

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

KERNEL INTEGRATION USING VON NEUMANN ENTROPY

Andrea Malossini, Nicola Segata and Enrico Blanzieri

September 2009

Technical Report # DISI-09-050

Kernel Integration using von Neumann Entropy

Andrea Malossini∗, Nicola Segata and Enrico Blanzieri
{malossin,segata,blanzier}@disi.unitn.it

September 3, 2009

Abstract

Kernel methods provide a computational framework to integrate heterogeneous bio-
logical data from different sources for a wide range of learning algorithms by designing a
kernel for each different information source and combining them in a unique kernel through
simple mathematical operations. We develop here a novel technique for weighting kernels
based on their von Neumann entropy. This permits to assess the kernel quality without
using label information, and to integrate kernels before the beginning of the learning pro-
cess. Moreover, we carry out a comparison with the unweighted kernel summation and a
popular technique based on semi-definite programming on kernel integration benchmark
data sets. Finally, we empirically study the variation of the performance of a support vec-
tor machine classifier considering pairs of kernels combined in different ratios, and we show
how, surprisingly, the unweighted sum of kernels seems to lead to the same performance
than a more complex weighting schema.

1 Introduction

Modern molecular biology is characterized by the collection of large volumes of heterogeneous
data deriving, for example, from DNA, mRNA, proteins, metabolites, annotation, abstracts
and many others. Each of these data sets can be represented using different structures, for
example, sequences, real vectors, matrices, trees, graphs and natural language text. Many
existing machine learning algorithms are designed to work on particular data structures and
often cannot be applied or adapted to other structures. Moreover, different data sources are
likely to contain different and thus partly independent information about a particular phe-
nomenon. Combining complementary pieces of information can be expected to enhance the
total information about the problem at hand. In this context the integration of heteroge-
neous biological data, in order to improve and validate analysis tools and machine learning
techniques, is one of the major challenge for the data analysis of high throughput biological
data. In the last ten years, kernel methods have been proposed to solve these problems.

Kernel methods design a unified framework for machine learning techniques based on the
concept of kernel function (and kernel matrices). A kernel is a function that permits a map-
ping of the input data (non necessarily numerical values or vector spaces) in another space
(called feature space) in which the algorithms can be implemented only relying on the scalar
product provided by the kernel, thus not explicitly defining the coordinates of the transformed
points. For a comprehensive discussion the reader can refer to Schölkopf and Smola [2002a]

∗Corresponding Author

1

or Shawe-Taylor and Cristianini [2004]. The most popular kernel method is the Support Vec-
tor Machine (SVM) by Cortes and Vapnik [1995] which has a sound foundation in statistical
learning theory [Vapnik, 2000] and is a representative of supervised classification techniques
(i.e. methods for which a number of samples with correspondent class labels are available).
A wide range of methods are available also for clustering (unsupervised learning) [Xu et al.,
2005, Girolami, 2002, Valizadegan and Jin, 2007], and semi-supervised learning [Xu and Schu-
urmans, 2005, Bennett and Demiriz, 1998, De Bie et al., 2004, Chapelle et al., 2003, Zhao
et al., 2008]. Among other popular kernel methods we can mention regression [Smola and
Schölkopf, 2004], kernel principal component analysis (kPCA) by Schölkopf et al. [1999] and
kernel Fisher’s linear discriminant analysis by Mika et al. [1999a]. The impact of kernel meth-
ods in modern molecular biology is impressive. Examples of successful applications are SVM
analysis of cancer tissues [Furey et al., 2000], semi-supervised protein classification [Weston
et al., 2005] and the articles collected in [Schölkopf et al., 2004].

One of the most important issue that a machine learning algorithm must address in order
to be suitable for modern molecular biology is the integration of different types of data and
representations. Kernel methods allow to integrate different kernel matrices designed and/or
optimized for each data set; we briefly review the existing approaches to kernel integration in
Section 2.

In this work, we present a novel method for integrating kernel matrices based on the von
Neumann entropy of the kernels, which permits to give a measure of the quality of a kernel
matrix, irrespective of the labels, in order to include/exclude or weight the kernel matrices
before the learning process is started. This approach seems to be reasonable, since, as shown
in Malossini, Blanzieri, and Ng [2006], SVM is quite sensitive to mislabeling in the training
samples, in particular when the number of samples is small with respect to the dimensionality
of the problem. We show that the performance of the classifier obtained using our approach
is comparable to the more complex semi-definite or the simplest unweighted-sum approaches.

The paper is organized as follows. In the next section we provide a short review on kernel
integration methods. We then introduce our approach in Section 3. The empirical analysis is
detailed in Section 4, before drawing some conclusions.

2 Kernel integration: state of the art

In the last few years different kernel methods have been proposed in order to integrate different
biological data. To our best knowledge, the first practical approach to data integration using
kernels was developed by Pavlidis et al. [2001b,a, 2002]. The two types of data, gene expression
and phylogenetic profiles, were integrated in different manners:

• Early integration. The two type of vectors (gene and phylogenetic profile) are concate-
nated to form a single enlarged vector and the kernel matrix is computed in this new
input space.

