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Abstract: In the literature, the use of fractional moments to express the available information in

the framework of maximum entropy (MaxEnt) approximation of a distribution F having finite or

unbounded positive support, has been essentially considered as a computational tool to improve

the performance of the analogous procedure based on integer moments. No attention has been paid

to two formal aspects concerning fractional moments, such as conditions for the existence of the

maximum entropy approximation based on them or convergence in entropy of this approximation

to F. This paper aims to fill this gap by providing proofs of these two fundamental results. In fact,

convergence in entropy can be involved in the optimal selection of the order of fractional moments for

accelerating the convergence of the MaxEnt approximation to F, to clarify the entailment relationships

of this type of convergence with other types of convergence useful in statistical applications, and to

preserve some important prior features of the underlying F distribution.

Keywords: entropy; convergence in entropy; integer moments; fractional moments; Tchebycheff-

systems

MSC: 62E17; 62G07; 62B10; 94A17

1. Introduction

In statistical estimation, one often wants to guess an unknown probability distribution
F, given certain observations based on it. There are generally infinitely many distributions
consistent with the available data, and the question of which of these to select is an
important one in many fields. The notion of entropy has been proposed as a remarkable
tool for performing this choice. More precisely, the principle of maximum entropy was
established by [1,2] as a tool for inference under uncertainty and consists of finding the
most suitable probability distribution under the available information. As Jaynes [1]
expressed it, the resulting MaxEnt distribution “. . . is the least biased estimate possible on the
given information”. In summary, the MaxEnt method dictates what are the most “reasonable
and objective” distribution subject to given constraints expressing the available information
concerning the data generating mechanism: the analytical form of that constraints are
chosen to look at the features of the distribution that we want to preserve in the MaxEnt
approximation to guarantee its capability of modeling specific features of F.

It is a common choice to express the constraints in terms of expectations of some
functions gj of X, i.e.,

IE
[

gj(X)
]

=
∫

U
gj(x) f (x)dx = cj, j = 1, 2, . . . , n (1)
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and the resulting maximum entropy distribution (better, its density) emerges by maximizing
the Shannon (differential) entropy

h f = −
∫

U
f (x) ln f (x)dx (2)

under a set of constraints (1) using calculus of variations and Lagrange’s multipliers method.
The general solution, assuming an arbitrary set of n + 1 constraints gj, is given by [1]

fn(x) = exp

{

−λ0 −
n

∑
j=1

λj gj(x)

}

(3)

where λ1, . . . , λn, are the Lagrange multipliers linked to the set of adopted constraints
(1) while the multiplier λ0 guarantees the legitimacy of the distribution and IE(gj(X)),
j = 1, 2, . . . , n are the characterizing moments of the distribution. It becomes clear that the
resulting maximum entropy distribution having density (3) is uniquely driven by the choice
of the imposed constraints. This implies that this choice is the most important and deter-
minative part of the MaxEnt method. In the end, the form of the MaxEnt approximation
(3) of f is problem-dependent that is, its analytical form depends on the choice of the
constraints gj describing the features of the distribution F that must be preserved in the
approximation process.

As we said above, in constructing a density with the MaxEnt methodology, for practical
purposes only partial information can be used. However, this does not preclude that we
must have at our disposal some physical knowledge of the underlying problem that
amounts to

1. the solution to the problem is unique.
2. The entire moment curve from which to pick up a finite number of arbitrary fractional

moments is known.

The aim of the paper is focused on the opportunity offered by expressing the system
of constraints (1) by fractional moments. This choice gives back a great flexibility to
model a wide class of problems where the traditional integer moment constraints may be
inefficient in recovering the available information. The theorem of entropy convergence
stated for fractional moments setup and related other modes of convergence, offer a
formal basis for the optimal choice of number and order of the fractional moments to be
involved in the MaxEnt approximation procedures. In the paper we will stress the fact that
theoretical and numerical aspects are inextricably linked to each other, justifying why both
theoretical and computational aspects must be treated simultaneously in the paper. More
precisely, in Section 2 some properties of fractional moments motivating their use in MaxEnt
reconstruction of distribution will be discussed, in Section 3 some basics about Tchebycheff
systems (T-systems, for brevity) will be recalled and using this tool, the existence and
convergence in entropy of the MaxEnt distribution constrained by fractional moments will
be proven in Section 4.1 and in Section 4.2, respectively. Finally, in Section 5 two crucial
results concerning the optimal choice of the orders α’s and the optimal number n of the
fractional moments both based on the convergence in entropy of the MaxEnt distribution
will be presented.

2. The Role of Fractional Moments in MaxEnt Setup

Constraints (1) expressed by integer moments play an important role in the inverse
Hausdorff and Stieltjes classical moment problem that consists in determining an unknown
probability mass or density function f corresponding to the distribution F from the knowl-
edge of the sequence of its integer moments mj = IE(X j) =

∫

U xj f (x)dx, j ≥ 1, m0 = 1,
where U = [0, 1] in Hausdorff case or U = [0, ∞) in Stieltjes case.

For practical purposes, if only n prefixed moments are taken into account to express
the available information about the distribution, then many different (even an infinity!)
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probability distributions could be compatible with that information and non-uniqueness
of the distribution recovered from them follows immediately. Hence, the question: What
probability distribution is the best and with respect to what criterion? The answer follows
naturally from Jaynes’ principle [1]: from the set of all probability distributions compatible
with the n prefixed moments, choose the one that maximizes Shannon’s entropy that is, the
so-called MaxEnt distribution.

The MaxEnt approximation of f constrained by first n + 1 integer moments that is,
IE[gj(X)] = IE(X j) = mj, j = 1, . . . , n where n is arbitrary large and m0 = 1 being any
density a normalized function, comes immediately from (3) that is,

fn(x) = exp

{

−λ0 −
n

∑
j=1

λjx
j

}

(4)

where λj, j = 1, . . . , n, are the Lagrange multipliers linked to the set of adopted constraints
while the multiplier λ0 guarantees the legitimacy of the distribution. Widely known
references are the books [3,4] and more recently [5]. These sources contain comprehensive
details about a series of remarkable results paving the progress in moment problems for
more than a century. Theoretical and computational aspects are inextricably linked to
each other.

It is a well-known fact that in a determinate moment problem, the sequence of in-
teger moments {mj}∞

j=0 carries all the information concerning the distribution F; hence

it may happen that the moments of high order also contain a considerable amount of
it as in the case of asymmetric or heavy-tailed distributions. But it is also well known
that the moment problem becomes ill-conditioned when the number (hence, the order)
n of moments increases and to avoid numerical instability due to the ill-conditioning of
Hankel matrices only the moments of small order n are involved. Neglecting higher-order
moments implies losing the information carried by them with consequences on the quality
of fn as an approximation of f . Furthermore, if the first few moments are not informative
with respect to the distribution, the situation is even worse with fn being a definitely bad
approximation of f .

For a practical example, Ref. [6] discuss the role played by the constraints choice
in modeling probability distributions via the MaxEnt method for complex geophysical
processes concluding that the usual choice based on integer moments in virtue of their
physical meaning cannot be able, both for theoretical and empirical, i.e., data-driven,
reasons to describe the relevant geophysical features that have to be preserved because
characterizing the distribution (for more details, see the mentioned paper pp. 52–53).

At this point, a fundamental question is how to reformulate the MaxEnt solution of
the moment problem in a suitable way to permit a reliable and efficient approximation
through fn of the target density f . Or, equivalently, how to choose the (optimal) analytical
form of the set of the MaxEnt constraints?

To try to find an answer to this crucial question, combining (2) and (3), the entropy of
fn is given by

h fn
=

n

∑
j=0

λjmj ≥ h f . (5)

and point out that the quantity
h fn

− h f ≥ 0 (6)

is a measure of residual uncertainty about the distribution of the random variable X associ-
ated with the MaxEnt approximation fn of f and corresponds to the maximum residual
entropy-or equivalently the minimum information gain-associated to the knowledge of the
first n moments of F not captured by (4).

