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Abstract

A lattice (or ‘grillage’) of elastic Rayleigh rods (possessing a distributed mass density, together with ro-
tational inertia) organized in a parallelepiped geometry can be axially loaded up to an arbitrary amount
without distortion and then be subject to incremental time-harmonic dynamic motion. At certain thresh-
old levels of axial load, the grillage manifests instabilities and displays non-trivial axial and flexural
incremental vibrations. Including every possible structural geometry and for an arbitrary amount of axial
stretching, Floquet-Bloch wave asymptotics is used to homogenize the in-plane mechanical response, so
to obtain an equivalent prestressed elastic solid subject to incremental time-harmonic vibration, which
includes, as a particular case, the incremental quasi-static response. The equivalent elastic solid is ob-
tained from its acoustic tensor, directly derived from homogenization and shown to be independent of
the rods’ rotational inertia. Loss of strong ellipticity in the equivalent continuum coincides with macro-
bifurcation in the lattice, while micro-bifurcation remains undetected in the continuum and corresponds
to a vibration of vanishing frequency of the lowest dispersion branch of the lattice, occurring at finite
wavelength. Dynamic homogenization reveals the structure of the acoustic branches close to ellipticity
loss and the analysis of forced vibrations (both in physical space and Fourier space) shows low-frequency
wave localizations. A perturbative approach based on dynamic Green’s function is applied to both the
lattice and its equivalent continuum. This shows that only macro-instability corresponds to localization
of incremental strain, while micro-instabilities occur in modes which spread throughout the whole lattice
with an ‘explosive’ character. In particular, extremely localized mechanical responses are found both in
the lattice and in the solid, with the advantage that the former can be easily realized, for instance via 3D
printing. In this way, features such as shear band inclination, or the emergence of a single shear band,
or competition between micro and macro instabilities become all designable features. The comparison
between the mechanics of the lattice and its equivalent solid shows that the homogenization technique
allows an almost perfect representation, except when micro-bifurcation is the first manifestation of insta-
bility. Therefore, the presented results pave the way for the design of architected cellular materials to be
used in applications where extreme deformations are involved.
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1 Introduction

Shear banding and strain localizations, usually found to emerge before failure of materials, are typically
accompanied by large plastic deformation, sudden formation of elastic unloading zones, damage, and possibly
fracture. Mechanical features depend on the tested material, for instance, shear bands in rocks and in metals
have different inclinations, and tests cannot usually be repeated on the same specimen, because the sample
has to be brought to failure. Shear bands represent an ultimate instability mode, so that their modeling
is complicated by sophisticated, and often phenomenological, elastoplastic constitutive laws, used beyond
several bifurcation thresholds.

Imagine now a material in which shear banding and other instabilities may occur well inside the elastic
range and far from failure. A material that can be designed to produce shear bands with the desired
inclination, or in which shear bands are the first instability occurring at increasing stress, or in which the
anisotropy (not imperfections) allows the formation of only one shear band. Imagine that this material would
be characterized by rigorously determined elastic constitutive laws (thus avoiding complications such as the
double branch of the incremental constitutive laws of plasticity) and would be, at least in principle, a material
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realizable (for instance via 3D printing technology) and testable in laboratory conditions. This material
would be ideal not only to theoretically analyze instabilities, but also to practically realize the ‘architected
materials’ which are preconized to yield extreme mechanical properties such as foldability, channeled response,
and surface effects [1–3]. The crucial step towards the definition of a class of these materials was made by
Triantafyllidis [4–9] and Ponte Castañeda [10–18], who laid down a general framework for the homogenization
of elastic composites and for the analysis of bifurcation and strain localization in these materials. In particular,
they showed how to realize an elastic material displaying a prestress-sensitive incremental response, exactly
how it is postulated for nonlinear elastic solids subject to incremental deformation. Moreover, they provided
a new understanding of strain localization phenomena, showing that a global (called in the following ‘macro’)
bifurcation of a lattice structure corresponds to a loss of ellipticity of the equivalent continuum, while the
latter is unaffected by a local (called in the following ‘micro’) bifurcation occurring in the composite.

The mentioned findings are extended in the present article to lattices of elastic rods of arbitrary geometry
and subject to a nonlinear axial strain of arbitrary amount but leaving the rods in an undistorted state. The
material composing the rods can be an arbitrary nonlinear elastic material, for instance Mooney-Rivlin or
characterized by two elastic shear moduli (see Appendix A). The rods are connected to each other through
nodes able to transmit bending moment, so that when the grillage is subject to time-harmonic incremental
vibrations, the rods are subject to incremental axial and shear forces and bending moments. The lattice
is idealized as two-dimensional and infinite. The former assumption does neither mean that the lattice
can buckle out-of-plane, nor that a three-dimensional sample cannot be designed. Rather, the out-of-plane
thickness may be large enough to avoid out-of-plane buckling, Fig. 1 (left, see also the practical realization
reported in Fig. 2), or different grids can be connected at nodes with transverse revolute joints unable to
transmit torques, Fig. 1 (right). The assumption that the grid is of infinite extent has a twofold origin, namely,

Fig. 1. Two ways to realize a 3D sample from a 2D lattice. Left: the rods are strips with an out-of-plane thickness sufficient
to eliminate out-of-plane buckling. Right: Two (or more) grillages of rods are transversely connected at the nodes with revolute
joints which do not transmit torques.

it is crucial for the homogenization of periodic media and is the way to the analysis of material instabilities in
the equivalent continuum without encountering earlier instabilities. Technically, this occurs in the so-called
van Hove conditions, so that either an infinite medium or a specimen with prescribed displacements over the
whole boundary has to be considered [19]. Under the mentioned assumptions, a systematic analysis of shear
band formation and localization is developed, by applying a perturbative approach [20], both to the lattice
and to its equivalent continuum.

An asymptotic homogenization scheme, based on the Floquet-Bloch wave technique, is developed for a
generic lattice1. Homogenization techniques based on the asymptotic analysis of wave solutions dates back
to Brillouin [21] and Born [22], and has received significant contributions in recent years when the case of
random and periodic media has been considered [23–31] and extended to the high-frequency regime [32–34].
With the exception of [31], these developments have been so far produced for the analysis of wave propagation
in continuous materials, not in structures, so that their practical implementation required the systematic use
of numerical techniques (typically finite elements). It is shown in the present article that low-frequency
effective properties can be derived analytically for lattices composed of rods (incrementally loaded in-plane
and subject to axial, shear and bending forces) through a direct computation of the wave asymptotics2.
Recent results on beam grillages [31] are here extended to the case of elastic lattices, axially stressed up to

1For the geometries investigated in [6] our homogenization approach provides exactly the same results.
2Our mathematical setting is two-dimensional for simplicity, but the three-dimensional extension is straightforward once the

linearized dynamics of the rods is specified.
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an arbitrary amount, whose incremental dynamics is derived without restrictions on the rods’ constitutive
law and without neglecting the rotational inertia of the rods’ cross-section. The low-frequency asymptotics
of waves propagating in the lattice is shown to be governed by the spectral properties of the acoustic tensor
associated to an effective continuum, equivalent to the discrete structure. This continuum is prestressed and
is obtained from the acoustic tensor, to which the Floquet-Bloch asymptotics directly leads. In this way, the
correspondence between loss of ellipticity in the effective continuum and degeneracy of the acoustic properties
in the lattice is directly demonstrated.

The elastic rods are characterized by an axial mass density, equipped with rotational inertia (the Rayleigh
model [35–37]), so that it is possible to prove that the latter does not influence the vibrational properties at
low frequency, expressed by the acoustic tensor of the equivalent continuum. The homogenization, obtained
analytically, is exploited to investigate the lattice response near macro-instability (coincident with the failure
of strong ellipticity and thus of ellipticity in the effective continuum), therefore unveiling features of lattice
dynamics loaded up to the verge of shear band formation.

The response to the application of a pulsating concentrated force (the infinite-body time-harmonic Green’s
function for the homogenized solid) is finally analyzed in the spirit of [38, 39]. The force is applied both to
the lattice (in the physical and Fourier spaces) and to the equivalent solid at different levels of prestress, with
special detail on low-frequency wave localizations.

The comparison between the behavior of the grillage and its equivalent solid reveals features of shear
banding, so that this instability is on the one hand given a clear interpretation in terms of global instability
of the lattice and on the other sharply discriminated from local instabilities in the composite, which remain
undetected in the continuum model. Therefore, when local instabilities do not occur, the homogenization
approach is shown to provide a superb approximation (so that the incremental displacement fields found in
the lattice and in the homogenized material are practically coincident). Furthermore, examples of instabilities
‘invisible’ in the equivalent material are provided. These are shown to represent a limit for the homogenization
approach and are important, as they exhibit an ‘explosive’ character, so that they extend from a localized
perturbation to the whole lattice.

Fig. 2. Emergence of a periodic micro-bifurcation (ovalization of the straws’ cross-sections, c), subsequent strain localization
(collapse of the straws’ cross-sections, d), and final strain accumulation (e and f) during uniaxial deformation of an initially (a)
hexagonal packing of drinking straws. The early deformation (b) is almost homogeneous.

An example of local instability, undetected in the homogenized material, but revealed through the analysis
of the microstructure, is provided in Fig. 2, where photos of experiments (performed at the Instabilities Lab
of the University of Trento) are shown. In the experiments, packages of drinking straws, initially in a regular
hexagonal disposition, have been subjected to an overall uniaxial strain, so that lateral displacements are
prevented and the overall stress is not far from being isotropic. The drinking straws are 30 cm long, so
that out-of-plane phenomena are prevented, as in the realization of Fig. 1 (left). Until the overall strain
remains sufficiently low, Fig. 2b, the deformation is hardly visible (compare with the unloaded configuration,
Fig. 2a), but at higher strain, a micro-bifurcation emerges and displays a periodic ovalization of the straws’
cross-sections (Fig. 2c). Later, the ovalization degenerates into a strain localization (in terms of the collapse
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(a) (b) (c)

Fig. 3. The micro-bifurcation mode emerging during the uniaxial deformation of the package of drinking straws shown in Fig. 2
is modelled (with the tools provided in this article) as the micro-buckling of a honeycomb lattice of elastic rods, isotropically
loaded with compressive forces. The equilibrium path of the honeycomb (a) bifurcates displaying three critical modes (b),
which induces a periodic ovalization pattern. The latter explains the regular and diffuse buckled zones in the array of drinking
straws (c).

of the cross-sections, Fig. 2d). Eventually strain band accumulation occurs, Figs. 2e and 2f. The periodic
ovalization is not found in the equivalent continuum, but is very well captured by a bifurcation analysis of an
infinite hexagonal grid of rods (Fig. 3). The grid is subject to isotropic compression, the stress state closer to
that developing during the test. A periodic bifurcation mode is predicted, which compares well with a detail
of the photo shown in Fig. 2c3.

The vibrational properties of a cellular material are deeply affected by the emergence and development
of localized signals, edge waves, and topologically protected modes [40–47], an example being that reported
in Fig. 4. In the figure, the dynamic emergence and propagation of discontinuity wavefronts (rectilinear
and curvilinear) is shown in the so-called ‘pinscreen’, a material (made up of a perforated plate having each
hole filled with a movable pin) on the verge of ellipticity loss. These localization and discontinuities can

Fig. 4. Discontinuity wavefronts (some rectilinear, other curvilinear) forming during the (out-of-plane) dynamics of a periodic
material (used as a toy, the so-called ‘pinscreen’, invented by W. Fleming), which works on the boundary of ellipticity loss
(photo taken at the Exploratorium, San Francisco).

be analyzed through dynamic homogenization, which is shown to provide a tool to select the geometry and
loading of a lattice in a way to produce an equivalent solid with arbitrary incremental anisotropy, so that
the shear band inclination, or the emergence of a single shear band can be designed. The results that will be
presented also demonstrate how lattice models of heterogeneous materials can be highly effective to obtain
analytical expressions for homogenized properties, thus allowing an efficient analysis of the influence of the

3The bifurcation occurs at an axial load in the grid (that was analytically calculated to be − arccos2 (−1/3)EJ/l2 ≈
−3.6EJ/l2) smaller than the load corresponding to loss of ellipticity in the equivalent material (which was calculated through
the homogenization scheme developed in this article to be ≈ −7.014EJ/l2).
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microstructural parameters. This is a clear advantage over continuum formulations for composites, where
analytical results can only be obtained for simple geometries and loading configurations (as for instance in
the case of laminated solids [8, 9, 48]).

Several new features are found, including a ‘super-sensitivity’ of the localization direction to the preload
state and the conditions in which a perfect correspondence between the lattice and the continuum occurs
(so that the discrete system and the equivalent solid share all the same bifurcation modes). The microscopic
features found for the strain localization are shown to share remarkable similarities with the localized failure
patterns observed in honeycombs (as Fig. 2 demonstrates), foams and wood [49–52], while the highly localized
deformation bands emerging at macroscopic loss of ellipticity are reminiscent of the failure modes observed
in balsa wood [53].

This article is organized as follows. The mathematical setting for incremental wave propagation is devel-
oped in Section 2 for a lattice of elastic rods organized in an arbitrary periodic geometry. The asymptotic
analysis of lattice waves is derived in Section 3, leading to the homogenization result that provides the acoustic
tensor associated to the incremental effective elastic continuum, subject to a homogeneous state of prestress.
The stability of the lattice structure and its relation with the strong ellipticity of the equivalent solid is given
in Section 4. The above general treatment is specialized in Section 5 to a grid of elastic rods arbitrarily
inclined and equipped with diagonal springs, so that specific results on homogenization, stability domains,
macroscopic and microscopic bifurcations are presented. Examples and comparisons of the incremental re-
sponse are showcased in Section 6 and 7, where the extreme mechanical behavior of the lattice is unveiled
through a perturbative approach, both in time-harmonic and static regimes.

2 Incremental dynamics of preloaded lattices: governing equations

The governing equations for incremental wave propagation in an axially-preloaded lattice of elastic rods
(connected to each other with joints capable of transmitting bending moment, shear, and axial forces) are
presented. These are obtained (i) by solving for time-harmonic vibrations the incremental dynamics of a
single rod (derived in Appendix A), (ii) by using this solution to formulate the equations of motion for a
unit cell, and finally (iii) by applying the Bloch theorem to obtain the equations governing the incremental
dynamics of the periodic lattice.

Fig. 5. A periodic two-dimensional lattice of (axially and flexurally deformable) elastic rods is considered, preloaded from the
stress-free configuration B0 (upper part, on the left) by means of a pure axial loading state, transforming B0 to the current,
preloaded configuration B (upper part, on the right). The latter configuration, used as reference in an updated Lagrangian
description, can be represented as the tessellation of a single unit cell along the vectors of the direct basis {a1,a2}. The
incremental dynamic response (lower part where an incremental deformation Ḃ is shown at three different instants of time) is
defined on B by the incremental displacement field of each rod u(s, t), here decomposed in an axial and transverse component,
u(s, t) and v(s, t).

An infinite two-dimensional lattice structure is considered, composed of nonlinear elastic rods which are
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axially preloaded (or prestretched) from an unloaded reference configuration B0 to an axially preloaded
configuration B, used as reference in an updated Lagrangian formulation of incremental dynamics (Fig. 5).
The configuration B is assumed to be undistorted and described by the tessellation of a single unit cell along
the vectors of the direct basis {a1,a2}, as shown in Fig. 5. In the figure, in addition to the configurations
B0 and B, also incremental deformations Ḃ at three different instants of time are sketched, which highlight
that the incremental analysis fully involves in-plane bending, stretching and shear.

By introducing a local coordinate sk for each rod of a given unit cell, the incremental kinematics is
described by means of the following fields

uk(sk, t) = {uk(sk, t), vk(sk, t)}ᵀ, ∀k ∈ {1, ..., Nb} ,

where Nb is the number of rods in the unit cell, and the two in-plane displacement components, respectively
axial and transverse, are denoted by uk(sk, t) and vk(sk, t), while the rotation of the cross-section θk(sk, t) is
assumed to satisfy the unshearability condition θk(sk, t) = v′k(sk, t)

4. Time-harmonic solutions are sought,
so that, by introducing the circular frequency ω, the dependence on time t can be represented as

uk(sk, t) = ûk(sk) e
−i ω t ∀k ∈ {1, ..., Nb} , (1)

where ûk(sk) = {ûk(sk), v̂k(sk)}ᵀ are functions of the coordinate sk only and i =
√
−1.

In the following the superscript symbol ˆ will be omitted, but it will be tacitly assumed that all quantities
depend on time as prescribed by equation (1).

2.1 Time-harmonic solution for a preloaded elastic rod

The analytic representation for time-harmonic vibrations of a Rayleigh rod is briefly introduced. In the
framework of a linearized theory, the equations of motion governing the incremental time-harmonic dynamics
of an axially pre-stretched Rayleigh rod are the following

−γ(λ0)ω2u(s)−A(λ0)u
′′(s) = 0 , (2a)

−γ(λ0)ω2v(s) + γr(λ0)ω
2v′′(s) +B(λ0) v

′′′′(s)− P (λ0) v
′′(s) = 0 , (2b)

where γ(λ0) is the current linear mass density, γr(λ0) is the current rotational inertia, λ0 is the axial pre-
stretch and P (λ0) the corresponding axial preload (assumed positive in tension), while A(λ0) and B(λ0) are,
respectively, the current axial and bending stiffnesses. The analytic derivation of equations (2) is reported in
Appendix A. Moreover, the derivation of the current stiffnesses A(λ0) and B(λ0) from strain-energy functions,
as well as the their identification for rods made up of an incompressible nonlinear elastic material such as
Mooney-Rivlin, can be found in Appendix A.1. In the following, the parameters γ(λ0), γr(λ0), A(λ0), and
B(λ0) will simply be denoted as, γ, γr, A, and B, and treated as independent quantities for generality.

