
Università degli Studi di Trento
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Chapter 1

Introduction

1.1 Historical overview

The story of ultracold quantum gases began in 1924-1925, when Satyendra Nath

Bose [10] and Albert Einstein [11] predicted that many bosonic particles can occupy

the lowest single-particle energy state when the temperature is reduced below a

critical value. This quantum phenomenon is named Bose-Einstein condensation.

Usually, normal atomic gases would become liquid and then solid before forming

a Bose-Einstein condensate (BEC), at low temperature. However, if a sample of

atomic gas has a low enough density to prevent three-body recombination, the gas

will stay in a metastable state for a long enough time when cooling the system

to a critical temperature, and one can investigate the condensate. In this case,

the typical density is of the order of 1014 particles/cm3 and the temperature tens

to hundreds of nano-kelvin, where the thermal wavelength λT =
√

2π~2/(mkBT )

becomes comparable to the interatomic distances in the atomic gases.

Experimentally, it is quite hard to cool quantum gases to such a low temperature.

Seventy years after the theoretical prediction of Bose and Einstein, thanks to the

development of new cooling techniques (laser cooling and evaporative cooling) for

atoms in magnetic traps, in 1995, the first Bose-Einstein condensate was observed

in laboratories at JILA [12] and MIT [13] with bosonic gases of 87Rb and 23Na,

respectively. A new field of research started from these experiments.

Also Fermi gases can be trapped in magnetic fields and cooled to low temperature

1



2 Introduction

with laser cooling techniques. The main difference with bosonic gases is the effect of

collisional processes, which are essential in the evaporative cooling. At low density

and temperature the interaction between atoms is dominated by s-wave collisions

and the only relevant interaction parameter is the s-wave scattering length a. How-

ever, in a single-component Fermi gas, this s-wave contact interaction is inhibited

by the Pauli exclusion principle, which causes dramatic consequences on the cool-

ing mechanism. This has made the achievement of degenerate atomic Fermi gases

a difficult goal, which was ultimately overcome by the use of sympathetic cooling

technique, either employing two different spin components of the same Fermi gases

or adding a Bose gas component as a refrigerant. In 1999, a group at JILA firstly

observed the degenerate Fermi gas in laboratories [14] with two spin components of
40K. Later quantum degeneracy effects were observed in 6Li with sympathetic cool-

ing between 6Li and bosonic 7Li isotope [15, 16]. The cooling technique of fermions

using different bosonic species has also proven efficient as, for instance, in the case

of 40K-87Rb [17] as well as 6Li-23Na [18].

In the last two decades ultracold gases have been a very ”hot” topic, attracting

the attention of many experimental and theoretical groups in an interdisciplinary

context. One of the important properties of these systems is that the interaction be-

tween atoms can be adjusted almost at will by using Fano-Feshbach resonances [19].

This phenomenon was originally found in the scattering cross section of neutrons in

nuclei and turns out to be particularly effective for atomic gases. In fact, by tun-

ing the intensity of an external static magnetic field, the s-wave scattering length

can be continuously changed from small negative a (attraction) to small positive

a (repulsion) crossing a singularity where a is infinite. In the cases of fermions

this corresponds to a transition from a weakly interacting Fermi superfluid in the

Bardeen-Cooper-Schrieffer state (BCS) to a state of weakly repulsive condensate of

molecules (BEC). The intermediate regime is called BCS-BEC crossover. In particu-

lar, at the resonance, when a diverges, the gas of fermions is in the ”unitary” regime

and manifests universal properties, where the macroscopic observables become com-

pletely independent of the interatomic potential [20, 21, 22]. This regime is difficult

to obtain with bosons because of the atom losses caused by 3-body collisions when a

increases, but this effect is inhibited in fermions due to Pauli exclusion principle. In

2002, the unitary Fermi gases were firstly realized at Duke experiment group [23].



1.2 Josephson effect in ultracold quantum gases 3

An appealing feature of ultracold gases is that they are very pure and clean, and

one can use laser beams and magnetic field to manipulate them and confine them in

different geometries, including periodic lattice structures (optical lattice) [24]. One

can also change the dimensionality of systems to observe low-dimension physics.

The easy manipulation with external fields allows one to create and observe excited

states, collective motions, transport phenomena, quantized vortices, solitons, shock

waves, and many other dynamical properties.

On the theoretical side, since at present an exact solution of the many-body

problem along the whole BCS-BEC crossover is not available, one has to resort to

approximation schemes or numerical simulations. Theoretical challenges in describ-

ing the BCS-BEC crossover arise from its strongly correlated nature: there is no

small interaction parameter to set the accuracy of theories [25]. Significant progress

has been made in developing better quantumMonte Carlo simulations [26, 27, 28, 29]

and strong-coupling theories [25, 30, 31, 32, 33, 34]. Quantum Monte Carlo tech-

nique is believed to be able to provide quantitatively reliable results, but it suffers

from the ”sign problem” for fermions. At high temperature, the quantum cluster

expansion has been proved to be an efficient method [35, 25, 36, 37, 38, 39, 40],

but it cannot work at very low temperature because the small quantity, the fugacity

z ≡ exp[µ/(kBT )], is no longer a well-defined small expansion parameter. A useful

approximation is provided by the standard BCS mean-field theory of superconduc-

tivity [41]. The main merit of this approach is that it provides a comprehensive,

although approximate, description of the equation of state along the whole crossover

regime, including the unitary limit and the BEC regime of small and positive ”a”.

This thesis will use this mean-field theory and its generalized version to investi-

gate the dynamics of the superfluid Fermi gases at unitarity and in the BCS-BEC

crossover.

1.2 Josephson effect in ultracold quantum gases

The Josephson effect [42, 43] is one of the key features of superconductors and super-

fluids. It is named after the British physicist Brian David Josephson, who predicted

in 1962 the mathematical relationships between the current and voltage across a
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Figure 1.1: The Gaussian-shape double well potential. In experiments, laser beams

and magnetic traps can be used to generate such external potential for the confine-

ment of ultracold atoms.

weak link connecting two superconductors. It involves very fundamental properties

and has important applications. Experimentally, a weak link may consist of a thin

insulating barrier (known as a superconductor-insulator-superconductor junction, or

S-I-S), a short section of non-superconducting metal (S-N-S), or a physical constric-

tion that weakens the superconductivity at the point of contact (S-s-S). In typical

solid state devices it is rather difficult or even impossible to adjust the relevant

parameters of Josephson junctions. This difficulty is largely overcome in ultracold

quantum gases.

The physics of the Josephson junctions can be effectively investigated with ul-

tracold gases confined in a double well potential [44, 45, 46](see Fig. 1.1). Although

initially the Josephson effect was introduced for the charged electrons, which are

fermions, the first investigation of this effect in cold gases was done for weakly

linked Bose-Einstein condensates (BEC).

In 1997 and 1999, A. Smerzi et al. [47, 48] employed the double well potential to

investigate theoretically the Josephson effect in ultracold bosonic gases. They wrote

coupled nonlinear Josephson equations for the relative population and the phase

difference between the two wells. These equations were derived by assuming that

the wave function of the system, governed by the Gross-Pitaevskii (GP) equation

can be described as a superposition of left and right localized condensates. This
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idea is often called two-mode model[49, 50]. Such nonlinear Josephson equations

admit four solutions, corresponding to four different dynamical regimes. When the

initial phase difference is zero and the initial population imbalance is smaller than a

critical value, one can observe small amplitude periodic oscillations, which are called

Josephson oscillations, where the atoms just tunnel back and forth between the two

wells, and whose period is determined by two key parameters: the mean-field (on-

site) energy and the tunnelling energy. If the initial population imbalance is beyond

this critical value, the system may exhibit self-trapped solutions (self-trapping) with

the relative population oscillating around a nonzero value. When the initial phase

difference is π, one finds another two dynamical regimes: π-mode Josephson os-

cillations and π-mode self-trapping, where both the time-averaged quantum phase

difference across the junction equals π, but time-averaged population imbalance is

zero and nonzero, respectively. In order to observer the π mode, the ratio between

on-site energy and tunnelling energy is required to be smaller than a certain value.

A large number of theoretical papers have been published along this line and exper-

iments have also been performed [46, 51, 52, 1, 53, 54, 55]. In 2001, F. S. Cataliotti

et al. [51] reported on the direct observation of an oscillating atomic current in a

one-dimensional array of Josephson junctions realized with an atomic Bose-Einstein

condensate. In 2004, Th. Anker et al [52] reported the first experimental observa-

tion of nonlinear self-trapping of Bose-condensed 87Rb atoms in a one-dimensional

waveguide with a superimposed deep periodic potential. In 2005, M. Albiez et al. [1]

reported the first realization of a single bosonic Josephson junction, implemented

by two weakly linked Bose-Einstein condensates in a double-well potential. Clear

examples of Josephson oscillations and self-trapping are shown in Fig. 1.2. In 2010,

Tilman Zibold et al [53] reported the π mode in a rubidium spinor Bose-Einstein

condensate.

These four dynamical regimes are found in bosons. It is very interesting to

check whether they exist also in Fermi gases. However, much less is known about

Josephson effects in dilute Fermi gases. The Bogoliubov-de Gennes (BdG) equations

for a two-component superfluid in the crossover from the Bardeen-Cooper-Schrieffer

(BCS) phase to BEC were used in Ref. [4, 56] to describe a stationary supercurrent

flowing in the presence of a three-dimensional barrier with a slab geometry; the

current-phase relation and the critical current were studied in the crossover for
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Figure 1.2: Absorption images of a 87Rb

condensate confined in a double-well poten-

tial from Josephson oscillations (left) to self-

trapping (right). In the Josephson regime the

atoms tunnel back and forth between the two

wells, while in the self-trapping regime more

atoms always remain in the left well. Taken

from Michael Albiez et al [1].

relatively low barriers, i.e., the height of the barrier is smaller than the chemical

potential of the superfluid. The same problem was also investigated by means of

a density functional approach describing bosonic Cooper pairs [57]; the equation of

state of the gas was included via a suitable parametrization and the order parameter

of the superfluid was obtained as the solution of a nonlinear Schrödinger equation

(NLSE). This method gives results in good agreement with the BdG results of

Ref. [4, 56] from unitarity to the BEC limit. For a double well potential in the

weakly linked limit (i.e., large barriers) the same density functional can be used

to derive coupled nonlinear equations for the relative population and the phase

difference analog to those for BECs [58, 59]. A similar NLSE has been used to

discuss in detail the transition from Josephson oscillations to self-trapping [60].

Some open issues are worth considering. First, the applicability of a two-mode

model to weakly linked dilute Fermi superfluids has been tested so far only within

a density functional approach describing a gas of bosonic pairs (namely Cooper

pairs, which become molecules in the BEC limit); being a generalization of the GP

equation, the theory naturally reduces to the two-mode model under the same as-
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sumptions as for coupled BECs. It is thus interesting to test the two-mode model

also within a more microscopic theory like BdG which includes fermionic degrees of

freedom. Second, the available BdG calculations [4, 56] and their comparison with

the density functional results [57] are limited to the case of a stationary current

through a low and thick barrier, where the flow is almost hydrodynamic and a local

density approximation can be applied [61]; time-dependent simulations with higher

and thinner barriers can provide a more stringent and informative test. Finally, the

stationary BdG equations does not include bosonic collective modes (e.g., phonons)

in the spectrum of excitations and cannot address the problem of dynamical insta-

bilities, soliton nucleation, phase slips, etc., which may occur in a superfluid flow in

the presence of a potential barrier. This type of physics can instead be addressed

by time-dependent BdG simulations.

The predictions of Bogoliubov-de Gennes theory are known to have limited ac-

curacy. For instance, the chemical potential µ and gap order parameter ∆ given by

BdG in a uniform gas of unitarity are about 40% different from experimental values

or quantum Monte Carlo simulations. Based on density functional theory, A. Bul-

gac et al. developed a generalized BdG theory for superfluid Fermi gases, which is

named Superfluid Local Density Approximation (SLDA) [62, 63, 64], which includes

the zero temperature value of µ and ∆ from experiments or quantum Monte Carlo

simulations as two input parameters. This theory is expected to be more accurate

than BdG of unitarity, and its time-dependent version, TDSLDA, can be used to

investigate the dynamical properties.

In the first part of this thesis, we will study the Josephson effect by using TDBdG

equations, NLSE, the two-mode model, as well as TDSLDA.

1.3 Dynamic structure factor

In the second part of the thesis we will investigate the dynamic structure factor

of superfluid fermions. The dynamic structure factor is a very important quantity,

which contains information on the dynamical properties of a man body system,

both at low energy (collective modes) and high energy (single-particle excitations).

Experimentally, the dynamic structure factor can be measured via two-photon Bragg
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scattering [65, 2, 66] where two slightly detuned laser beams are impinged upon the

trapped gas. The difference in the wave vectors of the beams defines the momentum

transfer q, while the frequency difference defines the energy transfer ~ω. The atoms

exposed to these beams can undergo a stimulated light scattering event by absorbing

a photon from one of the beams and emitting a photon into the other.

Essentially, the dynamic structure factor is the Fourier transform of the density-

density correlation functions at two different space-time points [67, 68]. For a two-

component atomic Fermi gases with equal spin populations N/2 (referred to as

spin-up, σ =↑, and spin-down σ =↓), the density (spin) dynamic structure factor is

defined as

SD(S)(q, ω) = 2 [S↑↑(q, ω)± S↑↓(q, ω)] (1.1)

where we have S↑↑(q, ω) = S↓↓(q, ω) and S↑↓(q, ω) = S↓↑(q, ω), and the components

are given by

Sσσ′(q, ω) = Q−1
∑
nn′

e−βEn′ ⟨n|δρσ(q)|n′⟩ ×
⟨
n′
∣∣∣δρ†σ′(q)

∣∣∣n⟩ δ(~ω − Enn′) (1.2)

where |n⟩ and Enn′ = En − En′ are, respectively, the eigenstate and eigenvalue of

the many-body system, while Q =
∑

n exp(−βEn) is the partition function and

β = 1/(kBT ) is the inverse temperature. The density operator δρ̂σ(q) =
∑

iσ e
−iq·ri

is the Fourier transform of the atomic density operator δρ̂σ(r) for spin-σ atoms.

In the following, for simplicity, we just use S(q, ω) for density dynamic structure

factor and for spin dynamic structure factor, SS(q, ω). Theoretically, linear response

theory can be used to calculate the dynamic structure factor, which is related to the

imaginary part of response function via the fluctuation-dissipation theorem.

At high momentum transfer, the dynamic structure factor is characterized by

a quasi-elastic peak at ω = ~q2/2M , where M is the mass of the elementary con-

stituents of the system. In the whole crossover, the density dynamic structure factor

of superfluid fermions is characterized by a two-peak structure [5, 2, 69], while the

spin dynamic structure has only one peak [66]. Figure 1.3 shows the first experi-

mental result of density dynamic structure factor for strongly interacting fermions,

done by Swinburne experimental group [2]. The position of the peak is expected

to depend on whether photons scatter from free atoms (M = m) or molecules

(M = 2m). The density dynamic structure factor has both of them, but the spin
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Figure 1.3: Bragg spectra showing density dynamic structure factor S(q, ω) for

trapped Fermi gases across the BCS-BEC crossover. Magnetic field and 1/(kFa) for

each spectrum are given in the legend. The inset shows the 750 and 991 G spectra

along with the calculated S(q, ω) for an ideal Fermi gases and molecular BEC at

750G. Taken from G. Veeravalli et al [2].

dynamic structure factor has only the molecular peak. Their occurrence depends

on the actual value of the momentum transfer. If q is much larger than the inverse

of the molecular size, photons mainly scatter from atoms and the quasi-elastic peak

takes place at ω = ~q2/2m. In the opposite case, photons scatter from molecules and

the excitation strength is concentrated at ω = ~q2/4m. During the whole crossover,

the signal of molecular peak in BEC regime is obviously stronger than that in BCS

regime, which reflects the fact that there are more molecules (or Cooper pairs) in

BEC regime.

The density dynamic structure factor satisfies various sum rules, which involve

frequency moments defined by ⟨ωn⟩ ≡
∫∞
−∞ dω ωnS(q, ω). For n = 0, ⟨ω0⟩ is equal

to the static structure factor S(q), which is intimately connected to the universal

Tan’s contact I at high momentum transfer q [70, 71, 72]. The n = 1 moment is

the well known longitudinal f -sum rule, ⟨ω⟩ ≡
∫∞
−∞ dω ωS(q, ω) = q2/(2m) which

was derived by Czech physicist, Georg Placzek, in 1952 (p. 365 of Lifshitz an

Pitaevskii(1980) [73]). Higher-order moments sum rules can also be derived in a
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similar manner. Such sum rules are very useful constraints in experimental studies

since the data can be used to compute ⟨ωn⟩. They are also used to check the

theoretical predictions.

Universality of strongly interacting fermions is a feature of great interest which

manifests also in the dynamic structure factor [74]. For large energy transfer,

ω → ∞, the spin-parallel and spin-antiparallel dynamic structure factors have,

respectively, a tail of the form ∼ ±ω−5/2, decaying slower than the density dy-

namic structure factor S(q, ω) (ω−7/2). These universal behaviors have already been

verified by Bragg spectroscopy [66] of ultracold atomic Fermi gases.

