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SUMMARY 

    The developments in conceptual design, material technology and efficient construction 
techniques enabled the creation of longer, lighter, slender and stylish Cable-Stayed Foot 
Bridges (CSFB). Hence, modern CSFB can be characterized by interacting phenomena like 
cable nonlinearities, deck dynamic instability and deck lateral oscillations due to pedestrian 
walking. These phenomena, if intertwined, may bring these structures out of service or to failure. 
In view of a better performance, additional damping can be provided by passive dampers. 
However, amplitude dependent behaviour of dampers and slip in connections can make them 
effective only above a threshold amplitude. Hence, due to high uncertainties in the complex 
CSFB-damper system, usually, dynamic tests are performed to investigate the performance of 
the overall system. 

    In this thesis, the effectiveness of the passive vibration reduction system in a complex cable-
stayed footbridge characterised by two curved decks was investigated. The amplitude 
dependent behaviour was found both with the output-only ambient vibration and free decay 
tests. In order to clarify these outcomes, modal quantities were calculated instantaneously, 
based on time-frequency identification techniques. A thorough analysis of dynamic response 
signals revealed that the structure with dampers actually behaved like a threshold system: i) for 
low vibration levels the dampers were still, so that they performed as constraints that stiffened 
the structure; ii) for high vibration levels, the dampers became fully working. Moreover, a deck-
cable interaction between one of the longest cables and the first global mode was detected. 
Initially, the modal properties estimated from the dynamic tests did not match those of the 
numerical model. In order to have a robust FE model capable to simulate the actual behaviour 
of the footbridge, model updating was performed. The sensitivity-based model updating 
techniques and Powell's Dog-Leg method of optimisation based on the Trust-Region approach 
were used. The final updated model showed a considerable reduction in the percentage error of 
frequencies. The updated model was able to reproduce the response of the footbridge under 
actual wind conditions. The revealed cable-deck interaction phenomenon was a motivation to 
investigate in depth the dynamics of long stay cables. Therefore, efforts were made towards the 
identification of the nonlinear behaviour of stay cables from measured response data. In view of 
the fact that actual measured data contained the response of a MDoF system, the first step in 
this direction was to investigate the feasibility of the nonlinear identification method, i.e. a non-
parametric approach applied to a SDoF cable system. The results revealed a good fitting 
between identified and numerical data, where only a cubic type of nonlinearity was identified. 
Moreover, an increase of the parameter related to damping and a decrease of the parameter 
relevant to linear-frequency were observed versus the loading amplitude. However, the values 
of the parameters stabilised at higher load amplitudes and superharmonics were present in the 
response. The proposed non-parametric method exhibited a good capability in the nonlinear 
parameter identification of cables. 

    Approaching towards a more complete understanding of the performance of cable-stayed 
footbridges, it was realized that the modern footbridges are more prone to pedestrian-induced 
vibrations that, eventually, degrades their serviceability performance. Moreover, several 
researchers tried to investigate the problem of synchronous lateral excitation of footbridges, but 



there is no general consensus on pedestrian models. Therefore, a model of pedestrian-
footbridge interaction was proposed. In detail, pedestrian was represented by a modified hybrid 
Van der Pol/Rayleigh (MHVR) self-sustained oscillator. Amplitude, stability and phase of the 
MHVR oscillator solution under a harmonic external force associated with the floor motion were 
analytically evaluated by the harmonic balance method and was compared with numerical 
results. It was shown that the phase difference tended to become constant at high excitation 
amplitudes. Moreover, the stability domain was found useful in predicting the percentage of 
pedestrians synchronized to a given oscillating floor. The numerical results of MHVR oscillator 
was, then, compared with the experimental result of a shake table with harmonic floor motion. A 
good agreement in amplitude ratio was found, however, the phase difference resulted to be 
underestimated by the MHVR model.   
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CHAPTER 1

INTRODUCTION

Bridges are indispensable components of the infrastructure of modern society. They

are of many different types, e.g. beam, arch, cantilever, suspension, cable-stayed

etc., depending on application and design. Compared to other bridge types, the

cable-stayed bridges (CSB) are optimal for spans longer than typically seen in can-

tilever bridges and shorter than those typically requiring a suspension bridge. Cable-

stayed bridges mainly consist of cables, pylons and girders (bridge decks).

Due to their aesthetic appearance, efficient utilization of structural materials and

other notable advantages, cable-stayed bridges have gained much popularity in re-

cent decades. Nowadays, as their properties have been more fully understood, very

long span slender cable-stayed bridges are being built, and the ambition is to fur-

ther increase the span length and use shallower and more slender girders for future

bridges. Bridges of this type are entering a new era with main span lengths reaching

1000 m, e.g. Sutong CSB in China spans 1088 m (Janjic). This fact is due to the

relatively small size of the substructures required, the development of efficient con-

struction techniques and the rapid progress in the analysis and design of this type

of bridges. They have recently proved to be highly cost-effective for short to medium

spans.

Cable-stayed bridges with modern distinctive styles are increasing in number world-

wide. These bridges are now built in more unusual styles for structural and aes-

thetic/architectural reasons (Menn, 1996; Rito, 1996). Some of the examples include

the Lerez Bridge (Troyano et al., 1998)- a single inclined tower bridge; the Katsushika

Harp Bridge (Takenouchi, 1998)- with a single pylon and S shaped deck; the Marian

Bridge (Kominek, 1998)- with a single L-shaped pylon; the Alamillo Bridge (Casas,
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1995)- with a single inclined pylon; the Safti Link Bridge (Brownjohn and Xia, 2000)-

which has a curved deck and single offset pylon; circular cable stayed footbridge

(Rebelo et al., 2010) and twin curved deck footbridges (Gentile et al., 2004; Tondini

et al., 2010). The unique structural styles of these bridges beautify the environment,

however, add to the difficulties in accurate structural analysis due to their complex

shape. It is, therefore necessary to perform experimental identification tests to mea-

sure the actual dynamic properties, for e.g. resonant frequency, mode shape and

modal damping, of the bridges to understand better their dynamic behavior. These

measured properties can be used to correct and update numerical FE model to better

reflect the reality. The updated FE model can be useful to predict the damage and

safety conditions of the bridge under the extreme loading events, such as typhoon or

earthquake.

For cable supported bridges and in particular long span cable-stayed bridges, en-

ergy dissipation is very low and is often not enough on its own to suppress vibrations

(Forsterling and Furtner, 2004; Hikami, 1986). To increase the overall damping ca-

pacity of the bridge structure, one possible option is to incorporate external dampers,

i.e. discrete damping devices such as viscous dampers and MR dampers, into the

system. Such devices are frequently used nowadays for cable supported bridges.

However, it is not believed that this is always the most effective and the most eco-

nomic solution. Therefore, a great deal of research is needed to investigate the

damping capacity of modern cable-stayed bridges and to find new alternatives to in-

crease the overall damping of the bridge structure. Moreover, it is deemed necessary

to investigate the effectiveness of the dampers after installing on the bridge.

Modern cable-stayed bridges exhibit geometrically nonlinear behaviour, they are

very flexible and undergo large displacements before attaining their equilibrium con-

figuration. Stay cables impart major part of the geometrical nonlinearity in the global

dynamics; a well known deck-cable interaction phenomenon was reported by several

researchers in cable-stayed footbridges (Caetano et al., 2000, 2008). To identify the

nonlinear behaviour of the cables from the response data, special techniques are

required.

The recent developments in material technology and efficient construction tech-

niques enable the construction of not only longer but also lighter and more slen-
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der footbridges. Therefore, the modern cable-stayed footbridges have become more

prone to vibrations due to the wind and pedestrian actions. The very large ampli-

tude lateral vibrations of Millenium bridge (Dallard et al., 2001a) decks on its open-

ing day 10 June 2000, has realized the complexity of the serviceability problems in

pedestrian-footbridge interaction. Several researchers have introduced models to ex-

plain the phenomenon of synchronous lateral excitation of footbridges, but there is

no consensus on the general applicability of these models. Hence, there is still ef-

fort to model the pedestrian-footbridge behaviour in order to understand this complex

phenomenon.

1.1 Objectives of the research

As discussed in the previous section, modern cable-stayed bridges are made in

distinctive styles, that adds complexity to the structure. However, flexible, slender

and lighter CSB are more prone to wind- and pedestrian- induced vibrations. A

performance-based approach of cable-stayed footbridges requires the consideration

of both ultimate as well as serviceability limit states. Even though a footbridge may

be endowed with a robust design against failure, serviceability problems may arise

from many sources, such as wind, pedestrians, nonlinear behaviour of cables and

their interaction to the deck, ineffectiveness of damper system, etc. A more complete

approach towards the investigation of the performance of a cable-stayed footbridge

was considered in this thesis.

In brief, this thesis aims to investigate in depth several issues crucial to the perfor-

mance of cable-stayed footbridges. In particular, it focusses on the: i) investigation

of the effectiveness of the vibration reduction system in a complex cable-stayed foot-

bridge characterised by two curved decks; ii) model updating of the ‘Ponte del mare’

footbridge in Pescara, Italy; iii) nonliner-identification of stay cables; and iv) modelling

of the synchronous lateral excitation phenomenon for the pedestrian-footbridge inter-

action.
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1.2 Structure of the thesis

This thesis presents the research work performed by the author on the system iden-

tification and pedestrian-induced vibration of cable-stayed footbridges. The research

was sponsored by “HITUBES: Design and Integrity Assessment of High Strength

Tubular Structures for Extreme Loading Conditions”- a Research Fund for Coal and

Steel (RFCS) funded project of the European Commission to the University of Trento.

The second chapter provides the state of the art on the dynamic response of cable-

stayed footbridges (CSFB). As the CSFB are mainly subjected to wind and pedestrian

loadings in their everyday life, the review focuses on the dynamic response of the

CSFB due to wind and anthropic actions. Moreover, it also discusses some damping

system applicable to the main deck as well as stay cables.

Structural identification techniques are summarised in chapter 3. Both linear and

nonlinear techniques are reviewed. Then, techniques relevant to cable-stayed foot-

bridges are described.

In chapter 4, the design and outcomes of the dynamic identification tests of the

‘Ponte del mare’ footbridge are described. Moreover, the instantaneous identification

is performed in order to investigate the effectiveness of the installed dampers.

The model updating is carried out on the FE model in view of the measured identifi-

cation data in chapter 5. The updated model is used to simulate the actual behaviour

of the footbridge under a measured wind excitation.

In chapter 6, the numerical analysis is carried out to investigate the applicability of

time-frequency techniques for the nonlinear identification of cables.

The pedestrian-footbridge behaviour is analytically modelled and numerical com-

parisons are made in chapter 7.

The main findings of the thesis are summarised in chapter 8, where the conclusions

of the research are underlined together with future perspectives.
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CHAPTER 2

DYNAMIC RESPONSE OF CABLE-STAYED FOOTBRIDGES: A

STATE-OF-THE-ART

2.1 Introduction

Footbridges are mainly subjected to the action of the wind and pedestrians in their

everyday life. This chapter reviews the literature concerning the three aspects of the

cable-stayed footbridges (CSB): i) dynamic response due to the wind; ii) dynamic

response due to pedestrians; and iii) vibration reduction techniques for cable-stayed

footbridges. Factors affecting the behaviour of bridges are discussed, both due to the

wind and pedestrians. Finally, some vibration reduction techniques are reviewed.

Although, the general theories of highway bridges can be applied also to the foot-

bridges in case of wind loadings, however cable-stayed footbridges can be differen-

tiated to the cable-stayed highway bridges in the sense that footbridges are more

slender and lower static weight and subjeted to a different traffic, i.e. pedestrians.
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2.2 Dynamic response due to the wind

2.2.1 Wind loading phenomena

The criteria for the design of long spanned cable-stayed bridges are concerned with

the static and dynamic responses of the bridge under wind loading. The design of

long span bridges is often governed by aeroelastic instability. Aerodynamic design

involves calculation of the critical velocity for the onset of flutter. It is to be ensured

that the wind velocity does not exceed the predicted critical velocity to avoid failure

due to flutter (Selvam and Govindaswamy, 2001). A list of bridges failure due to the

wind can be found in (Rutz and Rens, 2007).

Arrol and Chatterjee (Arrol and Chatterjee, 1981) mention that designers should

remember that the position of maximum stress would not always be at mid-span,

or a support, and the stress value will depend upon the mode shape. In a simply

supported span the second mode maximum stress is at the quarter points and will

have a value four times that of the fundamental mode maximum stress, occurring at

mid span.

When designing a bridge, one has to take into account the wind effects on the

structure. Wind loading can be categorised into two categories; Static and dynamic

wind loading. Static wind load is the most basic wind effect considered when de-

signing a structure. For bridges, the static behaviour is less critical to the dynamic

effects. There are many types of dynamic wind load. The one that will be addressed

are buffeting, vortex shedding, galloping, torsional divergence, and flutter.

Dynamic behavior includes the responses due to vortex shedding excitation, self-

excited oscillations and buffeting by wind turbulence (Selvam, 1998). Bridges could

oscillate in two natural modes, vertical and torsional. In the vertical mode, all joints at

any cross-section move the same distance in the vertical plane, while in the torsional

mode every cross-section rotates about a longitudinal axis parallel to the roadway.

Unlike the static behavior, the dynamic behavior is critical and important to be con-

sidered during design. A basic knowledge of the wind forces that are required to
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understand the issues involved in the design is explained in the following sub-section.

2.2.1.1 Aeroelastic Instability

Aeroelasticity is the discipline concerned with the study of phenomena wherein the

aerodynamic forces and structural motions interact significantly. When a structure is

subjected to wind flow, it may vibrate or suddenly deflect in the airflow. This structural

motion results in a change in the flow pattern around the structure. If the modification

of wind pattern around the structure by aerodynamic forces is such that it increases

rather than decreasing the vibration, thereby giving rise to succeeding deflections of

oscillatory and/or divergent character, aeroelastic instability is said to occur (Simiu

and Scanlan, 1996). The aeroelastic phenomena that are considered in wind engi-

neering are vortex shedding, torsional divergence, galloping, flutter and buffeting.

Vortex Shedding

Simiu and Scanlan (Simiu and Scanlan, 1996) state that when a body is subjected

to wind flow, the separation of flow occurs around the body. This produces force on

the body, a pressure force on the windward side and a suction force on the leeward

side. The pressure and suction forces result in the formation of vortices in the wake

region causing structural deflections on the body. The shedding of vorticity balances

the change of fluid momentum along the entire body surface. The shed vortices are

convected downwind by local mean wind speed and viscous diffusion but will also

interact to form large-scale coherent structures. The frequency in which the vortices

are shed dictates the structural response. The structural member acts as if rigidly

fixed, when the frequency of vortex shedding (also called wake frequency) is not close

to the natural frequency of the member. On the other hand, when the vortex-induced

and the natural-frequencies coincide, the resulting condition is called lock-in. During

lock-in condition, the structural member oscillates with increased amplitude but rarely

exceeding half of the across wind dimension of the body (Simiu and Scanlan, 1996).

The lock-in condition is illustrated in Figure 2.1.

In the Figure 2.1, we see that the wake frequency remains locked to that of nat-

ural frequency for a range of wind velocities. As the velocity further increases, the

wake frequency will again break away from the natural frequency. The extent of the

shedding depends on the Reynolds number (Re) and Strouhal number (St), which is
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Figure 2.1: Qualitative trend of vortex shedding frequency with wind velocity during

lock-in (after Simiu and Scanlan 1996)
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defined as:

Re =
ρUD
µ

(2.1)

St =
NsD

U
(2.2)

where, ρ = wind density, U = wind velocity, D = diameter, µ = viscosity, and Ns =

frequency of vortex cycle shedding.

For a very low Reynolds number (Selvam and Govindaswamy, 2001; Simiu and

Scanlan, 1996) the flow remains the same, just circumventing the obstruction on its

way. For higher Reynolds numbers, the flow starts to separate around the edges

of the obstruction and vortices are generated in the immediate wake of the obstruc-

tion. Thereafter further increase in the Reynolds number causes the creation of cycli-

cally alternating vortices and they are carried over with the flow downstream. From

there on, the inertial effects become dominant over the viscous effects and turbulence

sets in, resulting in shear of the flow. So this reasonably illustrates the vorticity phe-

nomenon starting from a smooth and low speed flow to a turbulent and high-speed

flow.

Galloping

Simiu and Scanlan (Simiu and Scanlan, 1996) state that galloping is an instabil-

ity typical of slender structures. This is a relatively low-frequency oscillatory phe-

nomenon of elongated, bluff bodies acted upon by a wind stream. The natural struc-

tural frequency at which the bluff object responds is much lower than the frequency of

vortex shedding. It is in this sense that galloping may be considered a low-frequency

phenomenon. There are two types of galloping: Wake and Across-wind.

Wake galloping: It is considered of two cylinders one windward, producing a wake,

and one leeward, within that wake separated at a few diameters distance away from

each other. In wake galloping the downstream cylinder is subjected to galloping os-

cillations induced by the turbulent wake of the upstream cylinder. Due to this, the up-

stream cylinder tends to rotate clockwise and the downstream cylinder, anti-clockwise

thus inducing torsional oscillations.
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Across wind galloping: Across wind galloping in a bridge, is an instability that is initi-

ated by a turbulent wind blowing transversely across the deck. Across-wind galloping

causes a crosswise vibration in the bridge deck (Liu, 1991). As the section vibrates

crosswise in a steady wind velocity (U), the relative velocity changes, thereby chang-

ing the angle of attack (α). Due to the change in α, an increase or decrease on the

lift force of the cylinder occurs. If an increase of α causes an increase in the lift force

in the opposite direction of motion, the situation is stable. But on the other hand if

the vice versa occurs, i. e., an increase of α causes a decrease in lift force, then the

situation is unstable and galloping occurs.

Torsional divergence

Torsional divergence is an instance of a static response of a structure. Torsional

divergence was at first associated with aircraft wings due to their susceptibility to

twisting off at excessive air speeds (Simiu and Scanlan, 1996). Liu (Liu, 1991), re-

ports that when the wind flow occurs, drag, lift, and moment are produced on the

structure. This moment induces a twist on the structure and causes the angle of inci-

dence α to increase. The increase in α results in higher torsional moment as the wind

velocity increases. If the structure does not have sufficient torsional stiffness to resist

this increasing moment, the structure becomes unstable and will be twisted to failure.

Simiu and Scanlan (Simiu and Scanlan, 1996) report that the phenomenon depends

upon structural flexibility and the manner in which the aerodynamic moments develop

with twist; it does not depend upon ultimate strength. They say that in most cases the

critical divergence velocities are extremely high, well beyond the range of velocities

normally considered in design.

Flutter

The phenomenon of flutter (classical flutter) is a very serious concern in the design

of bridges. The failure of the Tacoma’s narrows bridge was due to the flutter. The term

flutter has been variously used to describe different types of wind-induced behavior.

Flutter can be defined as a condition of negative aerodynamic damping wherein the

deflection in the structure grows to enormous levels till failure once started. The other

types of flutter reported by Simiu and Scanlan (Simiu and Scanlan, 1996) are stall

flutter and panel flutter.

Stall flutter is a single-degree-of-freedom oscillation of airfoils in torsion due to the
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nonlinear characteristics of the lift (Simiu and Scanlan, 1996). The stall flutter phe-

nomenon can also occur with structures having broad surfaces depending on the

angle of approaching wind. The torsional oscillation of a traffic stop sign about its

post is an example of this phenomenon.

Panel flutter is a sustained oscillation of panels typically the sides of large rock-

ets, caused by the high-speed passage of air along the panel. The most prominent

cases have been in supersonic flow regimes and so have not appeared in the wind

engineering context. Flag flutter is closely related to panel flutter.

The motion that is caused by the wind flow will either be damped out or will grow

indefinitely until failure. The theoretical dividing line between these two states is the

critical flutter condition and the wind speed at this condition is called critical wind

speed.

Critical wind speeds for Flutter

When the critical wind speed for flutter is exceeded, the structure will become un-

stable and experience excessive deflections. Hence it is an important factor to be

considered in design. Arrol and Chatterjee (Arrol and Chatterjee, 1981) mention the

following guidelines.

Vortex shedding: With respect to vortex shedding, if the critical wind speed for reso-

nance in vertical and torsional modes (vertical modes only for trusses) is greater than

the reference wind speed, the static and fatigue stress effects need to be checked

from amplitude calculations appropriate to the mode shape.

Turbulence Response: If the natural frequency in first mode for vertical or torsional

deflection is greater than 1 Hz, a dynamic analysis for stress effects need to be carried

out to account for it.

Classical and Stall flutter: For prevention of this type of instability, the critical wind

speed is to be greater than 1.3 times reference speed. The designer must ensure

one of the following. The critical wind speed exceeds the practical limiting value for

the given site or the resulting amplitudes are of allowable levels. Criteria for accept-

ability may include considerations of fatigue or of user reaction as well as of ultimate

strength.

Buffeting

Buffeting is defined as the unsteady loading of a structure by velocity fluctuations
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in the incoming flow and not self-induced (Simiu and Scanlan, 1996). Buffeting vi-

bration is the vibration produced by turbulence. There are two types of buffeting.

One type is caused by turbulence in the airflow, and the other type is caused by dis-

turbances generated by an upwind neighboring structure or obstacle. The first type

of buffeting can produce significant vertical and torsional motions of a bridge even

at low speeds. This buffeting induced motion results in a gradual transition to large

amplitude torsional oscillations, which could lead to the failure of a bridge. If the ve-

locity fluctuations are clearly associated with the turbulence shed in the wake of an

upstream body, the unsteady loading is referred to as wake buffeting. Wake buffeting

is common in urban areas with many tall structures.

2.2.1.2 Wind load model

The aerodynamic loads acting on a body can be divided into static (St), buffeting (b)

and self-excited (Se) parts by the formula (Kiviluoma, 1998)



















L = Lst + Lb + Lse

D = Dst + Db + Dse

M = Mst + Mb + Mse

(2.3)

in which L , D and M are the time dependent lift, drag and (pitching) moment, re-

spectively.

Applying the dimensionless steady aerodynamic lift CL , drag CD , and moment CM

coefficients of a typical cross-section (Fig. 2.2) the static terms are (Kiviluoma, 1998)



















Lst = 1
2ρU2BlCL

Dst = 1
2ρU2BlCD

Mst = 1
2ρU2BlCM

(2.4)

where U is the mean wind velocity, ρ is the density of air and B and l are the

width and the length of the body, respectively. Here, the horizontal component of the

wind velocity at instant t is divided into the form U(t) = U + u(t), in which u(t) is the

longitudinal component of the fluctuating velocity. If the direction of the mean wind

velocity is assumed horizontal, the vertical wind velocity component is characterized
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Figure 2.2: Wind load (after Kiviluoma 1998)

by the corresponding transverse fluctuating velocity component w(t). In Eq. 2.3 the

buffeting terms take into account the fluctuations in wind speed and direction relative

to a body at rest while the self-excited forces take into account the aerodynamic forces

caused by motion of the body itself. The approximations α ≈ w/U and Ci(α) ≈ Ci + α

dCi/dα, (i = C, D or M) yield the widely used quasi-steady formulation for the buffeting

terms (Kiviluoma, 1998)



















Lb = ρUBl(CLu + 1
2

dCL
dα w)

Db = ρUBl(CDu + 1
2

dCD
dα w)

Mb = ρUB2l(CMu + 1
2

dCM
dα w)

(2.5)

where α is the angle of attack. Using the typical American notation of flutter deriva-

tives and applying the sign convention of Fig. 2.2, the self-excited terms for sinusoidal

motion can be expressed by the formula (Kiviluoma, 1998)



















Lse = 1
2ρU2Bl(KH∗

1
z
U + KH∗

2
Bθ
U + K 2H∗

3θ + K 2H∗
4

z
B )

Dse = 1
2ρU2Bl(KP∗

1
x
U + KP∗

2
Bθ
U + K 2P∗

3 θ + K 2P∗
4

x
B )

Mse = 1
2ρU2B2l(KA∗

1
z
U + KA∗

2
Bθ
U + K 2A∗

3 θ + K 2A∗
4

z
B )

(2.6)
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in which the flutter derivatives and Pi, Hi and Ai (i=1, 2, 3 or 4) are functions of the

reduced frequency K = Bω/U only, where ω is the circular frequency of the motion.

The notation used here is the same as that used in (Scanlan, 1993) except the pos-

itive direction of the vertical coordinate z and the vertical force component L . Thus,

flutter derivatives H2, H3, A1 and A4 possess negative signs compared to American

literature.

In Eq. 2.6 no terms proportional to translational or rotational accelerations are

given and thus the effect of the apparent mass of fluid is neglected. This restricts the

usage of the equation to structural members that are relatively dense in comparison

to the density of the fluid. Furthermore, usage of the mean wind velocity in Eq. 2.6

implies some inconsistency in analysis of wind-speeds just below the flutter velocity,

since the latter velocity is probably exceeded in short duration gusts.

2.2.2 Wind effect on bridges

Wind loading has long played a significant role in bridge design. Some spectacu-

lar failures, such as the Tay Bridge (Scotland, 1879), or the Tacoma Narrow Bridge

(Washington state,1940) acted as painful reminder to the engineers in case they had

forgotten the importance of wind loading. Very long span cable-stayed bridges are

flexible structural systems. These flexible systems are susceptible to the dynamic

effects of wind loads. Wind can produce the following effects on cable-stayed bridges

(Farran, 1999):

1. Wind lift and drag forces,

2. Aeroelastic effects (torsional divergence or lateral buckling),

3. Oscillations induced by vortex effects,

4. Flutter phenomena,

5. Galloping effects, and

6. Buffeting.

All of the above effects require wind tunnel tests. It is very important to under-

stand here that studies are needed for the partially complete structure as well as the

completed structure. The performance of the structure under the effect of wind loads

should be investigated during the various construction stages of the long cable-stayed
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bridge. There are 3 types of wind tunnel tests on a suspension bridge:

1. Models of the entire bridge,

2. Taut strip models, and

3. Sectional models.

The first category of wind tunnel models provides the engineer with the advan-

tages of similitude between model and prototype. These models are expensive to

build and constitute a large initial capital expenditure. Experience from previous de-

signs indicates that a scale of 1 to 300 is desirable. Other scales are also possible.

The distribution of the mass in such complete scale models is identical to the mass

distribution of the real life structure or prototype.

The second category, or the taut strip model, consists of 2 wires that are stretched

across the wind tunnel. The response of such models to applied fluid flows in the wind

tunnel is similar to the response of the center section of the suspension structure.

The third category is made up of sections of the bridge deck in the span-wise

direction. The ends of these sections are supported on spring type foundations to

allow motion in the vertical direction as well as the rotational sense. The usual scales

for such deck sections are within the 1/50 to 1/25 range. These sectional models are

very important in determining the aeroelastic stability of the proposed deck system.

These models allow us to further investigate the steady state coefficients for drag, lift,

and moment.

These 3 quantities are fundamental characteristics of the cable supported bridge

deck. These coefficients are a function of the air density, the deck width of the bridge,

the mean wind speed at the height of the deck, as well as the drag, lift, and moment

per unit span length, see Eq. 2.4. The science of aerodynamics is very important here

since various plots of these functions are usually done versus the angle of attack of

the oncoming wind flow. It is also possible from a study of these sectional models to

determine the aerodynamic coefficients attributed to the self-excited forces acting on

the vibrating structure (Farran, 1999).
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2.2.3 Wind effect on stay cables

Stay cables are susceptible to wind (and rain) induced vibration in cable-stayed bridges.

Matsumoto et al. (Matsumoto et al., 1992) observed double amplitude (peak to peak)

on the Bridge Islands (Denmark) up to 2 m due to the combined effect of rain and

wind.

There are a number of mechanisms that can potentially lead to vibrations of stay

cables. Some of these types of excitation are more critical or probable than others

but all are listed here for completeness (Kumarasena et al., 2005):

• Vortex excitation of an isolated cable;

• Vortex excitation of groups of cables;

• Wake galloping for groups of cables;

• Galloping of single cables inclined to the wind;

• Rain/wind-induced vibrations of cables;

• Galloping of cables with ice accumulations;

• Galloping of cables in the wakes of other structural components (e.g., arches,

towers, truss members);

• Aerodynamic excitation of overall bridge modes of vibration involving cable motion

(e.g., vortex shedding off the deck may excite a vertical mode that involves relatively

small deck motions but substantial cable motions);

• Motions caused by wind turbulence buffeting; and

• Motion caused by fluctuating cable tensions.

For a detail discussion of the above mechanisms of stay cables, the reader can

refer to the FHWA report (Kumarasena et al., 2005). The FHWA report, a first report,

that provides a design guidelines for the mitigation of wind-induced vibrations of stay

cables. FHWA report concludes its initial review with that- while the rain/wind problem

is known in sufficient detail (Phelan et al., 2006), galloping of dry inclined cables was

the most critical wind-induced vibration mechanism in need of further experimental

research.

Rain-wind vibrations

The combination of rain and moderate wind speeds can cause high-amplitude ca-

ble vibrations at low frequencies. This phenomenon has been observed on many
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cable-stayed bridges and has been researched in detail. Rain/wind-induced vibra-

tions were first identified by Hikami and Shiraishi on the Meiko-Nishi cable-stayed

bridge (Hikami, 1986). Since then, these vibrations have been observed on other

cable-stayed bridges, including the Fred Hartman Bridge in Texas, the Sidney Lanier

Bridge in Georgia, the Cochrane Bridge in Alabama, the Talmadge Memorial Bridge

in Georgia, the Faroe Bridge in Denmark, the Aratsu Bridge in Japan, the Tempohzan

Bridge in Japan, the Erasmus Bridge in Holland, and the Nanpu and Yangpu Bridges

in China. These vibrations occurred typically when there was rain and moderate wind

speeds (8–15 m/s) in the direction angled 20◦ to 60◦ to the cable plane, with the

cable declined in the direction of the wind. The frequencies were low, typically less

than 3 Hz. The peak amplitudes were very high, in the range of 0.25 to 1.0 m, violent

movements resulting in the clashing of adjacent cables observed in several cases

(Kumarasena et al., 2005).

Wind tunnel tests have shown that rivulets of water running down the upper and

lower surfaces of the cable in rainy weather were the essential component of this

aeroelastic instability(Hikami, 1986). The water rivulets changed the effective shape

of the cable and moved as the cable oscillated, causing cyclical changes in the aero-

dynamic forces which led to the wind feeding energy into oscillations. The following

criterion can be used to specify the amount of damping that must be added to the

cable to mitigate rain/wind-induced vibrations:

Sc =
mζ
ρd2

> 10 (2.7)

where, Sc = Scruton number, m = mass of cable per unit length (kg/m), ζ = damping

as ratio of critical damping, ρ = air density (kg/m3), and d = cable diameter (m).

Since the rain/wind oscillations are due to the formation of rivulets on the cable sur-

face, several researchers have tried using small protrusions, for e.g. helical fillets 1.5

mm high (Flamand, 1994), on the cable surface to solve the problem. The technique

has proven successful, with a minimal increase in drag coefficient. This type of cable

surface treatment is becoming a popular design feature for new cable-stayed bridges.

On the basis of the test results, FHWA report (Kumarasena et al., 2005) suggests

that if even a low amount of structural damping is provided (ζ > 0.003), then vortex

shedding and inclined cable galloping vibrations are not significant. This damping
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corresponds to a Scruton number of approximately 3, which is less than the minimum

of 10 established for suppression of rain/wind vibrations (Eq. 2.7). Therefore dry

cable instability should be suppressed by default if enough damping is provided to

mitigate rain/wind vibrations.

2.3 Dynamic response due to pedestrians

Although there have been several cases of footbridges experiencing excessive vi-

brations by pedestrians in the past, this problem attracted considerably greater public

and professional attention only after the infamous swaying of the London Millennium

Footbridge located across the Thames River in Central London, see Figure 2.3. The

Millennium Bridge problem attracted more than 1000 press articles and over 150

broadcasts in the media around the world (Zivanovic et al., 2005).

The bridge was opened to the public on 10 June 2000 and during the first day be-

tween 80,000 and 100,000 people crossed the bridge, resulting in a maximum crowd

density of between 1.3 - 1.5 persons per square meter at any one time (Dallard et al.,

2001a). On the first day, the Millennium Bridge experienced horizontal vibrations in-

duced by a synchronized horizontal pedestrian load. The horizontal vibrations took

place mainly on the south span, at a frequency of around 0.8 Hz and on the cen-

tral span, at frequencies of just under 0.5 Hz and 0.9 Hz, the first and second lateral

modes respectively (Dallard et al., 2001a). The oscillations had maximum amplitudes

of 50mm on the southern span and 70 mm on the central span (Dallard et al., 2001b).

The maximum lateral acceleration of the bridge was estimated to be between 1.9 and

2.45 ms−2.The bridge’s lateral movements caused many pedestrians to have difficulty

walking— pedestrians had to hold onto the balustrades, or stop walking to retain their

balance. Furthermore, these movements would only die out if the pedestrians on the

bridge decreased in number, or stopped walking. Two days after the opening, the

bridge was closed in order to investigate the cause of the vibrations and to design a

solution.
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Figure 2.3: London Millenium Bridge

Figure 2.4: Toda Park Bridge, Japan
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One of the earliest reported incidences of excessive horizontal vibrations due to

synchronized horizontal pedestrian load occurred on the Toda Park Bridge (T-bridge),

Toda City, Japan (Fujino et al., 1993; Nakamura and Fujino, 2002). The T-bridge

is a pedestrian cable-stayed bridge which was completed in 1989. It has a main

span of 134 meters, a side span of 45 meters, and two cable planes with 11 stays

per plane, see Figure 2.4. It was observed that several stays and the girder vibrated

when a large number of people (some 2000) were crossing the T-bridge after big boat

races. The girder vibrated laterally with amplitude of about 10 mm and a frequency of

about 0.9 Hz, the natural frequency of the first lateral mode. Although this amplitude

does not seem to be large, some pedestrians felt uncomfortable and unsafe (Fujino

et al., 1993; Nakamura and Fujino, 2002; Nakamura, 2004). By video recording and

observing the movement of people’s heads in the crowd, and by measuring the lateral

response, Fujino et al. (Fujino et al., 1993) concluded that 20% of the people in the

crowd perfectly synchronized their walking.

In 1975, the north section of the Auckland Harbour Road Bridge in New Zealand,

experienced lateral vibrations during a public demonstration, when the bridge was

being crossed by between 2000 and 4000 demonstrators. The span of the north

section is 190 meters and the bridge deck is made of a steel box girder. Its lowest

natural horizontal frequency is 0.67 Hz (Dallard et al., 2001a).

In addition, horizontal vibrations were among several reasons behind the closure of

the Solferino Bridge in Paris immediately after its opening in December 1999. Also,

a 100 year-old footbridge, Alexandra Bridge in Ottawa, experienced strong lateral vi-

brations in July 2000, when subjected to crowd loading by spectators of a fireworks

display (Dallard et al., 2001b). Other types of bridges such as conventional sus-

pension bridges such as the Groves Suspension Bridge in Chester have also been

reported to experience similar lateral vibrations (Dallard et al., 2001a).

The previous cases show that the problem of pedestrian-induced lateral vibrations

has occurred on a range of different structural types (suspension, cable-stayed and

steel girder bridges) as well as on footbridges made of different materials (steel,

composite steel-concrete and reinforced and prestressed concrete) (Zivanovic et al.,

2005). In almost all previously reported problems related to footbridge vibrations,

the excessive vibrations were caused by a near resonance of one or more modes of
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lateral vibration. The reason for this is that the range of footbridge natural (lateral) fre-

quencies often coincides with the dominant frequencies of the human-induced load

(Zivanovic et al., 2005). It is therefore stated, that pedestrians can induce excessive

lateral vibrations on a footbridge of any structural form, if there is a lateral natural

frequency below or near to the lateral human loading frequency – for e.g. about 1 Hz,

in case of walking.

2.3.1 Synchronous Lateral Excitation (SLE)

When a pedestrian walks on a lively footbridge human-structure interaction can occur.

The interaction takes place in two ways (Venuti and Bruno, 2010). First of all, the

presence of the pedestrians modifies the bridge dynamic properties. A first effect is

the change of natural frequencies due to the pedestrian added mass, and the change

is much higher if the ratio of the dead load to live load is small, that is, if a very light

bridge is crossed by a high density crowd. A second effect is a change in damping

(Zivanovic et al., 2005). This effect is well-known in the case of stationary people,

but it is not completely understood in the case of moving people. According to some

authors (e.g. (Zivanovic et al., 2005)), walking pedestrians cause an increase in

damping in the vertical direction, due to human’s inability to synchronize their pace

with surfaces that move in the vertical direction. On the contrary, damping can be

reduced by walking pedestrians, when the second interaction effect takes place, that

is, the possibility of synchronization between the pedestrians and the structure, when

the vibrations become perceptible. This phenomenon is more likely to occur in the

horizontal direction, since pedestrians are more sensible to lateral vibrations which

affect their balance during gait. This phenomenon is called Synchronous Lateral

Excitation (SLE) and has come to the world attention after the closure of the London

Millennium Bridge.

The SLE has been the leading research topic in footbridge dynamics in the last

decade. The phenomenon is due to the development of two kinds of synchronization

(Ricciardelli and Pizzimenti, 2005). The first is the pedestrian-structure synchroniza-

tion, which takes place when the lateral vibrations become perceptible and the pedes-

trian unconsciously adapts his/her frequency to that of the bridge in order to maintain

21



balance. This first type of synchronization is also known as lock-in, in analogy to

the well-known fluid-structure interaction phenomenon. The second kind of synchro-

nization develops between the pedestrians themselves and it depends on the crowd

density. As a matter of fact, when the crowd density is very high, each pedestrian

cannot move freely and is conditioned by the surrounding people, so he/she tends to

walk at the same frequency and in phase with the pedestrians in front. In the SLE

these two synchronization effects are strictly related and it is very difficult to separate

their contribution.

Moreover, the experiments devoted to the comprehension of the synchronization

among pedestrians are very scarce, therefore further research in this field is required

(Venuti and Bruno, 2010). The SLE is a self-excited phenomenon, since the lateral

force exerted by the pedestrians grows for increasing amplitude of the deck lateral

motion, as well as the probability of lock-in (Venuti and Bruno, 2010). On the other

hand the phenomenon is also selflimited, in the sense that when the vibrations exceed

a certain value, pedestrians can no more maintain balance, so they stop, detune

or touch the handrails, causing the vibrations to decay. For this reason the SLE

has never caused structural failure, but only a serviceability problems for the users.

Nevertheless, in the last few years, a great number of footbridges have been closed

after the construction in order to install damping devices, therefore it is very important

to avoid the occurrence of this problem by taking it into account in the design stage.

Finally, a few words should be spent about vandal loading, which is the deliber-

ate movement of pedestrians in order to magnify the footbridge vibrations through

knee-bending, skipping or shaking handrails. The data about this kind of loading are

scarce and the debate is still open. What is clear is that it deserves greater attention,

especially nowadays when footbridges are very lively and easy to excite. Therefore, a

clarification of the exact definition of the vandal loading, regarding its duration, type of

load and number of people involved, as well as its force modelling is a task for further

investigation.
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2.3.2 Dynamic forces induced by pedestrians

During walking, pedestrians induce dynamic forces on the surface they walk. These

forces have components in all three directions, vertical, lateral and longitudinal and

they depend on parameters such as pacing frequency, walking speed and step length.

The vertical component is applied at the footfall frequency (typically around 2 Hz) and

is about 40% of their body weight. The lateral component is applied at half the footfall

frequency and on a stationary surface is about 10 times smaller than the vertical

component (Dallard et al., 2001a), see Figure 2.5. Table 2.1 shows a classification

of frequency ranges for different activities, that is, walking, running and jumping and

for different velocities, as proposed by Bachmann (Bachmann, 2002). This has been

confirmed with several experiments, for example by Matsumoto who investigated a

sample of 505 persons that the pacing frequency follows a normal distribution with a

mean of 2.0 Hz and a standard deviation of 0.173 Hz, see Fig.2.6 (Matsumoto et al.,

1978).

Figure 2.5: Periodic walking time histories: vertical and lateral direction (after Zi-

vanovic 2005)

Usually, the force exerted by a single pedestrian is modelled as a periodic force.