When integer moments are used as constraints in a MaxEnt procedure, due to the me-
chanical choice of integer moments, the rate of reduction of the residual entropy (6) is very
slow and becomes more and more negligible as the number n of moments increases. Conse-
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quently, it is urgent to look for a class of alternative approximants with faster convergence
of h fn

to h f : the class of MaxEnt distributions constrained by fractional moments

mαj
= IE(Xαj) =

∫

U
xαj f (x)dx, αj ∈ IR+ (7)

represents a natural alternative to (4) where a proper choice of number n and α exponents
built on the convergence in entropy theorem of Section 4.2, allows us to control the residual
uncertainty reduction and at the end, to accelerate the rate of the convergence of fn to f ,
mitigating the effects of ill-conditioning due to the large value of n used. Indeed, since
any fractional moment mα can be obtained as a function of many (as computationally
feasible) integer moments mj ([7,8] for details), the information available in the sequence of
integer moments can be squeezed into a few fractional moments: for example, in case of
heavy-tailed distributions where integer moments of high order are required, the use of a
few fractional moments permit to avoid (or mitigate) ill-conditioning without losing the
tail information which is crucial to model, for example, the risk of extreme events or their
predictability in a computationally tractable environment. Refs. [9,10] give an application
of the fractional moment method in the structural reliability analysis which is typically
based on a model that describes the response, such as maximum deformation or stress,
as a function of several random variables and they base the derivation of that model on
the MaxEnt principle where constraints are specified in terms of the fractional moments,
in place of commonly used integer moments to avoid the well known ill-conditioning
problem, studying the numerical accuracy and efficiency of the proposed method. From
the life-cycle perspective, Ref. [11] observes that probabilistic lifetime modeling of an
engineering system provides important information for risk assessment of the system by
evaluating the mean-time to failure, survival probability, dynamic hazard rate, and among
others. This can be conducted again using fractional moments into the MaxEnt technique
to approximate the distribution of interest. Further, in virtue of the flexibility due to the
continuous nature of their order α, fractional moments represent a valid alternative when
physical principles of momentum are invalid and consequently, the use of integer moments
to express the MaxEnt constraints reveals to be improper as it happens in many geophysical
processes like daily rainfall distribution [6] or tree diameter distribution modeling [12].

Looking for more practical reasons motivating the use of fractional moments in addi-
tion to computational feasibility issues, it is interesting to note that sometimes the available
information could be better exploited if the search for its optimal summaries took place on
the entire moment curve rather than on a predetermined sequence of equispaced points
(i.e., integer moments). For example, a large number of common families of probability
distributions largely used in reliability and risk theory such as Gamma, Pareto, Rayleigh,
and Lognormal to name a few, belong to the exponential family having logarithmic charac-
terizing moments as shown in Table 1 (recalling that xα = eα ln(x)).

Table 1. Some families of distributions and their characterizing moments.

Families of Distribution Density Characterizing Moments

Gamma (γ, β)
xγ−1 exp{−x/β}

Γ(γ) βγ 1IR+ (x) IE[X], IE[ln(X)]

Pareto (γ, k) γ kγ x−(γ−1) 1I[k,+∞)(x) IE[ln(X)]

Lognormal (µ, σ)
exp{−[ln(x)−µ]2/2σ2}√

2 πσx
1IR+ (x) IE[ln(X)], IE[ln2(X)]

Rayleigh (σ2)
x exp{−(x2/2σ2)}

σ2 1IR+ (x) IE[X2], IE[ln(X)]

It is possible to show that these families of distributions can be considered MaxEnt
distributions with fractional moments as characterizing moments, in the sense that the
analytic form of the latter is appropriate to capture the relevant (that is, characterizing)
information and features of the corresponding distribution. For example, in the Lognormal
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case, the characterizing moments are
(

IE[ln(X)], IE[ln2(X)]
)

, respectively. Then, by the

known relationships

lim
α→0

xα − 1

α
= ln(x) and lim

α→0

(

xα − 1

α

)2

= lim
α→0

x2 α − 2 xα + 1

α2
= ln2(x)

it follows that the Lognormal density can be reconsidered as a MaxEnt one having {IE(Xα),
IE(X2α)}, α → 0, as characterizing fractional moments.

The same line of reasoning and related results hold true if we consider a random
sample (X1, X2, . . . , XN) and the associated sample fractional moments

m̂αj
=

1

N

N

∑
i=1

X
αj

i , αj ∈ IR+ (8)

to summarize the sample information needed for the MaxEnt estimation of the density
f [7]. In this setup, the MaxEnt estimate fn represents a genuine non-parametric estimate
of f where the constraints of appropriate number and order expressed by (8) represent the
features of the distribution of X that must be preserved.

For assessing the feasibility of the moment problem solution based on fractional
moments, three aspects must be now considered: the first one concerns the existence of the
MaxEnt approximation based on fractional moments as a tool to express the constraints
set, the second one consists in finding a formal proof of the convergence in entropy to f
of the sequence of MaxEnt "fractional" approximation (Equation (10) below). The third
aspect concerns the choice of the number n and the set of the orders αj for j = 1, 2, . . . , n
of the fractional moments mαj

. Convergence in entropy of the MaxEnt approximation (10)
fn to f guarantees the residual uncertainty h fn

− h f about the distribution of the random
variable X associated with the approximation fn of f is minimal. And, for fixed n, it is
natural to base the choice of the fractional order αj, j = 1, 2, . . . , n, looking for the α’s values
that minimize the residual uncertainty (6) in the framework established by two important
results due to [13].

More precisely, Lin’s Theorems 1 and 2 based on asserting that an analytic function on
the right half complex plane is completely determined by its values on a sequence of points
having an accumulation point there, guarantee that the fractional moments corresponding
to the posed restrictions on the exponents to catch the aspects of the process that must be
preserved, still characterize the underlying distribution. Specifically, these theorems are:

Theorem 1 (Lin (1992), Thm. 1). A positive r.v. X is uniquely characterized by an infinite
sequence of positive fractional moments {mαj

}∞
j=1 with distinct exponents αj ∈ (0, α∗), mα∗ < ∞,

for some α∗ > 0.

and

Theorem 2 (Lin (1992), Thm. 2). If X is a r.v. assuming values from a bounded interval [0, 1] and
{αj}∞

j=1 an infinite sequence of positive and distinct numbers satisfying

lim
j→∞

αj = 0 and
∞

∑
j=1

αj = +∞

then the sequence of moments {mαj
}∞

j=1 characterizes X.

The following sections provide formal proofs and results related to each of the three
aspects mentioned. But before proceeding, let us briefly recall an important technical result,
which plays a pivotal role in performing the proofs.



Axioms 2024, 13, 28 6 of 20

3. A Reminder about T-Systems

T-systems represent a technical tool that plays a crucial role in proving both the
existence and convergence in entropy of the MaxEnt approximation fn of f . For this
reason, we will revisit briefly their main aspects, considering the two cases X ∈ [0, ∞)
and X ∈ [0, 1], separately. In the sequel, notations and results are borrowed from [14,15]
where the T-systems are extensively investigated including general functions {uj(t)}n

j=0 on

abstract set E .

1. X ∈ U = [0, ∞).
The starting point is to consider that the set of continuous linearly independent real-
valued functions {uj(t)}n

j=0, defined on the interval U = [0, ∞), constitutes a T-system

of order n if any polynomial

P(t) =
n

∑
j=0

ajuj(t), with
n

∑
j=0

a2
j > 0

has no more than n zeros on [0, ∞). Equivalently, it is readily seen that {uj(t)}n
j=0 is a

T-system if and only if the determinants of order (n + 1)

det ∥ u0(t), u1(t), . . . , un(t) ∥n
0=:

∣

∣

∣

∣

∣

∣

∣

∣

∣

u0(t0) u0(t1) · · · u0(tn)
u1(t0) u1(t1) · · · u1(tn)

...
...