Recently, the Swinburne experiment group measured the density dynamic struc-

ture of unitary Fermi gas also at finite temperature [9], where no theoretical pre-

dictions are available. At zero temperature, a dynamical mean-field theory or

Bogoliubov-de Gennes and random phase approximation were already used to cal-

culate the dynamic structure factor in the whole crossover [5]. In particular, at high

momentum transfer q, the predictions of this theory quantitatively agree well in

the BEC-unitarity regime, and not so well in the BCS regime [6]. However at finite

temperature, this method has fatal drawback at high temperature (above Tc), where

instead of interacting normal gases, it describes a pure ideal Fermi gases without

interaction, which is obviously wrong. Thank to the introducing the Hartree term

inside the energy density functional, the superfluid local density approximation can

describe an interacting normal Fermi gases, and can provide quantitatively reliable

results for unitary superfluid Fermi gases at zero temperature, so it is interesting

to use this theory to calculate the dynamic structure factor, especially to check its

effect at finite temperature.

In this thesis, we will use the superfluid local density approximation to calculate

the dynamic structure factor of unitary fermions at zero temperature first, and

then expand this theory to finite temperature and check its effect on predicting the

dynamic structure factor at finite temperature.
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1.4 Thesis outline

Here we give a brief outline of the chapters of this thesis. In the chapter 2, we

introduce the Bogoliubov-de Gennes equations and their time-dependent version,

and use them to investigate stationary and dynamical properties of superfluid Fermi

gases in a box. In chapter 3, we use the same theory to characterize the dynamic

behaviour of the gas in a double-well potential. In chapter 4, we will discuss the same

problem using Nonlinear Schrödinger equation (or generalized GP equations), the

nonlinear Josephson equations and the Superfluid Local Density Approximation.

The comparison between the results of different theories is discussed in details.

In chapter 5, we introduce the linear response theory and the dynamic structure

factor. We use the strategy of the Random Phase Approximation to calculate S(q, ω)

with BdG theory and SLDA. In the chapter 6, we summarize the main results of

our calculation of S(q, ω) at finite temperature and comment the comparison with

experiment. Finally, we will present all conclusions and perspectives of the whole

thesis in the chapter 7.
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Chapter 2

Bogoliubov-de Gennes equations

Theoretical challenges in describing the crossover behaviour arise from its strongly

correlated nature: there is no small interaction parameter to set the accuracy of

theories [25]. A useful approximation is provided by the standard BCS mean-field

theory of superconductivity. This approach was first introduced by Eagles(1968) [75]

and Leggett(1980) [76] with the main motivation to explore the properties of super-

conductivity and superfluidity beyond the weak-coupling limit kF |a| ≪ 1. The main

merit of this approach is that it provides a comprehensive, although approximation,

description of the equation of state along the whole crossover regime, including the

limit 1/(kFa) → 0 and the BEC regime of small and positive a. In this part of thesis,

we introduce the Bogoliubov-de Gennes (BdG) equations and their time-dependent

version (TDBdG).

2.1 Derivation of BdG equations

For two-component Fermi gases with a s-wave contact interaction, the system can

be described by the Hamiltonian

H =
∑
σ

∫
drΨ†

σ(r)[−
~2

2m
∇2 + V (r)− µσ]Ψσ(r) + g

∫
drΨ†

↑(r)Ψ
†
↓(r)Ψ↓(r)Ψ↑(r)

(2.1)

where the pseudospins σ =↑, ↓ denote the two hyperfine states and Ψσ(r) is the

Fermi field operator that annihilates an atom at position r in the spin σ state. The

13
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number of total atoms is N = N↑+N↓. The quantities µ↑,↓ are the chemical potential

of each spin states. The function V (r) is the external potential and g is the bare

interatomic interaction strength.

Starting from the Heisenberg equation of motion of Hamiltonian (2.1) for the

field operators Ψ↑(r, t) and Ψ↓(r, t), one can obtain the following two equations:

i~
∂Ψ↑

∂t
=

[
− ~2

2m
∇2 + V − µ↑

]
Ψ↑ + gΨ†

↓Ψ↓Ψ↑,

i~
∂Ψ↓

∂t
=

[
− ~2

2m
∇2 + V − µ↓

]
Ψ↓ − gΨ†

↑Ψ↓Ψ↑. (2.2)

Within the mean-field approximation, the terms gΨ†
↓Ψ↓Ψ↑ and gΨ†

↑Ψ↓Ψ↑ are re-

placed with their respective mean-field approximations gΨ†
↓Ψ↓Ψ↑ = −∆(r)Ψ†

↓ +

gn↓(r)Ψ↑ and gΨ†
↑Ψ↓Ψ↑ = −∆(r)Ψ†

↑ − gn↑(r)Ψ↓, where we define the order param-

eter (or gap function) ∆(r) = −g⟨Ψ↓Ψ↑⟩ and the density nσ(r) = ⟨Ψ†
σΨσ⟩. The

above decoupling thus leads to

i~
∂Ψ↑

∂t
=

[
HS

↑ − µ↑
]
Ψ↑ −∆(r)Ψ†

↓,

i~
∂Ψ↓

∂t
=

[
HS

↓ − µ↓
]
Ψ↓ +∆(r)Ψ†

↑. (2.3)

where HS
σ = −~2∇2/(2m) + V (r) + gnσ̄(r) is the quasiparticle Hamiltonian of

spin species σ. The equations of motion can be rewritten by using the standard

stationary-state Bogoliubov transformations:

Ψ↑ =
∑
j

[
uj↑(r)cj↑e

−iEj↑t/~ + v∗j↓(r)c
†
j↓e

iEj↓t/~
]
,

Ψ†
↓ =

∑
j

[
u∗
j↓(r)c

†
j↓e

iEj↓t/~ − vj↑(r)cj↑e
−iEj↑t/~

]
. (2.4)

These yield the well-known BdG equations for the Bogoliubov quasiparticle ampli-

tudes ujσ(r) and vjσ(r) with excitation energies Ejσ,[
HS

σ − µσ ∆(r)

∆∗(r) −HS
σ̄ + µσ̄

][
ujσ(r)

vjσ(r)

]
= Ejσ

[
ujσ(r)

vjσ(r)

]
(2.5)
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where ujσ(r) and vjσ(r) are normalized by
∫
dr(|ujσ(r)|2+|vjσ(r)|2) = 1. The density

and the order parameter can then be written as

nσ(r) =
1

2

∑
j

[
|ujσ|2f(Ejσ) + |vjσ̄|2f(−Ejσ̄)

]
,

∆(r) =
g

2

∑
j

[
uj↑v

∗
j↑f(Ej↑)− uj↓v

∗
j↓f(−Ej↓)

]
. (2.6)

where f(x) = 1/(ex/kBT + 1) is the Fermi-Dirac distribution function of quasipar-

ticles, and the statistical average ⟨c†jσcjσ⟩ = f(Ejσ) and ⟨cjσc†jσ⟩ = f(−Ejσ) have

been used. The solutions of the BdG equations contain both positive and negative

excitation energies. Thus, to avoid double counting, a factor of 1/2 appears in the

summation in Eqs.(2.6). One can easily identify that there is a one-to-one corre-

spondence between the solution for the spin-up and spin-down energy levels. For

example,

Ejσ ↔ −Ejσ̄ (2.7)

and [
ujσ(r)

vjσ(r)

]
↔

[
−v∗jσ̄(r)

+u∗
jσ̄(r)

]
. (2.8)

By exploiting this symmetry of the BdG equations, we only need to solve the BdG

equations for the spin-up part. This has the following form after removing the spin

index; i.e., we let uj = uj↑ ,vj = vj↑ and Ej = Ej↑, to give[
HS

↑ − µ↑ ∆(r)

∆∗(r) −HS
↓ + µ↓

][
uj(r)

vj(r)

]
= Ej

[
uj(r)

vj(r)

]
. (2.9)

Also, we can write simplified expressions for density nσ(r) and order parameter

∆(r):

n↑(r) =
∑

j |uj|2f(Ej), n↓(r) =
∑

j |vj|2f(−Ej), ∆(r) = g
∑

j ujv
∗
j f(Ej).

(2.10)

One should pay attention to the order parameter ∆(r) because
∑

j ujv
∗
j diverges

when using a contact interaction. This would lead to an unphysical ultraviolet

divergence and requires a regularization that expresses the bare parameter g in
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terms of the observed or renormalized value (4π~2a/m)−1. To this purpose, one can

write [76, 77, 41]

1

g
=

m

4π~2a
−
∑
k

1

2ϵk
(2.11)

where a is the s-wave scattering length between atoms with different spin and

ϵk = ~2k2/(2m). Generally, this regularization requires an infinitely small bare

parameter g (g → 0), in order to compensate the ultraviolet divergence in the

summation Σk1/(2ϵk). At the same time, this small bare parameter g does great

influence in the existence of Hartree term (gnσ̄) in the quasiparticle Hamiltonian

HS
σ = −~2∇2/(2m) + V (r) + gnσ̄(r).

For weak couplings, one may indeed obtain Hartree terms like (4π~2a/m)nσ.

With regularization, these corrections are beyond mean field and are effective only

in the deep BCS limit. Towards the unitarity limit with increasing scattering length,

they are no longer the leading corrections and become even divergent. Higher-order

terms are needed in order to remove the divergence at unitarity. For example, one

may use Páde approximations in the equation of state [20]. Thus, in the BCS-BEC

crossover region, neglecting the Hartree terms is not an unreasonable approximation.

Since the density n↑,↓ are convergent, the Hartree term gives almost no contribution

to the quasiparticle Hamiltonian. Therefore, strictly speaking, within a mean-field

approximation the Hartree term (gnσ) should vanish identically.

After throwing away the Hartree term gnσ(r) inside HS
σ̄ , we have HS

↑ = HS
↓ ≡

H0 = −~2∇2/(2m) + V (r). For equally populated components (N↑ = N↓), the

chemical potential of fermions in different spin states should be equal, µ↑ = µ↓ ≡ µ.

Finally, we get the stationary BdG equations.

[
H0 − µ ∆(r)

∆∗(r) −H0 + µ

][
uj(r)

vj(r)

]
= Ej

[
uj(r)

vj(r)

]
(2.12)

which need to be self-consistently solved together with the equations of density and

order parameter. In the particular case of a homogeneous gas, uj(r) and vj(r) can

be expanded with plane wave functions, e.g., uj(r) → uke
ikr and vj(r) → vke

ikr.

Thus the stationary BdG equations will gives two branches of solutions with
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E+
k = Ek =

√
ξ2k +∆2, E−

k = −Ek = −
√

ξ2k +∆2.

|uk|2 = 1
2

(
1 + ξk

Ek

)
, |uk|2 = 1

2

(
1− ξk

Ek

)
.

|vk|2 = 1
2

(
1− ξk

Ek

)
, |vk|2 = 1

2

(
1 + ξk

Ek

)
.

ukv
∗
k = ∆

2Ek
, ukv

∗
k = − ∆

2Ek
.

(2.13)

where ξk = ~2k2/(2m)− µ.

If we repeat the same derivation but with dynamical Bogoliubov transformations

Ψ↑ =
∑
j

[
uj↑(r, t)cj↑ + v∗j↓(r, t)c

†
j↓

]
,

Ψ†
↓ =

∑
j

[
u∗
j↓(r, t)c

†
j↓ − vj↑(r, t)cj↑

]
, (2.14)

we obtain the time-dependent Bogoliubov-de Gennes equations[
H0 − µ ∆(r, t)

∆∗(r, t) −H0 + µ

][
uj(r, t)

vj(r, t)

]
= i~

∂

∂t

[
uj(r, t)

vj(r, t)

]
. (2.15)

In the following, we solve stationary BdG equations to calculate all static physical

quantities as, for instance, the grand canonical energy E = ⟨Ĥ −µN̂⟩ of the system
at zero temperature:

E =

∫
dr

∑
j

[
2(µ− Ej)|vj(r)|2 +∆∗(r)uj(r)v

∗
j (r)

]
. (2.16)

We also solve the TDBdG equations by means of a 4th order Runge Kutta algorithm

in order to simulate dynamic processes.

2.2 BdG equations for uniform system in a box

Actual simulations are performed in a finite computational box. In our case we use

a three-dimensional rectangular box of size L × L2
⊥. A discrete basis set is needed

to describe all quasiparticle amplitudes. The basis set contains a finite number of

functions whose energies are limited by an energy cutoff Ecut. The value of Ecut
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has to be large enough to avoid the dependence of results on it. Accordingly, the

regularization equation (2.11) can be rewritten as

1

kFa
=

8πEF

gk3
F

+
2

π

√
Ecut

EF

(2.17)

while EF = ~2k2
F/(2m) and kF = (3π2n0)

1/3 are the Fermi energy and wave vector

of a uniform ideal Fermi gas with bulk density n0.

However, when calculating the energy (2.16), one finds that the convergence to

a cutoff independent value is typically quite slow [78]. Two methods can be used to

overcome this problem: hybrid BdG technique where the local density approxima-

tion may be adopted for sufficiently high-lying states [79, 80], or an improved regular-

ization procedure [81] developed by A. Bulgac and Y. Yu. In this thesis, we use the

second technique: for a given external potential V (r) and chemical potential µ, we

define a local Fermi wave vector kF (r) from the relation µ = ~2kF (r)2/(2m) + V (r)

and a local cutoff wave vector kcut(r) from Ecut = ~2k2
cut/(2m) + V (r) − µ. The

regularization of the interaction consists of replacing the bare interaction strength

g, in the expression of order parameter ∆(r) with a local effective geff(r) given by

1

geff(r)
=

m

4π~2a
− mkcut(r)

2π2~2

[
1− kF (r)

2kcut(r)
ln
kcut(r) + kF (r)

kcut(r)− kF (r)

]
. (2.18)

In the following, we focus on Fermi gases at zero temperature (T = 0), where

the total density n(r) = n↑(r) + n↓(r) and the order parameter ∆(r) are calculated

with equation n(r) = 2
∑

j |vj(r)|2 and ∆(r) =
∑

j geff(r)uj(r)v
∗
j (r), respectively,

and all summations are restricted to the interval 0 ≤ Ej ≤ Ecut. The system is

contained in a box with transverse size L⊥ and longitudinal size L. In the rest of

this chapters, as a test case for the numerical solutions of the BdG and TDBdG

equations, we consider the case V (r) = 0 everywhere in the box with infinite hard

walls at the boundaries. It is also convenient to exploit the symmetry of the system

to distinguish solutions (and quasiparticle amplitudes) which are symmetric or anti-

symmetric under spatial reflection x → −x, with x = 0 as the center of the box.

The symmetric solution corresponds to the ground state, solution exhibiting a 0

phase jump at x = 0 in the order parameter ∆ when crossing the center of the box,

while the order parameter of the anti-symmetric solution displays a π phase jump
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Figure 2.1: Density and order parameter of unitary fermions for the symmetric (solid

lines) and anti-symmetric (dashed lines) solutions of the stationary BdG equations

in a box of length L = 30k−1
F and L⊥ = 13k−1

F . The particle number is N = 156 in

both cases. The density n0 is the ground state density in the center of the box.

x = 0. In both cases, the solution of the BdG equations provides the density n(x),

the order parameter ∆(x), the chemical potential µ and the energy E. We calculate

the solutions by expanding quasiparticle amplitude uk and vk in the plane-wave basis.

On such a basis, the left part of BdG equations is converted to a secular matrix.

A matrix diagonalization then gives the desired quasiparticle energy spectrum and

wave functions. Numerically we truncate the summation over the energy level. A

improved regularization (2.18) is used to cure the ultraviolet divergence. Examples

of symmetric state and anti-symmetric state with the same particle number N are

shown in Fig. 2.1 for L = 30k−1
F and L⊥ = 13k−1

F and for a gas at unitarity.

This anti-symmetric state is the dark soliton solution of the BdG equations al-

ready calculated in Ref. [82]. The dark soliton exhibits a density depletion: particles

are removed from the soliton region and displaced in the lateral regions, where the

density becomes larger. Let us call E+ and E− the energy of the ground state and

the anti-symmetric state, respectively. The difference ∆E = E− −E+ is a measure

of the cost in energy associated with the creation of the density depletion and the

nodal structure of ∆ at the box center.

Our results for the energies E+ and E− of unitary fermions as a function of 1/L

are plotted in Figs. 2.2 and 2.3. Both energies must converge to the same asymptotic
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Figure 2.2: Energy per particle of the ground state (left) and the lowest anti-

symmetric state (right) of unitary fermions in a box with periodic boundary condi-

tions in the transverse direction and closed boundary conditions in the longitudinal

direction. For each longitudinal length L, the two states have the same number of

particles N . The number N , as a function of L, is such that the bulk density in

the ground state is the same for all points. Energies are plotted as a function of

1/(kFL). From a linear fit we extract the value in the 1/L → 0 limit, which is 0.351

and 0.348 for E+/N and E−/N , respectively. These values agree with the analytic

BdG prediction (3/5)(1 + β) = 0.354 for the ground state energy of a unitary gas.

The remaining discrepancy, of the order of 1%, is due to numerical uncertainties

induced by the finite cutoff energy, the discretization of the quasiparticles states in

the transverse directions, and other sources of small numerical fluctuations.

value in the limit of an infinite system, where the soliton represents a vanishingly

small perturbation on top of a uniform gas. The energy per particle of a uniform

Fermi gas at unitarity, within the BdG theory, can be calculated analytically and

the result is E/N = (3/5)µ with µ = (1 + β)EF and β = −0.41 [41]. Thus the

two energies E+/N and E−/N must converge to the value 0.354EF when 1/L → 0.

Indeed the value extracted from a linear fit to both curves in Fig. 2.2 coincides with

the analytic prediction within a statistical uncertainty of the order of 1%.