The substitution of Eq. (1) into Eq. (2) leads to a system of linear ODEs for the functions u(s) and v(s).
As the system is fully decoupled, the solution is easily obtained in the form

u(s) =

2∑

j=1

Cu
j e

i βu
j s , v(s) =

4∑

j=1

Cv
j e

i βv
j s , (3)

where {Cu
1 , C

u
2 , C

v
1 , ..., C

v
4} are 6 arbitrary complex constants and the characteristic roots βu

j and βv
j are given

by

βu
1,2 = ± ω̃

l
, βv

1,2,3,4 = ± 1

l
√
2

√
−p+ r ω̃2 ±

√
p2 + (4Λ2 − 2 p r) ω̃2 + r2 ω̃4 ,

with l being the current length of the rod, ω̃ = ω l
√
γ/A the non-dimensional angular frequency, p = Pl2/B

the non-dimensional preload, Λ = l/
√
B/A the slenderness of the rod, and r = γrA/(γB) is the dimensionless

rotational inertia.

2.2 Exact time-harmonic shape functions, mass and stiffness matrices

To facilitate the asymptotic expansion needed for implementing the homogenization scheme, it is instrumental
to identify the 6 constants {Cu

1 , C
u
2 , C

v
1 , ..., C

v
4}ᵀ, with the degrees of freedom at the rod’s ends, represented

through its nodal displacements. This allows a dimensional reduction through a direct application of the
compatibility conditions at the joints.

4A dash will be used to denote differentiation with respect to the coordinate sk.
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For any given rod of length l the following notation for the nodal parameters is introduced

u(0) = u1 , v(0) = v1 , θ(0) = θ1 , u(l) = u2 , v(l) = v2 , θ(l) = θ2 . (4)

Collecting the degrees of freedom at the two ends of the rod in the vector q = {u1, v1, θ1, u2, v2, θ2}ᵀ yields
the solution of system (4) in the form

u(s) = N(s;ω, P ) q . (5)

The 2-by-6 matrix N(s;ω, P ) acts as a matrix of frequency-dependent and preload-dependent ‘shape func-
tions’ which is the exact functional basis in which the time-harmonic response of the rod can be represented.
Equation (5) can also be considered as the definition of a ‘finite element’ endowed with shape functions built
from the exact solution.

The time-harmonic shape functions, Eq. (5), reduce to the quasi-static solution when ω → 0, so that at
vanishing preload and in the limit limω→0 N(s;ω, 0), the usual shape functions for beam elements, employed
for instance in [54], are recovered. In the following N(s;ω, P ) will be denoted as N(s;ω), to simplify notation.

By employing Eq. (5), the exact mass and stiffness matrices for a rod subject to time-harmonic vibration
can be computed. For the k-th rod, the kinetic energy and the elastic strain energy at second-order are given
by5

Tk =
1

2

∫ lk

0

γk
(
u̇k(sk, t)

2 + v̇k(sk, t)
2
)
dsk +

1

2

∫ lk

0

γr,kv̇
′
k(sk, t)

2dsk

=
1

2
q̇k(t)

ᵀ

(∫ lk

0

Nk(sk;ω)
ᵀJk Nk(sk;ω)dsk

)
q̇k(t) +

1

2
q̇k(t)

ᵀ

(∫ lk

0

γr,k bk(sk;ω)
ᵀbk(sk;ω) dsk

)
q̇k(t) ,

(6a)

Ek =
1

2

∫ lk

0

(
Ak u

′
k(sk, t)

2 +Bk v
′′
k (sk, t)

2
)
dsk =

1

2
qk(t)

ᵀ

(∫ lk

0

Bk(sk;ω)
ᵀEk Bk(sk;ω)dsk

)
qk(t) , (6b)

where Jk and Ek are matrices collecting the inertia and stiffness terms, respectively, while Bk(sk;ω) is the
strain-displacement matrix, which are defined as

Jk =

[
γk 0
0 γk

]
, Ek =

[
Ak 0
0 Bk

]
, Bk(sk;ω) =




∂
∂sk

0

0 ∂2

∂s2
k


Nk(sk;ω) ,

and bk(sk;ω) =
[
0 ∂

∂sk

]
Nk(sk;ω) is a row vector containing the derivative of the shape functions corre-

sponding to the transverse displacement v. Note that the kinetic energy (6a) accounts for translational as
well as rotational inertia of the rod. In addition, the contribution of the axial preload P has to be included
in the second-order potential energy as (details are provided in Appendix A)

Vg
k =

1

2
Pk

∫ lk

0

v′k(sk, t)
2 dsk =

1

2
qk(t)

ᵀ

(
Pk

∫ lk

0

bk(sk;ω)
ᵀbk(sk;ω) dsk

)
qk(t) . (7)

By combining Eqs. (6b) and (7), the second-order potential energy of the k-th rod is denoted as

Vk = Ek + Vg
k . (8)

From Eqs. (6), (7) and (8) the frequency-dependent mass and stiffness matrices are naturally defined as

Mk(ω) =

∫ lk

0

Nk(sk;ω)
ᵀJk Nk(sk;ω) dsk +

∫ lk

0

γr,k bk(sk;ω)
ᵀbk(sk;ω) dsk , (9a)

Kk(ω) =

∫ lk

0

Bk(sk;ω)
ᵀEk Bk(sk;ω) dsk + Pk

∫ lk

0

bk(sk;ω)
ᵀbk(sk;ω) dsk . (9b)

The matrices for the quasi-static case can be obtained by evaluating the limit ω → 0. In particular, the
quasi-static stiffness matrix limω→0 Kk(ω) can be used to formulate the incremental equilibrium and analyze
the bifurcation of preloaded lattices.

5A superimposed dot is used to denote time differentiation unless explicitly stated otherwise.
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2.3 Equations of motion for the unit cell

As expressions (6)–(8) govern the incremental dynamics of a single rod, the kinetic and potential energies of
a single unit cell can be obtained through a summation of the contributions from each rod

T =

Nb∑

k=1

Tk , V =

Nb∑

k=1

Vk ,

and the incremental equations of motion for the unit cell can be derived from the Lagrangian

L(q, q̇) = T (q̇)− V(q) , (10)

where q is the vector collecting all the degrees of freedom of the unit cell.
The Lagrangian (10) leads to the following Euler-Lagrange equations

M(ω) q̈(t) +K(ω) q(t) = f(t) , (11)

where M(ω) and K(ω) are, respectively, the mass and stiffness matrices of the unit cell6 and the force
vector f collects the incremental forces acting on the boundary nodes of the unit cell. Recall that due to the
assumption of null body forces acting on the lattice, the nodes inside the unit cell are not externally loaded.

By recalling the time-harmonic assumption, Eq. (11) is rewritten as

A(ω) q = f , (12)

with the definition A(ω) = −ω2M(ω) + K(ω). Note that the dimension of the linear system (12) is 3Nj ,
where Nj is the number of nodes within the unit cell.

It is also important to recall that both matrices M(ω) and K(ω) depend also on the preloads P1, . . . , PNb

of the rods composing the unit cell. The state of preload will be conveniently denoted as a vector P =
{P1, . . . , PNb

}.

2.4 Bloch’s theorem

Wave propagation in an infinite periodic elastic medium can be effectively analyzed through the application
of Bloch’s theorem. Essentially, the theorem states that the time-harmonic solutions of the equations of
motion possess a modulation in space having the same periodicity of the medium, a condition expressed by
the following requirement7

u(x) = ϕ(x) eik·x , (13a)

where k is the Bloch vector and the modulation ϕ(x) is periodic with respect to the direct basis, so that it
satisfies

ϕ(x+ njaj) = ϕ(x) ∀{n1, n2} ∈ Z
2 ∀x ∈ R

2 .

Eq. (13a) can be equivalently expressed as

u(x+ njaj) = u(x) eik·(njaj) . (13b)

Note that, in the case of a lattice made up of rods, the waveform ϕ(x) (as well as the field u(x, t)) is
described by the displacement of the rods forming the unit cell, and thus it is defined only for x corresponding
to the location of the structural elements.

The importance of the Bloch’s theorem lies in the fact that it allows the response of an infinite and
periodic structure to be described through the equations of motion for a unit cell, the latter complemented
by suitable boundary conditions. These so-called ‘Floquet-Bloch’ conditions enforce the periodicity of the
lattice, by relating nodal displacements and forces on the boundary of the unit cell, according to the property
expressed by Eq. (13b). The application of these conditions to periodic beam lattices is well-known [54, 55]
and is briefly summarized in the following.

Equation (13b) requires
qq = qp e

ik·(xq−xp) , (14)

6The matrices M(ω) and K(ω) can be easily obtained by assembling the matrices expressed by Eqs. (9) for all the rods in
the unit cell.

7Note that the representation (13) holds also when the displacement is replaced by fields defining the generalized forces
internal to the rods.
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(a) (b)

Fig. 6. The imposition of the Floquet-Bloch conditions required by Eq. (13b) is obtained using vector q, which collects the
degrees of freedom of the unit cell. The vector q is partitioned by distinguishing the sets of internal nodes qi from the nodes
at the boundary, located at corners {qlb, qlt, qrb, qrt} and on the edges {ql, qb, qr, qt} (a). The corresponding force vector f is
partitioned in the same way (b) and the forces acting on the boundary nodes have to satisfy equilibrium as well as the Floquet-
Bloch conditions (the ‘shift factors’ z̄j , j = 1, 2 are the complex conjugate of zj = eik·aj used in the Bloch representation,
Eq. (13b)).

for all pairs of nodes {p, q} such that xq −xp is an integer, linear combination of the lattice vectors {a1,a2}.
Therefore, the relations to be imposed on the boundary of the unit cell derive directly from Eq. (13b),
evaluated at x ∈ ∂C and for nj ∈ {0, 1}, hence obtaining

q =





qi

ql

qb

qlb

qr

qt

qrb

qlt

qrt





=




I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 z1I 0 0

0 0 z2I 0

0 0 0 z1I
0 0 0 z2I
0 0 0 z1z2I








qi

ql

qb

qlb




, (15a)

succinctly written as
q = Z(k) q∗ , (15b)

where Z(k) and q∗ are defined according to Eq. (15a), and zj = eik·aj , with j = 1, 2. In Eq. (15a) the vector
q has been partitioned to denote the inner and boundary nodes according to the notation sketched in Fig. 6.
The same partitioning is also introduced for the force vector f .

A substitution of Eqs. (15) into Eq. (12) provides

A(ω)Z(k) q∗ = f ,

so that a left multiplication by Z(k)H, where the superscript H denotes the complex conjugate transpose
operation8, leads to the reduced system

Z(k)HA(ω)Z(k) q∗ = f∗ , (16)

where the following definition is introduced

f∗ = Z(k)Hf =





f i

f l + z1f
r

f b + z2f
t

f lb + z1f
rb + z2f

lt + z1z2f
rt




.

Note that the dimension of system (16) is smaller than the dimension of system (12). In fact, the
imposition of the Floquet-Bloch conditions allows to express the equations of motion for the lattice only in
terms of the reduced variables q∗ and f∗.

If external loads are not present in the infinite lattice (so that the boundary forces shown in Fig. 6b are
purely internal), Eq. (13b) implies f∗ = 0 and therefore the following homogeneous system of equations is
obtained, governing Floquet-Bloch wave propagation within the lattice

A∗(ω,k) q∗ = 0 , (17)

8The transpose of the conjugate of a matrix M is defined as MH

ij = Mji, where the bar denotes the complex conjugate.
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where the matrix of the reduced system is

A∗(ω,k) = Z(k)HA(ω)Z(k) . (18)

Note that this matrix is non-symmetric, but for a conservative system is always Hermitian, so that
A∗(ω,k) = A∗(ω,k)H and ω2 ∈ R.

2.5 Generalized eigenvalue problem for the dynamics of an infinite lattice

Eq. (17) defines a homogeneous linear system for the unknown vector q∗, in which the angular frequency ω
and the wave vector k are for the moment undetermined.

It is important to note that the matrix-valued complex function A∗(ω,k) depends on all mechanical and
geometrical parameters of the unit cell. Eq. (17) is homogeneous, so that all non-trivial solutions are obtained
by imposing the condition

det A∗(ω,k) = 0 , (19)

that defines, although implicitly, the dispersion relation, providing ω as a function of k for an infinite and
periodic grillage of preloaded elastic rods.

For every given wave vector k and for each of the corresponding roots ω(k) obtained from Eq. (19), the
non-trivial solutions of Eq. (17) provide the modes q∗ of the Floquet-Bloch waves propagating through the
lattice at each frequency. This means that the vector q∗ is an implicit function of ω and therefore of k, so
that the dependence on k can be made explicit and Eq. (17) is rewritten as

A∗(ω(k),k) q∗(ω(k),k) = 0 , (20)

an expression that will help clarifying the asymptotic expansion that will be performed in the next section.

3 Dynamic homogenization of the lattice

The scope of this section is the analysis of the low-frequency/long-wavelength asymptotics of the lattice
dynamics, which will enable the identification of the effective continuum material. Identification requires first
appropriate reference to the equivalent continuum.

3.1 Wave propagation in a prestressed elastic continuum

Before introducing the homogenization technique, it is worth recalling the fundamental equations governing
incremental wave propagation in a prestressed hyperelastic continuum. An appropriate form of the equations
for the prestressed continuum has to be selected, to result compatible with the formulation of the lattice
dynamics introduced in Section 2. Specifically, it is observed that the equations of motion for the lattice are
(i) obtained in the context of a linearized theory, and (ii) referred to a preloaded reference configuration.
Therefore, the dynamics of the unknown ‘equivalent’ continuum has to be formulated in the context of the
incremental theory of nonlinear elasticity by means of a relative Lagrangian description [19]. This is based
on incremental constitutive laws, relating the increment of the first Piola-Kirchhoff stress, Ṡ, to the gradient
of incremental displacement, L = gradu, as

Ṡ = C[L] , (21)

through the elasticity tensor C

C = E+ I � T , in components Cijkl = Eijkl + δikTjl , (22)

where T is the Cauchy stress, defining here the prestress, and E is a fourth-order tensor endowed with the
left and right minor symmetries and the major symmetry, while C lacks the minor symmetries.

Eq. (22) implies that the number of unknown components of E is at most 6 for a 2D material and 21 in
the 3D case. Moreover, the (symmetric) prestress T introduces 3 further components in 2D and 6 in 3D, so
that C is characterized by 9 for a 2D material, and 27 in the 3D case, independent components.

In the absence of body forces, the incremental equations of motion for the continuum can be written in
the usual form

Div Ṡ = ρ ü , (23)

where u is the incremental displacement field and ρ > 0 the mass density.
Assuming the usual plane wave representation for incremental displacement, u(x, t) = a exp[i(k ·x− ω̂ t)],

Eq. (23) leads to the following eigenvalue problem
(
k2A(C)(n)− ρ ω̂2I

)
a = 0 , (24)
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where k = ‖k‖ is the wave number and n is a unit vector defining the propagation direction, k = kn.
Eq. (24) governs the wave propagation in a homogeneous elastic material whose acoustic tensor A(C)(n) is
defined as

A(C)
pr (n) = nq Cpqrs ns .

The eigenvectors a represent the wave amplitudes, while the eigenvalues ω̂2 are the roots of the characteristic
equation

det
(
k2A(C)(n)− ρ ω̂2I

)
= 0 . (25)

Note that ω̂(k) is introduced to be differentiated from ω(k), so that the former defines the angular frequency
of a wave propagating through the equivalent homogeneous elastic continuum, while the latter the dispersion
relation for the lattice.

3.2 Asymptotic expansion of Floquet-Bloch waves

A perturbation method is now developed for the equations governing wave propagation in a lattice made of
prestressed elastic rods, through a generalization of the technique proposed by Born [22] for lattices involving
only point-like mass interactions. A rigorous link is established between the low-frequency solutions of Eq. (20)
and spectral characteristics of the equivalent continuum governed by Eq. (24).

Suppose for a moment that the grillage of rods would satisfy the following conditions:

• a linear dispersion relation, obtained by writing k = kn (with n being a unit vector),

ω(kn) = cn k , (26)

where cn is the wave speed and depends only on the direction n;

• a uniform spatial modulation
ϕk(x) = a(k) , (27)

in this case wave propagation in the grillage would be non-dispersive and with uniform amplitude, a situation
which cannot occur for every k, but is instead typical of a homogeneous medium. However, conditions (26)–
(27) can be met in the limit k → 0, so that in this case an equivalent material can be defined and vector a

in Eq. (27) becomes the eigenmode defined by Eq. (24) and ω̂ = cn k. This is how the homogenization will
be performed.

The linear relation (26) can be considered as the first-order term of the asymptotic expansion of the
dispersion relation ω(kn) centered at k = 0, where ω = 0 and k = 0, and along the direction n in the
k-space. This asymptotic expansion, truncated at the N -th term, is

ω(kn) ∼ ω(1)
n k + ω(2)

n k2 + ...+ ω(N)
n kN = SN

n (ω)(k) , (28)

where the O(k0) term vanishes in the above expansion because the point {ω,k} = 0 satisfies the dispersion
equation (19). This follows from the fact that, setting {ω,k} = 0, Eq. (20) becomes

A∗(0) q∗(0) = Z(0)HK(0)Z(0) q∗(0) = 0 , (29)

whose non-trivial solutions q∗(0) are represented by 2 rigid-body translations (rigid-body rotations are ex-
cluded because the matrix Z(0) prescribes equal displacements on corresponding sides of the unit cell). The
two rigid-body translations, plus the rigid-body rotation, are contained in the nullspace of K(0).

To be more precise, the dimension of kerA∗(0) is at least 2. In fact, any other deformation mode besides
the translations, possibly contained in kerA∗(0), is a zero-energy mode (called also with the pictoresque
name ‘floppy mode’ [56, 57]). These modes are excluded for the purpose of the asymptotic analysis, so that
kerA∗(0) contains only two (in the present 2D formulation) rigid-body translations. This restriction does
not affect the generality of the formulation, as the analysis of floppy modes can always be recovered in the
limit of vanishing stiffness of appropriate structural elements. Note also that sometimes floppy modes can be
eliminated or introduced simply playing with the prestress state (which may induce stiffening or softening [58,
59]).

