
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Socially aware motion planning of assistive

robots in crowded environments

Alessio Colombo

Advisor:

Prof. Luigi Palopoli
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Abstract

People with impaired physical or mental ability often find it challenging to negotiate

crowded or unfamiliar environments, leading to a vicious cycle of deteriorating mobility

and sociability. In particular, crowded environments pose a challenge to the comfort and

safety of those people. To address this issue we present a novel two-level motion planning

framework to be embedded efficiently in portable devices.

At the top level, the long term planner deals with crowded areas, permanent or tem-

porary anomalies in the environment (e.g., road blocks, wet floors), and hard and soft

constraints (e.g., “keep a toilet within reach of 10 meters during the journey”, “always

avoid stairs”). A priority tailored on the user’s needs can also be assigned to the con-

straints.

At the bottom level, the short term planner anticipates undesirable circumstances in

real time, by verifying simulation traces of local crowd dynamics against temporal logical

formulae. The model takes into account the objectives of the user, preexisting knowledge

of the environment and real time sensor data. The algorithm is thus able to suggest a

course of action to achieve the user’s changing goals, while minimising the probability of

problems for the user and other people in the environment.

An accurate model of human behaviour is crucial when planning motion of a robotic

platform in human environments. The Social Force Model (SFM) is such a model, hav-

ing parameters that control both deterministic and stochastic elements. The short term

planner embeds the SFM in a control loop that determines higher level objectives and re-

acts to environmental changes. Low level predictive modelling is provided by the SFM

fed by sensors; high level logic is provided by statistical model checking. To parametrise

and improve the short term planner, we have conducted experiments to consider typical

human interactions in crowded environments. We have identified a number of behavioural

patterns which may be explicitly incorporated in the SFM to enhance its predictive power.

To validate our hierarchical motion planner we have run simulations and experiments

with elderly people within the context of the DALi European project. The performance of

our implementation demonstrates that our technology can be successfully embedded in a

portable device or robot.
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Chapter 1

Introduction

With unimpaired ability, pedestrians are able to find their way across complex and

crowded areas without major problems. With reduced abilities this apparently simple

task easily becomes a challenging one [1]. For instance, a person with reduced mobility

needs to minimise the travelled distance, while a person with cognitive problems should

avoid situations that challenge her sense of direction and confuse her perception of the

environment. The difficulty in identifying the most correct path and in making proper re-

actions to unexpected contingencies may gradually reduce the confidence of the impaired

person in using public spaces [2]. The afflicted are most often older adults and the prob-

lem worsens quickly if no adequate countermeasure is taken [3, 4]. She can be deprived

of essential social relations with a negative impact on her physical condition (reduced

exercise), on her psychological wellbeing (reduced social contact) and even on the quality

of her nutrition if she reduces the frequency of her visits to supermarkets [5, 6].

A growing body of research [7] suggests that physical activity can have widespread,

beneficial effects for older adults and ultimately even decelerate the process of ageing.

The application of assistive robotic technologies [8] can be of significant help to amplify

these effects. In particular, the type of support that a robotic system with cognitive

abilities can offer in the navigation of a complex environment depends on the type of

robot assistant and can be adapted to the user’s needs. If the robot is simply a guiding

vehicle, like a tour-guiding vehicle [9], guidance just consists in following the path and

ensuring that the user is trailing behind. If the robot is a robotic walker, it can guide

the user by mechanically turning its wheels and acting on the wheel brakes [10] or by

providing visual, audio or tactile signals [11, 12]. If the robot is a robotised wheelchair,

it can be compared to a robotic vehicle driving in crowded spaces [13].

In the last few years, robotic platforms able to perform autonomous tasks are increasing

in complexity and number. Nowadays, the market offers all kinds of devices that can,

in some terms, be considered as smart and autonomous: from vacuum cleaners capable
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of cleaning the house while the householder is absent, to industrial robots able to move

goods in warehouses without human intervention. This trend is visible also in the assistive

robotic field and the ability of a robotic platform to navigate crowded spaces in a socially-

acceptable manner is becoming increasingly important [14].

Indeed, robots need to understand what is happening around them, so they can choose

a course of actions that respects the social rules that govern the environment in which

they are moving.

Social rules [15, 16] are non-written rules that manage the cohabitation of people in

their environments. If a person is walking and a group of talking bystanders is obstructing

her way, she should not pass through them if there are other possible ways around.

If we imagine to substitute this person with a robot, we obtain a human-robot inter-

action problem. A robot respecting the social rules will recognise the bystanders, will

realise that they are chatting and will identify them as a single cluster that should not be

disturbed. Thus, it will modify its planned path to avoid the people without getting too

close. However, a robot ignoring these social rules will see the people as two independent

obstacles. Hence, it may decide to pass in between them with the consequence of invading

their personal space and interrupting the conversation.

Important guidelines for implementing social rules in a robot can be extracted from

literature on human social interaction. One example is the work by Goffman [17] that

describes the interplay between two people as “focused” or “unfocused” interaction. A

focused interaction occurs when one person deliberately searches for the other person’s

attention and she responds. An unfocused interaction, instead, takes place when one

person finds out information about the other without requiring her attention (e.g., by

looking at her behaviour). One interesting theory is proxemic theory by Hall [18] (more

details in Section 6.3) that describes the use of personal space and territory, and the

relationship between human psychology and non-verbal or iconic communication.

The goal of this dissertation is the design and development of a so called “cognitive

engine” for assistive robotic platforms that obeys social rules. Such engine is a motion

planning framework that safely steers and controls robots in semi-structured environ-

ments populated by human beings while taking into consideration the user’s goals and

preferences. We introduce it in Section 1.1.

1.1 Cognitive Engine

The cognitive engine is, in our terminology, the set of decision algorithms that suggests

the user a trajectory from a source position to a destination position accounting for

the state of the environment and the user’s personal preferences. The cognitive engine
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Figure 1.1: High level representation of the motion planner. Initially a coarse long term plan
is built on the map by the long term planner . Then, the short term planner is in charge of
modifying the short term path in order to avoid obstacles in the surroundings of the platform.

periodically samples the surrounding environment using the sensing capabilities provided

by the robotic platform and by the sensors deployed in the environment.

We propose a two-level hierarchical approach, visible in Figure 1.1. A long term plan

is first constructed by the long term planner considering both the floor plan and the

information gathered from sensors deployed in the environment. During the journey, the

short term planner adjusts this path and produces a short term plan that avoids dynamic

obstacles detected by the sensors. User preferences and goals are taken into consideration

during the whole process.

Further details are reported in Chapter 2.

1.2 The c-Walker

The c-Walker , visible in Figure 1.2, is a kinematically passive haptic device based on a

standard mobile robotic platform. Provides physical, cognitive, and emotional support

to older adults in public environments such as shopping centres and airports. The user

remains always in charge of final decisions and the system does not override her intent.

Instead, it operates supportively, offering appropriate recommendations.

The key features of the c-Walker are: 1. the ability to construct the path across the

space that best supports the user’s preferences and goals; 2. the detection and recognition

of anomalies along the way; 3. the observation of humans in the area of interest of
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Figure 1.2: The c-Walker is a novel cognitive walking assistant developed within the DALi
project. It safely guides the user through complex indoor environments.

the device and the prediction of their future position; 4. the possibility to locally re-

shape the path to avoid potential risks and collisions with other humans; 5. a rich set of

interfaces that the system can use to recommend a path to the user, which include passive

interfaces (visual, acoustic, and haptic) and active interfaces (electromechanical brakes,

and motorised turning wheels). These complex functionalities are implemented relying in

part on the embedded sensing and intelligence, in part on the ambient intelligence.

The c-Walker prototype has been fully integrated and tested in both synthetic and

real environments.

This walker has been developed within the DALi1 (Devices for Assisted Living) Euro-

pean project that targeted a user group consisting of older adults with emerging non-severe

cognitive disabilities. Final users have been involved in all phases of the development of

the system and the project was acutely sensitive to their needs.

The DALi project ended in October 2014. The ACANTO2 (A CyberphysicAl social

NeTwOrk using robot friends) H2020 European project started in February 2015, and is

the follow-up of the DALi project. It will extend the assistive paradigm moving from a

1http://www.ict-dali.eu/
2http://www.ict-acanto.eu/

http://www.ict-dali.eu/
http://www.ict-acanto.eu/
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single user to a network of users, connected via a cyber-physical social network.

1.3 Scientific Contributions

This work proposes a hierarchical motion planning algorithm for assistive robotic plat-

forms. An overview of this approach has been presented in [19]. The algorithm is able

to cope efficiently with dynamic and partially unknown environments, while remaining

reactive to potentially uncooperative behaviour of the user.

Three main contributions can be devised:

• Long term planner: an efficient long term motion planner [20] based on the Dijkstra

shortest path algorithm [21]. The construction of the path can be customised with

soft and hard constraints with priority, and is reactive to temporal anomalies and

crowded areas represented as heat maps.

• Short term planner: a probabilistic and efficient short term motion planning algo-

rithm for highly dynamical crowded environments [22]. User’s preferences and goals

are defined via Bounded Linear Temporal Logic (BLTL) formulae, and enforced

using statistical model checking.

• Identification of human motion models: evaluation of a well-known human motion

model through experiments with people in a simulated supermarket [23]. Analysis

of its limitations and proposal of an extended model.

1.4 Outline of the Dissertation

The dissertation is divided in chapters, each of which covers different aspects of the work.

The reader will be guided through a top-down discovery of the motion planner starting

from a overview in Chapter 2. The discussion on related work has been condensed in

Chapter 3 in order to give a complete overview in one shot, without the need of going

back and forth into the text. We will then describe in details the long term planner in

Chapter 4, the short term planner in Chapter 5 and the identification of human motion

models in Chapter 6. The experimental evaluation is presented in Chapter 7. Finally,

conclusions and future objectives can be found in Chapter 8.
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Chapter 2

Overview of the Approach

In this chapter we will give an overview of the proposed cognitive engine. Figure 2.1

shows the logical blocks that compose the motion planning algorithm.

From a top-down perspective, the first type of assistance is offered before starting the

navigation activity and consists of the production of a plan that takes into account long

term objectives. This is accomplished by the long term planner (Section 2.1), which takes

into account the topology of the space, the user’s preferences and the possible presence of

obstacles or problems along the way, which are revealed by environmental sensors. While

the user is moving, she could encounter contingent problems that cannot be anticipated

(e.g., a small group of people obstructing the path). In this case, her robot assistant

could react by planning a minimal deviation from the path that preserves her safety

and wellbeing. In our terminology, this component is called the short term planner (see

Figure 2.1) and is introduced in Section 2.2. Finally, the guidance system of the robot

assistant can guide the user along the planned path.

In our vision, the user is not required to strictly follow the path, and potential conflicts

are detected and resolved automatically without any loss of comfort/safety for the user.

During the journey, the motion planner refines its strategy in order to be compliant

with the decisions of the user, while reducing the number of conflicts. Every user is

associated with a profile that describes specific known interests and dislikes that help the

motion planner in generating the path. This profile can be explicitly programmed (e.g.,

by answering some high level questions) by the user or the caregiver.

2.1 Long Term Planner

Consider a person willing to execute a set of activities in a public space. The problem the

user faces is to identify the best way to reach her points of interest. From an assistive robot

point of view, this decision could potentially be taken using any state-of-the-art algorithms
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Figure 2.1: Diagrammatic overview of the motion planning framework. The whole process
can be divided into three main elements: the long term planner that considers the long term
objectives, the short term planner that optimises the long term plan taking into account the
short term objectives and constraints, and the guidance that drives the robot towards the goal.

for motion planning, able to identify the path with minimum length (or requiring minimum

time) given the a priori knowledge of the map. A first problem is that while the position

of most fixed objects (e.g., buildings, rooms, and points of interest) is known a priori, the

algorithm must take account of the possibility of changes, such as temporary obstructions.

Standard motion planning algorithms can easily be adapted to consider an up-to-date

picture of the state of the environment (e.g., presence of obstructions or over-crowded

spaces) as it arrives from environmental sensors. However, a simple modification to a

standard planner could be insufficient. First, the detected anomaly could be a temporary

one. So, the likelihood of having to deal with the problem during the navigation depends

on the time needed to reach the place where the anomaly is located, which in turn depends

on the chosen path. What is more, the user (who is typically an older adult) will likely

have specific additional requirements. For instance, the user could need a frequent access

to the toilet, and if the optimum path offers no easy access to the toilet on the way, it

could easily generate discomfort. Whereas, the user could be hyper-vigilant and overly

concerned with her personal security. In this case, she might appreciate always being

within reach of a policeman or of other staff member that she perceives as a reassuring

presence.

In a few words, what we need is an algorithm for motion planning in public spaces that

accounts for 1. the topological and metric information about the space, 2. time-varying
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environmental information about the space, such as the availability of services (is the shop

that the user wants to visit actually open?), the presence of occlusions and overcrowded

areas, etc., 3. preferences of the user (e.g., the need to be in easy reach of assistance,

toilets, etc.).

The presence of these specific requirements makes the planning algorithms offered by

commonplace navigators (such as Google Maps) infeasible. A different approach that

carefully considers the strong psychological aspects involved in the selection of a route is

needed.

The long term planner periodically collects information from environment sensors and

from other c-Walkers deployed on the ground. This information consists of anomalies,

heat maps (i.e., crowded areas), status of points of interest (e.g., queue length for shops)

and is merged with prior information on the place (the map). The user checks in a request

with a sequence of places to visit, and a profile condensing her preferences is attached to

it. The long term planner receives the request and produces the optimal path operating

as follows: 1. the map is broken down into a grid of discrete cells, 2. a graph is derived

from the grid, where each node represents the centre of a cell and each arc is a path

joining two cells, 3. the graph is changed by adding relevant semantic information (e.g.,

associating points of interest with some of the cells), 4. each arc is associated with a

cost that accounts for the distance to travel and for the occupancy of the area (people

density translates into a longer time to travel), 5. additional manipulations are made to

exclude (or to increase the travelling cost of) paths that violate the user preferences, 6.

the optimal path is found using the modified Dijkstra algorithm. Figure 2.2 graphically

describes this process.

The long term plan is propagated to the system for its execution along with additional

constraints related to the user profile that could not be enforced at the level of the long

term planner (e.g., if the user requires not to be in close contact with any other person,

this cannot be enforce before the situation in her proximity is known to the system). Then

the execution of the desired motion begins and the short term planner takes over.

Details of the long term planner are extensively presented in Chapter 4.

2.2 Short Term Planner

Periodically, the short term planner acquires the state of the system, comprising the

position of static objects and the position and velocity of the user and other people in

the environment. The current state is provided by the sensing system that is subject

to measurement error and noise. Given the current state, the algorithm hypothesises

alternative courses of action using a comprehensive human motion model able to capture
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Figure 2.2: Overview of the long term planner . It first takes in input the map of the environment
and computes the graph that maps the empty space (top left). The optimal yellow-coloured
trajectory connecting start S to goal G can have different shapes according to the objectives:
finding the Euclidean shortest path (top right), being closer to the toilets (bottom left), or being
reactive to unpredictable anomalies, such as crowded areas or wet floors, (bottom right).

the dynamism of crowd.

The model includes stochasticity to take into account the natural unpredictability of

human behaviour, which is exploited by the algorithm to generate multiple independent

simulation traces.

Changing the number of simulations can significantly affect performance. The number

of simulations can be used as a tuning knob for balancing execution time and statistical

confidence. For example, the latter could be temporarily boosted, thus increasing the

number of simulations and the time required to compute them, when the system is off-

load.

Each of the simulation traces is then formally verified (model-checked) against prop-

erties that express goals and constraints required for the user trajectory (i.e., where the

user wants to go, minimum distance from obstacles or people). This leads to a statistical

distribution of potentially successful trajectories. The algorithm uses this distribution to

choose an immediate action that maximises the probability of achieving the objectives of

the user while minimising the probability of accidents.

For validating the approach we used the Social Force Model described in Section 6.2,

well known in the literature for simulating crowd behaviour. However, as anticipated in

Section 2.3, experiments revealed that this model does not capture all features of human

motion of our interest, pushing for the need of an improved crowd model.
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More details can be found in Chapter 5.

2.3 Identification of Human Motion

The ability to understand human behaviour and social interactions is of primary impor-

tance. The goal is to identify an accurate two dimensional model for predicting human

motion. Our starting point was the Social Force Model (Section 6.2), generally used for

simulating people in normal or panic situations. This model is very flexible and broadly

used in the literature. However, in some cases it does not produce realistic motions, es-

pecially when the trajectories of pedestrians are interrupted by sudden short term pauses

and deviations.