Therefore, each force component, vertical, lateral and longitudinal, can be decom-
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Table 2.1: Walking frequency ranges (Hz) for different activities (after Bachmann

2002)

Total range Slow Normal Fast

Walking 1.4 − 2.4 1.4 − 1.7 1.7 − 2.2 2.2 − 2.4

Running 1.9 − 3.3 1.9 − 2.2 2.2 − 2.7 2.7 − 3.3

Jumping 1.3 − 3.4 1.3 − 1.9 1.9 − 3.0 3.0 − 3.4

Figure 2.6: Normal distribution of pacing frequencies for normal walking (after Mat-

sumoto et al. 1978)
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posed in a Fourier series:
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(2.8)

where G is the pedestrian’s weight (usually taken as 700 N), αi is the Dynamic Load

Factor (DLF) of the ith harmonic, φi is the phase shift of the ith harmonic, i the order

number of the harmonic, n a suitable number of harmonics and f the pacing frequency

[Hz]. Different authors have tried to measure the DLFs related to the different force

components. A complete review is reported by Zivanovic (Zivanovic et al., 2005);

as an example, only the measurements of Bachmann & Ammann (Bachmann and

Ammann, 1987) for the vertical and lateral component are reported in Table 2.2.

Table 2.2: DLFs according to Bachmann & Ammann (1987)

α1 α2 α3 α4 α5

Vertical 0.37 0.10 0.12 0.04 0.08

Lateral 0.039 0.01 0.043 0.012 0.015

The action of a group or stream of pedestrians is generally modelled by multiplying

the action of (or the acceleration induced by) a single pedestrian by a multiplication

factor, which should account for randomness of the loading or for synchronization

effects. This general approach can be summarised in the following formula (Venuti

and Bruno, 2010):

Fn(t) = C · N · k · F0 cos (2πft) (2.9)

where N is the number of pedestrians in the group or stream, C is a synchroniza-

tion factor, k is a reduction factor, which account for the probability of occurrence of

step frequencies, and F0 is the amplitude of the force component (Table 2.3). The

multiplication factor is, therefore, given by the product C · N · k .
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Table 2.3: Amplitude F0 [N] in codes and guidelines

Code Vertical Longitudinal Horizontal

UK N.A.to Eurocode1 280 (walk) - -

910 (jogging)

Setra/AFGC 280 140 35

It should be noted that the periodic load models, for single and multiple pedestrians,

described above do not account for the human-structure interaction.

2.3.3 Comfort criteria in codes and design guidelines

The comfort criteria proposed in standard codes are based on the fulfillment of one

of two requirements (Venuti and Bruno, 2010). The first is that the footbridge natural

frequencies should not fall in the typical ranges of walking frequencies. Table 2.4

summarises the frequency ranges that should be avoided, according to international

standards (Eurocode 5 2004, BS EN 1991-2 2003, BS5400 2006). This first require-

ment is rarely satisfied in newly built footbridges. In that case a dynamic calculation

with suitable load models is required, and the second requirement to be satisfied is

that the maximum vertical and lateral accelerations do not exceed a limit value. Ta-

ble 2.5 summarises the limit values of vertical and horizontal accelerations reported

by international standards (ISO 10137 2007, Eurocode 5 2004, BS5400 2006). It

should be pointed out that ISO 10137 refers to the root mean square (rms) values of

acceleration, instead of the peak values.

In comparison to the comfort requirements proposed in standard codes, the new

design guidelines (Sétra /AFGC 2006, Hivoss 2008) adopt a different approach. Com-

fort criteria are not proposed as absolute values but depend on the footbridge class

and required comfort level, which can be decided by the footbridge Owner. Since the

Sétra /AFGC and the Hivoss guidelines propose a very similar design methodology,

the common features will be outlined in the following.

Footbridges are classified into traffic classes (4 in Sétra /AFGC, 5 in Hivoss) (SE-
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Table 2.4: Frequency ranges to be avoided

Code Vertical Horizontal

Eurocode 5 < 5 < 2.5

UK N.A.to Eurocode1 < 8∗ < 1.5∗∗

BS 5400 < 5 < 1.5

∗ unloaded bridge

∗∗ loaded bridge

Table 2.5: Limits on accelerations

Code Vertical (m/s2) Horizontal (m/s2)

ISO 10137∗ 0.6/f0.5 , 1 < f∗∗ < 4 Hz 0.2

0.3, 4 < f < 8 Hz

Eurocode 5 0.7 0.2

BS 5400 0.5/f0.5

* values referred to walking pedestrians

** f = first natural frequency
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TRA., 2006; HIVOSS, 2008) depending on the traffic level which they undergo. Be-

sides, four comfort levels (maximum, average, minimum, discomfort) and related ac-

celeration limits are defined (Table 2.6). If the occurrence of SLE has to be avoided

(maximum comfort), a lateral acceleration of 0.1 m/s2 should not be exceeded. It is

worth pointing out that the Sétra /AFGC and Hivoss guidelines consider the triggering

of the lock-in in terms of an acceleration threshold. This approach seems to be more

appropriate than the one proposed by Arup (Dallard et al., 2001a), which is based

on the calculation of a critical number of pedestrians which trigger the lock-in (Dal-

lard et al., 2001a). However, the Hivoss guideline considers the two approaches as

equivalent, therefore it is possible to calculate the triggering number of pedestrians

by means of the Arup formula or to verify the lateral acceleration does not exceed

0.1-0.15 m/s2.

Table 2.6: Comfort classes and related cceleration limits

Comfort level Vertical (m/s2) Horizontal (m/s2)

Maximum < 0.5 < 0.1

Average 0.5 − 1 0.1 − 0.3

Minimum 1 − 2.5 0.3 − 0.8

Discomfort > 2.5 > 0.8

2.3.4 Models for human-structure interaction

There have been several efforts, so far, to model the human-structure interaction

phenomenon to understand the SLE of footbridges. The available models are listed

below.

- Fujino’s model (Fujino et al., 1993)

- Arup’s model (Dallard et al., 2001a,b)

- Newland’s model (Newland, 2003)

- Nakamura’s model (Nakamura, 2004)

- Abrams’ model (Strogatz et al., 2005; Abrams, 2006)

28



- Robert’s model (Roberts, 2005)

- Macdonald’s model (Macdonald, 2008)

- Venuti’s model (Venuti et al., 2007)

- Bodgi et al. (Bodgi et al., 2007)

- Erlicher et al. model (Erlicher et al., 2010)

A recent review of the different models is already made in some of the papers

(Venuti and Bruno, 2010; Marcheggiani and Lenci, 2010) and the thesis (Abrams,

2006). However, to facilitate the reader and continue the subject, the salient features

of the various models are presented here.

Fujino et al. (Fujino et al., 1993) have adopted a model of harmonic forcing by em-

pirically tuning a synchronization parameter for the lateral vibrations of the T-Bridge

(according to their experimental data. This model assumes a continuous increase in

the vibration amplitude as the number of pedestrians increases. Dallard et al. (Dal-

lard et al., 2001a,b) have conducted a series of controlled crowd tests on the Millen-

nium Bridge and consequently they have proposed a load model based on empirical

observations. Their phenomenological approach assumes but does not explain the

observed synchronization effect, and cannot predict the steady state amplitude for

bridge motion, as it is due to unmodelled nonlinearities. In any case a formula has

been yielded to evaluate the critical number of pedestrians, by tuning a proportionality

constant on the specific real casestudy. Newland (Newland, 2003) has approached

the problem by referring to the interaction phenomenon between fluid flow and struc-

tures (lock-in) which is widely studied in wind engineering (Borri and Hffer, 2000). His

model includes the empirical assumption that the 40% of the pedestrians are synchro-

nized with bridge lateral frequency, independently on the amplitude of the oscillations.

Nakamura (Nakamura, 2004) has proposed an interactive forcing model which allows

the schematization of the self-limiting nature of the synchronization phenomenon and

the prediction of the steady state amplitude. Also this model is based on coefficients

which have been estimated from experimental tests (Nakamura and Kawasaki, 2006;

Fujino et al., 1993). Strogatz et al. (Strogatz et al., 2005; Abrams, 2006) have been

the first, up to our knowledge, to mathematically describe and predict the simultane-

ous growth of bridge movement and crowd synchronization, an observation that was

unexplained in previous models but that is confirmed by analyses of video footages
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recorded during overcrowding conditions on lively footbridges (Fujino et al., 1993;

Dallard et al., 2001a). They adapted ideas originally developed to explain the collec-

tive synchronization of biological oscillators, such as neurons and fireflies, or other

nonlinear systems able to phase-lock to an external periodic drive (Strogatz, 2000).

The basic idea is just the observation that also human walking is governed by un-

conscious rhythmic biological signals, so an analogy for example with the rhythmic

flashing of fireflies seems to be possible.

Roberts (Roberts, 2005) has schematized the interaction between the pedestri-

ans and the footbridge assuming that synchronization occurs when the pedestrians

motion is larger than the bridge motion; from this critical condition, he obtains a limit

number of pedestrians. Blekherman (Blekherman, 2007) has explained the excessive

lateral vibrations on the Solferino Bridge in Paris on the basis of autoparametric res-

onance by using a double pendulum model. He highlights the possibility of a non lin-

ear parametric resonance as the reason for excessive lateral vibration, due to the fact

that the first vertical frequency of bridge deck and the lateral one are in the ratio 2:1 in

many cases (Blekherman, 2005). Piccardo and Tubino (Piccardo and Tubino, 2008)

have performed an interesting extensive critical analysis of the excitation mechanisms

identified in the literature and they have proposed a new forcing model based on ex-

perimental tests carried out on harmonically moving platforms: the force exerted by

pedestrians is modelled as harmonic with an amplitude depending on the deck lateral

displacement, and a simple criterion defining the limit pedestrian mass is introduced.

Venuti et al. (Venuti et al., 2007) modelled the human-structure interaction based on a

substructure approach– the structure and the crowd are the two subsystems. Venuti

et al. (Venuti et al., 2007; Venuti and Bruno, 2009) have developed a first-order model

based on the mass conservation equation, in order to macroscopically describe the

dynamics of the crowd in the framework of hydrodynamic modelling. Their model

permits to take into account the triggering of the lock-in and its self-limited nature,

previously explained only by Strogatz et al. (Strogatz et al., 2005). The effects of

two different kinds of synchronization, i.e. between pedestrians and structure and

among pedestrians, are introduced. Some parameters, used in the formulation of the

model, would require specific experimental tests to be confirmed. Bodgi et al. (Bodgi

et al., 2007), independently and almost at the same time of (Venuti et al., 2007), have
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adopted a similar approach to simulate the mechanics of synchronous lateral excita-

tion. Ricciardelli and Pizzimenti (Ricciardelli and Pizzimenti, 2005, 2007) performed

a systematic experimental campaign aimed at characterizing dynamically the lateral

force exerted by pedestrians on footbridges, both in case of still deck and in case

of laterally moving deck; deterministic and stochastic lateral loading models for the

static case have been provided. The mechanism of crowd synchronization has been

investigated only from the qualitative point of view.

To model pedestrians-induced lateral vibrations it is necessary to have some un-

derstanding of the mechanics which describes human walking, with special attention

to the lateral component of the ground reaction force; therefore, some authors (Bauby

and Kuo (Bauby and Kuo, 2000), Belli et al. (Belli et al., 2001), Vaughan (Vaughan,

2003), Hof et al. (Hof et al., 2005, 2007), Macdonald (Macdonald, 2008), Trovato et al.

(Trovato et al., 2008, 2009), especially in the area of biomechanics, have recently in-

vestigated this topic developing and reorganizing theories on bipedal walking, forcing

and frequency of human footfall during walking and balance control.

Macdonald’s model of human balance comprises an inverted pendulum- for which

the most effective means of lateral stabilization is by the control of the position, rather

than the timing, of foot placement. The model gives a reasonable representation of

the lateral pedestrian forces applied to the ground (or bridge) in the absence of bridge

motion, compared against previous measurements. The same balance strategy as

for normal walking on a stationary surface is applied to walking on a laterally oscillat-

ing bridge. As a result, without altering their pacing frequency (unsynchronized with

the bridge), averaged over a large number of cycles, the pedestrian effectively acts

as a negative (or positive) damper to the bridge motion, which may be at a different

frequency. This is in agreement with the empirical model developed by Arup from the

measurements on the London Millenium Bridge, leading to divergent amplitude vibra-

tions above a critical number of pedestrians. However, with the chosen parameters,

the model does not accurately match the numerical results from the full-scale mea-

surements, although it is possible to modify the results considerably using different

parameters or balance strategies. In addition, the model does not cover the behaviour

for larger bridge amplitudes for which pedestrians may change their gait, possibly in-

cluding synchronizing their motion with the bridge or stopping walking. Therefore, to
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refine the model, further data are required on pedestrian behaviour when perturbed

by bridge motion.

2.3.4.1 Erlicher’s model on rigid floor (Erlicher et al., 201 0) and extension to

the moving floor

Erlicher et al. (Erlicher et al., 2010) proposed a model to represent the lateral oscil-

lation of a pedestrian walking on a rigid floor by an autonomous self-sustained oscil-

lator by modifying the so-called hybrid Van der Pol/Rayleigh oscillator, already used

for applications in the field of robotics. They defined a nonlinear Single-Degree-of-

Freedom oscillator able to accurately predict the lateral walking force of a pedestrian.

The force exerted on the floor corresponds to its restoring force. Although, such an

oscillator is a simplified representation of the human body, it is able to reproduce two

experimentally observed phenomena: (i) the time-history of lateral force is an approx-

imately periodic signal; (ii) the walking motion is self-sustained, in the sense that the

pedestrian/oscillator produces by itself the energy needed to sustain its motion. This

implies that such an oscillator must be self-sustained. In addition, the self-sustained

character entails that the autonomous oscillation has a natural amplitude and fre-

quency, representing the natural walking amplitude and frequency of the pedestrian.

A dynamic analysis of this oscillator was performed through an energetic approach

and a perturbation technique in order to get the stable limit cycle. The model param-

eters were finally identified from the experimental force signals, resulting from a test

campaign on a population of twelve pedestrians: the agreement between model and

experimental results was very good.

The next step, that is to model the behaviour of a pedestrian on a moving floor to

explain the SLE phenomenon is addressed in this thesis.

The motivation to extend this model to the moving floor case is that in certain situ-

ations, it is useful to replace a self-sustained oscillator with a simpler dynamic model,

based on the so-called phase equation (Erlicher et al., 2010). Roughly speaking, the

response of a self-sustained oscillator can be described in terms of amplitude and

angle variable. If the amplitude is supposed constant, then the angle variable suffices

to describe the oscillation. In this case, the so-called total phase, strictly related to

the angle variable (Pikowski et al., 2001; Kuramoto, 2000), governs the system evo-
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lution by a suitable equation of phase. This idea has been used in (Strogatz et al.,

2005) and (Eckhardt et al., 2007) for modelling the crowd behavior: each pedestrian

is represented by a phase equation. The time-derivative of the phase represents the

instantaneous walking frequency.

By definition, this approach neglects the amplitude variations of the pedestrian

oscillations. However, several experimental tests, e.g. (Nakamura et al., 2008), show

that the variations of the lateral oscillation amplitude of pedestrians are not negligible.

In this respect, Macdonald (Macdonald, 2008) has suggested the use of a model for

the pedestrian lateral oscillation where only the amplitude variations are accounted

for and no frequency modulation due to the external excitation is considered. The

modified hybrid Van der Pol/Rayleigh model proposed here accounts for both phase

and amplitude variations due to external excitation.

2.4 Vibration reduction techniques for cable-stayed footbridges

The discussion made in the previous sections reveals the vibration problems asso-

ciated of the cable-satyed bridges due to the wind and pedestrian loadings. It was

found that the cable-satyed bridges are flexible and have low damping. Therefore,

it has been a general practice, nowadays, to introduce external dampers in order to

increase the damping of the bridge system.

However, it is concluded by the previous studies on several cable-stayed bridges

(Yamaguchi and Ito, 1997) that the modal damping-frequency relation shows consid-

erable scatter, moreover, the modal damping of cable-stayed bridges is highly depen-

dent on the coupling characteristics of mode shapes. The damping value of coupled

mode becomes large (or small) if the sub-structure coupled with the girder motion

has higher (or lower) damping than the girder. Due to the coupling between the com-

ponents of the CSB, for e.g. deck and cables; it is important to consider the damping

devices for both- the deck and stay cables.
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A detail description of the types, principles and application of the dampers in civil

engineering field including cable-stayed bridges can be found in (Weber et al., 2006;

Nyawako and Reynolds, 2007). However, a brief description of the damper system

used in bridges is given as follows (Anusas et al., 2007).

• absorbing dampers;

• mass dampers ;

• active tuned dampers;

• structural or physical damping.

Absorbing damper

Two types of dampers can be distinguished: mechanical dampers and hydraulic

dampers. In mechanical dampers the structure’s oscillation damping is achieved by

springs or elastic pieces, in hydraulic dampers - by liquids, oil or gas. Hydraulic or

viscous damper is made of hydraulic cylinder, surrounding a piston, the head of which

forms two chambers. A relative motion applied to the actuator results in a pressure

difference between the two chambers, creating a potential for flow and energy dissi-

pation. See Figure 2.7.

Tuned mass damper (TMD)

TMD is a device absorbing vibrations by vibration of the self mass (See Figure 2.7).

A vibration absorber consists of a mass-spring damper system which is attached to

the structure and carefully tuned with the structure‘s vibration characteristics. When

the counterweight of the damper moves in one direction as the structure moves in

the other, the damping of the structure‘s oscillation is achieved. A limitation of the

device, however, that it is only being effective over a narrow band of frequencies.

However, TMD system might not be a good countermeasure for mitigating the buffet-

ing response of a long-span bridge (Chang et al., 2003).

Active tuned damper

This type of vibration absorbers can suppress and tune the vibrations over a range

of frequencies by incorporating a variable stiffness element that can be adjusted in

real-time. Among others the magneto-rheological (MR) fluid dampers can be men-

tioned. MR fluids, which typically consist of micrometer-sized, magnetically polariz-

able particles in a water, oil or silicon. When a magnetic field is applied to the fluids,

the fluids become semisolid and exhibit viscoplasticity adjusting their tuning to the
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Figure 2.7: (a) Absorbing and (b) mass damper
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dynamic parameters of the structure and help to reduce the structure vibration. The

absorbers viscosity and elasticity are controlled by an external electric source. At

present implementation of multiple absorbers activated when bridge motion exceeds

admissible bounds is carried out.

Structural or physical damping

It consists of local or total structural modifications by changing mainly the stiffness

or the mass of a structure. Such as local strengthening of members, introducing of

additional beams in the crosssections, installing a stiffer hand rail by truss or solid wall

construction, intermediate piers, additional hangers, ties or cables can be mentioned.

By these measures the natural frequencies could be changed, leading to frequency

tuning of the bridge structures.

For the mitigation of rain/wind induced vibrations of stay cables, it is recommended

(Kumarasena et al., 2005) to an effective surface treatment by using double-helical

beads for cable pipes. Sc > 5 may be acceptable in this case. However, such re-

ductions should be made only for regularly spaced, single cable arrangements. In

general, it is recommended to keep the Scruton number as high as possible by pro-

viding external dampers and/or crossties.

A damper can be tuned to yield optimal damping in any one selected mode. For

other modes the level of damping will be less than this optimal value. Rain/wind-

induced vibrations occur predominantly in mode 2. Therefore, if a damper is to be

tuned to a particular mode to mitigate rain/wind-induced vibrations, it appears logical

to select mode 2.

With some dampers (such as dashpot type), an initial static friction force must be

overcome before engaging of the viscous element. Field experiments have shown

the presence of this stick-move-stick-move behavior associated with such dampers.

This may effectively provide a fixed node instead of the intended damping for the

cable at low-amplitude oscillations and should be considered. The visco-elastic type

dampers where an elastomeric element is permanently engaged between the cable

and the supporting elements, theoretically, are free of such initial frictional thresholds.

On the other hand, there are also damper designs that rely on friction as the energy

dissipation mechanism, and the static friction threshold for such dampers may be

higher than for the other types.
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The crossties are used to suppress the vibrations by tying multiple cables together

with secondary cables to form cable networks so that the energy in individual cables

can be redistributed either to the higher modes of vibration or to adjacent cables in

the network (Ehsan and Scanlan, 1990). The use of crossties creates local modes,

which must be considered in design. Cable crossties must be provided with initial

tension sufficient to prevent slack of the crossties during design wind events. How-

ever, the crossties between the stays are considered a distraction to the aesthetic

beauty of cable-stayed bridges (Pacheco et al., 1993) and, due to the large stresses

to which they are subjected, there have been incidents of crosstie failures, such as

that reported on the Erasmus Bridge in the Netherlands (Virlogeux, 1993).

External devices, such as high-damping rubbers (Yamaguchi and Fujino, 1999)

and dampers attached at the vicinity of the cable anchorages are used to supplement

the inherent mechanical damping in the cables. This inherent structural damping

is believed to be at an extremely low level and a critical contributory factor to the

susceptibility of stay cables to aerodynamic excitations (Kiviluoma, 1998). Among

these damping supplementing devices, passive viscous dampers have been exten-

sively studied (e.g., (Zuo and Jones, 2005; Kumarasena et al., 2005; Pacheco et al.,

1993; Tabatabai and Mehrabi, 2000; Achs and Adam, 2005) and their effectiveness in

suppressing stay cable vibrations has been widely accepted (Yamaguchi and Fujino,

1999). In recent years, the potential application of active and semi-active dampers

has also been investigated in attempt to achieve improved damping performance over

other damping supplementing devices e.g., (Johnson et al., 2003; Wu et al., 2004).

Although the effectiveness of such active and semi-active dampers has been con-

firmed by experimental tests, there still remain many theoretical as well as practical

issues to be resolved (Yamaguchi and Fujino, 1999). In most cases, these three types

of countermeasures have been applied separately. On some bridges, however, more

than one of them has been employed, for e.g. the Normandie Bridge (Fuzier and

Stubler, 1994). Whether or not these countermeasures can work together effectively

is also a subject of further study.

Although the above-discussed types of countermeasures have been demonstrated

to be effective in suppressing some or all types of wind- and rain-wind-induced vibra-

tions, the design still remains semi-empirical. For example, in the design of dampers,
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an efficient and reliable means to estimate the inherent damping in the cables is still

not available, and it is still not fully clear how much supplemental damping is needed

to suppress the vibrations. To enable more rational and efficient design of counter-

measures, a better understanding of the mechanisms of wind- and rain-wind-induced

stay cable vibrations, as well as the key parameters involved, is needed.

2.5 Conclusions

The state of art for the dynamic behaviour of the cable-stayed footbridges was

provided both due to wind and pedestrian loading. Also some vibration reduction

systems were reviewed. It was derived that wind load effects are getting bigger on

the design of a cable-stayed bridge with its longer span lengths. The wind vibrations

are conventionally classified into buffeting, vortex excitations, galloping and torsional

flutter of the whole bridge. Wind induced vibrations are to be verified also for various

stages during the erection as well as, for such structural elements as pylon and stay

cables, after completion. The most important wind effect in case of stay cables is

that of due to the rain-wind phenomenon. However, dry cable instability should be

suppressed by default if enough damping is provided to mitigate rain/wind vibrations.

The pedestrian induced loading produces SLE phenomenon. This phenonmenon

is complex and still under research. There is need of new models that can describe

better this behaviour. In this view modified hybrid Van der Pol/Rayleigh oscillator will

be used to model the synchronous behaviour of pedestrians on a moving floor in

chapter 7.

Finally, the application of external dampers is increasing in cable-stayed footbridges

for the mitigation of wind and pedestrian induced vibrations. Not only the main deck

but also stay cables need special attention and design of damping devices. Some

viscous dampers (such as dashpot type), may not be effective at low-amplitude os-

cillations as an initial static friction force must be overcome before engaging of the

viscous element, showing a particular stick-move-stick-move behavior. Moreover, the
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research on active and semiactive dampers, e.g. MR dampers, is increasing that

work in a wide frequency ranges.
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CHAPTER 3

STRUCTURAL (SYSTEM) IDENTIFICATION TECHNIQUES

FOR CABLE-STAYED BRIDGES

3.1 Introduction

Structural (system) identification of civil engineering structures refers to any sys-

tematic approach for identifying structural modal parameters -frequencies, damping

ratios and mode shapes- through the use of input and output test data. These pa-

rameters serve as basis or input to the finite element model updating, detecting and

locating the possible damage, long-term health monitoring and the safety evaluation

of structures against extreme circumstances like earthquake, wind loads etc. (Natke

et al., 1993; Ghanem and Shinozuka, 1995; Maia and Silva, 1998). Even if the age

of virtual prototyping has already started (Auweraer Van Der, 2002), experimental

testing and system identification still play a key role because they help the structural

dynamicist to reconcile numerical predictions with experimental investigations. The

term ‘system identification’ is sometimes used in a broader context in the technical

literature and may also refer to the extraction of information about the structural be-

haviour directly from experimental data, i.e., without necessarily requesting a model,

e.g., identification of the number of active modes or the presence of natural frequen-

cies within a certain frequency range. The field of system identification techniques

traversed through a long journey and nowadays various advanced techniques are

available. The following section 3.2 presents a state-of art on the development of the

system identification techniques. Then, section 3.3 describes the various structural
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identification techniques applicable to the bridge structures, in particular, relevant to

the cable-stayed bridges. Finally, the important conclusions are drawn.

3.2 Structural (system) identification techniques: a state-of-art

3.2.1 Linear identification

Linear system identification is a discipline that has evolved considerably during the

last 30 years (Soderstrom and Stoica, 1989). Experimental modal analysis is by

all means the most popular approach to performing linear system identification in

structural dynamics. The model of the system is expressed in the form of modal

parameters, namely the natural frequencies, mode shapes and damping ratios. The

popularity of modal analysis stems from its great generality; modal parameters can

describe the behaviour of a system for any input type and any range of the input.

The field of linear identification now offers a vast range of effective techniques. In

recent years, time domain techniques have been used rather successfully, thanks to

the great spectral resolution offered and to their modal uncoupling capability (Masri

et al., 1982; Shinozuka et al., 1982; Safak, 1991; Safak and Celebi, 1991; Peeters and

DeRoeck, 1999; Loh et al., 2000). One of the basic shortcomings of these methods

is that they often produce spurious modes, whose true nature, however, can usually

be identified by means of simple modal form correlation indicators (Ewins, 2000), or,

as an alternative, with the aid of numerical models.

An important family of time domain methods makes use of time series autoregres-

sive models and exploits the theoretical results coming from research in the field of

system control (Ljung, 1999). These techniques provide a very general and attractive

formulation, and are frequently applied to civil structures. The most critical aspect

resides in the computational complexity associated with applications to Multi-Degree-

of-Freedom (MDoF) systems. The extension of the parameter estimation techniques

42



to stochastic multi-variate models, in fact, is far from being trivial, and additional diffi-

culties arise from local minimum points and algorithmic instabilities (Fassois and Lee,

1993).

Among the deterministic methods, in addition to the historic Ibrahim Time Domain

(Ibrahim and Mikulcik, 1977), we should mention the Eigensystem Realisation Algo-

rithm (ERA) (Juang. and Pappa, 1984), which, based on a Single Value Decompo-

sition (SVD) of Hankel’s matrix, has been closely studied in the literature (e.g. (Lew

et al., 1993)), and the Polyreference Time Domain (PRTD) stemming from a general-

isation of Prony’s method (Vold et al., 1982).

Since the beginning of the nineties, there has been an increasing interest in so-

called Stochastic Subspace Identification (SSI) methods, in which statistical, alge-

braic and numerical concepts and algorithms cooperate, leading to user-friendly soft-

ware for linear system identification (Zeiger and McEwen, 1974; James et al., 1995;

Peeters and DeRoeck, 1999). Contrary to classical algorithms, subspace algorithms

do not suffer from the problems caused by a-priori parametrisations and non-linear

optimisations. Van Overschee and De Moor (Van Overschee and De Moor, 1996)

studied three different subspace algorithms for the identification of combined deterministic-

stochastic systems. This comparison is done through the introduction of a unifying

theorem, of which the three algorithms are special cases.

For a description and classification of various input-output modal analysis tech-

niques the reader may consult specialized texts (Heylen et al., 1997; Maia and Silva,

1998; Ewins, 2000). Unification of the theoretical development of modal identification

algorithms was also attempted, e.g., in (Allemang and Brown, 1998; Allemang and

Phillips, 2004), which is another sign of the maturity of this research field.

Different is the situation with modal analysis algorithms that, being conceived to

work with output data (output-only or input-unknown techniques), are of special inter-

est for structures exposed to natural vibration (bridges, towers, buildings etc.). These

issues in the nineties gave rise to a new research area, officially inaugurated in a

special session of IMAC-XIV organised by Felber and Ventura (Felber and Ventura,

1996), which today is often referred to as “in operation” (or improperly “operational”)

modal analysis, e.g., (Cunha and Caetano , eds; Brincker and Moller , eds.; Reyn-

ders et al.; Giraldo et al., 2009). In ambient vibration conditions, there is still a need
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to determine to what extent the use of these techniques in non-ideal conditions, as

is in the typical case, can be deemed acceptable, or whether it proves necessary to

resort to techniques specially conceived for dealing with non-stationarity. Inherently

non-stationary techniques include stochastic approaches (e.g. (Yuen and Katafy-

giotis, 2002)), time-frequency instantaneous estimators (e.g. (Ceravolo, 2004)) or

time-varying estimators (e.g. (A.G. and S.D., 2008; Du and Wang, 2009)).

3.2.2 Nonlinear identification

Though the word nonlinearity has a tautological meaning, a classification of possible

sources of nonlinearity might still retain a practical interest in structural dynamics. A

drawback in using this term in a survey is rather due to the vast range of problems and

techniques that deserve a proper coverage. This section on nonlinear identification is

not intended as a comprehensive review by any means. In fact, such a review already

exists in the form of the textbook Nonlinearity in Structural Dynamics: Detection,

Identification and Modelling by Worden and Tomlinson (Worden and Tomlinson, 2001)

and in several comprehensive state-of-the-art papers (e.g. (Hemez and Doebling,

2001)). For a much more comprehensive overview the reader is directed to these

and other documents. The present survey is intended to illustrate the use of a small

number of vibration-based methods of direct or potential interest for understanding

the structure under exam.

A first category includes identification methods using various strategies to by-pass

non-linearity. Other methods can be framed respectively in the parametric and the

non parametric approach: in the former case, a priori selection of a specific model for

the dynamic behaviour of the system is needed and the identification process consists

of determining the coefficients for such model. Non parametric methods, instead, do

not require any assumption on the type and localisation of structural non-linearities

but, generally, the quantities identified cannot be directly correlated to the equation

system of motion.
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3.2.2.1 By-passing non-linearity

Traditional techniques for the analysis of the dynamics of nonlinear structures are

based on the assumptions of weak nonlinearities and of a non-linear modal structure

that is similar or a small perturbation of the underlying linearised system.

Caughey in 1959 proposed to replace a nonlinear oscillator with external Gaus-

sian excitation by a linear one with the same excitation such that the mean-square

error between the actual nonlinear and linearised systems is minimised in a statis-

tical sense. The procedure, known as equivalent linearisation, operated directly on

the equations of motion. Many developments have been proposed since the work of

Caughey (Roberts and Spanos, 1990). This commonly used approach has proved

useful in most applications, particularly for the random vibration analysis of systems

where the nonlinear restoring force is hysteretic. For experimental applications, the

extraction of a linear model requires the knowledge of the functional form of the restor-

ing force, which is generally not the case. Hagedorn and Wallaschek (Hagedorn and

Wallaschek, 1987) have developed an effective experimental procedure for doing pre-

cisely this. This work triggered the development of the concept of equivalent linear

systems with random coefficients which has enjoyed some success for system iden-

tification of nonlinear systems (Soize C., 1997; Bellizzi and Defilippi, 2003).

The harmonic balance method described by Nayfeh and Mook (Nayfeh and Mook,

1995) can be also employed for linearising nonlinear equations of motion with har-

monic forcing. This method has been the basis of several nonlinear system identifi-

cation techniques (among others see (Yasuda et al., 1988; Benhafsi Y., 1992; Meyer

et al., 2003; Ozer et al., 2005)).

For MDoF systems a suggestive way to make a transition between linear and non-

linear dynamics is through the extension of the concept of normal mode of classical

linear vibration theory to nonlinear systems. In particular conditions, the concept of

nonlinear normal mode (NNM) has been introduced by Rosenberg (R.M., 1966) and

developed by Vakakis (Vakakis, 1997). The identification of individual NNMs may

represent a limitation when considering the arbitrary motion of a nonlinear system; in

this case, the NNMs are bound to interact. Several authors have used other types

of non-linear modes for the identification of non-linear systems from free vibration

(Hasselman et al., 1998; Hemez and Doebling, 2001).
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3.2.2.2 Parametric approaches

Apart for linearization techniques, that usually are parametric, a very direct strategy

to obtain a typically parametric identification algorithm consists of extending the use

of time series models (Ljung, 1999) to non-linear systems. A suggestive extension is

represented by NARMAX (Nonlinear ARMA with eXogeneous input) model proposed

by Leontaritis and Billings (Leontaritis and Billings, 1985a,b). The NARMAX structure

is general enough to admit many forms of model including neural networks, although

the estimation problem becomes nonlinear and the orthogonal estimator will not work

(Billings et al., 1991). In fact, the application of NARMAX to structures is extremely

complex an no relevant applications to real structures are reported to date.

3.2.2.3 Non-parametric approaches

The Volterra series representation of the input/output relationship is one of the princi-

pal tools for studying weakly non-linear systems is: in this theoretical framework the

problem of identification is the determination of the higher-order frequency response

functions, in the frequency domain, or higher-order impulse response functions, in

the time-domain, from experimental data. Usually, methods based on Volterra series

representation are classed as non-parametric, like all those making use of non-linear

functionals.

The structures can be tested applying loads deterministic (i.e. stepped-sine test)

or stochastic in nature. In the latter case, there is quite an extensive literature about

the techniques for identifying Volterra systems: one of the first attempts to determine

the linear and quadratic frequency response functions of a quadratic system was per-

formed by Tick (Tick, 1961), under the assumption that system excitation is white

Gaussian noise. The hypothesis of gaussianity greatly simplifies the problem of iden-

tification but can lead to unrealistic results. This difficulty has been overcome with the

formulation of identification methods which can be applied in conditions characterised

by excitation with arbitrary spectral properties, defined both in the time domain (e.g.

(Koukoulakis and Kalouptsidis, 2000)) and in the frequency domain (e.g. (Kim and

Powers, 1993)). All these methods require the calculation of higher order statistical

moments: in structural engineering applications it is not possible to obtain a number
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of experimental measurements large enough as necessary to get a consistent es-

timate of the statistical moments of interest. The availability of a limited number of

experimental data can be obviated through the time-frequency representation of the

signals and the definition of instantaneous estimators of the mechanical properties to

be identified (Demarie et al., 2005b).

We underline that a vast majority of identification techniques, especially non-parametric

ones, variously admit heuristic versions. In this connection we shall mention neural

networks, because of their universal approximation features, and neuro-fuzzy models,

because of their semantic transparency (e.g. (Juditsky et al., 1995; Chassiakos A.G.,

1996; Kosmatopoulos et al., 2001; Riche et al., 2001; Song et al., 2004; Liang et al.,

2001; Fan and Li, 2002)).

3.2.3 Approaches based on instantaneous estimation

This class of methods was already considered in the 1960s for problems in acoustics

and vibrations (Priestley, 1967), but it is only from the 1990s that it gained widespread

popularity within the structural dynamics community. A survey of the analysis of

non-stationary signals using time–frequency methods is available in (Hammond and

White, 1996), (Hammond and Waters, 2001) and (Ceravolo, 2009).

Feldman showed how to use the traditional definition of the analytic signal and the

time-domain Hilbert transform in order to identify nonlinear models of SDOF systems.

The FREEVIB approach proposed in (Feldman, 1994a) is based on free vibration

whereas the FORCEVIB approach proposed in (Feldman, 1994b) deals with forced

vibration. These approaches can be used to construct the instantaneous damping

and stiffness curves for a large class of nonlinear systems, but are only suitable for

monocomponent signals (Feldman, 1997). We mention that a method for the decom-

position of signals with multiple components into a collection of monocomponents

signals, termed intrinsic mode functions (IMFs), was proposed in (Huang et al., 1998)

and is now referred to as Huang– Hilbert transform in the time-frequency literature.

The IMFs are constructed such that they have the same number of extrema and

zero-crossings, and only one extremum between successive zero-crossings. As a

result, they admit a well-behaved Hilbert transform. The method now enjoys several
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applications in structural dynamics including linear system identification (Yang et al.,

2003a,b) and damage detection (Yang J.N., 2004).

Other time–frequency representations are also suitable for the analysis of nonlin-

ear oscillations. Linear representations have been used for instance by (Spina et al.,

1996) and (Demarie et al., 2005b). An overview of the use of the wavelet transform in

nonlinear dynamics can be found in (Staszewski, 2000), while among others interest-

ing applications are reported by Newland (Newland, 1999) and Erlicher and Argoul

(Erlicher and Argoul, 2007). Quadratic representations which include the Wigner–

Ville distribution and the Cohen-class of distributions have also received some atten-

tion (Feldman and Braun, 1995; Bonato et al., 1997; Wang et al., 2003).

3.3 Structural identification of cable-stayed bridges

Structural identification techniques have been implemented successfully in the case

of cable-stayed bridges for the identification of main structure as well as stay cables;

followed by updating of numerical models (Casas, 1995; Cunha et al., 2001; Gentile

et al., 2004; Casas and Aparicio, 2010). A summary of dynamic excitation meth-

ods for modal parameter identification on bridges is given in (Farrar et al., 1999) and

(Cunha et al., 2001). There are mainly three types of testing methods: (1) Forced

vibration tests; (2) Ambient vibration tests; and (3) Free vibration tests. Structural

identification techniques are classified mainly in two types: Input-output techniques

and Output-only techniques.

3.3.1 Input-output Techniques

The conventional modal testing is based on the estimation of a set of frequency re-

sponse functions (FRFs) relating the applied force and the corresponding measured

response at several pairs of points along the structure, with enough high spatial and
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frequency resolution. The construction of FRFs requires the use of an instrumenta-

tion chain for structural excitation, vibration measurement and data acquisition and

signal processing. A summary of input-output modal identification methods is given

in (Cunha et al., 2006).

As input-output techniques require input force measurement for FRFs calculation,

the structure undergoes forced vibration tests. Impulse hammers and electrodynamic

shakers can be used with success in forced vibration tests of relatively small and

medium size structures like pedestrian bridges (Cunha et al., 2006). However, when

dealing with large structures, much heavier and more expensive equipments are

needed, like eccentric mass or servo-hydraulic shakers. In case of large and flexi-

ble cable-stayed bridges, with significant natural frequencies in a low range, e.g. 0-1

Hz, it becomes still more difficult and costly to provide controlled excitation at high

levels (Cunha et al., 2001). Moreover, the input-output methods relevant to the linear

identification of cable-stayed bridges can be summarised as followings (Cunha et al.,

2006):

1. Frequency domain methods: rational fraction polynomial (RFP), complex expo-

nential frequency domain (CEFD), polyreference frequency domain (PRFD);

2. Time domain methods: autoregressive moving average (ARMA), complex expo-

nential (CE), least square complex exponential (LSCE), polyreference complex expo-

nential (PRCE), ibrahim time domain (ITD), eigensystem realization algorithm (ERA).

The reader can refer some literature- (Ewins, 2000) for theoretical details and

(Cunha et al., 2006) for application of the above named input-output techniques.

3.3.2 Output-only techniques

In contrary to the input-only techniques, output-only techniques use only output re-

sponse of the structure for modal parameter identification. The structure can undergo

ambient or free vibration tests. The technological advancement in the fields of trans-

ducers and A/D converters during the last years made feasible the very accurate

measurement of very low levels of dynamic response induced by ambient excitations,

like wind or traffic, strongly encouraging the development of output-only modal identi-

fication methods. Moreover, for larger bridges ambient excitation is the only practical
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means of exciting the structure as the ability to input significant energy into the struc-

ture, particularly at higher frequencies, by some mechanical device becomes more

impractical as the size of the structure increases. Ambient excitation is also used

with smaller bridges when other constraints prevent the bridge from being taken out

of service during the tests. The advantages of ambient vibration tests for modal iden-

tification of bridges are listed as follows:

i) inexpensive and efficient, as no input forcing device and instrumentation is needed;

ii) avoids the shut down of traffic on the bridge;

iii) represents a real operating condition of the structure during its daily use; and

iv) applicable to small, medium and large bridge structures.

