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Abstract
Leveraging social networks in computer systems can be effective in dealing with

a number of trust and security issues. Spam is one such issue where the “wisdom
of crowds” can be harnessed by mining the collective knowledge of ordinary indi-
viduals. In this paper, we present a mechanism through which members of a virtual
community can exchange information to combat spam.

Previous attempts at collaborative spam filtering have concentrated on digest-
based indexing techniques to share digests or fingerprints of emails that are known
to be spam. We take a different approach and allow users to share their spam filters
instead, thus dramatically reducing the amount of traffic generated in the network.
The resultant diversity in the filters and cooperation in a community allows it to
respond to spam in an autonomic fashion. As a test case for exchanging filters we
use the popular SpamAssassin spam filtering software and show that exchanging
spam filters provides an alternative method to improve spam filtering performance.

Keywords: Email filters, spam messages, collaborative recommendation systems, col-
laborative networks, trust, autonomic communication.

1 Introduction
An estimated ����� to �	��� of email traffic on the Internet today can be called “spam”.
The problem of spam shows no signs of abating with every new popular spam filtering
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solution quickly being breached by new spam methods. Clearly, any static spam solution
is doomed to failure.
In the past few years several proposals for filtering spam from ham (wanted mail) have
emerged. As our brief overview in the following section shows, these proposals vary in
their scope, application and effectiveness. While early efforts at spam control concen-
trated on one-size-fits-all solutions that were situated at the Mail Transfer Agent (MTA),
newer solutions recognize that what is spam for one person may in fact be ham for an-
other. This has led to an emergence of personalized filters that can be customized by the
user.
However, personalized filters often suffer from a lack of sufficient training data which
reduces their effectiveness at least during the initial training period. Most ordinary users
do not have the time or the skill required to train their filters properly. This often leads
them to forgo personalized solutions and abandon themselves to the mercy of a third-party
that decides for them what is spam and what is not. While this may not be such a bad
solution for naive users, it raises concerns of censorship, as blacklists may be used to keep
out dissent, and lack of diversity. As we explain later, having a set of diverse filters in a
community is also very important when combining filters.
Autonomic computing offers a solution through the construction of a community that re-
sponds autonomically to spam by using collaborative spam filters that use machine learn-
ing. Decentralizing the filter exchange process gives the community a mechanism for
self-management. Spamming is a volume business and a single spam email must be sent
to hundreds or thousands of users to be economically profitable. If the first user who sees
a spam email can share this information with others, they can automatically delete the
email from their inboxes. This approach exploits the fact that the more the pairs of eyes
that check for spam, the better the results should be.
Damiani et al. presented a solution in [9] where users’ opinions are collected on what
messages are spam and this collective judgment is used to block propagation of spam to
other users. This requires identifying similarity among spam emails as spammers often
introduce random content in spam emails to increase their chances of getting through
filters.
In this paper, we present an alternative to collecting user opinions that use digest-based
indexing techniques. We present a framework that allows individuals in a community to
exchange personalized filters instead of information about every spam email. As example
of possible usage, two filters may be combined for increased effectiveness. A new user
may “borrow” a filter from an existing community member to get him started. Thus a user
may exchange a naive Bayesian filter for a rule-based filter by using our mechanism.
Individual filters may be trained using machine learning techniques [13]. A user may
decide to give different weights to the acquired filters. She may decide that the filter
received from a more technically savvy friend or from a friend who shares her interest
more closely or that a filter that has been trained on more data deserves to be given a higher
weight. Filter weights may also be adaptive and change according to the performance of
individual filters.
Our second contribution is a general framework that can be used to combine the filters ob-



tained by different users based on the trustworthiness and reputation of the filter provider.
The remainder of this paper is organized as follows. In Section 2 we discuss previous
work and provide a brief overview of existing solutions. In Section 3 we discuss our core
idea of exchanging filters instead of spam emails or their digests. This is followed by a
brief discussion on the use of reputation to weight filters from users within the community.
In Section 5 we present our experimental results and we conclude in Section 6.