We thus started by observing people in a real scenario, running controlled experiments

in a simulated supermarket, where several people concurrently had to follow their shop-

ping list. The videos of the experiments were then manually labeled according to the

observed behaviours, and we were able to match the observation with proxemic theory.

Proxemics (Section 6.3) is an important theory borrowed from the literature on human

social interaction, and relates human psychology with spatial behaviour.

These results helped us to identify a number of behavioural patterns that can be

incorporated in an extended version of the Social Force Model.

Further details are presented in Chapter 6.
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Chapter 3

Related work

The purpose of this chapter is to relate the work presented in this dissertation with the

current state of the art. We start with an overview of similar projects for assistive robotics

in Section 3.1, then a survey of the literature for the different components that compose

the motion planner.

Motion planning in crowded environment is a relevant research problem in robotics

that has received a constant attention throughout the past two decades [24, 25, 26].

The approach that we advocate is based on a hierarchical decomposition of the problem

between short term and long term planning. Different authors in the literature propose

a strategy of this kind [27, 28], but the solution at each of the two levels of the hierarchy

differ significantly based on the requirements that each author considers.

The long term planner is discussed in Section 3.2, the short term planner in Section 3.3

and the identification of human motion models in Section 3.4.

3.1 Assistive Robotics

Several projects have targeted assistive mobility with the development of a robotic walking

assistant and some of them share the basis ideas with the DALi project.

The ASSAM project [29] aims to develop a modular navigation assistants for users with

different level of disabilities. They target different mobility platforms, such as tricycle,

wheelchair and walker. The latter is called eWalker (Figure 3.1(a)) and is an electronic

walker providing navigation support by means of an active platform that compensates

declining walking capabilities, as well as cognitive disabilities. However, the behaviour of

people in the surroundings is not considered.

The DOMEO project [30] developed the robuWalker visible in Figure 3.1(b), a walking

assistant that monitors the health state of the user. The walker is endowed with devices

for tele-presence and intuitive interaction both with tactile and voice recognition. From
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(a) ASSAM [29] (b) DOMEO [30] (c) I-DONT-FALL [31] (d) Veloped [32]

Figure 3.1: Assistive walkers developed in other projects.

the proposers’ point of view, the older adults should be helped in staying longer and safer

at home. This is clearly in contrast with the DALi project that actually encourages the

elderly to socialize and move in large public spaces.

The i-Walker, showed in Figure 3.1(c), is the assistive device developed within the

I-DONT-FALL project [31]. The main goal of the project is to improve quality of life of

the elderly through the efficient prevention and detection of falls. The device is part of

an ecosystem of healthcare services and is used for physical training and data logging.

The Veloped [32] (Figure 3.1(d)) is a commercial walking support for outdoor explo-

ration with an appealing look. Different versions are available according to the target

outdoor environment. Some of them are passive and exploit only the mechanical design

for easing the walk. Others, instead, are equipped with motorised wheels for providing

aid on critical terrains.

3.2 Long Term Planner

The goal of a long term planner is to find a collision-free path from a starting point to some

desired destination, given the topological and metric constraints derived from the map.

When the map is not entirely known in advance (e.g., due to uncontrollable changes in

the environment), a convenient choice can be the adoption of sampling-based algorithms.

In this class the Probabilistic RoadMap (PRM) algorithm by Kavraki et al. [33] and the

Rapidly Exploring Random Trees (RRT) [34] have gained an undisputed reputation and

visibility in the past few years. The idea of this class of algorithm is to generate feasible

points by sampling randomly the neighbourhood of known points and connecting them

into a data structure (e.g., a tree). When the destination is finally reached an optimal
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path can be found by exploring the data structure. The more time that is given to the

computation, the more points that can be added and the higher the probability becomes

of finding an optimal solution. Such algorithms have recently been revisited by Karaman

and Frazzoli [35]. The revised versions, PRM∗ and RRT∗, are probabilistically complete,

meaning that if the algorithm is given enough time to explore the space, it eventually

identifies the optimal solution with probability 1. An important point of these algorithms

is that while the data structure is being created it is possible to enforce a hierarchy of

hard and soft constraints penalising (or ruling out) points that would violate them. This

is an appealing feature for us because our problem is characterised by a set of constraints.

However, the construction on the fly of the path and on the map is not required in our

case. Our intended operational scenario is a public space (e.g., a mall or a museum) for

which a large amount of a priori information is usually available.

Another family of algorithms are based on the definition of potential fields [36, 37]

around obstacles and points of interest that can attract or repel the robot. Such ap-

proaches are known to be effective for obstacle avoidance, but they are often plagued

by local minima (which sometimes delay or deadlock the progress). While encoding all

the user’s planning requirements, constraints and preferences with a potential function is

generally a difficult problem, our approach makes use of the notion of gradients to encode

user-defined desirable and undesirable zones. The full details are given in Section 4.2.3

The long term planner proposed in this work falls in the class of graph based tech-

niques. In essence, the idea is to decompose the environment into a grid and then generate

a graph by associating nodes to elements of the grid and by then connecting with arcs the

nodes associated to adjacent cells. Minimum time paths on the graph can be found using

the well-known Dijkstra algorithm [21] or its extension A∗ [38]. The use of a constant

size grid is generally discouraged due to the explosion of the configuration space size,

hence several more efficient ways to construct the graph have been proposed. Possible

approaches include Voronoi diagrams [39] and PRM [33]. We follow Chen et al. [40] and

construct a graph using quad tree decomposition of the space, exploring it with an ex-

tended version of the Dijkstra algorithm. The generation of our quad tree is specific for

its application to structured indoor spaces, with large rooms connected through corridors,

doors and passageways and where each room may contain such things as counters, shelves

and exhibition paraphernalia that compromise its regularity.

The most important feature of our algorithm is its ability to deal with temporary

anomalies (e.g., obstructions or large groups of people hindering the user’s motion across

some of the areas). In particular, anomalies (i.e., temporary graph obstructions) require

the generation of time-dependent paths, a problem that is known to be challenging and

is the focus of independent research [41, 42, 43, 44]. None of these papers qualifies
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itself as a clear winner. In our particular case, we adopt a conservative assumption,

described in Section 4.2.6, that allows us to solve a simplified problem very efficiently.

Our requirement analysis reveals that senior users of a navigation tool are very annoyed

by a long wait in front of a screen. Therefore, efficiency and quick deliveries of decisions

are more important than producing “optimal” decisions (as long as the decisions do not

violate any hard constraints and they respect soft constraints to a reasonable extent).

The global constraints (not to be confused with kinodynamic constraints, not consid-

ered here) are used for customising the behaviour of the planner and for introducing the

notion of “comfort” for the user. Constraints are prioritised and some of them can be

violated if their compliance prevents the system from finding any path.

They embed priority and the possibility for one or more constraints to being ignored

if a path cannot be found otherwise (namely, conflicting constraints). This is called

“planning with partial satisfaction”, and is studied in the literature under the notion

of preference-based planning. In [45] they focus on computation of relaxed plan-based

heuristics that guide the planner towards good solutions satisfying the given preferences.

In [46] they introduce a method for quantifying the satisfaction of linear temporal logic

(LTL) formulae, and propose a planning framework using this method to synthesise robot

trajectories with the optimal satisfaction value. However, they do not consider constraints

where the cost or priority changes over time. Tumova et al. [47] present an automatic

generator for control strategies for a robotic vehicle where constraints are expressed with

LTL formulae. The novelty is the possibility of violating a constraint, according to its

priority, in order to complete the task (e.g., a road lane should not be crossed, but this is

allowed during car parking).

The concept of “comfort” has already appeared in the literature but generally with

different meanings: 1) comfort of the user when navigating using a robotic platform [48, 49]

and 2) comfort of the humans in the area surrounding an autonomous robot [50]. Our

notion of comfort belongs to the first class and it is deeply rooted in the requirement

analysis and in the validation activities with senior users that we have been conducting

in the context of the DALi and of the ACANTO projects. Our findings are that the user

needs to specify zones that she likes or dislikes. As an example, more often than not she

would prefer to bypass crowded areas or to always have a toilet or a resting place within

easy reach, even if this entails choosing a slightly longer path.

3.3 Short Term Planner

The short term planner algorithm is related to sampling methods (e.g., [51, 33, 34]) and

to recent methods using temporal logic (e.g., [52, 53, 54]). It is also related to methods
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that predict behaviour based on models parametrised with data from sensors (e.g., [55]).

In common with existing sampling methods, our algorithm uses randomisation to cover

an intractably large configuration space. In contrast to many existing uses of sampling,

however, we do not assume a fixed environment. In our application the environment

contains both fixed and dynamic elements, such that a single optimal path cannot be

defined a priori. Hence, the problem we solve by sampling is not one of creating an

optimal long term plan, but one of finding an optimal short term plan given a changing

environment.

Model checking is an automatic process to verify that a system satisfies a property

specified in temporal logic. In the present context, temporal logic can express complex

dynamical properties such as “the user will visit all the desired locations in a specified

sequence, within the specified time” and “the user will never get too close to any other

pedestrian”. If the notion of an optimal path can be so defined, the principles of model

checking can be used to directly synthesise a ‘correct’ motion planner or to prove that an

existing motion planner is correct [52, 53, 54]. The use of probabilistic model checking in

combination with the theory of stochastic hybrid automata [56] is particularly appealing

for control and robotic applications where a non-zero probability of failing the mission

can be tolerated. For example, in [57, 58] for air traffic control or in [59, 60] for industrial

robotics. Combining model checking with sampling, algorithms can be constructed which

provably converge to optimal schedulers [54]. Standard model checking algorithms are

computationally intensive, hence existing applications have used model checking offline.

By using statistical model checking, we are able to perform online verification. We do

not prove correctness, but we find a short term plan that maximises the probability of

success.

3.4 Identification of Human Models

Basically two main approaches exist in the literature for modelling human motion. The

first one proposes a single model that captures the features of the human motion. The

second one relies on different dynamic models that are combined using a switching logic.

One advantage of the first approach is that it is easier from a computational point of

view, while with the second one it is easier to highlight the different decision points that

compose the human behaviour.

One of the most cited models in the literature falls in the first category and is the

Social Force Model (SFM) by Helbing et al. [61], discussed in details in Section 6.2.

It is a continuum model that borrows concepts from molecular dynamics. It assumes

the human motion respects both the physical laws of motion and social conventions,
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and models them as attractive (e.g., friends, points of interest), and repulsive forces (e.g.,

walls, strangers). Its strengths and weaknesses are well tested and understood [62, 63, 64].

However, the resulting behaviours strictly depend on the input parameters, which are not

easy to estimate.

Lämmel et al. [65] presented an interesting comparison between some models for pedes-

trian dynamics and the real world. Specifically, they investigated three approaches (in-

cluding the SFM) and their ability to reproduce collision-free movements in dynamic

environments.

Kelly et al. [66] proposed a switching model that combines constant acceleration,

constant velocity and constant position models with a Kalman filter. The switching logic

is based on the statistical properties of the innovation sequences computed by the filter.

Moussäıd et al. [67, 68] focused on social groups and how the self-organisation mech-

anism of people affects crowd dynamics.

Burstedde et al. [69] proposed to track pedestrian dynamics using a two-dimensional

cellular automaton.

Lau et al. [70] proposed a multi-model for group tracking and group size estimation.

They have a set of hypotheses (e.g., split, merge and continuation) that they validate on

the observed data. However, in their case the microscopic motion of a single person loses

importance, in favour of the behaviour of the whole group.

A comprehensive survey on the available mathematical models for pedestrian motion

has been presented by Schlake in her master thesis [71].
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Long Term Planner

This chapter goes into details of the long term planner . The algorithm and its validation

are presented in the following sections, where both qualitative and quantitative results

are given.

4.1 Preliminaries

The proposed long term planner has been developed bearing in mind a number of require-

ments. The key point is letting the user personalise her journey while keeping the planner

reactive to changes in the environment. For this reason we have implemented three main

features.

The first feature gives the user the possibility of adding hard (non-violable) and soft

(violable) constraints, according to some customisable priority. It is possible to encode

rules like “never get closer than 5 meters to any stair” or “try to keep within 10 meters

of a toilet”, or “always be within sight of a clerk or of a policeman”. Should a soft

constraint be in conflict with another one, the issue is resolved by violating the one with

lower priority. A hard constraint, instead, cannot be violated.

The second feature reacts to anomalies detected in the environment by the sensing

subsystem. An anomaly is a bounded zone in the environment that becomes inaccessible

for a limited period of time (e.g., a wet floor or blocked passage). After this period expires,

the anomaly is cleared and the zone is accessible again.

The last feature takes into account the crowded spots in the environment. They are

represented as heat maps (an example is shown in Figure 4.6) where the apparent “heat”

Part of this chapter was published in
A. Colombo, D. Fontanelli, A. Legay, L. Palopoli and S. Sedwards, “Efficient Customisable Dynamic Motion
Planning for Assistive Robots in Complex Human Environments”, Journal of Ambient Intelligence and Smart
Environments, IOS Press, September 2015, [20].
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Figure 4.1: Diagrammatic overview of the long term planner . Informed by the heat maps and
anomaly detectors, the long term planner constructs a long term plan according to the user’s
constraints. The plan is then transferred to the control subsystem.

represents the level of crowdedness. The planner interprets this level as a penalising

factor that slows down the user. Some users could also have specific constraints related

to avoiding crowded areas.

The work flow of the algorithm begins with the user specifying a list of target locations

she wants to visit in the environment. The long term planner constructs a plausible path

(a long term plan) according to the constraints in the user’s profile and to the current

conditions in the environment (known anomalies and current crowding represented by heat

maps). This data is sampled periodically from remote sensors (e.g., surveillance cameras).

If other robots are deployed in the environment, they can use their local sensing system to

detect anomalies and share this information through a cloud infrastructure. For instance,

if a walker detects a wet floor sign, this information is propagated to the other robots and

accounted for in the generation of long term plans. Once the user accepts the plan and

starts moving, the control subsystem takes over, allowing the short term planner to make

limited adjustments depending on the contingencies encountered on the ground. In the

event that the user is unable to follow the plan with only such limited modification (e.g.,

an unforeseen obstacle), the control subsystem has the capability to report the event and

can request the construction of a new long term plan.

The long term planner produces the optimal path according to the diagram depicted

in Figure 4.1 and described as follows: 1. the map is broken down into a grid of discrete

cells containing free space, 2. a graph is derived from the grid, where each node is on

the border between two cells cell and each arc is a path in free space, 3. the graph is
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changed by adding relevant semantic information (e.g., associating points of interest with

some of the cells), 4. each arc is associated with a cost that accounts for the distance to

travel and for the occupancy of the area (the more people, the longer the time to travel),

5. additional manipulation are made to exclude (or to have a negative reward for) paths

that violate the user preferences, 6. the optimal path is found using the modified Dijkstra

algorithm.

In the next sections the algorithm is presented in its full details.

4.1.1 Preliminaries

To describe our long term planner, we first define some notation and operations on graphs.

A graph G = (N,E) is a set of nodes n ∈ N linked by a set of edges e ∈ E. An edge

e = (n, n′) ∈ E is defined by its two adjacent nodes n, n′ ∈ N .

Given graphs G1 = (N1, E1) and G2 = (N2, E2), G1 ⊆ G2 =⇒ N1 ⊆ N2 ∧ E1 ⊆ E2

means that G1 is a subgraph of G2.

Given G1 ⊆ G2, G2\G1 = (N2\N1, E2\{e ∈ E1 | e = (n, n′) ∧ (n ∈ N1 ∨ n
′ ∈ N1)} is

the graph that remains after removing G1 from G2. We do not consider G2\G1 if G1 6⊆ G2

Pairwise graph union is defined by G1∪G2 = (N1∪N2, E1∪E2). The union of a set of

graphs G = {G1, G2, G3, G4, . . . , Gm} is denoted
⋃

G and performed pairwise, such that
⋃

G=((· · · (((G1 ∪G2) ∪G3) ∪G4) ∪ · · · ) ∪Gm).

4.2 Planning Algorithm

The long term planner proposes feasible paths that efficiently visit the user’s specified

points of interest, while respecting the user’s preferences and accommodating the pre-

vailing conditions in the environment. To achieve this, the long term planner abstracts

a complex environment, such as a shopping mall, airport, museum, etc., as a weighted

directed graph, comprising a set of nodes linked by edges. The nodes represent places

in the environment, while the edges represent direct paths between the places and are

weighted by their effective length. The a priori length of an edge is the Euclidean distance

between its adjacent nodes. The effective length of an edge is generally longer, modelling

its undesirability with respect to crowding and the user’s preferences.