A drawback of using ambient excitation is that this type of input is often non-

stationary. Also, because the input is not measured it is not known if this excitaion

source provides input at the frequencies of interest or how uniform the input is over a

particular frequency range. Even when measured-input excitations are used, ambient

vibration sources are often still present producing undesirable and often unavoidable

extraneous inputs to the structure (Farrar et al., 1999). The modal analysis involv-

ing output-only measurements presents a challenge that requires the use of special

modal identification technique, which can deal with very small magnitude of ambient

vibration contaminated by noise.

Though modal damping can be also identified using ambient vibration tests, the

corresponding estimates are often not so accurate, and this may be a major point

of concern in some applications. For instance, in case of large and slender cable-

stayed bridges, where knowledge of certain damping factor is crucial for the assess-

ment of aeroelastic instability problems, the accurate identification of modal damping

factors is required (Cunha et al., 2007). In such cases, it is appropriate to perform

a free vibration test, introducing an initial perturbation that can induce a free vibra-

tion response significantly higher than the ambient response. This can be done by

provoking a sudden release of a mass appropriately suspended from the deck.

The output-only methods relevant to the linear identification of cable-stayed bridges

can be summarised as followings (Cunha et al., 2006):

1. Frequency domain (non-parametric) methods: peak-picking (PP), frequency

domain decomposition (FDD);
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2. Time domain (parametric) methods: autoregressive moving average (ARMA),

random decrement (RD), eigensystem realization algorithm (ERA), polyreference time

domain (PRTD), Stochastic subspace identification (SSI).

The basic frequency domain peak-picking (PP) method is based on the evaluation

of normalized average power spectral densities involving all the measurement points

and ambient response transfer functions relating the response at each measurement

point with the response at a reference point. This approach can be improved by per-

forming a single value decomposition (SVD) of the matrix of response spectra (FDD-

frequency domain decomposition method), so as to obtain power spectral densities

of a set of SDoF systems, and enhanced (EFDD method) in order to extract modal

damping factors estimates, through inspection of the decay of auto-correlation func-

tions, evaluated by performing the inverse Fourier transform of the SDoF systems’

power spectral densities. For theoretical details reader can refer the papers- (Brincker

et al., 2001) and (Ren and Zong, 2004).

The time domain parametric methods involve the choice of an appropriate math-

ematical model to idealise the dynamic structural behaviouur (usually time-discrete

state-space stochastic models, ARMAV or ARV models) and the identification of the

values of the modal parameters so as that model fits as much as possible the ex-

perimental data, following some appropriate criterion. These methods can be directly

applied to discrete response time series or, alternatively, to response correlation func-

tions. The evaluation of these functions can be made based on their definition, using

the FFT algorithm or applying the random decrement (RD) method.

A brief theoretical description of some of the techniques used in this thesis is given

in the following sub-subsections.

3.3.2.1 Peak-picking method (PP)

The peak pick method is the simplest known method for identifying the modal param-

eters of civil engineering structures subjected to ambient excitation (Ren and Zong,

2004). The method is initially based on the fact that the FRF goes through extreme

values around the natural frequencies. The frequency at which this extreme value

occurs is a good estimate for the frequency of the system. In the context of ambient

vibration measurements the FRF is only replaced by the auto spectra of the ambi-
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ent outputs. In such a way the natural frequencies are simply determined from the

observation of the peaks on the graphs of the averaged normalized power spectral

densities (ANPSDs). The ANPSDs are basically obtained by converting the mea-

sured accelerations to the frequency domain by a discrete Fourier transform (DFT).

Although the input forces are not measured in ambient vibration testing, this prob-

lem has often been circumvented by adopting a derived modal parameter identifica-

tion technique where the reference sensor (base station) signal is used as an “input”

and the FRFs and coherence functions are computed for each measurement point

with respect to this reference sensor. It not only helps in the identification of the res-

onances, but also yields the operational shapes that are not the mode shapes, but

almost always correspond to them. The coherence function computed for twosimul-

taneously recorded output signals has values close to one at the resonance frequen-

cies because of the high signal-to-noise ratio at these frequencies. Consequently

inspecting the coherence function may assist to select the frequencies.

In current peak picking method, the components of the mode shapes are deter-

mined by the values of the transfer functions at the natural frequencies. Note that in

the context of ambient testing, transfer function does not mean the ratio of response

over input force, but rather the ratio of response measured by a roving sensor over

response measured by a reference sensor. So every transfer function yields a mode

shape component relative to the reference sensor. Here it is assumed that the dy-

namic response at resonance is only dominated by one mode. The validity of this

assumption increases as the modes are better separated and as the damping in the

structure is lower.

The peak picking is a kind of frequency domain based technique. Frequency

domain algorithms are most popular, mainly due to their simplicity and processing

speed, and also for historical reasons. These algorithms, however, involve averaging

temporal information, thus discarding most of their details. Peak-picking technique

has some theoretical drawbacks:

· Picking the peaks is always a subjective task;

· Operational deflection shapes are obtained instead of mode shapes;

· Only real modes or proportionally damped structures can be deduced by the

method;
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· Damping estimates are unreliable.

In spite of these drawbacks many civil engineering cases exist where the peak-

picking technique is successfully applied. The popularity of the method is due to its

implementation simplicity and its speed.

3.3.2.2 Eigensystem Realization Algorithm (ERA)

The eigensystem realization algorithm (ERA) is a time domain modal parameter iden-

tification technique, which is based on the minimum-order realization theory. The ERA

can effectively extract the structural modal parameters from the impulse response

data or free vibration data (Xiaodong et al., 2007).

The state space formulation of the motion differential equations of a linear structural

system is given by







ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(3.1)

where x(t) is the state vector, which includes the displacement and velocity vectors;

A is the system matrix, which contains the structural system information; B and C are

the control and observation matrices, respectively; u(t) and y(t) are the input and

output vectors, respectively.

hij(k ) was set as the impulse response function at the k th sampling point, where

j and i denote the node numbers of the input and output, respectively. The impulse

response function can be obtained from the measurement data. The structural im-

pulse response function matrix h(k ), i.e. the Markov parameter matrix, is constructed

as h(k ) = {hij(k )}. The generalized Hankel matrix is formed by the Markov parameter

matrices as follows

H(k ) =

















h(k ) h(k + 1) · · · h(k + s)

h(k + 1) h(k + 2) · · · h(k + s + 1)
...

...
...

h(k + r) h(k + r + 1) · · · h(k + r + 1)

















(3.2)

Decomposing the Hankel matrix H(0) by using the singular-value decomposition as

follows
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H (0) = P





Dr O

O O



QT (3.3)

where Dr =diag (d1, d2, ... , dr ), d1 ≥ d2 ≥ ... ≥ dr > 0 are the singular values of

H(0), and P and Q are the orthonormal matrices. According to the minimum-order

realization theory, the system matrix A can be obtained as follows

A = D−1/2
r PT

r H(1)Qr D
−1/2
r (3.4)

where Pr and Qr are the first rth columns of the matrices P and Q, respectively. A

singular-value decomposition of the system matrix A is performed

Ψ
−1AΨ = Z = diag (z1, z2, · · · , zi , · · · , zn) (3.5)

According to the structural dynamic mechanics and the state space theory, the

eigenvalue zi is given by







zi = exp(−ζiωiT ± jωi

√

1 − ζ2
i T

si = ln(zi )
T

(3.6)

where T is the sampling time interval; j =
√
−1; i = 1, 2, ..., n; and ωi and ζi are

the ith modal frequency and damping ratio, respectively. Therefore, ωi and ζi can be

obtained as follows

ωi =
√

[Re(si)]
2 + [Im(si)]

2

ζi =
Re(si)
ωi

(3.7)

ψi, which denotes the column vector of Ψ in Eq. 3.5 , is the ith proportional modal

shape vector.

3.3.2.3 Stochastic Subspace Identification (SSI)

Stochastic subspace identification, an advanced technique for performing an opera-

tional modal analysis, is an output-only time domain method that directly works with
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time data. A structural model can be described by a set of linear second-order differ-

ential equations with constant coefficient (Ren and Zong, 2004):

MÜ(t) + CU̇(t) + KU(t) = F(t) (3.8)

where M, C and K are the time-invariant mass, damping and stiffness matrices

respectively of the structure associated with the n generalized coordinates comprising

the vector U(t). F(t) is a time-dependent vector of input forces. Eq. 3.8 can be

rewritten as a first-order system of differential equations in a number of ways. One

commonly used reformulation in a state-space representation is:

ẋ(t) = Acx(t) + Bcu(t) (3.9)

where the state vector x(t) = [U(t), U̇(t)]T , the state matrix Ac and the system control

influence coefficient matrix Bc are defined by

Ac =





0 I

−M−1K −M−1C



 , Bc =





0

M−1B2



 , F(t) = B2u(t) (3.10)

Furthermore, the output vector of interest, y(t), can be a part of, or a linear combi-

nation of system states, such as

y (t) = Cx(t) + Du(t) (3.11)

Here C is a real output influence coefficient matrix and D is the out control influ-

ence coefficient matrix. Eqs. 3.9 and 3.11 constitute a continuous-time state-space

model of a dynamic system. Continuous-time means that the expressions can be

evaluated at each time instant. Of course this is not realistic because experimental

data are discrete in nature. The sample time and noise are always influencing the

measurements. After sampling the continuous-time state-space model looks like






xk+1 = Axk + Buk

yk = Cxk + Duk

(3.12)
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where xk = x(k∆t) is the discrete time state vector; A = exp(Ac∆t) is the discrete

state matrix; B = [A − I] A−1
c Bc is the discrete input matrix. Eq. 3.12 forms a discrete-

time state-space model of a dynamic system.

In practice there are always system uncertainties including process and measure-

ment noises. The process noise is due to disturbances and modeling inaccuracies,

whereas the measurement noise is due to sensor inaccuracy. If the stochastic com-

ponents (noise) are included Eq. 3.12 can be extended to consider process noise

wk and measurement noise vk described as continuous-time stochastic state-space

model






xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk

(3.13)

It is difficult to determine accurately the individual process and measurement noise

characteristics and thus some assumptions are required. Here the process noise wk

and measurement noise vk are assumed to be of zero-mean, white and with covari-

ance matrices:

E









wp

vp





(

wT
q vT

q

)



 =





Q S

ST R



 δpq (3.14)

where E is the expected value operator and δpq is the Kronecker delta. The se-

quences wk and vk are assumed statistically independent of each other.

In the practical problem of civil engineering structures, the reality is that only the

responses of a structure are measured, while the input sequence uk remains unmea-

sured. In the case of ambient vibration testing, it is impossible to distinguish the input

term uk from the noise terms wk , vk in Eq. 3.13. Modeling the input term uk by the

noise terms wk , vk results in a purely stochastic system:






xk+1 = Axk + wk

yk = Cxk + vk

(3.15)

The input is now implicitly modelled by the noise terms wk , vk . However the white

noise assumptions of these noise terms cannot be omitted. The consequence is

that if this white noise assumption is violated, for instance if the input contains also

some dominant frequency components in addition to white noise, these frequency

56



components cannot be separated from the eigenfrequencies of the system and they

will appear as poles of the state matrix A .

Eq. 3.15 constitutes the basis for the time-domain system identification through

ambient vibration measurements. There have been several techniques to realize

system identification algorithms based on Eq.3.15. The stochastic subspace identifi-

cation algorithm is probably the most advanced method known up to date for ambient

vibration measurement system identification. The subspace method identifies the

state space matrices based on the measurements and by using robust numerical

techniques such as QR-factorization, singular value decomposition (SVD) and least

squares. Loosely said, the QR results in a significant data reduction, whereas the

SVD is used to reject the noise (assumed to be represented by the higher singular

values). Once the mathematical description of the structure (the state space model)

is found, it is straightforward to determine the modal parameters (by an eigenvalue

decomposition): natural frequencies, damping ratios and mode shapes.

The key concept of SSI is the projection of the row space of the future outputs into

the row space of the past outputs. The main difference with the proceeding algorithms

is that the subspace algorithm is data driven instead of covariance driven so that the

explicit formation of the covariance matrix is avoided. It is clear that the stochastic

subspace identification is a time domain method that directly works with time data,

without the need to convert them to correlations or spectra. Common to all system

identification methods for ambient vibration measurements, it is not possible to obtain

an absolute scaling of the identified mode shapes (e.g. mass normalization) because

the input remains unknown.

3.3.3 Instantaneous identification of nonlinear systems

In the identification of structures characterized by localized nonlinearities, the defini-

tion of instantaneous time-frequency estimators (Ceravolo, 2004) may result particu-

larly useful. The information obtained from a nonlinear identification session may both

offer a clue in choosing reliable structural models, and forecast the dynamic behavior

in non-operational conditions.

The idea underlying time-frequency identification techniques is that, for certain
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classes of structural response signals, the availability of a limited number of struc-

tural response signals and the availabı̀lity of a limited number of experimental data

can be partially obviated by taking into account the localization in time of the fre-

quency components of the signals.

Time-frequency identification algorithms are usually formulated to find the model

parameters that minimize the error between a given time-frequency model, T(t , f ), and

the time-frequency transform of the measured signal, Txm (t , f ). In principle, a time-

frequency model can be identified from the following minimization (Ceravolo et al.,

2010):







ε(p) =
∥

∥T̃(t , f ; p) − Txm (t , f )
∥

∥

→ p id = arg
[

min∀p ε(p)
]

(3.16)

where p is the global vector of the parameters of the time-frequency model and xm

indicates the measured system response (displacement, velocity, or acceleration).

When parameters to be estimated retain a temporal significance (e.g., time-varying

systems) it may prove advantageous to perform an instantaneous minimization so as

to obtain a punctual estimate of p:











ε(t , p) =
∣

∣

∣

∫ +∞
−∞

[

T̃(t , f ; p) − Txm (t , f )
]

df
∣

∣

∣

→ p id (t̄) = arg

[

min
∀p,t=t̄

ε(t , p)

] (3.17)

For every given instant, t̄ , the minimization leads to an associated optimal p id (t̄).

The most convenient minimization form and algorithm will depend on the specific

application. In the implementation of Eqs. 3.16 and 3.17, the analytic signal is usu-

ally preferred to the measured one, since it avoids cross-term interference between

positive and negative frequencies.

A simple way of introducing the time localization of frequency components consists

of pre-windowing the signal around a particualr time t , calculating its Fourier trans-

form, and doing that for each time instant t . Accordingly, the ‘Short -Time Fourier

Transform’- STFT- , of a signal x(t ′) is defined as:

STFT (γ)
x (t , f ) =

∫ +∞

−∞
x(t ′)γ∗(t − t ′)e−j2πft′dt ′ (3.18)

58



where γ(t) is a short-time analysis window centered around t . The superscript

* denotes complex conjugation. Such transform as well as its squared magnitude,

called ‘Spectrogram’ (SPEC), is frequently used in many application fields, including

modal decoupling, system identification, etc.

3.4 Conclusions

Structural identification is an efficient and accurate way to obtain modal properties

of civil engineering structures. However, cable stayed bridges require special atten-

tion while designing the structural identification tests due to inherent flexibility and

nonlinearity. Output-only techniques with ambient and free vibration tests are very

suitable for cable-stayed bridges. A majority of the output-only identification tech-

niques, e.g. ERA and SSI work in the time domain are able to determine modal

parameters accurately and efficiently. However, to understand the time dependent

behaviour of a structure, vibration reduction systems as well as nonlinearities, the

techniques based on time-frequency instantaneous estimators are very helpful.
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CHAPTER 4

MODAL IDENTIFICATION OF A LARGE CURVED

CABLE-STAYED FOOT-CYCLE BRIDGE

4.1 Introduction

In this chapter, an application is presented. The system identification of a recently

built twin deck foot-cycle bridge, i.e. the ’Ponte del Mare’ was performed under an

Europeon project ’HITUBES’. In detail, the bridge is instrumented in several sensor

configurations to obtain its modal properties in a wide range of modes. Ambient and

free decay excitations are used. Moreover, the effectiveness of a passive damper

system connected to the bridge has been tested too. To understand the complex

behaviour of the structure-damper system, the instantaneous estimates of frequency,

damping and amplitude is performed. A deck-cable interaction has been detected.

The chapter is organised as follows: the characteristics of the case study are pre-

sented in section 4.1, whilst in section 4.3 the dynamic test campaign is described.

The ensuing results of the dynamic identification that includes modal frequencies,

mode shapes, structural damping and cable identification, are reported in section

4.4, whereas the instantaneous estimates are presented in section 4.5. Finally in

section 4.6, the important conclusions are drawn.
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4.2 The ’Ponte del Mare’ bridge in Pescara

4.2.1 Description of the Structure

The ”Ponte del Mare” footbridge is located at the mouth of the Pescara river and is

part of a programme for the rehabilitation of the urban area. The footbridge is a cable-

stayed structure and it consists of two curved decks sustained by cables connected to

a tilted mast, as illustrated in Figure 4.1. The outer deck is dedicated to pedestrians,

Figure 4.1: The ’Ponte del Mare’ footbridge

whilst the inner deck is for cyclists; both decks have constant radius, approximately

80 m and 100 m and their length is 173 m and 148 m, respectively. The two decks are

constituted by a spatial steel-concrete composite truss connected to two prestressed

concrete access ramps. The two sections of the bridge are reported in Figure 4.2.

The mast is made of steel filled with concrete and its inclination is about 11◦ with

respect to the vertical axis. Two anchorage cables connect the top of the mast to the

ground in order to reduce the displacements. In sum, the complexity of the structure
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Figure 4.2: Deck cross-sections. Dimensions in mm

is evident. Just note that the bottom chord of the foot-track deck (FTD) is in tension,

whilst the chord of the cycle-track deck (CTD) is conversely in compression because

of the eccentricity of the cable attachments and of the curve orientation with respect

to the mast position.

4.2.2 FE model

A preliminary FE model of the bridge was developed in ANSYSTM, as shown in Figure

4.3. Beam, shell and solid elements were used to accurately model both the main

steel decks and the access ramps. The modal characteristics, i.e. the frequencies

and mode shapes supplied by the model, were used to design the dynamic tests. In

such structures many close modes are typically observed, which in an identification

perspective calls for proper testing set-ups. Moreover, the complexity is increased

by the high flexural-torsional couplings in each deck and between the two decks. All

these issues must be carefully taken into account when designing the structure and

the dynamic identification tests. In this case, the investigated frequency range spans

from 0 to about 2.5 Hz, because it includes the main natural modes of both the foot-

and cycle- track decks, that interact with wind and anthropic actions.

63



Figure 4.3: 3D FE model of the ’Ponte del Mare’ footbridge
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Figure 4.4: (a) Damper A; (b) Damper C

4.2.3 Description of dampers

The structural high flexibility associated to low damping capabilities, entails higher

vulnerability and sensitivity to dynamic phenomena. In fact, a comprehensive wind

analysis, that also made use of wind tunnel tests, showed an aeroelastic instability for

the first mode related to a galloping phenomenon for a wind speed smaller than the

design speed (Tondini et al., 2010). Moreover, even the dynamic pedestrian analysis

highlighted discomfort conditions for pedestrians when crossing over the bridge (Ton-

dini et al., 2010). Thus, the introduction of vibration absorption devices was deemed

necessary and a passive system was designed by increasing dissipation, while lim-

iting changes in modal frequencies and shapes. The design choice consisted of

devices, whose dissipating mechanism was based on viscous fluid damping, i.e. de-

formation of a viscous elastic fluid. In detail, two dampers - Dampers A, see Figure

4.4(a) - were conceived in order to connect the foot-track deck to the ground, whilst

two others - Dampers B - do the same with the cycle-track deck. Eventually, a further

couple - Dampers C, see Figure 4.4(b) – were envisaged to link the mast anchorage

cables, that act as reaction points, to the foot-track deck. Their location is shown in

Figure 4.5, whilst Table 4.1 reports their characteristics provided for by the producer

(Industriale, 2009) on the basis of experimental tests. Briefly, a linear force-velocity

relationship was requested, and the damping coefficients cA and cB were initially cali-
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brated in such a way as to prevent aeroelastic instability for the first mode. Then, they

were adjusted in order to meet with the comfort requirements expressed in terms

Figure 4.5: Dampers location

of acceleration limits as recommended by the SETRA guidelines (SETRA., 2006),

that were developed for the assessment of the vibrational behaviour of footbridges

under pedestrian loading. Owing to the architectural constraints, the damper posi-

tioning was optimised so as to guarantee effectiveness against the modes relevant

for the wind and the pedestrian action. To improve the structure aesthetic appeal, the

initial idea of employing rigid tubes for connecting Dampers A and B to the ground

was discarded. Thus, slender cables were used, and in order to keep them in trac-

tion, Dampers A and B were endowed with a spring, whose stiffness was chosen at

the lowest possible value in order to avoid changes in modal frequencies and mode

shapes. Conversely, an additional stiffness for Dampers C was not reckoned neces-

sary, since the attachment points were represented by the anchorage cables.
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Table 4.1: Damper characteristics

Damper A Damper B Damper C

Producer Typology FIP/OVE*3.2/140-1.3 FIP/OVE*3.0/140-1.3 FIP/OTP*1.5/80

No. of units 2 2 2+2

Damping constant [kNs/m] 128.0 349.0 794.2

Spring stiffness [kN/m] 127.6 (+-5%) 127.6 (+-5%) -

4.3 Design of the dynamic tests

4.3.1 Tests set-up

Due to its structural complexity, the dynamic identification test design is crucial. Firstly,

the excitation sources have to be chosen. Since the structure is large and the forced

vibration techniques were reckoned unsuitable, it was decided to perform output-only

tests based on: i) ambient-induced vibrations, and ii) free decay vibrations caused by

released masses. If the former test type is associated to low vibration levels, the latter

is conversely designed to induce high vibration amplitudes, so that to be allowed to

investigate whether the dynamic response of the structure changes according to the

oscillation level. In a second stage, on the basis of the dynamic behaviour of the FE

model described in subsection 4.2.2, the sensor locations have to be selected in such

a way as to allow the discrimination of the experimental modes.

In the tests, sensors consisted of piezoelectric accelerometers connected to a 24-

channels acquisition system. During all the tests, 8 accelerometers were kept fixed

and were used as reference set-up (Link), as illustrated in Figure 4.6(f). So it was

possible to correlate the mode shapes obtained from the various accelerometer con-

figurations, whilst the mode shape construction along the whole structure was hence

achieved. The complexity of the bridge led to design the set-ups with the following

purposes of: a) uniformly installing the instrumentation on the structure; b) monitoring
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Figure 4.6: Accelerometer set-ups used in the dynamic identification tests
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the mast displacement; c) discriminating flexural torsional modes; d) highlighting the

flexural deformation of the two decks; e) decoupling specified modes. The sensors

belonging to the Link set-up were positioned under the bridge, because it is part of

the device system that will be monitoring the whole structure for one year. The ac-

celerometers of the other set-ups were instead attached to the footbridge pavement

for more convenience, as illustrated in Figure 4.7(a). The curve internal and external

sides of both pavements were properly instrumented so as to appreciate torsional

modes as well. Finally, some cables, in particular the longest ones, were also instru-

mented, see Figure 4.7(b), in order to obtain the modal frequencies. These mea-

surements were very important for the detection of possible deck-cable interactions.

Figure 4.7: Accelerometer attachments: a) on the deck pavement; b) on a cable

4.3.2 Tests in ambient vibration conditions

For each presented set-up, ambient vibration tests were performed twice: i) with dis-

connected and ii) with connected dampers, respectively. Since the structure is a

footbridge, the wind was the main vibration source. The acquisition was at least 5

minutes long with a sampling frequency of 100 Hz. Figure 4.8 and Figure 4.9 present

a few acceleration time-histories related to two set-ups without and with dampers.

In Figure 4.8(b) a significant decrease of vibrations with respect to Figure 4.8(a) is
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Figure 4.8: Ambient vibration time-histories: a) DC1 w/o dampers relative to position

A7 (see Figure 4.6(d)); b)DC1 with dampers relative to position A7 (see Figure 4.6(d))

observed, whilst Figure 4.9(b) shows an opposite behaviour in relationship to Figure

4.9(a). Table 4.2 reports on the relevant wind speed measured by two anemometers

Figure 4.9: Ambient vibration time-histories: a) CP2 w/o dampers relative to position

A10 (see Figure 4.6(e)); b)CP2 with dampers relative to position A10 (see Figure

4.6(e))

located at the top of the mast (v1) and below the foot-track deck (v2). Wind data show

that, when the dampers were connected, the wind speed (v1) was almost double than

the speed measured for the same CP2 set-up but w/o dampers, this being still insuffi-

cient to activate the dampers. In other words, there are hints that under ambient noise

the vibration control system is basically inactive. In fact, ambient-induced vibrations

are associated with low amplitude levels, of the order of millimetres, while dampers

activate over a certain threshold. Such finding is confirmed later in section 4.5.
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Table 4.2: Wind speed at the time of the acceleration time-histories reported in Fig. 8

and Fig. 9.

day and hour set-up v1[m/s] v2[m/s]

28 Oct 2009-14.10 DC1 w/o dampers 3.81 3.83

29 Oct 2009-18.17 DC1 with dampers 2.12 1.41

28 Oct 2009-18.01 CP2 w/o dampers 1.76 0.82

29 Oct 2009-14.46 CP2 with dampers 3.32 2.83

4.3.3 Tests in free-decay conditions

Tests with released masses, classified as free decay, were also performed. Masses of

about 2700 kg were hung at the bottom chord of the decks and then released, so that

to intensely excite the bridge, see Figure 4.10. The release points were selected on

the basis of the participation of the modes of interest, as predicted by the FE model.

In these acquisitions the sampling frequency was set at 1000 Hz. The vibration am-

plitude observed was of the order of centimetres, high enough to fully activate the

dampers when connected to the structure. This is made evident in Figure 4.11 and

Figure 4.12, where unlike Figure 4.8 and Figure 4.9, a reduction in vibration levels is

observed for both set-ups.

4.4 Output-only identification in time domain

This section reports on the results of a time-domain identification from acceleration

signals measured on the structure without and with dampers. In detail, the ambient

vibration signals were processed with the SSI method, whilst the free decay data

were elaborated by means of the ERA technique. The SSI method was employed as

the benchmark to extract all dynamic characteristics.
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Figure 4.10: Free vibration tests: set-up of the released mass
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Figure 4.11: Free decay time-histories: a) DC1 w/o dampers relative to position A7

(see Figure 4.6(d)); b)DC1 with dampers relative to position A7 (see Figure 4.6(d))

Figure 4.12: Free decay time-histories: a) CP2 w/o dampers relative to position A10

(see Figure 4.6(e)); b)CP2 with dampers relative to position A10 (see Figure 4.6(e))
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4.4.1 Modal frequencies

Figure 4.13 compares the identified modal frequencies without and with dampers,

respectively. In spite of the fact that the dampers were designed to avoid variations

in the dynamics properties, their introduction appears to have produced a significant

stiffening effect, because a slight increase of the modal frequencies occurred. In this

respect, the first mode was the most sensitive to the damper activation, along with

mode 3 and 10. In principle, the increase in damping is expected to depend on the

participation of the dampers in single modes. In actual practice, damping is seen to

be influenced by modal amplitude, as it will be shown in section 4.5.
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Figure 4.13: Identified modal frequencies w/o and with dampers

4.4.2 Mode shapes

While identified modes are typically complex valued, models currently used in dy-

namics to date are unable to assimilate frictional or non-linear dissipation phenom-

ena. This makes it difficult to extract useful information from mode phases, which for

simplicity are not included in the modal shape representations (Figures 4.14-4.16).

The vertical components of mode shapes for both decks are shown in Figure 4.14,

where the structure without and with dampers is considered. MAC (Allemang, 2002)

checks were then performed between the experimental mode shapes related to the

structure without and with dampers. Table 4.3 summarises the global MAC values for
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Figure 4.14: Vertical component of the identified mode shapes w/o and with dampers,

respectively. For simplicity the mode phases were forced to 0 or π.
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Figure 4.15: 3D views of three of the identified modes w/o and with dampers. For

simplicity the mode phases were forced to 0 or π.
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Figure 4.16: In plan views of three of the identified modes w/o and with dampers. For

simplicity the mode phases were forced to 0 or π.
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the identified modes and shows that dampers strongly affect modes that have relevant

displacements at points where dampers are located, that is near the midpoint of the

bridge. The outcomes show that the correlation between the modes is basically very

good, and they highlight that the dampers affected the mode shapes. Figure 4.15

reports 3D views of some of the modes that experienced important changes, including

their lateral component. In particular modes 10 and 11 appear to have been strongly

affected also in their lateral component (e.g. see mode 10 in Figure 4.16).

Table 4.3: MAC between experimental mode shapes of the structure w/o and with

dampers

MAC between experimental and FE modes were also calculated. The result was

that the model is verified only on lower modes. This finding is due many factors, such

as the intrinsic limitations of the model, the modifications that the real structure was

subjected to during its construction, the effect of non-structural elements etc.

4.4.3 Modal damping

As above stated, modal damping estimates obtained by applying output-only methods

tend to be affected by the inherent non-stationarity of ambient excitation. Moreover,

the dampers, as illustrated in subsections 4.3.2 and 4.3.3, seem not to be effective

for low vibration levels. The chart given in Figure 4.17(a) confirms these two obser-
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vations. In fact, the modal damping of the structure provided for with dampers is for

some modes less in relationship with the structure without damping devices, what

appears to be in some contrast with the design assumptions.

Figure 4.17: Modal damping estimates: a) ambient vibration data (from SSI method);

b) free decay data (from ERA method)

The modal damping extracted from free-decay records is reported in Figure 4.17(b)

as supplied by the ERA. The installation of the dampers entailed for each mode an

increase in dissipation, which for the first and the third modes is seen to increase by

a factor of 3. The damping obtained for the first mode, considering the approxima-

tions of the aerodynamic and structural models, results to be reliable and sufficient

to guarantee the bridge safety with respect to the ultimate limit state related to the

wind action. In fact, such value is higher than 2.5%, an amount considered neces-

sary to avoid a galloping phenomenon for the first mode at a wind speed lower than

the design speed. Moreover, even the structure without dampers exhibited an in-

crease in modal damping when compared to the values obtained from ambient vibra-

tion records through the SSI. This latter finding suggests that the bridge dissipation

strongly depends on vibration levels; thus requiring more thorough investigations as

presented in section 4.5.
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4.4.4 Cable identification

A dynamic identification of bridge cables was also performed. Simple numerical

checks indicate that some cables, especially the longest ones, exhibit low natural

frequencies that may possibly interact with the structure global modes, as actually

reported in section 4.5. In detail, the N8E, N7E, N5E and N4W cables were instru-

mented under ambient vibrations. Their location is reported in Figure 4.18.

Figure 4.18: Location of instrumented cables

The corresponding frequency spectra in terms of Power Spectral Density (PSD) are

presented in Figure 4.19, while the experimental frequencies are reported in Table

4.4. There, each cable is attached with hinges at the ends, L is the cable length,

m defines the cable mass per unit length and fn is the modal frequency of mode n.

Each spectrum indicates neat vibrating string multiples of the cable first frequency.

Moreover, the first and the second modal frequency of cable N8E are close to the first

and fourth modal frequency of the deck. This hints a possible cable-deck interaction

as numerically confirmed later on.

Modal estimates, resulting from the application of the SSI method on the same

signals, are close to those obtained from peak picking (Table 4.4). For instance,

the first frequency of cable N8E was estimated at 0.83 Hz with 0.18% damping, in

agreement with literature data (Macdonald and Daniell, 2005).
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(b) N7E cable

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

Frequency [Hz]

P
S

D
 [(

m
/s

2 )2 /H
z)

]

(c) N5E cable
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(d) N4W cable

Figure 4.19: Frequency spectra of the cables

Table 4.4: Dynamic identification of the cables obtained from peak picking

Cable L[m] m[kg/m] f1[Hz] f2[Hz] f3[Hz] f4[Hz] f5[Hz]

N8E 80.0 20.2 0.86 1.56 2.30 3.02 3.78

N7E 73.7 10.7 1.13 2.21 3.31 4.41 5.52

N5E 55.7 10.7 1.72 3.45 5.15 6.89 8.59

N4W 46.9 10.7 2.09 4.04 5.91 7.75 9.80
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4.5 Instantaneous identification of the dampers

This section covers time-dependent effects in the bridge response due to the non-

stationarity of the excitation source; the dependency of the bridge dynamic charac-

teristics on the vibration amplitude is also discussed. In this respect, time-frequency

estimators (Ceravolo, 2004) were used to give an insight into the instantaneous prop-

erties of the first vibration mode, as being the most important from a vibration control

viewpoint.

4.5.1 Structure without dampers

4.5.1.1 Ambient vibration tests

As a first stage, the study focused on signals measured on the structure with inactive

dampers under ambient vibration. For instance, Figure 4.20 reports the time-history

of the M3 vertical sensor belonging to the Link set-up located as illustrated in Figure

4.6(f). The signal was acquired according to the ST1 set-up test.
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Figure 4.20: Vertical acceleration time-history from ambient vibration (channel M3,

ST1 set-up acquisition, structure w/o dampers)

This signal is used to compute the spectrogram depicted in Figure 4.21 that in turn

is employed to extract the instantaneous estimates (IE) of frequency, damping and

amplitude as shown in Figure 4.22.
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Figure 4.21: Spectrogram obtained from the signal of Figure 4.20
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Figure 4.22: Instantaneous estimates of frequency, damping and amplitude of the

first mode obtained from ambient vibration tests (channel M3, ST1 set-up acquisition,

structure w/o dampers)
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The instantaneous frequency and damping are quite stable along the acquisition

- apart for a brief time interval - thus highlighting a great consistency. The window

length of the spectrogram depends on the de-correlation length of the process (Cer-

avolo, 2004) and requires the availability of a first estimate for damping. The re-

sults of the previous numerical simulations conducted on linear systems in station-

ary conditions (Ceravolo, 2004) can be approximated by means of the simple rule

H=433·ζ−1.33, where H is the windowing length in samples and ζ is the damping. In

this case, the value assumed for the damping is that supplied with by time-domain

techniques, as reported in subsection 4.4.3.
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Figure 4.23: Frequency and damping estimates versus instantaneous amplitude from

ambient vibration data(channel M3, ST1 set-up, structure w/o dampers)

Then, the frequency and damping estimates are correlated to the instantaneous

amplitude as reported in Figure 4.23 and can be noted that for high amplitude values

their estimate converges to stable values, as expected (Ceravolo, 2004). In order

to confirm the reliability of the identification process, also the stabilisation diagram,

resulting from a SSI session performed on the same acquisition record, is plotted rel-

ative to the first mode (Figure 4.24). The stabilisation diagram provided the following

values: f = 0.75 Hz and ζ = 0.64%.
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Figure 4.24: Sample stabilisation diagram for ambient vibration record limited to the

frequency range of interest(channel M3, ST1 set-up, structure w/o dampers)

4.5.1.2 Free decay tests

Figure 4.25 reports a sample of vertical acceleration time-history caused by free vi-

brations on the structure with inactive dampers. A preliminary ERA identification pro-

vides the following values for the first mode: f = 0.74 Hz and ζ = 0.91%. The frequency

value is basically the same as that found through ambient vibration data. Then, the

instantaneous estimate of frequency, damping and amplitude was obtained from the

spectrogram illustrated in Figure 4.26. The instantaneous estimates depicted in Fig-

ure 4.27 show a stable and neat frequency at 0.75 Hz, corresponding to the first mode

as previously found, while modal damping appears to slightly increase with vibration

amplitude.

4.5.2 Structure provided with dampers

The analyses presented in this section are analogous to those described in subection

4.5.1, but refer to the bridge with dampers.
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Figure 4.25: Vertical acceleration time-history caused by free vibrations(channel M1,

ST1 set-up, disconnected dampers)
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Figure 4.26: Spectrogram obtained from the signal of Figure 4.25
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Figure 4.27: Instantaneous estimates of frequency, damping and amplitude of the

first mode obtained from free decay tests (channel M1, ST1 set-up, structure w/o

dampers)

4.5.2.1 Ambient vibration tests

Figure 4.28 reports the time-history measured by the M3 vertical sensor during am-

bient vibration tests related to the ST1 set-up, while Figure 4.29 illustrates the asso-

ciated spectrogram. The latter figure highlights the two following spectral lines that

are continuously excited during the entire length of the acquisition: 1) the upper one

corresponds to a frequency value of 0.92 Hz, which is the first frequency of the struc-

ture with dampers, as identified by the SSI method from ambient vibration data; 2)

the lower one corresponds to 0.84 Hz, a value that is very close to the first frequency

of the N8E cable, as reported in subsection 4.4.4 .

Due to this interaction between the longest cable and the deck, the instantaneous

structural frequency ridge depicted in Figure 4.30 experiences optimisation problems

in some time-segments, thus providing thoroughly unreliable estimates. However, if

the frequency and damping estimates are correlated to the instantaneous amplitude

as reported in Figure 4.31, it can be noted that the values from this single identifi-

cation session tend to approach those obtained by systematically applying the SSI
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Figure 4.28: Vertical acceleration time-history from ambient excitation(channel M3,

ST1 set-up acquisition, structure with dampers)
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Figure 4.29: Spectrogram obtained from the signal of Figure 4.28
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Figure 4.30: Instantaneous estimates of frequency, damping and amplitude of the

first mode obtained from ambient vibration tests (channel M3, ST1 set-up acquisition,

structure with dampers)
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Figure 4.31: Frequency and damping estimates versus instantaneous amplitude from

ambient vibration data(channel M3, ST1 set-up, structure with dampers)
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technique, i.e. f = 0.93 Hz and ζ = 0.40% (see subsections 4.4.1 and 4.4.2). It is

worth pointing out that ambient vibration signals are much longer than the ones of

free decay tests and their spectrograms are not affected by boundary effects.

Also in this case, the stabilisation diagram, represented in Figure 4.32, provides a

check on the previous findings, showing the first frequency at 0.93 Hz and a further

spike in correspondence of the N8E cable frequency. Conversely, the frequency at

0.75 Hz that characterised the first mode of the structure without dampers vanishes.
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Figure 4.32: Sample stabilisation diagram for ambient vibration record limited to the

frequency range of interest(channel M3, ST1 set-up, structure with dampers)

Table 4.5 summarises the modal estimates related to the first mode, as derived

from ambient vibration signals, without and with dampers. The results refer to a

single record. So they are not directly comparable to the values reported in Figure

4.13 and Figure 4.17.

4.5.2.2 Free decay tests

Figure 4.33 represents a sample free decay signal measured on the bridge with

dampers. The associated spectrogram, which is depicted in Figure 4.34, shows an

intense component at the start of the acquisition at 0.75 Hz that decreases with time,

while is observed a continuous trail at 0.84 Hz, i.e. the N8E cable first frequency. This
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Table 4.5: Summary of the modal properties of the first structural mode obtained with

different identification techniques from ambient vibration signals (ST1 set-up acquisi-

tion)

w/o dampers (SSI) w/o dampers (IE) with dampers (SSI) with dampers (IE)

Frequency[Hz] 0.75 0.75 0.93 0.93

Damping[%] 0.64 0.59 0.40 0.41

is confirmed by the instantaneous frequency estimate, as shown in Figure 4.35, that

sets at 0.75 Hz for high amplitude values.
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Figure 4.33: Vertical acceleration time-history caused by free vibrations(channel M1,

ST1 set-up, structure with dampers)

Then, after about 70 s, it jumps up to 0.92 Hz, namely the first modal frequency

obtained from ambient vibration data that corresponds to low oscillation levels. In

other words, it seems that the structure with dampers behaves like a threshold sys-

tem: for high vibration levels the dampers become fully active and, as assumed in the

design process, they seem not to affect the bridge stiffness; conversely, at low ex-

citation levels, dampers are not effective, mainly because of friction and connection

slacks, and they act as stiffeners. In fact, for small displacements (order of mm) the

stiffness introduced by the dampers is expected to be of the same order as that of ca-

bles, which is in the range 6500-8000 kN/m. In more detail, stiffness values provided

by the producer (Industriale, 2009) induce in the finite element (FE) model used for
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Figure 4.34: Spectrogram obtained from the signal of Figure 4.33

preliminary analyses a 22% increase in the first modal frequency (see Figure 4.36),

this being in substantial agreement with the experimental outcomes. Figure 4.36(a)

shows the first mode shape when the dampers are fully active, i.e. for high vibrations

levels, whilst Figure 4.36(b) illustrates the first mode shape where the dampers are

replaced by their inherent stiffness at small displacements. Figure 4.37(a) and Figure

4.37(b) highlight the difference in vertical component of the first mode shape for the

two decks.

