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Abstract. A known problem of WordNet is that it is too fine-grained
in its sense definitions. For instance, it does not distinguish between
homographs and polysemes. This distinction is crucial in many natural
language processing tasks. In this paper we propose to distinguish only
between homographs within WordNet data while merging all polysemous
senses. The ultimate goal of this exercise is to compute a more coarse-
grained version of linguistic database. In order to achieve this task we
propose to merge all polysemous senses according to similarity scores
computed by a hybrid algorithm. The key idea of the algorithm is to
combine the similarity scores produced by diverse semantic similarity al-
gorithms. We implemented the algorithm and evaluated it on the dataset
extracted from the WordNet. The evaluation results are promising in
comparison to the other state of the art approaches.

1 Introduction

WordNet [14] is an electronic lexical database for English which stores lemmas
and exceptional forms of words, word senses, sense glosses, semantic and syntac-
tic relations between words, and other information related to the structure and
use of the language. WordNet data is used by Controlled Vocabulary (CV)[?]
component of Sweb [?] knowledge management system. CV stores background
knowledge to be used by the other components of the system. In particular, CV
is used in a number of knowledge management tasks such as semantic search[5],
classification [9] and semantic matching [§]. It serves a key role in natural lan-
guage (NL) to formal language (FL) conversion process (see [6] for more details).
At the moment CV contains mostly WordNet data. A known problem of Word-
Net is that it is too fine-grained in its sense definitions. For instance, it does not
distinguish between homographs and polysemes. This distinction is crucial in
many natural language processing tasks. In particular, it heavily influences the
performance of state of the art Word Sense Disambiguation (WSD) algorithms.
They tend to produce significantly higher accuracy scores while exploiting more
coarse-grained sense definitions [15].

In this paper we propose to distinguish only between polysemes within Word-
Net data while merging all homograph synsets. The ultimate goal of this exercise
is to compute a more coarse-grained version of linguistic database. In order to
achieve this task we propose to merge all polysemous senses according to sim-
ilarity scores computed by a hybrid algorithm called meta matcher. The key



idea of meta matcher is to combine the similarity scores produced by diverse
element level matchers that implement various semantic similarity algorithms.
The combination parameters may be learned from training data if available. We
implemented meta matcher and three element level matchers: WordNet relation,
part of speech context and the novel inverted sense index inexact matcher and
evaluated them on the dataset extracted from WordNet. The evaluation results
are promising in comparison to the other state of the art approaches. In partic-
ular, in terms of f-measure our method outperforms the other approaches.

This paper is structured as follows. In Section [2] we review the structure of
WordNet and explain why polysemy reduction is an important step required
by end-user applications. Section [3| is devoted to meta matcher we use in our
algorithm. Section [4 describes in detail element level matchers we use while
Section [f] presents evaluation results. We discuss related work in Section [6] while
Section [7] concludes the paper.

2 Polysemy in WordNet

WordNet [14] is the lexical database for English language. A synset is a Word-
Net structure for storing senses of the words. A synset contains a set of synonym
words and their brief description called gloss. For example, well, wellspring and
fountainhead have the same meaning according to WordNet, so these three words
are grouped in to one synset which is explained by a gloss ” an abundant source”.
Words are connected by lexical relations, while synsets are connected by semantic
relations. Different relations are defined for various parts of speech. In this pa-
per we exploit hypernymy relation defined for noun and verb synsets; antonymy
and synonymy relations for adjectives synsets, and derivationally related lexical
relation. Hypernym is the generic term used to explain a whole class of specific
instances. For example, animal is a hypernym of cat. Antonymy relation con-
nects the synsets with the opposite meaning. For example, active is an antonym
of uninvolved. Synonymy relation connects synsets with similar meaning. For
example, active is synonym of involved. Derivationally related connects words in
different syntactic categories that have the same root form and are semantically
related. For example, activity is derivationally related to active.

During WordNet development synsets are organized into forty-five lexicog-
rapher files based on syntactic category and logical groupings. For example,
lexicographical file names for nouns include act, animal, event, etc. while lexico-
graphical file names for verbs include change, creation, emotion, etc.

Starting from WordNet 3.0 word forms from the definitions (glosses) in Word-
Net’s synsets are manually linked to the context-appropriate sense in WordNet.
Thus, the glosses are a sense-disambiguated corpus and WordNet 3.0 is the dic-
tionary against which the corpus was annotated.

