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1. Introduction 

A large body of research has shown that relatedness to existing economic activities and technologies 

is an important driver of a region’s ability to diversify (Boschma, 2016; Frenken et al., 2007; Boschma 

and Iammarino, 2009; Boschma et al., 2011; Hartog et al., 2012). However, relatedness is just one, 

albeit important, “place-dependent” dimension of regional diversification, which is also marked by 

the “path-dependent” evolution of the industries in which regions specialize and diversify. This 

multidimensional nature of regional diversification has recently led to the proposal of “augmenting” 

the juxtaposition between related and unrelated diversification developed within evolutionary 

economic geography with insights coming from transition studies, which point to the distinction 

between niche creation and regime adoption in the unfolding of socio-technical systems (Boschma 

et al., 2017).  

In this “augmented” way of approaching regional diversification, the range of its trajectories 

expands, as well as that of “the risk, the institutional work, the key actors, and the spatial logic” that 

each of them involves (ibidem p. 39). In a “reduced” form of combination of these insights, four 

patterns of regional diversification have been theoretically identified in the “replication”, 

“transplantation”, “exaptation”, and “saltation” of regional economic activities. Furthermore, a 

battery of empirical cases has been found to (simply) illustrate (so far) the more granular 

interpretative power of the relative taxonomy. 

While it represents an important step towards a more comprehensive theory of regional 

diversification, the proposed augmented approach still lacks any operationalization. In particular, a 
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methodology to proxy its constitutive patterns of regional diversification, and to inspect its drivers 

and consequences, has not been approached yet, posing a serious obstacle to the progress of the 

same research project.  The present paper contributes to fill this gap by proposing an empirical 

methodology to address two issues in the regional diversification literature (see Boschma, 2016). 

The first concerns the relative disregard for the socio-technical evolution of the industrial sectors in 

which regions specialize and diversify. When regions enter new sectors their knowledge base 

evolves, adding a new technological dimension to the spatial dimension of their diversification. 

However, sticking to the “standard” domain of economic geography, this aspect has remained 

unfortunately neglected. Following Boschma et al. (2017), we try to remedy this shortcoming by 

drawing on transition studies and on their recent spatial development (Gibbs and O’Neill, 2017), by 

considering that the radical, rather than incremental nature of socio-technical development at 

industry level, can differently combine with the patterns of related and unrelated diversification at 

spatial level, leading to identify different diversification patterns and trajectories. For the first time 

ever, to the best of our knowledge, we propose a way to proxy the unfolding of these trajectories 

and to look at their determinants in an empirical application.  

The second issue we address concerns the relatively scarce attention paid so far to the regional 

“bridging” factors (especially of a technological nature) that make local activities more 

complementary, with diversification purportedly deriving from their (re)combination (Boschma, 

2016, p. 10). Going along with Montresor and Quatraro (2017; 2019), we suggest to make economics 

of innovation and new technology percolate more pervasively in economic geography and argue 

that Key Enabling Technologies (KETs), like the six recently identified by the European Commission 

(2012)1, could have an important role in this respect.  We propose that the regional endowment of 

these general-purpose kind of technologies could affect the diversification patterns and trajectories 

of regional economic activities, though to a heterogeneous extent.  

We look at the role of KETs in an empirical application to Italian NUTS3 regions in two periods (2004-

2007 and 2008-2010) merging patent and employment data. We estimate a set of ordered logit 

models, where the probability of a region entering increasingly diversified industries is regressed 

against its KET endowment, the extent to which technologies other than KETs draw on them, and 

several other regional characteristics. We find that regions with more KETs are better able to move 

 
1 These are: industrial biotechnology, nanotechnology, micro- and nanoelectronics, photonics, advanced materials, and 

advanced manufacturing technologies. 
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towards more ‘unrelated’ diversification patterns, but only if these KETs are used and combined 

with other technologies. These results hold for both periods examined, and for both types of 

diversification trajectories we consider, though to a heterogeneous extent, and they are robust to 

several checks.   

The paper is developed as follows. Section 2 reviews the background literature. Section 3 describes 

the baseline empirical application. Section 4 discusses the results and some extensions. Section 5 

presents the robustness tests. Section 6 concludes, presenting the research and policy implications. 

 

2. Background literature 

Empirical analyses of regional diversification have generally investigated it within the theoretical 

boundaries of evolutionary economic geography, by mainly contrasting related with unrelated 

diversification. Confirming the crucial role of the cognitive proximity between new and pre-existing 

regional activities in terms of ‘capabilities’ (Boschma, 2016), related diversification has generally 

emerged as a sort of positive and normative rule of the “diversification game” (Balland et al., 2019). 

Conversely, evidence of unrelated diversification has been obtained only scantly and mainly 

indirectly, looking for factors that might attenuate the impact of relatedness on a region’s capacity 

to diversify.2  

While much remains to investigate in this theoretical domain (for some perspectives, see Boschma, 

2016), by strictly sticking to it some important aspects risk to remain unaddressed. Two of them 

appear relevant and suggest augmenting the analysis of regional diversification by enriching 

evolutionary economic geography with other theoretical perspectives.  

The first aspect to consider is that regional diversification embraces at least one other dimension in 

addition to the spatial one, on which evolutionary economic geography has focused so far (Boschma 

et al., 2017). This second dimension refers to the ‘socio-technical regimes’ characteristic of the 

economic sectors in which regions operate and diversify: an issue on which transition studies have 

long concentrated (Geels, 2002; Kemp et al., 1998; Markard et al., 2012; Rip and Kemp, 1998), and 

whose insights thus need to be more comprehensively retained. In brief, at a certain point in time, 

 
2 These conditions have been identified at the macro-level – i.e. the socio-political conditions of diversifying countries, 

(Boschma and Capone, 2016) – at meso-level – such as the core vs. periphery status of the diversifying regions (Isaksen, 

2015; Isaksen and Trippl, 2014) – and  at micro-level – including the nature of the diversifying plants (Neffke et al., 2016). 
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these regimes constitute an alignment of socio-technical elements (i.e. skills, artefacts and 

knowledge) that promotes incremental innovations, and makes sectors “resistant” to radical 

innovations. On the other hand, radical novelty can still occur in the sector through the experimental 

creation and possible upscaling of ‘niches’, which protect the incubation of radical new technologies 

against the consolidating pressure of the regime (Coenen et al., 2010; Geels, 2002). 