Figure 4.35: Instantaneous estimates of frequency, damping and amplitude of the first

mode obtained from free decay tests (channel M1, ST1 set-up acquisition, structure

with dampers)
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Figure 4.36: Mode shape 1 as supplied by the preliminary FE model: a) model with

fully active dampers; b) FE model where the dampers are replaced by their inherent

stiffness at small displacements

Figure 4.37: Comparison of FE vertical component of mode shape 1 with active and

inactive dampers respectively. a) Foot-track deck and b) cycle-track deck.
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It is worth reminding that time-domain techniques applied to the structure with

dampers were unable to discriminate the component at 0.75 Hz, as documented by

Figure 4.13. Based on the new findings, it was possible to separate this component

also with time-domain techniques.

Except for the initial part of the decay, damping estimates tend to be affected by the

frequency component of N8E cable. At any rate, instantaneous damping increases

with amplitude (Figure 4.38), this being fully consistent with the results supplied by

time-domain identification techniques.
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Figure 4.38: Frequency and damping estimates versus instantaneous amplitude from

free decay data(channel M1, ST1 set-up, structure with dampers)

4.6 Conclusions

This chapter has presented the effectiveness of the vibration reduction system in

a complex cable-stayed footbridge characterised by two curved decks. A passive

control system was designed and installed to avoid premature aeroelastic instability
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and to control human-induced vibrations. The complex dynamic behaviour and the

uncertainties related to the numerical modelling led to a modal testing campaign of

the bridge without and with dampers. Output-only ambient vibration tests, associated

with low vibration levels, showed that the damping devices were basically inactive,

owing to friction and connection slacks. In addition, for such low oscillation ampli-

tudes the dampers caused a stiffening effect that had not been envisaged earlier in

the design process. Free decay tests, which were performed by released masses, did

produce high vibration levels. In the latter tests, dampers showed a good absorption

capacity and the damping doubled or even trebled on some of the modes. In order to

clarify these outcomes, modal quantities were instantaneously calculated, based on

time-frequency identification techniques. A thorough analysis of dynamic response

signals revealed that the structure with dampers actually behaved like a threshold

system: i) for low vibration levels the dampers were still, so that they performed as

constraints that stiffened the structure; ii) for high vibration levels, the dampers be-

came fully working and, as required at the design stage, they did not significantly

affect the main frequencies. Moreover, a deck-cable interaction between one of the

longest cables and the first global mode was detected.
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CHAPTER 5

MODEL BASED IDENTIFICATION OF A LARGE CURVED

CABLE-STAYED FOOT-CYCLE BRIDGE AND UPDATING

TECHNIQUES

5.1 Introduction

A preliminary FE model does not represent always the real behaviour of a complex

structure, such as in the case of the ’Ponte del mare’ footbridge. The reason rests

in the limitations of the analytical modelling of all features of a complex structure.

Therefore, it is necessary to utilize experimental data obtained during the identifica-

tion process to improve the FE model. Model updating is a well known and estab-

lished technique to perform this task. In this chapter, a brief review on model-updating

techniques are given. Moreover, the initial FE model of the ‘Ponte del mare’ footbridge

is modeified to better represent changes during construction phase. Then, the same

model is updated utilizing the sensitivity-based model updating technique. The result

is discussed and important conclusions are derived.
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5.2 Model updating techniques

There are two main complementary approaches to the calibration of a model: a

model-driven and a data-driven approach. The nature of the problem changes de-

pending on the type of approach which is pursued.

In the case of the model-driven methods the parameters of the model (or at least

part of them) are unknown and must be obtained from the measured data. In this case

a version of the model is constructed using physical laws based on first principles.

Then the model parameters are changed by means of some optimisation techniques

to fit the measured data. This procedure is commonly known as Model Updating

(MU).

The data-driven approach consists in a forward evaluation and it is treated as a Sta-

tistical Pattern Recognition (SPR) problem. Differently from the model-driven meth-

ods, in this approach the knowledge of the phenomena ruling the structural behaviour

is not derived from physical laws implemented in a model but is extracted directly from

data or based on a priori information, if available. In its broader sense pattern recog-

nition consists in the labelling of a sample of measured data according to a series

of pre-defined classes.The pattern recognition algorithm is trained to recognise the

correspondence between samples of data and type classes (Bonato et al., 1997).

Pattern recognition finds applications in several engineering, economic and social

fields.

The model updating is a technique that has been developing through the last years.

In various fields of engineering, it is frequent to use numerical models to evaluate the

behaviour of a physical system. The accurate representation of a system depends on

the type of numerical model used to represent the elements of the system and on the

properties of this model (e.g. in a structural application: elasticity modulus, boundary

conditions, etc). The discrepancies between the behaviour of a numerical model and

the real system can be significant as reported by (Zhang et al., 2001) and (Brownjohn

et al., 1999).

Inverse methods are commonly used to improve the quality and reliability of a

model. They combine an initial (generally finite element) model of the structure -
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whose parameters can be derived by specific characterization tests or simply guessed-

, and measured data expressed in the form of modal properties or frequency re-

sponse functions.

5.2.1 Modal reduction and expansion

In comparison between analytic data and experimental data there is a potential prob-

lem: the response is measured only at a limited number of points of the structure, and

in a limited range of frequencies. Therefore, to compare these different set of data, it

is necessary to expand the measured data or to reduce the analytic data.

Modal reduction:

There are different types of modal reduction. The so-called static reduction or

Guyan’s reduction (Guyan, 1965) allows to calculate a transformation matrix which

reduces mass and stiffness matrices to the terms related to the useful degrees of

freedom.

The dynamic reduction is an extension of the Guyan’s method, accounting of the

inertial terms for a particular frequency. In this case is possible to reach higher preci-

sion with respect to the static reduction (Zhang, 1995).

An Improved reduction system (IRS) has been introduced by O’Callahan (O’Callahan,

1989) which improves the static reduction method through the introduction of inertial

terms as pseudo-static forces.

O’Callahan and others have developed also the System Equivalent Reduction Ex-

pansion Process (SEREP) which utilizes the computation of eigenvectors to produce

the transformation between master and slave coordinates (O’Callahan et al., 1989).

Modal expansion:

Modal expansion is a procedure strictly related to modal reduction, and it is possible

to consider it as an inverse reduction.

The easier way to expand data is to substitute the unknown eigenvector values

with the values calculated from the analytical model but using this procedure both

analytical and measured modal shapes have to be normalized in the same way.

It is possible to expand data using the stiffness and mass matrices. This procedure

is dual to the dynamic reduction (Zhang, 1995).
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An alternative method is to use modal data coming from the finite element analysis.

The identified modes are treated as a linear combination of the analytical modes and

in this way is possible to calculate a transformation matrix. This procedure is strictly

linked to the SEREP procedure (O’Callahan et al., 1989).

5.2.2 Direct methods and sensitivity (iterative) methods

Model updating methods may be classified as direct and sensitivity (iterative or para-

metric) methods. Direct methods try to reproduce the measured data from the struc-

ture by applying little changes to the stiffness and mass matrix which are not easily

associable to the parameters of the model. Indeed, the main drawback of direct

methods is that their results are characterised by a lack in the physical meaning.

More details about these methods can be found in (Friswell and Mottershead, 1995;

Berman and Nagy, 1983; Caesar, 1986; Baruch and Bar-Itzhack, 1978; Wei, 1990;

Minas and Inman, 1988; Gladwell, 1986).

Iterative (or sensitivity-based) methods have seen a larger widespread in compari-

son to direct methods because of their capability to calibrate the model taking into ac-

count the influence of the updating parameters of different structural elements. They

offer a wide range of parameters to update that have physical meaning and allow a

degree of control over the optimisation process. All these parametric methods rely on

the definition of a so-called penalty function which is computed as the quadratic norm

of the differences between the measured and the numerical quantities. The discrim-

ination among the methods is based on the choice and the number of parameters

to compute the objective function and the optimisation technique used to minimise

it. Recently heuristic techniques like Simulated Annealing (Kirkpatrick et al., 1983;

Johnson et al., 1989), Genetic Algorithms (Srinivas and Patnaik, 1994) and Evolu-

tionary Strategies (Dack et al., 1991) and probabilistic approaches have supplanted

traditional methods to solve non-linear problems like Newton-Raphson. New develop-

ments in optimisation techniques consent different approaches to the problem, such

an optimisation through all the Pareto set of solution, performing a multi-objective

minimization (Christodoulou et al., 2008), and optimisation based on Trust Region

such as Powell’s Dog-leg method (Molinari et al., 2009; Molinari, 2007).
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Due to the fact that the iterative methods are mainly sensitivity based, require the

sensitivity matrix S to be calculated in every iteration. The sensitivity matrix is a

rectangular matrix of order m× n, where m and n are the number of target responses

and parameters, respectively (Zivanovic et al., 2007):

S =
[

Sij
]

=

[

δRi

δPj

]

(5.1)

Sij is the sensitivity of the target response Ri (i = 1, 2, ..., m) to a certain change

in parameter Pj (j = 1, 2, ..., n). Operator δ presents the variation of the variable.

Elements of the sensitivity matrix can be calculated numerically using, for example,

the forward finite difference approach:

Sij =
Ri(Pj + ∆Pj) − Ri(Pj)

(Pj + ∆Pj) − Pj
(5.2)

where Ri(Pj) is the value of the ith response at the current state of the parameter

Pj, while Ri(Pj + ∆Pj) is the value of the same ith response when the parameter Pj is

increased by value ∆Pj.

Obviously, for calculation of the sensitivities, the relevant target responses and

structural parameters should be selected. The target responses should be chosen

between those measured. The responses which are mainly considered in civil engi-

neering applications are natural frequencies, mode shapes and frequency response

functions (FRFs), or some combination of these. The choice depends on the mea-

sured data available, their quality, and (non)existence of close modes. As a rule,

only high-quality measured modal properties should be used as target responses.

As natural frequencies are normally measured quite accurately, they are almost al-

ways selected. If close modes are present, FRFs might be a better choice for target

responses.

Selection of updating parameters is probably the most important step on which the

success of the model updating depends. It is recommended to choose uncertain

parameters only, and between them to choose those to which the selected target

responses are most sensitive. Also, the number of parameters should be kept to an

absolute minimum. All this is to avoid numerical problems due to ill-conditioning.
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Once relevant (measured) target responses and structural parameters for updating

have been selected, the sensitivity matrix can be calculated. Since in the iterative

model updating process the updating parameters change at every step, the sensitivity

matrix has to be recalculated in each iteration. Let us denote, for a given iteration,

the starting parameter and target response vectors as P0 and R0, respectively. The

vector of updated parameters in the current iteration is Pu , while the target response

vector obtained experimentally is Re . The targeted experimental response vector Re

can be approximated via vectors R0 , Pu and P0 using the linear term in a Taylor’s

expansion series:

Re≈ R0+S(Pu−P0). (5.3)

The iterative process is required here because the relationship between target re-

sponses and parameters that is mainly nonlinear is approximated by the linear term.

This means that updating parameters need to be changed by a small amount in each

iterative step until the required minimum difference between the calculated and exper-

imentally measured responses is achieved. Therefore, the finally updated parameters

cannot be calculated in a single step.

The task of updating aimed at finding parameter values Pu in the current itera-

tion can be solved in different ways such as using a pseudo-inverse (least squares)

method, weighted least squares or Bayesian method. This depends on whether

weighting coefficients for parameters and/or target responses are used as is the case

in last two methods. The purpose of these weighting coefficients is to give different

significance to numerical parameters and measured target responses depending on

the confidence in these data. For example, weighting coefficients for responses take

into account the confidence in the measured values, which istypically higher for nat-

ural frequencies than for mode shapes. Weighting coefficients for input parameters

take into account the degree of uncertainty in them. The more uncertain a parameter

is, the lower is the confidence in it, which means that the weighting value is lower too.

From Eq.5.3, the vector of parameter changes ∆P reads as:

∆P = Pu−P0= S†· (Re − R0) (5.4)
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where S†is the inverse of the sensitivity matrix S. The inverse is calculated as fol-

lows (Brownjohn et al., 2001):

• If m > n,

S†=
(

(

ST · S
)−1
)

·ST (5.5)

• If m < n,

S†= ST ·
(

(

S · ST
)−1
)

(5.6)

Every time when calculating the pseudo-inverse of the sensitivity matrix, take cau-

tion about condition number (CN) of the S matrix. The conditioning of the S can

influence the precision in the calculation of the parameter increment and the process

of convergence. Besides, CN is influenced by number and type of parameters used

in the procedure of model updating. The insensitive parameters that would produce

a line of zeros in the S matrix, get eliminated. The CN of a matrix is defined as the

ratio between the largest and the smallest of the singular values.

The suggested limit values in literature to appraise the goodness of the CN are

(Molinari, 2007):

• CN < 105 matrix is well conditioned;

• 105 < CN < 108 identified matrix is bad conditioned;

• CN > 108 indicated matrix is singular.

Bearing all this in mind, the updating procedure can be summarised as follows

(Zivanovic et al., 2007):

1. Choose the weighting factors for parameters and target responses.

2. Calculate the sensitivity matrix S for the given state of parameters P0 and re-

sponse R0.

3. Calculate matrix S† using either Eq.(5.5) or Eq.(5.6).

4. Using experimental response vector Re, the updated parameter vector Pu can

be obtained via a re-arranged Eq. (5.4):

Pu = P0 + S†· (Re − R0) (5.7)
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5. The new response vector which which corresponds to updated parameters Pu

should then be calculated as a result of modal analysis. This response vector

and the vector of updated parameters then become the starting vectors R0 and

P0 for the next iteration.

The procedure then goes back to step 2 to calculate a new sensitivity matrix (which

changes whenever the model is updated between two iterations). Steps 2 to 5 are

repeated until a satisfactory convergence of numerical responses to the experimental

data is achieved (that is until the error function is minimised to a prespecified toler-

ance).

5.2.3 Comparison between identified and analytical data MAC and COMAC

The measurement data used to compute the objective function may belong to the

frequency or modal domain. Time domain data are generally disregarded because

measured time-series are affected by noise and difficulty in handling a large volume

of data. Data compression is performed to obtain FRF data, which are less affected

by random noise because averaged but suffer little loss of information in the passage

from time to frequency domain. Model updating methods based on modal parameters

like natural frequencies, mode shapes and damping ratios exploit a further reduction

in the number of data points but they have to cope with the reduction of accuracy in the

modal parameters estimation. Furthermore, mode shapes are valuable parameters

to be implemented in a model updating procedure because they allow to pair the

analytical and experimental modes but their precise estimation is difficult to reach and

changes due to damage are often smaller than the error bounds on corresponding

measurements. In literature, it is possible to find many functional indexes that consent

to compare measured and numerical data. Among the most used there is the MAC

(Modal Assurance Criterion), defined as:

MACjk =

(

{Φm}T
j · {Φa}k

)2

(

{Φa}T
k · {Φa}k

)

·
(

{Φm}T
j · {Φm}j

) (5.8)

where {Φa}k is the theoretical eigenvalue corresponding to the k th mode, and
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{Φm}j is the measured eigenvalue, corresponding to the jth mode. The MAC can

vary between 0 and 1, and the comparison could be considered satisfied with a MAC

value superior to 0.8.

The COMAC (Co-ordinate MAC) quantifies the correlation between identified and

analytical modal shapes referring to a particular degree of freedom:

COMAC(j) =

∑ {Φa}T
ji · {Φm}ji

(

∑ {Φa}2
ji

)

·
(

∑ {Φm}2
ji

) (5.9)

where i is the ith modal shape and j is the jth degree of freedom.

Many authors use a Weighted MAC (WMAC) which utilises a weight matrix [W].

The weights can depend from the reliability of certain data (due to the distribution or

the accuracy of the sensors).

It is useful also to remind the following related terminologies :

• Partial Modal Assurance Criterion (PMAC);

• Modal Assurance Criterion Square Root (MACSR);

• Scaled Modal Assurance Criterion (SMAC);

• Modal Assurance Criterion using Reciprocal Vectors (MACRV);

• Modal Assurance Criterion with Frequency scales (FMAC);

• The Enhanced Coordinate Modal Assurance Criterion (ECOMAC);

• Inverse Modal Assurance Criterion (IMAC);

For a review of all the MAC-derived criteria and a complete bibliography, consult

(Allemang, 2002).

Another approach is to compare, instead of the modal shapes, the frequency re-

sponse functions, with the same principle of the MAC. This comparison is feasible in

the case of experimental tests performed with a vibrodina. In this case it is called

Frequency Response Assurance Criterion (FRAC).

The Complex Correlation Coefficient (CCC) and the Frequency Domain Assurance

Criterion (FDAC) derive from the previous.
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5.2.4 Dog-Leg optimisation method

The Dog-Leg (DL) method was implemented for updating of the FE model of the

footbridge. It is an iterative method based on the Trust Region (TR) strategy, which

works with combinations of the Gauss–Newton (GN) and the Steepest Descent (SD)

directions. In detail, the model function L is defined as (Molinari, 2007):

L (p) =
1

2
· ‖f (p) + J(p) · g‖2 (5.10)

where, the objective function (F) and the error function (f) and J are given as follows:

F(p) =
1

2

m
∑

i=1

f2
i (p) = f (p)T .f (p) (5.11)

f (p) = xexp − xnum(p) (5.12)

where, xexp is the experimental value and xnum(p) is the numerical value of modal

properties considered.

J = f ′(p) =
∂fi(p)
∂pj

(5.13)

The vector increment h indicates in the direction to search the solution, see Figure

5.1.

Pu = P0 + hDL (5.14)

The search direction can be either the GN or the SD, or a linear combination of the

two. This choice depends on the fact that the SD method is more efficient further

from the minimum point, while the GN operates more reliably close to the minimum.

Given f : Rn → Rm, at the current iterate p the Gauss-Newton step hGN is the least

squares solution to the linear system :

J(p) · h = −f (p) (5.15)

It can be computed by solving the normal equations

(

J(p)T · J(p)
)

· hGN = −J(p)T · f (p) (5.16)
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Figure 5.1: Trust-Region and Dog-Leg step
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The steepest descent direction is given by

hSD = −J(p)T · f (p) = −g (5.17)

Indicating the radius of the TR with the scalar ∆, the basic strategy of the DL method

is:

if ‖hGN‖ < ∆ ⇒ hDL = hGN (5.18)

if ‖hGN‖ ≥ ∆ and ‖αhSD‖ ≥ ∆ ⇒ hDL =
∆

‖hSD‖
hSD (5.19)

if ‖hGN‖ ≥ ∆ and ‖αhSD‖ < ∆ ⇒ hDL = αhSD + β(hGN − αhSD ) (5.20)

The parameter β is determined imposing that ‖hDL‖ = ∆. The existence of a finite

solution for β can be proved by considering the function ψ, defined as the difference

between the radius of the TR and that of the DL step:

ψ(β) = ‖a + β · (b − a)‖2 − ∆2 = ‖b − a‖2 · β2 + 2β · c + ‖a‖2 − ∆2 (5.21)

where c is a scalar given as:

c = aT · (b − a) (5.22)

It can be verified that:

β −→ −∞ ⇒ ψ(−∞) = ∞ (5.23)

β −→ 0 ⇒ ψ(0) = ‖a‖2 − ∆2 < 0 (5.24)

β −→ 1 ⇒ ψ(1) = ‖hGN‖2 − ∆2 > 0 (5.25)

So one negative and one positive root exist in the interval ]0,1[ . The solution

depends on the sign of c:

if c ≤ 0 ⇒ β ≡
−c +

√

c2 + ‖b − a‖2 ·
(

∆2 − ‖a‖2
)

‖b − a‖2 (5.26)

if c > 0 ⇒ β ≡

(

∆2 − ‖a‖2
)

c +

√

c2 + ‖b − a‖2 ·
(

∆2 − ‖a‖2
)

(5.27)
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The amplitude of the TR method depends on the quality of the fitting to the objective

function of the linear model L . For this purpose, the coefficient ρ is introduced, such

that:

ρ =
F(p) − F(p + hDL )

L (0) − L (hDL )
(5.28)

The value of the denominator of ρ depends on the path followed, as illustrated in

Figure 5.1. In detail:

L (0) − L (hDL ) ≡ F(p) if hDL = hGN (5.29)

L (0) − L (hDL ) ≡ ∆
(

2 ‖g · α‖ − ∆
)

2α
if hDL = ∆ · g

‖g‖ (5.30)

L (0) − L (hDL ) ≡ 1
2
α (1 − β)2 · ‖g‖2 + β (2 − β) · F(p) otherwise (5.31)

Values of ρ close to one indicate that the reduction of the error estimated with the

model prediction is close to one; so when ρ > 0.75, the radius of the TR increases.

Values of ρ < 0.25 suggest the reduction of the radius of the TR. Steps implying

values lower than the tolerance 0.0001 should be rejected.

5.3 Finite Element model of the foot-cycle bridge ’Ponte del Mare’ Pescara

5.3.1 Initial FE model

A preliminary linear FE model of the bridge was developed in ANSYS, as shown

in Figures 4.3. The design drawing and section details of the bridge are shown in

Figures 5.2 and 5.3 respectively. The following element types were used to model the

different parts of the bridge.

• BEAM44 - 3D Elastic Tapered Unsymmetrical Beam :- This is a uniaxial ele-

ment with tension, compression, torsion and bending capabilities. The element has

six degrees of freedom at each node: translations in the nodal x,y and z directions
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Figure 5.2: 3D drawing of the ‘Ponte del Mare’ footbridge
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Figure 5.3: Reticular structure of the cycle deck

and rotations about the nodal x,y and z axes. This element allows a different un-

symmetrical geometry at each end and permits the end nodes to be offset from the

centroidal axis of the beam. This element was used to model all the trusses, rigid

connections, piers, ramps and the mast. The section-types of the trusses forming the

reticular structure are shown in Figure 5.4 and their geometrical dimensions are given

in Tables 5.1 and 5.2. The model considers a fixed connection between trusses and

takes into account the eccentricity between their axes. The nodes were assigned a

material 100 times more rigid than steel and having zero specific weight. By means of

the same element also the connection between slab and horizontal beams and that

between cables and the mast were realized. To model plates that realize a connec-

tion between cables and chords, we adopted BEAM44 elements having section of unit

area and material of rigidity 100 times more than steel. The mast was subdivided into

six different parts in order to consider the variability of the section. The BEAM44 ele-

ment allowed to assign different mechanical properties to the ends that varies linearly

along the axis of the mast. The piers P2 and P4, in correspondence to the connec-

tions between the cable-stayed bridge and the ramp of access, were realized in a
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Figure 5.4: Section types of the elements that constitute the beam reticular(a) Upper

chord (b) Lower chord (c) diagonals, bracings,vertical braces and dividers.

composite steel-concrete structure, the mechanical properties were homogenised to

the steel and the specific weight was increased to consider the presence of concrete.

• LINK8- 3D Spar or Truss :- This is a uniaxial tension-compression element

with three degrees of freedom at each node: translations in the nodal x,y and z

directions. Stays were modelled with the LINK8 elements and each of them has an

initial deformation value, assigned to impose the advisable pretension. Stays were

assigned practically a zero mass to avoid modal analysis be influenced by spurious

modes due to the large flexibility of these elements.

• SHELL43- 4 Node Plastic Large Strain Shell :- This is well suited to model

linear, warped, moderately-thick shell structures. The element has six degrees of

freedom at each node: translations in the nodal x,y and z directions and rotations

about the nodal x,y and z axes. The deformation shapes are linear in both in-plane

directions. For the out-of-plane motion, it uses a mixed interpolation of tensorial com-

ponents. The element has plasticity, creep, stress stiffening, large deflection, and

large strain capabilities. The concrete slab was modelled with SHELL43 elements

having a thickness of 55 mm.

• SOLID45- 3D Structural Solid :- This is defined by eight nodes having three

degrees of freedom at each node: translations in the nodal x,y and z directions. The

element has plasticity, creep, swelling, stress stiffening, large deflection, and large

strain capabilities. The concrete block that works as a restraint between deck and

piers was modelled with SOLID45.
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Table 5.1: Dimension of the section types of the cycle deck

Cycle

deck
Element

b1

[mm]

t1

[mm]

b2

[mm]

t2

[mm]

h

[mm]

t3

[mm]

external

upper

chord

C-CSE 380 20 200 20 340 25

internal

upper

chord

C-CSI-20

C-CSI-25

380

380

20

25

200

200

20

25

340

340

25

25

lower

chord

C-TI-20

C-TI-30

800

800

20

30

20

20

240

250

vertical

brace

C-M-80x8-18

C-M-100x12-18

80

100

8

12

18

18

diagonal

C-DC-80x8-18

C-DC-110x14-18

C-DL-90x9-18

C-DL-100x14-18

80

110

90

100

8

14

9

14

18

18

18

18

bracing
C-CONTR-

80x10-18
80 10 18

divider C-RL-60x6-18 60 6 18

horizontal

beam

HEA 200

HEB 200
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Table 5.2: Dimension of the section types of the pedestrian deck

Pedestrian

deck
Element

b1

[mm]

t1

[mm]

b2

[mm]

t2

[mm]

h

[mm]

t3

[mm]

external

upper

chord

P-CSE 380 20 200 20 340 25

internal

upper

chord

P-CSI 380 20 200 20 340 25

lower

chord

P-TI-25

P-TI-35

P-TI-40

750

750

750

25

35

40

20

20

20

225

235

240

vertical

brace

P-M-80x8-18

P-M-100x12-18

80

100

8

12

18

18

Diagonal

P-DC-100x10-18

P-DC-100x14-18

P-DL-110x14-18

100

100

110

10

14

14

18

18

18

bracing
P-CONTR-

80x10-18
80 10 18

divider P-RL-60x6-18 60 6 18

horizontal

beam

HEA 200

HEB 200
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• MASS21- Structural Mass :- This is a point element having up to six degrees

of freedom: translations in the nodal x,y and z directions and rotations about the

nodal x,y and z axes. A different mass and rotary inertia may be assigned to each

coordinate direction. This element was used for assigning the mass due to permanent

load.

Table 5.3 reports the properties of the utilised materials in the bridge.

Table 5.3: Properties of the materials used in the FE model

Material Elastic modulus
Poisson

ratio
Density

Coefficient of

thermal expansion

reinforce concrete 35000 MPa 0.2 2.5 t/m3 9.9 x 10−6 0C−1

structural steel 210000 MPa 0.3 7.85 t/m3 1.17 x 10−5 0C−1

steel cable φ44 165000 MPa 0.3 8.289 t/m3 1.17 x 10−5 0C−1

steel cable φ60 165200 MPa 0.3 8.32 t/m3 1.17 x 10−5 0C−1

steel cable φ75 162800 MPa 0.3 8.29 t/m3 1.17 x 10−5 0C−1

Due to the fact that ramp and the piers (beam elements) are bound to a single node

of the solid block, surface around the node of the block and the area of the pier were

constrained to make rigid. In Figure 5.5 the concrete block and the costraints with the

adjacent elements are represented.

Figure 5.5: Concrete block as the connection between the pedestrian and cycle deck.
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The ramps of access have a variable section between 5 m and 7 m, nevertheless,

due to the presence of the saddles Gerber, shown in Figure 5.6, their influence is

negligible with respect to the dynamics of the cables part. To consider the mass due

to permanent carried loads, density of material of the ramps was increased. The

connection to the saddle Gerber were obtained through release of some axial actions

and of the moments in the vertical and horizontal plane. The blocks in concrete that

connect the deck and the top of the piers P2 and P4 were then modelled. Mesh is

realized with regular tetrahedral elements and dimension of finite elements was cho-

sen as a compromise between sufficiently refine model in order to pick the structural

geometry without excessive deformation of the elements and the speed of calculation.

On the nodes of deck and ramp were added some punctual masses that represent

the elements carried after finish and possibly the mass of pedestrians present on the

deck. The connections to the ground are all perfectly fixed except the side end of the

two ramps that have a connection to roller supports.

In conclusion, the initial FE model comprises:

• 7226 nodes;

• 3037 BEAM44 elements;

• 30 LINK8 elements;

• 496 SHELL43 elements;

• 3920 SOLID45 elements;

• 630 MASS21 elements.

This FE model is very precise from point of view of accuracy of modelling. The

justifications for a more precise model essentially are bound to the complexity of the

bridge and the objective to pursue, in our case to perform a trial of model updat-

ing over a too simplified model would add even more uncertainties and the results

obtained will be meaningless.

5.3.2 Modified FE model accounting changes during construction

Due to some changes in the construction phase, the final realized structure diverted

from the initial design. Therefore, the initial FE model that was based on the initial

design was modified considering the changes during construction.
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Figure 5.6: Saddle Gerber between concrete block and ramp of access.
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After a check over the cable deck arrived on site, see Figure 5.7, it was realized

that the two grounded cables should be of larger diameter to guarantee the structural

safety. In order to avoid additional cost and delays to get new cables, already available

cables were utilised that realistically caused the changes in the structure of the two

decks.

Figure 5.7: Progress of the construction work in site.

Particularly, it was chosen to move the centre of mass of the structure by varying

the weight of the concrete slabs between the two decks. It passed from an uniform

concrete slab of thickness 55 mm to 5 zones, named as per Figure 5.8, with different

sections between them. To increase even more this gap, without exaggerating the

thickness of the slab of the pedestrian deck, a lightened concrete was used for all

of the zones of the cyclic deck. Such variations in the section made a change in

the mass and stiffness of the deck and reflected a change in modal properties of the

structure.

The details of the geometrical properties of the sections were calculated using SAP

software, for example, two sections are shown in Figures 5.9 and 5.10.

The initial FE model did not consider the contribution of the two side concrete
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Figure 5.8: Progress of the construction work in site.

Figure 5.9: Steel-concrete composite secction in zone D of the pedestrian deck.
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Figure 5.10: Steel-concrete composite secction in zone D’ of the cycle deck.

blocks, of the presence of the metal steel sheeting, of the concrete present between

outlines of the metal steel sheeting and different thicknesses of the paving. The

presence of the metal steel sheeting provides a considerable contribution to the lon-

gitudinal bending stiffness, particularly in those sections that have a smaller layer of

concrete, Figure 5.10. Therefore once calculated the moment of inertia of the new

sections and compared with that of the previous rectangular shell, were obtained var-

ious amplifying coefficients C, i.e. a ratio between the moment of inertia of the new

and old section.

To note that such a coefficient was multiplied only lengthwise by the elastic mod-

ulus of the concrete, transversally in fact the metal steel sheeting does not offer a

contribution to the bending stiffness.

Finally, some operations were carried out also on the mast. In the new model the

variation of the tubular mast was accounted more precisely, it was held to the different

height of the section and of the filling up with concrete, for e.g. see Figure 5.11. The

previous Table 5.3 of the materials used in the FE model was modified by adding the

lightened concrete used for the cyclic deck, to Table 5.4.

STRUCTURAL STIFFENING WITH DIAGONAL

After some preliminary studies, it was decided to work locally to limit an excessive
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Figure 5.11: Steel-concrete composite secction of the mast.

Table 5.4: Properties of the materials used in the FE model

Material Elastic Modulus
Poisson

ratio
Density

Coefficient of

thermal expansion

reinforce concrete 35000 MPa 0.2 2.5 t/m3 9.9×10−6 ◦C−1

lightened reinforce concrete 16000 MPa 0.2 1.5 t/m3 9.9×10−6 ◦C−1

structural steel 210000 MPa 0.3 7.85 t/m3 1.17×10−5 ◦C−1

steel cable φ44 165000 MPa 0.3 8.289 t/m3 1.17×10−5 ◦C−1

steel cable φ60 165200 MPa 0.3 8.32 t/m3 1.17×10−5 ◦C−1

steel cable φ75 162800 MPa 0.3 8.29 t/m3 1.17×10−5 ◦C−1
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deformability of some zones of the metallic reticular structure, Figures 5.12 and 5.13.

There were added two short diagonals (100x10 mm) on the pedestrian deck, eight

long diagonals (100x14 mm), three long diagonals (90x9 mm) and two short diago-

nals (80x8 mm) on the cycle deck. Lastly, it can be noted that the initial FE model

Figure 5.12: Detail of the diagonals added in different zones of the pedestrian deck.

omitted the metallic plates at junction. The supplementary stiffness data from such

plates was not considered but the mass was considered that was spread along the

extensions in proximity of same plates.

MODELLING OF THE SUPPORTS WITH RUBBER ARMS

In the initial FE model the connections to a saddle Gerber were obtained through

releasing some moments and axial actions in the vertical and horizontal plane. This

approximation was refined introducing a spring that accounts for the resistance of-

fered from the two ALGAFLON supports. These supports have rubber arms and are

provided of end plates movable in both directions. Once the thickness of the rubber (

te

), the area of the support (A) and the dynamic shear factor Gdin are known, the equiv-

alent stiffness offered by the support is calculated as:
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Figure 5.13: Detail of the diagonals added in different zones of the cycle deck.
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Keq =
Gdin.A

te
(5.32)

This value was then compared with that of the Tables of the ALGAE (Algalink, 2009)

society and was chosen a Keq = 4, 220 kN/mm.

The effect of rotation was not considered significant because the two supports are

aligned, like in Figure 5.14, that limit such rotation also because of the greater rigidity

of the sustained decks. Therefore, in the new FE model two COMBIN14 elements

were introduced with supply of stiffness Keq and lacking mass. Such elements act as

a uniaxial spring once they are defined to the anchored nodes.

Figure 5.14: Arrangement of ALGAFLON support

The COMBIN14 elements were used to model also fluid viscous dampers, but it

will not be treated here as we will concentrate on the model without dampers. In a

first step, a model updating without the dampers will be performed in order to exclude

eventual complications that could arise due to their application. In a successive step,

with the knowledge obtained on the updated FE model, we can pass to the updating

of the model provided with dampers.

UPDATING OF THE TENSION IN STAYS

At the conclusion of the construction of the bridge, the Sistral society (SISTRAL,

2009) performed tests to verify the actual value of tension in cables. The test was

performed by positioning an accelerometer on a cable and exciting the same one

with a mechanical impulse. The frequency relates tension of the cable on the basis

of the formula of the taut string, see Eq. 5.33, and of the mechanical properties of the
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same cable. The assumptions about this formula are the following (Tinazzi, 2009):

• the cable is perfectly flexible (i.e. sufficiently long to exhibit negligible flexural

stiffness) with a hinge connection at each end;

• absence of relative movement of the points of anchorage;

• the cable is inextensible (i.e. slow and small movements do not develop tension).

The nth natural frequency fn, of a cable is related to the pull T , the length L and the

mass per unit length m according to the following formula:

fn =
n

2L
·
√

T
m

(5.33)

Equation 5.33 expresses the model of a taut string and involves a logical connection

between the frequency fn and the order n of the mode. It was verified that stays

in examination have a dynamic behavior well described from the model of the taut

string, and the auto-spectrum of the ambient response characterized the peaks quite

distinguished and equidistant. The values of frequency obtained on all the cables and

the relevant values of pull are reported in Table 5.5. The values of pull obtained are

compared with the theoretical values of the project indicating the relevant differences.

To choose on how to model stays three different models were compared with in-

creasing refinement of the finite elements in a study at University of Trento (Tinazzi,

2009). The interest towards this analysis was born from the observation that the ac-

tual values of frequency of some stays fell in the range of that of the bridge, with

consequent possible interaction of the cables in a global dynamic analysis of the

structure.

In the first model (One element cable system - MEFE) a stay was modelled as a

sole element with equivalent elastic modulus, in the second model (Multi Link Model)

stays were discretised but the bending stiffness was neglected, finally, in the last

model (Multi Beam Model) besides the discretisation also the contribution of the bend-

ing stiffness was introduced.

This is rendered in a minimum participation of the transversal movement of a cable

to some more distorted flexible modes of the structure, whose geometry is therefore

the same one that of the corresponding modal shapes obtained with the MEFE model.

It is concluded that the discretisation of cables is significant alone for local analysis
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Table 5.5: Pull in cables compared with the values in project
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and that, in point of view of a global dynamic analysis, to neglect their contribution

does not contribute significant errors.

Therefore stays were modelled as an equivalent truss; the cable in such approach

is treated like a rectilinear truss and the variations of the mechanical property, con-

sequent to the deformed configuration produced from the load applied, keeping in

account by means of an reduced elastic modulus being derived from the theory of

Dischinger as following (Bruno et al., 2008):

EsD =
Es

(

1 + Es

(

γ2·l2
⊥

12·σ3
s

)) (5.34)

Stays which are affected more of this reduction of the elastic modulus are clearly

those that have a long abscissa about the axis of deck, more height and a smaller

effort of traction, Figure 5.15.

Figure 5.15: Arrangements of the cables after final construction

Once the experimental pulls on stays are known, this information can be introduced

in the FE model. A LINK8 element, that models the 30 stays of the ‘Ponte del Mare’,

requires a value of extension. Therefore, an iterative procedure is created by means
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of a written code in Ansys Parametric Design Language (APDL). The objective of

the iterative procedures is to determine the variation of extension in the stays and to

update such value until that arrives at convergence with the measured pulls of the

finished work.

There are mainly two commands of this cycle:

• The command *DOWHILE -that allows the execution of cycle until a condition of

exit is verified;

• The static analysis ANTYPE - STATIC -that is carried out at every individual iter-

ation within the *DOWHILE cycle.

The flow chart of the procedure is shown in Figures 5.16. The iterative cycles

shown require about 200 iterations before to arrive convergence with the chosen

critera and an tolerance (TOL) equal to 1% :

30
∑

i=1

(

PULLMEASUREDi − PULLANSYSi

PULLMEASUREDi

)2

< TOL (5.35)

The computational burden and the time necessary to arrive at convergence are

very high. Therefore a better solution will be to use these files directly after the final

step of iterative cycles of model updating.

Table 5.6 shows a comparison of identified and FE model frequency for first 12

modes without connected dampers. It can be noted that the average percentage

error reduces after the modification of the initial FE model. However, the modified FE

model shows 8.66% error that is quite large and hence the model needs an updating.

Table 5.7 and 5.17 show the initial MAC values. The average MAC along the diagonal

comes out to 70.59%.
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Figure 5.16: Flow chart to calculate the reduced elastic modulus according to

Dischinger theory
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Table 5.6: Comparison of identified and FE model frequencies

EMA Initial FEM Error % Modified FEM Error %

Mode f (Hz) f (Hz) - f (Hz) -

1 0.747 0.681 8.8 0.697 6.8

2 1.065 1.003 5.8 1.000 6.1

3 1.126 1.087 3.5 1.059 5.9

4 1.243 1.144 8.0 1.132 8.9

5 1.394 1.369 1.8 1.378 1.1

6 1.510 1.518 -0.5 1.529 -1.3

7 1.716 1.546 9.9 1.565 8.8

8 1.791 1.666 7.0 1.692 5.5

9 2.306 1.702 26.2 1.955 15.2

10 2.364 1.984 16.1 2.079 12.1

11 2.512 2.155 14.2 2.163 13.9

12 2.862 2.299 19.7 2.337 18.34

10.12 8.66

Table 5.7: Initial MAC values

1 2 3 4 5 6 8 12 13

1 98.87 1.35 16.63 8.80 7.45 0.83 1.04 11.47 7.27

2 30.77 53.36 25.37 0.61 2.73 6.47 0.97 13.08 2.05

3 0.79 0.26 79.19 4.04 5.48 0.33 0.09 5.59 1.67

4 1.46 11.71 0.01 93.97 14.93 0.61 24.48 0.80 0.01

5 7.54 7.65 4.57 12.98 41.45 2.43 3.39 0.24 5.74

6 13.61 0.91 3.12 10.99 5.17 72.10 2.42 6.77 0.06

7 5.30 4.48 0.76 25.21 1.48 9.92 75.40 0.66 0.00

8 2.17 7.98 10.39 2.17 3.09 2.98 6.05 70.05 6.89

9 5.46 6.69 0.12 0.06 6.58 1.02 1.49 55.14 50.91
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Figure 5.17: Initial MAC in graph

5.4 Model updating of the foot-cycle bridge ’Ponte del Mare’ Pescara

5.4.1 Manual updating

This is the so-called phase of manual updating. The primary work in this part is selec-

tion of parameters based on engineering judgments and to make sensitivity matrix.