2 Related Work
A number of different spam filtering techniques have emerged in the last few years. They
include:

1. List-based filtering relies on white-lists (set of email address of users whose mes-
sages are allowed) and/or blacklists (email or IP addresses known to be used spam-
mers). Lists are vulnerable to address spoofing and may also exclude receiving
legitimate messages from users who are not in a white-list or who are present in a
blacklist by mistake.

2. Bayesian classifiers classify email messages based on features extracted from the
message. The features can be the words in a message or subsequences of words or
characters [14].

3. Rule-based filtering defines a set of rules and corresponding weights (usually as-
signed through machine learning). Each email is checked against each rule to see
if the rule is activated. In this case the rule weight is added to the message score.
A message whose score exceeds a threshold is labeled as spam. Rules may include
processing of email headers to check for abnormalities such as malformed headers
or invalid return addresses and word or feature tests.

4. Spam traps publicize fake email addresses that do not belong to any user or group.
Any message whose recipient list includes a spam trap address is discarded as spam.

5. Sender authentication verifies the identity of the sender before accepting an email.
It can be performed by a challenge-response mechanism where the recipient sends
a challenge to the sender which must be answered before the email is accepted.The
challenge-response technique requires synchrony (it requires the sender and recipi-
ent to act within the specified time limit), thus negating a major advantage of email,
and is vulnerable to address spoofing which can be used to launch a denial-of-
service attack.

6. Distributed spam identification such as Vipul’s Razor [2], SpamWatch [4], etc.
Users detect spam messages and send periodically their reports to a central database
so that subsequent arrivals of the same spam can be detected.



7. Social email networks exploit the already existing social structure in email net-
works to prevent spam. This approach is based on the assumption that users who
exchange e-mail messages are connected in a social trusted network [7].

Combining and correlating classifiers has been used effectively in many fields such as
document classification, speech recognition, optical character recognition (OCR) etc. A
combination of classifiers can yield better results than those obtainable by the individual
classifiers. Battiti and Colla [6] studied combining classifiers for OCR and found that
teams work better than individual classifiers. They also studied the rejection/accuracy
compromise: cases where the classification is dubious (e.g., the different classifiers dis-
agree) are “rejected” and directly presented to the user who takes the final decision. In
spam filtering, the rejection of classification a few emails (which can be placed in a spe-
cific folder) can be acceptable to the user if this strategy manages to reduce costly false
positives. In general, a combination works only when classification errors are not com-
pletely correlated. This makes diversity in spam filters desirable because diverse filters
tend to have uncorrelated classification errors.
In the field of spam recognition, Sakkis et al. [15] and Hershkop and Stolfo [11] have
proposed combining spam classifiers. In particular, Hershkop and Stolfo combine clas-
sifier confidence factors instead of just a binary output and show that the latter strategy
performs better.

3 Advantages of Exchanging Spam Filters
There are several reasons why it is preferable for users in a community to exchange spam
filters rather than exchanging opinions about which messages are spam. Filter exchange
and combination is an example of trusted community knowledge exchange that allows
a community to respond to spam collectively and in an autonomic fashion. Using an al-
ready existing overlay network to exchange filters allows building email communities that
span multiple administrative domains on the basis of shared email preferences. Further,
situating filters at the individual user harnesses the computational power of user machines
that far exceeds the power of a centralized spam filter.
Existing collaborative spam filtering mechanisms collect user opinions on whether a mes-
sage is spam or not. Whenever a user detects a spam message she creates a hash digest
of that email. The digest can be made resilient to common word-based attacks [8]. Di-
gest information can either be collected at a central point [1, 2] or be shared among the
members of a community using an overlay network [16]. In either case, the amount of
traffic generated depends on the number of spam messages received by community mem-
bers. A solution based on exchanging filters obviates the need for exchanging messages
every time a spam message is received. Filters will be exchanged relatively rarely and
the frequency of filter exchanges will be independent of the number of spam messages
received.
Combining filters can be very useful in the case of multi-lingual users. Let us take the
case of an individual from Italy who moves to the United Kingdom. This individual will