Having also and above all a socio-institutional nature (Smith and Raven, 2012), both regimes and 

niches have a spatial nature too, which means that regions have a technological ‘path dependence’ 

that interacts with the ‘place dependence’ of their capacity to diversify (i.e. relatedness). The 

combination of these two types of dependence yields different patterns of regional diversification, 

beyond the standard juxtaposition between relatedness and unrelatedness, which Boschma et al. 

(2017) identify as (Table 1): i) ‘replication’, with related diversification in an established socio-

technical regime; ii) ‘transplantation’, with diversification in an unrelated industry, but still under 

the dominant regime; iii) ‘exaptation’, with a new sector niche developing in the presence of related 

diversification; and iv) ‘saltation’, with activities being developed that are new, in technological 

terms, both to the region and to the ‘world’. These four configurations arguably differ in several 

respects3, and different are the factors influencing them, making regions prone to adopting one 

rather than another and, as we will argue, to move across them.  

 

Insert Table 1 about here 

 

The second aspect that deserves more attention concerns the view of regional diversification as a 

process in which regions (differently) recombine their already-combined (related) or un-combined 

techno-economic activities (unrelated) (Castaldi et al., 2015; Fleming, 2001; Weitzman, 1998). 

Under the conventional umbrella of evolutionary economic geography, this re-combinatory process 

has been mainly read in terms of similarity vs. dissimilarity between the capabilities underlying the 

activities to be combined (Boschma, 2016). On the other hand, economics of innovation and new 

technologies suggests that, in order to lead to a successful inventive outcome, the Schumpeterian 

process of recombination of existing ideas and capabilities also requires complementarity between 

them and proper interfaces among them to build it up. Making these insights percolate more 

 
3  i.e. the risk, the institutional work, the key actors, and the local vs. global spatial logic they entail. 
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pervasively into economic geography, the factors that enable or maybe reinforce such a 

complementarity represent a crucial driver of regional diversification too. Among these factors,4 an 

important complementarity enabler has been recently recognized in a region’s endowment of 

‘general purpose technologies’ (GPT), such as those recently identified by the EC as KETs for the 

transition towards a knowledge-based and sustainable economy (EC, 2002). Given their typical 

horizontal application pattern, which covers the whole spectrum of a region’s economic activities, 

and the coincidence KETs entail between inventions and innovative applications (Bresnahan, 2010), 

KETs have been recently showed to make regional diversification less restricted by the relatedness 

between new and pre-existing activities (Montresor and Quatraro, 2017).  

When these characteristics are matched with the regional diversification patterns that we identified 

above, the role of KETs appears more nuanced. For a start, the nature of KETs makes them more 

likely to enable non-replicative than replicative patterns of diversification, in general. KETs are also 

possibly more likely to enable a transplantation than an exaptation or saltation. This is because the 

latter depend on KETs being able to generate re-combinations of such novelty as to go beyond the 

regional boundaries, which is harder to achieve because of the regional specificity of their 

endowment.  

Another role that KETs could have lies in prompting regions to shift from a replication to a saltation 

pattern (Boschma et al., 2017), along what could be considered an ‘ideal’ diversification strategy 

that escapes lock-in situations: an additional aspect of the “augmented” approach to regional 

diversification we are referring, which has not been addressed so far. Given the cumulative and 

path-dependent nature of regional dynamics, the same transition would be difficult and risky to 

achieve directly by simultaneously adding ‘radicalness’ to both the spatial and the technological 

dimensions. Regions could/should move gradually from replication to saltation, learning as they add 

one novel component at a time, and passing through one of the other two diversification patterns. 

They could thus go for one of two transition trajectories, which we originally propose to investigate 

(see Table 1): i) ‘technology over place’ (TOP) diversification, via ‘transplantation’, in which they first 

exploit an existing (global) regime to diversify their economic activities in unrelated regional 

 
4 An ample set of factors can help connect the activities that, once recombined, generate regional diversification, 

including: the internal/external labor mobility of a region; the input-output linkages of its production structure; and the 

presence of institutional entrepreneurs and collective actors (for a wider review, see Boschma, 2016). 
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domains, then “stretch” the novelty to the technology level by entering a new niche; or ii) ‘place 

over technology’ (POT) diversification, via ‘exaptation’, in which they first enter a new technological 

domain (niche) to diversify “around” their extant economic activities, then “expand” the new 

technology to unrelated regional domains too. 

As both diversification trajectories entail an increasingly novel recombination of local activities, KETs 

could be expected to help in both respects thanks to their two GPT properties. As both place- and 

path-dependence are opposed during the transition (albeit following a different sequence), we have 

no reason to expect the impact of KETs to be greater for one trajectory than for the other. We leave 

this issue to emerge from our empirical application in the next section. 

Before moving on, an important point should be retained. In principle, knowledge of KETs could 

have the above-described recombinant effects on regional diversification for the ‘simple’ fact of 

being produced locally and somehow available - through local inventive efforts and their possible 

“pure knowledge spillovers”. We argue, however, that the diversification-driving role of KETs 

increases the more their knowledge is purposely used in other technological domains. Such a use 

could facilitate the direct ‘exposure’ of these technological domains to the work of GP technologies 

like KETs, and thus increase the chances of prompting novel knowledge re-combinations as a result. 

So, a region’s ‘use’ of KETs5 can be expected to positively influence the impact of KETs on the 

regional diversification trajectories that we identified.    