• Late integration. Each classifiers is trained on the single data set and then the resulting
discriminant values are added together to produce a final discriminant value.

• Intermediate integration. The kernel matrices are computed on each data sets and then
added together (the sum of kernels is a kernel); the resulting matrix is used in the
training of the SVM.

2

Their results suggest that the intermediate integration is the better solution among the
three. This is probably due to the fact that it trades off making too many independence
assumptions versus too many dependencies. In fact in the late integration the two data sets
are considered independent (during the learning phase) until both the classifier are built and
only the discriminant values are combined. On the other side, in the early integration, using
a single concatenated input vector, a very strong correlation between different data types is
assumed (e.g. polynomial relationships among different types of input are assumed using a
polynomial kernel).

A natural extension from the simple sum of kernels is the weighted sum of kernels1

K =
m∑

i=1

µi Ki, (1)

where K = {K1,K2, . . . ,Km} is a set of valid kernels and µi ≥ 0, ∀i.
The problem which arises now is the estimation of the weights of the superposition. Ap-

parently, the choice of the weighted combination of kernel matrices seems to be crucial in order
to integrate different information in a way that improves the performance of the associated
classifier.

An elegant attempt to solve the problem of the weights of equation 1 has been proposed
in [Lanckriet et al., 2004b,a] where, using as framework the semi-definite programming [Van-
denberghe and Boyd, 1996], the sum of kernel is extended to a weighted sum of kernel ma-
trices, one per data set. The semi-definite programming can be viewed as a generalization of
the linear programming, where scalar linear inequality constraints are replaced by more gen-
eral linear matrix inequalities. Whereas in the standard SVM formulation the kernel matrix
K is fixed, in this new formulation the superposition of kernel matrices is itself subject to
optimization,

min
µ

max
α

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjyiyj

(
m∑

s=1

µsKs

)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , n
n∑

i=1

αiyi = 0

trace

(
m∑

s=1

µsKs

)
= c,

where c is a constant. The condition on the trace is mandatory for bounding the classi-
fication performance of the classifier. It can be shown that this problem can be reduced
to a quadratically constrained quadratic program. The computation complexity of the semi-
definite programming is O (

n4.5
)

but under reasonable assumption, the problem can be solved
in O (

n3
)
. Overall, the time complexity is O (

m2n3
)
. By solving this problem, one obtains a

discriminant function and a set of weights µi which reflects the relative importance of different
sources of information encoded in the different kernel matrices. The approach can also be
rewritten as a semi-infinite linear problem and solved more efficiently as shown in [Sonnen-
burg et al., 2006a,b]. Lanckriet et al. [2004b] tested the algorithm on yeast genome-wide data

1As long as the weights are greater or equal to zero the resulting function is still a kernel function.

3

sets, including amino-acid sequences, hydropathy profiles, gene expression data and known
protein-protein interactions and found that the method improves with respect to the simple
unweighted sum of kernels and it is robust to noise (in form of random kernel matrices).

Probably one of the simplest way to integrate kernel matrices is to try to minimize the
corresponding cross-validation error [Tsuda et al., 2004]. The main idea is to combine different
kernel matrices using a weighted superposition or using a function (the square function) of
the kernel matrices,

K =

(
m∑

i=1

µi

√
Ki

)2

.

Note that in this last case the parameter µi may be negative too. In order to compute the
cross-validation in closed form the kernel Fisher discriminant analysis is used as classifier [Mika
et al., 1999b]. Then the mixing weights are optimized in a gradient descent fashion. Tsuda
et al. [2004] that proposed this approach, tested the algorithm on two different classification
problems, bacteria classification and gene function prediction with promising results. Vert
and Kanehis [2003] presented an algorithm to extract features from high-dimensional gene
expression profile. Their algorithm exploited a predefined graph whose arcs link genes known
to participate to successive reactions in metabolic pathways. In particular, the algorithm
encoded the graph and the set of expression profiles into kernel functions, and computed a
generalized form of canonical correlation analysis. A comparison of the performance of their
algorithm with respect to the standard SVM algorithm for gene functional prediction is shown
in their paper (yeast data set). Yamanishi et al. [2004] combined different types of data (gene
expressions, protein interactions measured by yeast two-hybrid systems, protein localizations
in the cell and protein phylogenetic profiles) as a sum of kernel matrices. Tsuda et al.
[2003] used, instead, a variant of the expectation-maximization algorithm to the problem of
inferring missing entries in a kernel matrix by using a second kernel matrix from an alternative
data source. Girolami and Zhong [2007] used Gaussian process priors to integrate different
data sources in a Bayesian framework, extending the integration to multi-class problems.
Very recently, always making use of label information, a novel approach based on Canonical
Correlation Analysis, called MultiK-MHKS [Wang et al., 2008], has been proposed to integrate
multiple feature-space views generated by multiple kernels.

3 Von Neumann Entropy for Kernel Integration

In this section we introduce our novel approach to kernel integration that, differently from
other existing methods, does not make use of label information and terminates before the
learning process is started.