The rigid-body translations represent the limit of the eigenmodes ϕk(x) for ‖k‖ → 0. Their derivation
requires first the construction of an asymptotic expansion for ϕk(x), in complete analogy to Eq. (28),

ϕkn(x) ∼ ϕ(0)
n (x) +ϕ(1)

n (x) k +ϕ(2)
n (x) k2 + ...+ϕ(N)

n (x) kN = SN
n (ϕ)(k) , (30)

11

https://doi.org/10.1016/j.jmps.2020.104198


Published in Journal of the Mechanics and Physics of Solids (2021), 146, 104198,
DOI: doi.org/10.1016/j.jmps.2020.104198

and then the computation of the limit k → 0. As a result, the zeroth-order term of the waveform ϕ
(0)
n is

indeed uniform in space (independent of x), and therefore the acoustic properties of the equivalent elastic
continuum have to satisfy

ω̂(kn) = cn k = ω(1)
n k , (31a)

a(kn) = ϕ(0)
n ∀n ∈ R

2 , (31b)

conditions which define an ‘acoustic equivalence’ between the lattice and the continuum. Note that equation
(31a) defines that ω and ω̂ coincide at first-order.

An effective method to obtain the series expansions (28) and (30) is outlined in the following. As the
waveform ϕk(x) for a lattice made up of rods is governed by the vector of degrees of freedom q∗, solution of
the eigenvalue problem (20), the expansion of q∗(ω(k),k) is performed along an arbitrary direction n in the
k-space

q∗(ω(kn), kn) ∼ q∗(0)
n + q∗(1)

n k + q∗(2)
n k2 + ... , (32)

so that the first term q
∗(0)
n can be used to identify the left-hand side of Eq. (31b). To this end, the matrix

A∗(ω(k),k) is expanded as

A∗(ω(kn), kn) ∼ A∗(0)
n +A∗(1)

n k +A∗(2)
n k2 + ... , (33)

so that the eigenvalue problem (20) is rewritten through a substitution of the series representations (32)
and (33) as (

A∗(0)
n +A∗(1)

n k +A∗(2)
n k2 + ...

)(
q∗(0)
n + q∗(1)

n k + q∗(2)
n k2 + ...

)
= 0 . (34)

Since the dispersion relation ω(k) is formally inserted in the above expansions, Eq. (34) has to be satisfied
for every value of k, which means that the left-hand side has to vanish at every order in k. Thus the following
sequence of linear systems is obtained

O(k0) : A∗(0)
n q∗(0)

n = 0 ,

O(k1) : A∗(0)
n q∗(1)

n +A∗(1)
n q∗(0)

n = 0 ,

O(k2) : A∗(0)
n q∗(2)

n +A∗(1)
n q∗(1)

n +A∗(2)
n q∗(0)

n = 0 ,

...
...

O(kj) : A∗(0)
n q∗(j)

n +

j∑

h=1

A∗(h)
n q∗(j−h)

n = 0 ∀j > 0 ,

(35)

which has to be solved for the unknown vectors q
∗(j)
n . It is clear that the computation of these vectors

starts from the solution of the zeroth-order equation and then, sequentially, the higher-order terms are to be

obtained. At the j-th order, the matrix of the linear system is A
∗(0)
n and multiplies the unknown vector q

∗(j)
n ,

so that the constant term (not involving the unknown q
∗(j)
n ) contains all the previously determined vectors

{q∗(0)
n , ..., q

∗(j−1)
n }. Moreover, it is important to observe that the terms A

∗(j)
n in the expansion (33) can be

computed explicitly once the series SN
n (ω)(k) has been determined.

It is recalled that, as shown by Eq. (29), the matrix of each linear system A
∗(0)
n is singular and it has a

two-dimensional nullspace spanned by two linearly independent vectors, t1 and t2, which represent the two
in-plane rigid-body translations9. Thus, every linear combination in the form

q∗(0)
n = α1t1 + α2t2 ∀{α1, α2} ∈ R

2 , (36)

is a solution of the zeroth-order equation in (35). This implies that the matrix A
∗(0)
n is not invertible, so that

the solvability of the j-th linear system depends on the form of its right-hand side, which has to satisfy the
following condition, known as the Fredholm alternative theorem

y ·

j∑

h=1

A∗(h)
n q∗(j−h)

n = 0 ∀y ∈ kerA∗(0)
n ∀j > 0 , (37)

or, equivalently, using Eq. (36), the condition

t1 ·

j∑

h=1

A∗(h)
n q∗(j−h)

n = 0 , t2 ·

j∑

h=1

A∗(h)
n q∗(j−h)

n = 0 ∀j > 0 .

9Since t1 and t2 describe two arbitrary rigid translations, t1 and t2 can be conveniently chosen as the rigid translations
aligned parallel to e1 and e2, respectively.
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In principle, Eqs. (35) and (37) are sufficient to compute the series representations (32) and (28), thus
making conditions (31) explicit.

3.3 The acoustic tensor for a lattice of elastic rods

The perturbation method outlined in Section 3.2 is general enough to provide, up to the desired order, the
series representation of the acoustic properties of a preloaded lattice subject to incremental dynamics.

It will be proved in the following that it is always possible to employ the above-described perturbation
technique to construct an eigenvalue problem governing the propagation of waves in a lattice (where elements
are subject to both axial and flexural deformation) in the low-frequency and long-wavelength regime. In
particular, this eigenvalue problem will possess the following properties:

(i) the eigenvalues identify the first-order term ω
(1)
n of both acoustic branches of the dispersion relation;

(ii) the eigenvectors govern the zeroth-order term of the Floquet-Bloch waveform for both the two acoustic
waves, through coefficients {α1, α2} in the linear combination (36);

(iii) the algebraic structure of the problem is exactly equivalent to that governing wave propagation in a
prestressed elastic material, Eq. (24).

The construction of the above eigenvalue problem allows the rigorous definition of the ‘acoustic tensor for
a lattice of elastic rods’ and from the latter the identification of the elasticity tensor representing a material
equivalent to the lattice. In fact, this eigenvalue problem defines eigenvalues and eigenvectors satisfying the
conditions of acoustic equivalence, Eq. (31).

In order to construct the eigenvalue problem, the solution of the sequence of the linear systems (35) is
obtained up to the order O(k2). The equations involve the following terms of the series (33)

A∗(0) = Z(0)HK(0)Z(0) ,

A∗(1)
n = Z(0)HK(0)Z(1)

n +Z(1)
n

H

K(0)Z(0) ,

A∗(2)
n = Z(1)

n

H

K(0)Z(1)
n +Z(0)HK(0)Z(2)

n +

+Z(2)
n

H

K(0)Z(0) −Z(0)HM (0)Z(0)
(
ω(1)
n

)2
,

(38)

where a series expansion has been introduced for the matrices K(ω(kn)), M(ω(kn)) and Z(kn) as k → 0.
It is important to note that:

(i) up to the order O(k2), only the zeroth-order terms of the matrices K and M (which correspond to the
quasi-static limit, K(0) = limω→0 K(ω), M (0) = limω→0 M(ω)) are present;

(ii) the zeroth-order matrix Z(0), and consequently A∗(0), is independent of the direction n (owing to

continuity of Z(k)); while A
∗(1)
n is linear in n and A

∗(2)
n is quadratic in n;

(iii) the linear term ω
(1)
n starts to appear at order O(k2).

In the following, the first and second-order equations in the sequence of equations (35) are considered
and their solvability conditions derived, Eq. (37). By means of Eq. (36), the first-order equation in the
sequence (35) reads as

O(k1) : A∗(0) q∗(1)
n +A∗(1)

n (α1t1 + α2t2) = 0 , (39)

and its solvability condition requires

t1 ·A
∗(1)
n (α1t1 + α2t2) = 0 , t2 ·A

∗(1)
n (α1t1 + α2t2) = 0 ,

two conditions which are always satisfied. In fact, a use of Eq. (38)2 yields

tj ·A
∗(1)
n ti = tj ·

(
Z(0)HK(0)Z(1)

n +Z(1)
n

H

K(0)Z(0)
)
ti ,

a scalar product which vanishes because Z(0)ti is a rigid-body translation, so that it cannot produce any
stress, hence K(0)Z(0)ti = 0. Since Eq. (39) is always solvable, all its solutions can be expressed in the form

q∗(1)
n = α1t

′
1(n) + α2t

′
2(n) ∀{α1, α2} ∈ R

2 , (40)
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where t′1 and t′2 are the solutions of the following two linear systems

A∗(0) t′1(n) +A∗(1)
n t1 = 0 , A∗(0) t′2(n) +A∗(1)

n t2 = 0 .

Note that t′1 and t′2 are defined up to an arbitrary rigid-body translation.
By employing Eqs. (36) and (40), the linear system of order O(k2) reads as

O(k2) : A∗(0) q∗(2)
n = −α1

(
A∗(1)

n t′1(n) +A∗(2)
n t1

)
− α2

(
A∗(1)

n t′2(n) +A∗(2)
n t2

)
, (41)

which (because A∗(0) is singular) admits a solution if and only if the right-hand side is orthogonal to both
t1 and t2, namely

α1

(
A∗(1)

n t′1(n) +A∗(2)
n t1

)
· t1 + α2

(
A∗(1)

n t′2(n) +A∗(2)
n t2

)
· t1 = 0 ,

α1

(
A∗(1)

n t′1(n) +A∗(2)
n t1

)
· t2 + α2

(
A∗(1)

n t′2(n) +A∗(2)
n t2

)
· t2 = 0 ,

that in matrix form can be written as10



(
A

∗(1)
n t′1(n) +A

∗(2)
n t1

)
· t1

(
A

∗(1)
n t′2(n) +A

∗(2)
n t2

)
· t1(

A
∗(1)
n t′1(n) +A

∗(2)
n t1

)
· t2

(
A

∗(1)
n t′2(n) +A

∗(2)
n t2

)
· t2



{
α1

α2

}
=

{
0
0

}
. (42)

Up to order O(k1) the coefficients {α1, α2} and the linear term ω
(1)
n remain completely arbitrary, but now

they have to satisfy system (42) in order to make Eq. (41) solvable. In fact, the homogeneous system (42)

represents an eigenvalue problem with eigenvectors {α1, α2} and eigenvalues
(
ω
(1)
n

)2
. To see this point more

explicitly, expressions (38) can be substituted into Eq. (42) to obtain11

Ξ︷ ︸︸ ︷[
t1 · K̃

(1)
n t1 + t′1(n) · K̃

(0)t′1(n) t2 · K̃
(1)
n t1 + t′2(n) · K̃

(0)t′1(n)

t1 · K̃
(1)
n t2 + t′1(n) · K̃

(0)t′2(n) t2 · K̃
(1)
n t2 + t′2(n) · K̃

(0)t′2(n)

]{
α1

α2

}
+

−
(
ω(1)
n

)2 [t1 · M̃ (0)t1 t2 · M̃
(0)t1

t1 · M̃
(0)t2 t2 · M̃

(0)t2

]

︸ ︷︷ ︸
Γ

{
α1

α2

}
=

{
0
0

}
,

(43)

with the following definitions

K̃(0) = Z(0)HK(0)Z(0) , K̃(1)
n = Z(1)

n

H

K(0)Z(1)
n , M̃ (0) = Z(0)HM (0)Z(0) .

Eq. (43) is an eigenvalue problem, and the following properties can be deduced:

(i) As the matrices K̃(0), K̃
(1)
n and M̃ (0) are real and symmetric, also the matrices Ξ and Γ are real and

symmetric, hence the eigenvalues
(
ω
(1)
n

)2
are real;

(ii) Since Z(0), t1 and t2 are independent of n and Z
(1)
n , t′1(n) and t′2(n) are all linear in n, each component

of the 2-by-2 matrix Ξ is a quadratic form in n;

(iii) The components of the 2-by-2 matrix Γ admit the following simplifications

t2 · M̃
(0)t1 = t1 · M̃

(0)t2 = 0 , t1 · M̃
(0)t1 = t2 · M̃

(0)t2 = ρ |C| ,

where ρ is the average mass density

ρ =
1

|C|

Nb∑

k=1

γk lk , (44)

and |C| the area of the unit cell. Note that the matrix Γ contains only terms in the form ti · M̃
(0)tj ,

where ti are rigid translations, and therefore the rotational inertia of the rods plays no role (recall the
definition (9a)).

10Note that vectors t′j(n) may contain an arbitrary rigid-body translation. This would apparently lead to a non-uniqueness

in the form of Eq. (42), because the terms tj · A
∗(1)
n t′i(n) are present. This lack of uniqueness is only apparent, because

tj ·A
∗(1)
n ti = 0.

11The resulting expression has been simplified using again the property K(0)Z(0)ti = 0.
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Finally the eigenvalue problem (43) can be written in the standard form
[
A(L)(n)− ρ

(
ω(1)
n

)2
I

]
α = 0 , (45)

where α = {α1, α2}ᵀ and tensor A(L)(n) reads as

A(L)(n) =
1

|C|

[
t1 · K̃

(1)
n t1 + t′1(n) · K̃

(0)t′1(n) t2 · K̃
(1)
n t1 + t′2(n) · K̃

(0)t′1(n)

t1 · K̃
(1)
n t2 + t′1(n) · K̃

(0)t′2(n) t2 · K̃
(1)
n t2 + t′2(n) · K̃

(0)t′2(n)

]
. (46)

It is important to note at this stage, that the eigenvalue problem (45) has exactly the same structure of
Eq. (24). Furthermore, tensor A(L)(n), the ‘acoustic tensor of the lattice’, uniquely defines the eigenvalues

and eigenvectors appearing on the right-hand side of the equivalence conditions (31), so that ω̂ = cn k = ω
(1)
n k

and a = ϕ
(0)
n = α. This implies that the acoustic equivalence holds if and only if the ‘acoustic tensor of

the lattice’ coincides with the acoustic tensor of the continuum material. Therefore, the effective elastic
continuum has to satisfy the acoustic equivalence condition (valid for every unit vector n)

A(C)(n) = A(L)(n) . (47)

It is important to note that the equivalence condition has been obtained without introducing restrictive
assumptions on the lattice structure, so that the homogenization method is completely general and includes a
generic state of axial preload acting on the lattice. Moreover, the presented technique can easily be extended
to three-dimensional lattices.

3.4 Identification of the continuum equivalent to a preloaded lattice

The perturbation method developed in Section 3 leads to the determination of the acoustic tensor of an
effective prestressed elastic continuum, equivalent to the low-frequency response of a preloaded grillage of
rods. As the method is entirely based on the dynamics of the periodic medium, the acoustic tensor is obtained
directly, without any prior computation of the effective constitutive tensor, which is instead traditional in
standard energy-based homogenization techniques [60–64].

In this section the steps for retrieving the incremental (or ‘tangent’) constitutive tensor C are outlined
from the acoustic tensor given by Eq. (47).

As the condition (47) has to hold for an arbitrary direction of propagation, it can equivalently be expressed
by applying the Hessian with respect to n on both sides of Eq. (47) to obtain

Cikjl + Ciljk =
∂2A

(L)
ij (n)

∂nk∂nl
, (48)

where the right-hand side can be regarded as a data defined by the lattice structure, namely, the Hessian of
tensor (46). By considering the symmetry with respect to the {k, l} indices, Eq. (48) provides a linear system
of 54 equations in a three-dimensional setting or 12 equations in a two-dimensional setting, while the rank
of the system is found to be 26 or 8, respectively. By recalling that the unknown tensor C has the form (22),
it is clear that, if the system is solvable, all but one of the unknown components of C can be determined as
these are 27 for a three-dimensional lattice and 9 for a two-dimensional.

In order to solve for the identification, results obtained by Max Born [22] can now be generalized to prove
that (i) the system is solvable when the equations of motion of the lattice satisfy the rotational invariance
and (ii) the solution is unique, except for the spherical part of the prestress (i.e. trT /3 in 3D and trT /2
in 2D) which remains undetermined for the system (48). However, the homogenized prestress tensor T , and
hence its spherical part, can be directly obtained by averaging the tractions along the boundary of the unit
cell, as will be done for the lattice considered in Section 5.

4 Stability of prestressed lattices of elastic rods, strong ellipticity,

and ellipticity of the effective continuum

The homogenization technique developed in the previous section allows the determination of a prestress-
sensitive elastic solid which captures the effective behavior of the preloaded lattice. The step is crucial
for the investigation of material instabilities and bifurcations so that the possibility of designing a lattice
representative of a material with special characteristics can be analyzed. The present section outlines the
theoretical framework for the stability analysis that will be applied to both the grid and its continuous
approximation.
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Lattice bifurcations are governed by the value of the preload state P = {P1, . . . , PNb
} and they can

exhibit deformation modes with different wavelengths. When the wavelength becomes infinite, a ‘global’ or
‘macro’ bifurcation occurs, otherwise the bifurcation is called ‘microscopic’. The systematic investigation
of bifurcations occurring in the lattice can be conducted by analyzing the incremental equilibrium of the
lattice [61]. To this end, the formulation of the lattice dynamics outlined in Section 2 can be directly
specialized for the stability analysis by considering the quasi-static limit.

In the limit of vanishing frequency, Eq. (17) yields

Z(k)HK(0)(P )Z(k) q∗ = 0 , (49)

where the dependence of the static stiffness K(0)(P ) on the prestress state P has been made explicit.
For a given k, the associated preload state P leading to a bifurcation can be obtained by searching for

non-trivial solutions of the incremental equilibrium (49). Hence, by introducing the notation K∗(0)(P ,k) =
Z(k)HK(0)(P )Z(k), a bifurcation becomes possible when

detK∗(0)(P ,k) = 0 . (50)

Note that, as the matrix K∗(0)(P ,k) is Hermitian, the determinant (50) is always real. Moreover, the
periodicity of Z(k) implies that this determinant is periodic in the k-space with period [0, 2π]×[0, 2π] in the
basis {b1, b2}, reciprocal to {a1,a2}, so that bi · aj = δij .

In order to construct the stability domain of a lattice, the critical (in other words, first) bifurcation needs
to be selected by solving Eq. (50) for the smallest preload spanning over all possible wavelengths. Specifically,
by introducing the unit vector P̂ , which singles out a direction in the preload space, the prestress state is
defined as γP̂ for a radial loading. Therefore, the critical bifurcation corresponds to the value γB defined as

γB = inf
γ≥0

{
γ
∣∣∣ detK∗(0)(γP̂ , η1b1 + η2b2) = 0 , 0 < η1 < 2π , 0 < η2 < 2π

}
, (51)

where the periodicity of K∗(0)(P ,k) is used to conveniently restrict to one period the search for the infimum
over the k-space. It is worth noting that for a vanishing wave vector, Eq. (50) is always satisfied regardless of
the preload state, because the nullspace of K∗(0)(P ,0) always contains rigid-body translations. These trivial
solutions clearly need not be considered.