A known problem of WordNet is that it is too fine-grained in its sense def-
initions. For instance, it does not distinguish between homographs (words that
have the same spelling and different meanings) and polysemes (words that have
related meanings). This distinction is crucial in many natural language process-



ing tasks. In particular it heavily influences the performance of state of the art
Word Sense Disambiguation (WSD) algorithms [I5]. In particular, state of the
art WSD algorithms tend to produce significantly higher accuracy scores while
exploiting more coarse-grained sense definitions. On the other hand WSD is a
crucial step in semantic matching [8] and semantic search[5] which are the key
knowledge management operations of Sweb system [?].

3 A Meta matcher

We propose to distinguish only between polysemes within WordNet data while
merging all homograph synsets. The ultimate goal of this exercise is to compute
a more coarse-grained version of linguistic database. In order to achieve this
task we propose to merge all polysemous senses according to similarity scores
computed by a hybrid algorithm.

The key idea of our method is to combine the results obtained by application
of various element level matchers (see [7] for extensive discussion) in hybrid way
by a meta matcher. Meta matcher takes as an input two WordNet senses and
produces true if these senses have to be merged. It first calculates the similarity
scores for input senses exploiting a set of element level matchers. If the score of
any element level matcher exceeds threshold pre-learned on the training dataset
true is returned.

Learning algorithm obtains an optimal threshold combination by exhaustive

search through all threshold combinations of all element level matchers. The
pseudo code of learning algorithm is presented in Algorithm

Algorithm 1 Optimal threshold learning algorithm

1: void optimizeThresholds (Set mappings, Set goldenStandard, Vector thresholds,
int matcherIndez)

2: if (matcherindex<getNumberOfMatchers()) then

3 Set admissible Thresholds=get AdmissibleThresholds();

4:  for each (threshold in admissible Thresholds) do

5: thresholds=updateThresholds(thresholds, threshold);

6: Set matcherMappings=getMappings(matcherIndez, threshold);

7 mappings=Union(mappings, matchersMappings);

8

optmizeThresholds(mappings, goldenStandard, thresholds,
matcherInder+1);
9:  end for
10: else

11:  double F-Measure=computeFMeasure(mappings, goldenStandard);
12:  if (isMaximumSoFar(F-Measure)) then

13: storeBestThreshold Combination(thresholds);

14:  end if

15: end if




optimizeThresholds takes in input an initially empty set of mappings, a
golden standard produced by human annotators for learning dataset, an initially
empty vector of optimal thresholds and an index of element level matcher to be
executed. If the index corresponds to an element level matcher (line [2) for any
of admissible thresholds (line [4)), a set of mappings is returned by a matcher
for a given threshold (line @ Those mappings are intersected with mappings
produced by previously executed matchers (line [7)) and the next element level
matcher is executed (line [8)). If results from all matchers have been collected
f-measure is computed (lin and compared with maximum out of f-measures
computed so far (line . If the new f-measure value exceeds those computed
before (for the other threshold combinations) the current threshold combination
is memorized as the best so far (line . The latest threshold combination saved
by storeBestThreshold Combination corresponds to the maximum f-measure
obtained from the results of element level matchers on the training dataset. No-
tice that optimizeThresholds utilizes the simplest aggregation strategy (in-
troduced in [§]) by taking a union of element level matcher results as a final
result.

4 Element level matchers

Element level matchers exploited by meta matcher take two WordNet senses in
input and produce a numerical score [0,1] which presents quantitative measure
of similarity of two input senses.

4.1 WordNet relation matcher

WordNet relation matcher exploit WordNet structure to compute the similarity
of two input WordNet senses. In particular, it starts by obtaining two sets A
and B of senses connected to input senses by a given relation. Then the two sets
are compared as follows:

|AN B| (1)
[Al+|B| - [AN B|

SimilarityScore which is a number between 0 and 1 is returned as a result.

We have implemented WordNet relation matcher for the following WordNet

relations: hypernym, derivationally related form, antonym and synonym. The
latter two relations where considered for adjectives only.

SimilarityScore =

4.2 Part of speech context matcher

Part of speech context (POSC) matcher exploits part of speech (POS) and sense
tagged corpora for similarity computation. In particular, for each WordNet sense
occurrence within corpora a set POS tags in the immediate vicinity (or POS
context) of sense is memorized. Given multiple occurrence a sense within corpora
each sense is associated with a set of POS contexts. Then, the similarity between



two senses is computed as set similarity between sets of POS contexts associated
with them. For set similarity computation we exploit Eq. [T}
For example, let us compare:

— head#}4, chief#1, top_dog#1 - person who is in charge and
— head#13, principal#2, school_principal#1, head_teacher#1 - the educator
who has executive authority for a school

Taking sense and POS tagged WordNet 3.0 glosses as corpora we can find the
following occurrences of head#/, head#13 and their co-lemmas:

— the job/NN of /IN a head /NN /head#4 of/IN a government department/NN;
— the position/NN of /IN head /NN /head#4;
— the post/NN of /IN principal /NN /principal#2;

So given a window of two content words before and two content words after
sense occurrence we have "NN IN NN IN NN” and ”NN IN NN” POS contexts
associated with head#4 and ”NN IN NN” POS context associated with head#135.
Eq. [1] gives 0.5 similarity for these two sets. So according to POSC matcher
head#4 is similar to head#13 with similarity coefficient 0.5.