 
 
3. Empirical application 
 

Our empirical application refers to 103 Italian NUTS3 regions (i.e. provinces), for which we could 

combine two sources of data. One is the Statistical Archive on Active Firms (Archivio Statistico 

Imprese Attive – ASIA) managed by the Italian Statistics Institute (ISTAT), from which we obtained 

data on the numbers of plants and employees by industry (up to five-digit level) and region (at 

NUTS3 level) to measure our diversification patterns and trajectories (see Section 3.1). The second 

source is the OECD-REGPAT database, from which we drew regional patent data (Acs et al., 2002; 

Nagaoka et al., 2010) to build up our core regressor, that is, KETs knowledge available in the region 

 
5 In the patent-based metrics adopted in our empirical application, such a use could be interpreted in terms of number 

of citations KETs patents receive by non-KETs ones. 
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(see Section 3.2). KET-related patents were identified as those labelled with at least one 

International Patent Class (IPC) and/or Cooperative Patent Classification (CPC) identified by the EC 

feasibility study on KETs (EC, 2012b). The same data source was used to retrieve the number of 

citations of KET-related patents by non-KETs regional patent applications to measure the extent to 

which they are used at local level. Finally, we drew on other ISTAT regional statistics to measure 

additional characteristics of Italian regions to use in testing our relationship. 

While data from previous sources are available from 2004 to 2010, a “statistical break” occurred in 

the ASIA dataset in 2008, so the observation period had to be split in two: 2004-07 and 2008-106. 

This prevented us from running a dynamic analysis, but enabled us to test our arguments across the 

business cycle before (2004-07) and during the financial crisis of ten years ago (2008-10). In the end, 

we had 756 five-digit industries in 103 provinces, for a total of 63,449 observations for the former 

period (Industries are not evenly distributed across NUTS3 regions), and 805 five-digit industries 

and 67,485 observations for the latter.  

 

 

3.1 Variables 

 

3.1.1. Dependent variables 

To conduct our analysis, we define Tech-Place-DiverrT (TOP) and Place-Tech-DiverrT (POT) as two 

ordered variables of four values. Taking value 0 as the benchmark case of no diversification for the 

region over the period [t - T], values 1 and 3 of these variables are assigned to cases of ‘replication’ 

and ‘saltation’, respectively, while value 2 is assigned to either ‘transplantation’ (for TOP) or 

‘exaptation’ (for POT). As explained below, this also enables us to look at our first research question, 

i.e. the determinants of the individual diversification patterns comprising the ordered variables, and 

the role of KETs across them. 

Following the literature on regional diversification (see, for example, Neffke et al., 2016), the 

constitutive values of these two ordered variables are built up by looking at regions’ involvement in 

 
6 In 2008 the ISTAT followed EUROSTAT recommendations and revised its industry classification system, switching from 

ATECO 2002 (i.e. NACE Rev. 1.1) to ATECO 2007 (i.e. NACE Rev 2). As a result, industries cannot be merged across 2008 

without a marked loss of disaggregated data. 
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new economic activities based on the jobs created over our two periods (2004-07 and 2008-10), 

and by classifying the relative industry “entries” in the region as follows:  

- replication: a 5-digit entry at T, in a 3-digit industry that already existed (still in employment terms) 

at t, both in the region and in Italy (new neither to the region, nor to the world7); 

- transplantation: a 5-digit entry at T, in a 3-digit industry that did not exist in the region, but already 

existed in Italy at t (new to the region, but not to the world);  

- exaptation: a 5-digit entry at T, in a 3-digit industry that already existed in the region, but not in 

Italy at t (new to the world, but not to the region);  

- saltation: a 5-digit entry at T, in a 3-digit industry that did not exist at t, neither in the region nor 

in Italy (new to the region and to the world).8 

Table 2 shows the distribution of all these variables across our two periods. Before the economic 

crisis (2004-07), the Italian provinces show all four types of diversification, though saltation is rare 

and concentrated in a single 3-digit industry (ATECO code 652, “other financial intermediation”). 

We therefore opt not to include it in the first period, and to construct our dependent variables using 

the other two diversification patterns (in addition to no diversification). In the aftermath of the 

economic crisis (2008-10), the number of entries drops substantially, and we find no cases of 

exaptation or saltation. We consequently cannot identify the corresponding Place-Tech-Diver 

variable, so we only use Tech-Place-Diver.  

 

 
7 Of course, referring to the country regions belong as the technological world of reference is a gross simplification, we 

were forced to make because of data availability. Still, being a forerunner in a new industry in the country presumably 

exposes the region to at least some of those processes of experimentation and radical innovation that a new ‘real’ niche 

would entail. 

8 To avoid the effect of spurious entries (e.g., temporary jobs), an employment threshold for industry entries is set at 

the median employment level for the whole sample of newly created five-digit industries, i.e. 3.5 in 2004-07, and 2.13 

in 2008-10. As a robustness check, we also compute the employment medians for each and every new five-digit industry. 

Tables B1.1 and B1.2 in Appendix B1 show that the results are mainly robust to the use of these different employment 

thresholds.  
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Insert Table 2 about here 

 

3.1.2. Focal regressors 

Our focal explanatory variable is the region r’s endowment of KETs at the beginning of each sub-

period (KETsrt). Following innovation studies, we proxy this with the regional stock of KET-related 

patent applications in our two focal periods, applying the perpetual inventory method to the flows 

of said patents (PATKETst) over the years 1995-2004 and 1995-2008, respectively. We thus use the 

following formula:9 

 

[1] 𝐾𝐸𝑇𝑠𝑟𝑡 = 𝐾𝐸𝑇𝑠𝑟𝑡−1(1 − δ) + 𝑃𝐴𝑇𝐾𝐸𝑇𝑠𝑟𝑡  for t > 1995, 

 

where the depreciation rate δ is set at 0.15, consistently with extant studies (e.g. Montresor and 

Vezzani, 2015). 

To disentangle the role of the six KETs identified by the EC, we repeat the same procedure and 

obtain the separate stocks of patents for: advanced manufacturing technologies (AMTrt), advanced 

materials (ADVrt), biotechnology (BIOTECHrt), nanoelectronics (NANOELrt), nanotechnologies 

(NANOTECHrt), and photonics (PHOTOrt). 

Figures 1 and 2 show the geographical distribution of the stocks of KETs-related patents in total and 

by type, respectively.  

