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1 Introduction

The type of Volterra equations studied in this paper is the non-linear evo-
lution equation

t
4 (ko(u(t) o)+ /0 k(¢ — ) (u(s) — ) ds>
+ew) = Ftu@), 3D
t € (0,00), u(0+) = z,

in a real Banach space X. Here, kg is a constant and k; is a real, non-negative
function, that satisfy Hypothesis 1a below, G is an accretive operator in X,
see Hypothesis 1b, and we shall consider the operator F(¢,u) as a non-
linear, non-autonomous perturbation of the operator G, see Hypothesis 1c
for details.

Since the early 1970s, the case where F(t,u) = f(t) have been under
consideration; this problem has an interest also in our setting, and it shall
be further discussed in Section 2.1. The next step in the literature were
to consider functional perturbations of such problem, compare Crandall &
Nohel (1978) or Gripenberg (1985).

In this paper, on the contrary, we consider perturbation operators acting
on X, but we can allow such operators to be non-autonomous. The study
of (1.1) with the operator F(¢,u) is based on the results for the inhomoge-
neous problem F = f(t) and a fixed point argument; this should justify the
appellative of “perturbation term” given to F(¢,u).

In order to state the main result of the paper, we shall introduce the
main assumptions on the coefficients of (1.1). A comprehensive explanation
of the notation employed in the paper will be given in Section 3.



Hypothesis 1. The kernel k(t) = ko + f(f k1(s)ds is a Bernstein function
associated to a kernel a(t),

la the kernel a : (0,00) — R is completely monotone, a € Lj,.(0,00), and
the relation between a(t) and k(t) is given by

t
koa(t)-l—/o k(b= s)a(s)ds =1, 1€ (0,00);

1b G(z) is an operator in X, with domain D(G) C X, of type w: G belongs
to Ame(X), ie., for some w >0, G+ wl is m-accretive in X,

1c the perturbation term F maps C(Ry; X) into C(Ry; X), it is uniformly
continuous on bounded sets of Ry x X and for each t > 0 F(t,-) is
m-dissipative on X.

Our main result provides the existence of a generalized solution for prob-
lem (1.1).

Theorem 1.1. Assume X is a real Banach space and let the coefficients in
(1.1) satisfy Hypothesis 1. Then, for any x € D(G), there ezxists a unique
generalized solution to the abstract non-linear Volterra equation (1.1).

The paper is organized as follows. In Section 2, we shall discuss how
the results provided here are related with those already known in literature.
Our notation, and some preliminary result about the coefficients of (1.1), are
given in Section 3. In particular, in Section 3.4 we discuss some properties
of the linear Volterra operator

Lu(t) = % (kou(t) + /0 t ko (t — s)u(s) ds) .

Although there exists a large literature about this subject, we obtain a rep-

-1
resentation of the Yosida approximations L, = L (I + %L) which seems

to be new and may deepen the understanding of the relation with the as-
sociated completely monotone kernel. Finally, the remaining sections are
devoted to study (1.1), first in the case F(t,z) = f(t), then in the case of a
Lipschitz non-linearity, and the last section provides the proof of Theorem
1.1.

Acknowledgements. The authors would like to thank Professor
Ph. Clement for the useful discussions concerning several aspects of this
paper. We shall also express our gratitude to Professor L. Tubaro for the
simple proof of Lemma, 3.11.



2 Nonlinear equations with accretive operators

The equation that we consider in this paper is a non-autonomous perturba-
tion of the inhomogeneous problem

t
4 (ko(u(t) —0)+ [ k(- 9t - ) ds) LGult) = £(0),
0+) ==z

t € (0,00),

(2.1)

There is a wide literature concerning such equations, also due to their rel-
evance in applications. Actually, Volterra integro-differential equations of
convolution type with completely monotone kernel arise naturally in several
fields, as heat conduction in materials with memory and in the theory of
thermo-viscoelasticity: see for instance the monograph of Priiss (1993) and
the references therein.

In this section, we shall discuss further the results obtained in this paper
and compare them with the existing literature.

2.1 The case of a perturbation independent of «

We start by considering the simpler case where the perturbation in the right-
hand side of (1.1) is independent of u. This case shall provide us with the
estimates that we need in order to study the general case of equation (1.1),
compare also Gripenberg et al. (2000). Therefore, in this section we are
concerned with the equation (2.1)

In order to define a generalized solution to (2.1), we shall consider an
approximate equation, where the operator L is replaced by its Yosida ap-
proximation L, = L(I + %L)_l, p > 0. Let u, be the solution of the
following equation

Luluu() = 2](t) + G(uu(t)) = f(t), € (0,00). (2.2)

In the next theorem, we establish the existence of a generalized solution of
(2.1).