3.1 Weighting kernels without label information

The considerable efforts devoted by various research groups to develop optimization algo-
rithms to assign the weights to the kernel matrices have produced many different algorithms
(see Section 2). A key question is whether such algorithms are worth the gain in perfor-
mance, or if a more direct approach is better. Moreover, the majority of the algorithms for
weighting make use of the labels yi (for example in the semi-definite approach the margin is
maximized, hence the label are used), whereas our approach does not use them. The reasons
for discarding the class label information are mainly the following:

4

• some kernel methods for classification and dimensionality reduction do not have label
information. It is the case, for example, of unsupervised learning [Xu et al., 2005,
Girolami, 2002, Valizadegan and Jin, 2007] (no training set labels available), kernel
principal component analysis [Schölkopf et al., 1999] (labels are not considered at all),
and semi-supervised learning [Xu and Schuurmans, 2005, Bennett and Demiriz, 1998,
De Bie et al., 2004, Chapelle et al., 2003, Zhao et al., 2008] (tipically very few training
set labels with respect to training set points);

• classification problems with a high number of classes can rapidly decrease the compu-
tational performances of weighting schemes that use labels. Moreover, since SVM is
inherently devoted to binary classification, the optimization of kernel weights must be
performed using pairs of classes, thus using only a subset of the training set for each op-
timization. This means that the weights are estimated locally and there is no evidence
that using them globally could be beneficial. The methods for multi-label classifica-
tion [Elisseeff and Weston, 2002] (i.e. problems in which multiple class labels can be
assigned to a single sample) have even worse problems in using the labels for kernel
weights estimation because, similarly to the multi-class case, they must decompose the
learning problem and, in addition, they are afflicted by deeper over-fitting problems,
see Schapire and Singer [2000];

• weights obtained using labels might be difficult to interpret (e.g. low values mean noisy
kernel or redundant kernel?).

The approach we introduce in the next section, which basically estimates the kernel weights
before the beginning of the learning process, is motivated by the following facts:

• if the kernel weights are not fixed before the beginning of the learning process, the
overall kernel will be varying inside the optimization process. This can allow too much
generalization power, that can possibly lead to over-fitting problems. It can happen for
the semi-definite programming approach as well as for brute-force methods like cross-
validation;

• permitting the kernel weighs to vary during the learning process makes the learning
process itself computationally very dependent from the number of kernels (and thus
the number of weights) that needs to be integrated. The semi-definite programming
approach is somehow less affected than other approaches by this problem, but its com-
putational requirements are however already demanding. On the other side, if the
weights are estimated independently from the learning process, the dependency of the
computational performances for their estimation with respect to the number of kernels
is linear (notice that, with cross-validation, the dependency is exponential).

For these reasons it would be advisable to evaluate the quality of the kernel matrices before
the learning process is started, hence irrespective to the particular classification task, and find
a method for weighting such matrices based only on the matrices themselves assessing the
quality of a kernel matrix as it is. In this article we present a novel weighting schema which
makes use of the entropy of the kernel matrices to assess their general quality.

5

3.2 Entropy of a kernel matrix

It is known that the generalization power of the support vector machine depends on the size
of the margin and on the size of the smallest ball containing the training points as shown for
example by Schölkopf and Smola [2002b]. The kernel matrices are centered and normalized,
hence, all the points lie on the hypersphere of radius one. As a result, in order to maximize
the generalization power of the SVM classifier we should keep the margin as high as possible.
Intuitively, since we do not use the label of the samples, the best situation is when the points
are projected, as evenly as possible, onto the unit hypersphere in the feature space (because
there will be more room for the margin). We will see that the notion of entropy is strictly
connected to the notion of sparseness of the data.

The definition of entropy has been generalized in quantum computation and information
to positive definite matrix K (formally K Â 1) with trace one (trace(K) = 1) by Nielsen and
Chuang [2000]. The von Neumann entropy is defined as

E(K) = −trace(K log K) = −
∑

eigenvalues

λi log λi,

where K Â 1, trace(K) = 1.

Hence, the eigenvalues λi of the kernel matrix play a crucial role in the computation of
the entropy. In von Neumann entropy, the notion of a smoothed probability distribution is
extended to the smoothness of the eigenvalues. To understand the meaning of smoothness
of eigenvalues we have to consider the kernel principal component analysis kPCA [Schölkopf
et al., 1999].

The principal component analysis is a technique for extracting structure (namely, ex-
plaining the variance) for high dimensional data sets. In particular, given a set of centered
observation {x1, . . . , xn} (or a centered kernel matrix), the sample covariance matrix is given
by

C =
1
n

n∑

i=1

xi x
T
i .

Note that C is positive definite, hence can be diagonalized with non-negative eigenvalues.
By solving the eigenvalue equation λv = Cv we find a new coordinate system described by
the eigenvectors v (the principal axes). The projection of the sample onto these axes are
called principal components, and a small number of them is often sufficient to explain the
structure (variance) of the data. Notice that the principal axes with λ 6= 0 lie in the span of
{x1, . . . , xn},

λv = Cv =
1
n

n∑

i=1

〈 xi , v 〉 xi.