The increase of E+/N , E−/N with 1/L can be easily understood as due to the

effect of the boundaries and, for the anti-symmetric state, of the soliton. Both

the boundary and the soliton contribute to the energy with terms proportional
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Figure 2.3: Left panel: energy difference ∆E = E− − E+ per unit area, obtained

from the energies plotted in Fig. 2.2. In the (1/L) → 0 limit, the points should

converge to the analytic BdG prediction ϵs = (1 + β)1/2/(8π
√
3) ≃ 0.0176 [3] for

the energy of a dark soliton in an infinite uniform gas. The value extracted from

a linear fit to the data agree with this prediction within a 3% uncertainty. Right

panel: soliton energy in the box as defined in Eq. (2.19). The 1/L → 0 limit is the

same as in the left panel, but convergence is faster.

to the transverse area; given that N scales as the volume, their contributions to

the energy per particle are inversely proportional to L and hence linear in 1/L.

Moreover, since the symmetric and anti-symmetric solutions almost coincide near

the boundaries except for a phase difference, the contribution of the boundaries

to the energy should cancel out when taking the difference. Therefore the energy

difference ∆E divided by the transverse area is a direct measure of the soliton energy

in the box, ϵs = ∆E/(k2
FL

2
⊥EF ). Our results are shown in the left panel of Fig. 2.3.

In the limit of large boxes, this quantity must converge to the dark soliton energy

in a uniform Fermi gas at unitarity. In the same limit the BdG theory provides

the analytic value ϵs = (1 + β)1/2/(8π
√
3) ≃ 0.0176 [3]. From a linear fit to our

numerical results we indeed find the same value within a statistical error of the order

of 3%. Notice that the relative uncertainty in ϵs is larger than the uncertainty in E+

and E− in Fig. 2.2, because ϵs is typically a small number obtained as a difference

of two large numbers.

It is worth noticing that a faster convergence to the asymptotic soliton energy
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of the uniform gas can be obtained by properly accounting for finite size effects.

In particular we notice that the soliton energy is usually defined as the difference

between the energies of the states with and without soliton, sharing the same bulk

density far away from the soliton itself. With this constraint, the solitonic solution

has less particles in the soliton region than the ground state, since it exhibits a local

density depletion. The difference ∆N is negative and corresponds to the particles

which are ”missing” at the soliton position. In our box, instead, we define ∆E from

the energies of two solutions with the same N (see Fig. 2.1). This implies that the

particles which are missing in the soliton remain in the box, in the regions between

the boundaries and the soliton, thus the ”bulk” densities of the two solutions are

different and the chemical potentials are different as well. The leading correction

to the soliton energy turns out to be proportional to (µ−
N − µ+)∆N , where µ+ is

the ground state chemical potential and µ−
N is the chemical potential of the anti-

symmetric solution with the same N , and we can write

ϵs ≃ [∆E + (µ−
N − µ+)∆N ]/k2

FL
2
⊥EF , (2.19)

In the limit of an infinite box, we find ∆N ≃ −9.6, while the difference of chemical

potentials vanishes, so that the correction to ∆E can be neglected. For finite boxes,

∆N remains almost constant, while (µ−
N −µ+) increases almost linearly. In the right

panel of Fig. 2.3 we plot our results for the corrected ϵs. This quantity, as expected,

is almost independent of L and close to the analytic prediction ϵs = 0.0176, except

for random numerical fluctuations.

These stationary solutions show that our method for the numerical solutions of

the BdG equations works well in test cases where analytic results are available and

we have also a good control on the numerical uncertainties.

2.3 Calculation of ∆E in the presence of a poten-

tial barrier

In this section, we calculate the energy difference, ∆E = E− − E+, where E+ is

the energy of the (symmetric) ground state of the gas and E− is the energy of the

lowest anti-symmetric state with the same number of particles N in the box with a
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Figure 2.4: The rectangular-shape double well potential with a central barrier, whose

width and height are d and V0, respectively.

central barrier as in Fig. 2.4. Here symmetric and anti-symmetric refer to spatial

reflection in the x-direction around x = 0. The anti-symmetric state corresponds

to the solutions of Eqs. (2.12) exhibiting a π phase jump in the order parameter ∆

when crossing the center of the box. For weakly coupled superfluids the quantity

∆E is directly related to the Josephson tunnelling energy, EJ , we will show later

in section 3.2. Since the quantity ∆E is typically much smaller than the energies

E− and E+, we must take care of all possible sources of numerical inaccuracy, in

particular those introduced by the finite cutoff energy and the finite box.

Our results for ∆E as a function of V0 and d are shown in Figs. 2.5 and 2.6. All

results in these figures are obtained by using N = 156, L⊥ = 13k−1
F , L = 30k−1

F , and

Ecut = 70EF . As expected, ∆E approaches the same value in the limit of vanishingly

small barrier (i.e, for V0 → 0 at finite d). This value is ∆E/(k2
FL

2
⊥EF ) ≃ 0.0185,

which is slightly larger than the energy of dark soliton in an infinite system, due to

the finite box size. For d of the order of k−1
F , the quantity ∆E is rapidly decreasing

when V0 increases. The case of large barriers and small tunnelling (weak link) is

where the physics of the Josephson effect is expected to manifest.

Finally we note that for V0 much smaller than EF the quantity ∆E tends to

approach a constant value when d → ∞. Typical density profiles and order param-
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Figure 2.5: Energy difference ∆E = E−−E+, divided by the area L2
⊥, as a function

of the barrier height V0 and width d. Here N = 156, L⊥ = 13k−1
F , L = 30k−1

F , and

Ecut = 70EF .

Figure 2.6: Left: energy difference ∆E = E− − E+, divided by the area L2
⊥, as a

function of the barrier height V0 for different widths d. Right: the same quantity

as a function of the barrier width d for different values of height V0. All the other

parameters are the same as in the previous figure.
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Figure 2.7: The density profile (left) and the order parameter profile (right) of

the unitary fermions in a box, with a central barrier, whose height and width are

V0 = 0.2EF and d = 20k−1
F , respectively. The black line is the ground state solution,

while the red line is the anti-symmetric solution (or dark soliton solution). Both

solutions have the same particle number N = 164.

eters of both symmetric and anti-symmetric system for such low and wide barrier

are shown in Fig. 2.7. We notice that, in this case, the effect of the barrier is that of

lowering the ”bulk” density in the central region of the box. If d is larger than the

soliton width, which is of the order of a few k−1
F , this effect in ∆E can be accounted

for by calculating the energy of a dark soliton in uniform gas of reduced density.

Further increasing the width of the barrier has no effects on the soliton energy and

hence ∆E remains constant.

2.4 TDBdG equations in a box

Time-dependent Bogoliubov-de Gennes equations is a powerful tool for investigating

the dynamics of fermions. In order to solve the time-dependent BdG equations,

we start from an initial input-state provided by stationary BdG equations, then

we use a 4th order Runge Kutta algorithm to solve the TDBdG equations in real

time. A proper time step must be chosen, large enough to produce fast simulations

with reasonable computational effects, but not to large to cause instabilities in the
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Figure 2.8: Left panel: sound wave-packets produced by an initial density perturba-

tion in the center of the box and propagating back and forth in the uniform unitary

gas. Right panel: same as before but for a stronger perturbation, at which, in addi-

tion to sound, generates also two dark solitons moving in opposite directions, slower

than sound.

solutions. A standard recipe consists in taking the maximum time step is of the

order of almost 10% of the inverse energy (E+ or E−) of the system divided by

~. In our simulation, the time step we use is of the order of 0.005~/EF . In the

following, we discuss four typical examples of simulations that we use to check the

accuracy of the code.

First, we consider the propagation of sound waves. Initially, we introduce a

rectangular barrier, whose height and width are V0 = 0.6EF and d = 0.6k−1
F , respec-

tively, at the center of the box. The barrier produces a density depletion. Then we

suddenly release this barrier and we follow the evolution of the gas. One can observe

two sound wave-packets as in the left panel of Fig. 2.8, which are produced at the

center and travel back and forth inside the box, with constant speed. This speed

can be estimated by the slope of the yellow density depletion in our time-dependent

simulation. From the above figure we obtain the value cs ≈ 0.83EF/(~kF ) ≈ 0.42vF ,

which is indeed rather close to the analytical predictions cs =
√
(1 + β)/3vF for a

uniform gas at unitarity. Here vF = ~kF/m is the Fermi velocity.

Secondly, we consider the coexistence of sound wave propagation and soliton

propagation. We repeat the same operation as before but with a higher barrier (V0 =
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Figure 2.9: Breathing mode of unitary fermions in a harmonic trap Vtrap =

mω2
trapx

2/2. The frequency ωbreath of the trap is initially 0.4EF/~, then suddenly

changed to 0.5EF/~. A breathing mode is generated, with frequency ωbreath =

0.86EF/~.

50EF ), which depletes the central density to almost zero. By suddenly removing the

barrier at t = 0, both sound wave-packets and grey solitons are produced at x = 0,

propagating back and forth in the box (see the right panel of Fig. 2.8). The grey

solitons correspond to the deeper density depletions propagating at slower velocity

(smaller slope) than sound waves.

Thirdly, we consider a breathing mode in a harmonic potential. We put N = 100

atoms in a harmonic trap Vtrap = mω2
trapx

2/2, whose trapping frequency is ωtrap =

0.4EF/~, and then suddenly change the trapping frequency to ωfin
trap = 0.5EF/~. As

shown in Fig. 2.9, the sudden change of the confining potential cause a periodic

density oscillation, which is called breathing mode. In this simulation we obtain

a period of oscillation Tbreath ≈ 7.3~/EF , and a corresponding frequency ωbreath =

2π/Tbreath = 0.8607EF/~. The ration between ωbreath and ωfin
trap is 1.72, rather close

to the prediction (ωbreath/ωtrap =
√
3) of the superfluid hydrodynamic equations for

a unitary Fermi gas [83] in the same geometry.

Finally, we consider a soliton oscillation of unitary fermions in a harmonic trap
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Figure 2.10: Soliton oscillation in a harmonic trap Vtrap = mω2
trapx

2/2, with trap-

ping period Ttrap = 2π/ωtrap = 63~/EF . The period of this oscillation is about

108~/EF ≈ 1.71Ttrap.

Vtrap = mω2
trapx

2/2. We initially produce a dark soliton at position x = −5k−1
F

as a particular solution of the stationary BdG equations and then solve the time-

dependent BdG equations. The soliton begins to move towards the center of the

trap with an increasing speed, reaching the maximum speed at the center, and

then decreasing its velocity to zero at x = 5k−1
F . After the soliton moves back and

repeats the oscillation, as shown in Fig. 2.10. From the simulation in the figure

we extract the period Ts ≈ 1.71Ttrap, which turns out to be close to the prediction

Ts =
√
3Ttrap [3], with Ttrap = 2π/ωtrap. The time-dependent BdG simulations of

this soliton oscillation was first carried out by R. G. Scott [84].

These four dynamic solutions show that our method for the numerical interpre-

tation of time-dependent BdG equations work well in test cases where analytical

and/or numerical predictions already exist. We are thus ready to use it for novel

configurations.



Chapter 3

Double wells and BdG equations

In this chapter, we use a double well potential to investigate the Josephson effect

in ultracold Fermi gases. The double well is realized by simply adding a square

potential barrier in the center of a rectangular box (see Fig. 3.1). The barrier has

a variable height V0 and width d, an offset potential Voff can help to produce the

initial particle population imbalance. The square barrier is a convenient choice for

computational reasons, but the main results of this work would not change by using

barriers of different shape.

3.1 Josephson oscillations and self-trapping with

TDBdG

Let us consider fermions at unitarity (1/(kFa) = 0) in the presence of a thin (d ∼
k−1
F ) and high (V0 > µ) square barrier centered at x = 0. We can define the number

of atoms on the left, NL, and right, NR, as the integrals of the atom density n(x)

separately in the two regions of negative and positive x, respectively. The relative

population imbalance can be defined as z = (NL − NR)/N , where N = NL + NR

is the total atom number. Another key quantity is the phase ϕ(x) of the complex

order parameter ∆(x), which can also be different in the two wells. We define the

right and left phases as ϕR = ϕ(x = L/4) and ϕL = ϕ(x = −L/4) respectively, and

the phase difference as Φ = ϕR − ϕL.

29
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Figure 3.1: The rectangular-shape double well potential with a middle barrier, whose

width and height is d and V0, respectively. An offset potential Voff in the left helps

to produce the initial population imbalance.

Our simulations start from an imbalanced configuration with z0 ≡ z(t = 0) ̸= 0.

This is obtained by first solving the stationary BdG equations (2.12) with a small

constant offset potential Voff on the left side of the barrier. The ground state solution

in such an asymmetric potential is then used as the initial (t = 0) state in the

integration of the time-dependent BdG equations (2.15) in the symmetric double-

well, after removing Voff . By solving the equilibrium condition of chemical potential,

µL + Voff = µR, we find that z0 and Voff have the relation z0 ≈ 0.75Voff/(1 + β).

If the initial imbalance is small (|z0| ≪ 1), the time evolution of the density and

the order parameter shows clean periodic oscillations. As an example, in Fig. 3.2

we show the behavior of the density distribution for two different initial imbalances,

|z0| = 0.024 and |z0| = 0.06; the barrier has width d = 0.6k−1
F and V0 = 5EF . The

evolution of the relative population imbalance z(t) and the phase difference Φ(t) is

reported in Fig. 3.3. One already sees periodic oscillations, which can be interpreted

as Josephson oscillations.

Josephson oscillations between weakly linked superfluids (V0 ≫ µ) are charac-

terized by the sinusoidal relation between current and phase difference [45]:

I(t) = IJ sinΦ(t) , (3.1)
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Figure 3.2: Evolution of the density distribution n(x, t)/n0 (left plots) and the phase

ϕ(x, t)/π (right plots) of a two-component superfluid Fermi gas at unitarity and zero

temperature obtained by solving the time-dependent BdG equations (Eqs. 2.15).

Time, in units of ~/EF , flows from top to bottom. The gas is uniform in the

transverse directions and confined between hard walls in the longitudinal direction

at x = ±L/2 with L = 20k−1
F , with a central square barrier of height V0 = 5EF

and width d = 0.6k−1
F respectively. The number of atoms is N = 100. The initial

imbalance is produced by adding a constant offset potential Voff at t < 0 on the left

side only; here we use Voff = 0.02EF (upper plots) and Voff = 0.05EF (lower plots),

which corresponds to an initial relative imbalance z0 = −0.024 (lower plots) and

z0 = −0.06 (lower plots).
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Figure 3.3: Relative population imbalance (left) and phase difference (right) as a

function of time for the same simulation of Fig. 3.2 Black lines:|z0| = 0.024 and

Voff = 0.02EF ; Red lines: |z0| = 0.06 and Voff = 0.05EF

.

where the quantity IJ has the meaning of critical Josephson current. In our case,

the current flowing at the barrier position can be easily calculated as I = dNR/dt =

−dNL/dt = −(N/2)dz/dt. Fig. 3.4 shows four examples of the current-phase rela-

tion obtained in our simulations with different values of the initial imbalance. The

upper plots correspond to the simulation of Fig. 3.3.

If the initial imbalance exceeds a critical value, the system enters into a different

dynamical regime, where one of the two wells (in our case, the right well) remains

always more populated than the other. The two numbers NL and NR oscillate in

time, but around unequal mean values. This phenomenon is known as macroscopic

quantum self-trapping [47, 48]. In Fig. 3.5 and 3.6 we show a typical example. We

notice that the population imbalance oscillates with a period shorter than for small

Josephson oscillation.

The transition from the regime of Josephson oscillations to the regime of self-

trapping can be visualized by plotting the trajectories in the diagram of the popu-

lation imbalance vs. the phase difference. Our results for the barrier with V0 = 5EF

and d = 0.6k−1
F are shown in Fig. 3.7. Josephson oscillations correspond to close

trajectories, which become elliptic for small amplitudes, while self-trapping corre-

spond to open trajectories. For the barrier used in these simulations, the transition
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Figure 3.4: The current-phase relation obtained in four BdG simulations with the

same barrier (V0 = 5EF and d = 0.6k−1
F ) and different initial imbalance, z0 = −0.024

(a), −0.06 (b), −0.078 (c), and −0.096 (d). The red dashed line in panel (d) is

obtained by solving the nonlinear Schrödinger equation in the same configuration

and for the same initial imbalance.
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Figure 3.5: Same as in Fig. 3.2 but for a larger initial imbalance (in the upper two

panels z0 = −0.096, and in the lower ones z0 = −0.121), such to cause self-trapping.

between the two regime occurs at an initial relative imbalance |z0| ≈ 0.0869. In

the next chapter, we will give a detailed explanation of this critical transition after

introducing a suitable two-mode model.

3.2 Two-mode model for small Josephson oscilla-

tions

In the previous section we have seen the results of numerical BdG simulations of

weakly coupled superfluids (Fermi superfluid at unitarity) from the regime of small

Josephson oscillations to the regime of self-trapping. In this section, we restrict
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Figure 3.6: Relative population imbalance z(t) and phase difference Φ(t)/π for the

same simulation of Fig. 3.5. Black lines: |z0| = 0.096 and Voff = 0.08EF ; Red lines:

|z0| = 0.121 and Voff = 0.1EF .

Figure 3.7: Population imbalance vs. phase difference in simulations with the same

barrier (V0 = 5EF and d = 0.6k−1
F ) and different initial imbalance, |z0| = 0.024,

0.06, 0.0856, 0.0869, 0.096, 0.121, from the inner ellipse to the outer open trajectory.