Nodes are labelled with their physical location (coordinates on the plan of the environ-

ment) and their corresponding semantic position (supermarket, toilet, post office, café,

bar, bakery, etc.). Each edge in the graph is labelled (weighted) with the effective distance

between its adjacent nodes. Then, using efficient graph traversal algorithms, such as the

Dijkstra algorithm [21], it is possible to find the shortest paths that link the user’s points

of interest. Moreover, anomalies and crowding can be included in the same framework
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by simply modifying the graph prior to finding the shortest path. In particular, anoma-

lies cause parts of the graph to be (temporarily) removed, while crowding increases the

weights of edges in crowded areas (their effective length is increased because crowding

slows the user’s progress). Certain user preferences, such as always being near a toilet,

may also be encoded as graph transformations.

4.2.1 Creating graphs from floor plans

To construct a graph that efficiently maps the free space in the environment, we first

decompose its floor plan into a ‘quad tree’ [72], comprising quadrants containing free

space (free quadrants) and quadrants occupied by fixed objects (occupied quadrants). A

graph is constructed by embedding nodes in only the free quadrants and linking them

with appropriate edges. The quad trees typically have substantially fewer cells than

a uniform grid with the same level of minimum granularity, with the density of cells

generally following the density of features [73]. An example is shown in Figure 4.4.

Given a quad tree decomposition of the free space, the corresponding graph is con-

structed as follows. For all pairs of adjacent free quadrants, a node is embedded at the

mid point of the border of the smaller of the quadrants. By definition, a free quadrant

is a convex shape containing only free space. Hence, any node on the border of a free

quadrant has a “line of sight” to all other nodes on the borders of the same quadrant.

We therefore join such nodes with a complete graph. Since nodes are shared between

adjacent quadrants, this is sufficient to link all the free space in the environment.

To guarantee that the robotic platform may occupy any point in free space represented

by a node, or travel the line represented by any edge, prior to building the quad tree the

fixed objects are enlarged in all directions by a distance greater than the radius of the

robotic platform. In this way no point in the effective free space is ever too close to a

fixed object and all paths in the graph correspond to plausible paths in the environment.

4.2.2 Creating a long term plan

To represent the a priori knowledge about the environment we define a “graphmap” data

structure M = (G,W,C, L). G = (N,E) is a graph of the environment derived from a

quad tree, as described in Section 4.2.1. Function W : E → (0,+∞] assigns a length

(the Euclidean distance between the points denoted by adjacent nodes) to all the edges of

the graph. Function C : N → (Q,Q) labels each node with its spatial coordinates in the

environment. Function L : N → P ∪ {uninteresting} labels each node with its semantic

location, where P = {supermarket, bakery, café, etc.} is a set of points of interest.

To generate a long term plan we also define a “working copy” of the graph map (the
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working graphmap), modified according to the user’s constraints, the current crowding

and the known anomalies. We denote the working graphmap M′ = (G′ = (N ′, E ′) ⊆

G,W ′, C, L). In general, the graph G′ excludes any inaccessible subgraphs arising from

anomalies or the user’s constraints. The weighting functionW ′ assigns an effective length

to all edges, which includes the effects of crowding and the user’s constraints. The con-

struction of G′ and W ′ are described in Sections 4.2.3, 4.2.4 and 4.2.5.

Given a working graphmap M′ and a (possibly ordered) set of user-specified points

of interest, the long term planner proposes a path that visits the points of interest while

respecting the user’s global constraints. Formally, given a user-specified set of points of in-

terest {pj ∈ P}
m
j=1, the planner suggests a path {ni ∈ N

′}ki=1 s.t. ∀pj ∈ {p1, . . . , pm} ∃ni ∈

{n1, . . . , nk} ∧ L(ni) = pj. If the path must respect the order of the specified points of

interest, then additionally ∀ps, pt ∈ {p1, . . . , pm}, ∄ni, nj ∈ {n1, . . . , nk} s.t. s > t ∧ i <

j ∧ L(ni) = ps ∧ L(nj) = pt holds true.

Finding the minimum length path that visits a set of unordered points of interest is an

instance of the well known NP-hard ‘travelling salesman problem’ [74]. Moreover, given

that the overall excursion (including stops at the points of interest) may take considerable

time, an overall plan optimised for the current level of crowding may eventually be sig-

nificantly sub-optimal if the crowds dissipate. Our approach is therefore to optimise each

leg of the journey separately, using the most up-to-date information about anomalies and

crowding.

In general and in simple terms, long term planning works in the following way. The

planner first identifies the node n0 ∈ G
′ that is closest to the user’s current coordinates

(x0, y0). This is given by n0 = argminn∈G′ ‖ C(n) − (x0, y0) ‖. If the user’s points of

interest have been specified in order, the planner uses Dijkstra’s algorithm to find the

shortest path between n0 and the next unvisited point of interest specified by the user. If

the user has not specified an order, the planner uses a modification of Dijkstra’s algorithm

to find the shortest path between n0 and the closest unvisited point of interest. Given

the trajectory and the user’s coordinates, n0 may not be the optimum first node in the

path (it may be effectively behind the user on the path). The planner therefore sets the

first node of the path to be the node by which the user will leave the current quadrant.

The inclusion of time-dependent anomalies makes the actual long term planning algo-

rithm slightly more complex. Handling such anomalies is described in Section 4.2.5.

4.2.3 Global constraints

The user may specify constraints that affect the long term plan (e.g., always remain

within 50 metres of a toilet). We call these global constraints to distinguish them from,

for example, local constraints that might be implemented by the short term planner (e.g.,
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don’t get too close to other pedestrians). Global constraints may be hard or soft. Hard

constraints exclude parts of the environment that the user does not wish to visit under

any circumstances. They are implemented by removing subgraphs from G. The set of

hard constraints is denoted x ∈ X, x ⊆ G, hence G′ = G\
⋃

X. Removing parts of the

graph may significantly lengthen the planned journey or make it impossible, hence the

final plan (or lack of it) is presented to the user for approval.

Soft constraints make parts of the environment desirable or undesirable to the long

term planner , causing the planned path to deviate towards or away from them, respec-

tively. They are implemented by defining a function K : E → [1,+∞] that modifies

the weights of edges to and from desirable and undesirable nodes. The function K is

applied according to (4.1), introduced in Section 4.2.4. If no constraint applies to the

nodes adjacent to edge e then K(e) = 1. In general, given two nodes n and n′ con-

nected by edges e = (n, n′) and e′ = (n′, n), for a single constraint K(e) > K(e′) ⇐⇒

n is more desirable than n′. In the case of multiple constraints applying to the same edge

e, the value of K(e) is the maximum considering all constraints.

In our implementation, soft constraints are specified using sets of triples (location,

radius, intensity), which respectively define the semantic position, the radius of influence

and the intensity of the constraint. In general, a constraint creates a gradient of weights

that increase towards undesirable zones and vice versa for desirable zones.

We define a function K̃i : [0, radius] → [1, intensity] that maps distance from the

border of location i to the weight of the gradient. This function should be monotonic

non-increasing in case of undesired locations, and monotonic non-decreasing in case of

desired locations. In both cases its integral should be finite (i.e., the radius of influence

should be finite). Function K̃i is later used by K(e) for associating the weight to each

edge. It is worth noting that there is high flexibility in the choice of K̃i, which improves

the expressiveness of global constraints, allowing per-user customisations (e.g., the profile

of attraction to toilets might be different across users) as well as location based person-

alisation (e.g., the profile of repulsion of an open window is different from the one of a

stair).

More formally, we assume the existence of a set of constraints s ∈ S . The location

of each constraint defines a corresponding set of either desirable or undesirable nodes

Ns ⊆ N that are not necessarily disjoint. Let d(i, j) denote the minimum Euclidean path

distance from node i to node j, then for any edge e = (n, n′) ∈ E, the value of K(e) is

given by

K(e) = max
∀s∈S

(

K∗
locations

[

min
n′′∈Ns

(

d(n′′, n′)
)]

)
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where K∗
locations

is defined as:

K∗
locations

(r) =











K̃locations
(r) if r ∈ [0, radius]

1 otherwise

4.2.4 Heat maps

Cameras in the environment monitor pedestrian traffic and construct “heat maps” that

estimate average occupancy of the free space over useful time periods (e.g., the last five

minutes or a long-term average for a particular day and time). Each point in the free

space is thus assigned a value in the interval [0, 1], denoting its time-averaged occupancy

density. A point with average density 1 is effectively impassable. In practice, not all areas

are monitored and monitored areas will be divided into an array of square cells of uniform

local density. Unmonitored areas are assumed to have zero density. Areas occupied by

fixed objects have density 1.

An edge represents a straight line path between the points in free space represented

by its adjacent nodes. The average occupancy in the area surrounding the line affects

the time taken to travel from one end to the other. The free space that the short term

planner will allow the user to explore can be approximated by an ellipse whose vertices

(“ends”) coincide with the ends of the line. The area of the ellipse represents the capacity

of the edge, while the heat within the ellipse represents the amount of capacity that is

being used by others. To calculate the average occupancy of an edge, we integrate the

occupancy density over its corresponding ellipse. The size and shape of the ellipse is a

function of the edge. For simplicity we define an occupancy function H : E → [0, 1] that

implicitly includes knowledge of the current heat map and performs this integration. The

effective length of an edge is then given by the function W ′ : E → (0,+∞], defined

W ′(e) =
K(e)W (e)

1−H(e)
∀e ∈ E. (4.1)

The intuition behind (4.1) is that the effective length of an edge e is proportional to the

desirability K(e) of the destination node and inversely proportional to the occupancy

H(e). When there is zero occupancy, H(e) = 0 and the effective length is only related

to the desirability K(e) and the Euclidean distance W (e). With full occupancy, H(e) =

1, the effective length is infinite and (4.1) correctly models the fact that the edge is

impassable.
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4.2.5 Anomalies

During the course of a journey the user may encounter anomalies (semi-permanent ob-

structions, such as a wet floor, locked exit, dense crowd, etc.) that prevent the short term

planner from making progress along the long term plan. An anomaly is represented by

a data structure (g ⊂ G, t ∈ (0,+∞]), where g ⊂ G represents the inaccessible region of

the environment and t is the estimated remaining time that the anomaly will last. The

set of active anomalies (those with remaining time > 0) is denoted a ∈ A. Anomalies are

removed from A when their remaining time reaches 0.

Anomalies exclude parts of the environment, but their effect is not permanent and

is dependent on the chosen path. When a new anomaly (g, t) is detected by the short

term planner, it is added to the set of active anomalies and its subgraph is immediately

removed from the working graphmap. Symbolically, A ← A ∪ (g, t) and G′ ← G′\g.

The shortest path to the next point of interest is calculated according to the procedure

described in Section 4.2.2. The approximate time of reaching every node in the proposed

path is calculated according to the average speed of the user.

The new trajectory definitely excludes the recently detected anomaly, but may include

one or more anomalies in A. Hence, the proposed plan is compared to the subgraphs in the

set of active anomalies, to find if there is any intersection. If there is no intersection the

proposed plan is valid. If the proposed trajectory intersects the subgraph of an anomaly,

the time of reaching the anomaly is compared to its remaining time. If the anomaly will

not exist by the time the user reaches it, it is ignored. If no anomalies exist by the time

the user reaches them, the proposed plan is valid. If, on the other hand, one or more

anomalies remain valid by the time the user reaches them, their subgraphs are removed

from the working graphmap and the above procedure is repeated until a valid path is

found.

4.2.6 Time-dependent shortest paths

Our long term planner intelligently avoids looping paths by regularly updating heat maps

and assigning persistence times to anomalies. In this way the planner never returns to

permanent obstacles, but may take advantage of crowding and obstacles that clear. Our

current approach with heat maps assumes that crowding averaged over a period of time

in the immediate past is a good indicator of average crowding for the same time period

in the immediate future. This is reliable for short term predictions, but is less so over the

longer term because long term averages may mask large peaks of crowding. With regard

to anomalies, our planning algorithm takes a cautious approach, assuming that an active

anomaly encountered in one proposed path should not be considered in future plans to
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the same point of interest.

Algorithm 1 describes the basis of our shortest path algorithm that considers timed

anomalies, heat maps and user constraints. The algorithm finds the shortest path between

the user’s current position and the closest point of interest. If points of interest are

required to be visited in a specific order, it is assumed that the set Targets contains only

those nodes corresponding to the next point of interest to visit.

The algorithm makes use of several functions. K(e), W (e) and H(e) are as in (4.1).

Function Edges(n) returns the set of outgoing edges of node n. Function Dest(e) returns

the destination node of edge e. Function Anomalytime(e) returns the absolute time at

which edge e will be available. This function returns 0 for all edges that are not part of

an anomaly. Two functions are updated during the planning process. Function Dist(n)

returns the currently known shortest distance to node n. This is initially ∞ for all nodes

except the initial node, for which the function returns 0. Function Time(n) returns the

estimated time to reach node n given the user’s average speed (denoted speed). The

function initially returns ∞ for all nodes except the initial node, for which it returns 0.

In trying to satisfy the conflicting constraints of dynamic motion planning in com-

plex human environments, we have considered many alternatives and refinements to our

algorithms. There is no off-the-shelf perfect solution, given the inherent uncertainties

and variability of the problem. In particular, finding time-dependent shortest paths is

known to be hard and is itself the subject of active research [41, 42, 43, 44]. Our present

approach is a satisfactory compromise between efficiency and efficacy. We can imag-

ine circumstances under which it might be challenged, but we propose to allow further

development to be led by problems encountered in real applications.

4.3 Implementation Aspects

The algorithm presented in this work has been designed keeping flexibility in mind. We

devised an API that abstracts the low level structures and exposes a simple but efficient

interface. It is divided into a number of layers visible in Figure 4.2. The bottom layer is

represented by the long term planner itself, which is linked with the top level (the API)

via three main blocks.

The first block is denoted “Environment and map” and, as the name suggests, allows

external services to access and update information about the environment. Such data

includes the map of static obstacles and walls, the heat maps and the anomalies. The

latter can be grouped into categories, two being available by default: “wet floor” and

“destination out of order”. New categories can be added at runtime upon request by the

third-party services.
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Algorithm 1 Shortest path considering anomalies, heat and constraints

The initial node is the closest node to the user
Targets : a set of target nodes corresponding to the user’s points of interest
Visited : a set of visited nodes, initially containing the initial node
Unvisited : a set of unvisited nodes, initially containing all nodes except the initial node
current← initial node
while current 6∈ Targets do

for all e ∈ Edges(current) do
if Dest(e) ∈ Visited then

continue

end if

if Anomalytime(e) > Time(current) then
continue

end if

d← Dist(current)K(e)W (e)/(1−H(e))
if Dest(e) ∈ Unvisited then

if d > Dist(Dest(e)) then
continue

else

Unvisited← Unvisited\{Dest(e)}
end if

end if

Time(Dist(e))← Time(current)
+W (e)/(1−H(e))/speed

Dist(Dest(e))← d
Visited← Visited ∪ {Dest(e)}

end for

Visited← Visited ∪ {current}
Unvisited← Unvisited\{current}
if |Unvisited| > 0 then

current← n ∈ Unvisited :
Dist(n) ≤ Dist(n′), ∀n′ ∈ Unvisited

else

report no possible path and quit
end if

end while
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Long term planner

API

Cloud servicesEnvironmental
monitoring

Smartphone APP

Heat maps Anomalies

Environment and map

Constraints

User profilePlan

Figure 4.2: Structure of the API. The layers are of increasing abstraction, where the public
interface is flexible and extensible at runtime by the third-party services. The overall low
complexity enables a broad choice of implementations, from a service in the cloud to a standalone
smartphone app.

The second block, “Plan”, exposes the planning capabilities. Given the starting po-

sition, it is possible to query for the construction of the optimal path directed to one or

more goals. The planner automatically considers the current status of the environment

and biases the resulting trajectory according to the user preferences. Moreover, alterna-

tive sub-optimal paths can be generated upon request, for example when the chosen path

is blocked by an unforeseen obstacle detected by the short term planner.

The last block is the “User profile” and encapsulates the interface for accessing the

global constraints and other user information, such as her location and the tuning param-

eters for dealing with anomalies and crowded areas.

This API can be installed and accessed practically anywhere, thanks to the low com-

putational burden highlighted in Section 4.5.3. For example, it can be packaged in a

standalone mobile application for providing the users an interactive map of a shopping

mall, or implemented as a cloud service, as described in the next section.