now receive all work-related emails in English while still receiving personal emails in
Italian. Such a user could easily retain the old “Italian spam filter” that he was using and
simply combine it with an “English spam filter” borrowed from a co-worker or friend who
receives her email in English.
Another important reason to prefer filter exchange is that of diversity. We know that in
nature a population with a gene pool that is diverse has a greater chance of surviving
a disease. Similarly, a community of users with a diverse set of filters is likely to be
more robust against any one kind of spam. The diversity ensures that it will be highly
unlikely that a particular spam is able to get through all the different filter combinations.
A spammer would not be able to use a single set of tricks to defeat all filters.
This diversity and flexibility can also be related to the level of sophistication of the user.
A naive user may simple “borrow” a filter from a user he trusts or an expert user who
is known and trusted in the community. A more sophisticated new user may decide to
combine filters from a number of different users. She may also decide to monitor the
performance of the filter and tune the filter combination adaptively.
In order to allow users to exchange filters without compromising privacy it is important
to separate the public and private parts of each filter (e.g., the white or black lists are in
some cases private). We expect that users will not wish to exchange some personalized
aspects of their filters. If these can be separated and only the public part of a filter is
exchanged, any privacy concerns are adequately addressed. This separation must also be
easily understandable by the user.

4 A Language for Describing Spam Filters
Filter exchange rises several issues concerning the compatibility of the filters and their
combination. The solution that we propose is a standardized language for filter descrip-
tion. The language enables the specification of functionalities and properties of each filter
so that the portability is guaranteed. A standardized language represents the first step
toward the combination of the exchanged filters in an easy and autonomic way, without
manual intervention of the users, as described in section 4.2
The language describes in a document the number of inputs and outputs of a specific filter
and its operation. The document is written in XML and is derived from the Web Service
Description Language1 (WSDL) framework. The actions represents the operation of the
filter while the location of the service is intended as the creator (or the last modifier) of
the filter itself. This last information is essential to build up a trusted network as described
in previous section. The description language facilitates more complex definitions of the
filter itself by assigning attributes such as weights to the operations and inputs.

1http://www.w3.org/TR/wsdl



Figure 1: Filter Engine and Pre-processor

4.1 Using Trust for Effective Filter Exchange
Kong et al. [12] have proposed using a collaborative filtering approach within a social e-
mail network for weighing reports of spam. Users have a trust value based on the strength
of their ties to the network and the correctness of the spam report is weighted according
to this trust value. They call their mechanism MailTrust and use an algorithm similar to
the one used in PageRank.
We use the reputation of a user to weight a filter received. While the social email network
can be used for the initial weights for the exchanged filters, our algorithm goes further and
uses filter performance to modify the trust values of users in the community. It is possible
to use a reputation management algorithm such as ROCQ [10] that allows users to rate
the filters they send to other members of the community and the filter recipients to rate
filter performance in turn and thus the trust value of users that send them the filters. In this
manner, the community is made robust against malicious users (such as spammers) who
may join the community and exchange filters that actually allow spam instead of blocking
it.

4.2 Filter Engine for Combination
The description of the filter
The client engine is depicted in figure 1. It is composed of a pre-processor component and
a main engine component which are implemented in software and which are not specific
to any kind of filter. Our main idea is to characterize the output of the pre-processor and
the engine output by plugging in the filter description which is expressed in a standardized
language.
The steps are performed as follows, where steps 1,2 and 3 are repeated for the number of
filters the user has:

1. The filter description is plugged in the pre-processor. The email is given as input to



the pre-processor.

2. Based on the filter specification and on the email, the pre-processor generates a set
of “appropriate tokens for the applications”. These tokens are filter specific and
they are derived from the email (it can be the header, the content - body and subject
- or both). This action is referred to “features extraction”.

3. These generated tokens (also called features) constitute the input of the engine. The
engine loads the appropriate module that contains the filter definition.

4. The output of the filters is redirect to the “Filter Combination Description” compo-
nent which combines the output received based on internal rules generated by the
user. These internal rules represent the personalized part of the filter and they are
user-specific.

5. The output of the “Filter Combination Description” component specifies whether
the message should be classified as spam or ham message.