...
un(t0) un(t1) · · · un(tn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

are strictly positive for any choice of (distinct) pairs of elements 0 ≤ t0 < t1, · · · < tn

in [0, ∞). According with the above definition the special set {uj(t) = tαj}n
j=0 we are

interested in, with distinct 0 = α0 < α1, · · · < αn, is a T-system having the properties

(a) uj(t) = tαj > 0 for each 0 ≤ j ≤ n

(b) limt→∞
t
αj

tαn = 0 for each j = 0, . . . , n − 1

(c) if the set {uj(t) = tαj}n
j=0 is a T-system, then {uj(t) = tαj}n+1

j=0 is it too.

The space Mn+1 of moments, given by the convex hull generated by the points
{tαj}n

j=0 has a nonempty interior. This set is convex but has a complex geometry. A

good deal of the geometry of the classical moment spaces induced by the special
T-system {1, t, t2, ..., tn} can be generalized to the case of the investigated T-system
{uj(t) = tαj}n

j=0. If the sequence of prescribed moments {mαj
}n

j=0 is an inner point

of Mn+1 then there are uncountably many probability measure dσ(t) having such
prescribed moments, one of them being dσ(t) = fn(t)dt. Elsewhere, if the sequence
of prescribed moments {mαj

}n
j=0 belongs to ∂Mn+1, the boundary of Mn+1, a unique

measure supported on a finite set of points exists (the so-called lower principal represen-
tation) and the determinant of the below-defined Gram matrix Gn becomes zero. For
an arbitrary n, let 0 = α0 < α1 < · · · < αn. For notational convenience we set

mαi ,αj
= IE(Xαi Xαj) =

∫

U
tαi tαj f (t) dt =

∫

U
tαi+αj f (t) dt.

Let us now consider the probability measure dσ(t) = fn(t) dt. Then tαj ∈ L2
dσ(U ),

where, as usual

L2
dσ

(

U
)

= {tαj :
∫

U
t2αj dσ(t) =

∫

U
t2αj fn(t) dt < +∞}

Thus the matrix Gn = [mαi ,αj
]ni,j=0 is the positive definite Gram matrix.
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The following Markov-Krein theorem ([14] Thm 5.1, p. 157; [15] Thm 1.1, p. 177) is
fundamental to prove the convergence in entropy of the MaxEnt distribution: here we
adapt it to fractional moments.

Theorem 3 (Markov–Krein theorem). Given values of the first fractional moments {mαj
}n

j=0

∈ Int(Mn+1) so that the Gram matrix Gn be positive definite, the integral
∫

U un+1(t) dσ(t)
over all the distributions σ(t) having the assigned moments {mαj

}n
j=0, has a minimum value

m−
αn+1

where

m−
αn+1

=
∫

U
un+1(t) dσ(t) (9)

The corresponding measure σ, under the form of a sum weighted Dirac delta function for
which is uniquely determined, is the so-called lower principal representation. Furthermore the
point {mα0 , · · · , mαn , m−

αn+1
} belongs to ∂Mn+2, the boundary of Mn+2.

2. X ∈ U = [0, 1].
In this case the procedure proposed for X ∈ [0, ∞) runs more or less similarly
since the involved functions {uj(t) = tαj}n

j=0, t ∈ [0, 1] are T-systems too and an

analogous Markov-Krein theorem ([14] Thm 1.1, p. 80; [15] Thm. 1.1, p. 109)
is available. It should only be recalled that, in analogy with Theorem 3, given
{mαj

}n
j=0 ∈ Int(Mn+1), the moment mαn+1

admits minimum and maximum value

m−
αn+1

, m+
αn+1

, respectively, where

(

m+
αn+1

m−
αn+1

)

=
∫

U
un+1(t)d

(

σ

σ

)

Here, the corresponding measures σ and σ under the form of a sum-weighted Dirac
delta function are uniquely determined and they are the so-called lower and upper
principal representation, respectively, and the points {mα0 , · · · , mαn , m±

αn+1
} ∈ ∂(Mn+2).

4. MaxEnt Solution of the Fractional Moment Problem

Once in both cases X ∈ [0, 1] and X ∈ [0, ∞) the moment curve mX(α) =
∫

U tα f (t) dt
has been obtained, the probability distribution constrained by fractional moments can be
estimated (approximated) through the MaxEnt technique, which is essentially an extension
of the commonly used integer moment-based MaxEnt procedure.

Note, that given a finite collection of (population or sample) fractional moments
{mαj

}n
j=0, with α0 = 0, the corresponding MaxEnt solution for f is

fn(x) = exp

{

−
n

∑
j=0

λjx
αj

}

(10)

where the λj are such that the (fractional) constraints

∫

U
xαj fn(x) dx = mαj

, j = 0, . . . , n (11)

are satisfied, and fn depends on the mαj
(thus on the αj) through the λj. Note, that in

[0, ∞) case λn must take positive values in [0, ∞) to guarantee fn integrability. The MaxEnt
approximation fn of f has entropy

h fn
=

n

∑
j=0

λjmαj
(12)

Here (λ0, . . . , λn) is the vector of Lagrange multipliers: if it is possible to determine La-
grange multipliers from the constraints {mαj

}n
j=0, then the moment problem admits solution
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and fn is MaxEnt approximation of f which is unique in U due to strict concavity of (12). In
this setup, two fundamental theoretical questions must be now addressed: the existence of
the MaxEnt distribution Fn and its convergence in entropy to F. The last two are crucial to
exploit in real-world applications; the MaxEnt technique aims to recover the distribution F
by the available information on X here summarized by a proper set of constraints expressed
in terms of fractional moments, just to take into account what is discussed in Section 2.

4.1. Existence of MaxEnt Distribution

For the MaxEnt distribution existence, a close and evident analogy between the
two cases integer and fractional moments there exist, being both the set of functions
{uj(t) = tαj}n

j=0 and {uj(t) = tj}n
j=0 T-systems. The proof simply replaces Hankel matrices

with Gram matrices above defined.

1. Suppose that X has unbounded support, U = IR+, and the first n + 1 moments
{mαj

}n
j=0 ∈ Int(Mn+1) have been assigned, λn ≥ 0 has to be to guarantee integra-

bility of fn. In analogy with the case of integer moments, being both integer and
fractional moments T-systems, the above nonnegativity condition on λn is crucial and
renders the moment problem solvable only under certain restrictive assumptions on
the prescribed moment vector {mαj

}n
j=0. Consider (11) with n replaced by n + 1, the

first n + 1 moments {mαj
}n

j=0 held constant, whilst mαn+1
varies continuously, so that

the Lagrange multipliers λj = λj(mαn+1
), j = 0, . . . , n + 1 are depending on mαn+1

.
Differentiating both sides with respect to mαn+1

one has

Gn+1 ·
[ dλ0

dmαn+1

, . . . ,
dλn+1

dmαn+1

]′
= [0, . . . , 0,−1]′ (13)

where ′ denotes the transpose. From Gn+1 symmetric and positive definite it follows

0 <

[ dλ0

dmαn+1

, . . . ,
dλn+1

dmαn+1

]

· Gn+1 ·
[ dλ0

dmαn+1

, . . . ,
dλn+1

dmαn+1

]′
=

=
[ dλ0

dmαn+1

, . . . ,
dλn+1

dmαn+1

]

·
[

0, . . . , 0,−1
]′

= − dλn+1

dmαn+1

(14)

Then
dλn+1

dmαn+1
< 0 and λn+1 monotonic decreasing function. MaxEnt machinery leads

us to consider a further quantity

m+
αn+1

=
∫

U
tαn+1 fn(t) dt (15)

with, in general, m+
αn+1

̸= mαn+1
.

From now on, for the sake of brevity, in the arguments of fn+1 and h fn+1
we will

mention only those that take continuously varying values.