Theorem 2.1. Assume that the coefficients in (2.1) satisfy Hypotheses 1a-
1b and let x € D(G) and f € C(Ry;X). Then, for every u > 0 equation
(2.2) has a unique solution u,(-) € C(Ry; X).

As p — oo, there ezists a function u = U(z, f) with u € Lj,.(R;; X)
such that w, — u in L}, (Ry; X).

Ifz € ﬁ(G) then the convergence takes place also in Ljo(Ry;X) and
the limit function u belongs to C(Ry; X).

The function u = U(z, f), that exists according to Theorem 2.1, is said
the generalized solution for problem (2.1). The main ideas in the proof of the
theorem, see also the estimates in Theorem 4.7, are almost the same to those



introduced in Gripenberg (1985), Theorem 1. For the reader’s convenience,
we exploit in Section 4 all the details of the proofs.

Let us discuss briefly our setting as compared to that of Gripenberg
(1985). The results in that paper distinguish the cases ky = 0 and kg # 0. In
the latter case, the quoted result fully describes the case w =0 (g) is the type
of the operator G). In general, however, we may write G(u) = G(u) —wu, G
is a m-accretive operator of negative type, and wu is a linear perturbation,
so that this case may be as well treated by means of Theorem 3 of that
paper.

In section 4, for reader convenience, we shall discuss the case ky = 0 in
full details. Here, actually, the results in Gripenberg (1985) does not suffice
and a refinement of the estimates for the solution is necessary. We collect
in Theorem 4.7 the relevant estimates that we obtain in our setting. In case
ko = 0 and G an m-accretive operator on X, similar results were already
proved in Cockburn et al. (1996), see also formula (4.16) here.

Remark 2.1. Using the estimates in Cockburn et al. (1996), Gripenberg et
al. (2000) solved the problem of existence of a strong solution for (2.1).
In our setting, the extension of this result does not seem straighforward,
since one of the relevant estimates failed to be proved with our techniques:
see Remark 4.2 for more details. We hope to return on this problem in a
subsequent paper.

2.2 The case of a Lipschitz perturbation

Now we return to the original equation (1.1). Before we discuss the case
of dissipative non-linearities, that is the object of Theorem 1.1, we shall
consider the case of a Lipschitz non-linearity. We shall say that u(t) is a
generalized solution of (1.1) if u = U(z, F(-,u)).

Theorem 2.2. Let the assumptions of Theorem 2.1 be fulfilled and assume
that the non linear term F(t,-) satisfies

F:CRy; X) = C(Ry; X) (2.3)
and there ezists a function n(t) € L3S (Ry) such that, for any t € Ry
1E(t,u) — F(t,v)[| < n(@)[u — vl (2.4)
Then there ezists a unique generalized solution to equation (1.1)
Llu(-) — 2](t) + G(u(t)) = F(¢,u(?)),
t € (0,00), u(0+) = z.

As we mentioned before, Theorem 3 in Gripenberg (1985) is concerned
with the existence of a generalized solution to (1.1). As in previous section,



the cases kg = 0 and kg # 0 are treated separately and, again, the second
case, kg > 0, is fully described there. Instead, in case ko = 0, the Lipschitz
perturbation term in Theorem 2.2 is not contained in the assumption of
Theorem 3 in Gripenberg (1985), that is

t
| F(v1) — F(U2)||L1(0,t;X) < /0 n(s)||v1 — ’U2||L1(0,5;X) ds, teR;.

2.3 The case of a non-autonomous dissipative perturbation

In the last section we finish the proof of the main result stated in Theorem
1.1. We are concerned here with the case of a continuous and m-dissipative
operator F(t,u), see Hypothesis 1c. Since this term is non-autonomous it is
non possible to include it into G and to apply the previous theorems, also
if we suppose that G + F' is m-dissipative.

The techniques applied in this part, although very different from those
employed in the previous sections, are usually applied in the theory of dis-
sipative systems; in particular, we refer to the proof of Theorem 7.13 of Da
Prato & Zabczyk (1992).

3 Notation and preliminary results

We shall denote the norm in the Banach space X by || - ||

3.1 Properties of accretive operators

For the sake of completeness, we recall the main properties of accretive
operators from the book of Da Prato (1976).

We denote A,,.(X) the space of accretive operators! on X such that
their resolvent contains R, ; such operator are said m-accretive.