As described above, we have separated the entire system in a common part, the pre-
processor and the engine, and the filter specification that is shared among users and that
can be plugged into the pre-processor and the engine as module. This choice has been
made in order to enable exchange of filters in an easy and compact way.
Another important aspect of the proposed solution is the separation of the filter definition
(functionalities) and the personalized part that is represented by the “Filter Combination
Description” component. This component is user specific and it loads all the specific
settings of the user. We do not require users to share this component since it can disclose
personal information.

4.3 Privacy Issues in Filter Exchange
In order to allow users to exchange filters without compromising privacy it is important
to separate the public and private parts of each filter (e.g., the white or black lists are in
some cases private). We expect that users will not wish to exchange some personalized
aspects of their filters. If these can be separated and only the public part of a filter is
exchanged, any privacy concerns are adequately addressed. This separation must also be
easily understandable by the user.
For privacy purposes we do not want to include in rule specification any sensible informa-
tion, thus, we have thought of a definition of the rules by using hash values to protect the
content. For the sake of clarity we define an example. We have a object named “String”
and value “Viagra”. The filter must assign a probability of ���
��� to the email to be classi-
fied as spam if the “String” is present. To protect the privacy of the content of an email
we consider the hash value for Viagra. Thus the object will became - if String MD5 hash
of 45FA2B is equal to “String input” MD5 hash value then ����������� .



5 Experimental Results
In this section we demonstrate a prototype filter exchange mechanism by combining rule-
based filters. Due to space constraints we present results from our experiments with
exchanging filters based on SpamAssassin only. SpamAssassin [3] is one of the most
widely-deployed spam filtering solutions. It is also relatively flexible and combines many
different kinds of spam filters such as header-processing, white-lists and blacklists and
Bayesian techniques. SpamAssassin’s rule-set is manually generated and it uses a sim-
ple neural network (perceptron). Each email is tested against the rules to determine the
relative score. Messages that score above a fixed threshold are marked as spam.
To validate the claim that the combination of individual filters improves the classification
of spam messages, two distinct filters are defined to simulate filters produced by different
users and then combined to produce a unique filter that is characterized by the union of
both feature sets. The validation is given by testing the three filters on the same set of
messages.
For our tests we randomly sort the set of rules available in SpamAssassin �����	��� into two
buckets so that each bucket characterizes a separate filter. The division is not completely
random as it takes the in-built dependencies of the rules into account. The combined filter
is constructed by merging the set of rules of each individual filter.

Figure 2: An example of simple neural network (perceptron)

Our email workload consists of �����	� spam messages, downloaded from
http://www.spamarchive.org/ and of ���	��� personal ham messages received by the authors.
The combined workload is processed using the two filters individually and the filter de-
rived by their combination. The output of the pre-processing stage for each of the three
filters consists of a vector of � s and � s that indicates whether a specific rule has been
activated in the email message ( � if the rule is activated � otherwise). This vector is the
input for a neural network that uses a supervised learning strategy.
The neural network is trained over pre-classified messages so that the relationship between
the input (vector of rules) and the output (classification of the message: spam or ham)



is determined. Incoming messages are then classified based on the constructed neural
network.
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Figure 3: Sigmoid function

We consider the simplest form of neural network, the single-layer perceptron, as depicted
in Figure 2, with weights ( ��� ) associated to the links connecting the input to the output.
The output is calculated as the scalar product of the vector of weights and the vector
of inputs. A non-linear sigmoidal transfer function ( ���! #"$�%�'&(�)�+*-,�.0/1" ) is applied to
the result to constrain the output between � and � : � for ham messages and � for spam
messages. A message is classified spam if the output is greater than a fixed threshold
( 24365 ). The output of the neural network is continuous and may be interpreted as the
degree of belief that a message is spam or ham.
The neural network is trained using information on second derivatives to determine the
weight of each input. Details of the method used, one-step-secant (OSS), can be found
in [5]. The error is represented by the energy function that is calculated as the sum-of-
squared-differences between expected and evaluated values. The total energy, 78�9�:" for
an iteration is:

78�;�<"=� �>
? @A?B
CED#F 7 C �

�>
? @A?B
CED#F �92 C+GIHEC �9�:"4"KJ (1)

where the expected (target) value for pattern L is 2 C and the computed value is HMC . The
latter is a function of the weights,which are adjusted through an iterative minimization of
the energy function. The number of iterations executed is determined in order to optimize
validation performance.
The individual filters and the combined filter are tested on the same set of messages.
We divided the collected messages in two sets, one for the training stage and one for
validation stage. The training set consists of N	����� messages, with both spam and ham in
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Figure 4: False positive rate - percentage of ham messages classified as spam messages
with a classification threshold of ����� .
equal proportion. The validation set consists of �0�	��� messages of which

> ���	� are spam
messages and

> �	��� are ham messages.
The experiments are performed using different classification threshold 24365 values that
vary from � to � with a step of ����� . The percentage of false positives, i.e., ham messages
that have been wrongly classified as spam messages and the resultant classification energy
are evaluated for each of the three classifiers.
Figure 4 shows how the false positive rate for the three filters varies with the number of
iterations run on the training set. We see that the combined filter performs better than
both individual filters and the percentage of false positive decreases as the number of the
iteration increases. The sharp drop in the percentage of false positives during the initial
phase (when the number of iterations is low) indicates incomplete classifier training.

Predicted

Real
Spam Ham

Spam TP rate FP rate
Ham FN rate TN rate

Table 1: Confusion Matrix for a general classifier

Table 2 shows a snapshot of the performance of the classifiers at iteration N	� . Table 1
explains the confusion matrix in more detail in order to give a better understanding of
how the messages have been classified by the filters:

O �QP:R�2K,S�UTWVYX[Z ,\5 H �#5],^R0_a`bLYR XcX ,'`'`^R�d�,'`^e H 515],^ef2K_!g'L65	,^h�ijef2K,^hO H 2KR0_9k VYX[Z ,\5 H �l`bLYR XcX ,'`1`^R�d�,'`
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The True Negative and False Negative rates are correspondingly defined. The combined
filter performs better than the two individual filters since the false positive rate is the
lowest and the true positive (detection) rate is the highest.

Classification Classif. 1 Classif. 2 Combined
Spam as Spam (TP) 94.31% 96.30% 97.81%
Spam as Ham (FN) 5.69% 3.70% 2.19%
Ham as Spam (FP) 1.76% 2.74% 1.43%
Ham as Ham (TN) 98.24% 97.26% 98.57%

Table 2: Performance of the three classifiers
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Figure 5: Percentage of False Positives and False Negatives vs. Decision Threshold.

Figure 5 shows how the false positive and false negative rates for each of the three filters
varies as the classification threshold varies. As expected the percentage of false positives
is very high when the classification threshold is very low and quickly drops to almost zero
as the threshold increases. The reverse is true for the percentage of false negatives. We
decided to use a threshold of ����� for further experiments as in spam filtering the cost of a
false positive is much higher than the cost of a false negative.
Figure 6 displays another metric that is useful in evaluating the performance of a filter. A
Receiver Operating Characteristic (ROC) curve shows how the percentage of false posi-
tives varies with the percentage of true positives. The idea here is to find the appropriate
cut-off point where the percentage of false positives is tolerable while ensuring a high
proportion of true positives.
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Figure 6: Receiver Operating Characteristic

As defined in Eq. 1, the energy function depends on the classification error. Figure 7
plots the average energy per pattern for each classification or slt
u6v? @A? . Again, the average
energy for the combined filter is lower than that for both filters. Thus, we can conclude
that combining the two filters gives us better performance.
Our experiments do not attempt at measuring the goodness of a specific filter, i.e. at
evaluating the absolute performance of a designed filter, but they do indicate that the
combination of general filters performs better than the filters individually.

6 Conclusions
We have presented a new approach to collaborative filtering of email messages based on
the exchange of filters developed by different members of the community.
Sharing and exchanging filters instead of emails or digests has many potential advantages
ranging from a much lower required communication cost (e.g., in neural networks, a filter
built from millions of messages can be described with some hundreds of byte to describe
the network weights), a potential large diversity, a much greater flexibility in using and
combining different filters. Preliminary experimental results have been provided to moti-
vate the validity of the approach.
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