(i) Assume fn exists. Once {mαj
}n+1

j=0 are assigned and mαn+1
varies continuously,

combine together the following facts: λn+1(mαn+1
) is a monotonic decreasing

function, fn+1(m
+
αn+1

) = fn and take into account (9) and (15). One concludes
that, if fn exists, the necessary and sufficient condition for the existence of fn+1 is
m−

αn+1
< mαn+1

≤ m+
αn+1

, in analogy with the past investigated case concerning
integer moments ([16], Appendix A).

(ii) Assume fn does not exist. In such a case λn+1 > 0. Indeed, if it were λn+1 = 0
then we would have both mαn+1

= m+
αn+1

and then fn+1 = fn, contradicting the

fact that fn does not exist. Consequently, fn+1 exists for every set {mαj
}n+1

j=0 ∈
Int(Mn+2). For practical purposes, fn doesn’t exist, both fn−1 and fn+1 exist.
We can state that the problem of the non-existence of the MaxEnt density can be
easily bypassed.
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Collecting together the items (i) and (ii) we conclude that the existence of fn is itera-
tively and numerically determined, starting from f1 which exists.
Proving the conditions of existence of the MaxEnt distribution we remarked the
close analogy between the cases of fractional moments and integer moments. It is
reasonable to expect similar analogies to arise also in the case in which an entropy
value is to be attributed to the density in the case in which it does not exist so that
the sequence of entropies {h fn

}∞
n=1 is defined for every n. The issue was addressed

in ([16], Thm. 1) and taking into account of the laboriousness of the proof, we limit
ourselves to illustrating the tools involved and the results obtained.
Some relevant facts need to be collected together. Since MaxEnt density fn does not
exist, both fn−1 and fn+1 exist with entropies h fn−1

and h fn+1
, respectively. Introduce

now the following class of densities all having the same first moments {mαj
}n

j=0

Cn =:

{

f ≥ 0 |
∫

U
xj f (x) dx = mαj

, j = 0, . . . , n

}

(16)

In particular, we direct our attention to the density fn+1 = fn+1(mαn+1
) ∈ Cn, which

thanks to Theorem 4 exists for any value mαn+1
> m−

αn+1
. As in integer moments case,

fn may not exist so that h fn
is meaningless ([16], Thm. 1) proved the relationship

lim(mn+1)→∞ h fn+1
(mn+1) = h fn−1

, from which sup f∈Cn
h f = h fn−1

, although the cur-
rent use of MaxEnt fails (here the last recalled Cn is the analog of (16) with mαj

replaced
by mj ). Since the entropy is non-increasing as n increases, the latter equality enables us
to set h fn

= h fn−1
, filling the gap left by the nonexistence of the density fn. We reformu-

late such a result in terms of fractional moments as lim(mαn+1
)→∞ h fn+1

(mαn+1
) = h fn−1

,

from which sup f∈Cn
h f = h fn−1

. That leads us to conclude, whenever fn does not
exist the missing entropy h fn

is replaced with h fn−1
, so that the sequence of entropies

{h fn
}∞

j=1 is defined for every n.

We can thus reformulate the conditions of existence according to integer moments
by means

Theorem 4. Once the moment set {mαj
}n−1

j=0 ∈ Int(Mn) is prescribed, suppose fn−1 exists

with its n-th moment m+
αn

=
∫

U tαn fn−1(t) dt.

(i) If mαn ≤ m+
αn

, then fn exists; conversely if mαn > m+
αn

fn does not exist. Thus the
existence of fn is iteratively (and numerically only) determined from fn−1 starting from
f1 which exists.

(ii) If fn does not exist, both fn−1 and fn+1 exist for every mαn−1
> m−

αn−1
and mαn+1

>

m−
αn+1

, respectively. In addition, h fn
= h fn−1

can be set.

2. Suppose now that X ∈ [0, 1]: the procedure employed in the unbounded support case
1. runs similarly since the involved functions {uj(t) = tαj}n

j=0, t ∈ [0, 1] are T-systems

too and an analogous Markov-Krein theorem ([15], Thm. 1.1, p. 109) is available. It
should only be recalled that, in analogy with the above Theorem 4, given {mαj

}n−1
j=0 ∈

Int(Mn), the moment mαn admits minimum and maximum value m−
αn

and m+
αn

,
respectively. The corresponding measures σ = σ and σ = σ under the form of a sum
weighted Dirac delta function are uniquely determined and they are the so-called lower
and upper principal representation, respectively, and the points {mα0 , · · · , mαn−1

, m±
αn
} ∈

∂(Mn+1). Thanks to MaxEnt formalism Equation (13) continues to hold. Once the
first moments {mαj

}n
j=0 ∈ Int(Mn+1) have been assigned, the bounded support does

not imply any restriction on the Lagrange multipliers, in particular, λn can take on any
real value. From (13), as mαn varies within the bounded range of its admissible values
(m−

αn
, m+

αn
), det(Gn−1) > 0 is bounded. As mαn → m±

αn
, fn coincides with the measures

σ and σ. As a consequence det(Gn) → 0, from which
dλn+1

dmαn+1
= − det(Gn−1)

det(Gn)
→ −∞ and

then λn+1 → −∞ follows.
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Analog conclusions hold for the remaining Lagrange multipliers, pre and post-

multiplying in
dλj

dmαn
, with j < n, the matrix at the numerator by a suitable per-

mutation matrix.
In conclusion, given {mαj

}n−1
j=0 ∈ Int(Mn) and assuming fn−1 exists, fn exists if

{mαj
}n

j=0 ∈ Int(Mn+1). Equivalently, the existence of fn is iteratively determined,

starting from f0 (the uniform distribution) which exists. On the other hand, thanks
again to the MaxEnt formalism the previous proof of existence continues to hold. The
solvability of the problem under certain restrictive assumptions on the prescribed
moment vector ceases to exist and consequently the following theorem holds:

Theorem 5. If X ∈ [0, 1] a necessary and sufficient condition for the existence of the MaxEnt
distribution fn is that the vector of moments is internal to the space of moments, that is
{mαj

}n
j=0 ∈ Int(Mn+1).

4.2. Entropy Convergence of MaxEnt Distribution

Convergence in entropy of fn to f in the case where the entropy (12) is finite or −∞

and its implications, play a fundamental role in many applied problems where the focus is
often put on the behavior of the tails of the distribution F that are crucial to study extreme
events behavior and to evaluate the probability of their occurrence. In this direction,
Ref. [17] stresses the fact that “. . . at the tails, the MaxEnt distribution oscillates because of the
nonmonotonic nature of the polynomial embedded in the fn. Thus, only the lower-order moments are
typically considered, but in such cases, fn hardly models tails fatter than the Gaussian. Therefore,
the tails of many distributions cannot be well fitted by the MaxEnt distribution with n ≤ 4” thus
questioning the utility of the MaxEnt approach and consequent solution in this case.

We will prove the almost everywhere nature of the convergence in entropy to f of
the MaxEnt approximation fn based on an optimal set of fractional moments and this
will permit us to disprove the above claim “. . . MaxEnt distribution oscillates because of the
nonmonotonic nature of the polynomial embedded in the fn” and state that fn represents a
reliable reconstruction of f and of the main features of the corresponding distribution
F, including the tail behavior. Further, exploiting the convergence in entropy of fn to f ,
it is possible to formulate a criterion for choosing the optimal number n and the values
{αj}n

j=1 of the fractional exponents and then, the best set of fractional moments {mαj
}n

j=1

(see Equation (29) below).
Finally, even if the tails of the distribution oscillate as stated by [17], if the focus is on

evaluating (or estimating) appropriate numerical summaries of the distribution usually
expressed in terms of expected values or quantiles, convergence in entropy ensures that
the approximation error (Equations (25) and (26) below) can be controlled by a proper
choice of the number and the orders of fractional moments and, consequently, the goodness
and reliability of such summaries regardless of the oscillating nature of the tails of the
MaxEnt distribution.

We are now in a position to prove the main result of this paper, which we enunciate below.