Strong ellipticity (SE) enforces uniqueness of the incremental problem of a homogeneous and homoge-
neously deformed material subject to prescribed incremental displacement on the whole boundary [65] and
corresponds to the positive definiteness of the acoustic tensor (associated to the incremental constitutive
tensor C) defined with reference to every unit vectors n and g as

A(C)(n) g = C[g ⊗ n]n . (52)

When the prestress state is null and except in the case of an extreme material, where the stiffness of the rods
becomes vanishing small [66], the homogenized material response is strongly elliptic,

g ·A(C)(n) g > 0 ∀g 6= 0 ∀n 6= 0 . (53)

Failure of ellipticity, which characterizes the onset of a localization of deformation in the equivalent
continuum, corresponds to a macro (or global) instability, where the bifurcation is characterized by an
infinitely long wavelength (when compared to the period of the lattice structure). The homogenized material
is elliptic (E) as long as the the acoustic tensor A(C)(n) is non-singular for every pair of unit vectors n and
g, namely,

A(C)(n) g 6= 0 . (54)

When the acoustic tensor becomes singular, a localization of deformation may occur corresponding to a dyad
g⊗n. The localization is called ‘shear band’ in the special case g ·n = 0, or ‘compaction band’ or ‘splitting
mode’ when g · n = ±1.

The prestress-dependent stiffness implies that the homogenized acoustic tensor (46) is in turn a function
of the axial preloads P in the rods, so that the notation A(C)(P ,n) is introduced. Therefore, using again the

previously defined unit vector P̂ and with reference to an infinite material (or to a material with prescribed
displacement on the whole boundary) bifurcations are excluded as long as the response remains strongly
elliptic. Failure of this condition determines a simultaneous failure of ellipticity, which corresponds to the
value γE defined as

γE = min
γ≥0

{
γ
∣∣∣ min
n,‖n‖=1

[
detA(C)(γP̂ ,n)

]
= 0

}
. (55)
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Relation between bifurcations in the lattice and in the effective continuum is that failure of ellip-
ticity of the latter corresponds to long-wavelength bifurcations of the former, ‖k‖ → 0, while all bifurcations
are scanned through equation (51), a circumstance which implies γB ≤ γE. Moreover, whenever γB < γE the
bifurcation occurs at microscopic level and is not detectable in the homogenized material, which can still be
strongly elliptic [5, 6, 16].

5 Derivation of the incremental constitutive tensor, failure of ellip-

ticity and micro-bifurcation for a preloaded elastic grid

In order to demonstrate the effectiveness of the homogenization method developed in Section 3, bifurcation
and loss of ellipticity are investigated in a preloaded two-dimensional grid lattice of elastic rods. The grillage
will be directly analyzed with the Floquet-Bloch technique reviewed in Section 2 and results will be compared
to those obtained on the equivalent elastic material, Section 3.

(a) (b)

Fig. 7. Current configuration of a rhombic lattice of preloaded elastic rods (a), with the associated unit cell C (b). The direct
basis of the lattice is denoted by the pair of vectors {a1,a2} (a). Labels 1, 2, and S denote the horizontal rods, the inclined
rods, and the diagonal springs, respectively (b). The spring stiffness, the axial and flexural rigidity of the rods, the preloads P1

and P2, as well as the grid angle α can all be varied to investigate different incremental responses.

The geometry of the current, prestressed configuration of the lattice, selected to apply the previously
developed formalism, is sketched in Fig. 7. This is composed of a rhombic grid (of side l) of elastic rods,
inclined at an angle α, and characterized by the following non-dimensional parameters A2 = A1 = A,
Λ1 = l

√
A/B1, Λ2 = l

√
A/B2, where the subscript 1 and 2 are relative to the horizontal and inclined rods, as

depicted in Fig. 7b. For simplicity, the linear mass density is assumed to be the same for both rods γ1 = γ2 =
γ, while the rotational inertia has been shown in Section 3.3 to be negligible in the homogenization scheme.
The direct basis of the periodic structure is denoted by the pair of vectors {a1,a2} whose representation
with respect to the basis {e1, e2} (see Fig. 7a) is

a1 = l e1 , a2 = l (e1 cosα+ e2 sinα) ,

while the reciprocal basis {b1, b2} is defined as ai · bj = δij , so that

b1 = (e1 − e2 cotα)/l , b2 = e2 cscα/l .

Therefore, the wave vector can be written as

k = η1b1 + η2b2 , (56)

where η1 and η2 are dimensionless components.
The ‘skewed’ grid resulting from the above description is also stiffened by a diagonal bracing realized with

linear springs12 connecting the midpoints of the horizontal and inclined rods, as sketched in Fig. 7b. The
stiffness of the springs is assumed constant kS = κA/l, with κ being a dimensionless measure of stiffness.

12These springs can be thought as added after the lattice has been deformed or as deformed together with the lattice. In the
former case further assumptions need not be introduced, while in the latter, the effects of the preload on the springs has to be
neglected in the interest of simplicity. The diagonal springs are used in this example to show that microscopic instabilities may
occur before macroscopic.
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In the configuration shown in Fig. 7, the lattice is subject to a preload state defined by the axial forces P1

and P2, made dimensionless respectively as p1 = P1l
2/B1 and p2 = P2l

2/B2, so that a deformed configuration
of a lattice is defined by the parameter set {p1, p2,Λ1,Λ2, κ, α}. Note also that the considered lattice structure
includes, as a special case, the rectangular grid analyzed in [6].

Failure of ellipticity, macroscopic and microscopic bifurcations, and stability of the preloaded lattice are
investigated in the following subsections.

(i) The acoustic tensor A(C)(n) of the homogenized continuum is derived analytically as an explicit function
of the parameter set {p1, p2,Λ1,Λ2, κ, α} (the corresponding constitutive tensor C is also determined
C);

(ii) Loss of ellipticity is analyzed for cubic, orthotropic, and fully anisotropic lattices by identifying the pre-
stress states leading to a vanishing eigenvalue of the acoustic tensor, and computing the corresponding
eigenvector defining the localization mode;

(iii) The stability domains in the {p1, p2}-space and its dependence on lattice parameters {Λ1,Λ2, κ, α} is
determined;

(iv) The bifurcation modes are evaluated for the most relevant configurations of the grid, so to clarify the
difference between macro and micro bifurcation.

The analysis of the lattice response near the identified stability thresholds is addressed in Section 6 and 7.

5.1 Acoustic tensor, eigenvalues, eigenvectors, and ellipticity domain

With reference to the orthonormal basis defined by the two unit vectors {e1, e2}, the acoustic tensor A(C)(n)
for the continuum equivalent, in a homogenized sense, to the lattice shown in Fig. 7 is represented as

A(C)(n) = A
(C)
11 (n) e1 ⊗ e1 +A

(C)
12 (n) e1 ⊗ e2 +A

(C)
21 (n) e2 ⊗ e1 +A

(C)
22 (n) e2 ⊗ e2 , (57)

where the components, computed via Eq. (46), are expressed as follows

A
(C)
11 (n) =

(
h1111 n

2
1 + h1112 n1n2 + h1122 n

2
2

)
A/l ,

A
(C)
12 (n) = A

(C)
21 (n) =

(
h1211 n

2
1 + h1212 n1n2 + h1222 n

2
2

)
A/l ,

A
(C)
22 (n) =

(
h2211 n

2
1 + h2212 n1n2 + h2222 n

2
2

)
A/l ,

with the coefficients hijkl being function of the parameter set {p1, p2,Λ1,Λ2, κ, α}. The contribution of the
rods’ grid and the springs are denoted as hG

ijkl and hS
ijkl, respectively, so that

hijkl(p1, p2,Λ1,Λ2, κ, α) = hG
ijkl(p1, p2,Λ1,Λ2, α) + hS

ijkl(κ, α) . (58)

The nonlinear dependence on the prestress p = {p1, p2} causes the full expression for the functions hG
ijkl to

be quite lengthy and therefore the complete result is omitted (but all components of the constitutive tensor
are resported in Appendix B), while the first-order expansion with respect to p is (components that have to
be equal by symmetry are not reported)

hG
1111 ∼ 12 sinα cos2 α

Λ2
1 + Λ2

2

+ cscα+ cos3 α cotα+ p1
Λ2
1 sinα cos2 α

5
(

Λ2
1 + Λ2

2

)2
+ p2

sinα cos2 α
(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

5Λ2
2

(

Λ2
1 + Λ2

2

)2
,

hG
1112 ∼

2 cosα
(

cos2 α
(

Λ2
1 + Λ2

2 − 12
)

+ 12
)

Λ2
1 + Λ2

2

+ p1
2Λ2

1 sin
2 α cosα

5
(

Λ2
1 + Λ2

2

)2
+ p2

2 sin2 α cosα
(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

5Λ2
2

(

Λ2
1 + Λ2

2

)2
,

hG
1122 ∼ 12 sin3 α

Λ2
1 + Λ2

2

+ sinα cos2 α+ p1
Λ2
1 sin

3 α

5
(

Λ2
1 + Λ2

2

)2
+ p2

sin3 α
(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

5Λ2
2

(

Λ2
1 + Λ2

2

)2
,

hG
1211 ∼

cosα
(

cos2 α
(

Λ2
1 + Λ2

2 − 12
)

+ 12
)

Λ2
1 + Λ2

2

+ p1
Λ2
1 sin

2 α cosα

5
(

Λ2
1 + Λ2

2

)2
+ p2

Λ4
2 cosα− cos3 α

(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

5Λ2
2

(

Λ2
1 + Λ2

2

)2
,

hG
1212 ∼

sinα
(

cos(2α)
(

Λ2
1 + Λ2

2 − 12
)

+ Λ2
1 + Λ2

2

)

Λ2
1 + Λ2

2

− p1
Λ2
1 sinα cos(2α)

5
(

Λ2
1 + Λ2

2

)2
+ p2

sinα
(

Λ4
2 − 2 cos2 α

(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

))

5Λ2
2

(

Λ2
1 + Λ2

2

)2
,

hG
1222 ∼

sin2 α cosα
(

Λ2
1 + Λ2

2 − 12
)

Λ2
1 + Λ2

2

− p1
Λ2
1 sin

2 α cosα

5
(

Λ2
1 + Λ2

2

)2
+ p2 −

sin2 α cosα
(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

5Λ2
2

(

Λ2
1 + Λ2

2

)2
,

hG
2211 ∼ 12 sin3 α

Λ2
1 + Λ2

2

+ sinα cos2 α+ p1

(

Λ2
1 sin

3 α

5
(

Λ2
1 + Λ2

2

)2
+

cscα

Λ2
1

)

+ p2
4 cos(2α)

(

5Λ4
1 + 10Λ2

1Λ
2
2 + 4Λ4

2

)

+ (cos(4α) + 3)
(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

40Λ2
2

(

Λ2
1 + Λ2

2

)2
sinα

,
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hG
2212 ∼

sinα sin(2α)
(

Λ2
1 + Λ2

2 − 12
)

Λ2
1 + Λ2

2

− p1
2Λ2

1 sin
2 α cosα

5
(

Λ2
1 + Λ2

2

)2
+ p2

cosα
(

cos(2α)
(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

+ 5Λ4
1 + 10Λ2

1Λ
2
2 + 4Λ4

2

)

5Λ2
2

(

Λ2
1 + Λ2

2

)2
,

hG
2222 ∼ 12 sinα cos2 α

Λ2
1 + Λ2

2

+ sin3 α+ p1
Λ2
1 sinα cos2 α

5
(

Λ2
1 + Λ2

2

)2
+ p2

sinα cos2 α
(

5Λ4
1 + 10Λ2

1Λ
2
2 + 6Λ4

2

)

5Λ2
2

(

Λ2
1 + Λ2

2

)2
.

The components hS
ijkl, ruling the effect of diagonal springs, can be written as

hS
1111 = κ

5 + 3 cos(2α)

4 sinα
, hS

1112 = 2κ cosα , hS
1211 = κ cosα ,

hS
1212 = κ sinα , hS

1122 = hS
2211 = hS

2222 =
1

2
κ sinα , hS

1222 = hS
2212 = 0 .

For the special case of a square grid α = π/2 and in the absence of prestress (p = 0), the acoustic tensor
can be further simplified to

lim
p→0

A(C)(n)
∣∣∣
α=π/2

=
A

l

(
n21 +

12n22
Λ2
1 + Λ2

2

)
e1 ⊗ e1+

+
A

l

12n1n2
Λ2
1 + Λ2

2

(e1 ⊗ e2 + e2 ⊗ e1) +
A

l

(
12n2

1

Λ2
1 + Λ2

2

+ n2
2

)
e2 ⊗ e2 .

As shown in Section 3.3, the acoustic tensor resulting from homogenization is symmetric, which implies
that its eigenvalues are always real. This means that, letting {c21, c22} be the eigenvalues of a symmetric
A(C)(n), (SE) is equivalent to the strict positiveness of the eigenvalues, c21 > 0, c22 > 0, Eq. (53), while (E) is
equivalent to the condition of non-vanishing eigenvalues, c21 6= 0, c22 6= 0 (for all unit vectors n), Eq. (54). It
can be directly verified that in the absence of preload, p → 0, the considered grid has c21 > 0 and c22 > 0, so
that (SE) holds.

The objective is now to characterize failure of (E) by studying the eigenvalues of the acoustic tensor (57)
as functions of the preload state applied to the grillage. To this end, solutions are sought for the following
loss of ellipticity condition

c21(n,p) c
2
2(n,p) = 0 , (59)

where n is the usual unit vector defining the direction of propagation and p = {p1, p2} is a vector simply
collecting the preload parameters. In Eq. (59) the dependence on the geometric parameters {α,Λ1,Λ2}
is omitted for brevity and moreover, without loss of generality, it is assumed that c21 ≤ c22. For every
solution {nE,pE} of Eq. (59), the eigenvector gE = g(nE) associated to the vanishing eigenvalue can be
computed. Vectors nE and gE will be respectively referred as the direction (more precisely, the normal to)
and deformation mode of the strain localization band.

Geometry Slenderness Symmetry pE θcr

Square α = π/2 Λ1 = Λ2 = 10 Cubic {−5.434,−5.434} 0◦, 90◦

Λ1 = 7, Λ2 = 15 Orthotropic {−2.071,−2.071} 0◦

Rhombus α = π/3 Λ1 = Λ2 = 10 Orthotropic {−5.345,−5.345} 88.2◦, 151.8◦

Λ1 = 7, Λ2 = 15 Anisotropic {−2.043,−2.043} 151.4◦

Table 1. Loss of ellipticity for different geometric configurations of the preloaded grid-like lattice (Fig. 7) in the absence of
diagonal springs (κ = 0). The symmetry class is referred to the unloaded configuration. The preload pE and the localization
direction nE = cos(θcr)e1 + sin(θcr)e2 are obtained by solving the loss of ellipticity condition (59) (assuming a radial path
p = {p1, p1}).

It follows from the symmetry of A(C)(n) that, starting from the unloaded state p = 0 with rods of finite
stiffness and continuously varying the prestress, the material remains both (SE) and (E) until both conditions
simultaneously fail. Therefore, solutions of Eq. (59) are sought as pairs {nE,pE} such that pE represents the
terminal point of a path starting at p = 0 and entirely contained in the (SE) domain; in other words, pE is
on both boundaries of (SE) and (E). The set of these points pE is, with a little abuse13, referred to as the
elliptic boundary.

In order to explore loss of ellipticity for lattice configurations characterized by different symmetry classes,
a square and a rhombic grid are considered, respectively with α = π/2 and α = π/3. For both examples, the
slenderness Λ1 = Λ2 = 10, and Λ1 = 7, Λ2 = 15 are selected.

13In fact, the elliptic boundary as referred to in this article is the part of this boundary which is coincident with the boundary
of strong ellipticity.
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(a) p1 = p2 = −5.434, Λ1 = Λ2 = 10, α = π/2
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(b) p1 = p2 = −2.071, Λ1 = 7, Λ2 = 15, α = π/2
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(c) p1 = p2 = −5.345, Λ1 = Λ2 = 10, α = π/3
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(d) p1 = p2 = −2.043, Λ1 = 7, Λ2 = 15, α = π/3
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Fig. 8. Polar plots of the square root of the lowest eigenvalue of the acoustic tensor (57), as a function of n, for a prestress
state at 50% (dashed gray line) and 100% (continuous blue line) of the limit value for ellipticity loss (pE reported in Table 1).
A square lattice and a rhombic lattice are considered with Λ1 = Λ2 = 10 and Λ1 = 7, Λ2 = 15. In the orthotropic cases,
both for squared and rhombic lattices, the loss of ellipticity is characterized by the simultaneous vanishing of the eigenvalue of
the acoustic tensor along two directions n1

E
and n2

E
(the associated wave amplitudes are reported as g1

E
and g2

E
). The fully

anisotropic cases, displays the vanishing of the eigenvalue along only one direction n1
E
. Note that for the rhombic lattice, the

relative orientation of nE with respect to gE shows that the mode of localization is neither a pure shear nor a pure expansion
wave, but a mixing of the two. Conversely, the square lattice always reaches loss of ellipticity through the formation of bands
of pure shear strain.

In Table 1, for each geometry considered, the first solution to Eq. (59) for equal prestress components
p1 = p2 is reported, together with the associated directions of localization, denoted as nE = cos(θcr)e1 +
sin(θcr)e2. Note that the symmetry class is referred here to the unloaded configuration, so that the symmetry
of incremental response may change as an effect of loading. With the assumed values for grid angle α and
slenderness, the cubic, orthotropic, and fully anisotropic cases (10 components of tensor C, which correspond
to 6 independent parameters of E plus three components of the prestress T in the case of planar elasticity)
can be investigated.