5.4.1.1 Selection of parameters

Observing the ‘Ponte del Mare’ bridge it appears obvious that a small variation in the

elastic modulus of structural steel, steel of stays or of different typologies of concrete

used is able to influence the response in a significant manner. Besides, it is observed

that the density of concrete used is rarely equal to what verifies in laboratory, the

uncertainties in this field are rather large (even more in case of lightened concrete)

and since an alteration of the density works on the weight of the deck, it is important

to be considered.

The stiffness of the spring that was used to model the support might be able to

change the movement of deck in the longitudinal direction and therefore, it was added
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as one of the parameters of interest.

Finally, in the set of the parameters of departure, the six C coefficients were in-

troduced to take into account of longitudinal stiffening of the different sections in the

zones B-C-D-E-F for the pedestrian deck and B’ -C’ -D’ for the cycle deck. To remem-

ber that the cycle deck have a uniform section throughout its length. Therefore, only

one C coefficient was considered for the cycle deck. The shell used to model the

deck in the FE model of rectangular plates section, as shown in dark blue in Figure

5.18, were added the features of mass and rigidity of the real section, as shown in

red in the same Figure, means the contributions of added mass and the coefficients

C -that is the ratio between the two different moment of inertia which goes then to

multiply the longitudinal elastic modulus of the concrete.

Figure 5.18: Comparison between the real section D and the shell of FE model

Based on the above discussion the initial values of the parameters used to calculate

the sensitivity matrix are reported in Table 5.8.

5.4.1.2 Calculation of sensitivity matrix

After choosing the parameters that, according to engineering judgments, could signif-

icantly influence the response of the FE model, we proceed to the actual calculation

of the sensitivity matrix. The parameters investigated were increased to about 1% to

agree a most reasonable approximation necessary for cutting-off the Taylor series.

Moreover, these parameters could not be directly utilised in the calculation of the

sensitivity matrix. Recalling the Equation 5.2 for the calculation of S looks like, ap-

plying merely the formula, the denominator for the line of the matrix that depends on
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Table 5.8: Set of the initial parameters for sensitivity check

Parameter number Parameter Initial value

P1 Ec1 35000000 kN/m2

P2 Ec2 16000000 kN/m2

P3 Es 210000000 kN/m2

P4 Es stay 44 165000000 kN/m2

P5 Es stay 60 165200000 kN/m2

P6 Es stay 75 162800000 kN/m2

P7 d1 1.5 ton/m3

P8 d2 2.5 ton/m3

P9 c cyc 25.40

P10 c ped B 5.06

P11 c ped C 1.27

P12 c ped D 1.15

P13 c ped E 1.28

P14 c ped F 7.94

P15 k long 0.00844 kN/m2
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an elastic modulus is 107 − 108 times greater than that of the parameters of density.

Naturally, all the chosen parameters must have the same unit which is desirable for

numerical reasons to obtain a dimensionless sensitivity matrix. Therefore we intro-

duced some dimensionless multiplicative coefficients k (Molinari, 2007) in Eq.(5.2)

that will allow to obtain us a correct S:

Sij ≈
Ri(Kj + ∆Kj) − Ri(Kj)

(Kj + ∆Kj) − Kj
(5.36)

P∗
j = Pj · Kj (5.37)

where, P∗
j represents a component of the vector of the parameters P while K is the

vector of percentage variation formed from components Kj.

Figures 5.19 and Figure 5.20 show the manual sensitivity matrix based on the

frequency.

Figure 5.19: Manual sensitivity matrix

Observing the sensitivity matrix we can make some consideration:

• to an increment of 1% of the parameters it is noted that only the density of the

concrete lowers the frequency response while all the other parameters stiffen the

structure;
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Figure 5.20: Graphical view of the sensitivity matrix

• the inffluence of the moment of inertia or the C coefficient is more significant

whereas the sections of the deck have smaller thicknesses of concrete, that is com-

parable looking at the c cyc;

• the elastic modulus of the stays with diameter 60 mm and 75 mm influence

the structural response lesser than those with diameter 44 mm, essentially because

smaller in number;

• the elastic modulus of the structural steel is by far the most sensitive parameter

of the structure and this was imaginable as the bridge is mainly composed of steel.

On the basis of the above considerations we can exclude the less sensitive param-

eters. Therefore, the parameters k long that identifies the rigidity of the ALGAFLON

supports, the elastic modulus of cables Es stay 60 and Es stay 75 and some the C

coefficents of the pedestrian deck, that give relatively low contribution to the sensitiv-

ity matrix, were excluded.

Generally, it is worth to use the condition number (CN) of the matrix S of departure

and later to see how the CN varies after removing the lines of the less sensitive

parameters. The CN must not surpass the threshold of the CN equal to 105, already

discussed in Section 5.2.
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This analysis was performed as a check on the manual sensitivity matrix, because

we did not find a simpler manner to implement the QR method in APDL language, that

meant a tie in the selection of the number of the parameters from updating. In fact if

we don’t utilise the QR method there remain two alternatives to invert S: the inverse

of a square matrix or the pseudo-inverse of Moore-Penrose (MP) for a rectangular

one.

Nevertheless, in an automatic updating procedure it calculates a different sensitivity

matrix to every iteration and it is possible that at a given iteration it surpasses the CN

limit and therefore the pseudo-inverse calculated with QR or MP will not be correct.

Therefore, for simplicity, computational efficiency and in order not to run in mistakes, 9

chosen frequencies will be updated by means of 9 parameters. To choose the 9 most

sensitive parameters simply the RMS (Root Mean Square) value was used. Later, it

was found that these 9 parameters verify a CN of about 300 that is obviously less than

the threshold of 105. The parameters used for the updating and the relevant vector

K9 are shown in Table 5.9.

Table 5.9: Set of parameters used in model updating

Parameter K9

Ec1 k1

Ec2 k2

Es k3

Es stay 44 k4

d1 k5

d2 k6

c cyc k7

c ped B k8

c ped D k9
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5.4.2 Automatic updating: implementation of the method

We implemented the whole MU procedure in the APDL language. APDL is a scripting

language that you can use to automate common tasks or even build your model in

terms of parameters (variables). While all Ansys commands can be used as part of

the scripting language, the APDL commands are the true scripting commands and

encompass a wide range of other features such as repeating a command, macros,

if-then-else branching, do-loops, and scalar, vector and matrix operations. While

APDL is the foundation for sophisticated features such as design optimisation and

adaptive meshing, it also offers many conveniences that you can use in your day-to-

day analyses. This presents a large advantage because if any detail on the FE model

is modified the same procedure itself obtains directly the results without obliged to

pass through other programs. To implement a mathematical subroutine that is not

present in the ANSYS library can be recalled in any mathematics program, like for

example MATLAB, with the help of a simple string.

All the methodologies of updating that will be treated later on have in common

the first and the last part. In the first part two kind of analyses will be made - the

nonlinear static analysis under gravitational loads and - the modal analysis for the

first 13 modes. These two solutions will be used on other n occasions inside the

methods to calculate each component of the sensitivity matrix, where n is the number

of the components of the vector K. The APDL code is written as follows.

!Nonlinear static analysis

/SOLU

OUTPR,ALL,LAST

!Command that controls the solution printout for all the elements.

OUTRES,ALL,LAST

!Controls the solution data written to the database file.

ANTYPE,STATIC

!Performs nonlinear static analysis under gravitational loads.

NLGEOM,ON

!Includes large-deflection effects in the analysis.

SSTIF,ON
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!Activates stress stiffness effects in a nonlinear analysis.

EMATWRITE,YES

!Forces the writing of all the element matrices to file.emat.

ALLSEL

!Selects all entities with a single command.

ACEL,0,0,9.81

!Specifies the linear acceleration of the structure in the global Cartesian X, Y,

and Z axis directions, respectively.

FINISH

!Nonlinear modal analysis

/SOLU

ANTYPE,MODAL

!Performs modal analysis.

SSTIF,ON

!Activates stress stiffness effects in a nonlinear analysis.

MODOPT,LANB,13

!Specifies the mode extraction method to be used for the modal analysis: Block

Lanczos.

MXPAND,13

!Specifies the number of modes to expand and write for a modal analysis.

PSOLVE,EIGLANB

!Calculates the eigenvalues and eigenvectors using Block Lanczos.

EXPASS,ON

!Specifies an expansion pass of an analysis.

PSOLVE,EIGEXP

!Expands the eigenvector solution.

FINISH

In the last part the results of the analysis will be extracted through postprocessor,

i.e. the vector K9 in the case of 9 frequencies. For example, the following code

represents a case of 9 frequencies where a vector of size 9x1 is assembled with the

components of the parameters ki then to export it in a text file in the desired format.

/POST1
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*CFOPEN,RESULTS ITER 9,txt

!Opens a ”command” file.

*DIM,P0,,9,1

!Defines a vector of parameters and dimensions.

*VFILL,P0(1),DATA,k1

...

*VFILL,P0(11),DATA,k9

!Fills a vector of parameters.

*VWRITE,P0

(19(f20.5,5x))

!Writes data to a file in a formatted sequence.

*CFCLOSE

!Closes a ”command” file.

FINISH

Also the selection of the convergence criterion is identical for all of the MU methods

taken into consideration. Between the varied possible criteria it has been chosen to

use the direct comparison of error (DELTAR) with a fixed tolerance (TOL) not on the

vector but on the individual components. Such comparison is carried out in every

cycle using the command IF-THEN and until every component does not respect this

condition, the cycle continues according to the DOWHILE command:

KK=1

!Name of the parameter rise used as indicator of the loop.

*DOWHILE,KK

!Cycle repeats untill meets the order *ENDDO.

...

*DIM,Rexp,,9,1

...

*DIM,R0,,9,1

...

*DIM,DELTAR,,9,1

*VOPER,DELTAR,Rexp,SUB,R0

!Operation between two vectors.
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*DIM,TOL,,9,1

*DO,i,1,9,1

!Command that defines the start of a cycle of DO.

*VFILL,TOL(i),DATA,0.05

*ENDDO

!Closes the cycle DO.

*IF,DELTAR,LT,TOL,THEN

!Condition imposed on command *IF. LT: lower than (for VAL1<VAL2).

KK=0

*ENDIF

!Ends the ’IF-THEN-ELSE’.

*ENDDO

!Ends the action of DOWHILE cycle.

Finally, limits on the variation of the parameters were imposed. The bound problem

will have surely more difficulty to converge with respect to the unbound one, but this

will allow us to obtain some more realistic physical values.

To implement this choice in APDL we used the IF-THEN-ELSEIF-ELSE construc-

tion. An example is shown for the case of the elastic modulus of steel Es that varies

to every iteration through k3:

*IF,Pu(3),GT,1.05,THEN

k3=1.05

*ELSEIF,Pu(3),LE,1.05,AND,Pu(3),GE,0.95

k3=Pu(3)

*ELSE

k3=0.95

*ENDIF

The new parameter is retained physically valid only in the case in which 199500000

kN/m2 < Es < 220500000 kN/m2, that is within a range of ±5%, while if surpassed

the thresholds, it would be restored automatically to the limit value of the range.

For the elastic modulus of steel, we choose a rather limited range due to the accu-

racy in the production of these materials. Greater uncertainties instead were used for

the elastic modulus and the density of the two concrete types, as is known, depend
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on the quality of labor and the conditions on site. Particularly, the density fluctuates

from 2.1 to 2.2 ton/m3 but it is necessary to add a further 12 − 16% variation due to

the contribution of other uncertainties and alterations in the run of work. In the FE

model, in fact the permanent loads carried by handrails, centerings, concrete layer

of the slopes, steel nets and paving were parameterised in function of the density

associated to the respective sections.

Finally, analysing the C coefficents, i.e. a ratio between the moment of inertia of

the section of the FE model and of the section calculated with the Section Designer

of SAP would not need a wide range of variation. ±15% finds besides verification

in article on the MU of the pedestrian bridges (Zivanovic et al., 2007), in fact in that

case the layer of asphalt contributed largely to stiffen the structure. The variability

associated to every parameter is shown in Table 5.10.

Table 5.10: Range of the admissibility of the parameters

Parameter Initial value Range ”physical”

Ec1 35000000 kN/m2 ±15%

Ec2 16000000 kN/m2 ±15%

Es 210000000 kN/m2 ±5%

Es stay 44 165000000 kN/m2 ±5%

d1 1.5 ton/m3 ±30%

d2 2.5 ton/m3 ±30%

c cyc 25.40 ±15%

c ped B 5.06 ±15%

c ped D 1.15 ±15%
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5.5 Results and discussion

5.5.1 The final result

The value of the radius, ∆initial of the Trust-Region is assigned manually for trials.

Starting from a unit value, it is increased one by one the radius of departure till 6.

From the six values, ∆initial = 2 offered the lowest average percentage error. After 9

iterations is obtained the set of parameters that minimizes the difference between the

frequencies, shown in Table 5.11, but it is necessary to keep into consideration that

the pull of the stays is remained unchanged inside the cycle.

Table 5.11: Set of parameters that minimize the difference with the experimental

frequency

Parameter K9

Ec1 1.0957

Ec2 0.8500

Es 1.0500

Es stay 44 0.9500

d1 0.7613

d2 0.7000

c cyc 1.0999

c ped B 1.0413

c ped D 0.9957

The set K9 was therefore introduced in the file for the calculation of the elongation of

the stays. Table 5.12 presents the updated frequencies. It is notable that the average

percentage error between the absolute values is equal to 2.89%, on 9 frequencies

examined decrease of about 30% with respect to the non-updated model.

Table 5.13 shows the MAC values of the updated FE model, and Figures 5.21 and

5.22 shows the MAC values between the experimental and updated FE model. The
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Table 5.12: Frequencies obtained at the end of model updating and mean percentage

error comes 2.89%

EMA FEM |Error%|
Rxp1 0.7476Hz Rans1 0.7380Hz 1.28%

Rxp2 1.0653Hz Rans2 1.0475Hz 1.67%

Rxp3 1.1257Hz Rans3 1.0994Hz 2.33%

Rxp4 1.2430Hz Rans4 1.1793Hz 5.12%

Rxp5 1.3939Hz Rans5 1.4372Hz 3.11%

Rxp6 1.5098Hz Rans6 1.6081Hz 6.51%

Rxp7 1.7165Hz Rans8 1.7609Hz 2.58%

Rxp10 2.3639Hz Rans12 2.4345Hz 2.98%

Rxp11 2.5119Hz Rans13 2.5024Hz 0.38%

Table 5.13: Updated MAC values

1 2 3 4 5 6 8 12 13

1 98.61 0.06 15.84 8.23 8.08 8.18 1.24 7.70 7.00

2 32.53 42.47 29.75 0.45 4.12 6.91 0.64 11.07 2.92

3 0.81 0.89 76.81 3.72 5.95 0.24 0.72 10.01 0.54

4 1.47 11.29 0.45 94.77 16.63 1.89 23.11 0.56 0.11

5 7.50 7.24 4.19 12.15 37.96 0.03 9.21 1.90 3.54

6 13.91 0.07 3.39 10.85 11.46 88.32 0.26 10.33 0.07

7 5.49 6.63 0.27 26.52 1.38 14.81 72.89 0.46 0.06

8 2.19 6.88 10.82 2.25 2.66 0.02 4.16 60.37 10.10

9 5.49 6.65 0.24 0.02 6.47 0.60 0.75 26.79 48.73
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Figure 5.21: At left a classical view of MAC and at the right difference in MAC values

Figure 5.22: MAC, xp- experimental & ans- ANSYS
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following important points can be considered:

• the average value of the diagonal of the MAC matrix decreases by about 1%, i.e.

from 70.59% to 68.99%, however, beating down the values outside the diagonal;

• the correlation between the modes 2 − 2 falls about 10%, negative red bar in

∆MAC;

• the correlation between the modes 6 − 6 increases about 16%, positive orange

bar in ∆MAC;

• the correlation between the modes 10 − 12 falls about 10%, negative pink bar in

∆MAC; nevertheless, the correlation between 11 − 12 falls about 28% removing the

sole present uncertainty.

Therefore, one can see that the updating on the frequency with the Dog Leg method

carried to a physically acceptable set of parameters, produced two negative and two

positive effects in the MAC matrix. Nevertheless, the diagonal maintains a high per-

centage of correlation between modes. These results persuade to affirm that this is

a feasible compromise between mode shape and frequency.

After the Modal Assurance Criterion, we carried a visual comparison on the modal

shapes, see Figures 5.23-5.64. Particularly, it confirms with the lower values of MAC

found in Figures 5.28, 5.50 and 5.60.
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Figure 5.23: 1st mode of ANSYS correlated with 1st mode of experiment with

MAC=98.6
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Figure 5.24: Normalized vertical autovector of the pedestrian deck

Figure 5.25: Normalized vertical autovector of the cycle deck
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Figure 5.26: Normalized radial autovector of the pedestrian deck
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Figure 5.27: 2nd mode of ANSYS correlated with 2nd mode of experiment with

MAC=42.5
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Figure 5.28: Normalized vertical autovector of the pedestrian deck

Figure 5.29: Normalized vertical autovector of the cycle deck
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Figure 5.30: Normalized radial autovector of the pedestrian deck

Figure 5.31: Normalized radial autovector of the cycle deck
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Figure 5.32: 3rd mode of ANSYS correlated with 3rd mode of experiment with

MAC=76.8
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Figure 5.33: Normalized vertical autovector of the pedestrian deck

Figure 5.34: Normalized vertical autovector of the cycle deck
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Figure 5.35: Normalized radial autovector of the pedestrian deck

Figure 5.36: Normalized radial autovector of the cycle deck
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Figure 5.37: 4th mode of ANSYS correlated with 4th mode of experiment with

MAC=94.8
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Figure 5.38: Normalized vertical autovector of the pedestrian deck

Figure 5.39: Normalized vertical autovector of the cycle deck
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Figure 5.40: Normalized radial autovector of the pedestrian deck

Figure 5.41: Normalized radial autovector of the cycle deck
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Figure 5.42: 5th mode of ANSYS correlated with 5th mode of experiment with

MAC=38.0

158



Figure 5.43: Normalized vertical autovector of the pedestrian deck

Figure 5.44: Normalized vertical autovector of the cycle deck
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Figure 5.45: Normalized radial autovector of the pedestrian deck

Figure 5.46: Normalized radial autovector of the cycle deck
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Figure 5.47: 6th mode of ANSYS correlated with 6th mode of experiment with

MAC=88.3
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Figure 5.48: Normalized vertical autovector of the pedestrian deck

Figure 5.49: Normalized vertical autovector of the cycle deck
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Figure 5.50: Normalized radial autovector of the pedestrian deck

Figure 5.51: Normalized radial autovector of the cycle deck
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Figure 5.52: 8th mode of ANSYS correlated with 7th mode of experiment with

MAC=72.9
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Figure 5.53: Normalized vertical autovector of the pedestrian deck

Figure 5.54: Normalized vertical autovector of the cycle deck
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Figure 5.55: Normalized radial autovector of the pedestrian deck

Figure 5.56: Normalized radial autovector of the cycle deck
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Figure 5.57: 12th mode of ANSYS correlated with 10th mode of experiment with

MAC=60.4
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Figure 5.58: Normalized vertical autovector of the pedestrian deck

Figure 5.59: Normalized vertical autovector of the cycle deck
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Figure 5.60: Normalized radial autovector of the pedestrian deck
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Figure 5.61: 13th mode of ANSYS correlated with 11th mode of experiment with

MAC=48.7
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Figure 5.62: Normalized vertical autovector of the pedestrian deck

Figure 5.63: Normalized vertical autovector of the cycle deck
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Figure 5.64: Normalized radial autovector of the pedestrian deck

5.5.2 Applicability of the updated model

After the updating of the FE model with the 9 parameters, the same was considered

to use to reproduce the acceleration response under the actual wind loading to check

the applicability of the model. The ’Ponte del mare’ bridge is under monitoring with

8 accelerometers, arrangement shown in Figure 4.6(f), since December 2009. An

especially intense wind recorded on 25/12/2009 during 12 : 49 - 12 : 59 is chosen.

The mean wind speed near the deck was considered 16.19 m/s, i.e. an average of

the measurement obtained from the two anemometers, see Figure 5.65 and 5.66.

Besides, the wind introduced inside the model was changed with the multiplicative

coefficient that allows to take into account the maximum and the minimum variation

with respect to the mean speed.

To underline that the updated model is the one without the dampers, however, the

acceleration data recorded by the 8 accelerometers belong to the actual structure that

is conneccted with the dampers, see Figure 4.5 and Table 4.1. Though it is not logical

to compare the two situations, however, we intend to see if the model picks merely the

order of the the acceleration magnitudes. Certainly, a more complete model updating

is possible considering parameters sensitive to the presence of the dampers.
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Figure 5.65: Position of the two anemometers, (a) below the pedestrian deck, (b) at

the top of the mast
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Figure 5.66: The wind speed from the two annemometers

Therefore a transient time history analysis is carried out in the ANSYS software,

preceded by a static analysis logically necessary to define the distortion of the struc-

ture subject to permanent loads. The method used for the integration of the equations

of the motion is that of Newmark, with parameters β = 0.25 and γ = 0.5 chosen spe-

cially to avoid the presence of the numerical damping.

Figures 5.67 and 5.68 present the acceleration response obtained after the execu-

tion of the analysis on the model without the dampers while that with the connected

dampers is shown in Figures 5.69 and 5.70. The damping values were used from Ta-

ble 4.1. It can be noticed that the trend of the accelerations and the maximum values

for the node corresponding to the accelerometer M1 are approachable to the records

of the same accelerometer.

This behavior, as appears good, is checked also for the M5, nevertheless, that hap-

pens mainly because the values of acceleration in M1 and M5 are very low because

they are positioned in the proximity of the ramp of access to the deck. In fact, all

the other comparisons are like that of M3 in Figure 5.70 and to check simply the or-

der of magnitude by calculating the root-mean-square (RMS) values presents large

percentage difference, as shown in Table 5.14.

The results obtained emphasized that the model provided with or without dampers,

in both the cases, underestimate the accelerations measured from the sensors. There

could be the following possible reasons:

174



Figure 5.67: comparison between the acceleration recorded at M1 with the vertical

acceleration at node 11003 of ANSYS model without dampers

Figure 5.68: comparison between the acceleration recorded at M3 with the vertical

acceleration at node 11042 of ANSYS model without dampers
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Figure 5.69: comparison between the acceleration recorded at M1 with the vertical

acceleration at node 11003 of ANSYS model with dampers

Figure 5.70: comparison between the acceleration recorded at M3 with the vertical

acceleration at node 11042 of ANSYS model with dampers
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Table 5.14: Difference in acceleration RMS values recorded and from FE model with

and without dampers

RMSrecorded RMSAnsysDamper |Error%| RMSAnsysNoDamper |Error%|
M1 0.014 m/s2 0.015 m/s2 7.8% 0.017 m/s2 25.1%

M2 0.060 m/s2 0.020 m/s2 66.2% 0.027 m/s2 54.6%

M3 0.069 m/s2 0.027 m/s2 60.9% 0.041 m/s2 40.9%

M4 0.086 m/s2 0.031 m/s2 64.1% 0.043 m/s2 49.3%

M5 0.037 m/s2 0.020 m/s2 46.6% 0.024 m/s2 35.5%

M6 0.043 m/s2 0.018 m/s2 57.9% 0.021 m/s2 49.8%

M7 0.061 m/s2 0.026 m/s2 58.2% 0.042 m/s2 31.4%

M8 0.016 m/s2 0.007 m/s2 53.0% 0.009 m/s2 44.7%

• a possibility of sustained pedestrian crossing around noon of the 25/12/2009,

when the measurements were recorded;

• an incorrect evaluation of some of the aerodynamic coefficients i.e. CM , CL or CD

(Zasso et al., 2009);

• the chosen wind history for the simulation may not be close to the reality;

• the necessity to carry out a MU on the model with dampers and not only on the

eigenvalues but also on the eigenvectors.

The possible improvements in the next stage of the development of the model could

be achieved considering the above points, however, it is obvious that the wind in

prompt analysis of the deck flows at low frequency, typically involving the first two

modes, and to re-analyse the mode shapes of prime suspect is the second mode

due to its low correlation with the experimental data.

177



5.6 Conclusions

The initial FE model was updated in the light of the experimental data obtained from

the identification of the bridge. The sensitivity based model updating techniques and

Powell’s Dog-Leg method of optimisation based on the Trust-Region approach were

used. The sensitivity matrix was calculated and the 9 most sensitive parameters were

selected. The final updated model showed a considerable reduction of errors rele-

vant to frequencies. The updated model reproduced the response of the footbridge

under an actual wind loading condition. Moreover, it underestimated the acceleration

response with respect to the one obtained from measurements. From the practical

point of view the second mode needs a better correlation to the experimental reality.
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CHAPTER 6

IDENTIFICATION OF WEAK NONLINEARITIES IN CABLES

OF CABLE-STAYED FOOTBRIDGES

6.1 Introduction

A cable-stayed bridge consists of three main structural components: deck or girder,

cables and mast. It was proven experimentally as well as analytically that the re-

sponse of cable-stayed bridges is highly nonlinear owing to its inherent flexible nature

(Nazmy and Abdel-Ghaffar, 1990; Abdel-Ghaffar and Nazmy, 1991; Ali and Abdel-

Ghaffar, 1995). Large displacements associated with cable-stayed bridges, espe-

cially during dynamic actions, lead to geometric nonlinearities in the structural re-

sponse. Cable sag and stiffening effects impart nonlinearity to the bridge under grav-

ity loads. Moreover, the interaction of the response between stiffening girders and

various other components -cable-deck or cable-cable-, gives rise to additional geo-

metric nonlinearities. Figure 6.1 shows the typical nonlinear response of cable-stay

bridges, which is different from the response of conventional structures because in

cable-supported structures, the stiffness increases as the load increases, i.e. a hard-

ening behaviour(Nazmy and Abdel-Ghaffar, 1990; Abdel-Ghaffar and Khalifa, 1991;

Abdel-Ghaffar and Nazmy, 1991; Ali and Abdel-Ghaffar, 1995). An analysis of cable-

stayed bridges should accurately capture these nonlinearities to represent the real

state of the structure. Eventually, the dynamic responses of a cable-stayed bridge

are the combination of interactions between the motions of the bridge deck and the

pylons as well as those of the stay cables (Cheng and Lau, 2002).
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Figure 6.1: Typical response of cable-stay bridges after (Abdel-Ghaffar and Nazmy,

1991)
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Due to their overall flexibility and low energy dissipation capacity, cables are sus-

ceptible to large-amplitude vibration that may eventually degrade their performance(Yu

and Xu, 1999). Under the conditions of heavy traffic loads or unfavorable weather

conditions of wind accompanied by rain, the amplitude of a stay cable vibration can

be large (Cheng and Lau, 2002). The observation of significant rain-wind-induced

cable vibration was first reported by Hikami (Hikami, 1986) during the construction

of the Meiko-Nishi cable-stayed bridge in Japan, with a maximum amplitude of 0.55

m. However, peak-to-peak vibration amplitude up to 6 ft (about 2 m) have been re-

ported with typical values of around 2 ft (about 0.6 m), primarily in the lower cable

modes, with frequencies ranging approximately from 1 to 3 Hz (Kumarasena et al.,

2005). One of the most intensive cable vibrations were registered on the Oresund

Bridge, linking Denmark and Sweden during severe snow storms. The registered

amplitude of cable vibrations approached 3 m, the cable kept on vibrating for over an

hour (Malanka et al., 2007). Large displacements associated with stay cables, espe-

cially during dynamic actions lead to geometric nonlinearity in the structural response.

Dynamic non-linearities occurring in large-amplitude vibration of a cable mainly arise

from the quadratic and cubic nonlinear terms in the equations of motion (Takahashi

and Konishi, 1987; Warnitchai et al., 1995; Rega, 2004a). These non-linear terms

come up due to the stretching of the cable associated with the large-amplitude vi-

bration (Takahashi and Konishi, 1987). The existence of the quadratic and cubic

nonlinear terms makes the in-plane cable motion couple with the out-of-plane cable

motion and induces modal interaction (Yu and Xu, 1999). The interaction between

cables vibration and deck vibrations can have significant influence on the response of

a bridge (Caetano et al., 2000). A model of the deck-cable interaction should consider

the quadratic and cubic nonlinear terms in the equation of motion of both the deck

and the cable (Gattulli et al., 2002). For structures characterized by nonlinear be-

haviour even for low-energy excitation, the assumption of linear behaviour could not

be sufficient to reach a reliable characterization of its dynamic behaviour (Demarie

et al., 2005b). Hence, a linear model may not be the best alternative and a nonlinear

model is needed for the analysis of cable behaviour (Carrin-Viramontes et al., 2008).

Nonlinear system identification entails the modelling of the dynamics of a nonlin-

ear system from measured input and output data. In detail, nonlinear model consists
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of more parameters due to higher order terms involved in the equations of motion.

Therefore, the correctness of a model depends on right estimate of these parame-

ters. Dynamic system identification is a major tool to retrieve suitable description of

the system and its parameters from experimental observations of the input and output

variables. In other words, an identification procedure allows a mapping of available

experimental data into a model. Moreover, identification of a nonlinear system re-

quires special attention. While all methods have their individual merits, they also

have some weaknesses and it is wise to say that no single technique offers a solution

to all problems (Worden et al., 2007). A comprehensive book is available by Worden

and Tomlinson on this topic (Worden and Tomlinson, 2001). A classification of non-

linear identification methods is given in Figure 6.2 . In various available methods the

non-parametric methods based on Volterra series and polynomial expressions have

certain advantages over other methods. These methods were successfully used for

instantaneous identification of nonlinear systems having (assuming) quadratic and

cubic terms in their equations of motion (Demarie et al., 2005a,b, 2010; Bursi et al.,

2010). Because both the quadratic and the cubic type of nonlinearities are present in

the cable dynamics, we can use the polynomial expression method with a polynomial

of order three. In general, to identify the higher order terms, a system is tested with

a relatively high level excitation, since most continuous nonlinearities have a greater

influence on the behaviour of the system as the level is increased. Discontinuous

nonlinearities, such as friction, often have the opposite effect, although if they are

to be approximated by a polynomial, a high level of excitation is again appropriate

(Storer, 1991).

In absence of experimental data, response data were generated by means of AN-

SYS software by modelling a cable element. A simple model of a cable with in-plane

motion is considered, and it is reduced to a Single-Degree-of-Freedom (SDoF) sys-

tem by harmonic excitation in its first mode (Rega, 2004a). The data are used to find

the applicability of the non-parametric methods to nonlinear identification of cable vi-

bration in the MATLAB environment. Nevertheless, nonlinear system identification

could provide additional knowledge. Of course, the SDoF model is in some sense

a fairly poor idealization of the actual infinite-dimensional system. Nevertheless, it

allows us to understand several basic features of its nonlinear dynamics, in order to
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Figure 6.2: Classification of the nonlinear identification methods

compare different approaches and, more generally, to enter smoothly the rather in-

volved issue of complex dynamics (Rega, 2004b). Along this line, we assume that

the system is weakly nonlinear and that most of the energy is in the primary reso-

nance associated to the first mode. Consequently, data are forced to fit the model

of a weakly nonlinear SDoF system. In this way, distortions due to the discrepancy

between the assumed model and the real system are perceived as noise in the opti-

misation procedure.

Initially, section 6.2 provides a brief idea about the presence of nonlinearity in ca-

ble vibration and the formulation of the equation of motion of the reduced simplified

model. The next section 6.3 presents the higher order frequency response functions

and the theory behind Volterra series. Then, section 6.4 describes the theory behind

the time-frequency techniques and the instantaneous identification. Then, section

6.5 describes the FE model used to model the cable element and the formulation of

the problem. Afterwards, results are presented and discussed in section 6.6. Finally,

main conclusions are drawn.
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6.2 Nonlinearity in cable vibration

Cables are very efficient structural members and hence have been widely used in

many applications including cable-stayed bridges. Since cables are light, very flexible

and lightly damped, structures utilizing cables, i.e. cable-structure systems, usually

have various dynamic problems. Dynamic non-linearity occurring in large-amplitude

vibration of a cable mainly arises from the quadratic and cubic non-linear terms in

its equations of motion (Yu and Xu, 1999). Several efforts in the past were made to

model the behaviour of the sag suspended cable, progressing from the basic model

of the taut strings, both linear and nonlinear models were formulated (Rega, 2004a).

A heavy cable suspended between two supports at the same level a distance l apart

is shown in Figure 6.3.

Figure 6.3: Cable configurations and displacement components in a global reference

system, after (Rega, 2004a)

The reader can refer to the review article of Rega (Rega, 2004a) that presents a

collection of works on the modeling of nonlinear dynamics of cable. We can start with
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the following equation (Benedettini et al., 1995):


















EA [u′ + y′v′ + (1/2)(v′2 + w ′2)]′−µuu̇ + pu= mü
{

Hv′ + EA (y′ + v′)[u′ + y′v′ + (1/2)(v′2 + w ′2)]
}′ −µv v̇ + pv= mv̈

{

Hw ′ + EAw ′[u′ + y′v′ + (1/2)(v′2 + w ′2)]
}′ −µwẇ + pw= mẅ

(6.1)

Eq. 6.1 presents the displacement components (u, v, w) of the suspended cable in

(x, y, z) coordinates. However, it assumes that: i) the initial static configuration de-

scribed through the parabola y = 4d[x/l − (x/l)2] with mid-span sag d (a valid approx-

imation for d/l ≤ 1/8),ii) the initial strain negligible with respect to unity, which also

entails H/EA � 1,and iii) the gradient of the longitudinal displacement (u) component

negligible with respect to unity, which corresponds to moderately large rotations in

the cable motion. H is horizontal component of the initial tension, A is cross-sectional

area, E is material elastic modulus, m is mass per unit length.

In the absence of external actions in the longitudinal direction, and neglecting the

corresponding inertia and viscous forces, the u displacement component can be ob-

tained from the first of Eqs. 6.1 through a static condensation procedure (Kauderer,

1958). Thus, Eqs.6.1 are reduced to two partial integro-differential equations in the

planar v and nonplanar w displacement components







{Hv′ + (EA/l)(y′ + v′)e(t)}′ −µv v̇ + pv= mv̈

{Hw ′ + (EA/l)w ′e(t)}′ −µwẇ + pw= mẅ
(6.2)

where

e(t) =
∫

l

[y′v′ + (1/2)(v′2 + w ′2)]dx (6.3)

with h(t) = EAe(t) representing the spatially uniform additional (dynamic) cable

tension. Such equations (which can be suitably nondimensionalized) are accurate

for studying the low-frequency nonlinear forced dynamics of suspended cables for

which H/EA = O [(d/l)2] and the dynamic displacement components u, v, and w are,

respectively, u = O [εd2/l], v and w = O [εd], ε herein denoting a small parameter of the

order of the amplitude. In technical applications, such situations occur for sag-to-span

ratios up to about 1/20.
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6.2.1 Linearized dynamics of small-sag continuous cable

The in-plane linear mode of a (shallow) cable in the noncondensed formulation always

combines transverse and longitudinal motion. However, transverse (elastic) modes

are those which involve substantial transverse/vertical (tangential/longitudinal) motion

(Burgess and Triantafyllou, 1988), the behavior of cables at low frequency being dom-

inated by transverse modes, while that at high frequencies involving meaningful elas-

tic modes. Since we are dealing with low-frequency nonlinear dynamics, we report

only on the corresponding transverse modes (Irvine and Caughey, 1974), whereas

elastic modes of high-frequency are dealt with in (Burgess and Triantafyllou, 1988).

The effect of axial stretching on the linear frequencies of arbitrarily sagged cables is

accounted for in (Shih and Tadjbakhsh, 1984) and in the numerical model of Srinil et

al (Srinil et al., 2004), who also investigate the nonlinear interaction effects of low-

frequency elastic modes occurring for highly extensible cables (Srinil et al., 2003). In

turn, accounting for the longitudinal inertia within a wavelet- Galerkin procedure has

allowed Al-Qassab and Nair (Al-Qassab and Nair, 2003, 2004) to highlight the occur-

rence of high-order modes with horizontal components larger than the vertical ones,

called reverting partially swapping modes.

Upon eliminating the longitudinal displacement component u from the linearized

version of Eqs. 6.1 through the condensation procedure, the equations for linearized

undamped free dynamics of a parabolic cable in global coordinates are obtained from

Eqs. 6.2 by considering that H = const . and by neglecting second-order terms:







Hv′′ + hy′′ = mv̈

Hw ′′ = mẅ
(6.4)

In Eqs. 6.4, h(t) = EAe(t) represents the first-order part of the spatially uniform

dynamic tension (see Eq. 6.3).

The horizontal out-of-plane motion w is uncoupled from the vertical in-plane motion

v because, to first order, it involves no additional cable tension. The solutions of the

inplane and out-of-plane eigenvalue problems provide the relevant natural frequen-

cies and linear normal modes (Irvine and Caughey, 1974).
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6.2.1.1 Out-of-plane vibration

The eigenvalue problem for the out-of-plane horizontal motion is identical to that of a

taut string and admits the eigenmodes

wi(x) = Awi sin(iπx/l), i = 1, 2, 3, ... (6.5)

and the associated natural frequencies

ωi =
iπ
l

√

H
m

, i = 1, 2, 3, ... (6.6)

The frequency of the first (symmetric) out-of-plane horizontal mode is the lowest

natural frequency of any given parabolic cable.

6.2.1.2 In-plane vibration

Antisymmetric and symmetric modes with respect to cable midspan must be distin-

guished. The former (the latter) consist of antisymmetric (symmetric) vertical com-

ponents and symmetric (antisymmetric) longitudinal components. No additional ca-

ble tension h(t) is induced by the motion in the antisymmetric modes, to first order,

whereas additional cable tension is induced in the symmetric modes (Irvine and Grif-

fin, 1976).

The natural frequencies of the antisymmetric modes are given by

ωi =
2iπ

l

√

H
m

, i = 1, 2, 3, ... (6.7)

and are the same as of taut string modes (Routh, 1955). The corresponding vertical

modal components read

vi(x) = Avi sin(2iπx/l), i = 1, 2, 3, ... (6.8)

The vertical component of the ith-symmetric mode is given by

vi(x) =
Cvi

(βi l)2
{1 − tan(1/2βi l) sin βix − cosβix} , i = 1, 3, 5, ... (6.9)
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where Cvi is an arbitrary constant and βi = ωi(m/H)1/2, ωi being the corresponding

natural frequency. The value of βi l follows from the transcendental equation

tan(1/2βl) = (1/2βl) − (4/λ2)(1/2βl)3 (6.10)

where

λ2 = 64(EA/H)(d/l)2 = 512(EA/mgl)(d/l)3 = v2
l /(v2

t )3 (6.11)

is a nondimensional parameter which accounts for the elastic and geometric cable

properties, and governs the nature of the roots of the equation.