Theorem 6 (Main result). If X is a positive random variable, having the moments sequence
{mαj

}∞
j=0 characterizing a unique distribution, MaxEnt approximations converge in entropy to the

underlying distribution, that is
lim

n→∞
h fn

= h f (17)

with h f either finite or −∞.

Proof. We begin giving the proof of Theorem 6 for X ∈ [0, ∞). Then we just adjust the
proof for X ∈ [0, 1].

1. Suppose X ∈ [0, ∞).



Axioms 2024, 13, 28 11 of 20

As mαn+1
> m−

αn+1
varies, both fn+1 = fn+1(mαn+1

) (equivalently λj = λj(mαn+1
),

j = 0, . . . , n + 1) and then h fn+1
= h fn+1

(mαn+1
) hold.

Consider h fn+1
(mαn+1

) and collect together (12) and the first equation of (13), we have

dh fn+1
(mαn+1

)

dmαn+1

=
n

∑
j=0

mαj

dλj(mαn+1
)

dmαn+1

+ λn+1(mαn+1
) = λn+1(mαn+1

)

from which, taking into account (14),
d2h fn+1

(mαn+1
)

dm2
αn+1

=
dλn+1(mαn+1

)

dmαn+1
< 0. Thus h fn+1

(mαn+1
)

is a differentiable concave function.
Enter Markov–Krein’s Theorem. From Theorem 4 and its consequences, as mαn+1

→
m−

αn+1
, fn+1(mαn+1

) can be assimilated to Dirac’s deltas set, equivalently to discrete
distribution, the so-called lower principal representation σ.
We recall for consistency between the differential entropy of a continuous random
variable and the entropy of its discretization, the differential entropy of any discrete
measure (being compared to the delta Dirac function) is assumed to be −∞ ([18],
pp. 247–249). As a consequence, h fn+1

(m−
αn+1

) = −∞ can be set. On the other hand,
as mαn+1

takes its own prescribed value, h fn+1
≥ h f holds. Then, with h fn+1

(mαn+1
)

being a continuous function, there exists a value, say m̃αn+1
∈ (m−

αn+1
; mαn+1

], such
that h fn+1

(m̃αn+1
) = h f . Summarizing, we have seen that:

(i) If {αj}n+1
0 are assigned and fn+1 is the corresponding MaxEnt density with

entropy h fn+1
, the sequence {h fn+1

} is monotonically decreasing and then con-
vergent, with limn→∞ h fn+1

≥ h f ;

(ii) for each n, h fn+1
(mαn+1

) is concave function in (m−
αn+1

; mαn+1
]; as mαn+1

→ m−
αn+1

,

h fn+1
(m−

αn+1
) = −∞;

(iii) there exists m̃αn+1
∈ (m−

αn+1
; mαn+1

] such that h fn+1
(m̃αn+1

) = h f .
Enter Lin’s Theorem. Consider the Theorem 1 and without loss of generality,
it will be assumed the sequence {mαj

}∞
0 is asymptotically monotonic increas-

ing. From Theorem 1, the sequence {mαj
}∞

0 is convergent and, under the above
assumption, is asymptotically monotonic increasing. As n → ∞, from both rela-
tionships mαn < m−

αn+1
< m̃αn+1

< mαn+1
and (mαn+1

− mαn) → 0, it follows

(iv) both m−
αn+1

→ mαn+1
and m̃αn+1

→ mαn+1
.

Combining together just the above items (i)–(iv) drawn from Theorem 1 and Theorem 4,
respectively, it follows

lim
n→∞

h fn+1
= lim

n→∞
h fn+1

(m̃αn+1
) = h f . (18)

The employed methodology for the proof clearly suggests that the convergence in
entropy holds true in both cases h f finite and h f = −∞. Indeed, assuming h f = −∞,
as n → ∞, mα̃n+1

tends to mαn+1
, so that Equation (18) leads to limn→∞ h fn+1

= −∞

too. Previously we proved that whenever fn does not exist the missing entropy h fn
is

replaced with h fn−1
, so that the sequence of entropies {h fn

}∞
1 is defined for every n.

That fact gives full significance to (18).
2. Suppose X ∈ [0, 1].

The procedure previously employed in X ∈ [0, ∞) case, is likewise extended to
X ∈ [0, 1] since the involved functions {uj(t) = tαj}n+1

0 , t ∈ [0, 1] are T-systems too
and both an analogous Markov–Krein theorem ([15]—Thm. 1.1, p. 109) and Lin’s
Theorem 6 are available (in the latter case, although the sequence {mαj

}∞
j=0 has to be

monotonically decreasing, the proof is similar). Thanks to MaxEnt formalism, both
Equation (13) and the used methodology to prove Theorem (6) hold true.
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In conclusion, if h f is finite or −∞, for X ∈ [0, 1] or X ∈ [0, ∞), MaxEnt formalism
enables us to prove the entropy convergence (Theorem (6)) by means of a unified proce-
dure.

We recall that the entropy convergence had been proved in [19]—Theorem 3.1, for
the case with X ∈ [0, 1] and h f finite, by transforming the problem of Laplace transform
inversion into a fractional moment one on [0, 1]. Here, the author mentions Lin’s theorem,
although the statements of such theorem are not actually used in the proof at all. Theorem 6
allows us to selecting (α1, . . . , αn) in both cases X ∈ [0, 1] and X ∈ [0, ∞). This choice is
driven by the minimization of the residual h fn

− h f . For this purpose, limited to the case in
which f has finite entropy h f , a valid guide is given by the different modes of convergence
stemming from just above proved entropy convergence and shortly recalled.

Thanks to MaxEnt formalism the below-described procedure holds true in both cases
X ∈ [0, 1] and X ∈ [0, ∞), so that with U we mean, without distinction, the support of
X ∈ [0, 1] or X ∈ [0, ∞).

4.3. Further Convergence Modes for Finite h f

In the case in which h f is finite and then infn h fn
is finite too, the following additional

results may be drawn. These results configure in a chain of implications starting from
the (almost everywhere) convergence in entropy and ending with the convergence in
distribution: the aim is to justify the MaxEnt reconstruction of particular features of the
distribution in which we are interested in governing their reliability by controlling their
approximation error in terms of residual entropy h fn

− h f .
Let m > n and fm and fn be the maxentropic solution of the truncated fractional

moment problem, with m and n moments, respectively. Combining together the following
two facts:

(a) the monotonically non-increasing sequence {h fn
} converges to h f and then it is a

Cauchy sequence
(b) the Kullback–Leibler distance between fm and fn that share the same first n fractional

moments given by

D( fm, fn) =
∫

U
fm ln

fm

fn
dx (19)

implies
D( fm, fn) = h fn

− h fm
. (20)

Hence, taking into account Pinsker’s inequality ([20], p. 390), it follows

1

2
∥ fm − fn ∥2

1 ≤ D( fm, fn) = h fn
− h fm

(21)

By replacing fm with f , letting n → ∞, recalling Theorem 6 and the completeness of the L1

space, it holds
1

2
∥ fn − f ∥2

1≤ D( f , fn) = h fn
− h f → 0 (22)

and hence { fn}∞
n=1 has limit f . Then { fn}∞

n=1 has a subsequence pointwise convergent a.e.
to f and the whole sequence { fn}∞

n=1 is also convergent a.e. to the same limit, that is

lim
n→∞

fn = f a.e. (23)

that explains the goodness of the approximation (or estimation, if in a sample setup) f
through the MaxEnt fn based on fractional moments.