This means that there exists coefficients αj such that v =
∑n

j=1 αjxj and the equation is
equivalent to

λ

n∑

j=1

αj〈 xk , xj 〉 =
1
n

n∑

j=1

αj

n∑

i=1

〈 xi , xj 〉〈 xk , xi 〉, ∀k = 1, . . . , n.

Note that the samples appear in the equation only in form of dot product, hence by using
the “kernel trick”, see Schölkopf and Smola [2002b], the algorithm for principal component

6

Table 1: Kernels used to classify proteins, data on which they are defined, and method for
computing similarities

Kernel
data type similarity measure used (with reference)matrix

KB protein sequence BLAST [Altschul et al., 1990]
KSW protein sequences Smith-Waterman [Smith and Waterman, 1981]
KPFAM protein sequence Pfam Hidden Markov Model [Sonnhammer et al., 1997]
KFFT hydropathy profile Fast Fourier Transform [Kyte and Doolittle, 1982, Lanckriet

et al., 2004a]
KLI protein interactions linear kernel [Schölkopf and Smola, 2002a]
KD protein interactions diffusion kernel [Kondor and Lafferty, 2002]
KE gene expression radial basis kernel [Schölkopf and Smola, 2002a]
KRND random numbers linear kernel [Schölkopf and Smola, 2002a]

analysis can be “kernelized”2,
nλα = Kα, (2)

where α ∈ Rn. It follows that in the kPCA, a few high eigenvalues means that the samples
are concentrated in a linear subspace (of the feature space) of low dimensionality. Hence,
maximizing the entropy means placing the samples in the feature space as evenly as possible
(all eigenvectors are similar, smooth).

3.3 Kernel integration with von Neumann Entropy

Given a set of kernel matrices {K1, . . . ,Km}, by computing the correspondent von Neumann
entropy, we can weight each matrix as

KEWSUM =
m∑

i=1

E(Ki) · Ki. (3)

This scheme gives more weight to matrices which induce more sparseness of the data that can
result in the enlargement of the margin which is, according to the statistical learning theory
of Vapnik [2000] on which SVM is based, a way to increase the generalization ability.

4 Empirical analysis of kernel integration

The data sets we used for the empirical evaluation are proposed in [Lanckriet et al., 2004a],
where different data sources from yeast are combined together (using the semi-definite ap-
proach) to improve the classification of ribosomal proteins and membrane proteins. The
kernel matrices used are shown in Table 1.

In order to assess the performance of the classifiers obtained from the different data
sources we randomly split the samples into a training and test set in a ratio of 80/20 and
repeat the entire procedure 30 times. We then use the area under the ROC curve (AUC or

2It can be shown that the solutions of equation (2) are solutions of n λKα = K2α.

7

ROC score), which is the area under a curve that plots true positive rate as a function of false
positive rate for different classification threshold. The AUC measures the overall quality of
the ranking induced by a classifier; an AUC of 0.5 corresponds to a random classifier, an AUC
of 1 corresponds to the perfect classifier.

4.1 Centering and normalizing

In order to integrate the kernel matrices by using their sum (or weighted sum), the elements
of the different matrices must be made comparable. Hence, the kernel matrices must be
centered and then normalized.

The centering consists in translating each sample in the feature space φ(x) around the
center of mass φS = 1

n

∑n
i=1 φ(xi) of the data set {x1, . . . , xn} to be centered. This can be

accomplished implicitly by using the kernel values only,

κC(x, z) = 〈φ(x)− φS , φ(z)− φS 〉

= κ(x, z)− 1
n

n∑

i=1

κ(x, xi)− 1
n

n∑

i=1

κ(z, xi) +
1
n2

n∑

i,j=1

κ(xi, xj).

The normalization operation consists in normalizing the norm of the mapped samples
φN (x) = φ(x)/‖φ(x)‖ (i.e. projecting all of the data onto the unit sphere in the feature
space), and also this operation can be applied using only the kernel values,

κN(x, z) = 〈φN (x) , φN (z) 〉 =
κ(x, z)√

κ(x, x)κ(z, z)
. (4)

Notice that it is important to center before normalizing, because if the data were far from
the origin normalizing without centering would result in all data points projected onto a very
small area on the unit sphere, reducing the generalization power of the classifier (a small
margin is expected).

Moreover the computation of the entropy requires to normalize the trace of the matrix to
1. This is done as a last step (after centering and normalizing) applying:

κT(x, z) =
κ(x, z)

n∑

i=1

κ(xi, xi)

. (5)

4.2 Results

In Table 2 we report the von Neumann entropy of the kernel matrices and in square bracket
the weight normalized such that the sum of weights is equal to the correspondent number of
matrices. The weights are all close to one, meaning that the resulting kernel matrix is not
really different from the unweighted sum. The diffusion and linear interaction matrices seem
to be consistently under-weighted in the two different problems.