The red ellipse corresponds to the simulation in Fig. 3.2; the pink open trajectory

corresponds to the simulation in Fig. 3.5. The transition from Josephson oscillations

to self-trapping occurs at about |z0| ≈ 0.0869.
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the discussions to the limit of small oscillation and we show that the above BdG

results are well reproduced by Josephson junction equations for the two dynamical

variables z(t) and Φ(t), provided the barrier is large enough to remain in the weakly

linked regime. In such a situation, the system can be described as composed by two

superfluids located in each well and weakly coupled by tunneling. Unfortunately,

a rigourous derivation of the Josephson equations from the BdG equations (2.15)

within a two-mode approximation is not available. We thus proceed by analogy

with the case of bosons where, in the Josephson regime, the population imbalance

and the phase difference can be seen as canonically conjugates variables entering a

classical Josephson Hamiltonian of the form [45]

HJ =
EC

2
k2 − EJ cosΦ . (3.2)

The quantity k is defined as k = (N
(B)
L − N

(B)
R )/2, where N

(B)
L and N (B) are the

number of bosons on the left and right side of the barrier, and is assumed to be small.

The quantities EC and EJ have the meaning of on-site energy (local interaction

within each well) and tunneling energy (or Josephson coupling energy), respectively.

From equation (3.2) one gets the equations of motion

∂k

∂t
= − ∂HJ

∂(~Φ)
= −EJ

~
sinΦ (3.3)

∂Φ

∂t
=

∂HJ

∂(~k)
=

EC

~
k . (3.4)

If |Φ| ≪ 1, the two equations admit harmonic solutions corresponding to Josephson

oscillations of frequency

ωp =
1

~
√
ECEJ (3.5)

also known as plasma frequency. These results are valid in the Josephson regime

where EC/EJ is of order 1 or less, but much larger than N−2; different regimes

are obtained when EC/EJ ≪ N−2 (Rabi regime) and EC/EJ ≫ 1 (Fock regime)

[44, 46, 47, 48].

In order to check the applicability of this scheme to the BdG results of the

previous section, we need to know how to calculate EC and EJ within the same

theory. We first notice that the tunneling energy EJ can be easily related to the
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Figure 3.8: The Josephson current IJ extracted from time-dependent BdG simula-

tions in the regime of small oscillations and weak tunneling is plotted as a function

of the energy difference ∆E = E− − E+, between the lowest antisymmetric and

symmetric solutions of the stationary BdG equations (2.12). All points correspond

to Ecut = 50EF , N = 100, L = 20k−1
F and L⊥ = 13k−1

F , while (V0/EF , kFd) is

(5,1), (5,0.8), (5,0.6), (6,0.45), (5,0.5), (4,0.6), (4,0.55), for points from bottom-left

to top-right. The red line represents the equality ~IJ = ∆E.

energy difference ∆E = E− − E+, where E+ and E− are the energies of the lowest

symmetric and antisymmetric states in the double well potential with zero imbalance

(k = 0). In fact, these states have Φ = 0 and Φ = π, respectively, and hence the

Hamiltonian (3.2) gives EJ = ∆E/2. Moreover we can relate both EJ and ∆E to

the Josephson current IJ . In fact, the number of bosons, i.e., pairs of fermionic

atoms, tunneling through the barrier at x = 0 per unit time is I(B) = −dk/dt,

so that the current of atoms is I = 2I(B) = (2EJ/~) sinΦ, as in Eq. (3.1), with

IJ = 2EJ/~ = ∆E/~.

A nice feature of the last relation is that it can be numerically tested by per-

forming two independent calculations. On one hand, the Josephson current IJ can

be obtained by solving the time-dependent BdG equations (2.15): by looking at the

current-phase plots, like those in Fig. 3.4, the current IJ can be extracted as the
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Figure 3.9: Period of small amplitude Josephson oscillations as a function of ∆E/2,

in log-log scale. The black solid line is the period TBdG observed in time dependent

BdG simulations for 99.3024 atoms in a double well potential. For each black point

the width of the barrier is the same, d = 0.6k−1
F , while its height decreases from

V0 = 7EF (leftmost point) to 0.6EF (rightmost point). The red dashed line is the

period Tp = 2π/ωp = 2π~/
√
ECEJ of plasma oscillations, where EC and EJ are

calculated by solving the stationary BdG equations (2.12), assuming EJ = ∆E/2.

maximum of the curve. On the other hand, the energy difference ∆E can be cal-

culated by solving the stationary BdG equations (2.12) for the ground (symmetric)

state and the lowest antisymmetric state (see details in section 2.3). In Fig. 3.8 we

present the results obtained with about 100 particles in a box of size L = 20k−1
F

and different barriers. This figure shows that the relation IJ = ∆E/~ is remarkably

well satisfied. Remaining in the same regime of small tunneling (large barriers), we

tested the same relation in the whole BCS-BEC crossover by performing the calcu-

lation of IJ and ∆E for different value of 1/(kFa) from −1 (BCS) to +1 (BEC).

The results are reported in the second and third columns of the table 3.1. The table

shows that the relation IJ = ∆E/~ is accurate in the whole crossover.

The on-site energy EC accounts for the variation of the interaction energy of

the system due to the exchange of particles between the two wells. For a bosonic

superfluid in a symmetric well, this parameter is given EC = 2dµ(B)/dN
(B)
L [45],
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1/(kFa) IJ(EF/~) ∆E(EF ) EJ(EF ) Ec(EF ) Tp(~/EF ) TBdG(~/EF )

1 0.109 0.1208 0.0604 0.0415 125.47 127.25

0.75 0.120 0.1293 0.0647 0.0463 114.82 116.76

0.5 0.135 0.1411 0.0705 0.0526 103.20 105.64

0.25 0.151 0.1549 0.0775 0.0598 92.29 95.29

0 0.167 0.1666 0.0833 0.0679 83.57 87.01

-0.25 0.170 0.1687 0.0844 0.0728 80.16 81.75

-0.5 0.167 0.1659 0.083 0.0812 76.54 80.02

-0.75 0.151 0.1517 0.0759 0.0846 78.42 81.55

-1 0.133 0.1339 0.067 0.0863 82.66 85.59

Table 3.1: For different values of the interaction strength 1/(kFa), we report the

values of critical Josephson current IJ , the energy difference ∆E = E− − E+, the

tunneling energy EJ = ∆E/2, the on-site interaction energy EC = 8(∂µ/∂NL),

the plasma period Tp = 2π~/
√
ECEJ and the period TBdG measured in TDBdG

simulations. In all cases, the barriers has V0 = 5EF and d = 0.6k−1
F , and the

number of atoms is N = 100.

where µ(B) is the chemical potential and its derivative is calculated atN
(B)
L = N (B)/2.

Expressing the same quantity in terms of the chemical potential of the fermionic

atoms and the number of atoms, we can write EC = 8dµ/dNL. This quantity can be

obtained by solving the stationary BdG equations (2.12) for different atom numbers

in the same double well. Having EJ and EC , we can finally calculate the plasma

period Tp = 2π/ωp = h/
√
ECEJ and compare it with the period of the oscillations

observed in the time-dependent BdG simulations for Josephson oscillations of small

amplitude (z0 → 0). The comparison is reported in Fig. 3.9, where we plot TBdG

(black solid line) and Tp (red dashed line) as a function of EJ = ∆E/2. The same

data are also given in table 3.2. As one can see, in the limit of small tunneling

(∆E → 0), the period observed in the BdG simulations nicely approach the plasma

period Tp. The same agreement is found in the whole BCS-BEC crossover (see

table 3.1).

These results show that the small oscillations of two weakly coupled fermionic

superfluids at unitarity, as obtained with the BdG equations, can be accurately
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V0(EF ) ∆E(EF ) EJ(EF ) Ec(EF ) Tp(~/EF ) TBdG(~/EF )

7 0.078 0.039 0.0683 121.76 123.7

6 0.1119 0.0559 0.0681 101.8 104.3

5 0.1666 0.0833 0.0679 83.57 87.0

4 0.2606 0.1303 0.0676 66.95 72.0

3 0.4342 0.2171 0.0672 52.02 59.4

2 0.7671 0.3835 0.0667 39.29 49.1

1 1.4583 0.7291 0.0661 28.62 41.9

0.6 2.1059 1.0529 0.0659 23.86 40.1

Table 3.2: For a barrier of width d = 0.6k−1
F and different values of height V0, we

report the results of stationary BdG calculations of the energy difference ∆E =

E− − E+, the tunneling energy EJ = ∆E/2, the on-site interaction energy EC =

8(∂µ/∂NL), and the plasma period Tp = 2π~/
√
ECEJ . In the last column we give

the period of Josephson oscillations extracted from TDBdG simulations.

reproduced by a two-mode model for Josephson oscillations.

For larger oscillations and the transition to self-trapping, the classical Josephson

Hamiltonian (3.2) does not apply anymore. However, the nonlinear effects can also

be properly included in a new Josephson Hamiltonian derived from a nonlinear

Schrödinger equation, as we will see in section 4.1.

3.3 Strong coupling

When the barrier is small and the coupling between the wells is strong, the two-

mode model is no more valid. This happens when the overlap of the left and right

parts of the order parameter under the barrier is large and the tunneling actually

behaves like a macroscopic hydrodynamic flow [61]. The BdG equations can still be

used to investigate the dynamics of the double well system also in this regime.

The stationary BdG equations were used by Spuntarelli et al. [4] to study the

Josephson current in a uniform Fermi gas at unitarity in the presence of a square

barrier. The calculations were performed in the regime of strong coupling, the
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Figure 3.10: Current-phase relation for a unitary Fermi gas in the presence of a

square barrier with V0 = 0.4EF and d = 4k−1
F . Black points were calculated in [4] by

solving the stationary BdG equations in a uniform system and looking for solutions

at constant current. The red lines are the results of our TDBdG simulations with

a small initial imbalance in the double well potential with the same square barrier.

The imbalance is produce with an offset potential Voff = 0.02EF (left) and 0.04EF

(right).

height of the barrier being smaller than the chemical potential of the gas. Their

current-phase relation is reported in Fig. 3.10 (solid squares). We can compare their

results with our time-dependent BdG simulations in a double well potential with

the same barrier. The current density J is related to the current I by J = I/L2
⊥.

The tunneling energy is EJ = 0.444EF ≈ 7EC . The simulation starts from a small

initial imbalanced produced by an offset potential Voff = 0.02EF (left) and 0.04EF

(right). The system perform oscillations of small amplitude, without reaching the

maximum current predicted by the stationary BdG calculations, but the two slopes

agrees well. The small fluctuations in the current-phase relation in the TDBdG

simulations are due to the presence of other excitations in the double well system,

produced by the initial perturbation.

By further increasing the initial population imbalance (i.e., the offset potential),

instead of stable large amplitude Josephson oscillations or self-trapping, we see the

occurrence of a very complex dynamics. An example is shown in Fig. 3.11, where

we plot the density n(x, t) and phase different ϕ(x, t) in a time-dependent BdG
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Figure 3.11: Evolution of the density distribution n(x, t)/n0 and phase ϕ(x, t) at uni-

tarity, obtained by solving the time-dependent BdG equations (2.15), as in Fig. 3.2,

but for a lower barrier (V0 = 1EF and d = 0.6k−1
F ). The initial imbalance is

|z0| = 0.353. Solid and dashed lines in the left panel represent the propagation

of a sound-like density wave packet and a grey soliton, respectively.

simulation with a low barrier (V0 = 1EF and d = 0.6k−1
F ), whose tunneling energy

EJ = 0.729EF ≈ 11EC . Besides Josephson current, the offset potential Voff = 0.3EF

also produce sound wave and soliton wave, and the Josephson current through the

barrier is strongly coupled to the collective motion of the gas in the two wells.

One can distinguish a density wave bouncing back and forth with a velocity of the

order of the sound speed in a unitary Fermi gas with the same average density,√
(1 + β)/3 vF [41]. In addition, at about t = 15~/EF , when the density under the

barrier almost vanishes, a grey soliton is nucleated. The soliton appears as a density

depletion travelling leftward (dashed line) at a velocity smaller than the speed of

sound. The phase of the order parameter has a variation of the order of π across

the soliton. In the case of an infinite system, this mechanism of soliton nucleation

induces a dissipation of the superfluid current due to phase slip [85]. In our confined

double well system, solitons and collective sound-like waves are coupled by nonlinear

mixing and eventually lead to a decay of the initial Josephson oscillation.

The current-phase relation for such complex dynamical processes is very differ-

ent from the smooth sinusoidal behavior predicted by stationary calculations. An

example of increasing complexity is given in Fig. 3.12, where we show what happens
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by increasing the initial imbalance. Each simulation starts at t = 0 from the point

at Φ = 0 and I = 0 and then follows a path backward in phase, but while for small

imbalance the path traces a piece of sinusoidal curve in a small range of current

and phase, for larger imbalance (bottom panels) both the phase and the current

exhibit abrupt changes and the sinusoidal shape is completely lost. This is due to

dynamical instabilities occurring in the region of the barrier, as in the case of the

nucleation of the grey solitons of Fig. 3.11. These instability processes can not be

predicted by the stationary BdG equations, but they are instead included in the full

time-dependent BdG theory.
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Figure 3.12: Phase-current relations obtained in time dependent BdG simulations

for increasing initial population imbalance, from Voff = 0.02EF (top left panel) to

Voff = 0.4EF (bottom right). The height and width of barrier are V0 = 1EF and

d = 0.6k−1
F , respectively, and the corresponding tunneling energy is EJ = 0.729EF ≈

11EC .



Chapter 4

Nonlinear Josephson equations

and density functionals

The classical Josephson Hamiltonian (3.2) does not apply for larger oscillations

and the transition to self-trapping. In this chapter we discuss a different Josephson

Hamiltonian perviously derived from a Nonlinear Schrödinger Equation (NLSE) [86].

We will give the comparison between NLSE and BdG equations. We will also discuss

Superfluid Local Density Approximation (SLDA), developed by A. Bulgac et al [63,

64], which is a sort of generalized BdG-like equations and is expected to be more

accurate than BdG at unitarity. NLSE and SLDA can be viewed as two different

types of density functionals, suitable to describe lightly correlated fermions. We

will apply all these methods to investigate the double well problem in the nonlinear

regime.

4.1 Josephson effect in NLSE

For Bose-Einstein condensates governed by the Gross-Pitaevskii equation, coupled

nonlinear Josephson junction equations for the number imbalance and the phase were

analytically derived by Smerzi et al. [47, 48]. A similar derivation is also available for

fermions in the BCS-BEC crossover within a phenomenological density functional

theory [58, 59]. This theory is based on the use of the following nonlinear Schrödinger

equation (NLSE) (also named density functional GP equation, or extended Thomas-

45
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Fermi equation)

i~
∂

∂t
Ψ(r, t) =

[
− ~2

4m
∇2 + 2Vext(r) + µ

(B)
loc (n, a)

]
Ψ(r, t) (4.1)

for the order parameter Ψ of Cooper pairs of mass 2m, with |Ψ(r)|2 = n(r)/2, if n is

the atom density. The key ingredient of this nonlinear Schrödinger equation is the

local ”bulk” chemical potential of Cooper pairs, µ
(B)
loc (n, a) = 2µ(n, a) + ~2/(ma2),

where µ(n, a) is the chemical potential of a uniform Fermi gas of density n and the

second term is the binding energy of the pair. Its expression is an input of the

theory; it can be taken from ab initio Monte Carlo calculations of the equation of

state or from the mean-field BdG theory, or different suitable parameterizations.

Once µloc(n, a) is given, the NLSE (4.1) can be numerically solved for studying

stationary and/or time dependent configurations. The advantages and the limits

of this approach have been widely discussed in the literature (see for instance the

recent discussion in [87], and references therein). Here we only focus on the fact

that, when applied to a double well potential in the weak link limit, the NLSE can

be cast into the form of Josephson junction equations [58, 59]. This is done by

assuming the order parameter to be a superposition of the left and right parts,

Ψ(r, t) = cL(t)ΨL(r) + cR(t)ΨR(r) (4.2)

having an exponentially small overlap under the central barrier. By inserting this

ansatz for Ψ into equation (4.1), after integration over space and neglecting expo-

nentially small ΨLΨR terms, one obtains the equations

i~
∂

∂t
cL(t) = ELcL(t)−KcR(t) (4.3)

i~
∂

∂t
cR(t) = ERcR(t)−KcL(t) (4.4)

for the two complex coefficients ci(t) in region i, with i = L,R. The energy Ei =

E0
i + EI

i is the sum of

E0
i (
√
Ni) =

∫
drΨi(r)

[
− ~2

4m
∇2 + 2Vext(r)

]
Ψi(r) (4.5)

EI
i (
√
Ni) =

∫
drΨi(r)µ

(B)
loc (ni, a)Ψi(r) , (4.6)
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Figure 4.1: Population imbalance vs. phase difference at unitarity. The potential

barrier has height V0 = 5EF and width d = 0.6k−1
F , as in Fig. 3.7. Solid lines are

the results of time-dependent BdG simulations, while dashed lines are the solutions

of the nonlinear Josephson equations (4.8) and (4.10), with EJ = 0.0833EF and

EC = 0.0678EF taken from the solutions of the stationary BdG equations. Closed

trajectories correspond to Josephson oscillations with initial imbalance |z0| = 0.06,

while open trajectories correspond to self-trapped states with |z0| = 0.096.

while the coupling term is given by

K = −
∫

drΨL(r)

[
− ~2

4m
∇2 + 2Vext(r)

]
ΨR(r) . (4.7)

The functions ΨR(r) and ΨL(r) are real, obey the orthonormality condition∫
drΨiΨj = δi,j and are localized in each of the two wells. In a symmetric sys-

tem (i.e., Vext(−r) = Vext(r)), one has ΨR(−r) = ΨL(r) and thus E0
L = E0

R and

EI
L = EI

R = EI . By writing cL,R =
√
NL,R/2 exp(iϕL,R) and inserting it into Eqs.