 

Insert Figure 1 about here 

 

Insert Figure 2 about here 

 
9 Although regionalizing patent data by inventor is usually preferred, this method has just as many weaknesses as 

considering applicants, as we did (Cozza and Schettino, 2015). The main results tend to be robust when using inventors’ 

addresses. 
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As for the ‘use’ made of KETs in other local technologies, following the patent literature 

(Trajtenberg, 1990), we proxy this by looking at the extent to which KET-related patents are cited 

by non-KET patents. We thus obtain the variable CITKETsrt from the sum of these citations per year, 

divided by the total number of citations for region in our two focal periods (1995 – 2004 and 1995 

– 2008).10 As this latter variable obviously depends on the local production and availability of the 

non-KETs regional knowledge base that cites KETs, its inclusion prevents us from considering the 

stock of non-KET-related patents among the regressors, as it would be collinear.  

 
3.2.3. Other regional characteristics and controls 

The diversification trajectories that regions follow might also depend on characteristics other than 

KETs. Looking at previous studies on the determinants of related vs. unrelated diversification, we 

maintain that three regional factors should be salient. 

i) The level of economic complexity of the region (Pinheiro et al. 2018; Petralia et al., 2016: Balland 

et al., 2018). Following Hidalgo and Hausmann (2009), and using regional export data from the 

Coeweb archive provided by ISTAT, we calculate an indicator, ECIrt, which combines the diversity of 

the industries in which the region has shown a comparative advantage, and the ubiquity of these 

industries (see Appendix A for more details).  

ii) The regional human capital (Gilbert & Campbell, 2015; Lester, 2007; Tanner, 2016; Consoli et al., 

2019). The region’s stock of human capital at the beginning of each period, HKrt, is measured as the 

number of university graduates (with bachelor’s and master’s degrees) in the resident population, 

using ISTAT data from ASTI (Atlante Statistico Territoriale delle Infrastrutture). 

iii) Agglomeration economies are proxied with the population density of the region, POPDENrt, in 

terms of its resident population per km2.  

Two further sets of regressors are considered. First of all, using data from the Business Register of 

the Italian Chambers of Commerce (available through Infocamere), we obtain and include the 

number of newly active companies out of all companies registered in 1995 in each NUTS 3 region 

(BIRTH RATE). This should control for a problem of reverse causality, descending from the fact that 

more KETs-endowed regions are also those where the rate of firm creation is traditionally higher. 

 
10 Considering the cumulative number of citations of KET-related patents in other patents provide robust result. 
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Second,  as results could be affected by the business cycle and the international climate regions 

operate in, we control for the rate of growth in regional per capita added value (GROWTHrt) over 

the three years before T (i.e. 2001-2004 and 2005-2008), and for regional trade openness (TRADErt), 

given by the sum of imports and exports out of the regional added value, respectively. 

Finally, we add a series of NUTS2 region dummies and 2-digit industry dummies to account for fixed 

effects at regional and industry level. Table 3 shows the main summary statistics.  

 

 

Insert Table 3 about here 

 
 
3.3. Econometric strategy 

 

We estimate the following two models:  

 

[1] 𝑌𝑟
2004/07

= 𝛽0 + 𝛽1𝐾𝐸𝑇𝑆𝑟
95−04 + 𝛽2𝐶𝐼𝑇𝐾𝐸𝑇𝑆𝑟

95−04 + 𝛽3𝐾𝐸𝑇𝑆𝑟 ∗ 𝐶𝐼𝑇𝐾𝐸𝑇𝑠𝑟 + 𝑿𝒓
′𝟐𝟎𝟎𝟒𝜷𝟒 + 𝜑𝑅 + 𝜇𝑗 + 𝜀𝑟  

[2] 𝑌𝑟
2008/10

= 𝛽0 + 𝛽1𝐾𝐸𝑇𝑆𝑟
95−08 + 𝛽2𝐶𝐼𝑇𝐾𝐸𝑇𝑆𝑟

95−08 + 𝛽3𝐾𝐸𝑇𝑆𝑟 ∗ 𝐶𝐼𝑇𝐾𝐸𝑇𝑠𝑟 + 𝑿𝒓
′𝟐𝟎𝟎𝟖𝜷𝟒 + 𝜑𝑅 + 𝜇𝑗 + 𝜀𝑟   . 

 

where, YrT refers to our two ordinal diversification variables (TOP and POT) for the region r, KETsrt 

and CITKETsrt are our two focal regressors, and the vector Xrt includes the other regional 

characteristics and selected controls. The terms 𝜑𝑅 and 𝜇𝑗 respectively represent the NUTS2 region 

and the NACE 2-digit industry dummies, while εr is the stochastic error component. The interaction 

between CITKETsrt and KETSrt is considered to test for the moderating role of the use of KETs on the 

impact of KETs on Y. As we said, the two models are estimated first with the generic stock of KETs, 

then with the single regional endowments of AMTrt, ADVrt, BIOTECHrt, NANOELrt, NANOTECHrt and 

PHOTOrt, inputed separately due to their strong correlation. 

Since YrT is constructed as an ordered variable, we estimate equations [2] and [3] using an ordered 

logit model and clustering the standard errors at NUTS3 region and 2-digit industry level. We test 

for the validity of the parallel lines (or proportional odds) assumption using both a likelihood ratio 

(LR) and a Brant test. If the null hypothesis of correct specification of the model is rejected, we use 

the Bayesian Information Criterion (BIC) to compare one model where the estimated coefficients 
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are equal across outcomes, and one where the coefficients can vary across outcomes (Williams, 

2016).   

 
 
4. Results 

Table 4 shows the ordered logit and OLS estimates for TOP (Columns 1-3) and POT (Columns 4-6) 

the first period, 2004-2007. For each trajectory, the first column (1 and 4, respectively) refers to the 

specification that includes only the stock of KETs as the main regressor, while in the other columns 

(2-3 and 5-6, respectively) the results include the interaction between KETs and CITKETs.11  

The stock of regional KETs alone never affects the probability of a region diversifying into 

increasingly unrelated industries.12 A significant effect only emerges for the interaction between the 

stock of KETs and their citation in other technologies available in the region. Columns 2-3 and 5-6 

show that, in the absence of any citations (i.e. when CITKETS=0), the stock of KETs even reduces the 

region’s propensity to diversify through new entries, apparently being more functional to preserving 

its existing economic structure. In the presence of citations, however, its propensity for 

diversification increases (especially for TOP, and less so for POT), thus counteracting the negative 

effect of the sole KETs regressor. Therefore, its total net marginal effect needs to be considered, as 

we do below.  