6.2.2 Discrete models of continuous cable for analysis of reduced problems

Discretised versions of the equations of motion of a continuous cable in global coor-

dinates are obtained in the framework of the search for a solution for the unknown

displacement components ui through separate variables:

ui(x, t) =
∞
∑

j=1

fij(x)qij (t), i = 1, 2, 3, ... (6.12)

Then, one assumes the spatial functions, fij(x), space discretisation, or the tempo-

ral functions, qij(t), time discretisation. With time discretisation, the qij(t) are usually

taken to be harmonic and the method of harmonic balance is used to obtain an infinite

set of nonlinear boundary-value problems for the fij(x). With space discretisation, the

fij(x)—and thus the spatial dependence—are assumed a priori (assumed mode tech-

nique) and are considered constant during the motion. If the boundary conditions are

homogeneous, the fij(x) are usually taken to be the eigenfunctions of the linearized

problem. The method of weighted residuals or variational principles are then used

to determine an infinite set of nonlinear ordinary differential equations governing the

qij(t). Nearly all of the cable discrete models developed in the literature have been

formulated in the context of a space discretisation approach through the Galerkin pro-

cedure. Moreover, the summation in Eq. 6.12 is usually truncated to a finite integer

n.
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Accordingly, one main aspect is concerned with the number of discretising terms

to be considered in an approximate finite-degree-of-freedom model. It depends on

the features of the original continuum problem we are trying to preserve and on the

method we will apply to get the solution of the discrete system. Low-order models

must be considered when searching for a solution through analytical or semianalytical

methods, which often allow to highlight basic dynamical features of the nonlinear

problem.

The selection of proper degree-of-freedom (dof) to be taken into account for the

elastic cable depends on whether the attention is devoted to system 2D (planar) or 3D

(spatial) dynamics, on possible nearness to conditions of internal resonance involving

system natural frequencies, and on the dynamical features of the external actions. In

the following subsection, reduced model for 2D finite dynamics is presented as it is

relevant to the study presented in this chapter. For 3D reduced models and details

reader is suggested to refer Rega (Rega, 2004a).

6.2.2.1 Reduced models for 2D dynamics

To study the cable monofrequent planar response to a harmonic forcing of frequency

Ω with given spatial distribution ϕ(x),namely p(x, t) = ϕ(x)P cosΩt ,reference is made

to the simple single-degree-freedom (SDF) model obtained by describing the dis-

placement v(x, t) through one eigenfunction of the linearized equation of free motion:

v(x, t) = f (x)q(t). By applying the Galerkin method to Eq.6.2(a) (with w = 0), one di-

mensionless ordinary differential equation is obtained (Luongo et al., 1984; Benedet-

tini and Rega, 1987):

q̈ + µq̇ + q + c2q2 + c3q3 = P cosΩt (6.13)

The coefficient of the linear term in Eq. 6.13 is equal to unity since time is nondi-

mensionalized with respect to a cable linear frequency, and the other coefficients

depend on cable properties and on the assumed shape functions. Eq. 6.13 cor-

responds to a Helmholtz-Duffing oscillator in the theory of dynamical systems. It

contains all of the main features of the original planar continuum model, namely the

quadratic (Helmholtz) and cubic (Duffing) nonlinearities associated with the initial cur-
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vature and stretching of the cable axis, respectively. In case of zero sag-to-span ratio

(equilibrium curvature), the quadratic nonlinearity term c2 vanishes (Rega, 2004a).

The relevant coefficients, c2 and c3 , account for cable properties just through the

same unique elastogeometric parameter λ2 (Eq.6.11) that governs the linear dynam-

ics, when the displacement is nondimensionalized with respect to the sag (Luongo

et al., 1984). In contrast, they depend separately on the mechanical and geometrical

cable properties, when the displacement is nondimensionalized with respect to the

span. This is, however, a more suitable assumption for the effective description of

resonant motions of cables with only different sag-to-span ratios.

With proper choice of the cable vertical eigenfunction, Eq. 6.13 can be used for

studying either symmetric or antisymmetric cable planar response under the corre-

sponding harmonically varying distributed forces. It is worth noticing that the quadratic

nonlinearity in Eq. 6.13 vanishes if the assumed mode is antisymmetric.

6.3 Higher order dynamic response functions

6.3.1 Time domain- IRF

For a general linear system, the input-output map can be expressed by Duhamel’s

integral (Billings and Tsang, 1989a),

x(t) =
∫ +∞

−∞
h(τ )u(t − τ )dτ (6.14)

Equation 6.14 is manifestly linear and therefore cannot hold for arbitrary nonlinear

systems. However, it admits a generalisation. The extended form of equation 6.14

was obtained by Volterra (Volterra, 1959). It takes the form of an infinite series,

x(t) = x1 (t) + x2 (t) + x3 (t) + ... (6.15)
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Figure 6.4: Input-output diagram
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where,

x1 (t) =
∫ +∞

−∞
h1 (τ1)u(t − τ 1)dτ1 (6.16)

x2 (t) =
∫ +∞

−∞

∫ +∞

−∞
h2 (τ1 , τ2 )u(t − τ1)u(t − τ2)dτ1 dτ2 (6.17)

x3 (t) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
h3(τ1, τ2,τ3)u(t − τ 1)u(t − τ 2)u(t − τ 3)dτ1dτ2dτ3 (6.18)

The form of the general term is obvious from the above. The functions h1(τ ),

h2(τ1, τ2), h3(τ1, τ2,τ3) and hn(τ1, ...τn), . . . are generalisations of the linear impulse

response function and are usually referred to as Volterra kernels. The expression

6.14 simply represents the lowest order truncation which is of course exact only for

linear systems. The input-output relation of linear and Volterra system are compared

graphically in Figure 6.4.There are many practical issues associated with the exis-

tence and convergence of the Volterra series and a good summary can be found in

(Palm and Poggio, 1977).

6.3.2 Frequency domain- FRF

There exists a dual frequency-domain representation for nonlinear systems. The

higher order FRF’s or Volterra kernel transforms Hn(ω1, ...,ωn), n = 1, ...,∞ are defined

as the multi-dimensional Fourier transforms of the kernels, i.e.,

Hn(ω1, ...,ωn) =
∫ +∞

−∞
...
∫ +∞

−∞
hn(τ1, ..., τn)e−i(ω1τ1+...+ωnτn)dτ1...dτn (6.19)

It is a straightforward matter to obtain the frequency-domain dual of the expression

6.15,

X (ω) = X1(ω) + X2(ω) + X3(ω) + ... (6.20)

where,
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X1(ω) = H1(ω)U(ω) (6.21)

X2(ω) =
1

2π

∫ +∞

−∞
H2(ω1,ω − ω1) U(ω1) U(ω − ω1)dω1 (6.22)

X3(ω) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
H3(ω1,ω2,ω − ω1 − ω2) U(ω1)U(ω2)U(ω − ω1 − ω2)dω1dω2(6.23)

One use of the Volterra series is the construction of analytic approximations to var-

ious quantities of interest in experimental structural analysis. Approximations to the

FRFs of SDOF and MDOF systems with cubic nonlinearities and excited by Gaussian

white noise can be found in the work of Worden and Manson (Worden and Manson,

1998, 1999).

There are various methods for efficiently determining the higher order FRF’s for

a system, for e.g. Time-Delay Neural Network (TDNN) (Wray and Green, 1994),

harmonic testing (Storer and Tomlinson, 1991) and impulse testing (Liu et al., 1987).

More work on identification of nonlinear systems via the Volterra kernels and kernel

transforms can be found in Khan and Vyas (Khan and Vyas, 1999), Chatterjee and

Vyas (Chatterjee and Vyas, 2003) and Tawfiq and Vihn (Tawfiq and Vihn, 2003).

If one knows the equation of motion of a system, an alternative approach can be

used which yields exact expressions for the higher order FRF’s. The method of har-

monic probing was introduced by Bedrossan and Rice specifically for systems with

continuous-time equations of motion (Bedrossan and Ricand, 1971). The method

was extended to discrete-time systems by Billings and Tsang (Billings and Tsang,

1989a,b). An alternative, recursive approach to probing is presented in Peyton Jones

and Billings (Peyton Jones and Billings, 1989).

6.4 Non-parametric methods for instantaneous identification of nonlinear systems

In the identification of structures characterized by localized nonlinearities, the defi-

nition of instantaneous time-frequency estimators (Ceravolo, 2004) may result partic-
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ularly useful: more specifically, its extension to nonlinear systems, whose input/output

relationship can be depicted as a Volterra series (Volterra, 1959). The information ob-

tained from a nonlinear identification session may both offer a clue in choosing reliable

structural models, and forecast the dynamic behavior in non-operational conditions

(Ceravolo, 2004). A state-of art is already presented on instantaneous identification

of nonlinear systems in section 3.2.

The formulation of parametric methods requires the adoption of an appropriate

form for the model, which should accurately describe the dynamic behaviour of the

real structures under investigation. Sometimes, however, it may prove very difficult

to meet this requirement: this is what prompted the development of non-parametric

methods whose formulation does not require any a priori knowledge of the restoring

force of a structure. A list of nonlinear identification methods, both parametric and

non-parametric, is given in Figure 6.2.

6.4.1 Identification of Volterra series forms

Within the framework of the Volterra series representation of the input/output rela-

tionship of a nonlinear dynamic system, the identification process is based on the

experimental determination of the higher order frequency response functions or, al-

ternatively, the kernels in the time domain. If the system is subjected to a stochastic

load, the identification reduces to the determination of the second and higher order

spectral moments of the excitation and system response (i.e., (Tick, 1961; Kim and

Powers, 1993)) or, in the time domain, through the estimate of higher order cumu-

lant function (i.e., (Koukoulas and Kalouptsidis, 2000)). A consistent evaluation of

the statistical characteristics of order > 2 hinges on the availability of a great quan-

tity of experimental data, greater than is necessary in linear system identification: in

structural engineering applications, this requirement cannot be easily met, especially

when the measurements are performed in situ.

Let us consider a time-invariant nonlinear dynamic system with a single degree of

freedom as described by the following equation of motion (Worden and Tomlinson,

2001):
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mẍ + fd ˙(x) + f s(x) = u(t) (6.24)

where m is the mass, fd(x) , is the nonlinear damping term and fs(x) is the nonlinear

elastic restoring force, u(t) and x(t) are the system’s excitation and response. Let us

assume that the input/output relationship can be approximated through a Volterra

series, Eq. 6.15 can be written as:



















x(t) = x1 (t) + x2 (t) + x3 (t) + ...

=
∫ +∞
−∞ h1 (τ1)u(t − τ 1)dτ 1+

∫ +∞
−∞

∫ +∞
−∞ h2 (τ1 , τ2 )u(t − τ 1)u(t − τ 2)dτ1dτ2 +

+
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ h3(τ1, τ2,τ3)u(t − τ 1)u(t − τ 2)u(t − τ 3)dτ1dτ2dτ3 + ...

(6.25)

where h1 (τ1), h2 (τ1 , τ2 ), h3(τ1, τ2,τ3) are respectively the system’s linear, quadratic

and cubic impulse response functions, x1 (t), x2 (t) and x3 (t) are respectively the linear,

quadratic and cubic contributions to the system response. Without losing in generality,

let us consider a system with a symmetric behaviour (the laws fd(x) and fs(x) are odd

functions, all the even contributions in the series are identically zero) and apply to the

previous expression the definition of the Short-Time Fourier Transform (Cohen, 1995):



















D(t , f ) =
∫ +∞
−∞ x(τ )w(τ − t)e i2πfτdτ =

∫ +∞
−∞(x1 (τ ) + x3 (τ ) + ...)w(τ − t)e i2πfτdτ

=
∫ +∞
−∞(

∫ +∞
−∞ h1 (τ1)u(τ − τ 1)dτ1)w(τ − t)e i2πfτdτ+

+
∫ +∞
−∞(

∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ h3(τ1, τ2,τ3)u(τ − τ 1)u(τ − τ 2)u(τ − τ3)dτ1dτ2dτ3)w(τ − t)e i2πfτdτ + ...

(6.26)

where D(t , f ) is the system’s Short-Time Fourier Transform (STFT) and w(t) is a

“window” function defined in the time domain, such that it leaves more or less unal-

tered the signal unaltered around the time t but suppresses the signal for times distant

from the time of interest.ies representation of the input/output relationship (Eq. 6.25),

we can work out the form of D(t , f ) directly from Eq. 6.26, which requires the knowl-

edge of the form of the impulse response functions.

Let us assume to have measured the system response in N instants and let p be

the vector of the parameters expressing the functionals of fd(x) and fs(x) in Eq. 6.24:

the following instantaneous objective function can be introduced:
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Fob (n∗,p) =

∣

∣

∣

∣

∣

N−1
∑

m=0

[

|D(n∗, m)|2 − |Ds(n∗, m)|2
]

∣

∣

∣

∣

∣

(6.27)

where:

n∗ : discrete instant at which the objective function is evaluated;

D(n∗, m) : STFT transform of system response (measured);

Ds(n∗, m) : STFT transform of the system response corresponding to a given con-

figuration of parameters p.

Eq. 6.27 describes the difference between the instantaneous energies respectively

of the signal at time t∗ = n∗∆t and of a signal corresponding to a given configura-

tion of the unknown parameters p,approximated via a truncated Volterra series: the

number of terms to be included is function of the energy and characteristics of the

input. Each term of the summation can be obtained via different methods, i.e. solving

the associated linear equations (Vazquez Feijoo et al., 2004). Thus, by resorting to

classical optimisation procedures, it proves possible to determine instant by instant

the minimum of the Fob (n∗,p) function through which the vector of the instantaneous

estimators p(t) of the mechanical properties of the system can be defined.

6.4.2 Identification of polynomial forms

Within non-parametric identification techniques, this procedure assumes that the restor-

ing force fs(x) can be expressed through a polynomial approximation, characterized

by time-varying coefficients. The papers (Bursi et al, 2009; Ceravolo et al., 2010)

proposed already a general method capable of capturing the non-linear behaviour of

a dynamic system, based on the concept of instantaneous identification, performed

in the time-frequency domain as defined by Ceravolo (Ceravolo, 2004, 2009). It might

be known or intuitively obvious, for example, that the non-linearity is in the stiffness

function rather than in the damping, and correspondingly the higher order damping

terms could be omitted from the model (Storer, 1991). Eq. 6.24 can be expresses as

follows:

mẍ + cẋ + (k 1x + k 2x2+k 3x3+...) = u(t) (6.28)
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The choice of the degree of the polynomial depends on the behaviour of the system

to identify: the more complex is the constitutive behaviour of the system, the higher is

the degree of the polynomial approximation needed and, consequently, the number

of coefficients to be determined. This drawback is well known when a polynomial is

used to fit a general curve and can be overcome by resorting to a basis of orthogonal

functions (i.e. Chebyshev polynomials). On the other hand, Eq. 6.28 is required to

approximate the response on a short time interval; hence a low-degree polynomial

approximation is expected to be suitable for most applications. From the practical

viewpoint, a suitable choice can be made performing the identification with different

polynomials, progressively increasing the degree, and selecting a posteriori the one

that gives the best results in representing the system response.

The polynomial form implies some advantages: i) the polynomial expression allows

to identify the structural responses without assuming any a priori constitutive model

for the system, nevertheless, a-priori information can be used to simplify the poly-

nomial model before proceeding to the parameter identification stage; ii) within the

range of validity of the approximation adopted, Eq. 6.28 is characterized by a smooth

non-linearity, which makes it particularly suited for a non-parametric instantaneous

approach (Ceravolo et al., 2010).

A discrete form of time-frequency identification algorithms based on spectrogram

are formulated to find the model parameters which minimize the error between a

given time-frequency model and the time-frequency transform of the measured or

numerical signal (Ceravolo, 2004, 2009).

Let us suppose that the system response xn(t) - displacement, velocity or accel-

eration - is known, either from measurement or from numerical simulation. Then, if

also the excitation u(t) is known, a possible choice for the time-frequency model is

represented by the time-frequency transform of the response xn(t), that for a given

configuration of parameters p can be computed via a Runge-Kutta method. Accord-

ingly, a time-frequency model can be identified from the following minimization:



















ε (j,p) =

∣

∣

∣

∣

∣

N−1
∑

j=0

[

SPEC (γ)
x

[j, k ;p] − SPEC (γ)
xn

[j, k ]
]

∣

∣

∣

∣

∣

→ p id (t̄ = j̄∆t) = arg

[

min
∀p,j=j̄

ε(j, p)

]
(6.29)
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where p = {c k1 k2 k3} is the vector of parameters describing the dynamic proper-

ties of the polynomial system. SPEC (γ)
xn

[j, k ] and SPEC (γ)
x

[j, k ;p] are the values of the

spectrogram- SPEC- at a discrete time instant j ·∆t and frequency k ·∆f of the system

response, measured and associated with the model, respectively. The parameter ε

gives the modulus of the difference between the instantaneous energy of the mea-

sured response and that of the system output corresponding to a given configuration

of the unknown parameter vector p. By resorting to classical optimisation procedures,

one can determine the minimum of ε
(

j = j̄,p
)

at every instant t̄ = j̄ · ∆t , through which

the vector of the instantaneous polynomial coefficients can be defined. It is worth

remarking that an instantaneous optimisation is possible through the temporal local-

ization of frequency components, i.e. the time-frequency representation. Despite the

procedure leads to instantaneous or time-varying parameters, see for instance (Wu

and Smyth, 2008), a time-frequency method cannot be strictly defined a real-time ap-

proach. In fact, the time-frequency uncertainty principle does not allow for an on-line

implementation. For a comprehensive discussion on this matter see (Ceravolo et al.,

2010).

The direct identification of the parameters p of the model, without passing through

the polynomial coefficients, is possible too and c, k1, k2 and k3 would be computed

by time-averaging of the identified instantaneous values. However, it can be proven

that this direct procedure is computationally more expensive. Moreover, it would be

justified only when the true structural behaviour is close to that of the chosen model.

Conversely, the polynomial approximation used here is always suited, since it can be

intended as non-parametric, in the sense that its coefficients do not need to retain a

definite meaning.
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6.5 Nonlinear identification of cables

6.5.1 A numerical example

A cable element, shown in Figure 6.5, with zero-sag (pretensioned) was modelled

in ANSYS. The material and geometrical properties are presented in Table 6.1. The

cable was divided in 10 elements. LINK1-Truss element was used. The 2-D spar

(Truss) element is a uniaxial tension-compression element with two degrees of free-

dom at each node: translations in the nodal x and y directions. The element is defined

by two nodes, the cross-sectional area, an initial strain, and the material properties.

The result of the modal analysis is shown in Table 6.2 and the modal vector φ from

the FE model of the cable are given in Eq. 6.30..

Figure 6.5: Cable element of example
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Table 6.1: Properties of the cable

Parameter Value

Length 73.73 m

Area 0.001303 m2

Elastic modulus 165x109 N/m2

Density 8289 kg/m3

Poisson’s ratio 0.3

Pre-strain 0.0016

Table 6.2: Modal frequencies

Mode No. Freqency (Hz)

1 1.2162

2 2.4625

3 3.7692

4 5.1662

5 6.6778

6 8.3091

7 10.014

8 11.639

9 12.880
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φ =















































0.0156 0.0305 −0.0437 0.0544 0.0614 0.0635 −0.0591 0.0468 0.0262

0.0297 0.0493 −0.0514 0.0336 0 −0.0393 0.0695 −0.0757 −0.0499

0.0409 0.0493 −0.0167 −0.0336 −0.0614 −0.0393 −0.0226 0.0757 0.0686

0.0481 0.0305 0.0317 −0.0544 0 0.0635 −0.0430 −0.0468 −0.0807

0.0506 0 0.0540 0 0.0614 0 −0.0731 0 0.0848

0.0481 −0.0305 0.0317 0.0544 0 −0.0635 −0.0430 0.0468 −0.0807

0.0409 −0.0493 −0.0167 0.0336 −0.0614 0.0393 −0.0226 −0.0757 0.0686

0.0297 −0.0493 −0.0514 −0.0336 0 0.0393 0.0695 0.0757 −0.0499

0.0156 −0.0305 −0.0437 −0.0544 0.0614 −0.0635 −0.0591 −0.0468 0.0262















































(6.30)

The cable vibration represents a multi-degree of freedom system. In order to sim-

plify the study it was decided to work with a single degree of freedom system es-

pecially in the first mode. To exite the cable truly in its first mode, a harmonic load,

frequency 1.2162 Hz, was applied with the load magnitude varying according to the

first mode shape, Eq.6.31 .

φ1 =















































0.31

0.59

0.81

0.95

1.00

0.95

0.81

0.59

0.31















































(6.31)

To study the cable monofrequent planar response to a harmonic forcing of fre-

quency Ω with given spatial distribution φ, namely p(t) = φP0 sinΩt was applied (Rega,

2004a). In Section 6.4, it was discussed that the polynomial method, we will apply

for identification purpose, has the advantage that the polynomial expression allows

to identify the structural responses without assuming any a priori constitutive model
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for the system. Nevertheless, as already described in section 6.2, quadratic and cu-

bic nonlinearities are relevant to the cable vibration, we assume that the equation of

motion for the first mode of nonlinear vibration can be written in the form of Eq. 6.32.

M1 q̈1 + C q̇1 + K1 q1 + K2q2
1 + K3q3

1= φT
1φ1P0 sinΩt (6.32)

Putting M1 = 1.0 and the product φT
1φ1 = 0.0128, Eq. 6.32 results as follows:

q̈1 + C q̇1 + K1 q1 + K2q2
1 + K3q3

1= 0.0128 · P0 sinΩt (6.33)

One can notice in Eq. 6.33 that for a known excitation value of P0 the system has

four parameters, i.e. C, K1, K2 and K3. The parameter K1 is related to the linear natural

frequency of the system, therefore it’s variation will show, indirectly, the change of the

frequency. As already said in section 6.2 quadratic term of the nonlinearity vanishes

in case of zero sag-to-span ratio, we keep the parameter K2 for the verification. C

is the damping parameter and as the high level of uncertainty is involved in damping

estimation, this parameter will be processed for identification.

6.6 Results and discussion

In order to get an initial estimate of the type of nonlinearity present in the cable

element, a load, amplitude increasing linearly upto 100 kN in the middle (node 7)

and distributed along the cable according to the first mode, was applied. The force-

displacement curve is plotted in Figure 6.6, fitted with the following relation:

P = 4857 · u + 0 · u2 + 1478 · u3 (6.34)

Eq. 6.34 reveals an absence of the quadratic nonlinear term.

Several values of P0 from lower to higher, i.e., 0.5 kN, 5 kN, 20 kN, 50 kN, 200 kN, 300

kN, 400 kN and 500 kN, were chosen , in order to identify the parameters in a wide
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Figure 6.6: Force-displacement relation

range of loads. The results are presented in Figures 6.7-6.29 and Tables 6.3-6.4,

respectively. Here, it can be recalled that in a real application for cable-stayed bridges,

typical amplitude of the cable vibration reported approaches 1 m (Kumarasena et al.,

2005), similar to the response values obtained at P0 = 0.5 kN. In this respect, see

Figure 6.8. However, for the purpose of study and with the fact that to see clearly the

higher order nonlinear effects the system must be excited at higher amplitude (Storer,

1991), higher loads were considered.
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Figure 6.7: Time variation of the parameters for P0 = 0.5 kN
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Figure 6.8: Displacement response for P0 = 0.5 kN
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Figure 6.9: FFT of the displacement response, P0 = 0.5 kN

204



2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Time (s)

P
ar

am
et

er

 

 

C
K

1

K
2

K
3

Figure 6.10: Time variation of the parameters for P0 = 5 kN
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Figure 6.11: Displacement response for P0 = 5 kN
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Figure 6.12: FFT of the displacement response, P0 = 5 kN
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Figure 6.13: Time variation of the parameters for P0 = 20 kN
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Figure 6.14: Displacement response for P0 = 20 kN
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Figure 6.15: FFT of the displacement response, P0 = 20 kN
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Figure 6.16: Time variation of the parameters for P0 = 50 kN
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Figure 6.17: Displacement response for P0 = 50 kN
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Figure 6.18: FFT of the displacement response, P0 = 50 kN
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Figure 6.19: Time variation of the parameters for P0 = 200 kN

209



0 1 2 3 4 5 6 7 8 9

−6

−4

−2

0

2

4

6

8

Time (s)

D
is

pl
ac

em
en

t (
m

)

 

 

system response− ANSYS
identified response

Figure 6.20: Displacement response for P0 = 200 kN
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Figure 6.21: FFT of the displacement response, P0 = 200 kN
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Figure 6.22: Time variation of the parameters for P0 = 300 kN
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Figure 6.23: Displacement response for P0 = 300 kN
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Figure 6.24: Time variation of the parameters for P0 = 400 kN
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Figure 6.25: Displacement response for P0 = 400 kN
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Figure 6.26: Time variation of the parameters for P0 = 500 kN
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Figure 6.27: Displacement response for P0 = 500 kN
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Figure 6.28: FFT of the displacement response, P0 = 500 kN

Table 6.3: Identified parameters: mean value, standard deviation (sd) and coefficient

of variation (cv %)

P0 (kN) C K1 K3 sd-C sd-K1 sd-K3 cv-C cv-K1 cv-K3

0.5 0.65 58.38 16.24 0.03 0.21 0.42 4.2 0.4 2.6

5 1.31 50.57 19.47 0.15 1.6 0.48 11.6 3.2 2.4

20 2.56 39.49 18.75 0.6 5.54 0.74 23.5 14.0 4.0

50 5.27 30.68 17.64 0.31 0.75 0.10 5.9 2.4 0.6

200 13.67 9.76 16.37 1.65 0.67 0.28 12.1 6.8 1.7

300 17 2.99 16.3 2.18 1.56 0.1 12.8 52.1 0.6

400 15.13 2.04 15.96 0.49 1.3 0.15 3.21 63.4 0.96

500 15.69 2.54 15.84 0.81 1.37 0.13 5.18 53.96 0.83

The aforementioned results disclose that the applied time-frequency technique is

capable to identify the system parameters of the cable element from numerical re-

sponse data. The correctness of the procedure is justified by the good fitting of

the identified displacement response to the system response obtained from ANSYS.

Moreover, the following observations can be made:

(i) only a cubic type of nonlinearity, i.e. K3 is present in all load cases; the quadratic

nonlinearity, i.e. K2 is nearly zero in all the load cases, due to the zero initial curvature
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Table 6.4: Frequencies obtained from the FFT of the response

P0 (kN) Frequency (Hz)

0.5 1.221

5 1.221

20 1.221, 3.662

50 1.221, 3.662

200 1.221, 3.662, 6.104

300 1.221, 3.662, 6.104, 8.545

400 1.221, 3.662, 6.104, 8.545

500 1.221, 3.662, 6.104, 8.545
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Figure 6.29: Variation of mean values of parameters vs. P0
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or sag (Rega, 2004a).

(ii) Damping parameter C increases whereas linear-frequency parameter K1 de-

creases with the load amplitude. However, the cubic parameter K3 remains almost

constant from lower to higher load amplitudes, as shown in Figure 6.29.

(iii) All the three parameters approach constant values at higher loads. This shows

that the identification procedure works more efficiently at higher loads.

(iv) From Table 6.4, it can be noticed that as the magnitude of the load increases

more frequencies of higher order appear in the response. The higher frequencies

are in exact odd multiple (3-, 5-, 7- times) of the primary frequency. This represents

a typical behaviour of a nonlinear system subject to a harmonic excitation, when

there is a leakage of energy to frequencies other than the linear natural frequencies,

although the response remains essentially harmonic (Nayfeh and Mook, 1995; Zheng

et al., 2002). The 3rd, 5th and 7th order super-harmonics are excited, and none of

the sub-harmonics are present.

(v) Figures 6.13 and 6.19 show large fluctuation in K1 and C, respectively. These

trends however depends on the optimisation process, after a while the estimate con-

verges to constant values.

6.7 Conclusions

A time-frequency identification technique for the nonlinear identification of a cable

element was proposed in this chapter. A polynomial form of non-parametric method

was used. A simple 2D cable model was reduced to a SDoF system. A good fitting of

the identified and numerical data were obtained. Some interesting phenomena were

observed. In particular, only a cubic type of nonlinearity was identified, whilst the

quadratic type of nonlinearity was not present owing to zero initial-curvature or sag.

Moreover, an increase of the parameter related to damping and a decrease of the

parameter relevant to linear-frequency were observed versus the loading amplitude.

However, the values of the parameters stabilised at higher load amplitudes. Super-
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harmonics were present in the response at higher loading amplitudes. Therefore, the

identification procedure was more effective at higher load amplitudes.

In conclusion, the time-frequency technique proposed here exhibited a good capa-

bility in the nonlinear identification of cables. Nonetheless, some major challenges

remain for a more powerful application of the proposed identification method. In de-

tail: (i) the choice of a complete initial polynomial approximation; (ii) the computational

burden related to the calculation both of the solution of the polynomial equation and

the STFT at each instant of time.
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CHAPTER 7

FOOTBRIDGE-PEDESTRIAN INTERACTION

7.1 Introduction

The aesthetic demand of human beings and advances in material technology have

enabled the design and construction of light and slender structures, like footbridges,

stairways, stadium etc. On one hand, these structures may very well satisfy the de-

sign strength criteria; on the other hand, they become more prone to the vibration

serviceability problems due to human induced dynamic loads (Wood, 1948; Jones

and Eyre, 1981; Bachmann and Ammann, 1987; Pimentel et al., 1999). The sensi-

tivity of human beings to vibration levels as low as 0.001 mm triggers the vibration

serviceability problem much before the damage of the structure due to large vibra-

tion (Pretlove and Rainer, 1995). The large lateral vibrations of the London Millenium

Bridge (a steel suspension bridge) on its opening day have highlighted the criticality

of the human-structure vibration serviceability problem (Dallard et al., 2001a). Sev-

eral cable-stayed footbridges have also shown this phenomenon (Fujino et al., 1993;

Nakamura and Fujino, 2002). The interpretation of this pedestrians-structure interac-

tion as a synchronization phenomenon have been further studied and experimentally

confirmed by several researchers (Dallard et al., 2001a; Newland, 2003; Roberts,

2005; Strogatz et al., 2005; Nakamura and Kawasaki, 2006; Eckhardt et al., 2007;

Bodgi et al., 2007; Piccardo and Tubino, 2008). Several efforts have been made to

find a model to reproduce the phenomenon of pedestrians-structure interaction. In

a few of these articles, i.e. (Newland, 2003; Roberts, 2005; Macdonald, 2008), a
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pedestrian has been modelled as a single degree of freedom oscillator with different

definitions of the restoring force. Following the same approach a pedestrian is mod-

elled as a self-sustained oscillator based on a modified hybrid Van der Pol/Rayleigh

(MHVR) model in (Erlicher et al., 2010). This model has been studied for the walking

of a pedestrian on a rigid floor (Erlicher et al., 2010; Trovato et al., 2008, 2009). We

extend this MHVR model to represent a pedestrian walking on an oscillating floor.

The amplitude, stability and phase of the entrained response of the MHVR model

is analyzed. The main study is theoretical. The comparison with experimental data

concerning pedestrian structure interaction mainly has an illustrative purpose.

After the Introduction, the MHVR model is presented in section 7.2. Section 7.3

concerns the determination of the response amplitude equation for the MHVR oscil-

lator using the harmonic balance method. Then, the stability analysis is carried out

in section 7.4. Section 7.5 represents the application of the model to find the number

of synchronized pedestrians on a given floor vibration. Then, the phase analysis is

carried out in section 7.6. Section 7.7 investigates the effect of variation of the floor

parameters on the phase and amplitude of the oscillator. Section 7.8 compares the

simulation results with some experimental results available in the literature for an il-

lustrative purpose. The conclusion gives a summary of the main findings of the work.

7.2 A modified hybrid Van der Pol/Rayleigh (MHVR) oscillator for modelling the lat-

eral pedestrian force on a moving floor

It is assumed that a pedestrian can be represented by a Single-Degree-of-Freedom

oscillator. Only the lateral motion is analyzed. The mass is supposed equal to that

of the pedestrian. In order to define the restoring force of such an oscillator, the

self-sustained nature of the walking phenomenon is accounted for, i.e. the fact that

a pedestrian produces by itself the energy spent to preserve its motion. In the non-

linear dynamics literature, the so-called self-sustained oscillators are well-known and

they possess some properties that seem to be well suited for a pertinent and sim-
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plified modelling of the pedestrian behavior. One of the most important properties

of non-autonomous self-sustained oscillators is that they may have an entrained re-

sponse (Pikowski et al., 2001), i.e. a response characterized by the same frequency

as that of the excitation.

Actually, an entrained response represents a pedestrian synchronized with the

moving floor, even if its natural frequency is different. With a less precise termi-

nology, it can be said that the walker synchronizes its frequency with that of the floor.

The term synchronization should be used when two of more coupled self-sustained

oscillators with different natural frequencies move at the same frequency, while the

entrainment concerns an oscillator that assumes the same frequency than that of an

external agency. Both terms will be used here indifferently, as it is usually done in

the applications concerning the pedestrian-floor interaction. The particular case of a

harmonic excitation is considered because, on one hand, it is the natural assumption

required to apply the harmonic balance method and, on the other hand, because

a floor lateral motion at constant frequency and amplitude is a simple experimental

condition, easy to obtain when pedestrians walk on a treadmill placed on a shake

table, see e.g. (Nakamura et al., 2008; Sun and Yuan, 2008).

7.2.1 Pedestrian on a rigid floor

In recent papers (Erlicher et al., 2010; Trovato et al., 2008, 2009), Erlicher et al. pro-

posed an approach to represent the lateral oscillations of pedestrians during walking

on a rigid floor, based on a modified hybrid Van der Pol/Rayleigh (MHVR) oscillator :

d2uy

dt2
−2µω0

duy

dt

(

1−βu2
y−

γ

ω0

duy

dt
uy−

δ

ω2
0

(

duy

dt

)2
)

+ ω2
0uy = 0 (7.1)

where uy is the lateral displacement of the center of mass of the pedestrian; ω0 is

the angular frequency of the underlying linear oscillator, µ, β, γ and δ are coefficients

associated with the nonlinear damping term, which allows the self-sustaining mech-

anism responsible of perpetual periodic oscillations in the autonomous case. The

oscillator (7.1) is self-sustained, viz. it has a stable limit cycle, when µ > 0 and

β + 3δ > 0. The parameter identification made in (Erlicher et al., 2010) has been

performed by imposing the stronger conditions β > 0 and δ ≥ 0 or β ≥ 0 and δ > 0.
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By means of this assumption, a very good fitting of experimental results in the rigid

floor regime has been obtained (Erlicher et al., 2010). In the limit of small µ values,

the amplitude of the limit cycle reads uy,max ' 2/
√
β + 3δ, while the natural frequency

is

ω1 ' ω0

(

1 +
µγ

β + 3δ

)

The details about this oscillator and its application in the modelling of the lateral

pedestrian oscillations on a rigid floor are discussed in (Erlicher et al., 2010).

7.2.2 Pedestrian on a moving floor

The main aim of the present work is to study the response of the MHVR oscillator

(7.1) under a harmonic external force, representing a periodic floor motion, with an

amplitude small enough to avoid the loss of the lateral stability of the walker. If the

mode shape effect is neglected, the coupling between this oscillator and one of the

lateral modes of a structure is represented by the following system (see also Figure

7.1a):







d2Uy

dt2 + 2ξsωs
dUy

dt + ω2
s Uy = 1

M Fy

(

uy , duy

dt

)

m d2uy

dt2 + Fy

(

uy , duy

dt

)

= −m d2Uy

dt2

(7.2)

where

Fy

(

uy ,
duy

dt

)

= m

(

−2µω0
duy

dt

(

1 − βu2
y −

γ

ω0
uy

duy

dt
− δ

ω2
0

(

duy

dt

)2
)

+ ω2
0uy

)

(7.3)

is the restoring force of the MHVR oscillator; Uy is the floor (structure) displacement;

M is the modal mass of the structure for the lateral mode under exam; ξs and ωs

are the modal damping and circular frequency, respectively; uy is the lateral displace-

ment of the center of mass of the pedestrian with respect to the structure; m is the

pedestrian mass; ω0 is the frequency of the underlying linear system associated with

the MHVR oscillator, µ > 0, β, γ and δ are coefficients associated with the non-

linear damping term, which is at the origin of the self-sustained oscillations in the

autonomous case.

222



Figure 7.1: (a) Scheme of the Two-DoF system representing the coupled lateral mo-

tion of a pedestrian and the deck of a footbridge. (b) Single-DoF oscillator represent-

ing a pedestrian on a floor undergoing a harmonic motion.

The coupled pedestrian-structure behaviour modelled by the system (7.2) is not

considered. A simpler situation is rather analyzed, where the floor lateral motion is

supposed known and harmonic with displacement amplitude Ad > 0 and with fre-

quency ω:

Uy (t) = Ad cos (ωt) −→ d2Uy (t)
dt2

= −Aacc cos (ωt) (7.4)

where Aacc := Adω
2 is the floor acceleration amplitude. Hence the second equation in

(7.2) becomes

d2uy (t)
dt2

−2µω0
duy (t)

dt

(

1−βu2
y (t)− γ

ω0

duy (t)
dt

uy (t)− δ

ω2
0

(

duy (t)
dt

)2
)

+ω2
0uy (t) =Aacc cos (ωt)

(7.5)

Eq. (7.5) represents a pedestrian walking on a floor undergoing lateral harmonic os-

cillations; see also Figure 7.1b. This condition can be easily obtained in a laboratory

test, asking pedestrians to walk on a treadmill placed on a shake table (Nakamura

et al., 2008).
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7.3 Analytical solution: the harmonic balance method

In this Section, the analysis of the periodic solutions of Eq. (7.5) having frequency

equal to that of the excitation, is presented. Actually, the non-autonomous MHVR

oscillator (7.5) is quite general: if β=γ = 0 the Rayleigh oscillator is retrieved, while

γ=δ = 0 leads to the standard Van der Pol oscillator. The non-autonomous Van der

Pol and Rayleigh oscillators have been studied in textbooks (e.g. (Jordan and Smith,

2007; Guckenheimer and Holmes, 1983)). A more complex analysis of the Rayleigh

model is presented in (Chedjou et al., 2006), where an external force with two peri-

odic components is considered. One also observes that the term depending on γ is

analogous to the inertia hardening term mentioned in (Hamdan and Shabaneh, 1997;

Al-Qaisia and Hamdan, 1999, 2002). However, in the oscillator discussed by those

authors, this nonlinear term is always accompanied by a second one: it is not possible

to distinguish the contributions of each one, as it should be done for our purposes.

A stationary solution of the form

uy (t) = R cos (ωt+θ) (7.6)

is postulated. Eq. (7.6) indicates that the oscillator/pedestrian has the same fre-

quency as the moving floor, where R is the amplitude of the displacement measured

with respect to the structure and θ is the phase difference between this displacement

and − d2Uy

dt2 , i.e. minus the acceleration of the floor.

The research of an approximated solution of the form (7.6) corresponds to solve

Eq. (7.5) by using the Harmonic Balance (HB) method with expansion limited to the

first harmonic (Al-Qaisia and Hamdan, 2002). The advantages and drawbacks of this

method, in particular in comparison with the multiple scales method, are discussed

e.g. in (Al-Qaisia and Hamdan, 1999; Hassan and Burton, 1995). A more sophis-

ticated theoretical analysis without any approximation is possible, but this is beyond

the purposes of the work. Instead of directly solving Eq. (7.5) with the assumption

(7.6), the new time-scale

τ=ω0t (7.7)
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is introduced. By replacing Eq. (7.7) in Eq. (7.5), one obtains

ẅ (τ )−εẇ (τ )
(

1−βw (τ )2 −γẇ (τ ) w (τ )−δ (ẇ (τ ))2) +w (τ ) =
Aacc

ω2
0

cos (ω̃τ ) = Adω̃
2 cos (ω̃τ )

(7.8)

where the dot indicates the differentiation with respect to the time-scale τ and

w (τ ) := uy

(

τ

ω0

)

, ω̃ :=
ω

ω0
, ε = 2µ (7.9)

Analogously, the periodic solution (7.6) becomes

w (τ ) =Rcos (ω̃τ+θ) (7.10)

According to the HB method, the expression (7.10) is replaced into Eq. (7.8). After

some trigonometric simplifications, one has:

(

−ω̃2R+R+γ
4 εω̃

2R3
)

cos (ω̃τ+θ) +
(

εω̃R−εω̃R3 1
4

(

β + 3δω̃2
))

sin (ω̃τ+θ)

− 1
4εω̃R3

(

β − δω̃2
)

sin (3ω̃τ+3θ)− 1
4 εω̃R3γω̃ cos (3ω̃τ+3θ)

=
(

Adω̃
2 cos (θ)

)

cos (ω̃τ + θ) +
(

Adω̃
2 sin (θ)

)

sin (ω̃τ + θ)

Neglecting third order harmonic components and equating to zero both sinus and

cosinus terms, one obtains the following algebraic equations:






εω̃
(

− ω̃2−1
εω̃ R+γ

4 ω̃R3
)

= Adω̃
2 cos (θ)

εω̃
(

R−R3 1
4

(

β + 3δω̃2
))

= Adω̃
2 sin (θ)

(7.11)

Due to the assumptions on the sign of parameters discussed above, one has β +

3δ > 0. Moreover, ω̃ is supposed close enough to 1, in order to have β+3δω̃2 > 0.