(4.3 and 4.4), one gets [58, 59]

∂z

∂t
= −2K

~
√
1− z2 sinΦ (4.8)

∂Φ

∂t
=

1

~

[
EI(

√
NL)− EI(

√
NR)

]
+

2K
~

z cosΦ√
1− z2

(4.9)
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Figure 4.2: Population imbalance vs. phase difference at 1/(kFa) = −0.5. The

potential barrier has height V0 = 5EF and width d = 0.6k−1
F . Solid lines are the

results of time-dependent BdG simulations, while dashed lines are the solutions

of the nonlinear Josephson equations (4.8) and (4.10), with EJ = 0.083EF and

EC = 0.0812EF taken from the solutions of the stationary BdG equations. Closed

trajectories correspond to Josephson oscillations with initial imbalance |z0| = 0.05,

while open trajectories correspond to self-trapped states with |z0| = 0.1.

where the imbalance z and the phase difference Φ are the same already defined at

the beginning of section 3.1.

At unitarity the chemical potential of the uniform Fermi gas of density n is

µ(n) = (1+β)EF (n). This implies EI(
√
Ni) = U(Ni/2)

2/3 with U = [~2(3π2)2/3(1+

β)/m]
∫
drΨ

10/3
i , and equation (4.9) becomes

∂Φ

∂t
=

2K
~

(
Λ
[
(1 + z)2/3 − (1− z)2/3

]
+

z√
1− z2

cosΦ

)
(4.10)

where Λ = (N/4)2/3U/2K [60] with the number of Fermi atoms N = N↑ +N↓. The

corresponding classical Hamiltonian is

H

2K
=

3Λ

5

[
(1 + z)5/3 + (1− z)5/3

]
−
√
1− z2 cosΦ . (4.11)
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In the limit of small amplitude oscillations (|Φ| ≪ 1 and |z| ≪ 1), the equations of

motion (Eq. 4.8 and 4.10) reduce to the linear Josephson equations (3.3 and 3.4)

provided the two parameters Λ and K are related to the on-site interaction energy

EC and the tunneling energy EJ by

K =
2EJ

N
, Λ =

3

4

(
N2EC

16EJ

− 1

)
. (4.12)

At this point we are ready to compare our BdG results of section 3.1 with the

two-mode model including the nonlinear regime. For each configuration (i.e., for

each set of parameters L,L⊥, V0, d,N) we can calculate the two energies EC and

EJ by solving the stationary BdG equations as explained in section 3.2. Then we

can use them in Eq. (4.12) to calculate K and Λ and solve the nonlinear Josephson

equations (4.8) and (4.10) for different values of the initial population imbalance.

The results can then be compared with those obtained by solving the time-dependent

BdG equations (2.15). In Fig. 4.1 we show typical results for the imbalance vs.

phase diagram, for the same configuration of Fig. 3.7. The agreement between

BdG equations (solid lines) and nonlinear Josephson equations (dashed lines) is

remarkably good both in the case of Josephson oscillations (inner ellipse) and self-

trapping (open trajectories). In the BdG simulations the transition between the two

regimes occurs at |z0| ≈ 0.0869. In the case of the nonlinear Josephson equations

(Eq. 4.8) and (4.10) the same transition is obtained when the energy (4.11) reaches

the critical value [60]

Ecr = 2K
(
6Λ

5
+ 1

)
=

4EJ

N

(
9N2EC

160EJ

+
1

10

)
. (4.13)

For the parameters of Fig. 4.1, this condition corresponds to |z0| ≈ 0.0893, which is

again very close to the BdG result.

The agreement between BdG equations and nonlinear Josephson equations is

not restricted to unitarity. We tested that a similar agreement is found also for

1/(kFa) ̸= 0, both at the BEC side (1/(kFa) > 0) and BCS side (1/(kFa) < 0, see

Fig. 4.2) of the BCS-BEC crossover. This suggests that the validity of the nonlinear

Josephson equations (4.8) and (4.9) is more general than the validity of the NLSE

(4.1) which is known to be accurate in the BEC regime but not in the BCS regime,

where it misses the fermionic degrees of freedom. In Ref. [58, 59] it was noticed
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Figure 4.3: Energy difference ∆E and maximum Josephson current IJ calculated

with the BdG equations (solid lines) and the NLSE (dashed lines), as a function of

the interaction strength 1/(kFa). The parameters of the barrier are d = 0.6k−1
F and

V0 = 5EF , and the number of atoms N = 100.

that, despite this inaccuracy of the NLSE, the nonlinear Josephson equations can

still be used in the whole crossover, provided the tunnelling energy is taken as a

phenomenological parameter. Our numerical results show that the same nonlinear

Josephson equations are a very good approximation of the weak link limit of the

BdG equations, the parameters EC and EJ being consistently calculated within the

same BdG theory.

The difference between NLSE and BdG equations can be appreciated by look-

ing at Fig. 4.3, where we plot the results for the maximum Josephson current, IJ ,

together with the energy difference ∆E. The quantity IJ is extracted from time-

dependent simulations, either solving the BdG equations (2.15) (red solid line) or

the NLSE (4.1) (upper dashed line), while ∆E is calculated from the correspond-

ing stationary (time-independent) equations; in Eq. (4.1) we use the mean-field

equation of state (MF EOS) for the local chemical potential [58, 59]. As discussed

in section 3.2, in the weak link limit, where the nonlinear Josephson equations are

expected to hold, the quantity ∆E should be equal to twice the tunneling energy
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EJ and one should find ~IJ = ∆E. This is clearly the case for BdG equations where

∆E (black solid line) and ~IJ (red solid line) are almost indistinguishable in the

whole crossover, the small difference in the BEC limit being likely due to the finite

cutoff energy in the BdG calculations, which becomes a more critical parameter as

1/(kFa) increases. Conversely in the case of NLSE, the two quantity are significantly

different and the critical current IJ is increasingly larger than the BdG prediction in

the BCS limit. The difference can be seen also in Fig. 3.4 where we show an example

of Josephson oscillations at unitarity as obtained by solving Eq. (4.1) (dashed line)

and Eqs. (2.15) (solid line) for the same configuration. The fact that IJ is larger in

the NLSE than in BdG equations is well known and is simply due to pair-breaking

processes which are included in BdG [88] but are absent in the NLSE. This effect

was already discussed in Ref. [58, 59] in a regime of wider (d > k−1
F ) and lower

(V0 < EF ) barriers. Here, on purpose, we have chosen thinner barriers, i.e, d of the

order or less than k−1
F , in order to test the applicability of the two-mode model to

cases where density and phase variations occur on the length scale of the inverse

Fermi wave vector, such that the local density approximation becomes questionable

and fermionic degrees of freedom might play a role. Our results indicate that, at

least in the weak link limit and within a mean-field theory, the dynamics is still

dominated by tunneling of bosonic pairs and is surprisingly well described by the

nonlinear Josephson equations (4.8) and (4.9).

4.2 Can fermions exhibit π-mode oscillations?

Up to now, we have shown that the BdG theory successfully predicts the existences

of Josephson oscillations and self-trapping of superfluid fermions and the results

quantitatively agree with the ones of a two-mode model in the weak coupling limit.

In particular the two-mode model can be used to find the critical initial population

imbalance z0 and phase difference Φ0 for the transition between these two different

dynamical regimes. For bosonic gases, the two-mode model also predicts π-mode

Josephson oscillations which are periodic oscillations with time-average phase differ-

ence ⟨Φ(t)⟩ = π and population imbalance ⟨z(t)⟩ = 0. The corresponding π-mode

self-trapping regimes corresponds to the case of oscillations with ⟨Φ(t)⟩ = π but
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Figure 4.4: The phase diagrams for π-mode Josephson oscillation (region A), π-mode

self-trapping (region B) and self-trapping (region C), when initial phase difference

Φ0 = π. The red dashed line is the minimum initial population imbalance z0 to

investigate π-mode Josephson oscillation, while the blue solid line is the minimum

z0 to investigate π-mode self-trapping.

⟨z(t)⟩ ̸= 0. It is natural to check whether the same π-mode exists also in superfluid

fermions.

Let us start from the Fermi Josephson Hamiltonian H(z,Φ) (4.11), we want to

find the range of parameters required to observe the π-mode Josephson and self-

trapping oscillation. The emergence of these two dynamical regimes depend on the

value of Λ in (4.12) and the initial values of z0 and Φ0. We focus our discussions

on Φ0 = π. Our results are shown in Fig. 4.4. In the region A, we indeed find

π-mode Josephson oscillation; in region B, we find π-mode self-trapping oscillation

(⟨Φ(t)⟩ = π); in region C, we find self-trapping oscillation (⟨Φ(t)⟩ = 0). In the

z0 → 0+ limit, the thresholds are at Λ = 0.75 and 1.42, the first value can be

obtained analytically by solving equation ∂2H(z → 0, π)/∂z2 = 0, while the latter

value obtained by solving equations H(0, π) = H(1, 0). If Λ is large, the π-mode

self-trapping is accessible only in a very narrow parameter space.
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Both π-mode Josephson oscillations and π-mode self-trapping require Λ not too

large. In our simulations, for N = 100, with a typical weak-coupling barrier, V0 =

5EF and d = 0.6k−1
F , from Eq. (4.12) and Table 3.2, we find Λ = 375, which

is definitely too large. For this value of Λ, the system never exhibits the π-mode

Josephson oscillations or π-mode self-trapping.

In order to get small enough value of Λ, one must use a smaller particle number

N , small on-site energy EC and a large tunneling energy EJ . However, EC is pro-

portional to the chemical potential µ, which is of the order of Fermi energy, while

EJ is of the order of the soliton energy, which is proportional to the transverse area.

Increasing transverse area would dramatically increase the computation time. In a

word, one may observe the π-mode in the BEC side of the crossover for a system

with less particles, but is almost impossible at unitarity.

4.3 Superfluid local density approximation

The density functional theory (DFT) introduced by Hohenberg and Kohn [89, 90]

has become the tool of choice in the calculation of the properties of essentially

most electron systems [91] after the introduction of the local density approximation

(LDA) by Kohn and Sham [92]. The DFT was firstly used for electrons in the

normal (non superconducting) state. It is based on the assumption that there is

a unique mapping between the external potential, the total wave function of the

system, and the normal density and that the exact energy of the system can be

written as a density functional. A limit of the theory is that the exact form of

the functional is not known. Phenomenological functionals are typically introduced

for each system. The original formulations rely on the Kohn-Sham orbitals and

thus can not deal effectively with superfluidity. The DFT extension to superfluid

system is an important problem of the quantum many-body theory. Bulgac and

Yu [93, 94, 95, 96] recently introduced a density functional from fermions a unitarity,

named superfluid local density approximation (SLDA). This SLDA originates from

similar DFT previously used in the context of nuclear physics [93, 95].

A nice feature of ultracold fermions is that at unitarity the form of the energy

density functional is restricted by dimensional arguments. Another advantage is the
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availability of ab initio results for homogeneous and inhomogeneous system, which

can be used to fix the parameters of the density functional.

In superfluid fermions, two atoms with different spin can form a Cooper pair.

Correspondingly the system possesses an anomalous Cooper-pair density ν in addi-

tion to the normal atomic density n. The energy density functional ε of the system

must include the kinetic density τ , the total normal density n, and the anomalous

density ν. The density functional introduced by Bulgac and Yu [93, 95, 63]

ε(r) = α
~2

2m
τ(r) + β

3~2(3π2)2/3

10m
n5/3(r) + γ

~2

mn1/3(r)
|ν(r)|2 (4.14)

with

n(r) = 2
∑
k

|vk(r)|2, τ(r) = 2
∑
k

|∇vk(r)|2, ν(r) =
∑
k

uk(r)v
∗
k(r). (4.15)

The effective mass parameter α, the Hartree parameter β and the pairing parameter

γ are all dimensionless parameters, and uk(r) and vk(r) are the usual Bogoliubov

quasiparticle amplitude with k labels the quasiparticle states. With respect to the

energy density of BdG theory, what is new is the introduction of the Hartree term

β(3~2(3π2)1/3)n5/3/(10m), which is the order of Fermi energy EF , because EF is the

only energy scale of unitary Fermi gases. This Hartree term assumes that the atoms

of different spins still interact with each other, even when the gas becomes normal,

while BdG predicts that it becomes noninteracting.

Since the kinetic and anomalous densities diverge [62, 81, 78], a regularization

procedure is needed for the pairing gap and for the energy density. The regularized

density functional is as follow:

ε(r) = α
~2

2m
τc(r) + β

3~2(3π2)2/3

10m
n5/3(r) + geff |νc(r)|2 (4.16)

where the effective coupling constant geff is given by

1

geff(r)
=

mn1/3(r)

~2γ
− mkcut(r)

2π2~2α

[
1− kF (r)

2kcut(r)
ln
kcut(r) + kF (r)

kcut(r)− kF (r)

]
(4.17)

an all summations are restricted by an energy cutoff Ecut

τc(r) = 2
∑

Ek<Ecut

|∇vk(r)|2, νc(r) =
∑

Ek<Ecut

uk(r)v
∗
k(r). (4.18)
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The expression for order parameter is

∆(r) = −geff(r)νc(r). (4.19)

The stationary SLDA equations for the quasiparticle wave function is obtained by

the standard functional minimization with respect to variations u and v. One obtains[
h(r)− µ ∆(r)

∆∗(r) −h(r) + µ

][
uk(r)

vk(r)

]
= Ek

[
uk(r)

vk(r)

]
(4.20)

with a single quasiparticle Hamiltonian

h(r) = −α
~2

2m
∇2 + U(r), U(r) = β

~2(3π2n(r))2/3

2m
− ~2|∆(r)|2

3γmn2/3(r)
+ V (r) (4.21)

Here Ecut is a cutoff energy and V (r) is an external potential, with Ecut + µ =

α~2k2
cut(r)/(2m) + U(r) and µ = α~2k2

F (r)/(2m) + U(r).

By requiring that a homogeneous gas of number density n = N/V = k3
F/(3π

2)

has an energy per particle E/N = 3ξSEF/5, a chemical potential µ = ξSEF , and

a pairing order parameter ∆ = ηEF , one can determine the value of dimensionless

parameters α, β and γ in Eq. (4.16) through the following equations

n =

∫
d3k

(2π)3

(
1− ξk

Ek

)
, (4.22)

3

5
EFn(ξS − β) =

∫
d3k

(2π)3

[
α
~2k2

2m

(
1− ξk

Ek

)
− ∆

2Ek

]
, (4.23)

mn1/3

~2γ
=

∫
d3k

(2π)3

(
m

α~2k2
− 1

2Ek

)
, (4.24)

where

ξk = α
~2k2

2m
+

(
β − (3π2)2/3η2

6γ
− ξS

)
EF , Ek =

√
ξ2k +∆2. (4.25)

In these three constraint equations, ξS and η are the only two inputs, which can be

taken from reliable quantum Monte Carlo calculations [97, 29, 98, 99] or experiment

results [8]. For ξS, the Auxiliary Field Monte Carlo [98] provides the value ξS = 0.372

which is quite close to the experimental value ξS = 0.376 [8]. As to η, the QMC
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value is η = 0.504 [29] while RF-spectroscopy gives η = 0.44 [100]. By using

ξS = 0.372 and η = 0.504 [97], one obtains the values of the effective mass parameter

α = m/m∗ = 1.076, the Hartree parameter β = −0.525 and for pairing parameter

1/γ = −0.0853.

In order to check the accuracy of SLDA, several calculations have already been

performed to calculate the spectrum of the elementary fermionic excitations of a

homogeneous unitary Fermi gas, and the total energy E(N) of a finite system. The

agreement with Monte Carlo results (the Green Function Monte Carlo and fixed

node-diffusion Monte Carlo) is very good [63].

By replacing Ek in Eq. (4.20) with the operator i~∂/∂t, one obtains the time-

dependent SLDA equations (TDSLDA)[
h(r, t)− µ ∆(r, t)

∆∗(r, t) −h(r, t) + µ

][
uk(r, t)

vk(r, t)

]
= i~

∂

∂t

[
uk(r, t)

vk(r, t)

]
. (4.26)

However, if the effective mass parameter α is not equal to 1 (i.e., the effective mass is

different from the bare atomic mass), then one must also introduce a term involving

the current density in order to restore Galilean invariance. This complicates the

numerical implementation. To avoid this trouble and since α ≈ 1, in TDSLDA

one typically sets α = 1, while adjusting β and γ to reproduce the energy per

particle and pairing gap [101, 87, 102]. Following this idea, we set α = 1, inserting

ξS = 0.372 and η = 0.504 in Eqs. (4.22) and (4.24). We obtain β = −0.432 and

1/γ = −0.0758. This TDSLDA is expected to give quantitatively reliable predictions

of the dynamics of the unitary Fermi superfluid. This density functional has been

already used to investigate the dynamics of quantized vortices [103], quantum shock

waves and domain walls [104], quantized superfluid vortex rings [102].

In the next section, we will use this TDSLDA to study the Josephson effect of

unitary Fermi gases at zero temperature.

4.4 Josephson effect with SLDA

Previously seen that the agreement between two-mode model and BdG theory is very

good; the energy difference is equal to the critical Josephson current, ∆E = ~IJ ,
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Figure 4.5: Evolutions of density n(x, t)/n0, the phase of order parameter ϕ(x, t)/π

and absolute value of order parameter |∆(x, t)|/EF , obtained by solving the time-

depend superfluid local density approximation equations (4.26). We use an offset

potential Voff = 1EF and d = 0.6k−1
F to produce a locally low density in the middle

of the box, then release it at t = 0EF/~. We could observe a sound wave travelling

back and forth inside of the box, with speed approximately 0.35vF .

and for small amplitude the period of Josephson oscillations obtained from time-

dependent BdG equations agrees well with plasma period at small coupling, namely

TBdG = Tp. However, the BdG theory is believed to be a qualitatively reliable

theory, and thus, it is interesting to use TDSLDA (4.26) to check whether the

physical pictures remains the same.