4.3.1 Implementation of a Cloud Service

For the experiments presented in details in Chapter 7, we implemented the planner as a

service in the cloud. The interface was written in C++, while efficient Java was used for

the planning part. The standard Java Native Interface (JNI) provides the link between
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Figure 4.3: Screenshot of the map designer tool showing an example floor plan. Enables the
user to create maps and generate the associated graph, compliant with the long term planner .
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Figure 4.4: Graph and a sample path generated from the map depicted in Figure 4.3.

these elements.

The map of the environment is stored using SpatiaLite1, a lightweight serverless spatial

database that allows performing queries in the geometric space. A quad tree decomposi-

tion is then performed on the map and the resulting graph is used by the planner.

The communication with the remote clients takes place through exchange of JSON

messages over a TCP link, in a request-reply mechanism, where the planner acts as a

server.

4.4 Qualitative Analysis

We have implemented two tools, a map designer and a simulator. The map designer is

written in MATLAB and enables the user to draw, load and save floor plans, as well as

1http://www.gaia-gis.it/gaia-sins/

http://www.gaia-gis.it/gaia-sins/
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Figure 4.5: Simulation with constraints. The picture shows two independent simulations of how
the planner deals with desirable and undesirable zones. The continuous line is the result of the
constraint “stay close to the desirable zone” and “stay away from the undesirable zone”, while
the dashed line addresses only the latter.

performing quad tree decomposition and graph construction. The user is provided with a

GUI to freely draw geometric shapes (Figure 4.3) and generate the corresponding graph

(Figure 4.4) to be used in the simulator.

The simulator is written in MATLAB and Java and allows the user to visually configure

global constraints, heat maps, anomalies and all parameters required by the long term

planner . For performance reasons, the planning algorithm has been developed in Java

and communicates with MATLAB through the integrated Java interface.

The chosen floor plan for the validation is a large room of approximately 200 m2 with

two non-aligned central columns. The starting point is set at the left hand side of the

map in the midway along the shortest wall. The goal is set at opposite side of the room,

such that the shortest path connecting the starting point to the goal is a straight line.

In the remainder of this section we will go through each feature separately and, finally,

show a more complex simulation combining different features.

4.4.1 Global constraints

We show how the planner is able to deal with the user preferences when computing the

plan. In the first simulation we put an undesirable zone in the middle of the room,

overlapping the shortest path. In the second simulation, instead, we identified a desirable

zone (e.g., a restroom) close to the top wall of the map without interfering with the

shortest path. In both simulations the minimum distance to the zones is set equal to 1.5

m and the intensity is set to 2.

We ran these two simulation separately and the results can be seen in Figure 4.5. The

planner correctly takes the constraints into account by properly bending and extending
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Figure 4.6: Simulation with a heat map. The path computed by the planner is represented by
the continuous line and bypasses the crowded spot in the middle of the map (i.e., yellow zones).
The preference is for cold zones (i.e., blue-coloured areas).

the original shortest path.

Should the undesirable zone be the only possible access point for reaching the goal, the

planner can violate the constraints as long as the intensity is not −∞ (i.e., never touch

the undesirable zone).

4.4.2 Heat maps

We placed one rectangular shaped heat map in the centre of the room, covering the whole

space between the two columns and the walls at the top and bottom of the figure. The

planner is thus forced to go through the area covered by the heat map to reach the goal.

We ran 50 simulations with different heat distribution generated by a sum of bivariate

Normal probability density functions (normalised between [0, 1]) with random parameters.

In all cases the planner correctly took into account the presence of the heat map.

The outcome of one particular simulation can be seen in Figure 4.6, where the planner

properly avoids hot (yellow-coloured) zones.

4.4.3 Anomalies

In order to test the time based anomalies we set the average user speed to 0.5 m/s and

we placed a rectangular anomaly in the middle of the room. Figure 4.7 depicts two paths

constructed by the long term planner during two independent simulations with different

durations of the anomaly. In this way we are able to show how the planner manages the

disappearance of an anomaly. In the first run (dashed line) we configured the expiration

of the anomaly in such a way that it expires when the user has covered approximately

half of the path. In the second run (continuous line) the anomaly disappears after the
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Figure 4.7: Simulation with anomalies: two independent simulations are shown. The dashed
line represents the path generated when the anomaly is set to expire half way to the goal. The
continuous line, instead, shows the resulting path when the anomaly does not expire.
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Figure 4.8: Simulation with multiple features. The planner satisfies all the user requests, but is
forced to ignore the constraint for the undesired zone, as it is the only way for reaching the goal.

user reaches the goal position. It is clearly visible that, in the first case, as soon as the

anomaly expires the planner re-routes the user towards the shortest path, overlapping

what was the area occupied by the anomaly.

4.4.4 Combination of features

The last validation test considers a combination of multiple features in one simulation.

We placed one undesired zone, one desired zone, one anomaly and one heat map as shown

in Figure 4.8. In particular, the undesired zone completely blocks the passage for reaching

the goal. However, as visible in the previous figure, the long term planner is able to ignore

the unfeasible constraint. The path then bends towards the desired zone, bypasses the

unexpired anomaly and, finally, avoids the crowded region represented by the heat map.
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4.5 Quantitative Analysis

We now go through the results of some simulations providing a quantitative analysis of

the performance of the long term planner . The goal is to show that the benefits of using

the long term planner are evident not only from a qualitative point of view, as shown in

Section 6.4, but also from a tangible set of performance metrics.

4.5.1 Global constraints

The simulations presented in this section show how the planner interprets the intensity

parameter of an undesired or a desired global constraint. The environment and the posi-

tion of the desired/undesired locations are the same as those considered in Section 4.4.1

and illustrated in Figure 4.5. We identified this particular scenario because it is a worst

case situation: the desirable location is at the farthest possible distance from the shortest

path and the undesirable location conflicts with the shortest path.

For simplicity and without any loss of generality, in these simulations we define K̃ as a

linear function that is monotonically increasing for desired constraints, and monotonically

decreasing for the undesired ones.

To measure the characteristics of a constraint for a desirable zone, we set the location

as far as possible from the Euclidean shortest path and we fixed the radius to a large value.

We then iteratively executed the planner with increasing intensity and we computed the

minimum direct Euclidean distance of the path from the location (i.e., not considering

the graph). The results are reported in Figure 4.9. As expected, the minimum Euclidean

distance between the path and the desirable zone decreases as intensity increases. The

steps in the plot are due to the quantisation of the free space imposed by the underlying

graph.

A similar procedure was carried out using a constraint for an undesirable zone. We

set the location of the constraint midway along the Euclidean shortest path and fixed the

radius of the constraint to be the largest possible value (in the simulations the limit is the

distance from farthest wall). The intensity of the constraint was then iteratively increased

and we computed the minimum direct Euclidean distance of the resulting path from the

location. The results are shown in Figure 4.10. We observe that as the intensity grows,

the planner “pushes” away the constructed path until the minimum Euclidean distance is

close to the radius. Again, the steps in the plot are due to quantisation of the free space.

The relations highlighted in these paragraphs are strictly dependent on the considered

environment. Different locations, position of obstacles or constraints lead to different

relations. An open problem, to be addressed in future work, is how to generalise the

relationship between these parameters.
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Figure 4.9: The effect of intensity on the minimum Euclidean distance from a path to a desirable
zone on a particular simulation run. As intensity increases the path is attracted towards the
desirable location: the Euclidean distance decreases.

4.5.2 Heat maps

We demonstrate that the long term planner is able to provide better (i.e., quicker) tra-

jectories when it is aware of the crowdedness in the environment.

We set up a simulation similar to the one in Section 4.4.2, where the heat map covers

the environment as in Figure 4.6. We then iteratively increase the heat surface, simulating

an expanding crowd, starting from no crowd (0% crowdedness) up to a completely crowded

area (100% crowdedness). At each iteration we call the long term planner and we compute

both the optimal path (e.g., considering the heat encoded in the effective distance) and

the Euclidean shortest path (e.g., a straight line directed to the goal that passes through

the crowded area).

The Euclidean shortest path Ne = {ni ∈ N
′}ki=i is constructed by assuming H(e) = 0

in (4.1). The true cost We of Ne is then computed by removing the H(e) = 0 assumption,

thus

We =
∑

W ′(e), ∀e = (n, n′) ∈ Ne

The results are shown in Figure 4.11. The very slow growth of the effective length of

the path considering heat (thick line) is clearly visible. The planner diverts the path to

avoid the hot areas until this becomes impossible (i.e., when crowdedness reaches 100%).

In contrast, the effective length of the Euclidean shortest path explodes exponentially

(thin line), making the planner unable to find a path when the average crowdedness level

is greater than 5%.
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Figure 4.10: The effect of intensity on the minimum Euclidean distance from a path to an
undesirable zone on a particular simulation run. As the intensity increases the path is pushed
away from the undesirable location (the Euclidean distance increases) until it approximates the
specified radius (20 m, dashed line). The constraint is actually implemented with respect to the
effective length of the path, which is shown for comparison.

4.5.3 Computing time

We tested the performance of the long term planner on the BeagleBoard xM2, an af-

fordable embedded board equipped with an ARM processor running at 1 GHz and 512

MB LPDDR RAM. The operating system is Ubuntu 12.04 and the Oracle Java Virtual

Machine 1.8.0 u6 is installed.

Our goal was to verify the feasibility of an online implementation in a realistic scenario

and the scalability of the performance with increasing dimensions of the graph. We thus

designed a map of a large shopping mall (500 m x 250 m) and performed quad trees

decomposition (Section 4.2.1) with different minimum resolutions of the quadrant, varying

from 4 m to 0.8 m. This way the resulting graphs had different sizes, from 1686 nodes

and 13832 edges, to 23016 nodes 264026 edges.

For each graph we prepared a benchmark script that sets up the Java planning algo-

rithm and queries 20 times for a path between the same two points at the opposite sides of

the shopping mall. We then timed both the setup phase (e.g., loading the graph structure

in the planning algorithm) and each of the planning queries. Finally, we computed the

mean (µ) and standard deviation (σ) of the timings.

The results are reported in Table 4.1. The worst case, as expected, occurs with the

largest graph. In this case we measured µ = 1983 ms and σ = 239 ms for the setup phase,

and µ = 812 ms and σ = 139 ms for the query phase. These results are encouraging and

show that the current implementation, that can easily be further improved, is already

2http://beagleboard.org

http://beagleboard.org
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Figure 4.11: Relation between level of crowdedness and effective length of the path. When
the planner is aware of the heat maps in the environment, the long term planner is able to
avoid the heat and the effective distance increases slowly with increasing crowdedness (thick
line). Without this information, the long term planner just chooses the shortest Euclidean
path, whose effective length increases exponentially.

reasonably fast for an online execution. As a final note, it should be noted that in real

scenarios the setup phase needs to be executed only when the graph structure (i.e., the

floor plan) changes permanently.
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Table 4.1: Performance of the long term planner on a BeagleBoard xM with different graph
dimensions for both setup and query phase. Mean (µ) and standard deviation (σ) are reported
for each phase.

Resolution of Graph size Setup [ms] Query [ms]

the quad tree [m] Nodes Edges µ σ µ σ

4.0 1686 13832 78 35 56 61

2.0 4404 43720 282 141 163 117

1.0 10133 108818 829 354 361 176

0.8 23016 264026 1983 239 812 139



Chapter 5

Short Term Planner

In this chapter we present the short term planner , the local motion planning algorithm

that drives the user in a dynamic environment.

5.1 Preliminaries

Figure 5.1 gives a high level overview of the algorithm. At each iterative step the algorithm

acquires the state of the system, comprising the position of static objects and the position

and velocity of the user and of other people in the environment.

Given the current state, the algorithm hypothesises alternative courses of action using a

human motion model. Each hypothesised trajectory is formally verified (model-checked)

against properties that express goals and constraints required for the user’s trajectory

(i.e., where the user wants to go, obeying the appropriate social rules). This leads to

a statistical distribution of potentially successful trajectories. The algorithm uses this

distribution to choose an immediate action that maximises the probability of achieving

the user’s objectives and minimises the probability of problems. In this probabilistic

context, the measurement noise is considered as an additional source of stochasticity.

The human motion model is an external module that generates plausible trajectories

of people and remains transparent to the short term planner . Obvious requirements

for this module are: 1) efficient prediction of the interactions that take places between

pedestrians, 2) explicit inclusion of the user’s objectives, and 3) possibility to capture the

stochastic variations coming from the imponderable decisions of the different humans in

the scene.

Part of this chapter was published in
A. Colombo, Fontanelli, A. Legay, L. Palopoli and S. Sedwards, “Motion planning in crowds using statistical model
checking to enhance the social force model”, Decision and Control (CDC), 2013 IEEE 52nd Annual Conference
on, 10-13 December 2013, [22].
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Figure 5.1: Diagrammatic overview of the short term planner . The sensors detect the current
state of objects in the environment. This state is used by the human motion model to generate
plausible future paths of the user and other pedestrians. The distribution of paths is verified
against the objectives of the user in order to suggest an optimal course.

We use the stochasticity to generate a random sample of possible futures and choose

the course of action that maximises the probability of success. Such trajectories respect

the basic social and physical laws of pedestrian interactions and include the possibility

of unpredicted behaviour. Their distribution allows the algorithm to choose a course of

action that maximises the probability of success.

The stochasticity, while realistic, places an upper bound on the predictive accuracy

of the model. Moreover, the model alone cannot account for the overall “mission” of

the user. The predictive model needs to be managed reactively. Fortunately, the field of

statistical model checking (SMC) encapsulates the technologies that we require to do this.

SMC provides efficient algorithms to verify hypothesised trajectories against the user’s

constraints and objectives expressed in temporal logic. SMC can estimate the probability

of success and bound the error of the estimation.

The key elements of our approach are (i) the human motion model to hypothesise

trajectories that respect low level social and physical “forces”; (ii) temporal logic to

express the high level goals of the user and (iii) a statistical model checker to verify the

traces with respect to the goals.

5.2 Statistical and Probabilistic Model Checking

Model checking is an automatic technique to verify that a system satisfies a property [75].

Typically, the system has discrete states and the property is specified in temporal logic.

The output of standard model checking algorithms is either true or false, with the pos-

sibility to give corresponding examples or counter-examples. The logics used are desired

to be expressive, but must be decidable and tractable. Typical logics for standard model

checking include LTL and CTL [76]. To give a result with certainty, the algorithms effec-
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tively perform an exhaustive exploration of the state space of the system. The number

of states scales exponentially with the number of interacting components in the system,

leading to a ‘state explosion problem’ [75] that can make standard model checking slow

or intractable.

Probabilistic model checking extends the standard notion to include probabilistic or

stochastic transitions. These can express the uncertainties of modelling and reality. The

output of probabilistic model checking algorithms is the probability that an arbitrary

execution of the system will satisfy a given property. Such properties are specified in

probabilistic or stochastic logics, such as PCTL and CSL [76]. The probabilistic model

checking problem is solved with numerical model checking algorithms. These calculate

the notionally exact probability by considering all the states. As such, they suffer the

same state explosion problem as standard model checking algorithms.

Statistical model checking (SMC) is a type of probabilistic model checking that avoids

the state explosion problem by estimating the probability of a property φ from executions

(simulations) of the system. Given N independent simulation traces ωi, i ∈ {1 . . . N},

and a model checking function 1(ωi |= φ) ∈ {0, 1} that indicates whether ωi |= φ (read

“ωi satisfies φ”), the probability γ that an arbitrary execution satisfies φ is estimated

using γ ≈ 1/N
∑N

i=1 1(ωi |= φ). This reduces the probabilistic model checking problem

to estimating the parameter of a Bernoulli random variable, hence the confidence of

the estimate can be guaranteed by standard statistical bounds, described in Section 5.3.

In general, the confidence of the estimate increases with increasing N . In comparison

to standard and numerical model checking, SMC does not require decidable logics nor a

finite state space, making it particularly suitable for the present application that considers

continuous time and space.

5.2.1 Bounded Linear Temporal Logic

Our model checking engine is based on the PLASMA-lab library [77]. PLASMA-lab

implements the function 1(ωi |= φ) using bounded linear temporal logic (BLTL [78]) to

express the property φ:

φ = φ ∨ φ | φ ∧ φ | ¬φ | F≤tφ | G≤tφ | φU≤tφ | Xφ | α

∨,∧ and ¬ are the standard logical connectives and α is a Boolean constant or an atomic

proposition constructed from numerical constants, state variables and relational operators.