Therefore, by introducing the following quantities

R0 =
2

√

β+3δω̃2
, α =

γω̃

β+3δω̃2
(7.12)

where R0 has the meaning of reference response amplitude and α is a normalized

form of the parameter γ, three normalized variables can be defined:

r =
R
R0

, λ =
Adω̃

R0ε
=

Aacc

ω2
0

1
R0εω̃

, ν =
ω̃2 − 1
εω̃

(7.13)

r is a non-dimensional response amplitude, λ is a non-dimensional external acceler-

ation amplitude and ν is a non-dimensional difference (detuning) between the floor
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frequency ω and the frequency ω0 of the underlying linear system associated with the

MHVR oscillator. By substituting Eqs. (7.12) and (7.13) into Eq. (7.11), one gets






r
(

−ν+αr2
)

= λ cos (θ)

r
(

1−r2
)

= λ sin (θ)
(7.14)

By solving these equations for cos (θ) and sin (θ) and then using the identity sin2 (θ) +

cos2 (θ) = 1, one easily obtains

r2
(

1−r2
)2

+ r2
(

ν−αr2
)2 − λ2 = 0 (7.15)

Eq. (7.15) states that the squared normalized amplitude z = r2 is a root of a polyno-

mial of order 3, provided that ν,λ and α are fixed. Once r2 is known, the value of θ

can be determined by means of the expression

tan (θ) =
1−r2

−ν+αr2
(7.16)

obtained from (7.14). One notices that both the standard Van der Pol and Rayleigh

oscillators are represented by Eqs. (7.15)-(7.16) with α = 0. The additional term as-

sociated α, which is in turn related to the coefficient γ, introduces a non-isochronous

behaviour (Pikowski et al., 2001). Eq. (7.15) can also be thought as the steady-

state solution of the following complex-valued equation depending on the three non-

dimensional parameters ν, α and λ:

da
dζ

= (1 + iν) a − (1 + iα) |a|2 a + λ (7.17)

where a = re iθ and ζ is a generic normalized time-variable, equal to ε
2τ in the spe-

cific case considered here (see also (Pikowski et al., 2001)). A similar expression is

analyzed in (Glendinning and Proctor, 1986):

da
dζ

= (ξ + iν) a − (1 + iα) |a|2 a + 1 (7.18)

There are still three non-dimensional parameters, but one of them is different from

those used in Eq. (7.17). Another analogous expression is investigated in (Levina

and Nepomnyaschiy, 1986):

da
dζ

= (ξ ± i) a − (1 ± iα) |a|2 a + λ (7.19)

where the normalization is still different. The analyses of the steady solutions of

(7.18) and (7.19) presented in (Glendinning and Proctor, 1986) and (Levina and
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Nepomnyaschiy, 1986), respectively, are somehow complementary, due to the dif-

ferent choice of the normalized parameters. Eq. (7.17) represents a third comple-

mentary viewpoint on the same equation, and, to the authors’ knowledge, very few

analyses of it can be found in the literature. For this reason, and without forgetting

the final application to the pedestrian modelling, a detailed study of Eq. (7.15), giving

the amplitude of the steady solutions of Eq. (7.17), is presented hereinafter.

7.3.1 Response curves ν − r2

Eq. (7.15) involves four quantities: the normalized amplitude r of the steady response

of the non-autonomous self-sustained oscillator (7.5) and three non-dimensional pa-

rameters ν,λ and α. It follows that the system response may be represented in sev-

eral ways, for instance in a bidimensional plot ν − r2, with fixed α and λ values, or by

assuming constant values of α and ν and plotting r vs. λ, etc.

In this Subsection, the ν − r2 representation is analyzed. It generalizes analogous

well-known plots concerning the standard Van der Pol and Rayleigh models; see e.g.

(Jordan and Smith, 2007). In order to simplify the notation, Eq. (7.15) and (7.16) are

rewritten by using the variable z = r2:

pν,α,λ (z) :=
(

1 + α2
)

z3 − 2 (1 + να) z2 +
(

1 + ν2
)

z − λ2 = 0 (7.20)

tan (θ) =
1−z

−ν+αz
(7.21)

Due to the definition of z, only real and positive roots of pν,α,λ (z) are admissible. Two

examples of response curves ν − z plotted using Eq. (7.20) are shown in Fig. 7.2.

Fig. 7.2a concerns the isochronous case α = 0, associated with the classical models

of Van der Pol and Rayleigh, while Fig. 7.2b illustrates a particular non-isochronous

case, with α = 2.

In both Figures, one observes that for given ν and λ values, either one or three real

and positive roots of pν,α,λ (z) may exist. In more detail, using the Descartes’ sign

rule, it can be proven that if the second coefficient of the polynomial (7.20) is null, i.e.

if 1+να = 0, then pν,α,λ (z) has one real positive root and two complex conjugate roots
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for any λ value. Fig. 7.2b illustrates the vertical line corresponding to 1 + να = 0, for

the case α = 2. If 1 + να < 0, there is one real positive root for all λ, while the two

other roots are either negative or complex conjugate. One can conclude that when

1 + να ≤ 0, there is only one admissible (i.e. real and positive) root of the polynomial

pν,α,λ (z). Conversely, when

1 + να > 0 (7.22)

the situation is more difficult. The polynomial (7.20) admits either three real positive

roots or one real positive and two complex conjugate roots. The transition between

these two situations occurs when there is one real positive root plus another real

positive root with multiplicity equal to two. This threshold corresponds to the locus of

points where the derivative of pν,α,λ (z) is equal to zero (Rand, 2005):
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Figure 7.2: Response curves of the MHVR oscillator: (a) isochronous case (α = 0)

and (b) non-isochronous case (example with α = 2). The curves show the real and

positive solutions of Eq. (7.15). Dashed line: λ =0.15 , dotted line: λ=0.35 , solid line:

λ=1.0 .
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dpν,α (z)
dz

= 3z2
(

1 + α2
)

− 4z (1 + να) + 1 + ν2 = 0 (7.23)

For a given α value, Eq. (7.23) represents a conic in the ν − z half-plane (z > 0)

independent from the external excitation parameter λ.

Let us consider the general expression of a conic, that reads

c1z2 + c2zν + c3ν
2 + c4z + c5ν + c6 = 0 (7.24)

with at least one of the coefficients c1, c2 and c3 different from zero. By comparing

Eqs. (7.23) and (7.24), one has c1 = 3
(

1 + α2
)

, c2 = −4α, c3 = 1, c4 = −4, c5 = 0,

c6 = 1. It is evident that the nature of this conic change with the value of α. Three

cases may occur:

(i) c2
2 − 4c1c3 < 0 ⇐⇒ |α| <

√
3. Eqs. (7.23)-(7.24) represent an ellipse;

(ii) c2
2 − 4c1c3 > 0 ⇐⇒ |α| >

√
3. Eqs. (7.23)-(7.24) represent a hyperbola;

(iii) c2
2 − 4c1c3 = 0 ⇐⇒ α = ±

√
3. Eqs. (7.23)-(7.24) represent a parabola.

These three cases are schematically illustrated in Fig. 7.3 b,d,c, respectively. In

addition, Fig. 7.3a concerns the simple isochronous case α = 0. The other lines

plotted in the same figure are related to the nature (nodes, spirals, etc.) and stability

of the equilibrium points. These points will be discussed in the next Section.

An illustration of the meaning of Eq. (7.23) and how it is related to the multiplicity

of the roots of pν,α,λ (z) is given in Figs. 7.4 and 7.5. The polynomial pν,α,λ (z) is

represented for α = ᾱ = 1 and ν = ν̄ = 1.4492, and for five different values of λ,

λ′ < λQ < λ′′ < λP < λ′′′, indicated in the figures. Notice that the modification

of λ induces vertical translations of the curve in Fig. 7.4, but it does not affect the

abscissas zP and zQ of the points of zero-slope, where Eq. (7.23) is fulfilled. With

reference to the numerical values of the Figure, Eq. (7.23) leads to zP ' 0.42934 and

zQ ' 1.2035. The corresponding points P and Q, belonging to the conic defined by

Eq. (7.23), are indicated in Fig. 7.5.

When λ = λ′, pν̄,ᾱ,λ′ (z) has one real positive root, z1′ < zP (see Fig. 7.4). The

corresponding point 1′ in Fig. 7.5, having coordinates (v̄, z1′ ), is outside the region

bounded by the conic (7.23). When λ = λ′′, there are three real positive roots of
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Figure 7.3: Response curves and stability regions of the MHVR oscillator. Dotted

lines: response amplitude curves associated with Eq. (7.20). Continuous lines: conic

associated with the saddle-node bifurcation (7.44). Dashed-dotted lines: Hopf bifur-

cation (7.45). Dashed lines: nodes-spirals bifurcation (7.46).
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Figure 7.5: Response curves of the MHVR oscillator (Eq. (7.15)) for α = 1 and with

five different λ-values. The vertical line corresponds to ν = 1.4492, while the dashed

ellipse is associated with the condition (7.23).
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pν̄,ᾱ,λ′′ (z), associated with the points 1′′, 2′′ and 3′′ indicated in Fig. 7.4. One is

inside the conic, while the others are outside. In the intermediate case λ = λQ , the

polynomial (7.20) has three real positive roots and two of them coincide and are equal

to z = zQ . The value λQ ' 0.35 used in Figs. 7.4-7.5 has been found by replacing the

numerical value of zQ , ᾱ and ν̄ in Eq. (7.20). When λ = λ′′′, pν̄,ᾱ,λ′′′ (z) has one real

positive root z3′′′ > zQ . When λ = λP , the situation is analogous to that of the case

λ = λQ . In summary, for given α and ν values, the polynomial (7.20) has three real

and distinct positive solutions when

λQ (ν,α) < λ < λP (ν,α) (7.25)

On the boundaries of this interval two of the three real positive solutions coincide,

while outside the interval there is only one real positive solution.

Looking at Figs. 7.3 and 7.5, one notices that there is one (or two) special point(s)

where the tangent to the conic (7.23) is vertical, i.e. where P and Q degenerate into

a single point. If the conic is an ellipse, there are two points, called A ′ and A . There

is only one point in the other cases. The coordinates of A and/or A ′ can be computed

by imposing that the polynomial (7.20) has three real repeated roots (Rand, 2005):

d2pν,α (z)
dz2

= 6z
(

α2 + 1
)

− 4να− 4 = 0 (7.26)

This leads to

z =
2
3

1 + να
1 + α2

(7.27)

Then, in order to impose that the points belong to the conic, Eq. (7.27) is replaced

into (7.23):

(

α2 − 3
)

ν2 + 8α ν +
(

1 − 3α2
)

= 0 (7.28)

The solution of Eq. (7.28) is found considering the cases (i), (ii) and (iii) defined

above:

(i) |α| <
√

3. The polynomial (7.28) has a couple of real roots

νA ′ =

√
3α− 1

α +
√

3
< νA =

√
3α + 1√
3 − α

(7.29)

Both values of ν in (7.29) satisfy the inequality (7.22), i.e. 1 + νA ′ α > 0 and

1 + νA α > 0. It means that both solutions are admissible and this is consistent
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with the fact that the conic is an ellipse. The coordinates zA ′ and zA can be

computed by replacing (7.29) into Eq. (7.27). Finally, the corresponding values

of λ are obtained from (7.20) (see Table 7.2).

(ii) |α| >
√

3. The polynomial (7.28) still has the couple of real roots

νA =

√
3α + 1√
3 − α

< νA ′ =

√
3α + 1√
3 − α

(7.30)

However, in this case the sign of the inequality between νA and νA ′ is inverted

and only one of the ν values in (7.30) fulfils (7.22), depending on the sign of α.

The other one must be discarded. This is consistent with the hyperbolic shape

of the conic. The final coordinates are collected in Table 7.2.

(iii) α = ±
√

3. Eq. (7.28) becomes of first order in the variable ν and the solutions

read

α =
√

3 =⇒ νA ′ =
√

3
3 , zA ′ = 1

3 , λA ′ = 2
3
√

3

α = −
√

3 =⇒ νA = −
√

3
3 , zA = 1

3 , λA = 2
3
√

3

where zA ′ , zA have been calculated from (7.27) and then λA ′ ,λA from (7.20). For

a given value of α, only one solution exists and this means that only one limit

point exists. This is consistent with the fact that the conic is a parabola (recall

Fig. 7.3c). In both cases (α = ±
√

3), the inequality (7.22) is fulfilled.

The coordinates of A and A ′ can be also found by an alternative procedure, related

to a different representation of the conic (7.23), obtained by replacing Eq. (7.23) into

(7.20) and eliminating the variable z:

27
(

1 + α2
)2
λ4+λ2

(

−4 +
(

60αν − 36α2 − 36ν2
)

(1 + να) − 4α3ν3
)

+4 (α− ν)2 (1 + ν2
)2

= 0

(7.31)

A detailed analysis of this expression is made in the next Section.

7.3.2 Analytical vs. numerical results

A comparison between numerical simulation results and analytical response ampli-

tudes predicted by Eq. (7.15) or, equivalently, by Eq. (7.20) is reported in Fig. 7.6.
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The points associated with the numerical solution are plotted for the cases where the

entrained periodic response exists, i.e. it is stable. It has been obtained by solving Eq.

(7.5) by means of the solver ODE45 implemented in Matlab and then computing the

amplitude of the first harmonic of the periodic response. The numerical simulations

have been performed with the parameters ω0 = 1 rad/s, ε = 2µ = 0.05, β = 1 m−2,

δ = 1 m−2. The non-dimensional parameter α is constant (α = 1), while three values

of λ are considered (λ = 0.35, λ = 1.5, λ = 2.5). As a result, for each fixed ν value,

the remaining parameters ω, Aacc and γ needed for numerical integration of Eq. (7.5)

are computed using (7.9) and (7.13) and the identity Aacc = ω2Ad . Fig. 7.6 shows

that there is a good agreement between numerical and analytical results. Actually,

the good approximation obtained in this example concerns values of z = r2 less than

2.5, while λ is less than 2.5 and µ is small. The accuracy of analytical predictions

diminishes for higher values of these quantities and of the modulus of α.

7.4 Stability analysis

7.4.1 Local stability of the entrained steady response

In this section, we analyze the local stability of the solution (7.10) of Eq. (7.8) by con-

sidering a small perturbation v (τ ), according to a procedure similar to that presented

in (Al-Qaisia and Hamdan, 1999). The perturbed solution reads

w (τ ) = R cos (ω̃τ + θ) + v (τ ) (7.32)

Only the ”first type” of stability is investigated (Al-Qaisia and Hamdan, 1999). This

corresponds to assume that the perturbation v (τ ) can be approximated by a harmonic

expression with the same fundamental frequency and truncated at the same order

than the assumed response (7.10):

v (τ ) = B1c (τ ) cos (ω̃τ + θ) + B1s (τ ) sin (ω̃τ + θ) (7.33)
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Figure 7.6: Response curves of the MHVR oscillator (Eq.(7.15)) for α = 1. Compari-

son between numerical and analytical results for three different λ-values.
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By inserting the expression (7.32) of the perturbed solution into the equation (7.8),

one obtains

v̈ (τ ) + v (τ )

−εv̇ (τ )

















1−β
(

R2
(

1
2 + 1

2 cos (2ω̃τ + 2θ)
)

+v2 (τ ) + 2v (τ ) Rcos (ω̃τ + θ)
)

−γ
(

−R2ω̃ 1
2 sin (2ω̃τ + 2θ)−Rω̃sin (ω̃τ + θ)v (τ )

)

−γ (Rcos (ω̃τ + θ)v̇ (τ ) + v (τ ) v̇ (τ ))

−δ
(

R2ω̃2
(

1
2 − 1

2 cos (2ω̃τ + 2θ)
)

+v̇2 (τ ) − 2v̇ (τ ) Rω̃sin (ω̃τ + θ)
)

















+εRω̃

















−β
(

2R 1
2sin (2ω̃τ + 2θ)v (τ ) + sin (ω̃τ + θ)v (τ )2)

−γ
(

−Rω̃
(

1
2 − 1

2 cos (2ω̃τ + 2θ)
)

v (τ ) + R 1
2 sin (2ω̃τ + 2θ)v̇ (τ )

)

−γ (sin (ω̃τ + θ)v̇ (τ ) v (τ ))

−δ
(

−2Rω̃
(

1
2 − 1

2 cos (2ω̃τ + 2θ)
)

v̇ (τ ) + sin (ω̃τ + θ)v̇ (τ )2)

















= 0

(7.34)

The external excitation term related to Aacc does not appear in Eq. (7.34), since it

cancels out together with the terms fulfilling the equilibrium equations (7.11). The

third order harmonics have also been neglected, according to the harmonic balance

method and to the assumption (7.33). The linearization of (7.34) leads to

v̈ (τ ) + v (τ )
(

1 − εβR2ω̃sin (2ω̃τ + 2θ) +γεR2ω̃2
(

1
2 − 1

2 cos (2ω̃τ + 2θ)
))

−εv̇ (τ )
(

1−βR2
(

1
2 + 1

2 cos (2ω̃τ + 2θ)
)

+γR2ω̃sin (2ω̃τ + 2θ)
)

−εv̇ (τ )
(

−3δR2ω̃2
(

1
2 − 1

2 cos (2ω̃τ + 2θ)
))

= 0

(7.35)

We recall the definition (7.33) and make a Van der Pol transformation between the

variables (v, v̇) and (B1c , B1s):






v (τ ) = B1ccos (ω̃τ + θ) +B1ssin (ω̃τ + θ)

v̇ (τ ) = −B1cω̃sin (ω̃τ + θ) +ω̃B1scos (ω̃τ + θ)
(7.36)

with the compatibility condition

Ḃ1ssin (ω̃τ + θ) = −Ḃ1ccos (ω̃τ + θ) (7.37)

This identity is obtained imposing that the velocity defined in (7.36)2 is equal to the

velocity computed by differentiating Eq. (7.36)1. The acceleration, obtained by differ-

entiating (7.36)2, reads:

v̈ (τ ) = −B1sω̃
2sin (ω̃τ + θ)−B1cω̃

2cos (ω̃τ + θ) +ω̃Ḃ1scos (ω̃τ + θ)−Ḃ1cω̃sin (ω̃τ + θ)
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(7.38)

By replacing (7.36) and (7.38) in Eq. (7.35) and after some trigonometric develop-

ment, one has

−B1sω̃
2sin (ω̃τ + θ) − B1cω̃

2cos (ω̃τ + θ) +ω̃Ḃ1scos (ω̃τ + θ) − Ḃ1cω̃sin (ω̃τ + θ)

+B1s
(

sin (ω̃τ + θ) − εβR2ω̃ 1
2 cos (ω̃τ + θ) +γεR2ω̃2

(

1
2 sin (ω̃τ + θ) + 1

4 sin (ω̃τ + θ)
))

+B1c
(

cos (ω̃τ + θ) − εβR2ω̃ 1
2 sin (ω̃τ + θ) +γεR2ω̃2 1

4 cos (ω̃τ + θ)
)

−εω̃B1s
(

cos (ω̃τ + θ)−βR2 3
4 cos (ω̃τ + θ) +γR2ω̃ 1

2 sin (ω̃τ + θ)− 3
4δR

2ω̃2cos (ω̃τ + θ)
)

+εB1cω̃
(

sin (ω̃τ + θ)−βR2 1
4sin (ω̃τ + θ) +γR2ω̃ 1

2 cos (ω̃τ + θ)− 9
4δR

2ω̃2sin (ω̃τ + θ)
)

= 0

where the third harmonic components have been neglected like in the previous ex-

pressions. This equation and the compatibility condition (7.37) constitute a system of

two first order equations which can be rewritten, after some developments, as follows:






−2ω̃Ḃ1s = B1s
(

εβR2ω̃ 1
4 − εω̃ + εω̃δR2ω̃2 3

4

)

+ B1c
(

−
(

ω̃2 − 1
)

+ γεR2ω̃2 3
4

)

2ω̃Ḃ1c = B1s
(

−
(

ω̃2 − 1
)

+ γεR2ω̃2 1
4

)

+ B1c
(

εω̃ − εω̃βR2 3
4 − 9

4εω̃R2ω̃2δ
)

The even superharmonics have been neglected. By using the normalized parameters

and variables defined by (7.12) and (7.13), one obtains the equivalent system:






2Ḃ1s = ε
(

1 − r2
)

B1s + ε
(

ν − 3αr2
)

B1c

2Ḃ1c = ε
(

−ν + αr2
)

B1s + ε
(

1 − 3r2
)

B1c

(7.39)

The corresponding matrix form is given in (7.40).

Ḃ = M B with B =





B1s

B1c



 and M =
ε

2





1 − r2 ν − 3αr2

−ν + αr2 1 − 3r2



 (7.40)

By setting

B1s (τ ) = b1seκτ , B1c (τ ) = b1ceκτ

where b1c and b1s are constant, the eigenproblem (M−κI) b = 0 is derived. According

the standard procedure (Jordan and Smith, 2007), the stability is related to the eigen-

values κ1,2 of the matrix M, which are solutions of the characteristic equation κ2 − κ

tr (M) + det M =0, where ”tr” and ”det” are the trace and determinant operators. The

stability requires that the real part of the eigenvalues is negative. This means that the
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two following conditions must hold:

q = det M =
ε2

4

(

3r4
(

1 + α2
)

− 4r2 (1 + να) + 1 + ν2
)

> 0 (7.41)

p = trM =ε
(

1 − 2r2
)

< 0 (7.42)

The negative determinant characterizes saddles, for all values of p. When the deter-

minant is positive, the fixed points may be stable or unstable, according to the sign of

the trace p and they are nodes or spirals, according to the sign of the discriminant

∆ = p2 − 4q = ε2
((

1 − 3α2
)

r4 + 4να r2 − ν2
)

(7.43)

The conditions q = 0, p = 0 and ∆ = 0 define curves associated with a change of

stability and/or nature of the fixed points, i.e. the steady solutions. It is possible to

represent these transition curves in the ν − r2 plane and in the ν − λ plane. In the

next two Subsections, both approaches are considered.

7.4.2 Representation in the ν − r2 plane

Let us begin with the condition q = 0. By using the definition of q given in (7.41) and

setting z = r2, one has:

BS : q = 0 −→ 3z2
(

1 + α2
)

− 4z (1 + να) + 1 + ν2 = 0 (7.44)

It can be easily proven that (7.44) is identical to the condition dpν ,α,λ(z)
dz = 0 where

pν,α,λ (z) is the polynomial given in Eq. (7.20). This condition defines the conic in the

ν−z plane where pν,α,λ (z) has three real positive roots and two of them are repeated.

In the previous section, it has been shown that this conic can be an ellipse (|α| <
√

3),

a parabola (α = ±
√

3) or a hyperbola (|α| >
√

3); see also Figure 7.3. The points in

the (ν − z) plane inside the conic correspond to q < 0. Therefore, they are saddles.

The equilibrium points outside the conic (q > 0) and having the discriminant ∆ > 0

are nodes. For this reason, the conic is called saddle-node bifurcation BS . Moreover,

one has

BH : p = 0 −→ z =
1
2

(7.45)

i.e. the condition p = trM = 0 defines a horizontal line in the ν − z plane. This line

intersects the conic BS . However, since inside the conic the equilibria are saddles
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independently from the sign of p, the part of this line lying inside BS does not change

the nature of equilibria and it can be canceled out. Conversely, outside BS the sign

of p affects the stability of the fixed points: the two horizontal half-lines associated

with (7.45) separate stable from unstable fixed points and define the so-called Hopf

bifurcation BH. The stable region (p < 0) corresponds to z > 1
2 (Fig. 7.3).

The transition between nodes and spirals is defined by the condition ∆ = 0 (Eq.

(7.43)). Four cases are distinguished, according to the α value. For each case, the

transition is defined by a couple of half-lines BN issuing from the origin of the ν − z

plane (recall that z ≥ 0):

(BN) :

|α| < 1√
3

−→







ν = ν1 (z) =
(

2α−
√
α2 + 1

)

z

ν = ν2 (z) =
(

2α +
√
α2 + 1

)

z

|α| > 1√
3

−→







ν = ν1 (z) =
(

2α +
√
α2 + 1

)

z

ν = ν2 (z) =
(

2α−
√
α2 + 1

)

z

α = 1√
3

−→







ν = ν1 = 0,∀z

ν = ν2 (z) = 4√
3
z

α = − 1√
3

−→







ν = ν1 (z) = − 4√
3
z

ν = ν2 = 0, ∀z

(7.46)

The condition ∆ < 0, associated with spirals, is fulfilled for ν < ν1 and ν > ν2 (see

Figure 7.3). The intersections between BS , BH and BN define the points O and O ′.

By solving a system formed by Eqs. (7.44) and (7.45), one has the (ν, z) coordinates

of these points; see Table 7.1. It is easy to check that BN also passes through the

same points. Then, the corresponding λ values are determined inserting (ν, z) into

Eq. (7.20). Other important points are those where the tangent to the conic BS is

vertical, like the points A and A ′ of Fig. 7.3. Instead of studying these points in

the ν − z plane, like it has been made in the previous Section, the alternative ν − λ

representation is preferred. The details are reported in the following Subsection.

7.4.3 Representation in the ν − λ plane

In this section, a representation of the curves BS , BH and BN in the ν − λ plane is

considered. The expression of each curve is obtained by replacing the corresponding
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Table 7.1: Coordinates (z, ν,λ) of the points O and O ′, at the intersection of BS , BH

and BN.

z = r2 ν λ (> 0)

O ′ 1
2 α− 1

2

√
α2 + 1 1

2
√

2

√

1 +
(

α−
√
α2 + 1

)2

O 1
2 α + 1

2

√
α2 + 1 1

2
√

2

√

1 +
(

α +
√
α2 + 1

)2

definition, i.e. (7.44), (7.45) or (7.46), into Eq. (7.20) and eliminating the variable z.

By this procedure, the expression associated with BS reads:

27
(

1 + α2
)2
λ4+λ2

(

−4 +
(

60αν − 36α2 − 36ν2
)

(1 + να) − 4α3ν3
)

+4 (α− ν)2 (1 + ν2
)2

= 0

(7.47)

Observe that Eq. (7.47) can be rewritten under the form of the second order polyno-

mial a1x2 + a2x + a3 = 0 in the variable x = λ2, having the coefficients

a1 = a1 (α) = 27
(

1 + α2
)2

a2 = a2 (ν,α) = −4 +
(

60αν − 36α2 − 36ν2
)

(1 + να) − 4α3ν3

a3 = a3 (ν,α) = 4 (α− ν)2 (1 + ν2
)2

The two real and positive roots are indicated by λ2
Q (ν,α) and λ2

P (ν,α). Their square

roots read:

λQ (ν,α) =

√

1
2a1(α)

(

−a2 (ν,α) −
√

a2
2 (ν,α) − 4a1 (α) a3 (ν,α)

)

> 0

λP (ν,α) =

√

1
2a1(α)

(

−a2 (ν,α) +
√

a2
2 (ν,α) − 4a1 (α) a3 (ν,α)

)

> 0
(7.48)

According to (7.48), for a given α one has λQ (ν,α) < λP (ν,α). The plot of λP and λQ

as functions of ν, for fixed α, gives the upper and bottom branches of the saddle-node

bifurcation, respectively (see Figs. 7.7, 7.8, 7.9 and 7.10). The ν-values associated

with the cusps A and A ′ at a given α derive from the condition a2
2 = 4a1a3 (see Table

7.2). Moreover, at these points one has λ2
Q = λ2

P = −a2 (ν,α) / (2a1 (α)) and this

leads to the coordinates λ of the cusps reported in the last column of Table 7.2. The

corresponding amplitudes z = r2 are finally derived by using Eq. (7.44).
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Figure 7.7: Bifurcations portraits of the MHVR oscillator in the parameter plane (ν,λ).

Case α = 0. Global view and detail of the zone around the right cusp A of the saddle-

node bifurcation BS .
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Figure 7.8: Bifurcations portraits of the MHVR oscillator in the parameter plane (ν,λ).

Case α = 0.5.

Table 7.2: Coordinates z and (ν,λ) of the cusp points of the saddle-node bifurcation

BS .

z = r2 ν λ (> 0)

α < −
√

3, A : 2
3−

√
3α

1+
√

3α√
3−α

√

8
√

3
9

α2+1

(
√

3−α)3

α = −
√

3, A : 1
3 −

√
3

3
2

3
√

3

|α| <
√

3,
A ′ :

A :

2
3+

√
3α

2
3−

√
3α

√
3α−1
α+

√
3√

3α+1√
3−α

√

8
√

3
9

α2+1

(α+
√

3)3

√

8
√

3
9

α2+1

(
√

3−α)3

α =
√

3, A ′ : 1
3

√
3

3
2

3
√

3

α >
√

3, A ′ : 2
3+

√
3α

−1+
√

3α
α+

√
3

√

8
√

3
9

α2+1

(α+
√

3)3
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Figure 7.9: Bifurcations portraits of the MHVR oscillator in the parameter plane (ν,λ).

Case α = 1. Global view and (a) detail of the zone around the left cusp of BS ; (b) detail

of the zone inside BS where the branches of the node-spiral bifurcation BN intersect;

(c) detail of the zone around the right cusp of BS .
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Figure 7.10: Bifurcations portraits of the MHVR oscillator in the parameter plane (ν,λ).

Case α = 2.
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The ν − λ representation of the Hopf bifurcation BH is obtained by replacing Eq.

(7.45) into Eq. (7.20). This leads to:

λH (ν,α) =

√

1
8

+
1
2

(

ν − 1
2
α

)2

with ν < νO′ or ν > νO (7.49)

Moreover, by replacing Eq. (7.46) in Eq. (7.20), one obtains the node-spiral bifurca-

tions BN. The explicit expressions are not reported for brevity.

In the ν − z plane, there are two common points between the Hopf bifurcation BH

and the saddle-node bifurcation BS , viz. O and/or O ′ (see Fig. 7.3). In the ν − λ

plane, the curves BH and BS are tangent at the same points (Figs. 7.7, 7.8, 7.9 and

7.10). Moreover, in this plane BH and BS intersect at two other points, B and B ′. In

order to find their coordinates, one needs to replace Eq. (7.49) into (7.47). This leads

to the following equation:

1
64

(

3α2 − 8αν + 4ν2 − 1
)2 (

3α4 − 8α3ν + 14α2 − 40αν + 16ν2 − 5
)

= 0 (7.50)

The first factor is null when ν = α ± 1
2

√
α2 + 1, i.e. at the points O and O ′. The roots

of the second factor define the abscissas of B and B ′:

νB′ = 1
4

(

α
(

α2 + 5
)

−
(

1 + α2
)
√
α2 + 5

)

νB = 1
4

(

α
(

α2 + 5
)

+
(

1 + α2
)
√
α2 + 5

)

The corresponding λ coordinates are easily obtained by replacing the ν-values in Eq.

(7.49):

λB′ = 1
2
√

2

√

1 + 1
4

(

α3 + 3α−
(

α2 + 1
)
√
α2 + 5

)2

λB = 1
2
√

2

√

1 + 1
4

(

α3 + 3α +
(

α2 + 1
)
√
α2 + 5

)2

As it is said for an analogous situation in (Glendinning and Proctor, 1986), an impor-

tant particular case occurs when α is such that the points A , O and B converge in a

unique bifurcation point of codimension 3. This particular α value can be computed

by imposing the equality νO = νA , with the values taken from Tables 7.1 and 7.2,

respectively. This leads to

α = −
√

3/3, νA = νO = νB = 0 and λA = λO = λB = 1/
√

6

Likewise, the points O ′, A ′ and B ′ coincide when

α =
√

3/3, νA ′ = νO′ = νB′ = 0 and λA ′ = λO′ = λB′ = 1/
√

6
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The values α = ±
√

3/3 bound the so-called small isochronicity region (Pikowski et al.,

2001).

The curves defining the different kinds of bifurcations have been defined. Let us

now analyze the regions of the ν − λ plane delimited by these curves. Three types of

regions are distinguished:

- Type I regions: outside the saddle-node bifurcation BS (Eq. (7.47)) and such that

λ > λH (ν,α) (Eq. (7.49)).

- Type II regions: inside the saddle-node bifurcation BS (Eq. (7.47)).

- Type III regions: outside the saddle-node bifurcation BS (Eq. (7.47)) and such that

0 < λ < λH (ν,α) (Eq. (7.49)).

Each point (ν,λ) of the regions of type II (for given α), is associated with three

solutions of the form (7.6)-(7.10), i.e. three values of the squared non-dimensional

amplitude z = r2. Conversely, each point of the regions I and III is associated with one

solution. The number of sub-regions and the nature and stability of the associated

solution(s) varies with the value of the parameter α. Let us analyze the following

cases:

(a) α = 0 (see Figure 7.7 and Table 7.3). This situation corresponds to the standard

Van der Pol and/or Rayleigh oscillators. It is the so-called isochronous case

(Pikowski et al., 2001). There are two regions of type I, where each point (ν,λ)

is associated with a stable node (I1) or a stable spiral (I2). In both regions, the

entrained solution (Eq. (7.6) or (7.10)) is stable. The region III is characterized

by an unstable spiral. Therefore, the entrained solution is not stable. The tran-

sition from I2 and III occurs via the Hopf bifurcation (7.49). In the four regions of

type II, each point is associated with a saddle and two other solutions, whereof

at least one is stable (Table 7.3). In summary, in the regions I and II a stable en-

trained solution exists, while in the region III the entrained solution is unstable.

The upper bounds of the region III are the lower branch of BS (λ = λQ ) and BH ,

that intersect at the point B for positive ν and at B ′ for negative ν.

(b) 0 < |α| ≤
√

3/3. In this case, the region II is ”stretched” with respect to the basic

isochronous case α = 0, with a consequent loss of symmetry with respect to
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the λ-axis. The bifurcation diagram remains substantially unchanged, with the

exception of the new region III1, associated with an unstable node; see the first

column of Table 7.4 and, for the particular case α = 0.5, Fig. 7.8.

(c)
√

3/3 < |α| <
√

3. With respect to the case (b), three new regions of type II

appear (see Table 7.4 and, for the particular case α = 1, Fig. 7.9). The regions

II6 and II7 are characterized by three unstable solutions. For positive α, the left

branch of the Hopf bifurcation is tangent to the lower branch λQ of the saddle-

node bifurcation at O ′, while in the cases (a) and (b) it is tangent to the upper

branch λP . The unstable domain, constituted by the regions II6, II7, III and III1,

is still delimited by the curves BS (λ = λQ ) and BH, but the relevant intersection

point for negative ν is O ′, instead of B ′. An analogous situation occurs for

negative α, for points O and B.

(d) |α| ≥
√

3. In this case, the regions II3 and II4 become open, and the cusp A ′ no

longer exists (see Figure 7.10, for the case α = 2). The new region II8 appears:

it contains points associated with three solutions, one of which is stable (Table

7.4). The other regions are the same as in the case (c).

Table 7.3: Description of the fixed points in the different regions of the bifurcation

diagrams. First part. (s.n.=stable node; s.s.= stable spiral; sd.= saddle; u.n.= unstable

node; u.s.= unstable spiral).

Region I1 I2 II1 II2 II3 II4 III

p < 0 < 0 < 0, (-), > 0 < 0, (-), > 0 < 0, (-), < 0 < 0, (-), < 0 > 0

q > 0 > 0 > 0, < 0, > 0 > 0, < 0, > 0 > 0, < 0, > 0 > 0, < 0, > 0 > 0

∆ > 0 < 0 > 0, > 0, > 0 > 0, > 0, < 0 > 0, > 0, < 0 > 0, > 0, > 0 < 0

s.n. s.s. s.n., sd., u.n. s.n., sd., u.s. s.n., sd., s.s. s.n., sd., s.n. u.s.

− for both signs

Collecting the conditions corresponding to the four cases, i.e. for all α, it is possible

to distinguish the regions where there is at least a solution of the form (7.10) which
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Table 7.4: Description of the fixed points in the different regions of the bifurcation

diagrams. Second part. (s.n.=stable node; s.s.= stable spiral; sd.= saddle; u.n.=

unstable node; u.s.= unstable spiral).

Region III1 II5 II6 II7 II8

p > 0 < 0, (-), > 0 > 0, (-), > 0 > 0, (-), > 0 < 0, (-), > 0

q > 0 > 0, < 0, > 0 > 0, < 0, > 0 > 0, < 0, > 0 > 0, < 0,> 0

∆ > 0 < 0, > 0, > 0 < 0, > 0, > 0 > 0, > 0, > 0 > 0, > 0, < 0

u.n. s.s., sd., u.n. u.s., sd., u.n. u.n., sd., u.n. s.s., sd., u.s.

− for both signs

Table 7.5: Inequalities defining the stability domain for the entrained solutions (7.6)-

(7.10) of the non-autonomous MHVR oscillator (7.5), according to the analytical ap-

proximation based on the harmonic balance method. λQ = λQ (α, ν) and λH = λH (α, ν)

are defined by Eqs. (7.48) and (7.49), respectively.

α < −
√

3
3 |α| ≤

√
3

3 α >
√

3
3

λ ≥ λH when

λ ≥ λQ when

λ ≥ λH when

ν ≤ νB′(α)

νB′(α) ≤ ν ≤ νO(α)

ν ≥ νO(α)

ν ≤ νB′(α)

νB′(α) ≤ ν ≤ νB(α)

ν ≥ νB(α)

ν ≤ νO′(α)

νO′(α) ≤ ν ≤ νB(α)

ν ≥ νB(α)
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is stable, viz. synchronization occurs, and the regions where synchronization is not

possible. A summary of these conditions is given in Table 7.5. This Table defines a

three-dimensional stability domain in the space (ν, λ,α). Accounting for the previous

discussion, the transition between stable and unstable domains occurs either via the

Hopf bifurcation (λ = λH) or via the bottom branch of the saddle-node bifurcation

(λ = λQ ). The graphical representation of this boundary as a surface in the space

(ν,λ,α) is given in Figure 7.11, where the stability region is over the surface. Actually,

the representation is made with a translated ν−axis, i.e. (ν − α,λ,α).

The domains described above are related with the local stability of the solution

(7.6). However, it is well-known that some non-local bifurcations also exist for sys-

tems like Eq. (7.15); see e.g. (Glendinning and Proctor, 1986). The study of non-

local bifurcations for the MHVR oscillator is beyond the purposes of this paper. One

also observes that the transition between stable and unstable spirals across the Hopf

bifurcation does not occur suddenly: around an unstable spiral defined by the coordi-

nates (x1 = R cos θ, x2 = R sin θ), a limit cycle always raises Jordan and Smith (2007).

If the spiral of coordinates (x1, x2) is close to the Hopf bifurcation, this limit cycle is

small and does not envelope the origin of the plane (x1, x2): in this case the frequency

of the solution uy (Eq. (7.6)) is still that of the external force, but the amplitude is mod-

ulated, i.e. uy is not of the form predicted by Eq. (7.6). This situation is sometimes

called ”nearly synchronous” regime (Pikowski et al., 2001). When the spiral is far

enough from the Hopf bifurcation, the limit cycle around the spiral also envelops the

origin of the plane (x1, x2) and the frequency of the solution becomes different from

that of the excitation and synchronization is completely lost. For simplicity, these two

situations are not distinguished in this presentation and they are both considered as

non-synchronized.
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Figure 7.11: Surface representing the lower boundary of the stability domain, accord-

ing to the analytical approximation defined in Table 7.5. Each point over the surface

represents a pedestrian synchronized with the harmonically moving floor.
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7.5 The use of the stability domain for predicting the pedestrian synchronization

In this Section, the theoretical notions previously discussed are used to illustrate

experimental results about the lateral oscillations of pedestrians walking on a moving

floor. Several studies have been performed in this situation. In particular, in (Dallard

et al., 2001a; Nakamura et al., 2008; Sun and Yuan, 2008) experimental results on

a shake table with harmonic motion are discussed and some percentages of syn-

chronized pedestrians are found. In view of the fact that different authors used dif-

ferent terminology to represent or to consider the effect of synchronized pedestrians,

we discuss these terminologies to correlate them. Fujino (Fujino et al., 1993) used

the term ’percentage of synchronized pedestrians’. By analysing video recordings

of pedestrians’ head movements, he concluded that 20 percent of the pedestrians

on the T-bridge were synchronized to the girder lateral vibration. Dallard (Dallard

et al., 2001a) introduced the term ’probability of lock-in’ or ’probability of synchroniza-

tion’ (Newland, 2004) based on the tests performed at Imperical college, London. A

person walked along the specially built 7.2 m long platform, which could be driven

laterally at different frequencies and amplitudes. The objective was to establish the

probability that a pedestrian will synchronize his footfall rate to the frequency of the

swaying platform (lock-in), as a function of the frequency and amplitude of the sway.