This is a first interesting result. The sole creation of KETs knowledge is not enough to make regions 

follow the diversification trajectories we are investigating. For that to happen, KETs need to be 

combined with local non-KET-related knowledge. Consistently with the original message of the 

European Commission (EC, 2009), it is not so much the local production of KETs that help regions 

change and escape the risk of lock-in as they move towards the new knowledge-based economy,  

 
11 LR and Brant tests confirm the parallel lines assumption is valid in the case of TOP, whereas this does not happen in 

the case of POT. However, the BIC statistics show that a model where the coefficients of our variables are equal across 

the ordered classes is preferable to a model where they are not (Williams, 2016).   

12 Among the other regressors, some of which have been squared to check for non-linear effects, Table 4 shows that 

the probability of (increasingly) unrelated diversification rises with trade openness and, albeit non-linearly, with 

population density. No significant effect is seen for the other control variables. 
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but rather an effective use made of them by the players involved in the production of the region’s 

‘normal’ knowledge base.    

 

Insert Table 4 about here 

 

Table 5 shows the marginal effects related to the estimates in Table 4. For the TOP trajectory 

(Column 2 in Table 4), the positive marginal effect of KETS*CITKETS is always larger than the negative 

effect of KETS, so the final net effect is positive. More precisely, a 1% (1 standard deviation) increase 

in KETs endowment corresponds to an average 0.007% (0.05%) increase in the probability of a 

region diversifying and shifting from replication to transplantation. Just to make an example, 

increasing the stock of KETs from 0 to 991 (the highest value, corresponding to the province of 

Milan) would raise this probability by almost 700%.  

As for the POT diversification trajectory (Column 5 in Table 4), the marginal effect is consistently 

lower, amounting to 0.003% (0.011%). As expected, the role of KETs in regional diversification 

varies, being more effective when further radicalness is achieved in an existing technological regime 

(TOP) than in the creation of a new niche (POT). 

 

Insert Table 5 about here 

 

Moving on to the second period of the analysis, 2008-2010, Table 6 confirms the results obtained 

for the previous period for POT (the only trajectory we are able to observe). Quite interestingly, the 

citation-weighted influence of KETs on a region’s diversification is also confirmed in a negative phase 

of the business cycle, appearing as a sort of ‘structural’ driver of it.  

 

Insert Table 6 about here 

 

This result is confirmed in Table 7, which shows the corresponding marginal effects (Column 2), as 

they are in line with those in Table 5.  

  

Insert Table 7 about here 
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Finally, Table 8 shows the ordered logit estimates when the endowment of each type of KET is input 

separately. Columns 1, 3, 5, 7, 9 and 11 reveal that only two of them, when combined with other 

non-KET technologies, significantly affect the TOP trajectory, i.e. advanced manufacturing 

technologies, and advanced materials. Similarly, Columns 2, 4, 6, 8, 10 and 12, show that the only 

KET affecting POT is advanced manufacturing technology. The same results (Table B2 in the 

Appendix) hold for TOP in the second period 2008-10. This is an important result, showing that only 

the two more GPT-like KETs can affect a region’s propensity to transit through diversification.  

 

Insert Table 8 about here 

 

4.1. Non-linearities and the role of densely populated regions 

Table 9 shows the ordered logit and OLS estimates, where we include KETS and KETS2 among the 

main regressors, in order to control for possible non-linearities in their diversification impact. For 

reasons of space, we omit the estimated coefficients of the other covariates, which remain the same 

as in Table 4. Columns 1 and 2 confirm that the relationship between KETs and TOP is non-linear: it 

is negative up to a minimum threshold of 547 (522) KET-related patents, beyond which it turns 

positive. The same holds for 2008-10 (Columns 5 and 6), and for POT (Columns 3 and 4). 

Interestingly, we find only one province, Milan, with such a high KETs endowment, meaning that 

only Milan has enough KETs to stimulate the region’s diversification without any interaction with 

non-KETs through citations. For this to happen elsewhere, the KETs need to be combined with the 

non-KETs.  

 

Insert Table 9 about here 

 

This result prompts us to investigate how densely populated areas might support the role of KETs in 

a region’s diversification. To do so, we re-estimate equations [1] and [2] on two different 
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subsamples, one including and the other excluding the most densely populated regions.13 We thus 

test whether our results are driven by the clustering of patents in the largest metropolitan areas of 

Italy. Table 10 shows that, for both periods and both types of regional diversification, the baseline 

results on KETs hold only for densely populated regions, implying that the accumulation and 

effective use of KETs are largely an urban phenomenon, requiring a critical socio-economic mass.  

 

Insert Table 10 about here 

 

4.2. The role of other technologies 

In order to be sure the effect we observe is due to the intrinsic features of KETs, we use a sort of 

placebo test and re-estimate equations [1] and [2] omitting the KETs related variables and using an 

alternative set of explanatory ones: the stock of non-KET technologies (NON-KETS), and the number 

of citations that non-KET-related patents make to them (CITNONKETS).   

Table 11 shows the ordered logit results for both periods. Columns 1 (2004-07) and 5 (2008-10) 

show that, as for KETs, the regional stock of non-KETs does not per se raise the probability of regions 

developing new, and increasingly unrelated activities. However, as expected, Columns 2, 3, 4 and 6 

show that, as expected, the estimated coefficient of the interaction term never differs statistically 

from zero: we thus surmise that a region’s unrelated diversification is driven only by the KETs-

related knowledge base of the region. 