Here we do all the simulations in a box whose size is L = 24k−1
F and L⊥ = 13k−1

F ,

with N = 120 atoms. We begin our work with the simulations of the sound waves,

from which one can measure the first sound speed. We use a potential barrier

V0 = 1EF and d = 0.6k−1
F to produce a local density depletion in the center of the

box, and then we remove it at time t = 0. In Fig. 4.5, as expected, we observe two

sound wave-packets travelling back and forth in the box, with speed approximately

0.35vF . The analytical prediction cs =
√

ξS/3vF with the parameters ξS taken from

the SLDA gives c = 0.35vF , in good agreement with the universal relation. The

absolute value of order parameter |∆(x, t)| also exhibits a local depletion moving at

the same speed. This shows that ∆(x, t) and n(x, t) are coupled.
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V0(EF ) d(k−1
F ) IJ(EF/~) EJ(EF ) Ec(EF ) Tp(~/EF ) TSLDA(~/EF )

2 1 0.143 0.0711 0.0353 125.5 130.3

3 0.6 0.214 0.106 0.0350 103.3 110.3

3 0.8 0.107 0.0533 0.0353 144.9 148.7

4 0.6 0.122 0.0608 0.0352 135.8 140.0

Table 4.1: Results for small-amplitude Josephson oscillations for different initial

conditions. On site energy EC and tunneling energy EJ ≡ ∆E/2 are calculated by

stationary SLDA equations, which give the plasma period Tp = 2π~/
√
EJEc, while

TSLDA is the same period but from TDSLDA simulations.

In the case of the Josephson effect in a double well system, we report the same

procedure already used with BdG equations, using the same geometry and the same

steps for the calculations. We first use the stationary SLDA equations to calculate

all static physical quantities, e.g., on-site energy EC and tunneling energy EJ , which

is also defined as half of energy difference ∆E, from which we get the plasma period

Tp = 2π/ωp. Then we solve the time-dependent SLDA equations to simulate the

Josephson oscillations, extracting the values of the period TSLDA. We also calculate

IJ as the maximum current for full sinusoidal curves in the current-phase plot. The

key result of this systematic analyses is that, again, small amplitude oscillations are

very well reproduced by the two-mode model. In particular

2EJ ≡ ∆E ∼= IJ ; Tp
∼= TSLDA (4.27)

provided the parameters EC and EJ are consistently calculated with the same SLDA

theory. Examples of universal results are given in Table 4.1, for four different bar-

riers, all of them in the weak coupling regime.

To summarize, we find that the time-dependent superfluid local density approx-

imation theory predicts the same physics as time-dependent Bogoliubov-de Gennes

theory, SLDA being quantitatively more accurate in the values of key physical quan-

tities.
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Dynamic structure factor

As discussed in the introduction, dynamic structure factor is an important dynami-

cal quantity which can be measured experimentally by two-photon Bragg scattering

techniques. Theoretically, random phase approximation (RPA) is a simple and com-

mon method to calculate the dynamic structure factor. In this chapter, first we show

how to derive the random phase approximation from the energy density functional

of the system. The basic idea has already been introduced by S. Stringari [105],

in the Landau Fermi liquid frame. He developed a formalism to bridge RPA and

energy density functional, by which he calculated the density and spin response

function of polarized normal Fermi gases at unitarity. Inspired his work, we extend

this formalism to superfluid Fermi gases, where the pairing effect (or Cooper-pair

density) plays an important role. Since RPA has already been used in BdG the-

ory [106, 107, 6], we will briefly present some basic results. Then we will present in

details the derivation of the RPA formalism with the superfluid local density approx-

imation. With SLDA+RPA we calculate the dynamic structure factor at unitarity

and at zero temperature. The results are finally compared with those of BdG+RPA.

5.1 Random phase approximation

In order to study the response of a superfluid Fermi gas to a weak external field Vext,

usually the system can be treated as a gas of long-live Bogoliubov quasiparticles

interacting through a mean field. The essential idea of RPA is that the induced

59
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fluctuation term of interaction is assumed to be a self-generated mean-field potential

experienced by quasiparticles, associated with the local changes in normal atomic

density (n↑ and n↓) and Cooper-pairs density ν.

Differently from normal gases, which have only two normal densities, n↑ =⟨
Ψ+

↑ Ψ↑
⟩
and n↓ =

⟨
Ψ+

↓ Ψ↓
⟩
, superfluid fermions have also another two superfluid

Cooper-pair densities, ν = ⟨Ψ↓Ψ↑⟩ and ν∗ =
⟨
Ψ+

↑ Ψ
†
↓

⟩
. Typically the Cooper-pair

density is a complex number, which has two degrees of freedom, its mode and phase;

here we use ν and its conjugate ν∗ to play the roles of these two degrees of freedom.

In the following, we replace these four densities n↑, n↓, ν and ν∗ with n1, n2, n3 and

n4, respectively. A small external perturbation induces variations δni and corre-

spondingly variations of the energy of the system, In the linear response regime one

can write four different quasiparticle Hamiltonians when describing the superfluid

fermions with quasiparticle language:

H1 = H0 +

(
∂εint
∂n1

)
0

+
∑
i

(
∂2εint
∂n1∂ni

)
0

δni, (5.1)

H2 = H0 +

(
∂εint
∂n2

)
0

+
∑
i

(
∂2εint
∂n2∂ni

)
0

δni, (5.2)

H3 =

(
∂εint
∂n3

)
0

+
∑
i

(
∂2εint
∂n3∂ni

)
0

δni, (5.3)

H4 =

(
∂εint
∂n4

)
0

+
∑
i

(
∂2εint
∂n4∂ni

)
0

δni. (5.4)

where H0 = −~2∇2/(2m) is the free particle Hamiltonian and εint is the interaction

energy density. The suffix 0 indicates that the derivatives are calculated at equi-

librium, and δni=1,2,3,4 are the changes with respect to equilibrium. Indeed, if εint

is the BdG (SLDA) interaction energy density functional, then H0 + (∂εint/∂ni)0 is

the corresponding quasiparticle Hamiltonian of BdG (SLDA) equations, while the

other second-order terms play the role of a self-generated mean-field potential expe-

rienced by quasiparticles. In the following we call ”reference gas” the gas described

by the Hamiltonian H0 + (∂εint/∂ni)0, and ”real gas” the gas described by the full

expression (5.1-5.4).

The dynamic response function of the system can be investigated by adding an

external field V i
ext to the quasi-particle Hamiltonian Hi, the linear response function
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χij is the quantity which connects the induced density fluctuations δni and the

external field V i
ext by equation δni =

∑
j

χijV
i
ext. By inserting this equation in second-

order derivative terms of the quasiparticle Hamiltonian, we can define a new effective

external field

V i
eff = V i

ext +
∑
j

(
∂2εint
∂ni∂nj

)
0

δnj = V i
ext +

∑
j,l

EI
ijχjlV

l
ext (5.5)

where EI
ij = (∂2εint/(∂ni∂nj))0. We use χ0 for the response function of the reference

gas and χ for the response function of the real gas. The key result is that the

dynamics of real gases in an external field Vext can be treated as the dynamics of

reference gases in an effective external field Veff . Then, according to the definition

of response function, we can write the following matrix equation
χ11 χ12 χ13 χ14

χ21 χ22 χ23 χ24

χ31 χ32 χ33 χ34

χ41 χ42 χ43 χ44




V 1
ext

V 2
ext

V 3
ext

V 4
ext

 ≡


δn1

δn2

δn3

δn4

 ≡


χ0
11 χ0

12 χ0
13 χ0

14

χ0
21 χ0

22 χ0
23 χ0

24

χ0
31 χ0

32 χ0
33 χ0

34

χ0
41 χ0

42 χ0
43 χ0

44




V 1
eff

V 2
eff

V 3
eff

V 4
eff

 ,

(5.6)

where the matrix form of the effective external field is
V 1
eff

V 2
eff

V 3
eff

V 4
eff

 =


V 1
ext

V 2
ext

V 3
ext

V 4
ext

+


EI

11 EI
12 EI

13 EI
14

EI
21 EI

22 EI
23 EI

24

EI
31 EI

32 EI
33 EI

34

EI
41 EI

42 EI
43 EI

44




χ11 χ12 χ13 χ14

χ21 χ22 χ23 χ24

χ31 χ32 χ33 χ34

χ41 χ42 χ43 χ44




V 1
ext

V 2
ext

V 3
ext

V 4
ext

 .

(5.7)

The matrix equation χVext = δn = χ0Veff = χ0
(
Vext + EIχVext

)
must be always

satisfied by any external field Vext. After some simple linear algebraic derivation we

can find the relation between response functions of reference gases and real gases:

χ =
χ0

1− χ0EI
. (5.8)

The only input quantity in this relation is an analytic expression of the interaction

energy density functional εint.

The random phase approximation has previously been used to study the dy-

namic structure factor [106] and collective oscillations [107] of weakly interacting
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Fermi superfluids. A dynamic mean-field approach, identical to the random phase

approximation but based on kinetic equations, was developed to investigate dynamic

and static structure factors [5] and collective modes [88] of a uniform, strongly in-

teracting Fermi gas.

5.2 Dynamic structure factor in BdG theory

In the Bogoliubov-de Gennes theory, the interaction energy density functional of the

superfluid fermions is

εint = geffn1n2 + geffn3n4, (5.9)

where geff is the effective interaction strength, and 1/geff = m/(4π~2a)−
∑

k m/(~2k2)

is the regularization used to avoid the ultraviolet divergence. As I said in section 2.1,

the normal density n1 and n2 is convergent, but the anomalous densities n3 and n4

are divergent if one used the bare delta-interaction. The regularization helps to cure

this divergence by requiring geff → 0, which induce that the Hartree term geffn1n2

to do only a smaller order contribution to energy density functional than the pairing

term geffn3n4. Usually we can neglect the Hartree term and write εint = geffn3n4.

Here, for general we keep this Hartree term during the derivation (this choice does

nothing influence to the final expression of dynamic structure factor, because the

contribution from Hartree term just is much smaller to dynamic structure factor

than that from pairing term in the BdG theory), and correspondingly the impor-

tant interaction matrix EI reads

EI ≡ geffG, G =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (5.10)

we obtain the relation between the response functions of the real gas and reference

gas in the BdG theory,

χ =
χ0

1− χ0geffG
, (5.11)

and the corresponding BdG-quasiparticle Hamiltonians are

H1 = − ~2
2m

∇2 + geffn2, H2 = − ~2
2m

∇2 + geffn1, H3 = −△∗, H4 = −△. (5.12)
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The stationary BdG equations can be used to calculate the response function χ0.

There are 16 matrix elements inside χ0.

χ0 ≡


χ0
11 χ0

12 χ0
13 χ0

14

χ0
21 χ0

22 χ0
23 χ0

24

χ0
31 χ0

32 χ0
33 χ0

34

χ0
41 χ0

42 χ0
43 χ0

44

 ≡


⟨n1n1⟩ ⟨n1n2⟩ ⟨n1n3⟩ ⟨n1n4⟩
⟨n2n1⟩ ⟨n2n2⟩ ⟨n2n3⟩ ⟨n2n4⟩
⟨n3n1⟩ ⟨n3n2⟩ ⟨n3n3⟩ ⟨n3n4⟩
⟨n4n1⟩ ⟨n4n2⟩ ⟨n4n3⟩ ⟨n4n4⟩

 (5.13)

The derivation of these matrix elements is cumbersome. We show here, as an

example, the derivation of χ0
↑↑ ≡ χ0

11. According to the Wick theorem, the Matsub-

ara retarded Green’s function χ0
11(r, r

′, τ) = −⟨Tτ [n̂1(r, τ)n̂1(r
′, 0)]⟩ can be written

as

χ0
11(r, r

′, τ) = −
⟨
Ψ†

↑(r, τ)Ψ↑(r
′, 0)

⟩⟨
Ψ↑(r, τ)Ψ

†
↑(r

′, 0)
⟩

(5.14)

where τ is an imaginary time and we assume τ > 0. Using the Bogoliubov transfor-

mations (2.14) for the field operators Ψσ and Ψ†
σ, one finds

χ0
11(r, r

′, τ) = −1
2

∑
i,n

⟨(
u∗
i↑(r)c

†
i↑e

Ei↑τ + vi↓(r)ci↓e
−Ei↓τ

)(
un↑(r

′)cn↑ + v∗n↓(r
′)c†n↓

)⟩
×1

2

∑
j,l

⟨(
uj↑(r)cj↑e

−Ej↑τ + v∗j↓(r)c
†
j↓e

Ej↓τ
)(

u∗
l↑(r

′)c†l↑ + vl↓(r
′)cl↓

)⟩
To avoid double counting, a factor of 1/2 appears in the summation during deriva-

tion.

χ0
11(r, r

′, τ) = −1
4

∑
i,j

[
u∗
i↑(r)ui↑(r

′)f(Ei↑)e
Ei↑τ + vi↓(r)v

∗
i↓(r

′)f(−Ei↓)e
−Ei↓τ

]
×
[
uj↑(r)u

∗
j↑(r

′)f(−Ej↑)e
−Ej↑τ + v∗j↓(r)vj↓(r

′)f(Ej↓)e
Ej↓τ

]
where ⟨c†icj⟩ = f(Ei)δij and ⟨cic†j⟩ = f(−Ei)δij, the quantity f(x) = 1/(eβx+1) is the

Fermi distribution function of quasiparticle, β = 1/(kBT ) is the inverse temperature.

So that

χ0
11(r, r

′, τ) = −
∑
i,j

u∗
i (r)ui(r

′)uj(r)u
∗
j(r

′)f(Ei)f(−Ej)e
(Ei−Ej)τ , (5.15)

where the spin index has been removed thanks to the spin-up and spin-down cor-

respondence in Eqs. (2.7) and (2.8). By means of the Fourier transformation,

χ0
11(r, r

′, ωn) =
∫ β

0
dτeiωnτχ0

11(r, r
′, τ), the above equation becomes

χ0
11(r, r

′, ωn) =
∑
i,j

u∗
i (r)ui(r

′)uj(r)u
∗
j(r

′)
f(Ei)− f(Ej)

iωn + (Ei − Ej)
(5.16)
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where ωn = 2nπ/β is the bosonic Matsubara frequency.

For the homogeneous gas, a set of plane wave functions can be used to expand

the eigenfunctions ui in the form ui(r) → uke
ikr. By defining momentum transfer

p = k′ − k and relative coordinate ∆r = r− r′, then

χ0
11(∆r, ωn) =

∑
k,p

u∗
kukuk+pu

∗
k+pe

ip∆r f(Ek)− f(Ek+p)

iωn + (Ek − Ek+p)
(5.17)

and using the Fourier transformation χ0
11(q, ωn) =

∫
d∆rχ0

11(∆r, iωn)e
−iq∆r, we get

χ0
11(q, ωn) =

∑
k

u∗
kukuk+qu

∗
k+q

f(Ek)− f(Ek+q)

iωn + (Ek − Ek+q)
(5.18)

Using the eigenfunction solutions of the Bogoliubov quasiparticle (2.13) from

stationary BdG equations (2.12) of the homogeneous Fermi gases, finally we obtain

χ0
11(q, ωn) =

∑
k

1
2

(
1 +

ξkξk+q

EkEk+q

)
[f(Ek)− f(Ek+q)]

1
iωn+(Ek−Ek+q)

+
∑

k
1
2

(
1− ξkξk+q

EkEk+q

)
[1− f(Ek)− f(Ek+q)]

Ek+Ek+q

(iωn)2−(Ek+Ek+q)2

(5.19)

With similar procedures, we can get the other 15 elements of the reference re-

sponse function χ0. In fact, after considering all symmetries of these 16 matrix

elements, one finds that only 6 of them are independent. One of the most important

symmetry is the correspondence k → −k−q (ξk and Ek are just the functions of the

mode of k). Ultimately the response function of reference gases has the following

expression

χ0 =


a b c∗ c

b a c∗ c

c c −b h∗

c∗ c∗ h −b

 , (5.20)

the dimensions of each matrix elements of χ0 are all N/EF . The dimensionless

expressions of all 6 independent matrix elements (a, b, c, c∗, h and h∗), which read

a = a1 + a2, b = b1 + b2,

c = (c1 + c2) + (c3 + c4), c∗ = (c1 + c2)− (c3 + c4),

h = (h1 + h2) + (h3 + h4), h∗ = (h1 + h2)− (h3 + h4).