In the first part of Table 3 we report the mean AUC value of classifiers trained on single
kernel matrices. In the ribosomal problem, almost all the matrices produce good results
(above 0.95 of AUC), especially the gene expression kernel matrix. We might expect small,
if any, improvement by combining the kernel matrices because of the very high AUC value

8

Table 2: von Neumann entropy of the kernel matrices. In square brackets the normalized
entropy

Entropy
Kernel matrix Ribosomal Membrane

KB 6.45 [1.12] 7.09 [1.13]
KSW 6.54 [1.13] 7.00 [1.11]
KPFAM 6.16 [1.07] 6.68 [1.06]
KFFT - 6.41 [1.02]
KLI 4.45 [0.77] 4.34 [0.69]
KD 4.88 [0.84] 5.87 [0.92]
KE 6.16 [1.07] 6.72 [1.07]

Figure 1: Scatter plots of von Neumann entropy versus mean AUC for the Ribosomial and
Membrane data sets for highlighting the correlation between entropy and classification per-
formances. The values are taken from Tables 2 and 3.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC − entropy correlation on Ribosomal data

Entropy

M
ea

n
A

U
C

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC − entropy correlation on Membrane data

Entropy

M
ea

n
A

U
C

in this classification task. On the contrary, the membrane classification problem seems to be
well suited for comparisons between single kernel and multiple kernel classifiers, hence, from
now on, we discuss the results only for this problem.

From the comparison of data in Tables 2 and 3 it emerges that entropy correlates with
classification performance. In fact, entropy and mean AUC on the different single kernels are
correlated (R = 0.928 for Ribosomal Proteins data, and R = 0.907 for Membrane Proteins
data) for both data sets, providing evidence on the intuitions presented above. This can be
seen also from the scatter plots presented in Figure 1.

We compare the performance of the single-kernel classifiers with the performance of classi-
fiers trained on unweighted sum of kernels KUSUM, entropy-weighted sum of kernels KEWSUM,
and kernel obtained from semi-definite programming KSDP. From the second part of Table 3
we note that the integration of different data really improves the classifier, from a 0.8322
of the Pfam kernel to the 0.9194 of the unweighted sum, an increase of about 10% in the
performance.

However, it seems that weighting the different kernels has a small (if any) impact on

9

Table 3: Mean AUC (and standard deviation) for the ribosomal and membrane classification
problems using a standard 1-norm SVM. 30 random learning/test splits (respectively 80%
and 20%). KUSUM indicates the unweighted sum of kernels. KEWSUM indicates the entropy
weighted sum of kernels. KSDP indicates the weighted sum of kernels using the semi-definite
programming approach. The suffix +RND means that we add a random kernel the respective
weighted/unweighted kernel. The suffix −remove means that we remove the kernels whose
normalized entropy is less than 1.

Kernel used AUC - Ribosomal AUC - Membane

KB 0.9825 (0.0102) 0.8316 (0.0199)
KSW 0.9898 (0.0084) 0.8082 (0.0256)
KPFAM 0.9570 (0.0183) 0.8322 (0.0196)
KFFT - 0.7737 (0.0325)
KLI 0.8485 (0.0448) 0.6515 (0.0239)
KD 0.8050 (0.0540) 0.7478 (0.0229)
KE 0.9990 (0.0011) 0.7452 (0.0272)

KUSUM 0.9997 (0.0004) 0.9194 (0.0142)
KEWSUM 0.9999 (0.0002) 0.9141 (0.0139)
KSDP 0.9998 (0.0004) 0.9185 (0.0154)
KUSUM+RND 0.9997 (0.0004) 0.9115 (0.0136)
KEWSUM+RND 0.9997 (0.0005) 0.9132 (0.0147)
KUSUM−remove 0.9998 (0.0003) 0.8838 (0.0233)
KEWSUM−remove 0.9997 (0.0004) 0.8810 (0.0198)

the classification performance; the respective AUC of USUM, EWSUM, and SDP are very
similar (within the standard errors). Moreover, adding a random kernel matrix (+RND suffix)
to the combination does not modify substantially the performance. This is not surprising
because it is known that the SVM is resistant to noise in the features (less resistant to
noise in the labels as shown by Malossini, Blanzieri, and Ng [2006]). The random kernel is
constructed by generating random sample, sampling each feature from a Gaussian distribution
(Gaussian noise) and using the linear kernel to compute the kernel matrix. Probably adding
more random matrices would result in a degradation of the performance3, but this (artificial)
situation rarely arises in practical applications. Another point to note is that generally it
is better not to remove kernels with low entropy (under the unity), because they may still
contain useful information (see KUSUM−remove and KEWSUM−remove).

As a matter of fact, the numbers suggest that the unweighted combination of kernels
leads to good results and that the weighting has no evident effect on the performance of the
classifier obtained. These results agree with the conclusion of Lewis et al. [2006], where using
different data sets the same conclusion are drawn.

It is now interesting to understand why the kernel weighting seems to have no (or little)
effect to the performance of the classifier with respect to the unweighted sum of kernels.

3The SDP approach is more resistant to the addition of more random kernel matrices, as shown by Lanckriet
et al. [2004a].

10

Figure 2: The figure plots the mean AUC and standard errors when varying the relative ratio
log2(µE/µRND), where µE and µRND are the weights assigned to the expression kernel KE and
the random kernel KRND.

−20 −15 −10 −5 0 5 10 15 20

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

Ribosomal E / RND

Log2 ratio of kernel weights

M
ea

n
A

U
C

RND

E

−20 −15 −10 −5 0 5 10 15 20
0.