Since { fn}∞
n=1 converges in L1-norm to f , then it converges to f also (in probability

and) in distribution so that,
lim

n→∞
Fn(x) = F(x)
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for all x at which F(x) is continuous, where Fn and F denote the cumulative distribution
functions corresponding to fn and f , respectively. Then the approximation fn is particularly
suitable for an accurate calculation of the expected values, since as n → ∞ convergence in
distribution is equivalent to

lim
n→∞

∫

U
g(x) fn(x)dx =

∫

U
g(x) f (x)dx (24)

for each bounded function g. Then from (21) and (24) it follows

| IE fn
(g)− IE f (g) |≤∥ g ∥∞

√

2(h fn
− h f ) (25)

The argument runs similarly whether quantiles have to be calculated. They may be config-
ured as expected values of proper bounded functions: indeed, for fixed x, F(x) = IE[g(t)]
with g(t) = 1 if t ∈ [0, x] and g(t) = 0 if t ∈ U \ [0, x]. Then we have

| Fn(x)− F(x) |≤
∫ x

0
| fn(t)− f (t) | dt ≤

∫

U
| fn(t)− f (t) | dt ≤

√

2(h fn
− h f ). (26)

The above convergence results suggest that a rapid convergence in entropy allows an
accurate approximation of the desired density or its features that have to be preserved. So
choosing an optimal set of αj’s indices in terms of numbers and values becomes the priority.

Remark 1. For X ∈ [0, 1] or X ∈ [0, ∞) with h f finite, combining Theorem 6 with (21), from
{h fn

}∞
n=1 Cauchy sequence, the continuous functions sequence { fn}∞

n=1 is Cauchy sequence too
and then uniformly convergent to f . Hence, f is a continuous function. Consequently, an accurate
reconstruction of the distribution requires that the underlying density be continuous as well. From
an engineering point of view, this request may seem obvious. This explains the reason why in some
numerical tests appearing in the literature and concerning the reconstruction of discontinuous
densities with entropic techniques using integer or fractional moments, the reconstruction obtained
had proven to be somewhat inaccurate.

5. Optimal Choice and Optimal Number of α’s

As recalled in Section 1, in real-world problems the proposal of a stochastic model or
a probabilistic law F for a phenomenon X must necessarily take into account the aspects
of X that must be preserved and, in some sense, the proposal process is guided by them.
As a consequence, although considering the same phenomenon, it could be necessary to
compute several distributions, each referring to a specific aspect that has to be preserved
and then identify the proposal according to it. Because of their flexible choice, fractional
moments can be considered a valuable tool in this regard and for operational reasons, two
main questions need now to be addressed: the choice of the number n and of the orders
α’s of the fractional moments involved in the MaxEnt approximation of F. Both questions
have strong relationship with the notion of convergence in entropy of Fn to F which plays a
strategic role in finding appropriate answers to these questions.

5.1. The Choice of (α1, . . . , αn)

Once the theoretical problem of existence, and convergence in entropy from an arbi-
trary fractional moment sequence according to Lin’s theorems are solved, the approxima-
tion of the distribution becomes essentially a computational issue. For this reason, it is a
matter of choosing a suitable set of exponents (α1, . . . , αn).

Note, that Lin’s theorems provide a theoretical guarantee to the process of recon-
structing. However, due to the underlying computational issues, there are infinitely many
possibilities in the choice of a few fractional moments. Such a choice must rest on the
characteristics of the quantity to be calculated and that are intended to be retained in the
approximation process. In an equivalent way, unlike the integer moments, in the approx-
imation of the distribution with fractional moments it is possible to incorporate further



Axioms 2024, 13, 28 14 of 20

information that comes from the underlying physical problem. The idea that we follow
here was originally proposed by [7] and further explored by [21]. The idea goes as follows.

1. We shall denote by fn found in (10) to make explicit its dependence on n and implicitly
on the (α1, . . . , αn). These will be chosen as to minimize the Kullback–Leibler diver-
gence (19) between the ”true” but unknown density f and the maxentropic solution fn.
From (12), h fn

= ∑
n
j=0 λjmαj

and this quantity equals −
∫

U fn(x) ln fn(x) dx because f
and fn satisfy the same moments constraints. Therefore, minimizing (19) amounts to

arg min

{

∫

U
f (x) ln

f (x)

fn(x)
dx | α1, . . . , αn

}

= arg min{h fn
| α1, . . . , αn}. (27)

In other words, fn is obtained through two consecutive minimization procedures with
respect to (α1, . . . , αn, λ1, . . . , λn) = (α, λ), namely

min
α

min
λ

[

h fn
(λ, α)

]

= min
α

min
λ

[

ln
(

∫

U
exp(−

n

∑
j=1

λjx
αj) dx

)

+
n

∑
j=1

λjmαj

]

(28)

for n = 1, 2, . . . . This method consists of an implementation of the nested minimiza-
tion. That is for each fixed α, first minimize λ → h fn

(λ, α) and then carry on the outer
minimization with respect to α. It is worth mentioning the choice criterion (27) stems
from entropy-convergence Theorem 6. The inner minimization is easy because we
are dealing with a convex function. But even though the function α → mα = IE[Xα] is
log-convex, the linear combination ∑

n
j=0 λjmαj

need not be so. However, the existence
conditions of a unique solution for (28) remain a theoretical open issue.
Being (28) multivariable and highly nonlinear unconstrained not convex optimization,
the uniqueness of the MaxEnt solution may not be guaranteed, so the results greatly
rely on the initial condition, i.e., different initial conditions may give different MaxEnt
solutions. And even if the algorithm converges, there is no assurance that it will have
converged to a global, rather than a local, optimum since conventional algorithms
cannot distinguish between the two.
For problems where finding an approximate global optimum is more important than
finding a precise local optimum in a fixed amount of time, the Simulated Annealing
Method may be preferable to exact algorithms. This explores the function’s entire
surface and tries to optimize the function while moving both uphill and downhill.
Thus, it is largely independent of the starting values, often a critical input in con-
ventional algorithms. Further, it can escape from local optima and go on to find the
global optimum.
In conclusion, the crucial issue consists of solving the nested minimization which
ranges over two distinct sets of variables {αj}n

1 and {λj}n
1 . While each αj takes its

values into the interval (0, αmax], where αmax relies upon physical or numerical reasons,
each λj may assume any real value.

2. Alternatively, taking into account for each fixed set (α1, . . . , αn), the inner minλ1,...,λn

admits a unique solution being h fn
= ∑

n
j=0 λjmαj

convex function, the outer one could
be calculated by Monte Carlo technique, replacing minα1,...,αn with infα1,...,αn , that is

inf
α

min
λ

[

h fn
(λ, α)

]

= inf
α

min
λ

[

ln
(

∫

U
exp(−

n

∑
j=1

λjx
αj) dx

)

+
n

∑
j=1

λjmαj

]

(29)

with n = 1, 2, . . . . Indeed, Equation (29) is just a computational trick and replacing
minα1,...,αn with infα1,...,αn arises from the request for an estimator that guarantees faster
convergence in entropy. This replacement does not conflict with the spirit of MaxEnt
since, regardless of the estimation criterion (29) of α’s, the resulting fn continues to be a
MaxEnt distribution. Then, according to Theorem 6, Equations (25) and (26), expected
values or quantiles can be accurately calculated, up to a predetermined tolerance by
means of (29). Note, also that the estimation method (29) lends itself easily to taking
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into account the existence conditions of fn stated in Theorem 4: if ( fn | α1, . . . , αn−1, αn)
does not exist, ( fn−1 | α1, . . . , αn−1), with the same (α1, . . . , αn−1) as fn, does exist.
Consequently, h fn−1

is recalculated and the value h fn−1
is assumed.

After having illustrated the (α1, . . . , αn) selection criteria in the distribution calculation
procedure we can reconnect again to the previously introduced problem of choice
of constraints in the construction of the MaxEnt distribution. As a constraint, we
can also include the choice of range (0, αmax] in which to place (α1, . . . , αn) in the
minimization procedure (29). As an example, if for physical reasons we know the

underlying f has hazard rate function h(x) = f (x)

1−
∫ x

0 f (u) du
with prescribed properties

(for instance, asymptotically decreasing to zero), the approximation fn would save
such property. As a consequence we choose once more (29), but, as it is easy to verify
taking into account (10) with exponents (α1, . . . , αn) ∈ [0, 1) (therefore, not optimal
for the purposes of rapid convergence in entropy). Conversely, with the hazard rate
asymptotically increasing to +∞, (α1, . . . , αn) with αn > 1 accomplish that request.
Consequently, in both cases, it is important that entropy convergence is ensured.
In conclusion, the criterion (29) for the calculation of fn is elastic and lends itself to
correctly describing multiple scenarios.