X is the next temporal operator: Xφ means that φ will be true on the next step. F, G and

U are temporal operators bounded by time interval [0, t], relative to the time interval of

any enclosing formula. We refer to this as a relative interval. F is the finally or eventually
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operator: F≤tφ means that φ will be true at least once in the relative interval [0, t]. G

is the globally or always operator: G≤tφ means that φ will be true at all times in the

relative interval [0, t]. U is the until operator: ψU≤tφ means that in the relative interval

[0, t], either φ is initially true or ψ will be true until φ is true. Combining these temporal

operators creates complex properties with interleaved notions of eventually (F), always

(G) and one thing after another (U). A detailed description of the semantics of BLTL is

given in [78].

5.3 Statistical Confidence

The statistical model checker deals with N independent simulations ωi that can either

satisfy (ωi � φ) or not satisfy (ωi 2 φ) a given logical property. The goal is to produce an

approximation interval [p − δ, p + δ] for p = Pr(ωi |= φ), with a confidence (1 − α) with

α ∈ [0, 1].

Hence, the problem is reduced to the estimation of the parameter of a Bernoulli random

variable Xi where

Xi =







1 if ωi � φ

0 if ωi 2 φ

One possibility to guarantee the confidence of the estimate is using the Chernoff-

Hoeffding bound [79] for sum of i.i.d. binary random variables X =
∑N

1 Xi. In particular,

Theorem 1 states that

Pr(X − E[X] ≥ δ) ≤ e−2Nδ2

and symmetrically,

Pr(−X + E[X] ≥ δ) ≤ e−2Nδ2 .

Thus, we can sum up these two inequalities and obtain

Pr(|X − E[X]| ≥ δ) ≤ 2e−2Nδ2

that can be also interpreted as the probability that X falls outside the interval of

confidence of size 2δ around E[X], namely the level of statistical confidence α

α = Pr(X /∈ [E[X]− δ,E[X] + δ]) ≤ 2e−2Nδ2 .

If we solve this equation for N we get
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Figure 5.2: Relation between number of simulations N and statistical confidence α according to
the Chernoff-Hoeffding bound in (5.1).

N ≥ −
ln(α/2)

2δ2
(5.1)

meaning that we require at least this number of simulations in order to have (1 − α)

confidence interval E[X] ± δ. Figure 5.2 shows how changing the number of simulations

N affects the confidence of being within the interval α according to the (5.1).

A very good source for going into more details has been written by Mitzenmacher and

Upfal in their book Probability and computing [80].

5.4 SMC–based Motion Planner

Our motion planner is based on the Algorithm 2. The planner assumes the existence of a

pre-calculated long term plan that visits the user’s objectives in an a priori optimal way,

that is, considering all things known in advance. Typically, as discussed extensively in

Chapter 4, the long term plan is computed with respect to a map of the static objects in the

environment, the user’s objectives and predicted anomalies (e.g., known crowded areas).

Any contradiction of the a priori assumptions (e.g., an unforeseen blockage) triggers a

recalculation of the long term plan.

The sensor board provides the current state of the local environment, located with
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Algorithm 2 The planning algorithm

1: function FindLocalPath(stateuser, stateped1 , stateped2 , . . . , Map, GlobalPlan, Formula,
N)

2: Real Pcurr, dcurr, Pbest, dbest;
3: [Pbest, dbest]=[0,∞];
4: for αcurr ∈ {0,±25,±50,±75,±90} do
5: [Pcurr, dcurr] = SMC(N,Formula);
6: if is better([Pcurr, dcurr], [Pbest, dbest]) then
7: αbest = αcurr;
8: [Pbest, dbest] = [Pcurr, dcurr];
9: end if

10: end for

11: if Pbest == 0 then

12: return STOP;
13: else

14: return αbest;
15: end if

16: end function

respect to the long term plan: the position and velocity of the user (stateuser); the positions

and velocities of other pedestrians (stateped1 , stateped2 , . . . ); the position of static objects

(Map). The algorithm calculates a local way point w, which is the user’s point of greatest

straight line progress along the long term plan within the sensor range. w is used to

calculate the user’s driving velocity v0, assuming a constant desired speed. The driving

velocities of the other pedestrians are estimated from their current velocities.

The algorithm uses the above information to parametrise the human motion model of

the local environment. For the purpose of validation we have used the Social Force Model

(Section 6.2). It is a good tradeoff between complexity and flexibility, as well as being

one of the best known models literature.

Some of the parameters (e.g., τi) of other pedestrians are unknown to the algorithm,

so it assumes the default values given in [81]. In the current implementation we construct

the noise term ξi from two normal distributions; one for the magnitude and one for the

direction.

The motion planner assumes the user will follow the long term plan, but need to

temporarily deviate to avoid collisions. The output of the algorithm is a suggested

deviation, αbest, in the range ±90 degrees relative to the user’s direct path to w. To

find αbest, the algorithm constructs models for each hypothesised deviation in the set

{0,±25,±50,±75,±90}. These values are chosen to span ±75 degrees using a tractable

number of different values, with ±90 included in case the user needs to sidestep an obstacle

(see Chapter 6). Each model is then investigated using statistical model checking.
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The algorithm sets αcurr ∈ {0,±25,±50,±75,±90} and calls function SMC with ar-

guments N and Formula. SMC estimates the probability of success Pcurr for a particlar

deviation αcurr by the proportion of N simulation traces that satisfy the BLTL property

Formula. The value of αcurr is used as the intial deviation: the user’s driving velocity is

initially rotated by αcurr, but at each successive step of the simulation the deviation from

a direct path to w is reduced to zero. This ensures that the user will eventually be close

to the long term plan.

BLTL is expressive enough to define complex sequences of high and low level require-

ments. For the results presented here, Formula merely expresses the basic constraints of

the user:

(G[0,Thorizon]

∧

i 6=u

‖xu − xi‖ > 0.5) ∧ (F[0,Thorizon]‖xu −w‖ < 0.2) (5.2)

xu denotes the position of the user and ‖ · ‖ denotes Euclidean distance. Intuitively, (5.2)

means that “in the next Thorizon time units the user will get no closer than 0.5m to any

other pedestrian and will eventually be less than 0.2m from the long term plan”.

Thorizon is chosen to be the expected time for the user to walk a distance equivalent to

the range of the sensors. Using a higher value might produce impossible trajectories that

pass through unseen fixed objects; using a lower value might exclude possible collisions.

In our implementation we use Thorizon = 4s.

For each hypothesised deviation αcurr, the SMC function returns the probabillity of

success Pcurr and the expected distance from the long term plan, dcurr. These are used by

function is better to decide αbest. is better chooses the smallest | αcurr | which maximises

Pcurr. Ties are resolved by choosing the alphacurr with smallest dcurr or randomly if

dcurr also ties. If Pbest == 0 the user is required to stop (the long term plan will be

recalculated).

Tdecision is the actual time the algorithm takes to make its predictions and must be

less than the time period it is predicting, i.e., Thorizon. In practice Tdecision is bounded

below by the performance of the hardware, the complexity of the environment (fixed and

moving objects) and the confidence required (controlled by the number of simulations,

N). In our implementation, Tdecision ≈ 1s.

At each decision point αbest is suggested to the user. The user may ignore this sug-

gestion and move in a different direction, but the operation of the algorithm in the next

decision period remains the same: αbest is calculated according to the long term plan

and the actual positions and velocities of the user and other pedestrians. Since the user

specifies the long term plan, when generating hypothesised traces the algorithm assumes

that the user is compliant, however ξuser may be used to model a lack of compliance.
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Given an accurate stochastic model of the behaviour of pedestrians, the Chernoff

bound [82] predicts that with N = 10 simulation runs the estimate of the probability of

success has a maximum error of ±0.3 with probability 0.7. With N = 50 the probability

of success has a maximum error of ±0.2 with probability 0.90. In general, the statistical

confidence of the estimate increases with increasing N , but this only increases the prob-

ability of choosing the correct αbest. The predictive power of the model is bounded by

its stochasticty. Thus, given finite computational power, we choose a value of N that

balances the reactive and predictive aspects of the algorithm. That is, we choose a value

of N that allows us to make Tdecision sufficiently small.

The algorithm solves (6.1) using a standard ODE solver [83], which produces traces

comprising a sequence of states at discrete time points. Since the model given in Sec-

tion 6.2 is based on continuous time and space, to guarantee properties that rely on the

distance between objects it is necessary to choose time points that are sufficiently close.

This is achieved by the ODE solver using adaptive time steps.

Simulating the traces accounts for most of the computational cost of the algorithm. We

have found our chosen ODE solver to be efficient and presume its performance scales in a

standard way with respect to the number of visible moving agents M and the complexity

of their interactions. Since the forces in the model are dependent on the distances between

agents, there is an additional O(M2) cost, however M is bounded by the range of the

sensors.

5.5 Quantitative Analysis

In this section we demonstrate the algorithm by means of computer simulations. We have

implemented the algorithm in C++ and we use PLASMA-lab [77] as the statistical model

checking library. To test the algorithm we have created a virtual environment that evolves

according to the Social Force Model and contains fixed objects and other pedestrians that

react to the user’s presence.

The pedestrians are assigned individual long term trajectories to simulate their objec-

tives and individual parameters that reflect the variation seen in reality. The values of the

parameters are based on the ones estimated in [81] and two different but correlated sets,

one for the planner and one for the virtual environment, have been defined in order to

increase the sense of reality. The noise term ξ has been differentiated as well, the standard

deviation of the two normal distributions in the planner has been set as the double of the

one in the virtual environment.

In this way we simulate pedestrians that are reactive to the user and each other, with

behaviour that is realistically unpredictable. Moreover, the simulated device has limited
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omnidirectional sensing range, we suppose it is able to detect agents moving within a

radius of 4 meters with respect to the current position of the user. In the final application,

a sensor board connected to the single board computer will provide the real (estimated)

positions and velocities of the user and nearby pedestrians.

We compared three different strategies:

• SMC with the Social Force Model (SMC + SFM): our novel approach, where

Algorithm 2 computes the short term plan. When detected, an agent is supposed

to evolve according to the Social Force Model.

• SMC with a linear motion model (SMC + LIN): similar to SMC + SFM but

agents evolve according to a different and simpler model. When detected, an agent

is suposed to keep moving with same speed and same direction.

• Social Force Model only (SFM): we analyze the evolution of the environment with-

out any decision points (Tdecision =∞).

For SMC + SFM and SMC + LIN we use the temporal logic formula defined by

Eq. (5.2). We also used the following parameters: Thorizon = {1, 2, 4, 6, 8}, Tdecision = 1 and

N = 50. We performed 500 independent runs for SFM and 500 for every combination of

Thorizon for SMC+SFM and SMC+LIN . Our objective was to demonstrate that 1) the

higher complexity of our approach leads to valuable payoff in terms of performance and

2) it can be implemented online on an embedded device with limited computing power.

5.5.1 Algorithm Performance

We have devised two scenarios that challenge our algorithm and highlight significant

features of its performance. In the first one (namely, scenario 1, depicted in Figure 5.3(a))

the user moves on a straight line close to a fixed obstacle, while two agents are moving

towards her following a straight line as well. In the second one (namely, scenario 2, showed

in Figure 5.3(b)) the user attempts to visit a market stall at the end of the market while

some pedestrians (Agent 1-6) block the user’s progress by entering the scenario and moving

from one market stall to another. The user’s long term plan is a straight line from the

left to the right of the market. Figure 5.4 depicts the distances over time with respect to

the user, respectively, for one particular run of scenario 2.

We defined 4 indicators to measure performance: 1) the time needed for the user

to reach the right side of the scenario (Texit), 2) the measured probability of respecting

the minimum safety distance to agents (Psafe), 3) the average deviation in position from

the long term plan (ǫx) and 4) the average deviation of the orientation of the user with
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(a) (b)

Figure 5.3: Scenarios used to test the algorithm, scenario 1 (a) and, scenario 2 (b).

respect to the ideal orientation of a user perfectly following the long term plan (ǫθ). These

indicators are formally defined as follows.

Let x(t) represent the cartesian coordinates of the position of the user after the plan-

ning for each time t, θ(t) represent its orientation with respect to a fixed frame, x̃(t) the

long term plan and θ̃(t) the orientation decided according to the long term plan. The

integral error of the difference between the corrected plan and the long term plan can be

defined as:

ǫx = E







√

1

T

∫ T

0

|x(t)− x̃(t)|2 dt







A similar performance indicator ǫθ is defined for the orientation θ(t):

ǫθ = E







√

1

T

∫ T

0

∣

∣

∣
θ(t)− θ̃(t)

∣

∣

∣

2

dt







Indicators ǫθ and Psafe can be used to quantify the “comfort” of the user. Indeed,

frequent changes in the direction reduce the user experience, especially if elderly, and so

does the probability of accidents. Table 5.1 and Table 5.2 reports the performance we

obtained for scenario 1 and scenario 2, respectively, using different values for Thorizon.

Scenario 1 is the most problematic for SFM due to the limitations of this model we

discussed in Chapter 6. The SMC-based strategies exhibit a higher Psafe and a lower ǫθ



Quantitative Analysis 49

Table 5.1: Scenario 1: performance for SMC + SFM , SMC + LIN and SFM strategies. 500
simulations each were conducted.

Unit SMC + SFM SFM

Thorizon [s] 1 2 4 6 8 -

Texit [s] 23.08 23.38 22.72 21.68 21.11 23.56

Psafe - 0.7444 0.8923 0.9933 0.9981 0.9985 0.7386

ǫx [m] 0.3504 0.9914 1.4377 1.6131 1.7386 0.3062

ǫθ [DEG] 53.19 37.22 13.93 10.84 9.36 36.86

Unit SMC + LIN

Thorizon [s] 1 2 4 6 8

Texit [s] 23.17 24.63 24.55 24.42 24.19

Psafe - 0.7511 0.8709 0.9565 0.9989 0.9925

ǫx [m] 0.3322 0.9832 1.4761 1.9007 2.0384

ǫθ [DEG] 55.89 48.03 40.11 24.66 22.47

when Thorizon ≥ 6. SMC + SFM , in turn, outperform SMC + LIN on all indicators.

In scenario 2, from the safety and comfort point of view of the user, SMC + SFM

approach obtains a higher Psafe and a lower ǫθ with respect to SFM and SMC + LIN ,

when Thorizon ≤ 6. Nonetheless, Psafe decreases and ǫθ increases when Thorizon > 6. This

is motivated by the fact that the tested temporal logic formula is less likely to be satisfied

over a large horizon in a crowded environment. As a consequence, the planning algorithm

suggests the user to stop and/or to change direction in order to avoid the unfeasible path,

thus raising ǫθ.

The SFM strategy exhibits the lower ǫx because it tends to keep the user closer to the

long term plan. However, this reflects negatively on the “comfort” of the user, especially

on Psafe, because the model doesn’t have an explicit notion of minimum safety distance

to agents. This behaviour is more evident in scenario 1.

5.5.2 Computing time

In order to show the performance of our algorithm in a real scenario, we ran the planning

algorithm on a off-the-shelf low power embedded system, the Beagleboard xM1. It is a

portable device that may run from battery power and provides performance comparable

1http://www.beagleboard.org
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Table 5.2: Scenario 2: performance for SMC + SFM , SMC + LIN and SFM strategies. 500
simulations each were conducted.

Unit SMC + SFM SFM

Thorizon [s] 1 2 4 6 8 -

Texit [s] 26.82 23.89 24.08 21.12 20.27 23.16

Psafe - 0.9908 0.9998 0.9993 0.9977 0.9316 0.9665

ǫx [m] 0.7677 0.7927 0.6497 0.5701 0.5430 0.3825

ǫθ [DEG] 9.97 5.50 9.20 10.59 19.97 13.67

Unit SMC + LIN

Thorizon [s] 1 2 4 6 8

Texit [s] 27.33 31.48 36.03 29.98 23.71

Psafe - 0.9882 0.9965 0.9977 0.9925 0.9486

ǫx [m] 0.7902 1.4279 1.2607 0.8282 0.6760

ǫθ [DEG] 10.62 14.25 20.33 21.56 21.52

to a small computer. We measured the time needed by the Beagleboard xM to execute the

scenarios presented in the previous section. We ran 500 simulations each and we timed

the execution of every single decision step for the SMC + SFM strategy, that is, the

time needed for a single run of Algorithm 2 using the Social Force Model as the model

for the agents. We also set N = 50. We computed both the average µ1 = 228.9 ms and

µ2 = 2026.1 ms and standard deviations σ1 = 392.1 ms and σ2 = 2432.1 ms of the timings

for scenario 1 and scenario 2, respectively. If we allow a maximum 1000 ms latency to

compute the decision step, the current implementation is able to satisfy it in 93.4% of the

cases for scenario 1 and in 40.9% of the cases for scenario 2.
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Figure 5.4: Scenario 2. Distances of the agents with respect to the user during one particular
run of scenario 2. In this case the safety distance has been set to 0.5 m (dashed line) and has
been violated once.
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Chapter 6

Identification of Human Motion

Models

In this chapter we discuss the Social Force Model, the model for human motion used by

the short term planner in Chapter 5. We highlight its advantages and limitations, and

we propose to improve its performance by exploiting the proxemic theory discussed in

Section 6.3.