In order to better visualize the direction nE and the associated mode gE, a polar plot of the square
root of the lowest eigenvalue c1(n,p) is reported in Fig. 8, for the cases listed in Table 1, at two levels
of preload, namely 0.5pE (dashed gray line) and pE (continuous blue line). In Fig. 8a the square lattice
with Λ1 = Λ2 = 10 is subject to an isotropic prestress in the two directions, p1 = p2, and therefore the
cubic symmetry is maintained in the prestressed state. Owing to this symmetry, ellipticity is lost along two
orthogonal directions n1

E and n2
E. Moreover, the associated wave amplitudes g1

E and g2
E are perpendicular

to the vectors n1
E and n2

E respectively, hence indicating that the modes of localization are pure shear waves,
the so-called shear bands.

For the orthotropic square lattice (Λ1 = 7, Λ2 = 15), the polar plot is given in Fig. 8b. In this case, owing
to the orthotropy, waves propagating along the horizontal and vertical direction possess different velocities
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and therefore ellipticity is lost when the smallest of these velocities vanishes, leading to a single shear band
(in this case with a normal n1

E aligned parallel to the horizontal direction).
Quite remarkably, the shear wave responsible for the ellipticity loss is the one propagating along the

direction of the ‘stiffer’ elastic link (having the lowest slenderness), while intuitively a ‘shear mechanism’
would be expected in the direction of the ‘soft’ elastic link. This effect will be confirmed and explained further
with the computation of the forced response in Section 6. Moreover, it is worth noting that the shear band
directions for the square lattice, both cubic and orthotropic, are aligned parallel to the directions of the rods
forming the lattice.

For the rhombic lattice with Λ1 = Λ2 = 10 and isotropic preload, shown in Fig. 8c, the mechanical behavior
is orthotropic and therefore two directions of localization are obtained. The associated wave amplitudes g1

E

and g2
E both have respectively a component orthogonal and parallel to the vectors n1

E and n2
E, so that a

‘mixture’ of shear and compression waves is involved.
The fully anisotropic version for the rhombic lattice (Fig. 8d) can be obtained by changing the slenderness

values (Λ1 = 7, Λ2 = 15), so that one of the two localizations is suppressed, while the other is preserved. It is
also worth noting that, in contrast to the square case, the directions of localization for the rhombic lattice are
not perfectly aligned parallel to the rods’ normal, instead, they result slightly inclined, as will be confirmed
by the computation of the forced response reported in Section 6.

5.2 Constitutive tensor and prestress for the effective continuum

The prestress tensor T , equivalent in the continuum to the preload forces P in the elastic lattice, can be
obtained by computing the average normal and tangential tractions along the faces with unit normal e1 and
e2. With reference to Fig. 7b the following expression is obtained

T =

(
P1

l sinα
+
P2 cos

2 α

l sinα

)
e1 ⊗ e1 +

P2 cosα

l
(e1 ⊗ e2 + e2 ⊗ e1) +

P2 sinα

l
e2 ⊗ e2 . (60)

As explained in Section 3.4, once the spherical part of the prestress is known, the effective incremental
constitutive tensor C can be computed from the homogenized acoustic tensor A(C) by solving the linear
system (48). For completeness the full expression of C for the preloaded grid as function of the parameter
set {p1, p2,Λ1,Λ2, κ, α} is reported in Appendix B.

5.3 Loss of ellipticity vs micro-bifurcation

With reference to the lattice sketched in Fig. 7b, the value of the prestress state, which is critical for bifurca-
tion of the grid is determined by employing conditions (55) and (51), and computing numerically the prestress
multipliers γE and γB. Results are presented as uniqueness or stability domains in the non-dimensional pre-
stress space {p1, p2} by fixing the set of geometrical and mechanical parameters {α,Λ1,Λ2, κ}. The boundary
of the stability domain identifies the ‘critical’, namely, the first bifurcation of the incremental equilibrium of
the lattice. Therefore, this domain is the intersection of the domains corresponding to the exclusion of micro
and macro bifurcations, so that one or the other instability may, depending on the parameters and on the
prestress, be the first encountered in the loading path.

The dependence on the parameters {α, Λ1, Λ2, κ} has been analyzed by considering two grid configura-
tions that will be referred to as the orthotropic grid, with equal slenderness Λ1 = Λ2 = 10, and the anisotropic
grid, characterized by different slenderness values, Λ1 = 7 and Λ2 = 15. For each lattice, the influence of the
rods’ inclination is explored by setting α = π/2, π/3, π/4, π/6, while the stiffness of the springs is investigated
in the range κ ∈ [0, 1]. In this way, the influence of the diagonal bracing on the critical bifurcation mode is
analyzed.

Macroscopic (infinite wavelength) and microscopic (finite wavelength) bifurcations are investigated in
Fig. 9 for the orthotropic grid with α = π/2. Here, critical bifurcation loads p1 and p2 are reported for the
cases in which diagonal springs are absent (κ = 0, Fig. 9a, b, c) and for a spring stiffness κ = 0.2 (Fig. 9d, e, f).

There are two uniqueness (or stability) domains, regions in the prestress state where bifurcation is ex-
cluded, one for the grid and one for its equivalent continuum. For the continuum, uniqueness is represented
by strong ellipticity and failure of this coincides with loss of ellipticity. The latter, in turn, always corresponds
to a bifurcation in the grid with a mode of infinite wavelength. When this mode is critical, a macro-instability
occurs in the lattice, so that continuum and grid display the same behavior. If, however, a micro-instability
is critical for the grid, this always occurs when the continuum is still strongly elliptic. For this reason, in
all figures, the domain of strong ellipticity is reported (whose boundary represents the condition for which
the infimum of Eq. (51) is attained at k = 0), together with the continuous-dotted contour representing
bifurcation in the grid at either k = 0 or k 6= 0.
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(a) Uniqueness domain (κ = 0)

Stability domain

Ellipticity loss

Lattice bifurcation

(b) Equibiaxial compression (c) Uniaxial compression

(d) Uniqueness domain (κ = 0.2)

Stability domain

Ellipticity loss

Lattice bifurcation

Instability undetected

by the continuum

(e) Equibiaxial compression (f) Uniaxial compression

Fig. 9. (a) and (d): Uniqueness/stability domains in the loading space {p1, p2} for a square grid (with equal slenderness of
the rods Λ1 = Λ2 = 10), when diagonal springs are absent (upper part) and present (with spring stiffness κ = 0.2, lower part).
The continuous line denotes failure of ellipticity in the continuum, while the dotted line represents critical bifurcation in the
grid. (a): there is only one uniqueness domain (purple) for both the grid and its continuum counterpart. (d): the uniqueness
domain for the grid (blue) is smaller than the strong ellipticity domain (blue, plus gray), so that micro-bifurcation may occur
before macro-bifurcation. (b, c) and (e, f) bifurcation surfaces in the space {η1, η2, γ}, referred to the specific radial loading
paths shown as red dashed lines in (a) and (d). The insets show the critical modes.

The uniqueness domains (Fig. 9a and 9d) have been computed by solving equation (51) for radial loading
paths in the non-dimensional load space {p1, p2}. The location of the infimum can be visualized, by fixing
the loading direction as p = γ p̂, and then by numerically computing the bifurcation surface defined as
detK∗(γp̂, η1b1 + η2b2) = 0 in the space {η1, η2, γ}. Two radial paths are considered in Fig. 9a and 9d,
namely, equibiaxial p̂ = {−1/

√
2,−1/

√
2} and uniaxial p̂ = {−1, 0} compression (red dashed lines), and the

corresponding bifurcation surfaces are reported in Fig. 9b, c and Fig. 9e, f, respectively.
In the absence of diagonal springs, Fig. 9a reports the strong ellipticity domain in the solid equivalent to

the lattice, showing that (for every loading direction p̂) a macro-bifurcation, in other words an ellipticity loss
(referred to the dyad n⊗ g), is always reached before micro-bifurcation.

For the two radial loading paths shown in Fig. 9a, the bifurcation surfaces Figs. 9b,c, show that the
minimum values of the load multiplier γ are attained at {η1, η2} = {0, 0}, which corresponds to a macro-
bifurcation for the lattice (associated to an infinite wavelength mode), so that the critical prestress multipliers
γE = 7.71 and γE = 5.69 lie on the border of ellipticity loss. The two bifurcations correspond respectively to
two orthogonal modes and a single mode.

The presence of diagonal springs complicates the situation as reported in Fig. 9d. In this case the
uniqueness/stability domains show that micro-bifurcations may sometimes occur within the region of strong
ellipticity, which is for instance the case of equibiaxial compression (radial path inclined at 45◦) and not the
case of uniaxial compression (horizontal radial path). In fact, for equibiaxial compression a critical micro-
bifurcation occurs, so that Fig. 9e shows that the minimum value of the load multiplier, γB =

√
2π2, is

attained at four points, {η1, η2} = {±π,±π}, all associated to a bifurcation mode with a finite wavelength,
as shown in the inset. For uniaxial compression, Fig. 9f, a macro-bifurcation of the grid occurs at γE = 15.01
and the tangent to the bifurcation surface at the origin singles out the infinite-wavelength bifurcation mode
(shown in the inset and appearing as a rigid translation).

Further results on uniqueness domains for the orthotropic and the anisotropic grid are reported in Figs. 10
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Fig. 10. Strong ellipticity domains (corresponding to macro-bifurcations, continuous lines) and lines of occurrence of micro-
bifurcation in the lattice (circular markers) for an orthotropic lattice of prestressed elastic rods with Λ1 = Λ2 = 10, at different
rod angles α and stiffness κ of the diagonal springs. Points B1, B2, B3 on the stability boundaries have been selected for the
computation of the associated critical bifurcation mode (shown in the insets and details reported in Table 2). At small grid
angles, for instance α = π/6, failure of ellipticity coincides with micro-bifurcation in the lattice, so that the bifurcation mode is
always characterized by an infinite wavelength. For these grid configurations, the direction of ellipticity loss exhibits a ‘super-

sensitivity’ with respect to the load directionality, shown in the insets of part (d), where the critical dyads n⊗ g for failure of
ellipticity are reported.

and 11, respectively. The strong ellipticity boundary (corresponding to macro-bifurcation) in the equivalent
solid is denoted with a continuous line, while the circular markers identify the line for critical micro-bifurcation
in the grid. Moreover, critical bifurcation modes have been reported in insets of Figs. 10 and 11, which
refer to some specific points on the stability boundary (labelled as B1, B2, B3 in the former figure and
B4, B5, B6, B7, B8 in the latter). The critical loads and the critical wave vectors for each bifurcation mode
are reported in Table 2.

From Figs. 10 and 11 the following features can be highlighted.

• The stable region is unbounded for tensile (positive) preload and bounded when both the preloads
are compressive (negative); this is an expected feature, as the contribution of a tensile preload to the
potential energy, Eq. (7), is positive definite;

• The elliptic boundary appears to be smooth everywhere except at a corner point ;
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Label Λ1 Λ2 α κ p1 p2 kcr

B1 10 10 π/2 0.2 −π2 −π2 πb1 + πb2
B2 10 10 π/3 0.3 −7.16 −12.40 πb1 + πb2
B3 10 10 π/4 0.7 −4.05 −15.13 πb1 + πb2
B4 7 15 π/2 0.4 −7.72 −18.64 πb1 + πb2
B5 7 15 π/2 0.2 −3.41 −25.91 πb2
B6 7 15 π/3 0.3 −6.98 −20.93 πb1 + πb2
B7 7 15 π/3 0.3 −2.12 −32.40 πb2
B8 7 15 π/4 0.5 −4.00 −30.37 πb1 + πb2
B∞ 7 15 π/2 0.128 −3.44 −20.62 η2b2 ∀η2

Table 2. Critical bifurcation modes kcr for several configurations of the orthotropic (Λ1 = Λ2 = 10) and anisotropic (Λ1 =
7, Λ2 = 15) lattice. Plots of the corresponding deformation fields are reported as insets in Figs. 10 and 11.

• The anisotropy induced by different values of slenderness causes the corner to move; the elliptic region
is reduced in size along the direction of the smallest slenderness;

• For the orthotropic grid the strong ellipticity boundary is symmetric with respect to the bisector defined
by the condition p1 = p2, which is the principal direction of orthotropy for the grid when Λ1 = Λ2 (a
symmetry which is broken for the anisotropic grid);

• For every value of the grid angle α, the effect of the diagonal springs essentially consists in an enlarge-
ment of the strong ellipticity region (see the arrow in Fig. 11 denoting increasing values of stiffness
κ);

• The stiffening induced by increasing the spring stiffness κ is much more effective for nearly orthogonal
grids (α ≈ π/2) than for small values of inclination α (compare Fig. 10a to Fig. 10d and Fig. 11a to
Fig. 11d);

• For every value of the spring stiffness κ, the deviation from orthogonality of the grid always reduces the
size of the strong ellipticity region, so that the largest strong ellipticity region is attained for α = π/2.

The stability boundaries (circular markers in Fig. 10 and 11), evidence the following characteristics.

• At small values of spring stiffness κ, the first bifurcation is always global, so that the strong ellipticity
and the stability boundaries coincide independently of the prestress direction; a feature visible for κ = 0
and 0.1 (purple and blue lines in Fig. 10a and Fig. 11a);

• An increase in the spring stiffness κ leads to a first bifurcation of local type (the critical mode is
characterized by a finite wavelength), so that the stability region lies inside the elliptic boundary ;

• Fig. 10d and Fig. 11d show that, at sufficiently small values of grid angle (for instance at α = π/6),
failure of strong ellipticity dictates the first bifurcation independently of the stiffness of the diagonal
springs (see circular markers of the stability boundary overlapping with the elliptic boundary);

• The typical microscopic bifurcation modes of the orthotropic grillage are characterized by a deformation
involving bending with the nodes only subject to rotations (see insets in Fig. 10a, b, c corresponding to
the points labeled as B1, B2, B3);

• Typical microscopic bifurcation modes of the anisotropic grid exhibit widely different incremental de-
formations. These are dictated by the prestress direction (see insets in Fig. 11a, b, c corresponding to
points labeled B4, B5, B6, B7, B8 and compare for instance mode B4 to B5 or B6 to B7).

• A bifurcation always occurs for every lattice geometry at an equibiaxial load {p1, p2} = {−π2,−π2}
(point B1 in Fig. 10a) regardless of the values of Λ1, Λ2, κ, and α. This bifurcation can be explained by
the fact that the normalized load Pl2/B = −π2 corresponds to the buckling load of a simply supported
Euler-Bernoulli beam, and thus, when all the rods of an arbitrary grid are prestressed at this level, a
purely flexural buckling mode becomes available (shown in the inset of Fig. 10a).

Despite the complex influence of the geometrical and mechanical parameters on the stability of the pre-
stressed grillage, two important ‘transitions’ characterize the nature of the first bifurcation, namely:

(i) a macro-to-micro transition of the critical bifurcation mode occurs at increasing stiffness of the diagonal
springs κ;
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Fig. 11. As for Fig. 10, except that Λ1 = 7, Λ2 = 15 and that the points on the stability boundary for which the critical
bifurcation modes have been computed are labeled B4, B5, B6, B7, B8. Note also that, the typical microscopic bifurcation modes
of the anisotropic grid exhibit widely different deformations, dictated by the prestress direction (see insets in parts a, b, c
corresponding to points labeled B4, B5, B6, B7, B8 and compare for instance mode B4 to B5 or B6 to B7). In part (a) the black
stability boundary denoted with the label (GL) identifies a set a special conditions where both global and local instabilities
occur simultaneously at the same prestress level. This phenomenon is investigated in detail in Fig. 12.

(ii) a micro-to-macro transition of the critical bifurcation mode occurs at decreasing rods’ inclination α.

The above transitions will be exploited in Section 6 and 7 to investigate the incremental response induced by
perturbations applied to a lattice preloaded close to a bifurcation (both global and local bifurcations will be
considered).

5.4 A single localization band with a highly tunable inclination

A remarkable characteristic is associated to the micro-to-macro bifurcation transition obtained at decreasing
angle α, namely, a super-sensitivity of the localization band normal, represented by the unit vector n, with
respect to the state of preload, while the localization mode g results only weakly affected.

For instance, at α = π/6 and sufficiently high spring stiffness κ, the insets in Figs. 10d and 11d show that
the relative inclinations between the localization band normal n and the localization mode g strongly vary
as a function of the preload state in the lattice.
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When the spring stiffness vanishes, κ = 0, the localization band is inclined near the angles 0 and π/6, which
represent the grid inclination, so that failure of ellipticity occurs in a direction n that is almost orthogonal to
the rods. On the contrary, at κ = 0.2 a single localization band occurs, whose inclination strongly depends
on the load directionality and is essentially unrelated to the underlying grid pattern (shown in the insets for
κ = 0.2, Figs. 10d and 11d). The super-sensitivity of the localization direction provides an enhanced tunability
of the macroscopic localization pattern by means of a simple modification of the preload applied to the lattice.

It is worth noting that the localization direction can also be designed by constructing a lattice with
a suitable value of rods’ angle α, but with this approach the localization direction would not be easily
reconfigurable, as the structure geometry would be defined in advance.

5.5 Infinite set of bifurcation wavelengths in a lattice: perfect equivalence with

the continuum

Loss of ellipticity in a solid involves simultaneously infinite modes of every wavelength, while the corre-
sponding condition in the lattice usually involves only one mode of infinite wavelength. In this sense, the
equivalent continuum displays a response differing from the lattice, a circumstance which may be expected
as a consequence of the homogenization procedure.

Surprisingly, it is shown in the following that special conditions can be found in which the lattice bifurcates
similarly to the equivalent continuum, by displaying infinite modes, covering every wavelength. In this case a
perfect equivalence between the bifurcation in the grillage and failure of ellipticity in the effective continuum
occurs.

For a square grid (with α = π/2, Λ1 = 7, and Λ2 = 15), the perfect equivalence can be reached at a
fixed value of load by varying the stiffness of the diagonal springs κ, thus obtaining κ ≈ 0.128. This value
was calculated by numerically solving equation (51) between κ = 0.1 and κ = 0.2, because these two values
pinpoint the threshold of separation between macro and micro bifurcation. Moreover, to obtain this special
feature, the loading path must be appropriately selected, as shown in Fig. 11a. Indeed, along the curved
boundary denoted as (G) in Fig. 11a the bifurcation mode is unique and involves only the infinite wavelength
(macro bifurcation), while on the boundary denoted as (GL) an infinite number of bifurcation modes of
arbitrary wavelength is present for every critical loading state, as detailed for the point B∞ in Fig. 12.