5.2. A Single-Loop Strategy for Approximating fn with X ∈ [0, 1]

In past Section, the difficulties related to nested minimization (28) have been circum-
vented with the procedure Monte Carlo (29) which allows the computation of λ uniquely
through the minimization of a convex function. In the case X ∈ [0, 1], exploiting the
different modes of convergence previously proved, it is possible to further simplify the
computation of λ in (29) by replacing the inner minλ with the solution of a suitable linear
system of equations. Indeed, from (3) integrating by parts (see [21], for details), we have

exp(−
n

∑
k=0

λk) +
n

∑
k=1

αkλk IE fn
(Xαj+αk ) = (1 + αj)IE fn

(Xαj), j = 0, ..., n (30)

Subtracting from each equation of index j = 1, . . . , n the one having index j = 0, the
following system of equations in the unknowns λ1, . . . , λn is obtained

n

∑
k=1

αkλk

[

IE fn
(Xαk+αj−1)− IE fn

(Xαk+αj)
]

= (1 + αj−1)IE fn
(Xαj−1)− (1 + αj)IE fn

(Xαj) (31)

for j = 1, . . . , n where IE fn
(Xαj) = IE f (Xαj), j = 0, . . . , n are known, whilst IE fn

(Xαk+αj−1)

and IE fn
(Xαk+αj) are generally unknown. Now observe that taking (25) into account,

the moment curves IE fn
(Xα) and IE f (Xα) corresponding to fn and f , respectively differ

as follows
| IE fn

(Xα)− IE f (Xα) |≤
√

2(h fn
− h f ) (32)

Note, as well that with α solution of (29), the two moment curves IE f (Xα) and IE fn
(Xα)

interpolate in the Birkhoff–Hermite sense at the nodes (see [22]); that is, they are both
interpolating and tangent at the nodes α. This implies that

IE f (Xαj) = IE fn
(Xαj), j = 0, 1, 2, . . . , n

IE f (Xαj ln(X)) = IE fn
[Xαj ln(X)], j = 1, 2, . . . , n.

(33)

By adopting a guessed choice of α (and the Monte Carlo method may achieve this goal),
from Theorem 6, h fn

= h f follows, so that relying upon (32) and (33), both IE fn
(Xαk+αj−1) =

IE f (Xαk+αj−1) and IE fn
(Xαk+αj) = IE f (Xαk+αj) can be set. Thus, with a guessed choice of λ,

it is legitimate to assimilate (31) to a linear system with unknown λ which admits a unique
solution, being an identity relating λ with a set of values optimally picked up from the
moment curve IE fn

(Xα) ≡ IE f (Xα).
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We shall suppose that the solution to (31) coincides with that obtained by solving
(29). This brings this section close to experimental mathematics. The necessary analysis to
compute the error in the just above approximation is hard and the verification comes in
a posteriori as the numerical results based on it make good sense. Indeed, the numerical
evidence suggests that, with n ≃ 6 optimally chosen α according with (29), h fn

≃ h f

is usually observed. From which, combining together (20) with (23) (after replacing fm

with f ) the relationship f = fn a.e. holds. Consequently, from (25) the last two densities
have their respective moment curves coincident as well. Then in (31) IE fn

(Xαk+αj) =

IE f (Xαk+αj) can be set which in turn enables us to state the solution of (31) coincides with
the one obtained from (29). Which makes the ansatz plausible. The ill-conditioning of
(31) remains to be investigated. In this regard, unlike integer moments, only a limited
number n ≤ 6 of fractional moments are sufficient for an accurate estimate of fn, so that
ill-conditioning issues are avoided. Once n is fixed, a final consideration concerns the
choice of αmax = max1≤j≤n{αj}. Since the simplified procedure just described essentially
concerns the accurate calculation of expected values, the answer follows from (24) and
(25): compatibly with numerical issues, αmax should be taken as large as possible so as
not to raise further constraints on a rapid convergence in entropy. As a consequence, the
approximate suggested procedure for replacing (29) is as follows:

1. Once α is fixed, and IE fn
(Xαk+αj−1) = IE f (Xαk+αj−1), IE fn

(Xαk+αj) = IE f (Xαk+αj) are
set, λ are drawn solving the linear system (31);

2. as fn integrates into one, λ0 is given by

λ0 = ln
∫

U
exp

(

−
n

∑
j=1

λjx
αj

)

dx (34)

3. combining (31) with (34), h fn
= λ0 + ∑

n
j=1 λjmαj

is calculated and finally

f
(app)
n : h

(app)
fn

= inf
α1,...,αn

h fn
= λ0 +

n

∑
j=1

λjmαj
(35)

In conclusion, the quick simplified approximate procedure permits to avoid the direct
solution of (29) by solving the low order linear system (31) with unknown λ, doing the
numerical integration (34) and performing the one-loop procedure (35) that runs on α by
means of Monte Carlo technique, with a reduced number of unknowns. This procedure is
computationally feasible and convenient and gives back an accurate approximation of fn

(hence of f ), as we will see in the Example 1.

Remark 2. In principle, thanks to MaxEnt formalism, the above outlined procedure in X ∈ [0, 1]
might be pairwise extended to X ∈ [0, ∞). Indeed, in that case the recursive relationship relating
Lagrange multipliers {λj}n

j=1 with higher order moments is quite similar to (31). With a similar

procedure to the case of rv X ∈ [0, 1], integrating by parts (11), the following linear system follows

n

∑
k=1

αkλk IE fn
(Xαk+αj) = (1 + αj) IE fn

(Xαj), k, j = 1, . . . , n (36)

with IE fn
(Xαj) = IE f (Xαj), j = 1, . . . , n known, whilst IE fn

(Xαk+αj) are generally unknown
and λ0 given by (34). In analogy with X ∈ [0, 1], MaxEnt density fn converges in entropy (and
then in distribution) to f according to Theorem 6. Then, starting from moderate values of n,
IE fn

(Xαk+αj) = IE f (Xαk+αj), for each j, k, can be set, where IE f (Xαk+αj) are known quantities. As
a consequence, (36) may considered a linear system admitting a unique solution (λ1, . . . , λn), being
the involved matrix a nonsingular Gram matrix with distinct {αj}n

j=1. However, the method lacks a

theoretical ground, since two main issues remain open that is,

1. how to guarantee λn ≥ 0 in (36) to ensure integrability in (34)
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2. although the convergence in distribution is guaranteed, Equation (24) is not applicable being
the function g(x) = xα unbounded.

Nevertheless, the above theoretical drawbacks don’t preclude the possibility that, with
a special given moment set {mαj

}n
j=1, the method can guarantee accurate results.

Remark 3. Suppose to consider a generic random sample (X1, X2, . . . , XN) from a distribution
having support U not necessarily [0, 1]: for example, U = IR+ or U = IR. The simplified procedure
for the MaxEnt estimation of the density f proposed in Section 4.2 for the case X ∈ [0, 1] can be
easily applied to the case X ∈ IR+ or the case X ∈ IR. Below we will briefly sketch some details.

1. Case X ∈ IR: it is enough to transform the original sample data for instance through Y =

g(X) = 1
2 + 1

π arctan(X), to obtain a transformed sample Y1, Y2, . . . , YN in [0, 1] and apply
the simplified procedure of Section 4.2.