45
0.

55
0.

65
0.

75
0.

85

Membrane PFAM / RND

Log2 ratio of kernel weights

M
ea

n
A

U
C

RND

PFAM

We carry on with an empirical analysis of the performance of the classifiers (ribosomal and
membrane) when varying the ratio of the kernel weights.

The first experiment consists in analyzing the effect of adding a Gaussian noise kernel
to the best kernel of each classification problem. In Figure 2 we see that the unweighted
combination of the single kernel which leads to the best classifier with a random kernel does
not influence the performance of the classifiers. The dashed lines denote the AUC level of
the classifiers when using a single kernel (reported above and below the lines). Only when
the random kernel has a weight 32 times higher than the best kernel the performances start
dropping (albeit of a small quantity). This experiment confirms that the SVM is robust to
Gaussian noise in the features.

In the next experiment we consider the ribosomal problem and analyze the mean AUC
when varying the relative ratio of the expression kernel with the other kernels. In Figure 3,
we note that since the expression kernel is a very good kernel for the classification of the
ribosomal proteins, then adding one of the other kernels has not effect on the resulting ROC
score around zero (i.e. the unweighted sum, log2 ratio = 0).

When analyzing the membrane problem the shape of the curves changes. In Figure 4 we
plot the variation in the ROC score when adding to the PFAM kernel (the optimal single
kernel for that problem) other kernels in different ratio. We can see that adding two different
kernel can lead to an increase in the performance of the classifier.

The maximum of the curve is obtained very close to the ratio of zero (unweighted sum
of kernels) and the ROC score near the edge of the plot tends to the respective single kernel
performance. Only in the plot relative to the kernel KB the maximum seems to be shifted
to the left (notice, however, that within the standard error the AUC values are comparable).
This tendency is confirmed in Figure 5, where the reference kernel is KB. In some plots, the
maximum is shifted to the right (especially in the B/FFT plot), but considering the standard
errors the variation in the ROC score is minimal. In the analysis of the plots in Figure 6 the
trend is always the same, a maximum near or at the ratio equal to zero.

These common behaviors seems to suggest that the way the kernel matrices are centered

11

Figure 3: Variation in the AUC score when to the expression kernel is added one of the other
kernels.

−20 −15 −10 −5 0 5 10 15 20

0.
97

0
0.

98
0

0.
99

0
1.

00
0

Ribosomal E / B

Log2 ratio of kernel weights

M
ea

n
A

U
C

B

E

−20 −15 −10 −5 0 5 10 15 20

0.
74

0.
82

0.
90

0.
98

Ribosomal E / D

Log2 ratio of kernel weights

M
ea

n
A

U
C

D

E

−20 −15 −10 −5 0 5 10 15 20

0.
80

0.
86

0.
92

0.
98

Ribosomal E / LI

Log2 ratio of kernel weights

M
ea

n
A

U
C

LI

E

−20 −15 −10 −5 0 5 10 15 20

0.
93

0
0.

95
0

0.
97

0
0.

99
0

Ribosomal E / PFAM

Log2 ratio of kernel weights

M
ea

n
A

U
C

PFAM

E

−20 −15 −10 −5 0 5 10 15 20

0.
97

8
0.

98
6

0.
99

4

Ribosomal E / SW

Log2 ratio of kernel weights

M
ea

n
A

U
C

SW

E

12

Figure 4: Membrane problem. Variation in the AUC score when to the PFAM kernel is added
one of the other kernels.

−20 −15 −10 −5 0 5 10 15 20

0.
81

0.
84

0.
87

Membrane PFAM / B

Log2 ratio of kernel weights

M
ea

n
A

U
C

B

PFAM

−20 −15 −10 −5 0 5 10 15 20

0.
74

0.
80

0.
86

0.
92

Membrane PFAM / D

Log2 ratio of kernel weights

M
ea

n
A

U
C

D

PFAM

−20 −15 −10 −5 0 5 10 15 20

0.
60

0.
70

0.
80

0.
90

Membrane PFAM / LI

Log2 ratio of kernel weights

M
ea

n
A

U
C

LI

PFAM

−20 −15 −10 −5 0 5 10 15 20

0.
74

0.
77

0.
80

0.
83

0.
86

Membrane PFAM / FFT

Log2 ratio of kernel weights

M
ea

n
A

U
C

FFT

PFAM

−20 −15 −10 −5 0 5 10 15 20

0.
77

0.
80

0.
83

0.
86

Membrane PFAM / SW

Log2 ratio of kernel weights

M
ea

n
A

U
C

SW
PFAM

−20 −15 −10 −5 0 5 10 15 20

0.
72

0.
78

0.
84

Membrane PFAM / E

Log2 ratio of kernel weights

M
ea

n
A

U
C

E

PFAM

13

Figure 5: Variation in the AUC score when to the B kernel is added one of the other kernels.