With reference to the reciprocal basis (56), a three-dimensional plot of the bifurcation surface in the space
{η1, η2, γ} (γ is the loading multiplier) is reported in Fig. 12a. Points on the surface satisfy the vanishing of
the determinant in Eq. (51) and are calculated only for the loading path {p1, p2} = γ{−1,−6}. The lowest,
i.e. critical, bifurcation occurs at γ = γB (a value represented in the figure as a red segment). A section of
this surface at η1 = 0 is reported in Fig. 12b to show the dependence of the critical multiplier on the stiffness
κ. In particular, for κ < 0.128 the critical wave vector is kcr = 0 (macro instability), while for κ > 0.128 the
critical wave vector is kcr = π b2 (micro instability). Finally and most importantly, for κ = 0.128 every wave
vector of the form kcr = η2 b2 (with arbitrary η2)

14 identifies a different bifurcation mode occurring at the
same load multiplier γB ≈ 3.44. Within this infinite set of bifurcation modes, a few bifurcation modes are
reported (the labelled points on the red contour of Fig. 12b), to show the transition of the bifurcation mode
from a local bifurcation (Fig. 12c) to a global shear-band type instability (Fig. 12h).

5.6 Macro and micro bifurcations as degeneracies of the dispersion relation

The effect of the diagonal reinforcement (springs labeled with S in Fig. 7) on the bifurcation of the lattice
has been systematically investigated in Section 5.3, where it has been shown to play a fundamental role in
determining the wavelength critical for bifurcation. Specifically, it has been demonstrated that an increase
in the spring stiffness induces a transition of the critical bifurcation from macroscopic to microscopic, and in
particular the bifurcation is characterized by an infinite wavelength when κ = 0.

On the other hand, the time-harmonic formulation of Section 2 and 3 can be leveraged to provide a
dynamic interpretation to lattice instabilities different from the one obtained via the quasi-static approach of
Section 4. The difference between macroscopic and microscopic bifurcation will be specially focused, as the
latter is lost in the homogenization approach. The homogenization scheme introduced in Section 3 proves
that the long-wavelength asymptotics for waves propagating in the lattice is governed by the acoustic tensor
of the effective medium, Eq. (46). Therefore, it becomes now clear that a macro-bifurcation in the lattice
has to be equivalent to failure of ellipticity in its equivalent continuum. Hence, a macro-bifurcation occurs
when the velocity of the acoustic long waves of the lattice vanishes along some directions. Moreover, a clear
interpretation of short-wavelength bifurcations (micro-bifurcations) is also provided by the analysis of the
dispersion relation of the lattice (19), interpreted now as a function of the preload state. The latter can be

14Note that, due to the periodic structure of the lattice, the shortest wavelength of Bloch type is equal to 2 l, corresponding
to kcr = π b2.
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Fig. 12. Conditions showing a perfect equivalence between the lattice and the corresponding continuum, so that when the
latter looses ellipticity, the former exhibits bifurcation occurring with infinite modes covering all wavelengths of Bloch type
(these are greater than 2l and correspond to kcr ≤ π b2), a situation which is revealed by the flat line (highlighted in red) in
the bifurcation diagram (a). The perfect equivalence is obtained through accurate tuning of the stiffness of the diagonal springs
(κ ≈ 0.128 for a square grid with Λ1 = 7 and Λ2 = 15 and a loading {p1, p2} ≈ 3.44{−1,−6}). Part (b) represents a section
of the bifurcation surface at η1 = 0 detailing the flat minimum of the curve occurring at κ ≈ 0.128. Parts (c)–(h) present
selected bifurcation modes documenting a transition at increasing wavelength of the bifurcation modes from a local (c) to a
shear-band (h) bifurcation.

used to identify the condition of buckling in the lattice as the ‘propagation’ of a Bloch wave at vanishing
frequency. In fact, regardless of the critical wavelength, macro and micro bifurcations can be visualized by
plotting the evolution of the dispersion surfaces along a loading path up to loss of stability.

The essential difference between the two kinds of bifurcation is exemplified in Fig. 13 for two square
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Fig. 13. The dispersion surfaces, computed for states of preload of increasing magnitude (from left to right), demonstrate
the difference between macroscopic (upper part) and microscopic (lower part) bifurcations occurring in a square grid of elastic
rods. The stiffness of the diagonal springs can be tuned to cause a switching of the critical bifurcation mode from macroscopic
(low spring stiffness) to microscopic (high spring stiffness). The four surfaces reported in the upper part refer to equibiaxial
compression of a square grid with Λ1 = Λ2 = 10 and not reinforced with springs. In this case an infinite-wavelength bifurcation
occurs at vanishing slope of the acoustic branches at the origin (when the preload reaches a critical value pE = {−5.434,−5.434}).
The four surfaces reported in the lower part refer to the same grid but reinforced with springs (κ = 0.4), which induces a
‘stiffening’ of the acoustic branches at the origin. This triggers a critical bifurcation at a preload pB = {−π2,−π2}, when the
lowering of the dispersion surface causes the generation of a zero-frequency wave with non-null wave vector (corresponding to a
finite wavelength buckling).

grids (α = π/2 and Λ1 = Λ2 = 10), one without diagonal springs (upper row in the figure) and the other
with κ = 0.4 (lower row in the figure), subject to equibiaxial compression (p1 = p2) of increasing magnitude
(from left to right in the figure). The dispersion surfaces (plotted in the non-dimensional space {k1l, k2l,Ω}
with Ω = ω l

√
γ/A and γr = 0) show that the macro-bifurcation in the grid without springs occurs with

the progressive lowering, and eventually vanishing, of the slope of the acoustic branches at the origin, while
the dispersion surface attains non-null frequency for every other wave vector. On the contrary, the micro-
bifurcation occurring in the grid reinforced with springs is characterized by a non-vanishing slope of the
acoustic branches at the origin. Moreover, because of the preload-induced lowering of the dispersion surface,
a zero-frequency wave is generated with a non-null wave vector, which corresponds to a finite wavelength
bifurcation. These dispersion surfaces can be considered the dynamic counterpart of the bifurcation surfaces
presented in Section 5.3.

6 Time-harmonic forced response near the elliptic boundary

The analysis of the homogenized continuum, equivalent to a preloaded grid of elastic rods (presented in
Section 5) predicts that the incremental response can display strain localizations due to prestress-induced
loss of ellipticity. However, while the relation between localization and failure of ellipticity is well-known in a
continuum, it is not equally clear why a ‘global bifurcation’ in the grillage should correspond to a localization
of motion. The scope of this section is a definitive clarification of this important point through a perturbative
approach, in which a perturbing agent in terms of a pulsating concentrated force is applied both to the lattice
and its continuum approximation and the results in terms of incremental displacement maps compared.

It should also be remarked that the perturbative approach employed is designed to capture the onset of
strain localization, while its development during a deformation path, after its appearance, will later be influ-
enced by the post-critical behavior (e.g. see [67]). Nonetheless, loss of ellipticity indicates a long-wavelength
bifurcation eigenmode of the lattice and will be shown to correspond to a localization of incremental strain
when a perturbing agent, as a concentrated force, is superimposed on a prestressed state close to the macro-
bifurcation threshold. This will provide validation to the homogenization scheme, showing that localization
occurs both in the lattice and in the equivalent solid when a macroscopic bifurcation occurs. To this pur-
pose, the actual low-frequency forced response of the lattice (simulated numerically with a finite element
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Fig. 14. Slowness contours and dispersion surfaces for a rhombic anisotropic lattice with Λ1 = 7, Λ2 = 15 (in blue) and for
the effective elastic continuum (in red) at frequency Ω = 0.01. The evolution of the contours and dispersion surfaces induced
by a compressive preload of equal components p1 = p2 along two inclined directions (the considered loading path is depicted
in Fig. 11) demonstrates that the nonlinear dispersion of the lattice is negligible, except when the material is very close to the
elliptic boundary, namely, for a prestress above 0.9pE. The comparison between the behaviors of the lattice and its equivalent
continuum shows a great agreement.

technique) and the time-harmonic Green’s function (which can be found in [39]) for the equivalent continuum
are compared at increasing levels of preload, so that the elliptic boundary is approached.

The comparison is performed for the four geometric configurations reported in Table 1 and for four
prestress levels, namely {0, 0.8, 0.9, 0.99}pE (with pE being the prestress state leading to ellipticity loss).
The lattice response is numerically analyzed using the COMSOL Multiphysicsr finite element program in
the frequency response mode. A square finite-size computational window with a width of 350 unit cells (of
dimension 350 l, with l denoting the cell edge) is considered, with a perfectly matched layer (PML) along
the boundaries, so that here waves are not reflected, rather absorbed, and the response of an infinite body
is simulated. The governing equation for the prestressed Euler-Bernoulli rod, Eq. (2b), used in the finite
element scheme has been implemented by modifying the bending moment contribution with an additional
geometric term given by the load multiplied by the transverse displacement of the rod. With regard to the
computational mesh, the rod’s length l is discretized in 10 finite elements with cubic shape functions. The
selected mesh has been defined by testing three different mesh refinements, namely 5, 10, and 20 elements
for l. Eventually, the mesh with 10 elements has been selected, as 20 provided no significant improvement,
but a substantial computational burden.

A pulsating concentrated force, applied in-plane, is considered acting at the center of the computational
domain. For a given load, the complex displacement field u(x), with horizontal and vertical components
u1(x1, x2) and u2(x1, x2), is computed and the results are plotted in terms of the modulus of the displacement
associated to its real part only, δR(x1, x2) =

√
(<u1)2 + (<u2)2 (the plots of the imaginary part of the

displacement is omitted for brevity).
In all the following analyses the frequency of the pulsating force is set to be Ω = ω l

√
γ/A = 0.01, a

low value providing a reasonable match, in term of acoustic properties, between the effective continuum and
the lattice. In fact, the mismatch between the two is different from zero for any non-vanishing frequency,
although becomes zero in the limit Ω → 0. When the elliptic boundary is approached, this mismatch is
expected to become wider for those waves which propagate parallel to the direction of ellipticity loss. This is
easily explained by the fact that, as the linear term in the dispersion relation tends to vanish (in a direction
nE), the nonlinear dispersion of the lattice becomes non-negligible at any non-vanishing frequency.

By considering for instance the rhombic anisotropic grid (Λ1 = 7, Λ2 = 15), the deviation between the
responses of the lattice (reported in blue in Fig. 14) and its equivalent continuum (reported in red in Fig. 14)
can be visualized in terms of slowness contours computed at the frequency Ω = 0.01. By comparing the
contours for the four preload states, it can be appreciated that these are superimposed up 0.9pE, so that the
nonlinear dispersion of the lattice becomes non-negligible only when the material is very close to the elliptic
boundary, namely, at a preload 0.99pE, and only for waves close to the direction of ellipticity loss. It is also
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worth noting that when p ≈ pE, the slowness contour pertinent to the lattice (reported in blue) is always
contained inside the contour relative to the continuum (reported in red), so that the nonlinear dispersion
implies that waves speeds are slightly higher for the lattice than for the effective elastic medium.

6.1 Square lattice

Cubic and orthotropic square grids are considered, subject to a pulsating diagonal force (inclined at 45◦ with
respect to the rods’ axes), with the purpose of revealing the emergence of strain localizations.

Fig. 15. The displacement field generated by a pulsating diagonal force (denoted with a red arrow and applied to the square
lattice with cubic symmetry, Λ1 = Λ2 = 10) is simulated via f.e.m., see (a)–(d), and compared to the response of the homogenized
continuum, see (e)–(h), at different levels of prestress p. Note the emergence of two orthogonal shear bands, aligned parallel to
the directions predicted for failure of ellipticity, see Fig. 8a.

t = 0

Detail of Fig. 15d

t = π
2ω

t = π
ω t = 3π

2ω

Fig. 16. Deformed configurations of a square lattice with cubic symmetry (Λ1 = Λ2 = 10) near the point of application of
a pulsating diagonal force (denoted with a red arrow) at a level of prestress close to the elliptic boundary (p = 0.99pE). The
figure reports the zoomed view of the region shown in Fig. 15d and depicts four snapshots of the forced response of the lattice
at different instants of time. The pattern shows a motion resulting from the superposition of two shear localizations induced by
the dynamic loading.

The case of cubic symmetry (Λ1 = Λ2 = 10) is analyzed in Fig. 15, where the displacement field, numeri-
cally computed for the square grid (subject to a pulsating concentrated force, upper row), is compared to the
response of the homogenized continuum (subject to the same concentrated force, solved via Green’s function,
lower row), for four values of prestress (increasing from left to right, p1 = p2 = {0,−3.347,−4.891,−5.380}).
As the elliptic boundary is approached, the emergence of two strain localizations becomes evident and con-
firms the predicted vanishing of an eigenvalue (wave speed) reported in Fig. 8a. Snapshots of the displacement
map at different instants of time, during the dynamic response of the grid and near the point of application
of the pulsating force, reveal the actual localization mode activated by the applied diagonal force. In fact,
deformed configurations calculated in the grid (the zone is indicated in Fig. 15d) through a finite element
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simulation and plotted in Fig. 16 display a characteristic motion resulting from the superposition of two shear
localizations emanating from the loading point.

Fig. 18

Fig. 17. As for Fig. 15, but for an orthotropic square lattice (Λ1 = 7 ,Λ2 = 15). Note the emergence of a vertical shear band,
as predicted in Fig. 8b.

The square grid displays a strain localization in the form of a single shear band when the slenderness values
of the two orthogonal elastic links are set to be different, thus breaking the cubic symmetry, but preserving
orthotropy. The response of the grid with Λ1 = 7 and Λ2 = 15 is reported in Fig. 17 for four preload states
corresponding to p1 = p2 = {0,−1.657,−1.864,−2.050}. As already revealed by Fig. 8b, a single vertical
shear band emerges, thus confirming the counter-intuitive result obtained in the previous section, namely
that the shear wave responsible for the ellipticity loss is the one propagating along the direction of the ‘stiffest’
elastic link (which possesses the lowest slenderness). The mechanism underlying this effect is displayed by
analyzing the actual deformed configuration of the grid reported in Fig. 18 (plotted at different instants of
time and obtained via f.e.m. simulations). The figure, which refers to the zone indicated in Fig. 17d, reveals
that the vertical strain localization emerges from a prevalent bending deformation of the ‘soft’ vertical links
accompanied by an approximately rigid rotation of the ‘stiff’ horizontal rods, which is allowed by a large
rotation of the nodes (see also inset of zoomed region at t = 0).

t = 0

Detail of Fig. 17d

t = π
2ω

t = π
ω t = 3π

2ω

Fig. 18. As for Fig 16, but for an orthotropic square lattice (Λ1 = 7, Λ2 = 15). The zone reported in the figure is shown in
Fig. 17d. The pattern shows the characteristic motion of a vertical shear band, induced by the pulsating load. The localization
emerges from a prevalent bending deformation of the ‘soft’ vertical links and an approximately rigid rotation of the ‘stiff’
horizontal rods allowed by a significant rotation of the grid nodes (see inset of zoomed region at t = 0).

The comparison between the responses of the grid and of the homogenized continuum, presented in
Figs. 15 and 17, shows an almost perfect agreement from low to high prestress levels, up to values close to the
elliptic boundary. The agreement can be further tested by considering the lattice’s complex displacement field
(reported in the last column of Figs. 15 and 17, prestressed at p = 0.99pE), computing its Fourier transform
and superimposing this to the corresponding slowness contour (associated to the chosen frequency Ω = 0.01).
This is reported in Fig. 19, where the Fourier transform shows that, for both considered square grids, the
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(a) Cubic square lattice (Λ1 = Λ2 = 10) (b) Orthotropic square lattice (Λ1 = 7, Λ2 = 15)

Fig. 19. Fourier transform of the complex displacement fields for the cubic (a) and orthotropic (b) square lattice subject to a
pulsating diagonal force, close to the elliptic boundary (fields reported in Fig. 15d and 17d, respectively). The slowness contours
of the lattice (dashed green) and the effective continuum (dashed red) are superimposed to highlight the Bloch spectrum of
waves excited by the forcing source. Note that the strong focus of the spectrum indicates that few plane waves, namely those
‘slow’ waves that are close to cause the ellipticity loss, prevail in the response. This is expected for the orthotropic grid (b)
near the elliptic boundary, where the waves propagating vertically remain almost inactive, when compared to those propagating
horizontally.

Bloch spectrum of waves excited by the diagonal load matches the slowness contour of the lattice (reported in
green) and is also highly focused around the directions of ellipticity loss where it is at the maximum distance
from the contour of the continuum (reported in red). It is worth noting that the strong focus of the spectrum
confirms the fact that few plane waves, namely those ‘slow’ waves that are close to cause the ellipticity loss,
prevail in the response, as it is expected for a material near the elliptic boundary.

6.2 Rhombic lattice

In the previous section, the square lattice was shown to display only localizations in the form of ‘pure’ shear
bands, i.e. in which shear strain prevails, perfectly aligned parallel to the elastic ligaments. However, on
the basis of the analysis performed in Section 5, the formation of localizations is expected along different
directions and with different deformation modes, when a rhombic grid is considered, α 6= π/2.

In order to investigate the response of the orthotropic (Λ1 = Λ2 = 10) and anisotropic (Λ1 = 7, Λ2 = 15)
rhombic lattices (α = π/3), both horizontal and vertical concentrated forces will be considered, so to observe
a dependence of the number of strain localizations on the loading orientation. Furthermore, in contrast to
what happens in the case of the square grid, the directions of localization are expected to occur with a slight
misalignment with respect to the directions of the rods, as predicted in Figs. 8c and 8d.

In Fig. 20 the displacement field computed via f.e.m. for the orthotropic rhombic lattice (horizontally
and vertically loaded with a pulsating force and reported on first and third row from the top of the figure)
is compared to the response of the homogenized continuum (reported in the second and fourth row) at four
values of preload (increasing from left to right) p1 = p2 = {0,−4.276,−4.811,−5.292}.