 

Insert Table 11 about here 

 

4.3 Robustness checks 

A set of robustness checks are carried out in order to consider: the presence of selection 

mechanisms in the region capacity to develop KETs knowledge (Appendix B3); the presence of 

spatial correlation between the KETs endowment and/or diversification patterns of neighboring 

 
13 We define these regions with a dummy taking the value of 1 when a region’s population in 1996 is higher than the 

median (i.e. 383,075), and 0 otherwise. We achieve the same results if we define as densely populated a NUTS 3 region 

with a population of more than 500,000.  
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regions (Appendix B4); the scope of diversification available to regions with respect to the 

considered set of industries (Appendix B5). Although with some sensible variations, the results 

reported in the relative Appendices confirm the main outcome of our empirical application, which 

thus can be retained robust. 

 

6. Conclusions 

Regional diversification is a complex phenomenon that combines cumulativeness and path-

dependence at both spatial and technological levels. When both dimensions are considered, the 

options of diversification increase and the opportunity emerges for regions to move gradually and 

differently across them in escaping the risk of getting locked into their extant specializations, opting 

either for a ‘technology-over-place’ (TOP) diversification, or for a ‘place-over-technology’ (POT) one. 

As these patterns and trajectories of diversification occur through the recombination of existing 

activities, the regional availability of factors that can favor their complementarity reveals crucial, 

and this is especially the case for general purpose kind of technologies, like KETs. 

Our empirical analysis of Italian (NUTS3) region actually confirm that a region’s capacity for creating 

new industries using increasingly varied patterns of diversification is influenced by its endowment 

of KETs knowledge. Unless a large critical mass of technological activities is reached, this is not 

because of pure knowledge spillovers that the KET-related inventive activity creates in the region, 

but because other technologies make use of these KETs. This is largely a case of a TOP type of 

diversification trajectory, where regions switch from replication to transplantation. The evidence 

for a POT type of diversification trajectory is less robust.  

Our results hold in two distinct phases of the business cycle, in 2004-07 and 2008-10, and reveal 

less heterogeneous diversification patterns after the crisis. What is more, they vanish with respect 

to low populated urban areas, suggesting that a critical socio-economic mass is also crucial for KETs 

to enable diversification. Finally, results are robust to regions’ self-selection for accumulating KETs 

and endogeneity, and to the role of other technologies, spatial autocorrelation, and industry 

saturation.  

These results suggest that KETs are an important tool in a region’s policy box for diversifying, 

providing that support for their creation is combined with support for their use. Such a policy 

implication is particularly important for the most urbanized regions, which emerged in our Italian 

empirical application as drivers of the overall results. While these regions presumably reach the 
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critical mass of KETs (inventive activities) needed for the relationship between these technologies 

and a region’s diversification to be apparent, this relationship does not emerge in the absence of 

their effective use. 

Our analysis also shows that, as expected, KETs have a different impact on the various patterns of 

diversification that emerge, when their place and technology path-dependence are both 

considered. KETs help regions to extend the scope of their local economic activities (transplantation) 

more than they can do with respect to the socio-technical regime that embraces these activities on 

a global (or, in our case, national) scale (exaptation). Accordingly, if regions are willing to prioritize 

the creation of a radically new technological niche, or to add such an exaptation strategy to a 

transplantation strategy based on unrelatedness, then KETs need to be integrated with more 

technologically enabling tools, such as those in the standard domain of science and technology 

policy. 

While adding to the still relatively ‘thin’ stream of literature on unrelated diversification, and 

suggesting a set of interesting regional policy implications, our results are not without their 

limitations. As we said, the most important concern the methodological choices that the available 

dataset necessitated: in capturing the technological world with which regional economies deal, 

which was limited to their reference country in our case; and in addressing the dynamics of regional 

patterns of diversification over time, which was restricted to two sets of cross-sectional analysis. As 

is usually the case, a search for additional datasets, possibly enabling comparisons with other 

countries, will be the next step in our future research agenda to address these limitations. 
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Table 2. Distribution of entries and regional diversification patterns 

  2004-07 2008-10 

  N. of 5-digit 

industries 

% N. of 5-digit 

industries 

% 

Entry (employment≥median) 1,399 2.20 1,124 1.67 

- Replication 942 67.34 857 76.25 

- Transplantation 332 23.73 267 23.75 

- Exaptation 114 8.15 0 0.00 

- Saltation 11 0.79 0 0.00 

 
 
 
 
Table 3. Summary statistics 
Variable Year  Mean Std. dev. Min Max 

KETS  1995-2004 18.43 98.50 0 991.42 
 1995-2008 20.25 96.36 0 966.76 
CITKETS 1995-2004 0.020 0.021 0 0.143 
 1995-2008 0.022 0.022 0 0.133 
HK 2004 0.322 0.034 0.240 0.451 
 2008 0.323 0.034 0.240 0.451 
ECI 2004 -0.009 0.151 -0.374 0.337 
 2008 -0.009 0.084 -0.217 0.175 
GROWTH 2001-04 0.093 0.055 -0.038 0.252 
 2005-08 0.077 0.104 -0.098 0.667 
POPDEN 2004 244.5 329.5 37.235 2603.31 
 2008 249.1 330.0 38.753 2586.5 
BIRTH RATE 1995 0.114 0.200 0.053 1.293 
TRADE 2004 53.17 54.26 1.542 335.11 
 2008 53.730 55.512 1.562 383.27 
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Table 4. KETs and regional diversification: 2004-07 

 TOP POT 
Method OLOGIT OLOGIT OLS OLOGIT OLOGIT OLS 

 (1) (2) (3) (4) (5) (6) 
KETS -0.001 -0.019*** -

0.0002*** 
-0.001 -0.010* -0.000* 

 (0.001) (0.006) (0.0001) (0.001) (0.005) (0.000) 
CITKETS  -1.060 -0.005  -0.313 -0.002 
  (1.808) (0.039)  (1.899) (0.030) 
KETS*CITKETS  0.506*** 0.006***  0.261* 0.003* 
  (0.155) (0.002)  (0.154) (0.002) 
ECI -0.468 -0.334 -0.009 0.022 0.112 0.002 
 (0.356) (0.356) (0.008) (0.367) (0.371) (0.006) 
POPDEN -0.001** -0.001** -0.000*** -0.001* -0.001* -0.000* 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
POPDEN2 0.000** 0.000* 0.000* 0.000** 0.000* 0.000* 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
GROWTH 0.617 0.627 0.017 0.678 0.717 0.009 
 (0.749) (0.739) (0.015) (0.785) (0.780) (0.012) 
HK -21.48 -22.57 -0.452 -17.88 -18-14 -0.341 
 (15.97) (16.18) (0.342) (14.66) (14.87) (0.268) 
HK2 24.60 28.95 0.573 25.72 27.78 0.529 
 (24.76) (25.14) (0.523) (21.91) (22.29) (0.407) 
BIRTH RATE 0.048 