2. Case X ∈ IR+: in a similar way, the transformation Y = g(X) = e−X can be applied to the
original data (X1, X2, . . . , XN) obtaining a transformed sample Y1, Y2, . . . , YN once again
in [0, 1] interval and the simplified procedure of Section 4.2 is immediately applicable. Note,
that the empirical fractional moments of Y coincide with the empirical Laplace Transform
of X, that is 1

N ∑
N
1 Yα

j = 1
N ∑

N
1 e−αXj , which turns out to be the empirical version of the

relationship
∫ 1

0 yαdFY(y) =
∫ ∞

0 e−αxdFX(x). This last relation leads us to conclude that
also the numerical inversion of the Laplace transform can be reduced to a fractional moment
problem in [0, 1].

3. More recently [23] investigated the feature of an estimator relying upon the fractional moments
for random variables supported on IR by allowing the fractional powers to take complex
numbers. Unlike other authors, they are dealing with the case that the negative values of a
random variable are not negligible at all.

Once obtained the MaxEnt estimate f
(app)
n of f in [0, 1], it is possible to come back to

the original spaces IR or IR+ by the associated inverse transformations f
(app)
n (x) =| g′(x) |

f
(app)
n (g(x)).

The case X ∈ IR outlined in just above items 1. and 3. partially permits to disprove
the criticism arising from [17] where it is asserted that the fractional moments technique is
applicable in the case of positive r.v. X only.

5.3. The Choice of n

With just before considerations, as h f is finite in both (28) and (29), as well in the single
loop strategy, arises the optimal choice criterion of n. Recall that by employing integer
moments, the adding of a further moment could result in a negligible or even zero entropy
decrease, followed by not negligible entropy decreasing with the subsequent moments.
Consequently, a stopping criteria based solely on the difference in entropy when adding
an additional integer moment could be misleading in choosing the optimal number of
moments to use. On the contrary, with the choice of fractional moments according to (29),
it is easy to deduce that the sequence {h fn

}n∈IN is strictly monotonic decreasing. Indeed,
consider (29), fix n and calculate (α1, . . . , αn) from which h fn

. Next, put n + 1 in (29). As a
first step, take the special set (α1, . . . , αn+1) where the first entries (α1, . . . , αn) coincide with
the just above found and αn+1 > αn is kept arbitrarily (that is constrained minimization
running on αn+1 only, whilst (α1, . . . , αn) is held fixed). Calculate h fn+1

and call it h∗fn+1
, with

h∗fn+1
< h fn

. As a second step take n + 1 in (29), where the minimum runs on (α1, . . . , αn+1),

from which h fn+1
(that is unconstrained minimization). It follows h fn+1

< h∗fn+1
< h fn

. The

sequence {h fn
}n∈IN is strictly monotonic decreasing and converges to h f . In the special

case where the sequence {h fn
}n∈IN is bounded below, has a finite limit, so it is a Cauchy

sequence. It leads us to conclude from (29) the rate of entropy decrease becomes smaller and
smaller as n increases and the difference between successive entropies becomes reasonably
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small (which is up to the modeler to decide), one stops and accepts the density determined
by the larger number of moments as the ‘true’ density.

We conclude the paper with a simple example just to see the fractional moment MaxEnt
technique in action. It involves all the crucial theoretical results (fractional moments,
entropy reduction, convergence in entropy, optimal choice of number and exponents)
introduced in the previous sections of the paper.

Example 1. Here our goal is to compare the performances of integer and fractional moments
MaxEnt approximations of a given density function f in [0, 1]. For the sake of comparison, we will
also consider the approximation f (app) of f obtained by using fractional moments in the simplified
MaxEnt procedure given in Section 4.2. Double arithmetic precision is used.

Consider
f (x) =

π

2
sin(πx) I[0,1](x)

with h f = −0.14472327456. The integer moments (im) have the following recursive relationship

mj = IE(X j) =
1

2
− j(j − 1)

π2
mj−2, j ≥ 2, m0 = 1, m1 =

1

2

whilst fractional moments (fm) mαj
= IE(Xαj) are explicitly obtained by numerical integration. The

associated MaxEnt densities fn
(im) and fn

( f m) are given by (4) and (10), respectively.

Optimal fractional moments determine a fast entropy decreasing h
( f m)
fn

− h f and 4 or 5 of them

capture f . But, a definitely higher number of integer moments is required to have a comparable
reconstruction of f , incurring drastic numerical instability due to ill-conditioning for n > 12:

the first column of Table 2 gives evidence of it and actually, the sequence {h
(im)
fn

}n∈IN ceases to

be a decreasing monotone sequence. The third column of Table 2 contains the residual entropy

concerning the MaxEnt approximation f
(app)
n of f given by the simplified MaxEnt procedure

described in Section 4.2. A quick comparison allows us to conclude the closeness of the solution
based on fractional moments and that based again on fractional moments but using the simplified
procedure of Section 4.2. As a consequence of the chain of convergence implications descending

from the convergence in entropy of f
( f m)
n to f , the features of interest of the density f can be well

approximated (or estimated, if in a sample setup) by the corresponding features of f
( f m)
n or f

(app)
n

and governing the approximation error in terms of n.

Table 2. Residual entropy with integer (left), fractional (middle) moments and approximated method

(right) for an increasing number n of moments.

n h
(im)
fn

− h f n h
( f m)
fn

− h f n h
(app)
fn

− h f

2 0.2577 × 10−1 1 0.8774 × 10−1 1 0.8893 × 10−1

4 0.5051 × 10−2 2 0.8077 × 10−2 2 0.2802 × 10−2

6 0.1626 × 10−2 3 0.4488 × 10−3 3 0.4851 × 10−3

8 0.1443 × 10−2 4 0.6043 × 10−5 4 0.4693 × 10−4

10 0.6698 × 10−3 5 0.4000 × 10−6 5 0.1196 × 10−4

12 0.5923 × 10−3 6 0.14152 × 10−5

6. Conclusions

The approximation of probability distributions with finite or unbounded positive
support using fractional moments to express available information has been reconsidered.
Compared to the classical MaxEnt, a novel feature of the proposed method is that the
fractional exponent of the MaxEnt distribution is determined through the entropy maxi-
mization process, instead of being assigned a priori by an analyst. Theorems of the existence
of the maximum entropy distribution and its convergence in entropy are provided. The
latter allows us to reconsider the selection criteria of the fractional exponents in order to
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speed up the convergence in entropy and other related modes of convergence, as well as
preserve some important prior features of the underlying distribution.

Since the release two decades ago of the first paper on the subject by the authors,
numerous criticisms have been raised by several researchers who have used this methodol-
ogy. The main criticism focused on the method of calculating the distribution consisting
of nested minimization. There is no need to formalize ourselves on the existence or non-
existence of the outer minimum in (28). With minα1,...,αn we would simply intend to carry
down the entropy as fast as possible. Indeed, from the different ways of convergence that
we have above listed, it can be deduced that the committed error in the calculation of
expected values or quantiles is controlled precisely by residual entropy.

Relying on a solid proof of the entropy convergence theorem, different convergence
modes are derived as well, we have tried to overcome that shortcoming. For this reason, a
Monte Carlo method has been suggested which rests on solid foundations, being the only
process of involved minimization performed on a function that is known to be convex.

Concerning the computational efforts of the suggested techniques, the algorithm
associated with (29) requires a numerical integration subroutine while the simplified
procedure of Section 4.2 needs a numerical routine for the solution of a linear system of
equations, both tools available in any mathematical or statistical numerical package and
seem to be definitely reasonable.

It is also remarkable to note that the use of a finite number of fractional moments
to represent the available information properly tailored to the problem of interest is still
possible when only a random sample from a given unknown distribution is available.
The existence theorem and the convergence in entropy theorem give solid bases for the
inferential procedures about the unknown f based on fn.

After recalling that fractional moments can be included in the mathematical family of
T-systems, they have helped to provide

1. the conditions of existence of the density fn;
2. the convergence theorem in entropy from which other modes of convergence follow;
3. an optimal choice and optimal number of the fractional exponents α;
4. assuming X ∈ [0, 1], a single-loop algorithm for approximating fn.
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