A comparison between Figs. 20a–20d and Figs. 20e–20h and a comparison between Figs. 20i–20l and
Figs. 20m–20p, shows an excellent agreement between the lattice response and its homogenized continuum
counterpart, for each state of lattice’s preload. With reference to a prestress state p = 0.99pE (last column on
the right of the figure), while two localization bands are activated by the vertical force, only one is generated
by the horizontal force. Note also that a slight misalignment between the localization direction and the rod
angle remains hardly visible until the material is close to elliptic boundary (compare for example the case
of vanishing prestress, Fig. 20a, to the case p = 0.99pE, Fig. 20d). The localization modes are analyzed
in Fig. 21 by inspecting the lattice deformation computed via f.e.m. at different temporal instants through
snapshots taken in regions near the loading point (Figs. 20 (d) and (l) show the zones considered).

A comparison between the localization band induced by the horizontal load (upper row of Fig. 21) and that
generated by the vertical one (second row in Fig. 21) shows that the (almost) horizontal band is characterized
by an almost perfectly straight wavefront, while the inclined band displays a periodic modulation along the
front. This modulation is due to the superposition of the two localization patterns that are activated by the
vertical force, where the inclined band prevails over the almost horizontal one, as can be seen in Figs. 20l
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Fig. 21

Fig. 21

Fig. 20. The displacement field generated by a pulsating horizontal force (denoted with a red arrow and applied to the
orthotropic rhombic lattice, Λ1 = Λ2 = 10) is simulated via f.e.m., see (a)–(d), and compared to the response of the homogenized
continuum, see (e)–(h), at different levels of prestress p. The same comparison is reported in (i)–(l) and (m)–(p) for a pulsating
vertical force. Even though ellipticity is lost along the two directions predicted in Fig. 8c, the activation of strain localization
depends on the orientation of the load, so that two bands are activated by the vertical force, while only one is generated
by the horizontal load. Furthermore, note that the directions of the localization bands (with angles of the normal equal to
θcr = 88.2◦, 151.8◦) is slightly misaligned with respect to the rod’s inclination.

and 20p.
The relative contribution of the two localizations can be further investigated through a Fourier transform

of the lattice response, to be compared with the Bloch spectrum generated by the forcing source. Fig. 22
shows the Fourier transform of the field generated in the rhombic grid when the material is close to the elliptic
boundary (p = 0.99pE). Fig. 22a and 22b correspond, respectively, to the Fourier transform of Fig. 20d and
Fig. 20l. The two sharp peaks of Fig. 22a clearly show that the source is emanating pure plane waves
propagating almost vertically (θcr = 88.2◦) (the slight tilt exactly matches the sub-horizontal wavefronts of
the response). Instead, the four peaks of Fig. 22b demonstrate that two families of plane waves are activated:
the prevailing ones propagate along the inclined direction (θcr = 151.8◦) while the vertically-propagating
waves result dimmer (in agreement with the response of Fig. 20l).

Results pertaining to an anisotropic rhombic lattice (Λ1 = 7, Λ2 = 15, while the other parameters are
equal to those used to generate Fig. 20, relative to an orthotropic rhombic lattice) are reported in Fig. 23 for
four values of prestress, p1 = p2 = {0,−1.634,−1.839,−2.023}.
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Fig. 21. Deformed configurations of the orthotropic rhombic lattice (Λ1 = Λ2 = 10) near the point of application of a pulsating
concentrated force (the zones are indicated in Fig. 20 d and l), at a level of prestress close to the elliptic boundary (p = 0.99pE).
The pattern on the first (the second) row shows the motion of the localization induced by the pulsating horizontal (vertical)
load. Note that the effect of the load is the generation of bands almost parallel to each other and possessing almost constant
amplitude, except for a modulation of the inclined localization (shown in the lower row). In both cases the deformation mode
is mostly of shear-type even though an ‘expansion’ component is also present, as indicated by the vectors gE, Fig. 8c.

(a) Horizontal loading (b) Vertical loading

Fig. 22. Fourier transform of the complex displacement fields of the orthotropic rhombic lattice (reported in Fig. 20 d and l, with
Λ1 = Λ2 = 10) subject to an horizontal (a) and vertical (b) pulsating force applied at a prestress close to the elliptic boundary,
p = 0.99pE. The slowness contours of the lattice (dashed green) and of the effective continuum (dashed red) are superimposed
to highlight the Bloch spectrum of waves excited by the forcing source. The sharp peaks in the contours are aligned to the
directions of ellipticity loss as predicted in Fig. 8c. In (a) the horizontal concentrated force only activates waves propagating at
θcr = 88.2◦, while in (b) the vertical concentrated force generates four peaks along the directions θcr = 88.2◦, 151.8◦. This is in
excellent agreement with the responses reported in Figs. 20d and 20l.

For a completely anisotropic material only a single localization is expected to occur and in the case of the
anisotropic grid considered the localization direction has been predicted in Fig. 8d to occur at an inclination
angle θcr = 151.4◦ of the band normal. However, similarly to the case of the orthotropic grid, the activation
of the localization depends on the orientation of the perturbing force. This can be observed by comparing
the lattice response generated by a horizontal and a vertical pulsating force, both reported in Fig. 23 and
showing that strain localization is absent when a horizontal force is applied, regardless of the prestress level
(see Figs. 23a–23h). On the other hand, the vertical concentrated force triggers an inclined localization when
the material is brought close to ellipticity loss (see Figs. 23i–23p).
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Fig. 24

Fig. 23. As for Fig. 20, except that an anisotropic rhombic lattice (Λ1 = 7, Λ2 = 15) is considered. Note that, even though
ellipticity is lost along the direction predicted in Fig. 8d (with normal angle θcr = 151.4◦), the activation of the strain localization
depends on the orientation of the applied pulsating force, so that the band is activated by the vertical force while localization
is inhibited when the grid is loaded horizontally.

Results reported in Figs. 24 and 25, referred to the anisotropic rhombic lattice, have been obtained with
the same setting of Figs. 21 and 22, referring to the orthotropic case.

Fig. 24 shows that, as only one localization band is present, the deformation pattern is characterized
by the generation of essentially straight wavefronts propagating outwards from the localization band. The
generation of these parallel waves is perfectly captured by the sharp peaks in the Fourier transform of the
lattice response, reported in Fig. 25. Fig. 25a and 25b correspond, respectively, to the Fourier transform
of Fig. 23d and Fig. 23l. The two light spots in Fig. 25b, superimposed to two tips of the contour aligned
parallel to the direction θcr = 151.4◦, denote the peaks of the Fourier transform. These clearly shows that
the response induced by the vertical force involves pure plane waves propagating with fronts inclined at
θcr = 151.4◦ − 90◦ = 61.4◦ with respect to the horizontal axis.

It is also important to note that waves do not propagate vertically when the load is vertical while these
become the only propagation mode when the load is horizontal (see the peaks on the short tips of the contour
in Fig. 25a). This is in agreement with the fact that localization is not generated by the horizontal force and
the ‘slow waves’ leading the homogenized continuum to failure of ellipticity remain inactive.
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Fig. 24. As for Fig. 21, except that an anisotropic rhombic lattice (Λ1 = 7, Λ2 = 15) is considered. The zone reported
in the figure is shown in Fig. 23l. The pattern shows the motion of the localization induced by the pulsating vertical load,
which generates waves emanating outwards from the localization band, parallel to each other, and possessing an almost constant
amplitude. The deformation mode is mostly of shear-type even though an ‘expansion’ component is also present, as indicated
by the vector gE reported in Fig. 8d.

(a) Horizontal loading (b) Vertical loading

Fig. 25. As for Fig. 22, except that an anisotropic rhombic lattice (Λ1 = 7, Λ2 = 15) is considered and the Fourier transform
refers to the displacement fields reported in Figs. 23d and 23l. Localization is absent when the pulsating force is horizontal, (a),
as the waves corresponding to the elongated tips of the contours remain inactive. The vertical force triggers two peaks along the
direction θcr = 151.4◦, which is in fact the direction normal to the localization band, (b). The Fourier transform is in perfect
agreement with the responses shown in Figs. 23d and 23l.

7 Incremental static response: macro and micro localization

The correlation between the static incremental response of the lattice and of the equivalent solid is of great
interest and is now investigated close to the conditions of instability. Following the perturbative approach,
the response of the lattice to an applied static concentrated load, in the form of a force dipole, is numerically
evaluated via finite elements and compared to the response of the equivalent solid, also subject to the same
force dipole. The latter is constructed by means of the Green’s function associated to the operator governing
the incremental equilibrium, divC[grad(•)], [19], and resulting in

G(x̂) = − 1

4π2

∮

|n|=1

(
A(C)(n)

)−1

log|x̂ · n| , (61)

where the position vector x has been made dimensionless through division by the rod’s length l, so that
x̂ = x/l. Note that G = Gᵀ due to the symmetry of the acoustic tensor.

The numerical results are obtained via a static analysis adopting the same computational setup described
in Section 6. As the simulations are meant to be compared to the infinite-body Green’s function, the size of
the domain has been calibrated in order to minimize boundary disturbances with clamped conditions at the
four edges of the square domain.

The investigation presented below reveals that:

(i) The localization of deformation connected to macro bifurcation in the lattice and to failure of ellipticity
in the equivalent solid are strictly similar;
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(ii) The lattice response close to a micro-bifurcation evidences a ‘microscopic’ type of localization, which
remains completely undetected in the homogenized material.

These two different mechanical behaviors are analyzed by exploiting the macro-to-micro transition of the first
bifurcation mode, which is controlled by the increase in the stiffness of the diagonal springs of the lattice
considered in Section 5. Hence, in Section 7.1 the lattice is considered in the absence of diagonal springs
(κ = 0), while in Section 7.2 the lattice is reinforced with springs of stiffness κ = 0.4.

7.1 Macroscopic localizations on the verge of ellipticity loss

The lattice configurations selected for the following analysis are reported in Table 1, together with the values
of the preload pE for loss of ellipticity in the effective continuum.

Fig. 26. Progressive emergence, at increasing load, of two orthogonal shear bands in the displacement field generated by a
diagonal force dipole. The dipole is applied to a square lattice (with cubic symmetry, Λ1 = Λ2 = 10, upper part, a–d, simulated
via f.e.m.) and compared to the response of its equivalent continuum (lower part e–h). From left to right the load increases
towards failure of strong ellipticity pE. Shear bands are aligned parallel to the directions predicted at failure of ellipticity
(θcr = 0◦, 90◦).

Fig. 27. As for Fig. 26, but for an orthotropic square lattice (Λ1 = 7, Λ2 = 15), where a single and vertical, θcr = 0◦, shear
band forms.
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In the static regime, a comparison is presented between the response of the grillage loaded with a con-
centrated force dipole and a dipole Green’s function for the effective solid. As for the dynamic analysis
of Section 6, the comparison is presented in terms of maps of incremental displacements (contour plots in
Figs. 26–29), where the color scale in the grid has been conveniently normalized according to the maximum
value of the computed displacements. In the upper part of the figures, results pertaining to the grid are
presented, while, in the lower part, results refer to the equivalent continuum, obtained via homogenization.
The figures from left to right correspond to the application of increasing preloads, which approach the strong
ellipticity boundary in the equivalent solid. Insets placed in parts (d) of each figure (p = 0.99pE) illustrate
a magnification of the lattice deformation in the neighborhood of the loading zone. These details highlight
the microscopic deformation patterns associated to the extreme mechanical response of the grid when loaded
closely to the elliptic boundary.

Fig. 28. As for Fig. 26, but for an orthotropic rhombic lattice (Λ1 = Λ2 = 10), where the localization bands are inclined
(θcr = 88.2◦, 151.8◦). In contrast to the square grid, the inclination of the localization bands do not coincide with the direction
of the rods.

Fig. 29. As for Fig. 26, but for an anisotropic rhombic lattice (Λ1 = 7, Λ2 = 15), where a single inclined localization band
forms (θcr = 151.4◦).

In the situations analyzed in Figs. 26–29, the equivalent solid is found to be fully representative of the
lattice structure. Therefore, approaching failure of ellipticity, the perturbative approach reveals, both in the
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continuum and in the real lattice, the formation of single or double bands in which incremental deformation
localizes. The bands can be horizontal, vertical or inclined. The correspondence between the behavior of the
grid and of its equivalent continuum is found to be excellent, so that the maps reported in the upper part of
the figures are practically identical to the corresponding maps in the lower part of the figures.

7.2 Micro-bifurcation in the lattice and effects on the equivalent solid

Micro-bifurcations occurring when the equivalent solid is still in the strong ellipticity range are investigated in
this section, with reference to an equibiaxially compressed square grillage with cubic symmetry Λ1 = Λ2 = 10
and diagonal springs of stiffness κ = 0.4. With the assumed spring stiffness, a microscopic bifurcation is
critical, as it occurs when the equivalent solid is still strongly elliptic.

Fig. 30. Microscopic localization of the bifurcation mode in the incremental displacement of a square lattice (cubic symmetry,
Λ1 = Λ2 = 10, upper part) and in its equivalent continuum (lower part). The prestress is an equibiaxial compression corre-
sponding to bifurcation, pB = {−π2,−π2}. A ‘quadrupole’ of forces is applied at the midpoints of the rods. The quadrupole
activates a highly localized ‘rotational’ bifurcation mode (labeled as in B1 in Fig. 10a and Table 2), which leaves the lattice and
the equivalent solid almost undeformed at a global level, but the lattice evidences a predominant inter-node deformation at the
scale of the unit cell.

The incremental displacement maps in the lattice at the critical load for micro-bifurcation and in its
equivalent continuum (still strongly elliptic) are shown in Fig. 30. The incremental displacement is generated
by the application of a force quadrupole. The upper parts (lower parts) of the figure refer to the grid (to the
continuum) and the parts on the right are a magnification of the zone near the force quadrupole.

The figure shows that the incremental response of the prestressed lattice is highly localized, so that only
a strong magnification reveals buckling of the elastic rods. Even if the equivalent continuum is not at bifur-
cation, its distribution of displacements somehow resembles that in the lattice, so that the homogenization
may still be representative of the response of the discrete structure, even though the inter-node deformation
cannot be captured.

The situation depicted in Fig. 30 completely changes when the lattice is loaded with forces beyond the
critical value for micro bifurcation in the lattice, as shown in Fig. 31. This figure refers only to the grid, loaded
now with a horizontal force dipole, applied at three different biaxial compression preloadings. In particular,
a preload coincides with the critical load p = pB for micro-buckling and the other two, p = 1.05pB and
p = 1.10pB, are beyond.

This figure reports displacement maps (upper part) and the corresponding Fourier transform (obtained
via FFT of nodal displacements, lower part), with superimposed slowness contours at null frequency. The
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Fig. 31. F.e.m. results for the displacement map (a)–(c) and the corresponding Fourier transform (d)–(f) showing the response
of a lattice at a preload corresponding to microscopic instability, p = pB and beyond, p = 1.05pB, 1.10pB. The slowness
contour at null frequency, evaluated through the bifurcation condition is superimposed in red. While at the critical load the
perturbation is so localized that is almost invisible, at higher loads an ‘explosive’ instability involving the whole lattice and
extending up to the boundary of the domain is clearly observed.

slowness contour (highlighted in red in the figure) was obtained from the bifurcation condition, Eq. (50). The
fact that the slowness contour is superimposed to the peaks of the transform (reported white in the figure), is
a validation of the good correspondence between calculations performed via Floquet-Bloch and finite element
simulations.

The following conclusion can be drawn from Fig. 31. While at micro-bifurcation an incremental pertur-
bation remains confined and highly localized in the equivalent continuum, an ‘explosive instability’ is found
for the grillage. This instability does not decay and extends to the whole domain occupied by the structure.
This is a special behavior which remains unobserved in the equivalent continuum (still strongly elliptic) and
cannot be revealed through homogenization.

8 Conclusions

An analytic formulation has been developed for the time-harmonic dynamics of a grillage of elastic rods
(equipped with distributed mass density and rotational inertia), subject to axial forces of an arbitrary amount
and incrementally loaded in the plane. Increments are unprescribed, so that incremental axial and shear forces
and bending moments are involved. The formulation leads, through an asymptotic expansion of Floquet-
Bloch waves, to a low-frequency approximation for an equivalent prestressed elastic material.

The developed technique has been employed to systematically analyze arbitrary lattice geometries and
preloaded configurations, therefore predicting both local and global material instabilities, in other words,
micro-buckling and strain localization. Loss of ellipticity has been analyzed for a skewed grid, to (i) explore
cubic, orthotropic and fully anisotropic homogenized material responses, (ii) compute the elliptic domain for
the homogenized continuum as a function of lattice parameters, (iii) analyze the structure of the acoustic
branches close to ellipticity loss, and (iv) investigate forced vibrations (both in physical and Fourier spaces)
revealing low-frequency wave localizations.

Loss of ellipticity has been analyzed both in quasi-static and dynamic conditions, the former situation
obtained from the latter in the limit of vanishing frequency. In particular, strain localization has been found
to evidence the following features.

Quasi-static loading:
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• For all the analyzed grids, (i) the elliptic region is unbounded for tensile preload and bounded for
compressive; (ii) deviations of the grid angle from orthogonality reduce the size of the elliptic region;
(iii) the elliptic boundary is smooth everywhere except at a corner point.

• Several geometries of shear bands and localization bands have been detected. (i) A single shear band
may form parallel or inclined to the grid, or (ii) two shear bands may occur, sometimes where the
ellipticity domain forms a corner.

• Playing with the stiffness of the elements forming the grillage, it is possible to determine the occurrence
of the first bifurcation, which may be macroscopic or microscopic. In the former case, it is detected in
the homogenized continuum, in the latter it is not.

• For special grid geometries, a super-sensitivity of the localization band inclination has been found with
respect to the state of preload. Super-sensitivity provides an enhanced tunability to be used in the
design of materials to exhibit given localization patterns.

• Special conditions can be found in which the lattice bifurcates similarly to the equivalent continuum,
namely, simultaneously displaying infinite modes, covering every wavelength. In this case, a perfect
equivalence is obtained between the bifurcation in the grid and failure of ellipticity in the effective
continuum.