6.1 Preliminaries

The Social Force Model (SFM), Section 6.2, is a model of continuous interaction (mutual

reaction), driven by the desired trajectories of moving agents (denoted v0(t)). When

using the SFM in a generative context (e.g., [84]), v0(t) may be specified in advance. The

desired trajectories of real pedestrians, however, are a function of their objectives and

the instantaneous positions and velocities of other pedestrians. In our motion planning

application we are able to measure such positions and velocities, but only the objectives

of the user are known with any certainty. The intentions of other pedestrians must be

inferred from their trajectories. Noting that humans tend to walk in straight lines, we

approximate the desired trajectories of other pedestrians piecewise, using short term linear

extrapolations of their most recently detected motion. This is sufficient when the motion

is smooth and the prediction timescale is short. In reality, the relatively smooth long

and medium term trajectories of pedestrians are often interrupted by sudden short term

pauses and deviations.

Part of this chapter was published in
A. Colombo, Fontanelli, D., D. Gandhi, A. De Angeli, L. Palopoli, S. Sedwards and A. Legay, “Behavioural
templates improve robot motion planning with social force model in human environments”, Emerging Technologies
& Factory Automation (ETFA), 2013 IEEE 18th Conference on, 10-13 September 2013, [23].
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To improve the performance of the SFM, we have therefore investigated in detail

the behaviour of human participants in a simulated shopping environment. We have

defined an experimental procedure comprising a concurrent verbal protocol (to identify

the motivation of the choices made by the participants), video recording and motion

tracking using a RGB-D camera. The reconstructed trajectories of the participants were

manually annotated with corresponding motivations, thus identifying a set of behavioural

patterns. The data corresponding to each pattern, with the help of the proxemic theory,

was then used to parametrise the SFM using standard algorithms.

The results of our investigation show that, for some patterns, parametrisation of our

existing model is sufficient to produce a good reconstruction of observed behaviours.

In other cases, we find that it will be necessary to incorporate the patterns as explicit

modifications to the SFM. Since the patterns have recognisable signatures, we conclude

that we can construct an improved SFM using behavioural templates.

6.2 The Social Force Model

Following [81], our model is constructed in two dimensions, with human agents represented

by circular discs and fixed objects represented by lines. In what follows we denote vectors

in bold type. Thus, agent i has mass mi centered at position xi ∈ R2 in the environment,

radius ri and velocity vi ∈ R2. The SFM is described by a system of linear differential

equations






ẋi = vi

v̇i =
v0
i−vi

τi
+ fi+ξi

mi

(6.1)

v0
i is the driving (desired) velocity of agent i, represented by a product of speed v0i and

normalised direction e0i . In our algorithm e0i is given by the line joining the current

position and the next via point. Importantly, since v0i is by default set to the user’s

preferred walking speed, v0
i is time invariant between via points. τi is the time taken

to react to the difference between desired and actual velocity, while ξi is a noise term

modelling fluctuations not accounted for by the deterministic part of the model. The

noise term can also serve to avoid deadlocks and hypothesise alternative trajectories. In

our implementation we assume ξi is normally distributed. In the absence of the exogenous

inputs fi and ξi, the agent’s trajectory simply converges to the driving velocity with time

constant τi. fi is the overall force acting on agent i resulting from other objects in the

environment and is given by

fi =
∑

j 6=i

[f socij + fattij + f
ph
ij ] +

∑

b

[f socib + f
ph
ib ] +

∑

c

fattic (6.2)
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The first term on the right-hand side of (6.2) includes all the forces on agent i resulting

from interactions with other agents: f socij is the repulsive social force that inhibits strangers

from getting too close, fattij is the attractive social force that, e.g., brings friends together,

f
ph
ij is the physical force that exists when two people come into contact. The second

term includes the forces acting on agent i as a result of fixed environmental obstacles

(e.g., walls): f socib is the social force that inhibits agent i from getting too close to the

boundaries, fphib is the physical force that exists when agent i touches the boundary b.

Finally, fattic is the attractive social force that draws agent i towards fixed objects of

incidental interest (shops, cafés, toilets, etc.).

f is principally a function of the distance between an agent and the other objects in

the model. dib is the minimum distance between the circumference of agent i and fixed

object b. dij is the distance between the centres of mass of agents i and j, i.e., the centres

of the discs, while rij = ri + rj is the “touching distance”. To aid modelling the different

force regimes that exist when agents are not in contact and when they touch (i.e. agents

i and j touch if rij − dij ≤ 0) we adopt the function Θ(rij, dij) = max(0, rij − dij).

Using these notions, the various repulsive social and physical forces of (6.2)) are defined

as follows:

f socij = {Ai exp[(rij − dij)/Bi]}nijΛ(λi, ϕij) (6.3)

f
ph
ij = k1Θ(rij − dij)nij + k2Θ(rij − dij)∆v

t
jitij (6.4)

f socib = {Ai exp[(ri − dib)/Bi] + k1Θ(ri − dib)}nib (6.5)

f
ph
ib =−k2Θ(ri − dib)(vi · tib)tib (6.6)

nij (nib) is a normalised vector pointing from agent j (fixed object b) to agent i, i.e., the

direction of the repulsive force. tij (tib) is a normalised vector tangential to the relative

movement of agent i and agent j (fixed obstacle b), i.e., the motion tangential direction.

∆vtji = (vj −vi) · tij is the tangential velocity difference. The social forces (6.3) and (6.5)

increase exponentially with reducing distance between objects, with a scale defined by

constants Ai and Bi. In particular, Ai is the force acting on agent i at the touching

distance; Bi is loosely the distance at which the force takes effect.

Λ : R2 7→ [0, 1] is a function that gives greater weight to the social force (6.3) arising

from the agents in front of (notionally, seen by) an agent. λi is a parameter that regulates

the effect of Λ on agent i, while ϕij is the angle between the directions e0i and −nij,

i.e., the field of view of the agent. The physical force (6.4) between agents comprises a

repulsive body compression force (first term) that acts in direction nij, plus a frictional

force (second term) that acts in direction tij to impede the relative tangential movement

of two agents in contact. k1 and k2 are constants that define the scale of the physical
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forces. The physical force (6.6) between an agent and a fixed object is solely described

by a frictional term.

6.3 Proxemic Theory

Proxemic theory [18] has been developed by Edward T. Hall in 1962 and relates human

psychology with non verbal communication, iconic communication and the use of personal

space and territory.

According to Hall’s theory there are four different territories:

1. “Body territory” is the personal space, represented as a bubble carried around the

person.

2. “Primary territory” is the living space, such as one’s home or a car.

3. “Secondary territory” refers to structured places where access is exclusive to some

individuals and certain rules are expected, for example an office or a school.

4. “Public territory” is related to areas that anyone can access freely, such as shopping

malls.

Basically, territories are a way for protecting their owners’ comfort from undesirable

people. Moreover, territories can overlap depending on the individuals. For example,

some friends might organize a dinner at home. For the homeowner the home is a primary

territory, while for the others it is a secondary territory.

In this work we focus on the body territory. The bubble around the individual’s body

is divided into a number of concentric circles where the nearest areas are reserved for

trusted people.

Hall identifies four important zones visible in Figure 6.1:

1. “Intimate” for family and close friends. Varies from touching to 0.5 meters.

2. “Personal” for conversations with friends. Varies from 0.5 meters to 1.2 meters.

3. “Social” for formal conversations. Varies from 1.2 meters to 3.7 meters.

4. “Public” for addressing groups of people. Varies from 3.7 meters to 7.6 meters

The actual size of the zones is strictly dependent on the cultural and personal aspects

of the person. For example, the “personal” zone in Middle East is generally much more

closer than in Europe. As opposed to Japan, where usually distances are larger.
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Figure 6.1: Proxemics zones of the body territory defined by Hall’s theory. The dimension of
each zone strongly depends on cultural and personal aspects of the individual but they usually
range from 0.5 meters for the intimate space to the 7.6 meters of the public space.

6.4 Qualitative studies

A qualitative user study was conducted to collect information about how people behave

in crowded environments. We considered three main themes: (i) how people interact in

confined environments; (ii) how people negotiate shared space and (iii) how people behave

with other people in shared space. A simplified shopping context was constructed in a

laboratory, as illustrated in Figure 6.2. Our experimental procedure involved the use of a

concurrent protocol, video-recorded observation and questionnaire administration. These

techniques have been found to be particularly effective when conducting experimental

investigations [85, 86]. The concurrent or talk-aloud protocol - a narration of thought

and action during action - was chosen as literature suggests the alternative retrospective

protocol (where participants return to view and comment upon their recorded experience)

may not accurately reveal participants actual task performance experience. Concurrent

protocol participants have been found to go into greater detail and provide more in-depth

evaluations [87].
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(a) Diagrammatic scheme of participants and shops
showing potential trajectories.

(b) Video grab of laboratory set-up.

Figure 6.2: Experimental set-up.

6.4.1 Procedure

The participant sample consisted of 25 University students. Five participants at a time

were involved in each experiment, and assigned a different list of four shopping items to col-

lect. They were asked to collect all items in the shortest time possible, verbally explaining

all their actions. Participants were specifically arranged around the shopping environment

and each of the five shopping lists were unique, to maximise shared space interaction and

limit the possibility of processional behaviour. The potential route-behaviour of partici-

pants 1 and 4 is illustrated in Figure 6.2(a). Participants were asked to collect the items

on their list and return to their starting points, while simultaneously verbalising their

shopping experience; describing what they saw, where they went, and what they were

thinking and doing. The voice-recording functionality of five HUAWEI U8650 Android

mobile phones was utilised to capture the speech of the participants. Three Logitech

Quickcam Pro 9000 webcams were used to observe and record shared space interaction

within the simulated shopping environment. The cameras were coordinated to provide a

more encompassing view of the interaction space (Figure 6.2(b)). On completion of the

experiment, the participants were asked to complete an open questionnaire.

6.4.2 Data analysis

The transcribed concurrent protocols, once synchronized with the video footage and in

conjunction with the development of relevant coding schemes, facilitated assessment of

a number of variables, including Task Completion Time, Number of Steps taken, and

Number of Critical Instances - instances where physical, visual and/or auditory reference
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was made within the verbal protocols to agent-agent interaction. Detailed video analysis

was conducted via the Elan software tool [88].

6.4.3 Results

Using the Critical Instances markers from the transcribed protocols synchronised to the

video footage, we documented and studied the behaviour exhibited by participants when

involved in shared space interaction. Critical instances were defined as physical, visual

and/or auditory references within the verbal protocols to agent-agent awareness or inter-

action. Analysis of the identified critical instances revealed a number of common themes

and behaviours. The themes that emerged indicated that the behaviour itself was usually

employed to either negotiate shared space interaction or avoid collisions within the shared

space, and it was possible to categorise the main types of behaviours in two groups: Active

and Reactive behaviours.

Active behaviours, in this instance, were considered to be behaviours employed to

understand the environment and determine goal strategies toward task completion, envi-

ronmental awareness and negotiation, mainly focussing around the visual modality:

(A) Eye-to-eye negotiation of immediate shared space;

(B) Use of peripheral vision in assessment;

(C) Visual scanning of environment;

(D) Verbal interaction.

Reactive behaviours were considered as the reactions of agents in the environment to

other agents; the physical reactive movements made to accommodate other agents and

successful interaction:

(E) Waiting for space/desired location to become clear;

(F) Stepping backwards to allow others more room;

(G) Moving forwards to allow others more room;

(H) Stationary agent yielding to moving agent;

(I) Move left;

(J) Move right.

Table 6.1 provides an example of how the critical instances were interpreted in terms

of the taxonomy of behaviours observed during shared space interaction. By examining

critical instances within the complete video footage, it was possible to observe the in-

teractional behaviour occurring during such periods according to the taxonomy, and to

determine the frequency with which these behaviours occurred (Figure 6.3). As can be ob-

served in Figure 6.3, participants utilised the visual modality to engage in either scanning
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Crit. Inst. Observed Behaviour of Participant (Px)

1 Px aware of other agent in desired space, waits until agent completes
task (behaviours (E), (H), (C))

2 Backward glance locates agent directly behind Px and helps avoid
collision (behaviour (B))

3 Px aware of an agent in front and another approaching agent (be-
haviours (B), (C))

Px watches the actions of a moving agent and remains still until
the agent passes (behaviours (E), (H))

Table 6.1: Critical instances interpreted in terms of the taxonomy of behaviours.

of the overall environment (usually to identify product locations within it), or peripheral

vision to monitor the orientational movement of other agents in the environment. As

proximity to others in the environment increased, eye-to-eye contact or negotiation be-

tween participants was observed to occur. Similarly, under these circumstances, verbal

negotiation was also evident in a small number of cases, although this may have been

reduced due to the method of recording the concurrent protocols. The most commonly

occurring reactive behaviours according to the study were waiting for free space to become

available, stationary agents giving priority to moving agents, moving to the left and right,

and moving forwards and backwards to create free space, based upon the interactions

occurring during the themes defined.

From the analysis of the videos it was evident that people planned their movement

based on their physical distance from others, broadly in line with the assumptions of

the SFM. However, we observed modes of behaviour that are not explicitly modelled by

the SFM. When somebody came too close to another person, avoidance behaviours were

manifested, such as waiting (for the space to be free) or stepping back. These behaviours

were clustered in 5 main rules, as reported in Table 6.2. It is also interesting to note that

when two active agents meet, the slower one typically gives way to the faster.

Our study highlights the fundamental role of proxemics in human motion. A literature

exists concerning psychological aspects of spatial behaviour, taking into consideration

concepts such as proximity, body orientation, motion in a physical setting, territorial

behaviour and privacy. These concepts can provide a theoretical framework to extend the

SFM, informing our understanding of people’s behaviour in public spaces.



Parametrising the SFM 61

2

19

32

3

21

3 3

8 8

4

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J)

(A)

(B)

(C)

(D)

(E)
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(G)

(H)
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(J)

Eye‐to‐eye negotiation of immediate space

Use of peripheral vision to asses environment

Visual scanning of overall environment

Verbal negotiation of immediate space

Waiting for space / desired location to clear

Step backwards to allow others more space

Move forwards to allow others more space

Staionary agent yielding to moving agent

Move left

Move right

Reactive Behaviours

Active Behaviours

Figure 6.3: Distribution of behaviours.

Rule Agent 1 Agent 2 Behaviour

1 Active Passive Agent 2 steps back and allows agent 1

2 Active Passive Agent 1 moves and shares space

3 Active Passive Agent 1 waits for empty space

4 Active Active Agent 1 moves left or agent 2 moves right

5 Active Active Agent 1 waits and gives way to agent 2

Table 6.2: Identified behavioural rules.

6.5 Parametrising the SFM

We conducted a number of motion tracking experiments using the simulated shopping

environment described in Section 6.4. We performed 20 experiments considering two

people in the environment and a further 20 experiments using four people. Participants

were arranged in specific places around the shopping environment and asked to move

according to a shopping list provided in advance. Each shopping list contained a set

of places to be visited (via points) in a predefined order, to prompt interactions between

participants and thus generate interesting social behaviours. Depending on the number of

participants, shopping lists were specifically designed to maximise shared space interaction

and limit the possibility of processional behaviour. We recorded video and 3D information

of the participants’ trajectories using a RGB-D camera.
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6.5.1 Parameter Estimation

Once the experimental data were collected, we decomposed the participants’ trajectories

according to the SFM, considering situations where there were at least two agents that

interacted, having simultaneously crossing trajectories. Since each participant had been

asked to travel through a sequence of via points and to pause in each starting and ending

position, it was possible to identify the relevant segments of their trajectories in the

experimental data. By assuming that the driving velocity of agents is constant along a

line joining the initial and desired positions (see Section 6.2) we were able to infer v0.

Due to the constraint imposed by the initial and final configurations, for the purposes of

parameter estimation we construct a modified version of the SFM described in Section 6.2.