(0.228) 
0.013 

(0.231) 
0.001 

(0.005) 
0.065 

(0.240) 
0.030 

(0.243) 
0.000 

(0.003) 
TRADE 0.003*** 0.002*** 0.000*** 0.002** 0.001 0.000 
 (0.001) (0.000) (0.000) (0.001) (0.001) (0.000) 
Region FE Yes Yes Yes Yes Yes Yes 
Industry FE Yes Yes Yes Yes Yes Yes 
N 63449 63449 63449 63449 63449 63449  
Pseudo R2 0.255 0.256 0.158 0.199 0.200 0.154 
LR test (p-value)  0.595   0.000  
Brant test (p-
value) 

      

All var  0.443   0.000  
KET     0.019  
CIT     0.722  
KETS*CITKETS     0.019  
BIC (pl)     11588.5  
BIC (npl)     11648.5  

Clustered (at NUTS3 region and 2-digit industry level) standard errors in parentheses. All the estimates include a constant term. * p 
< 0.10, ** p < 0.05, *** p < 0.01. The likelihood ratio (LR) and Brant test of the parallel lines assumption are based on a model with 
no regional and industry dummies.   
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Table 5. Marginal effects: 2004-07 

 Marginal change 
TSD Replication Transplantation Total 

KETS -0.000 -0.000 -0.000 
KETS*CITKETS 0.005 0.002 0.007 
Total 0.005 0.002 0.007 

STD Replication Exaptation Total 
KETS -0.000 -0.000 -0.000 
KETS*CITKETS 0.003 0.000 0.003 
Total 0.003 0.000 0.003 

  +SD change  
TSD Replication Transplantation Total 

KETS -0.012 -0.005 -0.017 
KETS*CITKETS 0.050 0.017 0.067 
Total 0.038 0.012 0.050 

STD Replication Exaptation Total 

KETS -0.009 -0.001 -0.010 
KETS*CITKETS 0.018 0.003 0.021 
Total 0.009 0.002 0.011 
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Table 6. KETs and regional diversification: 2008-10 
 TOP 
Method OLOGIT OLOGIT OLS 

 (1) (2) (4) 

KETS -0.001 -0.017*** -0.000*** 
 (0.001) (0.005) (0.000) 
CITKETS  1.193 0.047 
  (1.426) (0.039) 
KETS*CITKETS  0.459*** 0.005*** 

  (0.141) (0.002) 
ECI 0.055 0.107 -0.002 
 (0.601) (0.594) (0.014) 
POPDEN -0.001*** -0.001*** -0.000*** 
 (0.000) (0.000) (0.000) 
POPDEN2 0.000*** 0.000*** 0.000** 
 (0.000) (0.000) (0.000) 
GROWTH -0.229 -0.221 -0.005 
 (0.378) (0.388) (0.011) 
HK -0.768*** -0.558** -0.014*** 

 (0.208) (0.216) (0.005) 
HK2 0.372*** 0.308*** 0.008*** 

 (0.114) (0.117) (0.003) 
BIRTH RATE 0.126 

(0.154) 
0.105 

(0.156) 
0.005 

(0.005) 
TRADE 0.001** 0.001* 0.000* 

 (0.000) (0.000) (0.000) 
Regional dummies Yes Yes Yes 
Industry dummies Yes Yes Yes 

N 67485 67485 67485  
Pseudo R2 0.080 0.083 0.166 
LR test (p-value)  0.066  
Brant test (p-value)  0.115  

Clustered (at NUTS3 region and 2-digit industry level) standard errors in parentheses. All the estimates include a 
constant term. * p < 0.10, ** p < 0.05, *** p < 0.01.  

 
 
Table 7. Marginal effects: 2008-10 

 Marginal change 

TSD Replication Transplantation Total 

KETS -0.000 -0.000 -0.000 
KETS*CITKETS 0.006 0.002 0.008 
Total 0.006 0.002 0.008 

  +SD change  
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TSD Replication Transplantation Total 

KETS -0.011 -0.003 -0.014 
KETS*CITKETS 0.046 0.017 0.063 
Total 0.035 0.014 0.049 



 

 26 

Table 8. Ordered logit estimates, by single KET (2004-07) 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 TOP POT TOP POT TOP POT TOP POT TOP POT TOP POT 

CITKETS -0.899 -0.289 -0.863 -0.027 0.077 0.141 0.001 0.195 0.082 0.279 -0.052 0.156 
 (1.778) (1.888) (1.820) (1.905) (1.680) (1.827) (1.694) (1.837) (1.689) (1.830) (1.706) (1.842) 

AMT -0.089*** -0.045*           
 (0.023) (0.024)           
AMT*CITKETS 2.295*** 1.256*           
 (0.651) (0.678)           

ADV   -0.026*** -0.006         
   (0.010) (0.012)         
ADV*CITKETS   0.670*** 0.177         
   (0.250) (0.329)         

BIOTECH     -0.043 -0.049       
     (0.037) (0.032)       
BIOTECH*CITKETS     0.564 1.300       
     (1.270) (1.063)       
NANOEL       -0.039 -0.034     
       (0.029) (0.028)     
NANOEL*CITKETS       1.035 0.960     
       (0.820) (0.811)     

NANOTECH         -1.049 -0.600   
         (0.635) (0.552)   
NANOTECH*CITKETS         28.62 17.12   
         (18.11) (15.78)   