Time-harmonic dynamics:

• The rotational inertia of the elastic rods does not contribute to the definition of the prestressed elastic
solid equivalent to the grillage.

• The homogenization scheme based on time-harmonic dynamics proves that the long-wavelength asymp-
totics for waves propagating in the lattice is governed by the acoustic tensor of the effective medium.
This aspect definitely clarifies that a macro-bifurcation in the lattice has to be equivalent to failure of
ellipticity in its equivalent continuum.

• Short-wavelength (or micro-) bifurcations are provided by the analysis of the dispersion relation of the
lattice, interpreted now as a function of the axial preload state in the rods. Buckling in the lattice
becomes the ‘propagation’ of a Bloch wave at vanishing frequency. Macro-bifurcation in the grid occurs
with the progressive lowering, and eventually vanishing, of the slope of the acoustic branches at the
origin, while the dispersion surface attains non-null frequency for every other wave vector. On the
contrary, micro-bifurcation is characterized by a non-vanishing slope of the acoustic branches at the
origin, but the preload-induced lowering of the dispersion surface causes the generation of a zero-
frequency wave with non-null wave vector (corresponding to a finite wavelength buckling).

• For square grid geometries, the shear wave responsible for the ellipticity loss is the one propagating along
the direction of the stiffer elastic link (with the lowest slenderness). This conclusion is counterintuitive,
as a shear mechanism would be expected to be generated in the direction of the soft elastic links.

• Shear bands have been investigated through a Fourier transform of the lattice response, evidencing
the Bloch spectrum generated by the forcing source, to be compared with the corresponding slowness
contour generated by the eigenmode analysis. In conditions close to the ellipticity loss, sharp peaks in
the Fourier transform demonstrate that the pulsating force is emanating pure plane waves, which is the
‘signature’ of strain localization in a dynamic context.

• The asymptotic homogenization scheme is performed near the vanishing frequency. It is therefore
believed to be more closely representative of the lattice when the frequency of the pulsating force is
sufficiently low. When the elliptic boundary is approached, the mismatch in the acoustic properties,
between the lattice and its effective continuum approximation, has been found to become wider for
those waves which propagate parallel to the direction of ellipticity loss.

Depending on the lattice geometry and preload state, a micro-bifurcation may occur in the grillage while
the equivalent continuum is still strongly elliptic. This bifurcation passes undetected via homogenization, but
may become dominant. In fact, when the preload in the grid is higher than that critical for micro-bifurcation,
an ‘explosive’ instability may occur. Such instability may start at a point as the effect of a perturbation and
evidence an unbounded growth. This circumstance has been vividly demonstrated through the perturbative
approach to material instability.

It can be concluded, in closure, that homogenization of the incremental response of a grillage of elastic
rods, axially preloaded to an arbitrary amount, provides an excellent tool for the design of cellular elastic
materials of tunable properties and capable of extremely localized deformations occurring within their elastic
range.
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A Linearized equations of motion for an axially pre-stretched elas-

tica

A model for an axially stretchable Rayleigh elastic rod can be obtained through a linearization (around a
stretched equilibrium configuration) of the equations governing the dynamics of large deflections and flexure
of the elastica endowed with rotational inertia. A local axial coordinate x0 is introduced to single out points of
the straight, undeformed, and stress-free configuration of the rod. This configuration is assumed as reference,
so that the potential and kinetic energies are defined as

V =

∫ l0

0

(ψλ(λ) + ψχ(χ)− P u′(x0, t)) dx0 , (A.1a)

T =
1

2

∫ l0

0

(
γ0
(
u̇(x0, t)

2 + v̇(x0, t)
2
)
+ γr,0 θ̇(x0, t)

2
)
dx0 , (A.1b)

where l0, γ0, and γr,0 are the initial length, linear mass density, and rotational inertia, while ψλ and ψχ

are strain-energy functions for, respectively, axial and flexural deformations. The axial stretch λ and the
curvature χ are defined by the kinematics of an extensible, but unshearable, elastica as

λ = (1 + u′(x0, t)) cos θ(x0, t) + v′(x0, t) sin θ(x0, t) , (A.2a)

χ = θ′(x0, t) =
∂

∂x0

(
arctan

(
v′(x0, t)

1 + u′(x0, t)

))
, (A.2b)

where in (A.2b) the unshearability constraint θ = arctan
(

v′

1+u′

)
has been explicitly introduced and the

symbol ′ indicates differentiation with respect to the first argument of the function, in this case x0.
A second-order expansion of the functionals (A.1), with respect to the independent displacement fields

{u, v}, around the deformed configuration {u0, v0} = {(λ0 − 1)x0, 0}, yields the linearized response of the
rod. The linearization is around a straight, but axially stretched, configuration. A substitution of Eq. (A.2)
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into Eq. (A.1) and neglection of an arbitrary constant, leads to the following expansion

V(u0 + δu, v0 + δv) ∼
∫ l0

0

(ψ′
λ(λ0)− P ) δu′(x0, t)dx0+

+
1

2

∫ l0

0

ψ′′
λ(λ0)δu

′(x0, t)
2dx0+

+
1

2

∫ l0

0

(
ψ′
λ(λ0)

λ0
δv′(x0, t)

2 +
ψ′′
χ(0)

λ20
δv′′(x0, t)

2

)
dx0 ,

(A.3a)

T (u0 + δu, v0 + δv) ∼ 1

2

∫ l0

0

(
γ0
(
δu̇(x0, t)

2 + δv̇(x0, t)
2
)
+
γr,0
λ20

δv̇′(x0, t)
2

)
dx0 , (A.3b)

where the ‘residual’ bending moment in the unloaded configuration is assumed to be zero, ψ′
χ(0) = 0, and ‘δ’

denotes a small variation.
The vanishing of the first-order term in Eq. (A.3a), occurring when the configuration {u0, v0} = {(λ0 −

1)x0, 0} satisfies equilibrium, implies that the prestretch λ0 is the solution of the condition ψ′
λ(λ0) − P =

0. This indicates that the axial load P is equal to the axial pre-load. Moreover, the second-order term
in Eq. (A.3a) involves the strain energy functions only in terms of second derivatives, ψ′′

λ(λ0) and ψ′′
χ(0),

evaluated on the straight stretched configuration.
It is now instrumental to update the reference configuration from the stress-free configuration to the

stretched configuration, so that the second-order functional (A.3) can be adopted to govern the incremental
response of the rod. To this purpose, the variable of integration is changed from x0 to the current stretched
coordinate s = λ0x0, so that the fields {u, v} become functions of s. The second-order terms in Eqs. (A.3)
can now be written as

V(u0 + δu, v0 + δv) ∼1

2

∫ l

0

ψ′′
λ(λ0)λ0 δu

′(s, t)2ds+

+
1

2

∫ l

0

(
Pδv′(s, t)2 + ψ′′

χ(0)λ0 δv
′′(s, t)2

)
ds ,

(A.4a)

T (u0 + δu, v0 + δv) ∼ 1

2

∫ l

0

(
γ0
λ0

(
δu̇(s, t)2 + δv̇(s, t)2

)
+
γr,0
λ0

δv̇′(s, t)2
)
ds , (A.4b)

where l = λ0l0 denotes the current length of the rod and the symbol ′ now indicates differentiation with
respect to s15. The variations δu′(s) and δv′′(s) are, respectively, the incremental axial strain and curvature,
so that the corresponding coefficients are the current values of axial and bending stiffness, so that they can
be concisely denoted as ψ′′

λ(λ0)λ0 = A(λ0) and ψ′′
χ(0)λ0 = B(λ0), both functions of the current axial stretch

λ0.
The second-order functionals, Eqs. (A.4), describe the incremental response of the axially pre-stretched

and pre-loaded rod. Therefore, the equations of motion governing the incremental displacements can be
derived via the following functionals

V(u, v) = 1

2

∫ l

0

A(λ0)u
′(s, t)2ds+

1

2

∫ l

0

(
Pv′(s, t)2 +B(λ0) v

′′(s, t)2
)
ds , (A.5a)

T (u, v) =
1

2

∫ l

0

(
γ0
λ0

(
u̇(s, t)2 + v̇(s, t)2

)
+
γr,0
λ0

v̇′(s, t)2
)
ds , (A.5b)

where the fields {u(s, t), v(s, t)} are current incremental fields. Note that the initial linear mass density is
divided by the prestretch, indicating that the current density governs the incremental inertia of the rod. In
fact, mass conservation requires γ0/λ0 = γ(λ0), where γ is the current linear mass density of the stretched
rod. Similarly, the current rotational inertia is denoted as γr,0/λ0 = γr(λ0).

The governing equations (2) are directly obtained through the application of Hamilton’s principle to the
Lagrangian L = T − V constructed using the second-order functionals (A.5).

A.1 Example of a rod made up of an incompressible hyperelastic material

The incremental potential, Eq. (A.5a), has been derived with reference to the elastica defined by two arbitrary
strain-energy functions defining the current stiffnesses A(λ0) and B(λ0). It is now shown that these two

15Note that, with a little abuse of notation, the symbols for the functions {u, v} have been maintained even though the
independent variable has changed from x0 to s.
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parameters can be evaluated for an incompressible non-linear elastic material, selected to model the rods. To
this purpose the analysis is developed in the static regime.

An initially isotropic, rectangular block of incompressible elastic material is considered, deformed under
plane strain and subject to a uniaxial state of stress in-plane, T1 6= 0, T2 = 0. Its incremental constitutive
response can be described through [19]

Ṡ11 = (2µ∗ − T1)
∂u1
∂x1

+ ṗ , Ṡ22 = 2µ∗
∂u2
∂x2

+ ṗ ,

where Ṡij is the increment of the first Piola-Kirchhoff stress, ui the incremental displacement, µ∗ the in-
cremental modulus (corresponding to shearing inclined at 45◦ with respect to the stress axes), and ṗ the
incremental Lagrange multiplier associated to the incompressibility constraint. Assuming that plane stress
prevails incrementally, Ṡ22 = 0, and using the incompressibility constraint, ṗ can be eliminated to yield

Ṡ11 = (4µ∗ − T1)
∂u1
∂x1

. (A.6)

The incremental equilibrium equation along the x1 direction

∂Ṡ11

∂x1
+
∂Ṡ12

∂x2
= 0 ,

can be integrated over the current thickness h of the block, so that a subsequent substitution of Eq. (A.6)
leads to ∫ h/2

−h/2

∂Ṡ11

∂x1
dx2 = (4µ∗ − T1)

∫ h/2

−h/2

∂ 2u1
∂x 2

1

dx2 = 0 , (A.7)

where the assumption of vanishing traction at x2 = ±h/2 has been used.
The incremental flexural equilibrium can also be retrieved. To this purpose, for a perturbation from the

current uniaxial stress state, Biot [68] has shown that the incremental equilibrium requires

∂ 2

∂x 2
1

∫ h/2

−h/2

x2Ṡ11 dx2 + T1
∂ 2

∂x 2
1

∫ h/2

−h/2

u2 dx2 = 0, (A.8)

where the first integral can be recognized to be the incremental bending moment.
By adopting the incremental kinematics of an Euler-Bernoulli beam (satisfying the unshearability condi-

tion)

u1(x1, x2) = u(x1)− x2
∂v(x1)

∂x1
, u2(x1, x2) = v(x1) , (A.9)

and using Eq. (A.6), the axial and flexural equilibrium equations (A.7) and (A.8) become

(4µ∗ − T1)h
∂ 2u(x1)

∂x 2
1

= 0 , (A.10a)

(4µ∗ − T1)
h3

12

∂ 4v(x1)

∂x 4
1

− T1h
∂ 2v(x1)

∂x 2
1

= 0 . (A.10b)

By noting that T1h is the resultant axial load, so that T1h = P , a direct comparison between equations (A.10)
and (2) provides the identification of the current stiffnesses A(λ0) and B(λ0) as

A(λ0) = (4µ∗(λ0)− T1(λ0))h(λ0) , B(λ0) = (4µ∗(λ0)− T1(λ0))h(λ0)
3/12 , (A.11)

where the explicit dependence on the current pre-stretch λ0 has been highlighted. For instance, for a Mooney-
Rivlin material µ∗ = µ0(λ

2
0 + λ−2

0 )/2 and T1 = µ0(λ
2
0 − λ−2

0 ). Therefore, expressions (A.11) become

A(λ0) = µ0(λ0 + 3λ−3
0 )h0 , B(λ0) = µ0(λ

−1
0 + 3λ−5

0 )h30/12 ,

where h0 = h/λ0 is the initial thickness of the block and µ0 the initial shear modulus of the material.
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B Full expression for the effective constitutive tensor

The complete analytic expression for the effective constitutive tensor of the lattice analyzed in Section 5 is
here reported. The resulting tensor is made dimensionless as follows

C =
A

l
C̄( p1, p2︸ ︷︷ ︸

prestress

,Λ1, Λ2, κ, α︸ ︷︷ ︸
microstructure

) , (B.1a)

where the non-dimensional tensor-valued function C̄(p1, p2,Λ1,Λ2, κ, α) can be decomposed as

C̄(p1, p2,Λ1,Λ2, κ, α) = C̄
G(p1, p2,Λ1,Λ2, α) + C̄

S(κ, α) , (B.1b)

with C̄
G and C̄

S being, respectively, the contribution of the rod’s grid and the diagonal springs. The compo-
nents of C̄G in the basis {e1, e2} read (components equal by symmetry are omitted)

C̄
G
1111 =

1

2d sinα

(

sinh

(√
p2

2

)(√
p1p2φ cosh

(√
p1

2

)

(

cos(4α)
(

Λ2
1 − p2φ

)

+ 4Λ2
1 cos(2α) + 11Λ2

1 + p2φ
)

− 2 sinh

(√
p1

2

)

(

cos(4α)
(

Λ2
1 (p1 + p2φ)− p22φ

2
)

+ Λ2
1 (p1 + p2φ) (4 cos(2α) + 11) + p22φ

2
)

)

+ p1
√
p2 sinh

(√
p1

2

)

cosh

(√
p2

2

)

(

cos(4α)
(

Λ2
1 − p2φ

)

+ 4Λ2
1 cos(2α) + 11Λ2

1 + p2φ
)

)

,

C̄
G
1122 =

4 sinα cos2 α

d

(

sinh

(√
p2

2

)(√
p1p2φ cosh

(√
p1

2

)

(

Λ2
1 − p2φ

)

− 2 sinh

(√
p1

2

)

(

Λ2
1 (p1 + p2φ)− p22φ

2
)

)

+ p1
√
p2 sinh

(√
p1

2

)

cosh

(√
p2

2

)

(

Λ2
1 − p2φ

)

)

,

C̄
G
1112 =

−2 cosα

d

(

sinh

(√
p2

2

)(

2 sinh

(√
p1

2

)

(

cos(2α)
(

Λ2
1 (p1 + p2φ)− p22φ

2
)

+ Λ2
1 (p1 + p2φ) + p22φ

2
)

−√
p1p2φ cosh

(√
p1

2

)

(

cos(2α)
(

Λ2
1 − p2φ

)

+ Λ2
1 + p2φ

)

)

+ p1
√
p2 sinh

(√
p1

2

)

cosh

(√
p2

2

)

(

cos(2α)
(

p2φ− Λ2
1

)

− Λ2
1 − p2φ

)

)

,

C̄
G
1121 =

4 cosα

d

(

sinh

(√
p2

2

)(

2 sinh

(√
p1

2

)

(

p1p2φ−cos2 α
(

Λ2
1 (p1+p2φ)−p22φ

2
))

+
√
p1p2φ cos2 α cosh

(√
p1

2

)

(

Λ2
1−p2φ

)

)

+ p1
√
p2 cos

2 α sinh

(√
p1

2

)

cosh

(√
p2

2

)

(

Λ2
1 − p2φ

)

)

,

C̄
G
2222 =

2 sinα

d

(

sinh
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p2

2
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p1p2φ cosh

(√
p1

2
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(

cos(2α)
(

p2φ− Λ2
1
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+ Λ2
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2
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(

− cos(2α)
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1 (p1 + p2φ) + p22φ

2
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√
p2 sinh
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2
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cosh
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2
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cos(2α)
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1

)

+ Λ2
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4 sin2 α cosα

d

(

sinh

(√
p2

2

)(√
p1p2φ cosh
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√
p2 sinh
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cosh
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2
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G
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2 cosα

d
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sinh
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2
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√
p2 sinh
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C̄
G
2121 =

p1
√
p2

d
sinh

(√
p1

2

)

cosh

(√
p2

2

)

(

sinα
(

Λ2
1 − 5p2φ

)

+ sin(3α)
(

Λ2
1 − p2φ

)

+ 4 csc(α) (p1 + p2φ)
)

− 2 sinα sinh

(√
p2

2

)(

2 sinh

(√
p1

2

)

(

cos(2α)
(

Λ2
1 (p1 + p2φ)− p22φ

2
)

+ 2 csc2(α) (p1 + p2φ)
2 + Λ2

1 (p1 + p2φ)

− p2φ (4p1 + 3p2φ)
)

−√
p1p2φ cosh

(√
p1

2

)

(

cos(2α)
(

Λ2
1 − p2φ

)

+ 2 csc2(α) (p1 + p2φ) +
(

Λ2
1 − 3p2φ

))

)

,

where

d= e−
1

2
(
√
p1+

√
p2)Λ2

1

((

e
√
p1 (

√
p1−2)+

√
p1+2

)(

e
√
p2−1

)

p2φ−2
(

e
√
p1−1

)

p1
(

e
√
p2−1

)

+
(

e
√
p1−1

)

p1
(

e
√
p2+1

)√
p2
)

.

The constitutive tensor C̄
S ruling the effect of diagonal springs can be written as

C̄
S
1111 = κ

5 + 3 cos(2α)

4 sinα
,

C̄
S
1112 = C̄

S
1121 = C̄

S
1211 = C̄

S
1121 = C̄

S
2111 = κ cosα ,

C̄
S
1122 = C̄

S
2211 = C̄

S
1212 = C̄

S
1221 = C̄

S
2112 = C̄

S
2121 = C̄

S
2222 =

1

2
κ sinα ,

C̄
S
1222 = C̄

S
2122 = C̄

S
2212 = C̄

S
2221 = 0 .
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