuitively distinguishes
what we assume to be negligible changes in the HNODE model behavior
fromnon-negligible changes.This hyperparameter is alsopresent in existing
Hessian-based methods for identifiability analysis of mechanistic models42.
The threshold δ, introduced in ourmethod, intuitively quantifies howmuch
it is possible to perturb themechanistic parameterwith a negligible effect on
the model simulations. δ has been introduced to overcome the limitation of
the dominant parameter approach in the context of HNODE. Existing
Hessian-based methods for identifiability analysis of mechanistic models42

primarily categorize parameters as non-identifiable if they have the highest
projection (in absolute value) onto eigenvectors associated with null
eigenvalues. We decided against using this approach because we observed

empirically that inHNODEmodelswhencompensationoccursbetween the
neural network andmechanistic parameters, the dominant parameter in the
null direction is typically a neural network parameter. Thus, considering
only the dominant parameter, we risk overlooking the role of the
mechanistic parameter. In our test cases, we employed ϵ=10−5 and δ=0.05.
The results of the first two test cases are quite robust to the choice of ϵ and δ
(Supplementary Notes 4 and 17). However, the third test case is more
complex: here changes in ϵ and δ would lead to different results for certain
parameters (Supplementary Note 25).

The fifth limitation of our work is the CI estimation. The FIM-based
approach we employed has several limitations55. By using it, we implicitly
assume the unbiasedness and normality of our estimators47. Additionally,
since our estimators are not linear, the CIs estimated are only lower bounds
of the real CIs47. We opted for this method because of its computational
advantages over other methods, such as likelihood profiling or
bootstrapping-based methods13,55, which would necessitate multiple train-
ings of the HNODE model.

We tested our pipeline in various in silico scenarios of increasing
complexity, assuming a partial lack of mechanistic knowledge in three
models acknowledged as benchmarks in computational biology. In each test
case, we replace either a portion or an entire equation of the system with a
neural network, creating a hybrid model in which the neural network
influences the dynamics of all system variables (as detailed in Supplemen-
taryNote 27). These tests encompass various conditions, including different
levels of noise in the training data and different assumptions regarding the
observability of the system variables. Across all the examined scenarios, our
pipeline consistently enabled the analysis of parameter identifiability and
the accurate estimation of identifiable parameters.

Despite its limitations, the proposedworkflow represents an initial step
toward adapting traditionalmethods utilized in entirelymechanisticmodels
to the HNODE modeling scenario. In future works, we aim to address the
limitations of the pipeline. Firstly, we will consider different state-of-the-art
approaches for hyperparameter tuning, such as Gaussian process56,
evolutionary54, and genetic approaches57, comparing their performances
with TPE. Secondly, we plan to expand the number of test cases to derive a
less arbitrary choice of the thresholds ϵ and δ, which could vary based on the
number of parameters in the HNODE model. Thirdly, we intend to com-
pare the FIM-based method for estimating CIs with other approaches that
have demonstrated greater reliability in completely mechanistic models, as
described by Kreutz et al.13 and Joshi et al.55.

Methods
Algorithmic setup
All the results presented for the test cases described in the Results Section
have been obtained employing the following hyperparameters. The obser-
vation data point datasets are partitioned into training and validation sets
with an8:2 ratio. Thefirst stage of thehyperparameter tuning consists in 500
iterations of TPE: in each trial, the HNODEmodel is trained for 500 epochs
using Adam optimizer. In the second stage of the hyperparameter tuning
(performed only on datasets with noise) the model is trained for 2000
epochs in each trial. The comprehensive training of the HNODE model
encompasses 10000 epochs utilizing the Adam optimizer. Subsequent
refinement involves the application of the L-BFGS algorithm until con-
vergence, with a maximum of 5000 epochs (performed only on noiseless
datasets). The optimizedmechanistic parameters are clipped to the lower or
upper bounds of the parameter search spaces when they exceed those limits.
Each model is trained with 10 initializations of the neural network, with
weights initialized using Glorot Uniform58. The training resulting in the
lowest validation cost is then selected. The identifiability analysis is per-
formed using the thresholds ϵ = 10−5 and δ = 0.05; a discussion regarding
these thresholds is provided in the Discussion Section.

Implementation
All the computations have been run on a Debian-based Linux cluster node,
with two24-coreXeon(R)CPUX5650CPUsand250GBofRAM.The code
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is implemented in Julia v1.9.159, using the SCiML environment23, a software
suite for modeling and simulation that also incorporates machine learning
algorithms. The hyperparameter tuning has been performedwithOptuna60.

Data availability
No experimental data was used as part of this study. The in silico generated
datasets are available at https://github.com/cosbi-research/HNODECB/
tree/main/datasets.

Code availability
The scripts to reproduce the results are available at https://github.com/
cosbi-research/HNODECB.
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