PHOTO           -0.031* -0.017 
           (0.016) (0.013) 
PHOTONICS*CITKETS           0.655 0.461 
           (0.494) (0.429) 
             
 omitted 
             

N 63449 63449 63449 63449 63449 63449 63449 63449 63449 63449 63449 63449 
Pseudo R2 0.256 0.200 0.256 0.199 0.256 0.200 0.255 0.200 0.256 0.200 0.256 0.200 

All the estimates also include a constant term and the following variables: ECI, DEN, DEN2, GROWTH, HK, HK2, BIRTH RATE, TRADE. Cluster (at NUTS3 region and 2-digit industry 
level)-robust standard errors in parentheses. *** p<0.01 ** p<0.05 * p<0.1. 
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Table 9. Ordered logit estimates: non-linearities 
 2004-07 2008-10 
 TOP POT TOP 

 (1) 
OLOGIT 

(2) 
OLS 

(3) 
OLOGIT 

(4) 
OLS 

(5) 
OLOGIT 

(6) 
OLS 

KETS -0.014*** -
0.00016*** 

-0.007* -
0.00008** 

-0.007** -
0.00008** 

 (0.004) (0.0001) (0.004) (0.00004) (0.003) (0.00004) 
KETS2 0.000013*** 

(0.0000) 
1.57e-
07*** 

(6.81e-06) 

7.56e-06* 

(3.92e-
06) 

7.82e-
08** 

(3.94e-
08) 

6.45e-
06** 

(2.77e-
06) 

8.08e-
08** 

(3.68e-
08) 

       
 omitted 
Regional 
dummies 

Yes Yes Yes Yes Yes Yes 

Industry 
dummies 

Yes Yes Yes Yes Yes Yes 

N 63449 63449 63449 63449    
Pseudo R2 0.256 0.287 0.200 0.154 0.082 0.021 
Min. (KETS) 547.2 522.3 518.2 515.3 536.96 491.3 

All the estimates also include a constant term and the following variables: ECI, DEN, DEN2, GROWTH, HK, HK2, BIRTH 
RATE, TRADE. Cluster (at NUTS3 region and 2-digit industry level)-robust standard errors in parentheses. *** p<0.01 ** 
p<0.05 * p<0.1.  
 
 
 
 

 
 
 
 
 
Table 10. Ordered logit estimates: densely populated regions (DPR) 
 2004-07 2008-10 
 TOP 

(DPR=0) 
TOP 

(DPR=1) 
POT 

(DPR=0) 
POT 

(DPR=1) 
TOP 

(DPR=0) 
TOP 

(DPR=1) 

 (1) (2) (3) (4) (5) (6) 
KETS -0.012 -0.019*** -0.017 -0.013* -0.006 -0.015** 
 (0.017) (0.007) (0.018) (0.007) (0.017) (0.006) 
CITKETS 2.045 -2.023 2.600 -2.101 2.054 4.060* 
 (3.206) (2.982) (3.461) (3.447) (2.326) (2.305) 
KETS*CITKETS -0.069 0.514*** 0.281 0.364* 0.166 0.408** 
 (0.531) (0.197) (0.561) (0.190) (0.493) (0.178) 
 omitted 
Regional dummies Yes Yes Yes Yes Yes Yes 
Industry dummies Yes Yes Yes Yes Yes Yes 

N 31815 31634 31815 31634 33876 33609  
Pseudo R2 0.243 0.291 0.155 0.269 0.084 0.103 
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All the estimates also include a constant term and the following variables: ECI, DEN, DEN2, GROWTH, HK, HK2, BIRTH 
RATE, TRADE. Cluster (at NUTS3 region and 2-digit industry level)-robust standard errors in parentheses. *** p<0.01 
** p<0.05 * p<0.1. 
 
 
 
 
Table 11. The role of other technologies  
 2004-07 2008-10 

 TOP POT TOP 

 (1) (2) (3) (4) (5) (6) 
NON-KETS -0.001** -0.020 -0.000 -0.016 -0.0003** -0.015 
 (0.000) (0.013) (0.000) (0.012) (0.000) (0.010) 
CITNONKETS  0.373  0.073  -1.557 
  (1.730)  (1.868)  (1.396) 
NONKETS*CITNONKETS  -0.021  -0.017  -0.015 
  (0.013)  (0.013)  (0.010) 
ECI -0.330 -0.259 0.072 0.167 0.182 0.225 
 (0.359) (0.359) (0.373) (0.375) (0.595) (0.593) 
POPDEN -0.001** -0.001** -0.001* -0.001* -0.001*** -0.001*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
POPDEN2 0.000* 0.000* 0.000* 0.000* 0.000** 0.004** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
GROWTH 0.537 0.438 0.690 0.589 -0.192 -0.229 
 (0.742) (0.738) (0.785) (0.783) (0.382) (0.387) 
HK -24.28 -23.50 -18.88 -18.68 -0.730*** -0.702*** 
 (16.08) (16.14) (14.50) (14.72) (0.207) (0.210) 
HK2 30.07 28.79 27.93 27.76 0.366*** 0.354*** 
 (24.95) (25.06) (21.64) (21.98) (0.113) (0.115) 
BIRTH RATE 0.024 

(0.226) 
0.016 

(0.225) 
0.056 

(0.241) 
0.035 

(0.239) 
0.106 

(0.153) 
0.120 

(0.155) 
TRADE 0.003*** 0.002*** 0.001* 0.001 0.001* 0.001* 
 (0.001) (0.000) (0.000) (0.001) (0.0010 (0.000) 
Regional dummies Yes Yes Yes Yes Yes Yes 
Industry dummies Yes Yes Yes Yes Yes Yes 
N 63449 63449 63449 63449 67485 67485  
Pseudo R2 0.256 0.256 0.199 0.200 0.082 0.083 

All the estimates also include a constant term. Cluster (at NUTS3 region and 2-digit industry level)-robust standard errors 
in parentheses. *** p<0.01 ** p<0.05 * p<0.1. 
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Figure 1. Geography of the KETS as a whole 

 
 

 
 
 
 

Source: author’s elaborations from OECD-Regpat data. 
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Figure 2 – Geography of the six KETs 

 
1995-2004 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 32 

 

1995-2008 
 

 

 
 

 
Source: author’s elaborations from OECD-Regpat data. 

 

 