−20 −15 −10 −5 0 5 10 15 20

0.
72

0.
78

0.
84

0.
90

Membrane B / D

Log2 ratio of kernel weights

M
ea

n
A

U
C

D

B

−20 −15 −10 −5 0 5 10 15 20

0.
60

0.
70

0.
80

0.
90

Membrane B / LI

Log2 ratio of kernel weights

M
ea

n
A

U
C

LI

B

−20 −15 −10 −5 0 5 10 15 20

0.
74

0.
78

0.
82

0.
86

Membrane B / FFT

Log2 ratio of kernel weights

M
ea

n
A

U
C

FFT

B

−20 −15 −10 −5 0 5 10 15 20

0.
78

0.
81

0.
84

0.
87

Membrane B / SW

Log2 ratio of kernel weights

M
ea

n
A

U
C

SW
B

−20 −15 −10 −5 0 5 10 15 20

0.
72

0.
76

0.
80

0.
84

0.
88

Membrane B / E

Log2 ratio of kernel weights

M
ea

n
A

U
C

E

B

14

Figure 6: Variation in the AUC score when to the SW kernel is added one of the other kernels.

−20 −15 −10 −5 0 5 10 15 20

0.
72

0.
76

0.
80

0.
84

0.
88

Membrane SW / D

Log2 ratio of kernel weights

M
ea

n
A

U
C

D

SW

−20 −15 −10 −5 0 5 10 15 20

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Membrane SW / LI

Log2 ratio of kernel weights

M
ea

n
A

U
C

LI

SW

−20 −15 −10 −5 0 5 10 15 20

0.
74

0.
76

0.
78

0.
80

0.
82

0.
84

Membrane SW / FFT

Log2 ratio of kernel weights

M
ea

n
A

U
C

FFT

SW

−20 −15 −10 −5 0 5 10 15 20

0.
72

0.
76

0.
80

0.
84

0.
88

Membrane SW / E

Log2 ratio of kernel weights

M
ea

n
A

U
C

E

SW

15

and normalized (i.e. projected on the unit hypersphere) renders the unweighted sum of kernel
the best choice for integration.

5 Conclusions

In this paper we proposed a novel method for integrating different data sets based on the
entropy of kernel matrices. We show that von Neumann entropy correlates with the classifi-
cation performances of different kernels on bioinformatics data sets and thus we used entropy
to assign the weights of different and heterogeneous kernels in a simple kernel integration
scheme. Our method is considerably less computationally expensive than the semi-definite
approach, involving only the computation of a function of the eigenvalues of the kernel ma-
trices and, differently from existing approaches, the computational complexity is only linear
with the number of kernels. Moreover our method is independent from the labels of the sam-
ples and from the learning process, two characteristics that makes it suitable for a wide range
of kernel methods, whereas the use of label restricts the application domain to supervised
classification. The results obtained on SVM classification are equivalent to those derived us-
ing the semi-definite approach and, surprisingly, to those achieved using a simple unweighted
sum of kernels.

This conclusion agrees with the conclusion derived in a recent paper [Lewis et al., 2006],
where a study on the performance of the SVM on the task of inferring gene functional annota-
tions from a combination of protein sequences and structure data is carried out. The authors
stated that the unweighted combination of kernels performed better, or equally, than the
more complex weighted combination using the semi-definite approach and that larger data
sets might benefit from a weighted combination.

However, as analyzed here, even when the number of data set is higher (six in one problem
and seven in the other) still the unweighted sum of kernels gives performance similar to
the weighted ones. Moreover, as a further investigation, we empirically showed that when
considering the sum of pairs of kernels, the integration of such kernels was beneficial and the
maximum of performance are obtained with the unweighted sum of kernels.

References

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

Kristin P. Bennett and Ayhan Demiriz. Semi-supervised support vector machines. In Advances
in Neural Information Processing Systems, pages 368–374. MIT Press, 1998.

O. Chapelle, J. Weston, and B. Schlkopf. Cluster kernels for semi-supervised learning. In
S. Becker, S. Thrun, and K. Obermayer, editors, NIPS 2002, volume 15, pages 585–592,
Cambridge, MA, USA, 2003. MIT Press.

C. Cortes and V. Vapnik. Support-vector networks. Mach Learn, 20(3):273–297, 1995.

T. De Bie, K. Arenberg, and N. Cristianini. Convex Methods for Transduction. In Advances in
Neural Information Processing Systems 16: Proceedings of the 2003 Conference. Bradford
Book, 2004.

16

A. Elisseeff and J. Weston. A Kernel Method for Multi-Labelled Classification. Advances in
Neural Information Processing Systems, 1:681–688, 2002.

T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler. Sup-
port vector machine classification and validation of cancer tissue samples using microarray
expression data, 2000.

M. Girolami. Mercer kernel-based clustering in feature space. Neural Networks, IEEE Trans-
actions on, 13(3):780–784, May 2002. ISSN 1045-9227. doi: 10.1109/TNN.2002.1000150.

M. Girolami and M. Zhong. Data integration for classification problems employing gaussian
process priors. In B. Scholkopf, J. C. Platt, and T. Hofmann, editors, Advances in Neural
Information Processing Systems 19. MIT Press, Cambridge, MA, 2007. To appear.

R.I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proceedings of the ICML, 2002.