(5.21)

a1, a2, b1, b2, c1, c2, c3, c4, h1, h2, h3 and h4 are 12 integration equations, their

expressions are given in the following table
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Label Expression

a1 +3
4

∫
dkdθk2 sin θ 1

2

(
1 +

ξkξk+q

EkEk+q

)
[f(Ek)− f(Ek+q)]

1
iωn+(Ek−Ek+q)

a2 +3
4

∫
dkdθk2 sin θ 1

2

(
1− ξkξk+q

EkEk+q

)
[1− f(Ek)− f(Ek+q)]

Ek+Ek+q

(iωn)2−(Ek+Ek+q)2

b1 −3
4

∫
dkdθk2 sin θ 1

2
△2

EkEk+q
[f(Ek)− f(Ek+q)]

1
iωn+(Ek−Ek+q)

b2 +3
4

∫
dkdθk2 sin θ 1

2
△2

EkEk+q
[1− f(Ek)− f(Ek+q)]

Ek+Ek+q

(iωn)2−(Ek+Ek+q)2

c1 −3
4

∫
dkdθk2 sin θ 1

4

(
ξk△

EkEk+q
+

△ξk+q

EkEk+q

)
[f(Ek)− f(Ek+q)]

1
iωn+(Ek−Ek+q)

c2 +3
4

∫
dkdθk2 sin θ 1

4

(
ξk△

EkEk+q
+

△ξk+q

EkEk+q

)
[1− f(Ek)− f(Ek+q)]

Ek+Ek+q

(iωn)2−(Ek+Ek+q)2

c3 −3
4

∫
dkdθk2 sin θ 1

4

(
△
Ek

− △
Ek+q

)
[f(Ek)− f(Ek+q)]

1
iωn+(Ek−Ek+q)

c4 +3
4

∫
dkdθk2 sin θ 1

4

(
△
Ek

+ △
Ek+q

)
[1− f(Ek)− f(Ek+q)]

iωn

(iωn)2−(Ek+Ek+q)2

h1 +3
4

∫
dkdθk2 sin θ 1

2

(
1− ξk

Ek

ξk+q

Ek+q

)
[f(Ek)− f(Ek+q)]

1
iωn+(Ek−Ek+q)

h2 +3
4

∫
dkdθk2 sin θ 1

2

(
1 + ξk

Ek

ξk+q

Ek+q

)
[1− f(Ek)− f(Ek+q)]

Ek+Ek+q

(iωn)2−(Ek+Ek+q)2

h3 +3
4

∫
dkdθk2 sin θ 1

2

(
ξk
Ek

− ξk+q

Ek+q

)
[f(Ek)− f(Ek+q)]

1
iωn+(Ek−Ek+q)

h4 −3
4

∫
dkdθk2 sin θ 1

2

(
ξk
Ek

+
ξk+q

Ek+q

)
[1− f(Ek)− f(Ek+q)]

iωn

(iωn)2−(Ek+Ek+q)2

where n = n1 + n2, ξk = ~2k2/(2m) − µ and Ek =
√
ξ2k +△2. All equations in

the upper table are expressed in units of N/EF . At zero temperature, since Fermi

distribution function f(Ek) = 0, a1, b1, c1, c3, h1 and h3 are all equal to zero. Also

notice that h2 is divergent because of the divergence of pairing fluctuation; we can

cure this divergence by regularization procedure hr
2 = h2−1/geff , which produces the

new convergent expressions hr = (h1+hr
2)+(h3+h4) and h∗

r = (h1+hr
2)− (h3+h4).

According to the definitions of density response function χD = 2(χ11 + χ12) and

spin response function χS = 2(χ11 − χ12) for the balanced two-component Fermi

gas, Eq. (5.11) gives

χD = 2(a+ b)− 4
c2hr + c∗2h∗

r + 2bcc∗

hrh∗
r − b2

. (5.22)

χS = 2(a− b). (5.23)

A different derivation of the response function, based on the use of kinetic equations,

was previously given by R. Combescot and collaborators [5, 88]. The expressions of
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I, I ′, I ′′, I11, I12 and I22 entering the density-density response function of [5, 88] are

related to our expressions with the following relations

4π2h4 = ωI12, 4π2(hr
2 + b2) = −I11, 4π2(hr

2 − b2) = −I22,

4π2c2 = −△
2
I, 4π2c4 = −△ω

2
I′, 4π2(a2 + b2) = −I′′.

(5.24)

The density dynamic structure factor S(q, ω) is related to the imaginary part of

the density response function via the fluctuation-dissipation theorem

S(q, ω) = − 1

π

1

1− e−βω
Imχ

(
q, iωn → ω + i0+

)
. (5.25)

The same relation applies for the spin dynamic structure factor SS(q, ω) in terms

of the spin response function χS. In Figs 5.1 we report a few examples of our

calculations of S(q, ω) and SS(q, ω) for a uniform Fermi gas. As in [5] we show the

results for uniform Fermi gas q = 3kF and for different values of the interaction

strength 1/(kFa) = 2, 1, 0,−1. Our results agree well with those of [5], and we use

this agreement as a test of our numerical predictions. The top left panel shows a

single peak associated to a low energy bosonic collective excitation (phonon-like) in

the BEC regime. In the top right panel one also sees a high energy tail above the

threshold for pair-breakings. In the bottom left panel the low-lying peak, associated

to the bosonic molecular (or dimer) degrees of freedom (molecular peak), overlaps

with the single quasiparticle peak (atomic peak), which eventually dominates the

dynamic structure factor in the bottom right panel. More discussions about the

shape of the dynamic structure factor will be given in the next section.

The density dynamic structure factor satisfies the famous f-sum rule
∫
dωωS(q, ω) =

Nq2/(2m), and when do the integral to S(q, ω) over all possible ω, one can get the

static structure factor S(q) = ~
∫
dωS(q, ω), which is intimately connected to the

universal Tan’s contact I [70, 71, 72] at high momentum transfer q via

I
NkF

=
4q

kF

[
S(q)− 1

1− 4/(πqa)

]
(5.26)

where a is the s-wave scattering length. To date, the value given by the two-photon

Bragg scattering experiment is I/(NkF ) = 3.06± 0.08 [108], while QMC and BdG

theory give I/(NkF ) = 3.4.
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Figure 5.1: Dynamic structure factor, from BdG+RPA theory as a function of ω for

fixed momentum transfer q = 3kF and for various interaction strength. Black solid

lines (red dashed lines) refer to the density dynamic structure factor S(q, ω) (spin

dynamic structure factor SS(q, ω)). The results almost coincide with those of [5].

The dynamic structure factor is given in units of N/EF .
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Figure 5.2: Comparison of theoretical and experimental results for the quan-

tity P (q, ω) defined in 5.27 and measured by means of Bragg scattering. The

LDA+RPA+BdG predictions (lines) agree reasonably well with the experimental

data (empty squares) in the BCS-BEC crossover. The theoretical curves have no

free parameters. The spectrum is normalized so that the area below the curve is

unity. The frequency is measured in units of the recoil energy of the atoms. Taken

from [6].
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For superfluid fermions in a harmonic trap, a LDA+RPA+BdG strategy has

already been utilized to calculate the dynamic structure factor [6], as displayed in

Fig. 5.2, for a large momentum transfer q = 5kF , this theoretical prediction of dy-

namic structure factor quantitatively agrees well with two-photon Bragg scattering

experiment during the BEC-unitary regime, and worse in the BCS regime. For

comparison with experiment, a convolution of S(q, ω) below

P (q, ω) ∝ 1

π

∫ ∞

−∞
dω′S(q, ω′)sinc2

[
ω − ω′

σ

]
(5.27)

is required, where sinc(x) = sin(x)/x and the energy resolution σ = 2τBr is set

by the experimental Bragg pulse duration (τBr = 40µs). We find σ ≈ 0.68EF ≈
0.27ωR, where recoil energy ωR = ~q2/(2m). The static structure factor of this

LDA+RPA+BdG strategy again quantitatively agree with both experiment and

Tan’s relations. This is a surprising results.

5.3 Dynamic structure factor in SLDA theory

The same derivation of linear response function and the dynamic structure factor

given in the section 5.1 and 5.2, can be straightforwardly repeated for SLDA instead

of BdG. The key difference is the form of the energy density functional to start with.

The expression of SLDA interaction energy density functional for a uniform unitary

gas is

εint = β
~23(3π2)2/3

10m
n5/3 + geffn3n4, (5.28)

with

1

geff
=

mn1/3

~2γ
−

∑
k

m

α~2k2
. (5.29)

where n = n1 + n2 is the total density. Differently from the BdG theory, here the

effective interaction strength geff is a function of the total density. The corresponding

second-order interaction matrix EI which contains the second-order derivative of

εint include also the coupling terms (t and t∗) between normal atomic density and
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anomalous Cooper-pair density. The matrix is

EI =


d d t∗ t

d d t∗ t

t∗ t∗ 0 geff

t t geff 0

 (5.30)

where d = 2βEF/(3N) + (3π2)2/3|∆|2/(9γEFN), t = geff(3π
2)2/3∆/(6γEF ) and

t∗ = geff(3π
2)2/3∆∗/(6γEF ). Another difference with respect to BdG is the matrix

element d related to normal density, changed from a small number geff (or 0) to

a finite order of EF/N . Since n3, n4, t and ∆ are all related to the quasipartitle

amplitude uk and vk, both of which are real numbers when solving the stationary

SLDA equations (4.20). So one can find that all physical quantities are real numbers,

namely n3 = n4, t = t∗ and ∆ = ∆∗.

At first order we find the quasiparticle Hamiltonians

H1 = H2 = −α ~2
2m

∇2 + βEF − (3π2)2/3|∆|2
6γEF

, H3 = −∆∗, H4 = −∆. (5.31)

which are just the quasiparticle Hamiltonians of SLDA equations. We can also get

the SLDA response function for the reference gas χ0 by solving the stationary SLDA

equations (4.20). The actual expression of χ0 is the same as in (5.20) for BdG with

the same coefficient a, b, c, c∗, h and h∗, as in section 5.2. The expressions of the

matrix elements are similar to the ones in BdG theory, but with ξk = α~2k2/(2m)+(
β − (3π2)2/3η2/(6γ)− ξs

)
EF and Ek =

√
ξ2k +∆2.

Using equation (5.8), one can obtain the response function of the real gases χ by

solving the following matrix equation

G


χ11 χ12

χ21 χ22

χ31 χ32

χ41 χ42

 =


a b

b a

c c

c∗ c∗

 , (5.32)

where G ≡ 1−χ0EI . After some simple algebraic derivations, we obtain the response
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of function of real gas:

χ11 =

∣∣∣∣∣∣∣∣∣
a −(a+ b)d− (c∗ + c)t −(a+ b)t− cgeff −(a+ b)t− c∗geff

b 1− (b+ a)d− (c∗ + c)t −(b+ a)t− cgeff −(b+ a)t− c∗geff

c −2cd− (−b+ h∗)t 1− 2ct− h∗geff −2ct+ bgeff

c∗ −2c∗d− (h− b)t −2c∗t+ bgeff 1− 2c∗t− hgeff

∣∣∣∣∣∣∣∣∣ /|G|

(5.33)

χ22 =

∣∣∣∣∣∣∣∣∣
1− (a+ b)d− (c∗ + c)t b −(a+ b)t− cgeff −(a+ b)t− c∗geff

−(b+ a)d− (c∗ + c)t a −(b+ a)t− cgeff −(b+ a)t− c∗geff

−2cd− (−b+ h∗)t c 1− 2ct− h∗geff −2ct+ bgeff

−2c∗d− (h− b)t c∗ −2c∗t+ bgeff 1− 2c∗t− hgeff

∣∣∣∣∣∣∣∣∣ /|G|

(5.34)

χ12 =

∣∣∣∣∣∣∣∣∣
b −(a+ b)d− (c∗ + c)t −(a+ b)t− cgeff −(a+ b)t− c∗geff

a 1− (b+ a)d− (c∗ + c)t −(b+ a)t− cgeff −(b+ a)t− c∗geff

c −2cd− (−b+ h∗)t 1− 2ct− h∗geff −2ct+ bgeff

c∗ −2c∗d− (h− b)t −2c∗t+ bgeff 1− 2c∗t− hgeff

∣∣∣∣∣∣∣∣∣ /|G|

(5.35)

χ21 =

∣∣∣∣∣∣∣∣∣
1− (a+ b)d− (c∗ + c)t a −(a+ b)t− cgeff −(a+ b)t− c∗geff

−(b+ a)d− (c∗ + c)t b −(b+ a)t− cgeff −(b+ a)t− c∗geff

−2cd− (−b+ h∗)t c 1− 2ct− h∗geff −2ct+ bgeff

−2c∗d− (h− b)t c∗ −2c∗t+ bgeff 1− 2c∗t− hgeff

∣∣∣∣∣∣∣∣∣ /|G|

(5.36)

We can obtain all matrix elements of χ with similar derivation. However, χ11,

χ12, χ21 and χ22 are enough to calculate the density and spin response function. In

fact, for two-component Fermi gases with equal spin components, one has χ11 = χ22

and χ21 = χ12. With the definition of density response function χD = 2(χ11 + χ12),

we obtain

χD = 2

∣∣∣∣∣∣∣
b+ a −cgeff −c∗geff

2c 1− h∗geff bgeff

2c∗ bgeff 1− hgeff

∣∣∣∣∣∣∣ /|G|, (5.37)

As already done for BdG, we introduce the new functions hr = (h1+hr
2)+(h3+h4)

and h∗
r = (h1 + hr

2)− (h3 + h4), with hr
2 = h2 − 1/geff . Finally we find

χD = 2g2eff
[
(a+ b)

(
hrh

∗
r − b2

)
− 2

(
c2hr + c∗2h∗

r + 2bcc∗
)]

/|G| (5.38)
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and

|G| =4tgeff (bc
∗ + chr + bc+ c∗h∗

r) + 2t2
[
−2(c∗ − c)2 + (h∗

r + hr + 2b)(b+ a)
]

+ (2dg2eff − 4t2geff)
[
−(b+ a)(hrh

∗
r − b2) + 2(c2hr + 2cc∗b+ c∗2h∗

r)
]

+ geff
(
h∗
rhr − b2

)
(5.39)

One should pay attention to the order of t, d and geff (geff is a small number): d

is has the order of [geff ]
0, while t and geff the order of [geff ]

1. Inside the determinant

of |G|, most terms are of order [geff ]
2, except 4t2geff whose order is [geff ]

3 which can

be neglected. So finally

|G| = 4tgeff (bc
∗ + chr + bc+ c∗h∗

r) + 2t2
[
−2 (c∗ − c)2 + (h∗

r + hr + 2b) (b+ a)
]

+2dg2eff [− (b+ a) (hrh
∗
r − b2) + 2 (c2hr + 2cc∗b+ c∗2h∗

r)] + g2eff (hrh
∗
r − b2)

(5.40)

At this point, it is worth noticing that the BdG results for the response function

can be straightforward recovered by setting t = 0 and d = 0, and the |G| will be
recovered into the result of BdG+RPA, g2eff(hrh

∗
r−b2). For simple, we do dimension-

less treatment to all physical quantities, then we have d = 2β/3 + (3π2)2/3η2/(9γ),

t = geff(3π
2)2/3η/(6γ), and η = ∆/EF . Also we obtain an dimensionless expression

of the density response function

χD = 2
[
(a+ b)(hrh

∗
r − b2)− 2(c2hr + c∗2h∗

r + 2bcc∗)
]
/|G̃| (5.41)

with

|G̃| = |G|
g2eff

=
2(3π2)2/3

3γ
η (bc∗ + chr + bc+ c∗h∗

r) + (hrh
∗
r − b2)

+
(3π2)4/3

18γ2
η2

[
−2(c∗ − c)2 + (h∗

r + hr + 2b)(b+ a)
]

+

(
4β

3
+

2(3π2)2/3

9γ
η2
)[

−(b+ a)(hrh
∗
r − b2)2(c2hr + 2cc∗b+ c∗2h∗

r)
]

(5.42)

Also with the definition of spin response function χS = 2(χ11 − χ12), we get the

expression

χS = 2(a− b). (5.43)
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The dynamic structure factor is related to the imaginary part of the density-

density response function via the fluctuation-dissipation theorem, as in Eq. (5.25).

By this equation, we calculate the dynamic structure factor at both zero temperature

and finite temperature.

At small momentum transfer q → 0, the first sound speed cs can be obtained at

the peak position of dynamic structure factor (G̃=0), where energy transfer is also

very small ω → 0 . After dimensionless treatment to all relative quantities, one get

the dimensionless expression for cs

cs
vF

= ω̃
2
√
αq̃

=

√
αηJ̃4
3

[
(1−F 2)ηJ̃2−2F J̃ξ

η2J̃2
2
+J̃ξ

2 + (β + Fη/2)η

]
=

√
αηJ̃4
3

[
(1−F 2)ηJ̃2−2F J̃ξ

η2J̃2
2
+J̃ξ

2

]
+ (β+Fη/2)

3

(5.44)

where F = (3π2)2/3η/(3γ) and αη2J̃4 = 1,

2π2a2 = −△2

4
J2, 2π2b2 = −△2

4
J2, 2π2c2 = −△

4
Jξ,

2π2c4 = −△ω
4
J2, 2π2hr

2 = −ω2−2△2

8
J2 + α2 q2

24m2J4, 2π2h4 = −ω
4
Jξ.

(5.45)

and the unit of first sound speed is vF = 2EF/(~kF ), vF is the Fermi velocity.

5.4 Results

In the following, we present some results for the dynamic structure factor of unitary

fermions with SLDA. A typical case is shown in Fig. 5.3. In the left panel we report

S(q, ω) in the momentum range from 0 to 2kF . In the right panel we show the profile

of the same function at q = 1kF . In this low-q regime, the main structures visible in

S(q, ω) are a low energy narrow peak, starting from zero energy with an almost linear

dispersion, and a broader distribution at higher energy, above an almost horizontal

threshold. The lowest excitation mode is a phononic branch, whose slope at ω → 0

is the sound speed. By fitting the position of the phononic peak as a function fo q we

numerically extract the value cs = 0.35vF , which coincides, within the accuracy of

the calculation, with the value obtained by the analytic expression (5.44), as well as

with the value that can be obtained by solving the equations for the density (6.1) and
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Figure 5.3: The color-plot (left) shows the dynamic structure factor for momentum

transfer q in the range from 0 to 2kF obtained with RPA calculations based on SLDA.