4.3 Inverted sense index inexact matcher

Inverted sense index inexact (ISIT) matcher exploits sense tagged WordNet 3.0
glosses for similarity computation. In particular, for each WordNet sense occur-
rence within sense tagged glosses, the synset of a tagged gloss is memorized. The
process resembles inverted index construction with key difference of building in-
dex on WordNet senses rather than words and memorizing synsets rather than
documents. As soon as an index is constructed two given senses can be compared
by comparing sets of synsets associated with them. We use for set comparison a
slight modification of Eq.

[InexactIntersect(A, B)| @)
|A| + |B| — [InexactIntersect(A, B)|

SimilarityScore =

The key difference is InexactIntersect operator that returns in not only shared
elements of two sets but also the elements of two sets that are similar (according
to predefined similarity measure) but not equivalent. In particular, since elements
of A and B sets in our case are synsets we used Resnik similarity measure [19].
The measure is based on the concept of information content [19]. Informa-
tion content of a concept is calculated as follows. Firstly, the number of concept
occurrences (F¢) within text corpus is calculated. Then, the number of all sub-
suming concept occurrences within a corpus is calculated and added to F. Thus,
the root concept will count for the occurrences of all concepts in the taxonomy.
In case of WordNet synsets counts are precomputed for wide range of corpora.
In our experiments we used British National Corpus (BNC) [3] as the biggest
corpora available. Information content of a concept is defined as follows:

) 3)




where F and Froot are, respectively, counts of concept C' and root concept of
the taxonomy. Note that the fraction represents the probability of occurrence of
a concept in the large corpus.

Resnik defines semantic similarity of two concepts as the amount of informa-
tion they share in common what is equal of information content of their lowest
common subsumer, that is the lowest node in the taxonomy that subsumes both
concepts. For example, the lowest common subsumer of dog and cat is carnivore.
Therefore, the Resnik semantic similarity measure is defined as:

Similarityresnix(C1,C2) = IC(les(Ch, C2)) (4)

where IC is an information content of a concept and les(Ch, Co) is a lowest
common subsumer of concepts C and Cs.

The pseudo code implementing Inexactintersect operator is presented in Al-
gorithm

Algorithm 2 An algorithm implementing InexactIntersect operator

1: Set inexactIntesect (Set source, Set target, double threshold)
2: Set intersection;

3: for each (sourceSynset in source) do

4:  for each (targetSynset in target) do

5: double similarity=getResnikSimilarity (source, target);
6: if (similarity > threshold) then

7 if (sizeOf(source) > sizeOf(target)) then

8: addToSet(intersection, target);

9: else

10: addToSet (intersection, source);

11: end if

12: end if

13:  end for

14: end for

15: return intersection

inexactIntersect function takes in input two sets of synsets and a threshold
for internal similarity measure. It returns a set of synsets which is an inexact
intersection of two input sets. For each pair of synsets in two input sets the
Resnik similarity is computed (line[5)). If the similarity exceeds a given threshold
(line @ the synset is memorized in the intersection. Note that line|7|ensure that
we always save into intersection set the synsets from the smallest of two input
sets. This allows us rule out double counting when computing cardinality of
intersection set and ensure that intersection set is always smaller or equal to
each of input sets.

Let us illustrate the use of ISIT matcher on example presented in Section [4.2
namely comparison of (head#4, chief#1, top-dog#1) and (head#13, princi-
pal#2, school_principal#1, head_teacher#1) senses. The senses are used as an-
notations in the following glosses:



— minister#4 - the job of a head /head#4 of a government department;
— headship#2 - the position of head /head#4;
— principalship#1 - the post of principal /principal#2;

Thus, the sets of synsets associated with head#4 and head#13 are {minister#4,
headship#2} and {principalship#1} respectively. Resnik matcher returns sim-
ilarity score of 7.53 for headship#2 and principalship#1 pair and the score of
5.91 for minister#4 and principalship#1 pair. Given threshold of 4 we used in
our experiments from Eq. [2[ we obtain 0.5 similarity for head#4 and head#13
senses.