Because the laboratory test included a limited number of steps (7-8), no normal walk-

ing conditions could be reproduced. Nonetheless, it was not possible to investigate

the effects of psychological crowd-related factors that might influence the correlation

between individuals: as a reason for lock-in to appear, there was only deck amplitude

investigated at different frequencies, but the probability of lock-in might become more

important due to visual and comfort issues when walking in a large crowd (Franck,

2009). Nakamura (Nakamura, 2004; Nakamura and Kawasaki, 2006) proposed a

load model for the T-bridge. In that load model the coefficient k2 is the percentage of

pedestrians who synchronized the girder vibration. The value of k2 was determined

by using the results of the laboratory tests made by Dallard (Dallard et al., 2001a).

In the shaking table experiment, Nakamura used terms ’rate of synchronized people’

(Nakamura et al., 2008) and ’synchronization rate’(Nakamura and Kawasaki, 2009).
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A person walked ’on the spot’ on an oscillating shaking table, which was driven lat-

erally at different frequencies and amplitudes. In (Nakamura and Kawasaki, 2009),

Nakamura determined values of the coefficient k2 of his load model from the shaking

table tests performed in (Nakamura et al., 2008). Sun (Sun and Yuan, 2008) per-

formed a shaking table test similar to Nakamura (Nakamura et al., 2008), however he

used the term ’probability of synchronization’ and gave a graphical comparison with

Fujino (Fujino et al., 1993) and Dallard (Dallard et al., 2001a). The above summary

indicates that different terminologies, e.g. probability of lock-in, probability of syn-

chronization, percentage of synchronized people/pedestrians, rate of synchronized

people/pedestrians and synchronization rate, used in various literature carry the sim-

ilar meaning. And basically these are the graph between number ratio of synchro-

nized people to total tested people and floor amplitude at one or more than one floor

frequencies. The further concern involves in incorporating the results from lab tests

to the real structures. Though all the mentioned lab tests involved only one person

walking at one time, and not a crowd, synchronization tests with more people will be

necessary for more realistic predictions. Here we use the term ’percentages of syn-

chronized pedestrians’ showing the number ratio of synchronized people to the total

tested people in a particular excitation and walking condition.

7.5.1 Analytical viewpoint: a 3D normalized synchronization domain

Let us suppose in this Subsection that the analytical approximation of the synchro-

nization domain (Table 7.5) is very close to the exact domain. According to the def-

inition (7.5) of the MHVR oscillator, the motion of a pedestrian on a laterally mov-

ing deck is represented by the seven ’physical’ parameters µ,ω0, β, γ,δ, Aacc and ω.

Nonetheless, it is possible to use Eqs. (7.12) and (7.13) to reduce to three the number

of (non-dimensional) parameters necessary and sufficient to represent a pedestrian

walking on a floor with a given harmonic motion. These parameters can be thought

as the coordinates of a point in the 3D (ν,λ,α) space. In the same space, the syn-

chronization domain has been defined by the conditions collected in Table 7.5 and it

has been represented in Fig. 7.11, with the translation ν → ν − α. When the point is

outside this domain, i.e. it is under the surface plotted in Fig. 7.11, synchronization
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cannot occur. Conversely, when the point is inside this domain, the synchronization of

the pedestrian with the floor is possible. For instance, Fig. 7.11 shows twelve points,

corresponding to twelve pedestrians (see (Erlicher et al., 2010), test with nominal lon-

gitudinal speed vx = 4.5 km/h) on a laterally moving floor with Aacc = 0.15 m/s2 and

f = ω/2π = 0.75 Hz. The ratio between the number of points over the surface and the

total number of points gives the synchronization percentage.

Looking at Fig. 7.11, one notices that when λ = 0 the synchronization domain

touches the axis ν − α = 0. This indicates that also for very small excitations, syn-

chronization is possible provided that the difference ν − α is close enough to zero.

In terms of dimensional parameters, λ = 0 entails Aacc = 0 according to (7.13) : it

is the rigid floor condition. Moreover, it can be proven that, in terms of dimensional

parameters, ν−α = 0 corresponds to ω = ω1, where ω1 is the walking frequency of the

pedestrian on a rigid floor. Hence, synchronization is possible even for small excita-

tion amplitudes, provided that the floor frequency ω is very close to ω1. Conversely, if

the difference ν −α is large, the synchronization occurs only when the excitation am-

plitude λ is large. According to this interpretation, it makes no sense to speak about

an absolute threshold value of the excitation amplitude acting on a single pedestrian,

without referring to the detuning ν−α, correlated with the frequency difference ω−ω1.

Fig. 7.11 as well as Figs. 7.8-7.10 show that for a given non-zero α value, the lower

boundary of the stability/synchronization domain is not an even function of ν − α.

Therefore, the sign and not only the amplitude of the frequency detuning is important.

If α > 0, the tendency to have synchronization is greater when the floor frequency is

larger than the pedestrian natural frequency (ω − ω1 > 0 ⇔ ν − α > 0). This asym-

metric behaviour is correlated with the term proportional to γ in the MHVR oscillator,

that is in turn proportional to α. The model identification presented in (Erlicher et al.,

2010) shows that the identified values of γ are always positive and that this parameter

is essential to have a good fitting of experimental lateral forces in rigid floor regime.

Concerning the test results available in the literature for the moving floor regime

(e.g. (Dallard et al., 2001a; Nakamura et al., 2008; Sun and Yuan, 2008)), it is actu-

ally not easy to extract some information about the synchronization behaviour of each

single pedestrian for different frequency detunings. The measurement results are of-

ten given under the form of percentages of synchronization, without referring to the
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single individual. For this reason, it is not easy to detect this asymmetric synchroniza-

tion effect. Further experimental analyses might help to get a better understanding of

this aspect.

7.5.2 Analytical vs. numerical synchronization domain

The analytical approximation of the stability domain presented in the previous Sub-

section is insightful, however, the assumption made is not always fulfilled. Actually,

Eqs. (7.44), (7.45), (7.46) and the relationships of Table 7.5 defining the analytical

approximation of the stability domain have been obtained supposing that the solution

of the forced MHVR model is of the form (7.6)-(7.10), where superharmonics com-

ponents of the response are neglected. Hence, this analytical representation has to

be used with caution. In order to avoid an important effect of the higher harmonics,

the amplitude of the force has to be small. For the same reason, the parameters µ

and α related to the nonlinear damping and the frequency detuning ν should be small

(Jordan and Smith, 2007). In addition, it should not be forgotten that this domain

concerns the 1:1 synchronization only (Pikowski et al., 2001).

Accounting for these remarks, a comparison between analytical predictions and nu-

merical results is presented in Figs. 7.12, 7.13 and 7.14. Three cases are considered:

(a) α = 0; (b) α = 0.5; and (c) α = 1. Each point in these figures gives the numerical

estimation of the boundary of the stability domain for a given ν value. It has been

obtained doing several numerical simulations at a given value of ν and modifying the

λ value. In detail, Eq. (7.5) is solved with the parameters µ = 0.15,β = 1, δ = 1,ω0 = 1;

the excitation frequency ω is computed using the third identity in Eq. (7.13) for the

given ν value, while γ is computed for the given α value (constant in each Figure)

using the second relationship in Eq. (7.12). Finally, Aacc is modified according to

the second identity in Eq. (7.13) in order to modify the λ value. For small λ values,

the computed response is not synchronized (like in the example of Fig. 7.15a). By

increasing λ, this behaviour changes at the transition across the stability domain and

a solution with constant amplitude and frequency ω appears (like in the example of

Fig. 7.15b). The transition value of λ, together with the given ν, defines one point.

As it can be seen from Figs. 7.12, 7.13 and 7.14, the difference between analytical
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Figure 7.12: Comparison between the analytical and numerical estimations of the

boundary of the stability domain of the MHVR oscillator. Case α = 0.
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Figure 7.13: Comparison between the analytical and numerical estimations of the

boundary of the stability domain of the MHVR oscillator. Case α = 0.5.
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Figure 7.14: Comparison between the analytical and numerical estimations of the

boundary of the stability domain of the MHVR oscillator. Case α = 1.
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Figure 7.15: Time-evolution of the displacements of the center of mass of pedestrian

”2” (vx = 3.75 km/h Erlicher et al. (2010)) in the case of (a) non-entrained oscillation

(Aacc = 0.05 m/s2, ω/(2π) = 1 Hz) and (b) entrained oscillation (Aacc = 0.15 m/s2,

ω/(2π) = 1 Hz). uy : relative displacement; Uy + uy : absolute displacement; Uy :

shake table displacement.
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and numerical results is not always small, above all for the highest values of ν and α.

For this reason, only the numerical results should be used for the comparison of the

model predictions with the experimental results, if any.

7.5.3 Percentages of synchronization for a group of pedestrians

We consider here two populations of twelve pedestrians, represented by two groups

of twelve MHVR oscillators. The parameters defining these pedestrians have been

identified from rigid floor walking tests (Erlicher et al., 2010). Actually, the pedestrians

of the first population were asked to walk on a treadmill with a nominal speed vx =

3.75km/h . Each pedestrian has a natural walking frequency corresponding to this

longitudinal speed. The average of the natural frequencies of this group is 0.848 Hz

with a standard deviation of 0.055 Hz. The same pedestrians were also asked to walk

at the nominal speed vx = 4.5km/h . The average frequency in this case is 0.923 Hz

with a standard deviation of 0.053 Hz.

For each oscillator/pedestrian a numerical simulation is made with an periodic exci-

tation corresponding to a floor motion with given acceleration amplitude Aacc and fre-

quency ω. The response is computed considering zero initial conditions: if a steady

response with constant amplitude and frequency equal to ω is reached after a tran-

sient (see Fig. 7.15b), then the oscillator/pedestrian is considered synchronized with

the floor. It is non-synchronized in the opposite case (see Fig. 7.15a). In the non-

synchronized case the amplitude and frequency of the pedestrian-oscillator is varying

with respect to the floor, while in the synchronized condition these parameters are

constatnt.

Table 7.6 concerns the first population and shows the percentages of synchronized

pedestrians for several amplitudes and frequencies of the floor motion. Table 7.7 con-

cerns the second population, characterized by a slightly higher averaged frequency.

It can be seen that the highest percentages of synchronization occur for the highest

floor acceleration amplitudes and for floor frequencies close to the average value of

the population.
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Table 7.6: Percentages of synchronized pedestrians in a population of twelve people.

The average of the natural walking frequencies of all pedestrians is f̄1 = 0.848 Hz with

a standard deviation of 0.055 Hz.

P
P
P
P
P
P
P
P
P
P
P

Aacc[m/s2]

f [Hz]
0.5 0.75 1.0 1.25

0.05 0/12 5/12 1/12 0/12

0.15 0/12 12/12 7/12 0/12

0.30 9/12 12/12 12/12 3/12

Table 7.7: Percentages of synchronized pedestrians in a population of twelve people.

The average of the natural walking frequencies of all pedestrians is f̄1 = 0.923 Hz with

a standard deviation of 0.053 Hz.

P
P
P
P
P
P
P
P
P
P
P

Aacc[m/s2]

f [Hz]
0.5 0.75 1.0 1.25

0.05 0/12 0/12 5/12 0/12

0.15 0/12 10/12 11/12 0/12

0.30 9/12 12/12 12/12 7/12
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7.6 Phase analysis

A phase difference during synchronized motion between pedestrian(s) and floor

has already been noticed in several experimental studies, e.g. (Dallard et al., 2001a;

Nakamura and Kawasaki, 2006; Nakamura et al., 2008; Sun and Yuan, 2008). The

studies made on Millennium bridge by Dallard (Dallard et al., 2001a) show a linear

relationship (zero phase difference) between lateral force and the local bridge velocity

during synchronization. The experimental studies made on the T-bridge (Nakamura

and Kawasaki, 2006) identified the synchronization phenomenon but the phase dif-

ference between the girder and the pedestrians was not clarified. In case of M-bridge

(Nakamura and Kawasaki, 2006) pedestrian’s lateral displacement phase during syn-

chronization is between 120-160 degrees ahead of the girder. In the shaking table

experiment by Nakamura (Nakamura et al., 2008) the phase difference between floor

and pedestrian displacement during synchronization lies between 120-140 degrees

with pedestrian lagging the floor. The experiment performed by Sun and Yuan (Sun

and Yuan, 2008) on a shaking table shows that the synchronization occurs at a steady

phase difference and finds the steady phase lag of the lateral force with respect to

the displacement of shaking table with a mean value of 140.8 degrees and standard

deviation of 17.9 degrees. The tests performed for three crowd densities, i.e. 0.3, 0.7

and 0.9 pedestrians/m2 on a reinforced concrete prototype footbridge Araujo Jr et al.

(2009) could not observe the synchronization phenomenon. Nevertheless, the phase

angle among pedestrians was found with a mean of 90.45 degrees and standard

deviation 50.74 degrees for crowd density 0.7.

The above outcomes show that some individual studies were made on different

footbridges and models, each considering a different type of phase difference. In

this condition, it is difficult to find a general agreement on the experimental values of

the phase-difference. Nevertheless, it is easier to study all possible types of phase

differences during synchronization on an analytical model. The phase difference dur-

ing synchronization is an important aspect of pedestrians-structure interaction phe-

nomenon. However, in our knowledge no detailed analysis of this problem can be

found in the literature. The study presented in this Section gives a contribution to
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fill this dearth, aiming to a better understanding of the pedestrians-structure interac-

tion. The modified hybrid Van der Pol/Rayleigh (MHVR) model has been used for a

theoretical study of the phase-difference.

7.6.1 Phase difference θ between relative displacement response and displacement

excitation

As already mentioned in the previous section, Eq.(7.6) represents the motion of a

pedestrian relative to the floor and θ represents the phase difference between the rel-

ative pedestrian displacement and the floor displacement. The analytical estimation

of θ comes from Eqs. (7.20)-(7.21) after choosing the values of the non-dimensional

parameters ν,λ and α. The relative phase θ has been represented in bidimesional

plot ν − θ in Fig. 7.16 for fixed α and λ values. According to our sign convention a

negative value of θ indicates that the pedestrian is lagging to the floor motion by |θ|
angle or with a time lag M t = |θ/ω| , where ω is the angular frequency, and viceversa

when θ is positive.

7.6.1.1 Analytical vs. numerical results

A comparison between numerical solution and the analytical phase difference pre-

dicted by Eq. (7.21) is reported in Fig. 7.16. The numerical solution is obtained for

the stable entrained periodic responses by solving Eq. (7.5) by ODE23 solver in Mat-

lab and then computing the phase of the first harmonic of the periodic response. The

numerical simulations are performed with the parameters ω0 = 1 rad/s, ε = 2µ = 0.05,

β = 1 m−2, δ = 1 m−2. The non-dimensional parameter α is taken constant (α = 1),

while three values of λ are considered (λ = 0.35, λ = 1.5, λ = 2.5). As a result, for

each fixed value of ν , the remaining parameters ω, Aacc and γ needed for numeri-

cal integration of Eq. (7.5) are computed using Eqs. (7.12)-(7.13) and the identity

Aacc = ω2Ad . Fig. 7.16 shows that there is a good agreement between numerical and

analytical results. Actually, the good approximation obtained in this example concerns

values of z less than 2.5, while λ is less than 2.5 and µ is small. The accuracy of an-

alytical predictions diminishes for higher values of these quantities and the modulus
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of α.

Figure 7.16: Analytical and numerical comparison of the phase difference between

relative displacement response and and displacement excitation for α = 1.and λ =

0.35, 1.5 and 2.5

As θ in Eq. (7.21) is a function of z, ν and α, the number of values of θ will depend

on the number of roots of pν,α,λ (z) for any set of ν,λ and α values. In Fig. 7.16, θ

is plotted between −π and π. In addition to the phase difference (θ) curves for three

λ values there is a line corresponding to z = 1
2 and a close curve corresponding to

Eq. (7.23). For λ = 0.35, two curves exist, one is continuous over all values of ν while

another curve is continuous in a small range of ν values. For larger negative values

of ν, θ is positive and approaches to a constant value regardless of the values of λ.

However, θ is negative for positive and smaller negative values of ν.
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7.6.2 Phase difference φ between absolute displacement response and displace-

ment excitation

In this Section, another interpretation of phase is discussed in order to make an easier

comparison with experimental results. According to Eq. (7.6), uy (t) has a constant

amplitude and frequency and is entrained by the external excitation frequency. A

solution of this kind represents a pedestrian synchronized with the floor motion. In

synchronized condition, the absolute displacement of the pedestrian can be written

as the sum of the (absolute) displacement of the floor and the relative displacement

of the pedestrian with respect to the floor.

uyA (t) = Uy (t) + uy (t)

= Ad cos (ωt) + R cos (ωt + θ)
(7.51)

Using some trigonometric identities, one has

uyA (t) = [Ad + R cos (θ)] cos (ωt) − [R sin (θ)] sin (ωt)

:= A cos (ωt + φ)
(7.52)

Hence, the squared absolute displacement amplitude is given by

A2 = [Ad + R cos (θ)]2 + [R sin (θ)]2 (7.53)

The phase is given by

tanφ =
R sin θ

Ad + R cos θ
(7.54)

Putting the values of R and Ad from Eq.(7.13), after simplification the phase is given

by

tanφ =
ωr2(1 − r2)

εω0λ2 + ωr2(−ν + αr2)
=

ωz(1 − z)
εω0λ2 + ωz(−ν + αz)

(7.55)

Eq.(7.52) represents the absolute motion of the pedestrian with amplitude A and

phase φ. The motion of the floor is represented by Eq.(7.4), having zero phase;

therefore, φ also represents the phase difference between the absolute pedestrian
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displacement and the floor displacement. According to our sign convention a negative

value of φ indicates that the pedestrian is lagging to the floor motion by |φ| angle or

with a time lag M t = |φ/ω| , where ω is the angular frequency, and viceversa when φ

is positive.

7.6.2.1 Analytical vs. numerical results

In this Subsection, numerical and analytical plots of the relationships ν − φ are com-

pared in Fig. 7.17. The same example is chosen as in the case of analytical-

numerical comparison of θ. The same procedure is followed for the numerical in-

tegration and to get the first harmonic of the entrained periodic response of Eq. (7.5).
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Figure 7.17: Analytical and numerical comparison of the phase difference be-

tween absolute displacement response and displacement excitation for α = 1 and

λ = 0.35, 1.5 and 2.5
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In Eq. (7.55), φ is a function of z, ν,λ,α,ω,ω0 and ε. From Eq.(7.13) for known

parameters ω0 and ε;ω is a function of ν. So finally, φ is a function of z, ν,λ and α. The

number of values of φ depends on the number of roots of pν,α,λ (z) for any set of ν,λ

and α values. In Fig. 7.17, φ is plotted between −π and π. For λ = 0.35, two curves

exist, one is continuous over all values of ν and another curve is continuous in a small

range of ν values. For larger negative values of ν, φ is positive and approaches to a

constant value regardless of the values of λ. However, φ is negative for positive and

smaller negative values of ν.

7.6.3 Phase difference φvf between restoring force and external excitation (floor)

velocity

In this Section, another interpretation of phase is discussed: the phase difference

between force and floor velocity. In case of pedestrians-footbridge behaviour, this

phase is often considered as the most significant in experimental testings (Dallard

et al., 2001a; Nakamura and Kawasaki, 2006). Accounting for Eqs. (7.2), (7.4) and

(7.6), the lateral force applied by the walker on the moving floor is given by

Fy (t) = Fy

(

uy (t) , duy

dt (t)
)

= m
(

− d2Uy (t)
dt2 − d2uy (t)

dt2

)

= m
(

ω2Ad cos (ωt) − d2uy (t)
dt2

)

= m
(

ω2Ad cos (ωt) + Rω2 cos (ωt + θ)
)

(7.56)

Using some trigonometric identities, one has

Fy (t) = m
[

ω2Ad + Rω2 cos (θ)
]

cos (ωt) − m
[

Rω2 sin (θ)
]

sin (ωt)

:= C1,dyn cos
(

ωt + φ1,dyn
)

(7.57)

Hence, the squared force amplitude is given by

C2
1,dyn =

(

m ω2
)2 (

[Ad + R cos (θ)]2 + [R sin (θ)]2
)

(7.58)

The phase is given by

tanφ1,dyn =
mω2R sin θ

mω2Ad + mω2R cos θ
=

R sin θ
Ad + R cos θ

= tanφ (7.59)

Hence,

φ1,dyn = φ (7.60)
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By definition, φ1,dyn represents the phase difference between the lateral force and

the floor displacement and according to Eq.(7.60), it is equal to the phase difference

(φ) between absolute pedestrian displacement and the floor displacement. According

to our sign convention a negative value of φ1,dyn indicates that the lateral force is

lagging to the floor displacement by |φ1,dyn| angle or with a time lag M t = |φ1,dyn/ω| ,
where ω is the angular frequency, and viceversa when φ1,dyn is positive.

The floor velocity, Vy (t) is given by one time differentiation of floor displacement

Uy (t) = Ad cos (ωt).

Vy (t) = Adω cos
(

ωt +
π

2

)

(7.61)

The phase difference between the lateral force and the floor velocity reads

φvf = φ1,dyn −
π

2
= φ− π

2
(7.62)

According to our sign convention the negative value of φvf indicates that the lateral

force is lagging to the floor velocity by |φvf | angle or with a time lag M t = |φvf/ω| ,
where ω is the angular frequency, and viceversa when φvf is positive.

7.6.3.1 Analytical vs. numerical results

In this Subsection, numerical and analytical plots of the relationships ν − φvf are

compared in Fig. 7.18. The same example is chosen as in the case of analytical-

numerical comparison of θ and φ. The same procedure is followed for the numerical

integration of the entrained periodic response of Eq. (7.5). The value of the total

lateral force is obtained from Eq. (7.3). The numerical counterpart of Fy (t) defined in

Eq. (7.57) has been obtained by extracting the first harmonic of the total lateral force

using the Fourier series definition.

In Fig. 7.18, φvf is plotted between −π and π for the same three values of λ

i.e.λ = 0.35, 1.5 and 2.5. For larger negative values of ν, φvf approaches to a con-

stant negative value regardless of the values of λ. For the MHVR model with the

parameters of Fig. 7.18, φvf is never null for a stable entrained periodic response.
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Figure 7.18: Analytical and numerical comparison of phase difference between lateral

force and floor velocity. For α = 1.and λ = 0.35, 1.5 and 2.5
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7.7 Effect of frequency and amplitude variations

In this Section, we present the numerical results showing the effect of variation of

excitation (floor) frequency and amplitude on phase and amplitude of the motion of

the MHVR oscillator. The MHVR parameters are those defined for pedestrian ”2” and

shown in Table 7.8 (Erlicher et al., 2010).

Table 7.8: Model parameters for the two MHVR pedestrians

Pedestrian No. ω0
[

rad/s
]

µ β
[

m−2
]

γ
[

m−2
]

δ
[

m−2
]

m [kg]

”2” Erlicher et al. (2010) 4.622 0.5536 4780 7420 3430 68.1

”5” Erlicher et al. (2010) 4.27 0.3775 0 4180 2390 72.4

”a” Nakamura et al. (2008) - - - - - 81.5

Fig. 7.19(a) shows that the absolute values of the phase differenc φ are larger at

high frequencies and smaller at low frequencies for all amplitudes.

Fig. 7.19(b) shows that the force-velocity phase difference φvf , at large amplitudes,

tends towards a unique value for all frequencies, for instance | φvf |→ about 115 de-

grees in this case. By virtue of Eq. (7.62) also φ tends towards a constant value. This

means that at large excitation amplitudes; the phase difference becomes indepen-

dent of the synchronized frequency. Fig. 7.19(c) shows that the relative amplitude

ratio R/Ad is larger at low frequencies and smaller at high frequencies. The ratio

R/Ad increases almost linearly with amplitude Ad at almost same slope for all the

considered frequencies. Fig. 7.19(d), shows that the absolute amplitude ratio A/Ad

is larger at low frequencies and smaller at high frequencies. However, at large floor

amplitudes Ad , the ratio A/Ad tends towards a unique value for all frequencies, for in-

stance about 1.2 in this case. It means that at larger excitation amplitudes; amplitude

ratio becomes independent of the synchronized frequency.

270



0 0.5 1 1.5 2 2.5 3 3.5 4
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Ad (cm)

φ 
 (

de
gr

ee
)

f = 0.7 Hz

f = 0.8 Hz

f = 0.9 Hz

f = 1 Hz

f = 1.1 Hz

f = 1.2 Hz

0 0.5 1 1.5 2 2.5 3 3.5 4

−150

−100

−50

0

50

100

150

Ad (cm)

φv
f (

de
gr

ee
)

f = 0.7 Hz
f = 0.8 Hz
f = 0.9 Hz
f = 1 Hz
f = 1.1 Hz
f = 1.2 Hz
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7.8 Numerical vs. experimental results

In the Section 7.6, it has been illustrated the phase variations as a function of ν and

λ and shown by some examples that the analytical and numerical solutions are under

good agreements in certain intervals of ν,α and λ. In order to make a comparison

with the experimental results available in the literature (Nakamura et al., 2008; Sun

and Yuan, 2008), the model behaviour is represented by the numerical solutions.

In the shaking table experiment of Nakamura (Nakamura et al., 2008), a pedestrian

walked on the spot on a reaction plate (0.8 m wide and 0.5 m long) put on a shaking

table (1.5 m wide and 1 m long) under harmonic motion of known amplitude and

frequency. In the numerical solution, the floor motion amplitude and frequency are

chosen as 3 cm and 1 Hz respectively, only in this case a comparison is possible

with experimental data of Nakamura (Nakamura et al., 2008). Table 7.8 presents the

MHVR model parameters of the two (no. 2 and 5) out of 12 pedestrians observed in

the rigid floor case at the walking speed 3.75 m/s (Erlicher et al., 2010). The numerical

results of the same two pedestrians are plotted in Figs. 7.20 and 7.21 respectively,

and presented in Table 7.9. In Figs. 7.20 and 7.21, the contours of the plots are

similar to the shaking table experiment (Nakamura et al., 2008) with the lateral force

containing superharmonics and both the pedestrians lagging the floor.

In the shaking table experiment of Sun and Yuan (Sun and Yuan, 2008), the steady

phase lag between the lateral pedestrian force and the displacement of shaking table

during synchronization was found with a mean value of 140.8 degrees and standard

deviation of 17.9 degrees. In the MHVR model, this phase difference is denoted as

φ1,dyn and defined by Eqs. (7.59) and (7.60). According to Eq. (7.60), φ1,dyn must

be equal to the phase difference (φ) between absolute pedestrian displacement and

the floor displacement. In the Nakamura’s experiment (Nakamura et al., 2008) φ is

between 120-140 degrees. In Table 7.9, the maximum amplitude ratio
(

A/Ad
)

is very

close to that of Nakamura (Nakamura et al., 2008), but the phase difference(φ) is

smaller and the force to weight ratio
(

Fmax/mg
)

is larger. The reason behind this,

according to our view, is that the pedestrians in both the cases are not the same.

The parameters of MHVR model were not identified for the pedestrian walking on the
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Figure 7.20: Displacement and force-time plot for pedestrian no. ”2” at floor excitation

amplitude 3 cm and frequency 1 Hz
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Figure 7.21: Displacement and force-time plot for pedestrian no. ”5” at floor excitation

amplitude 3 cm and frequency 1 Hz
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shake table, but for a different person walking on a rigid floor because exploitable

experimental data were available only in this case (Erlicher et al., 2010). Therefore,

more experiments are sought on the shaking table with the same pedestrians as used

in the numerical model.

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0

0.01

0.02

0.03

t 

y1
,y

2

 

 

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0

0.01

0.02

0.03

t

y1
,y

2

 

 
y1=a1 cos(ω t+φ1)
y2=a2 cos(ω t+φ2)

y1=a1 cos(ω t+φ1)
y2=a2 cos(ω t+φ2)

y2 leads y1 ’or’ y1 lags y2

y1 leads y2 ’or’ y2 lags y1φ 1>φ 2

φ 2>φ 1

∆ t= time lag

∆t= time lead

Figure 7.22: Phase sign convention- Case(1) y1 leads y2 Case(2) y2 leads y1

Table 7.9: Comparison of numerical and experimental results

Pedestrian No. φ [degrees] A/Ad Fmax [N] Fmax/m [m/s−2] Fmax/(mg)

”2” Erlicher et al. (2010) -29.43 1.25 119.63 1.757 0.179

”5” Erlicher et al. (2010) -42.32 1.19 131.21 1.812 0.185

”a” Nakamura et al. (2008) -120 1.33 85 1.042 0.106
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7.9 Conclusions

In this Chapter, an approach where the lateral pedestrian oscillations during walk-

ing are modelled by a self-sustained oscillator was presented. This MHVR oscillator

is a new extension of the classical Van der Pol/Rayleigh model. The non-autonomous

case is analyzed here with particular emphasis on the stability and phase of the en-

trained response. The theoretical analysis and a comparison with numerical results

are presented. In detail, the amplitude, stability and phase of the MHVR oscillator so-

lution under a harmonic external force associated with the floor motion is analytically

evaluated by the harmonic balance method and compared with numerical results. It

is shown that the phase difference tends to become constant at high excitation (floor)

amplitude. The numerical results of MHVR oscillator have been compared with the

experimental results on a shake table with harmonic floor motion. There is a good

agreement in amplitude ratio. The phase difference evaluated by the MHVR model is

lower than the experimental value. A possible reason might be that, the parameters

of MHVR model were not identified for the pedestrian walking on the shake table, but

for a different person walking on a rigid floor. Experimental data on both rigid and

moving floor conditions for the same person are necessary to clarify the differences.
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CHAPTER 8

SUMMARY, CONCLUSIONS AND FUTURE PERSPECTIVES

8.1 Summary

This thesis dealt with several issues crucial to the performance of cable-stayed

footbridges. In particular, it focussed on the: i) investigation of the effectiveness of

the vibration reduction system in a complex cable-stayed footbridge characterised by

two curved decks; ii) model updating of the ‘Ponte del mare’ cable-stayed footbridge

in Pescara, Italy; iii) nonliner-identification of stay cables; and iv) modeling the syn-

chronous lateral excitation phenomenon in a pedestrian-footbridge interaction.

A passive control system, already designed, was installed to avoid premature aeroe-

lastic instability and to control human-induced vibrations on a recently built cable-

stayed footbridge, i.e. the ‘Ponte del mare’ in Pescara, Italy. The complex dynamic

behaviour and the uncertainties related to the numerical modelling led to a modal

testing campaign of the bridge without and with dampers. Output-only ambient and

free decay vibration tests were chosen based on the state-of-the-art presented in

chapter 3. Output-only ambient vibration tests, associated with low vibration levels,

showed that the damping devices were basically inactive. Free decay tests, which

were performed by released masses, did produce high vibration levels. In the latter

tests, dampers showed a good absorption capacity and the damping doubled or even

trebled on some of the modes. In order to clarify these outcomes, modal quantities

were instantaneously calculated, based on time-frequency identification techniques.

The modal properties estimated from the modal testing campaign did not match
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that of the numerical model. In order to get a robust FE model capable to simulate

the actual behaviour of the footbridge, a model updating was performed. Firstly, the

initial FE model was modified considering the changes during construction. The ma-

jor changes were: the use of lightened concrete in the cyclic deck; the use of five

different thicknesses of concrete in the pedestrian deck; additional short and long

diagonals in the two decks. Moreover, the modified model considered some issues

that were left out in the initial model. In a greater detail considerations were made

to: the contribution of the two side blocks; of the presence of metal steel sheeting;

the concrete present between the outlines of the metal steel sheeting and different

thicknesses of the paving; variation of the section of the tubular mast along its length

and the concrete inside; mass of the metallic plates at the junction in the deck; the

and refinement of the model at the two supports. Then, the tensions in the stay

cables were updated by an iterative procedure to match that obtained from the exper-

iment. These were the characteristics of the model ready for updating. The modified

model also showed discrepancies in the modal properties with respect to experimen-

tal values. In order to perform the updating, the sensitivity-based MU technique and

Powell’s Dog-Leg method of optimisation based on the Trust-Region approach were

used. The sensitivity matrix was calculated and the nine most sensitive parameters

were selected. The sensitive parameters were the elastic modulii of the concrete and

steel, the densities of the two types of concrete, and the C coefficients of the two

decks. Then, the automatic updating was performed in the Ansys Parametric De-

sign Language (APDL). The model was updated for nine frequencies. Eventually, the

applicability of the updated model was examined by simulating the behaviour of the

footbridge in a recorded high wind loading.

The revealed cable-deck interaction phenomenon was a motivation to investigate

in depth the dynamics of long stay cables. Therefore, efforts were made towards the

identification of the nonlinear behaviour of stay cables from measured response data.

Although, there are several nonlinear identification methods available, non-parametric

methods of polynomial form were used owing to their advantages. In view of the fact

that the actual measured data contained the response of a MDoF system, the first

step in this direction was to investigate the functionality of the nonlinear identification

methods for a SDoF cable system. Due to the lack of experimental data for the SDoF
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cable response, a simple numerical model of the in-plane cable element with zero

initial sag was get in the ANSYS structural software. To get the SDoF response,

the model was reduced to a SDoF system, by applying a harmonic force in the first

modal frequency and the first mode shape. In doing so, we assumed that the system

was weakly nonlinear and that most of the energy was in the primary resonance

associated to the first mode. Consequently, data were forced to fit the model of a

weakly nonlinear SDoF system. In this manner, distortions due to the discrepancy

between the assumed model and the actual structure were perceived as noise in the

optimisation procedure.

Approaching towards a more complete understanding of the performance of cable-

stayed footbridges, it was realized that the modern footbridges are more prone to

pedestrian-induced vibrations that, eventually, degrades their serviceability perfor-

mance. In the case of the ‘Ponte del mare’ footbridge, the undergoing monitoring re-

sults disclosed the acceleration levels exceeding comfort level for some running com-

petitions consisting of about 800 participants. Moreover, several researchers tried to

investigate the problem of synchronous lateral excitation of footbridges; but there is

no general consensus on the models already reviewed in the state-of-the-art chapter

2. Therefore, in the last part of the thesis, an effort was made to model the pedestrian-

footbridge interaction phenomenon. A pedestrian was considered as a self-sustained

oscillator represented by a modified hybrid Van der Pol/Rayleigh (MHVR) model. In

detail, the amplitude, stability and the phase of the MHVR oscillator solution under a

harmonic external force associated with the floor motion was analytically evaluated

by the harmonic balance method and compared with numerical results. Moreover for

an illustrative purpose, a comparison was made between numerical and experimental

results available in the literature.

8.2 Conclusions

Major conclusions are summarised herein.
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An amplitude dependent behaviour of the passive damper system of the ‘Ponte

del mare’ of Pescara was found both with the output-only ambient vibration and free

decay tests. In order to clarify these outcomes, modal quantities were instantaneously

calculated, based on time-frequency identification techniques. A thorough analysis of

dynamic response signals revealed that the structure with dampers actually behaved

like a threshold system: i) for low vibration levels the dampers were still, so that they

performed as constraints that stiffen the structure; ii) for high vibration levels, the

dampers became fully working. Moreover, a deck-cable interaction between one of

the longest cables and the first global mode was detected.

Initially, the modal properties estimated from dynamic tests did not match those of

the numerical model. In order to have a robust FE model capable to simulate the

actual behaviour of the footbridge, model updating was performed. The sensitivity-

based model updating techniques and Powell’s Dog-Leg method of optimisation based

on the Trust-Region approach were used. The final updated model showed a consid-

erable reduction of errors relevant to frequencies. The updated model was also able

to reproduce the response of the footbridge under actual wind conditions.

The proposed non-parametric method exhibited a good capability in the nonlinear

parameter identification of a SDoF cable. Only a cubic-type of nonlinearity was iden-

tified. The quadratic type of nonlinearity was not present due to zero initial-curvature

or sag. Moreover, an increase of the parameter related to damping and a decrease

of the parameter relevant to linear-frequency were observed versus the loading am-

plitude. However, the values of the parameters stabilised at higher load amplitudes.

Superharmonics were present in the response at higher loading amplitudes. How-

ever, the major challenges in the application of the proposed identification method

was the computational burden related to the calculation both of the solution of the

polynomial equation and of the Short Time Fourier Transform (STFT) at each instant

of time.

A model of pedestrian-footbridge interaction was proposed. In detail, a pedestrian

was represented by a modified hybrid Van der Pol/Rayleigh (MHVR) self-sustained

oscillator. Amplitude, stability and phase of the MHVR oscillator solution under a

harmonic external force associated with the floor motion was analytically evaluated

by the harmonic balance method and was compared with numerical results. It was
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shown that the phase difference tended to become constant at high excitation ampli-

tudes. Moreover, the stability domain was found useful in predicting the precentage of

pedestrians synchronized to a given oscillating floor. The numerical results of MHVR

oscillator was, then, compared with the experimental result of a shake table with har-

monic floor motion. A good agreement in amplitude ratio was found; however, the

phase difference resulted to be underestimated by the MHVR model.

8.3 Future perspectives

As presented in the previous sections, the research analysed in depth only some

aspects related to the performance of cable-stayed footbridges. We believe that this

effort was worthy. Although, the investigation was focussed on the ‘Ponte del mare’

cable-stayed footbridge, we believe that the numerical and analytical tools developed

are robust and applicable to other analogous structures.

The following future developments are envisioned relevant to the investigated sub-

jects.

1. In view of the fact that the ‘Ponte del mare’ is complex, we performed the model

updating in the most feasible manner; however, there are several issues still open.

The following factors could be taken into account in the relevant FE model:

i) the FE model considered a smooth curvature for the cycle deck according to the

drawing, but in reality it looks distorted. An accurate measurement of the distortion in

the deck geometry and its implementation in the FE model can be worthwhile.

ii) Bolts and plates in the deck joints were not modelled in detail. They could alter

the stiffness and damping properties.

iii) The connection of each stay cable to the deck was not modelled in detail.

iv) The deck covering elements were not modelled.

v) The modelling of the wind and pedestrian actions is difficult and needs further

refinements.

vi) The FE model considered wind direction orthogonal to the deck surface, but in
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reality, the wind direction might be inclined to the surface.

vii) Flutter derivatives were estimated assuming wind direction orthogonal to the

bridge; however, in reality, the wind direction might be inclined.

viii) The model updating was carried out without considering dampers, but the foot-

bridge is connected with dampers. Therefore, an additional model updating is sug-

gested.

2. With regard to the nonlinear identification of stay cables, the proposed method

should be applied to experimental data. The long term perspective could be to de-

velop an identification method based on a MDoF system.

3. In the case of pedestrian-footbridge interaction the following developments are

possible:

i) to study the phase equation obtained from the MHVR model and to correctly de-

fine the parameters appearing within this equation from experiments (lateral motion).

ii) A systematic comparison of predictions with those of French, British and Euro-

pean standards.

iii) To couple this phase equation with a particle model (the crowd as a set of par-

ticles with given interaction rules), in order to simultaneously model the pedestrian-

footbridge interaction (and possible synchronization) and the crowd motion (with pedestrian-

pedestrian interactions and possible synchronization) in case of lateral motion.

iv) After the phase equation for the pedestrian, it is important to propose an ampli-

tude equation describing the amplitude variation of a pedestrian under the external

force (lateral motion).

v) To study the pedestrian-footbridge interaction owing to vertical oscillations in

order to account for vertical and torsional modes.
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