The slope of the low energy branch corresponds to the sound speed cs = 0.35vF ,

while the horizontal threshold at ω = 1.0EF/~ is equal to the minimum energy 2∆

to break a Cooper-pair. The same S(q, ω) for q01kF is plotted in the right panel.

order parameter (6.2) and using the definition of sound speed cs =
√
(n/m)∂µ/∂n.

This value also coincides with the value extracted from experiments and from Monte

Carlo ab initio calculations. This agreement is not surprising, since the parameters

of SLDA have been chosen to reproduce known results, including the equation of

state and hence the sound speed. It is worth noticing that the same phononic peak

is also found in S(q, ω) with the same formalism but using the BdG energy density

functional. However, in the BdG case sound speed is cs = 0.443vF , which is about

30% larger. A comparison between the phonon peaks in BdG and SLDA at a much

lower value of q is shown in Fig. 5.4. The general structure of S(q, ω) in BdG theory

has been presented for instance in [88].

The horizontal threshold is located at ω = 2∆ = 1.0EF , which corresponds

to the minimum energy transfer to activate pair-breaking. The broad peak above

this energy thus include single quasi-particle excitations. This also tell us that the

measurement of S(q, ω) in two-photon Bragg scattering experiments can give direct

information on the gap, which characterizes the BCS superfluidity.

By integrating the dynamic structure factor in ω one obtains the static structure

factor S(q). Our results are shown in Fig. 5.5. The blue solid line represents the
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Figure 5.4: The phononic peak of the dynamic structure factor is shown in the low-q

limit. The red solid line is the SLDA result and the black solid line is the BdG result.

SLDA+RPA prediction. The figure shows the comparison with Quantum Monte

Carlo [5] (black dotted line) and with the BdG theory (red dashed line). Another

interesting relation is the f-sum rule∫
dω ωS(q, ω) =

Nq2

2m
. (5.46)

We have numerically checked that SLDA+RPA satisfy this sum rule within 1% of

accuracy.

For high momentum transfer q, one can investigate both the Cooper-pair excita-

tions (bosonic) and the single atom excitations (fermionic), which typically produce

a two-peak structure in the density dynamic structure factor. An example is given

in Fig. 5.6. Experimentally, the dynamic structure factor was firstly measured at

high momentum transfer q, in a range from 3.8kF to 5kF [9]. Theoretically the pre-

dictions for the dynamic and static structure factor from a mean-field BdG+RPA

scheme agree quantitatively well with the results of two-photons Bragg scattering

experiment (Fig. 1.3). However, to our disappointment, SLDA+RPA scheme pre-

dicts a quite lower molecular peak at momentum transfer q = 4kF than BdG+PRA.

It seems that SLDA theory underestimates the contribution from molecular Cooper

pairs and can not give a right description at high momentum transfer q. This is
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Figure 5.5: Static structure factor of superfluid unitary fermions at zero temperature

calculated by SLDA+RPA theory (blue solid line), compared with the results of

Quantum Monte Carlo (black dotted line) [5] and BdG+RPA (red dashed line)

theory.

Figure 5.6: Dynamic structure factor for a relatively large momentum transfer (q =

4kF ) calculated by both SLDA+PRA theory (red line) and BdG+RPA theory (black

line).
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consistent with the behavior of the static structure factor in Fig. 5.5, where one

clearly sees that the S(q) of SLDA is systematically lower than BdG and QMC at

high q.
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Chapter 6

SLDA at finite temperature

In this chapter, we focus our discussion on the Superfluid Local Density Approxima-

tion at finite temperature. Since SLDA includes the Hartree term for the interaction

among unpaired atoms, it can be used to describe also an interacting normal gas

when the temperature is above the critical temperature Tc. So SLDA is expected

to give better results than BdG theory at finite temperature. We first discuss the

behavior of the chemical potential µ(T ) and order parameter ∆(T ) at finite tem-

perature, where experimental data on the equation of state exist [8], and then we

calculate the dynamic structure factor.

6.1 µ(T ) and ∆(T )

The BdG theory for superfluid fermions in the BCS-BEC crossover is expected to

be only qualitatively reliable at zero temperature. Especially, BdG’s predictions get

worse for T of the order of, or larger than Tc, when the particles inside the normal

gases should still interact with each other, but in BdG theory the system is treated

as an ideal Fermi gas. Conversely, because of the existence of the Hartree term in

the energy density function (4.14), SLDA can predict an interacting normal gas,

which is a big improvement. So it is reasonable to expect that SLDA provides a

better performance than BdG theory. In section 4.3, we have already introduce the

basic idea of SLDA. In this section, we will extend it to finite temperature.

We know that there are three dimensionless parameters α, β and γ in the SLDA
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Figure 6.1: Order parameter (squares), mean-field interaction energy (circles) and

effective mass (diamonds) of a unitary Fermi gas at finite temperature calculated

with a Quantum Monte Carlo technique in [7]. The solid, dotted, and dashed lines

are the same quantities calculated within an independent quasiparticle model. Taken

from [7].
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equations (4.20). In order to extend the theory to finite temperature, the first

question is whether these parameters can be kept constant or they are temperature

dependent. Luckily, Quantum Monte Carlo results are already available [7], and

we can use them as a guide (see Fig. 6.1). The QMC results for the effective mass

parameter α = m/m∗ seem to indicate that α is almost T -independent and always

of order 1. So, in the following we just assume α = 1 at any temperature. The

parameter β of SLDA is related to the to mean-field potential U/EF which, again,

seems to be almost T -independent and we take β(T ) = β(T = 0). Finally the pairing

parameter γ is related to order parameter ∆/EF . As shown in Fig. 6.1 the quantity

∆/EF is almost constant at low temperature and then it decreases to zero above

∼ 0.2TF . The relation between ∆/EF and the parameter γ of SLDA is however

rather nontrivial. In fact, SLDA is known to ignore possible pseudogap effects

which are instead included in Monte Carlo calculations. Adding the pseudogap

physics to SLDA would be a big challenge. So, for simplicity, let us assume, in first

approximation, that also γ is constant and γ(T ) = γ(T = 0). This implies that

our finite temperature version of SLDA can be reasonably trustable in a range of

temperature from 0 to ∼ 0.15TF , i.e., in the superfluid phase away from Tc, as well

as above Tc where the gas is normal. It is instead less reliable in a range of T below

Tc but close to it, where a pseudogap may be present.

With almost the same derivations as in BdG theory, we can calculate the density

and order parameter at finite temperature, in the form

n =

∫
d3k

(2π)3

[
2
ξk
Ek

f(Ek) +

(
1− ξk

Ek

)]
, (6.1)

and

∆
mn1/3

~2γ
=

∫
d3k

(2π)3

[
∆

Ek

f(Ek)−
∆

2

(
1

Ek

− 2m

α~2k2

)]
, (6.2)

where f(x) is the Fermi-Dirac distribution function of quasiparticles. By solving

the Eqs.(6.1) and (6.2), one extracts the temperature dependence of the chemical

potential and the order parameter. The results are shown by solid lines in Fig. 6.2.

For comparison, we also show the predictions of BdG theory (dash lines) and the

MIT experimental results (dot line) [8]. The SLDA chemical potential is much closer

to the experimental data than BdG. SLDA gives also a transition temperature Tc =

0.33TF , better than BdG’s prediction Tc = 0.5TF , but still far from the experimental
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Figure 6.2: Chemical potential µ (red solid line) and order parameter ∆ (blue solid

line) as a function of temperature obtained with SLDA with T independent param-

eters α, β and γ. The dashed lines are the same quantities but in BdG theory.

The experimental result for the chemical potential [8] is shown as the lowest long

dashed line. The transition temperature Tc is 0.33TF in SLDA and 0.5TF in BdG.

The SLDA curve of the chemical potential is much closer to the experimental data

than BdG.

value Tc = 0.167TF . However, we can consider the overall agreement as reasonably

good in first approximation.

We may easily improve the agreement with the experimental data for the chem-

ical potential, by forgetting the QMC results of Fig. 6.1 and using instead the

parameters α, β and γ as free parameters to fit the experimental curve. If we set

α = 1 for simplicity and use β and γ as fitting parameters, we obtain, as a best

result, the curve shown in Fig. 6.3, which corresponds to the values β = −0.574 and

1/γ = −0.193. The agreement is indeed good. However, for consistency reasons, in

this thesis we prefer to keep the values which better reproduce the low T behavior of

the QMC results of Ref. [7]. The comparison between results obtained with different

choices of the parameters will be the natural continuation of this analysis.
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Figure 6.3: Chemical potential µ (red solid line) and order parameter ∆ (blue solid

line) as a function of temperature obtained with SLDA by using the parameters

α = 1, β = −0.574 and 1/γ = −0.193. The MIT experimental results [8] are

represented by the black dash line.

6.2 S(q, ω) at finite temperature

In the previous section we have shown that SLDA can be tuned to reasonably

reproduce the equation of state and the transition temperature by properly choosing

the parameters of the density functional. We showed that keeping the parameters

α, β and γ constant is a sufficiently good approximation for our purposes. Now we

want to apply this SLDA within the RPA scheme in order to calculate the density

dynamic structure factor, with special attention to the low-q regime, where the role

of the order parameter is more significant.

Typical results of our SLDA+RPA calculations are shown in Fig. 5.3 where

S(q, ω) is plotted for three different values of temperature, T/TF = 0.2, 0.3, and 0.4,

one in the superfluid phase well below the transition temperature, one close to Tc

and one above Tc (with our parameters Tc in SLDA is 0.33TF ). At low temperature

the overall behavior is similar to the one already discussed at zero temperature, with

a low energy phononic (bosonic or molecular) collective mode and a gap for single-

quasiparticle excitations. The effect of temperature can be seen in a significant
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Figure 6.4: The color-plot(left) exhibits the dynamic structure factor at temperature

T/TF = 0.2, 0.3, 0.4, for momentum transfer q ranged from 0kF to 2kF . When the

system is superfluid (the upper and middle two panels), a horizontal line is emergent

when the energy transfer ω is equal to the minimum energy 2∆(T ) to break a Cooper-

pair at temperature T , while this horizontal line disappear if T > Tc (the under two

panels). The right panel is the dynamic structure factor at momentum transfer

q = 1kF , when will give a sudden jump when ω = 2∆(T )/~ if T < Tc.
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broadening of the phononic branch as well as in the lowering of the energy gap

which eventually disappears above Tc. Near Tc the two peaks overlap while at larger

temperature the spectrum is dominated by a single broad distribution of single

particle-hole excitations.

In experiment, the realization two-photon Bragg scattering at small momentum

transfer is still a big challenge. The dynamic structure factor of superfluid Fermi

gas was recently measured at finite temperature [9]. To date, the typical values of

momentum transfer q range from 3.8kF to 5kF . In this range of relatively large

q the atomic peak is centered at the recoil frequency ωr = ~q2/(2m), while the

molecular peak is centered around ωr/2. An interesting experimental result is how

the magnitude of molecular excitation component of the density dynamic structure

factor changes with temperature. For q = 4kF , this is shown in the right panel of

Fig. 6.5, where the slope of the molecular peak height vs. T reveals two different

decreasing trends, with the crossing point located near the superfluid-normal phase

transition at temperature T = Tc. Actually, this is the method used in [9] to measure

the transition temperature Tc ≈ 0.18TF , which is not far from MIT experimental

value Tc = 0.167TF [8]. The lowest dotted line in the figure is the prediction for the

response at ω = ωr/2 in an ideal Fermi gas. The height of the molecular peak can

be easily calculated in our RPA scheme. The results are given in the left panel of

Fig. 6.5, where the dashed line is the prediction of BdG+RPA and the solid line is

the prediction of SLDA+RPA. The comparison between theory and experiment is

still preliminary and qualitative, but the figure suggests that this type of comparison

can indeed be used as a potential benchmark for finite-temperature theories.
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Figure 6.5: Height of molecular peak in dynamic structure factor at q = 4kF and

ω = ωr/2 ≈ 6.86EF/~ as a function of temperature. Left panel: SLDA+RPA

(black solid line) and BdG+RPA (red dash line). Right panel: experimental data

from Bragg scattering [9], in arbitrary units; the vertical line indicates the transition

temperature Tc; the lowest dotted line is the prediction for an ideal Fermi gas.



Chapter 7

Conclusions and Perspectives

In this thesis we have studied the dynamics of superfluid Fermi gases at unitarity

and in the BCS-BEC crossover by using different approaches of mean-field theory.

The main achievements of this thesis are the following.

1. We have investigated the Josephson effect of a two-component Fermi super-

fluid in a double well potential where a central barrier separates the system

into left and right parts. Our strategy has been first to solve the station-

ary Bogoliubov-de Gennes equations with an offset potential on one side of

the barrier, to obtain an initial population imbalance. Then, starting from

this configuration, we have solved the time-dependent Bogoliubov-de Gennes

equations to investigate the dynamics. For strong barriers the coupling be-

tween left and right is weak. In this limit, if the initial population imbalance

is smaller than a critical value, we find that the system exhibits a dynamical

regime of Josephson oscillations; above this critical value, the system enters

the dynamical regime of self-trapping. We have numerically found that the

maximum Josephson current IJ is equal to twice the tunneling energy EJ

calculated from the difference in energy of the stationary antisymmetric and

symmetric states. The period of the Josephson oscillations nicely approaches

the prediction of the linear Josephson equations, that is the so-called plasma

period Tp, provided the on-site energy EC and tunneling energy EJ are consis-

tently calculated within the same BdG theory. When the barrier is weak, the

coupling between left and right is strong. In this case, a small population im-
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balance still induces Josephson oscillations, while for larger imbalance, instead

of simple self-trapping oscillations, a more complex dynamics is obtained, with

the excitation of sound wave and the creation of solitons.

2. A formal derivation of the two-mode model of superfluid Fermi gases from

Bogoliubov-de Gennes theory is still missing. Coupled nonlinear Josephson

equations can be instead obtained from a density functional approach based on

the use of an appropriate nonlinear Schrödinger equation (or generalized Gross

Pitaevskii equation). We have compared the predictions of time-dependent

nonlinear Schrödinger equation with those of time-dependent Bogoliubov-de

Gennes equations. We have found that these two theories agree with each

from the BEC regime to unitarity, while deviations become significant in the

BCS regime, where the nonlinear Schrödinger equation does not account for

pair-breaking effects.

3. A different density functional approach, known as superfluid local density ap-

proximation (SLDA), has been recently introduced to describe fermions at

unitarity. This approach includes by constructing a better agreement with

experiments and Monte Carlo calculations on some key properties of the sys-

tems, such as the equation of state. We have performed simulations in the

double well potential with SLDA and compared the results with those of BdG

theory. The behaviors of the system are qualitatively the same.

4. An open question about the Josephson effect in superfluid Fermi gases is

whether or not one can find π-mode Josephson oscillations and π-mode self-

trapping. By using the two-mode model we have searched the conditions

required for the occurrence of these regimes. We have found that the parti-

cle number should be small and the tunneling energy large, such that these

regimes are extremely hard to reach in time-dependent Bogoliubov-de Gennes

simulations.

5. We have studied the dynamic structure factor of unitary fermions both at

zero and finite temperature using the BdG theory and also SLDA. We have

derived the expression of the linear response function and the dynamic struc-

ture factor in the random phase approximation. At zero temperature, the
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SLDA+RPA formalism indeed provides a better accuracy at low momentum

transfer and also its static structure factor is closer to quantum Monte Carlo

value than that in BdG+RPA; however SLDA seems to give worse results for

the molecular excitations at large momentum transfer. We have discussed the

role of temperature and the comparison between SLDA and BdG, as well as

with experimental data. The analysis is still at a preliminary level, but it

suggests that mean-field theories can indeed be used to extract quantitative

information about the order parameter and the excitations of the system by

two-photon Bragg scattering experiments. This analysis may also provides

some hints about the possible existence of a pseudogap, which is not include

in the mean-field theory and whose effect in the dynamic structure factor is

an interesting open issue.

The adventure of ultracold Fermi gases is still going on. We hope that our work

on fermions can help clarify some aspects of the physics of Josephson effect and the

linear response to external perturbations. Thank you for reading.
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Appendix A

4th order Runge Kutta method

algorithm

Runge Kutta methods are methods for solving the differential equations. They use

the function and its first-order derivatives calculated at a given step to find the

solution at the next step. Here we will introduce the basic idea of it.

The time evolution of the function f(t) can be written in the generalized form

df(t)

dt
= g[f, t], (A.1)

where function g[f, t] is the appropriate derivative operator for the system. In

the absence of the ability to numerically calculate the derivative operator over a

continuous rime range, we must instead use algorithms which advance function f

between discrete time steps, such that

ti+1 = ti +∆t, (A.2)

where ∆t is the time increment between numerically integrated solutions.

One of the most useful, accurate and widely used algorithms for such discrete

time step propagation is the 4th order Runge Kutta algorithm. In this method the

function at advanced time is written

f(ti+1) = f(ti) +
1

6
[h1 + 2(h2 + h3) + h4] +O

(
∆t5

)
, (A.3)
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where the individual Runge Kutta terms are calculated as

h1 = g[f(ti), ti]∆t, (A.4)

h2 = g[f(ti) +
h1

2
, ti +

∆t

2
]∆t, (A.5)

h3 = g[f(ti) +
h2

2
, ti +

∆t

2
]∆t, (A.6)

h4 = g[f(ti) + h3, ti +∆t]∆t. (A.7)

Thus advancing the system by a single time step requires four derivative calculations.
The 4th order Runge Kutta algorithm displays fourth-order accuracy, hence the

presence of error terms in Eq. A.3. Extensions of the Runge Kutta to higher orders
in general lead to greater numerical accuracy, but at the cost of increased compu-
tational requirements.
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