J. Kyte and RF Doolittle. A simple method for displaying the hydropathic character of a
protein. Journal of Molecular Biology, 157(1):105–32, 1982.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical
framework for genomic data fusion. Bioinformatics, 20(16):2626–2635, 2004a.

G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble. Kernel-based
data fusion and its application to protein function prediction in yeast. In Proceedings of
the Pacific Symposium on Biocomputing (PSB), Big Island of Hawaii, Hawaii, 2004b.

Darrin P. Lewis, Tony Jebara, and William Stafford Noble. Support vector machine learn-
ing from heterogeneous data: an empirical analysis using protein sequence and structure.
Bioinformatics, 22(22):2753–2760, 2006.

Andrea Malossini, Enrico Blanzieri, and Raymond T. Ng. Detecting potential labeling errors
in microarrays by data perturbation. Bioinformatics, 22(17):2114–2121, 2006. doi: 10.
1093/bioinformatics/btl346.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and KR Mullers. Fisher discriminant analysis
with kernels. In Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999
IEEE Signal Processing Society Workshop, pages 41–48, 1999a.

S. Mika et al. Fisher discriminant analysis with kernels. In Y.-H Hu, E. Larsen, J.and Wilson,
and Dougglas S., editors, Neural Networks for Signal Processing, pages 41–48. IEEE, 1999b.

M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge UK, 2000.

P. Pavlidis, T. S. Furey, M. Liberto, D. Haussler, and W. N. Grundy. Promoter region-based
classification of genes. In Proceedings of the Pacific Symposium on Biocomputing, pages
151–163, River Edge, NJ, 2001a. World Scientific.

P. Pavlidis, J. Weston, J. Cai, and W. N. Grundy. Gene functional classification from heteroge-
neous data. In Proceedings of the Fifth Annual International conference on Computational
Biology (RECOMB), pages 249–255, New York, 2001b. ACM Press.

17

P. Pavlidis, J. Weston, J. Cai, and W. S. Noble. Learning gene functional classifications from
multiple data types. Journal of Computational Biology, 9(2):401–411, 2002.

R.E. Schapire and Y. Singer. BoosTexter: A Boosting-based System for Text Categorization.
Machine Learning, 39(2):135–168, 2000.

B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, 2002a.

B. Schölkopf and J. Smola. Learning with kernels. MIT Press, Cambridge, MA, 2002b.

B. Schölkopf, K. Tsuda, and J.P. Vert. Kernel Methods in Computational Biology. Bradford
Books, 2004.

Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Kernel principal compo-
nent analysis. In Advances in kernel methods: support vector learning, pages 327–352. MIT
Press, Cambridge, MA, USA, 1999.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge Uni-
versity Press New York, NY, USA, 2004.

T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147(1):195–7, 1981.

A.J. Smola and B. Schölkopf. A tutorial on support vector regression. Statistics and Com-
puting, 14(3):199–222, 2004.

S. Sonnenburg, G. Rätsch, and C. Schäfer. A General and Efficient Multiple Kernel Learning
Algorithm. Advances in Neural Information Processing Systems, pages 1273–1280, 2006a.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large Scale Multiple Kernel Learn-
ing. The Journal of Machine Learning Research, 7:1531–1565, 2006b.

E.L.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: A comprehensive database of protein
domain families based on seed alignments. Proteins Structure Function and Genetics, 28
(3):405–420, 1997.

K. Tsuda, S. Akaho, and K. Asai. The EM algorithm for kenel matrix completation with
auxiliary data. Journal of Machine Learning Research, 4:67–81, 2003.

K. Tsuda, S. Uda, T. Kin, and K. Asai. Minimizing the cross validation error to mix kernel
matrices of heterogeneous biological data. Neural Processing Letters, 19:63–72, 2004.

H. Valizadegan and R. Jin. Generalized Maximum Margin Clustering and Unsupervised
Kernel Learning. Advances in Neural Information Processing Systems, pages 1417–1424,
2007.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 2000.

18

J-P. Vert and M. Kanehis. Graph-driven features extraction from microarray data using
diffusion kernels and kernel CCA. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems, volume 15, pages 1425–1432. MIT
Press, Cambridge, MA, 2003.

Z. Wang, S. Chen, and T. Sun. MultiK-MHKS: A Novel Multiple Kernel Learning Algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):348–353, 2008.

J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W.S. Noble. Semi-supervised protein
classification using cluster kernels. Bioinformatics, 21(15):3241–3247, 2005.

L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector
machines. In Proceedings of the National Conference on Artificial Intelligence, volume 20,
page 904. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. Advances in
Neural Information Processing Systems, 17:1537–1544, 2005.

Y. Yamanishi, J-P. Vert, and M. Kanehisa. Protein network inference from multiple genomic
data: a supervised approach. Bioinformatics, 20(Suppl. 1):i363–i370, 2004.

Ying Zhao, Jian pei Zhang, and Jing Yang. The model selection for semi-supervised sup-
port vector machines. Internet Computing in Science and Engineering, 2008. ICICSE ’08.
International Conference on, pages 102–105, Jan. 2008. doi: 10.1109/ICICSE.2008.29.

19