We first consider the original model (6.1) and define x0
i = [x0i , y

0
i ]

T and v0
i = [v0xi

, v0yi ]
T =

[0, 0]T to be the desired final position and velocity, respectively, of agent i. We thus

define the Cartesian position error variables x̃i = x0
i − xi, whose dynamics are given by

˙̃xi = −vi. Furthermore, we define the polar coordinates

ρi =
√

x̃T
i x̃i, αi = arctan

(

ỹi
x̃i

)

, (6.7)

which are respectively the distance and the orientation from the current to the desired

position of agent i. We then find that the normalised direction e0i turns out to be

e0i =







e0xi

e0yi






=











x̃i
√

x̃T
i x̃i

ỹi
√

x̃T
i x̃i











=







cαi

sαi






, (6.8)

where we adopt the convention cαi
= cos(αi) and sαi

= sin(αi). Hence, the modified SFM

is finally given by the dynamical system





















ρ̇i
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


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


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
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
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















− (cαi
vxi

+ sαi
vyi)

sαi
vxi
− cαi

vyi
ρi

v0i cαi
− vxi

τi
+
fxi

+ ξxi

mi

v0i sαi
− vyi
τi

+
fyi + ξyi
mi























. (6.9)

Using (6.7), (6.8) and (6.9) it is then possible to have an approximate description of
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the participant accelerations, i.e.,

vi(tk+1)− vi(tk)

tk+1 − tk
≈

gi(tk) + gi(tk+1)

2
(6.10)

where

gi(tk) =
v0i e

0
i (tk)− vi(tk)

τi
+

fi(tk) + ξi(tk)

mi

.

Note that calculating the mean of successive values of gi(·) gives a constant mean

acceleration in the sampling period tk+1 − tk.

Having set the desired speed of each agent to v0i = max{‖vi(tk)‖}, we estimated values

for parameters Ai and Bi in (6.3) and (6.5), and for parameter τi in (6.1). We note here

here that in our experiments the agents never touch, so the constants k1 and k2 are not

used and are not estimated. Moreover, the Λ(·) function is for the moment assumed to

be equal to 1, without loss of generality, since the trajectories do not take into account

interactions from behind. Finally, the mass of the participants mi plays only the role

of a weighting factor for the generated forces, hence it is of no relevance to the problem

at hand and can be considered as known in advance and removed form the estimation

process.

6.5.2 Estimation Algorithm

According to the description of the forces and the assumption that the model noise term ξi

is normally distributed, we adopt an iterative Weighted Least Squares (WLS) algorithm to

identify the parameters of the dynamical system. Such a choice is justified by the limited

number of parameters involved in the estimation and by the relatively small amount of

noise in determining the positions of the participants. This method is alternative to [89],

in which a genetic algorithm based solely on video tracking data is used to estimate

parameters. In our case, we make use of the high quality output of the RGB-D camera.

6.5.3 Results

Figure 6.4 illustrates typical instantaneous output from an experiment: Figure 6.4(a)

shows a grabbed image of the simulated shopping environment; Figure 6.4(b) shows a

plan view of the corresponding tracked participants. Each participant is represented by

a disk of radius ri – the same value used in (6.3), (6.4), (6.5) and (6.6) – and identified

by a unique number for tracking purposes.

Figure 6.5 illustrates typical global trajectories, reconstructed from the tracked po-

sitions of the participants. The global trajectories were divided into local trajectories
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(b) Tracked participants.

Figure 6.4: Instantaneous output of experiment.

describing the motion between the pre-defined via points. Even without time informa-

tion, the locations of the via points are clear in Figure 6.5. The local trajectories were

then used to estimate parameters of the SFM, to better “predict” the actual trajectories.

In Figure 6.6(a) the local trajectories of two participants going in opposite directions

are represented by solid lines. The dashed lines represent the trajectories generated by

the parametrised SFM. The figure demonstrates the good agreement of the SFM with

reality in situations where only relatively small corrections are necessary and there is

little conflict.

In Figure 6.6(b) the interaction is more conflictual and the negotiation of shared space

increases in complexity. In this case our simple linear extrapolation to infer the partici-

pants’ desired trajectories is not adequate and the SFM’s prediction is poor. Interestingly,

the point at which the actual and predicted trajectories diverge (identified by a circle in

the figure) is the point at which one agent stops to give way to the other. We have found

such active behaviour, i.e., moving to facilitate the motion of other agents or waiting for

free space, to be most frequent in our experimental context (see Figure 6.3).
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Figure 6.5: Trajectories corresponding to experiment shown in Figure 6.4.
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Figure 6.6: Performance of parametrised SFM.
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Chapter 7

Experimental Evaluation

This chapter presents the evaluation of the proposed motion planner. A set of experiments

have been carried out at our facilities, for both the long term planner (Chapter 4) and

the short term planner (Chapter 5). The purpose of this chapter is to give a closer look

to the practical implementation that complements the computer simulations presented in

the previous sections. The c-Walker developed within the DALi project has been used

and its technical aspects are briefly described in Section 7.1.

The people tracking algorithm was also of critical importance during the tests for the

short term planner and it is described in Section 7.1.2. A Kalman filter has been designed

to reduce the noise of its measurements, and is presented in Section 7.2.

Finally, the results are presented in Section 7.3 for the long term planner , and Sec-

tion 7.4 for the short term planner .

7.1 Technical Aspects of the c-Walker

The c-Walker is a standard assistive walker instrumented with several sensors and ac-

tuators, as shown in Figure 7.1. It provides great flexibility and intelligence on-board.

In particular, the embedded computer is used for running the both motion planning al-

gorithm and the people tracker, while the touch-screen display is the human-machine

interface, and the front RGB-D camera is the “eye” of the people tracker.

The embedded computer is an Intel NUC DC53427HYE, endowed with an Intel Core

i5-3427U CPU and 8 GB DDR3 RAM and running a standard Linux Ubuntu 14.04.1. It

is powered by an external rechargeable LiPo battery.

The front RGB-D camera is an Asus XtionPRO Live, self-powered via the USB inter-

face.
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Figure 7.1: The c-Walker and its components. (1) touch-screen display, (2) front RGB-D camera
for people tracking, (3) front camera for QR detection, (4) embedded computer and battery pack,
(5) RFID reader and antenna, (6) electromechanical brake, and (7) stepper motor to turn front
wheels.

7.1.1 Mechanical Guidance

The role of the guidance is to take a path generated by the cognitive engine and guide the

user through its execution. The c-Walker integrates different types of guidance [90], such

as passive (haptic or visual), and active (by brake or mechanical). In the experiments

below we have used the mechanical guidance [91].

The mechanical guidance acts on the front wheel and actuates the stepper motors

visible in Figure 7.1. The control algorithm implements the notion of virtual corridor. In

pratice, the user is left free to navigate inside this corridor and the control action, that

keeps the user in the middle of the corridor, becomes more and more authoritative as

soon as the user gets closer to its border.

This particular guidance system has been chosen for the experiments of the short term

planner , as discussed in Section 7.4. For the purpose of this validation, we have used a

very narrow corridor of ±10cm from the center of the path, which corresponds to steadily

control the user over the planned path.
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7.1.2 People Tracker

The approach for detecting and tracking humans in the surrounding of the c-Walker ,

presented by Panteleris et al. [92], is based on segmenting and tracking objects that move

independently in the field of view of a moving RGB-D camera. The camera is allowed

to move with 6 degrees of freedom (DOFs), while moving objects in the environment

are assumed to move on a planar floor. This is the only a-priori information about the

environment. Motion is estimated with respect to a coordinate system related to the static

environment. In order to segment the static background from the moving foreground,

the algorithm first selects a small number of points of interest whose 3D positions are

estimated directly from the sensory information. The camera motion is computed by

fitting those points to a progressively built model of the environment. A 3D point may not

match the current version of the map either because it is a noise-contaminated observation,

or because it belongs to a moving object, or because it belongs to a structure attached

to the static environment that is observed for the first time. A classification mechanism

is used to perform this disambiguation. Based on its output, noise is filtered, points on

independently moving objects are grouped to form moving object hypotheses and static

points are integrated to the evolving map of the environment. Sample results obtained

from the execution of the algorithm are shown in Figure 7.2.

Several experimental results demonstrate that their proposed method is able to track

moving objects correctly. Interestingly, the performance of egomotion estimation and

map construction practically remains unaffected by the presence of independently moving

objects. From a computational point of view, the method works at a frame rate of 50

fps on a laptop with an Intel Core i7 CPU without the use of GPU acceleration, and can

perform at near real-time speeds on ARM-based embedded platforms.

7.2 Filtering of the Tracked Trajectories

We implemented a Kalman filter (KF) [93] for compensating the noise of the people

tracker. It estimates the position of tracked people by assuming they are moving with

constant velocity in the environment. This is not a strong assumption because the sam-

pling frequency of the people tracker is usually in the order of 20 - 30 Hz, at these

frequencies the human motion can be assumed to be a piecewise-linear function [94]. The

tracker is assumed to measure the 2D position x̄i(k) = [x̄xi (k), x̄
y
i (k)]

T of each person i

within the range of the sensors. The sampling time at step k is computed as the time

difference between the timestamps of messages k and k−1, that is tk− tk−1. The diagram

is depicted in Figure 7.3.
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Figure 7.2: Snapshot of an execution of the people tracking algorithm. Bottom left: the depth
and RGB images relative to independently moving people. Right: the top view of the local
environment map showing the motion hypotheses for two people. Top left: the bounding boxes
that identify the two moving people.

Figure 7.3: Diagram of the Kalman filter for position estimation.

7.2.1 Overview of the Kalman Filter

The standard linear Kalman filter assumes that the true state of the system x evolves

from step k to step k + 1 according to

x(k + 1) = F(k)x(k) +G(k)u(k) +w(k) (7.1)

where F(k) is the state transition matrix applied to the previous state x(k), G(k) is the

control input matrix applied to the control vector u(k) and w(k) is the process noise

assumed to be Gaussian distributed with zero mean and covariance Q(k). At some point
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in time a measurement z(k + 1) of the true state x(k + 1) is observed according to

z(k + 1) = H(k + 1)x(k + 1) + v(k + 1) (7.2)

where H(k+1) is the measurement matrix mapping the state space into the measurement

space and v(k + 1) is the measurement noise, assumed to be white Gaussian distributed

with zero mean and covariance R(k + 1).

The Kalman filter is an iterative observer. By convenience the equations have been

split into “predict” and “update” phases that, commonly, are executed in succession. The

“predict” phase is used to propagate the state, while the “update” phase enters into play

when a measurement of the state is available. The “predict” equations are defined as

follows

x̂+(k + 1) = F(k)x̂(k) +G(k)u(k)

P+(k + 1) = F(k)P(k)F(k)T +Q(k)
(7.3)

where x̂+(k + 1) is the a priori state estimate, x̂(k) is the a posteriori state estimate of

the previous step and P+(k+1) is the a priori error covariance matrix that measures the

accuracy of the state estimate.

The “update” equations are defined as

ỹ(k + 1) = z(k + 1)−H(k + 1)x̂+(k + 1)

S(k + 1) = H(k + 1)P+(k + 1)H(k + 1)T +R(k + 1)

K(k + 1) = P+(k + 1)H(k + 1)TS(k + 1)−1

x̂(k + 1) = x̂+(k + 1) +K(k + 1)ỹ(k + 1)

P(k + 1) = [I −K(k + 1)H(k + 1)]P+(k + 1)

(7.4)

where is ỹ(k + 1) the innovation, S(k + 1) is the innovation covariance, K(k + 1) is the

Kalman gain, x̂(k + 1) is the updated state estimate and P(k + 1) is the updated error

covariance matrix.
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7.2.2 Kalman Filter for Position Estimation

The motion model for person i is a standard model with constant velocity, where the

movements along the two axes is supposed to be independent with each other







ẋi = vi

v̇i = w̃

where w̃ = [w̃x, w̃y]T is an exogenous input that models the independent time variation

of the velocity. Since we do not have any knowledge about the time evolution of the

velocity, the input is modeled as a bivariate random variable with zero mean and constant

variances, hence the velocity is modeled as a random walk. The associated covariance

matrix is W = diag([σ2
w̃x , σ2

w̃y ]), where diag(.) creates a diagonal matrix from its vector

argument, and σ2
w̃x and σ2

w̃y are the variances of w̃x and w̃y respectively.

The discretised model is defined by Equations (7.1) and (7.2) and the system matrices

are defined below. The KF estimates x̂i(k) = [x̂xi (k), x̂
y
i (k)]

T , that is the 2D position of

person i. In the following, we describe the KF for estimating x̂xi (k), the one for x̂yi (k) is

identical.

The KF equations for predict and update are defined in (7.3) and (7.4) respectively,

where

F(k) =







1 (tk+1 − tk)

0 1






,

H(k + 1) = H =

[

1 0

]

,

z(k + 1) = x̄xi (k + 1),

and finally matrix G is not needed because there are no inputs u in this model. Recall

from (7.2) that v(k+ 1) is the measurement noise associated to z(k+ 1), and is assumed

to be zero mean Gaussian white noise with covariance matrix R(k + 1) that is obtained

experimentally from the people tracker.

The discrete-time process noise wx(k) relates to the continuous-time noise w̃x(t) as

wx(tk) =

∫ tk+1

tk

e(tk+1−τ)ABw̃x(τ)dτ ≡ wx(k)
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Figure 7.4: Comparison between unfiltered (thin line) and filtered position (thick line), output
of one experiment.

where B = [0, 1]T and A is the system matrix of the continuous model, indeed

e(tk+1−tk)A ≡ F(k)

Since the process noise is assumed to be Gaussian distributed with zero mean and

white, it follows that

E[wx(k)] = 0

E[wx(k)wx(j)] = Q(k)δkj

where δkj is the Kronecker delta function. The variance Q(k) is thus given by

Q(k) =

∫ tk+1

tk

e(tk+1−τ)ABσ2
w̃x(τ)BT e(tk+1−τ)AT

dτ

An example comparison between filtered and unfiltered position for one experiment is

depicted in Figure 7.4. A similar comparison but showing the low-pass filtering effect of

the Kalman algorithm on the speed of the same experiments is visible in Figure 7.5.
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Figure 7.5: Comparison between unfiltered (thin line) and filtered (thick line) speed along x and
y axis, output of one experiment.

7.3 Long Term Planner

In October 2014 we ran an experimental campaign that involved several elderly people

at our facilities. The goal was to test the functionalities of the walker as well as of the

long term planner . To this end, we created a simulated shopping mall environment and

recruited a cohort of 12 senior users.

We asked each participant to choose a destination in the environment (Figure 7.7(a))

and then follow the suggestions of the guidance of the walker.

At the end of each test we collected results on the participant’s performance and

asked her to answer some questions about the quality of the guidance, suggestions and

her personal satisfaction.

In addition, we selected a group of caregivers working in protected residences and

proposed to each of them a tour through the functionalities of the system, where each

of them could define hard and soft constraints and test the system. During each test we

randomly triggered anomalies (Figures 7.7(b) and 7.7(c)) and heat maps 7.7(d) to show

the reactions of the system to such conditions. At the end of the field test, we collected

informal opinions and suggestions.
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(a) A senior user interacting with the c-Walker dur-
ing a trial
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Figure 7.6: The simulated shopping mall created for the DALi experiments.

The impression we derived from reading the questionnaires collected from the users

and from talking to the care givers was of a general interest and appreciation toward the

system and its functionalities (including the long term planner). Most users are keen on

being actively engaged with future development activities. This motivates us in pursuing

this line of research in the upcoming years.

7.4 Short Term Planner

We performed a set of qualitative experiments in our laboratories for testing the algorithm

on a real robotic platform. We used the c-Walker described in Section 7.1, and the short

term planner has been linked to the mechanical guidance (Section 7.1.1) following the

diagram reported in Figure 2.1.

The short term planner algorithm has been parametrised as follows. The replanning

period Tdecision = 0.5, the prediction horizon Thorizon = 8, and the number of simulations

N = 50 for each alternative direction αcurr. These parameters are explained in Section 5.4.

The proposed scenarios are described in the following paragraphs and involve interac-

tion with one person (Scenarios 1, 2 and 3) and two people (Scenarios 4 and 5).

Scenario 1. The user’s long term plan is a straight line (blue-coloured line in Fig-

ure 7.8(e)) and a person is walking towards the c-Walker (Figure 7.8(a)). As soon as

she is detected by the people tracker (Figure 7.8(d)), the short term planner reacts and

suggests the user a path that avoids the obstacle (Figure 7.8(f)).

The trajectories followed by the user and by the agents are shown in Figure 7.8(g).
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(a) Tablet interface for the long term planner (b) Wet floor sign

(c) The long term planner reacts to the wet floor sign (d) Heat map

Figure 7.7: Various pictures from the experimental campaign.