5 Evaluation results

For evaluation of matching quality we used Precision, Recall and F-Measure.
Precision is the measure of soundness. It is calculated as:
Precision(P) = %
where A is a set of correct pairwise correspondences among the senses that should
be merged and B is a set of pairwise correspondences as returned by the system.
Recall is the measure of completeness. It is calculated as:
Recall(R) = %

F-measure combines both Precision and Recall into single quality measure. It is
calculated as:

_ 2%«PxR
Fl= P+R

We used a dataset exploited in SemEva]H coarse-grained English all words
task. The dataset is validated by human lexicographers. The dataset contains
1108 nouns, 591 verbs, 262 adjectives and 208 adverbs. We split it into two
equal parts namely training and testing datasets. The training dataset further
was used for obtaining an optimal threshold combination for meta matcher while
evaluation was performed on testing dataset.

First, we compared the results obtained from our meta matcher with simple
baseline algorithm which merges all the senses that occur in the same lexico-
graphical file in WordNet. Note that the measure is defined for nouns and verbs
only since adjectives and adverbs lack meaningful separation into different lexi-
cographical files. The results are presented on Figure

As from the figure our algorithm significantly outperforms baseline in the
case of nouns and draws in case of verbs. Relatively weak results in case of
adjectives and adverbs can be explained by data sparseness. In particular, there
are relatively few adjective and adverb annotations in the corpora POSC and
ISIT matchers exploit.
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We compared results of meta matcher with 3 other sense merging methods. In
particular, we re-implemented sense merging algorithm [12], Genclust algorithm
[18] and MiMo algorithm [I3]. The results are presented on Figure

Meta matcher significantly outperforms the other methods in terms of F-
Measure. Application of meta matcher to the whole WordNet database allowed
to reduce the number of synsets by 47.08%.

6 Related work

The problems of reducing polysemy in WordNet have received significant atten-
tion in the recent years. Many approaches to this problem relied on structural
properties of WordNet for coarse-grained sense computation. In particular, do-
main extension to WordNet have been developed in [10]. In [I7] two senses are
to be merged based on Twin feature namely the case when two senses share
more than one synonym word. In [I8] generalization cluster (GenClust) algo-
rithm was proposed. The algorithm merges senses based on coordinate term
(cousin) relation as defined in WordNet. MiMo algorithm[I3] applies a set of
semantic rules for merging senses. Some of the rules exploit WordNet relations
such as hyponym, pertainym, antonym and verb group. The other exploit struc-
tural properties like Twin and MaxMN ( minimum and maximum distance from
least common subsumer) features.

Semantic based grouping algorithm have been proposed in [I2]. The algo-
rithm exploits semantic relations of WordNet. In particular, two senses are con-
sidered to be merged if they are connected by a semantic semantic relation to
the similar sets of senses. Semantic relations considered are synonym, hypernym,
hyponym, coordinate term, and domain of synset. The application specific eval-
uation has been performed on two datasets of web search engines queries. Both
datasets contain 10 queries. The reported precision of the algorithm is 100% and
while recall is 66%.

The method presented in [I5] is based on the exploiting mappings between
WordNet and Oxford English dictionary (ODE). Both lexical and semantic meth-
ods are used to map WordNet’s senses to more coarse-grained senses of ODE. In
particular, well-known lexical overlap method [I1] is used along with Structural
Semantic Interconnections introduced in [I6]. The method has 33.54 % of sense
reduction, and the average degree of polysemy decreased from 6.65 to 3.32. The
evaluation result shows that a coarse-grained inventory can improve performance
of WSD. For example F-measure of Gambl [4] WSD system is improved from
65% to 70.84 %.

A supervised learning solution for merging WordNet senses based on support
vector machines (SVM) was proposed in [20]. The features used for the system
training included: WordNet relatedness measures [2], semantic and syntactic
relations, cosine similarity of topic signatures [I], and the mapping to (more
coarse-grained) ODE. F-Measure of SVM for nouns is 42.8% and for verbs is
43.19%.

! http://lcl.di.uniromal.it/coarse-grained-aw /index.html
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Conclusion and future work

We have presented an algorithm allowing to significantly reduce polysemy in
WordNet while preserving the high quality of merging process as illustrated by
high f-measure score. The future work includes (i) performing application spe-
cific and end-user oriented evaluation, i.e., measuring improvement from coarse-
grained linguistic database in semantic search, classification and semantic match-
ing tasks; (ii) and development of more effective combination strategies within
meta matcher.
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