Scenario 2. The user is following the long term plan represented by the blue-coloured

line in Figure 7.9(e)) and a person is crossing his trajectory (Figure 7.9(a)). Once he is

recognised by the people tracker (Figure 7.9(d)), the short term planner detects that the

agent won’t interfere with the user’s trajectory and it does not change the short term

trajectory (Figure 7.9(f)).

The paths followed by the user and by the agent are shown in Figure 7.9(g).

Scenario 3. The goal of the user is to follow the long term plan represented by the blue-

coloured line in Figure 7.10(e)) while an agent overtakes him on his left (Figure 7.10(a)).

As soon as he is recognised by the people tracker (Figure 7.10(d)), the short term planner

detects that the agent won’t hinder the user (Figure 7.10(f)).

The routes followed by the user and by the agent are shown in Figure 7.10(g).

Scenario 4. The long term plan that the user is following is shown in Figure 7.11(e))

and is represented by the blue-coloured line. In the meanwhile, two agents are walking

towards the user (Figure 7.11(a)). Once the agents are detected by the people tracker

(Figure 7.11(d)), the short term planner reacts and suggests the user a safer short term

plan that bypasses the obstacles (Figure 7.11(f)).
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The trajectories followed by the user and by the agents are shown in Figure 7.11(g).

Scenario 5. The user’s long term plan is a straight line (blue-coloured line in Fig-

ure 7.12(f)). Two agents are walking towards the c-Walker (Figure 7.12(a)) and, as

soon as they are detected by the people tracker (Figure 7.12(d)), the short term planner

recognises that there is enough room for passing in between them (Figure 7.12(f)).

The paths followed by the user and by the agent are shown in Figure 7.12(g).

7.4.1 Considerations

The experiments reported in this section demonstrate on a realistic scenarios the effec-

tiveness of the short term planner . It is clear that the selected scenarios are just a small

subset of the several situations that may arise in reality. However, when the behaviour

of people in the scene can be approximated to the chosen human motion model (i.e., the

Social Force Model, Section 6.2), the proposed planning algorithm is able to enforce the

requested probabilistic guarantees.

Real world performance of this approach are bounded by the sensing capabilities of

the selected RGB-D camera that, in turn, limit the area covered by the people tracker

to few square meters. This is evident from the short pieces of the surrounding people

trajectories depicted in Figures 7.8 - 7.12, which lasts for an average of 1.5-2 seconds

in view to the tracker. Nevertheless, a similar perception behaviour is used by humans

beings [95], where closer obstacles have more importance than distant ones. In some

respect, we can state that the perception subsystem, upon which the short term planner

relies, mimic the human behaviour.
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(a) Overall scenario at time t = 2 (b) Overall scenario at time t = 4

(c) People tracker at time t = 2 (d) People tracker at time t = 4
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(e) The path suggested by short term planner at time
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(f) The path suggested by short term planner at time
t = 4
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(g) The path followed by the user (dashed line) and by the agent (solid
line)

Figure 7.8: Pictures from a run of scenario 1. Time in seconds.
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(a) Overall scenario at time t = 0 (b) Overall scenario at time t = 2

(c) People tracker at time t = 0 (d) People tracker at time t = 2
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(e) The path suggested by short term planner at time
t = 0
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(f) The path suggested by short term planner at time
t = 2
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Figure 7.9: Pictures from a run of scenario 2. Time in seconds.
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(a) Overall scenario at time t = 1 (b) Overall scenario at time t = 3

(c) People tracker at time t = 1 (d) People tracker at time t = 3
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(e) The path suggested by short term planner at time
t = 1
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(f) The path suggested by short term planner at time
t = 3
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Figure 7.10: Pictures from a run of scenario 3. Time in seconds.
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(a) Overall scenario at time t = 0 (b) Overall scenario at time t = 2

(c) People tracker at time t = 0 (d) People tracker at time t = 2
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(e) The path suggested by short term planner at time
t = 0
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(f) The path suggested by short term planner at time
t = 2
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(g) The path followed by the user (dashed line) and by the agent (solid
line)

Figure 7.11: Pictures from a run of scenario 4. Time in seconds.
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(a) Overall scenario at time t = 2 (b) Overall scenario at time t = 5

(c) People tracker at time t = 2 (d) People tracker at time t = 5
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(e) The path suggested by short term planner at time
t = 2
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(f) The path suggested by short term planner at time
t = 5
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Figure 7.12: Pictures from a run of scenario 5. Time in seconds.



Chapter 8

Conclusions and Future Work

In this chapter we draw the conclusions and the future directions of the presented work.

We first discuss each chapter separately, and finally in Section 8.4 we report the overall

conclusions.

8.1 Long Term Planner

We have presented an algorithm for long term motion planning in crowded public spaces.

The algorithm applies to robotic platforms assisting the navigation of senior users in

large and complex spaces. The key features of the algorithm are: 1. the ability to

encode preferences in the user’s profile regarding areas that should be avoided during

the navigation and others that should be travelled across, 2. the consideration of time-

dependent anomalies during the construction of the path, 3. the inclusion of crowdedness

as a key parameter to consider when estimating the time to complete a path. Our idea

is to use quad trees to generate a graph structure describing the place and encoding user

preferences, anomalies and heat maps in the weight of the arcs. We propose a modified

version of the Dijkstra algorithm to identify the optimal path that takes into account the

time dependencies of the graph.

Our algorithm has been implemented as a cloud service that operates alongside a

module for reactive (short term) planning and motion control, which are typically hosted

on the robotic platform. Thanks to its flexible API and its low computational burden, the

algorithm can be easily implemented in different ways, giving to the system integrators

plenty of possibilities.

The different functionalities of the system have been validated in two ways. On one

hand, we have tested it through simulated scenarios. On the other hand, we prepared

a mockup simulating a realistic case study that we showcased to a group of users and

caregivers.



84 Conclusions and Future Work

This case study helped us to identify some borderline scenarios that require further

analysis, especially when dealing with combinations of constraints. For example, when the

user requires a “timed” constraint (e.g., “keep a toilet within 5 minutes walking distance”),

when several constraints for desirable and undesirable zones appear to be placed one after

the other, or when two or more constraints for desirable zones are placed at the opposite

locations of an environment. Simulations have shown that combinations of contrasting

requests can be managed efficiently, even though an extensive analysis of this behaviour

has not been carried out on the field. Nonetheless, the simplicity and the robustness of the

proposed solution is very promising for an efficient handling of such complex situations.

8.1.1 Future Work

Our future plans tackle several aspects. From the analysis of the borderline scenarios

highlighted in the previous section, to the support of constraints and anomalies in a

probabilistic framework, with the benefit of a higher personalisation level for the user.

Moreover, support of anomalies can be improved and made smarter by adding in-

termediate stops when constructing the plan (e.g, suppose that an anomaly expires 1

second after the user reaches the blockage, it may be worth waiting 1 second instead of

replanning).

Finally, the ACANTO project extended the paradigm of assistance from a single user to

a social dimension. The algorithm will be scaled accordingly, with motion plans organised

for groups of people supported by a robotic platform.

8.2 Short Term Planner

We presented an efficient online motion planner for crowded environments. The position

of most fixed objects (e.g., buildings and rooms) are known a priori, but the algorithm

considers the possibility of changes, such as temporary obstructions. The environment

contains moving objects (i.e., other pedestrians), whose positions and velocities cannot

be known before they are encountered.

The overall goal is to allow the user to visit pre-defined locations in the environment,

while avoiding collisions, crowding and delays. The output of the algorithm is a suggested

trajectory, so the algorithm must be reactive to the potentially uncooperative response of

the user.

The algorithm exploits a human motion model, parametrised in real time with data

from sensors, for hypothesising future trajectories. The model’s stochasticity allows us to

consider a distribution of possible future evolutions.
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The reactive part of the algorithm is provided by statistical model checking technol-

ogy. The algorithm verifies the hypothesised trajectories against the user’s goals and

constraints expressed in temporal logic. This way the algorithm finds the immediate

course of action that maximises the user’s probability of success.

We validated the planner by means of simulations where the Social Force Model (Sec-

tion 6.2) has been chosen as the human motion model. Practically, the algorithm has

been implemented in a low power embedded computing device and is efficient enough to

make course corrections in a time of the order of seconds. This time scale is dictated by

the typical velocities of pedestrians and by the fact that frequent readings help to reduce

the random errors produced by sensors.

Results showed that the algorithm is able to enforce the user’s requirements as well as

improve her comfort during navigation.

8.2.1 Future Work

There are three main aspects of our work that we want to improve: 1) human perception,

2) performance of the implementation, and 3) reuse of simulation traces.

Human perception. The apparently random behaviour of pedestrians is often the re-

sult of deterministic choices on their part. We want to improve the performance of our

algorithm by recognising these choices and replacing some of the stochasticity. To this

end, in Chapter 6 we have identified behavioural templates that may be incorporated into

an improved human motion model.

Moreover, we propose to include advanced sensor techniques to recognise known inter-

esting or hostile people (e.g., using facial recognition [96]). This information can be used

later for generally avoiding people exhibiting hostile behaviour. Such information can be

included in the user’s goals and constraints, by encoding them into an extended temporal

logic formula.

Performance of the implementation. A significant part of the challenge of our mo-

tion planning application is the performance of its implementation. Current hardware

performance forces us to accept the necessity of multiple boards to handle the overall

computational burden, but there is a clear advantage if a portable device can be made to

work on a single board. The embedded computing boards we have chosen for our imple-

mentation include high performance graphical processor units (GPUs) that can be used

for general purpose parallel computing. Since statistical model checking requires multiple

independent simulation runs, we propose to exploit the GPU to gain a significant increase

in performance.
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Reuse of simulation traces. The replanning period Tdecision is necessarily less than

the prediction time horizon Thorizon, hence the algorithm predicts traces in time periods

that overlap from one iteration to the next. While the predictions of older simulations

are likely to be less accurate compared to the current reality, data from the previous

iterations may be employed, suitably weighted, to build a probabilistic map of the good

and bad locations in the local environment. This map can be used to avoid simulations

that explore directions that are unlikely to be successful and to provide feedback if the

user chooses to diverge from the proposed path.

8.3 Identification of Human Motion Models

We tested and analysed the Social Force Model (SFM) in real scenarios. The unmodified

model is accurate under conditions of continuous flow and when there is little competition

for space. Under other circumstances, common in the social environments and that we

are targeting, human motion is punctuated by frequent stops and starts, and short term

changes of direction. Our experiments have demonstrated that these discrete events are

not well captured by a simple SFM. We have nevertheless identified several distinguishable

behavioural patterns that may be incorporated as templates into an enhanced SFM. In

such a model, these patterns would be recognised and predicted, modifying the desired

trajectories of modelled pedestrians. We have shown that this increases the predictive

accuracy of the SFM.

We note that the patterns we have identified might be explained by a more general the-

ory of human interaction. We therefore propose to explore proxemic theory (Section 6.3)

and consider a larger range of social situations.

8.3.1 Future Work

We plan to resort to the broad field of machine learning to infer high level behaviors and

usual motion patterns. One possibility is to use Interacting Multiple Model (IMM) [97],

or HMM (Hidden Markov Model) inference, which is one of the most known approaches

in literature for modeling uncertain and stochastic systems [98].

For instance, using HMM, the problem can be split in two sub-problems. At first,

we identify the HMM ruling the behaviours of the humans in shared spaces, comparing

the learned rules with the experimental evidence and proxemic theory. In the second

stage, we identify the parameters governing the dynamic motion of the user in each

learned behavioural pattern. This way, the dynamic is no longer given by the SFM

per se but instead can be expressed with other solutions (e.g., a set of different Linear
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Dynamic Systems, one for each learned behaviour, for which Kalman–based solutions can

be applied [93]).

The key to our ongoing research will be an extensive collection of experimental data

that can improve our theory and provide evidence of its applicability and robustness.

8.4 Overall Conclusions

The work presented in this dissertation proposes an efficient hierarchical motion planner

for assistive robots in crowded environments. It is composed of a long term planner that

considers long term objectives, and a short term planner that takes into account social

rules, short term goals, and reacts to people detected along the way, motivating the need

for an accurate human motion model.

We presented formally and validated each component separately. Finally, we per-

formed qualitative experiments with the robotic platform developed within the DALi

project. A Kalman filter has been designed for reducing the measurement noise of the

the people tracking algorithm.

Results showed great interest by users and motivate us to continue improving this

work. To this end, the purpose of the ACANTO project (the follow-up of the DALi

project) is to start right from where this work finished, confirming the fact that robotic

assistive platforms can definitely improve our elderly’s quality of life and wellbeing.

8.4.1 Future Work

Our future plans include some aspects of this work. The Kalman filter for the people

tracker (Section 7.2) can be improved by exploiting techniques similar to the ones antic-

ipated in Section 8.3.1. The basic idea is to let evolve several simple linear models in

parallel, and then pick the one that best fits the estimated trajectory.

The interaction between long term planner and short term planner can be also im-

proved. For example, by iteratively smoothing the long term plan (i.e., similar to what a

spline does to a piecewise-linear function) we could enforce both short term preferences

and basic social rules (at least the ones related to fixed obstacles) before the user actually

starts to walk.





Bibliography

[1] J. Van Cauwenberg, V. Van Holle, D. Simons, R. Deridder, P. Clarys, L. Goubert, J. Nasar, J. Salmon,

I. De Bourdeaudhuij, B. Deforche, et al., “Environmental factors influencing older adults’ walking for trans-

portation: a study using walk-along interviews,” Int J Behav Nutr Phys Act, vol. 9, no. 1, p. 85, 2012.

[2] A. Kollmuss and J. Agyeman, “Mind the gap: why do people act environmentally and what are the barriers

to pro-environmental behavior?,” Environmental education research, vol. 8, no. 3, pp. 239–260, 2002.

[3] J. T. Cacioppo and L. C. Hawkley, “Perceived social isolation and cognition,” Trends in Cognitive Sciences,

vol. 13, no. 10, pp. 447 – 454, 2009.

[4] H. A. Yeom, C. Keller, and J. Fleury, “Interventions for promoting mobility in community-dwelling older

adults,” Journal of the American Academy of Nurse Practitioners, vol. 21, no. 2, pp. 95–100, 2009.

[5] J. Van Cauwenberg, V. Van Holle, D. Simons, R. Deridder, P. Clarys, L. Goubert, J. Nasar, J. Salmon,

I. De Bourdeaudhuij, and B. Deforche, “Environmental factors influencing older adults’ walking for trans-

portation: a study using walk-along interviews,” International Journal of Behavioral Nutrition and Physical

Activity, vol. 9, no. 1, p. 85, 2012.

[6] S. J. W. A. L. Baker Philip RA, Francis Daniel P and F. Charles, “Community wide interventions for

increasing physical activity,” Cochrane Database of Systematic Reviews, vol. 9, no. 1, 2015.

[7] D. E. Warburton, C. W. Nicol, and S. S. Bredin, “Health benefits of physical activity: the evidence,”

Canadian medical association journal, vol. 174, no. 6, pp. 801–809, 2006.

[8] D. Feil-Seifer and M. Mataric, “Defining socially assistive robotics,” in Rehabilitation Robotics, 2005. ICORR

2005. 9th International Conference on, pp. 465–468, June 2005.

[9] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy,

J. Schulte, et al., “MINERVA: A second-generation museum tour-guide robot,” in Proc. of IEEE Intl. Conf.

on Robotics and Automation, vol. 3, IEEE, 1999.

[10] D. Fontanelli, A. Giannitrapani, L. Palopoli, and D. Prattichizzo, “Unicycle steering by brakes: A passive

guidance support for an assistive cart,” pp. 2275–2280, 2013.

[11] L. Rizzon and R. Passerone, “Embedded soundscape rendering for the visually impaired,” in 2013 8th IEEE

Intl. Symposium on Industrial Embedded Systems, pp. 101–104, IEEE, 2013.

[12] S. Scheggi, M. Aggravi, F. Morbidi, and D. Prattichizzo, “Cooperative human-robot haptic navigation,” in

Proc. of IEEE Intl. Conf. on Robotics and Automation, pp. 2693–2698, IEEE, 2014.

[13] T. Carlson and Y. Demiris, “Collaborative control for a robotic wheelchair: evaluation of performance,

attention, and workload,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,

vol. 42, no. 3, pp. 876–888, 2012.

[14] M. Vasic and A. Billard, “Safety issues in human-robot interactions,” in Robotics and Automation (ICRA),

2013 IEEE International Conference on, pp. 197–204, May 2013.



90 Bibliography

[15] C. Bartneck and J. Forlizzi, “A design-centred framework for social human-robot interaction,” in Robot and

Human Interactive Communication, 2004. ROMAN 2004. 13th IEEE International Workshop on, pp. 591 –

594, September 2004.
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