We also denote A,,.(X) the space of operators G on X such that G +wl
belongs to Ap,c(X) for a suitable real number w. If G € Ap(X) we set
weg = inf{w e R: G+ wl € A, (X)}; then we denote wg the type of G if
wa < 0 we say that G is of negative type.

As stated in the introduction, we assume that the operator G belongs to
ch(X) and we denote w = wg > 0 the type of G. If G is of negative type
then we choose w = 0. _

The resolvent operator J,, associated with G = G + wl, is defined by

Jy = (I+ ié(-))_l.

'An operator G on X is said to be accretive if for any z,y € D(G) then ||z — y|| <
[z —y + AM(G(z) — G(y))||, for all XA > 0; on the other hand, an operator F' on X is said
to be dissipative if —F' is accretive.




We have that J,, satifies the following properties:

[ Tu(@) = Tl < Ml —yll, Va,y € X,

and

lim J,(z) =z, Vz e D(G).

HU—00
We also introduce the Yosida approssimations G, o > 0, of G by setting
Go(z) = G(Ja(2)) = a(z — Ja(z)), x € X.

We remark that G () is a Lipschitz continuous mapping and it holds that
[Ga(2)]| < [|G(z)] for any z € D(G).

We denote D(G) the set {z € X : sup,sq||Ga(z)| < +o0}; we have
D(G) C D(G) C D(G). If X is not reflexive, then it is possible that
D(G) C D(G).

3.2 Properties of the scalar kernel

A function f : (0,00) — R is called completely monotonic if f belongs to
C*°(0,00) and
d’n
(—1)"%f(:c)20, x>0, n=12,....
Below we list some properties of completely monotonic functions.

Remark 3.1. Assume that f: (0,00) — R is completely monotonic; then

i. if f(zg) = 0 for some zy > 0 then f(z) is identically zero;

e

i. the function f has an analytic extension to {z € C : R(z) > 0};
iii. if f(0+) = +o0 then (—1)”($—nﬂf(0+) =+4oo forn=1,2,...;

iv. (-1)" L f(+o0) =0forn=1,2,....

<

For an exhaustive introduction to completely monotonic functions, as
well as a proof of these properties, we refer to Gripenberg et al. (1990) and
Priiss (1993), compare also the Introduction in Homan (2003).

Definition 3.1. A Bernstein function k(t) is a C* function k : (0,00) — R
such that k(t) > 0 for t > 0 and k'(t) is completely monotonic.

Proposition 3.2. (Priss (1993)) If k(t) is a Bernstein function, then there
exists a unique completely monotonic function a(t) such that

koa(t) + /Ot ki(t —s)a(s)ds =1, t € (0,00). (3.1)

If ko = 0 then a(0+) = +o0.



We consider in the following table some examples of Bernstein functions
k(t) and corresponding completely monotonic functions.

| k(t) | a(t) |
1 1
1+1¢ e !
[ 00 4 —lﬂ
/OEl(S)dS /0 e 't* T(s)
N
o Tl—-a)’ ['(a)

Here, a € (0,1) and Ei(z) = fa;oo eft%.

Let us denote the family of functions s,(t), ¢ > 0, 4 € R, where s,(t) is
the solution of the scalar Volterra equation

su(t) + p /t su(t —0)a() dd =1, t>0. (3.2)
0

Under Hypothesis 1a, it follows that s,(t) is positive and nonincreasing
with respect to ¢t > 0, for every u > 0.

The following table contains examples of scalar resolvent functions for
various completely monotonic functions.

| a(t) | s(t; p) |
1 e Kt
et (14 p) 711 + pe”OFHY
0o d 00 L 7 d
/ e ttp1 2P 1- / pe HP / e TPt dr 2P
0 L'(p) 0 0 L'(p)
ta—l ¢ o
t
Here, o (z) =Y 70, I‘((;Tm-)i-kl) is known as Mittag-Leffler’s function; as before, a € (0,1).

Proposition 3.3. For any p € R:

d

@su(t) <0  forallt>D0.
Proof. For a proof we refer to Priiss (1993), page 98, noticing that the case
i < 0 can be treated similarly to the case u > 0. O

Notice that the above proposition not only implies that s,(t) < 1 for
any p > 0, but also that s,(¢) > 1 for any p < 0.
Let us denote r,(-) the solution to the integral equation

t
ru(t) + u/o ru(t — s)a(s) ds = pa(t). (3.3)



By Lemma 4.1 in Priiss (1993), since a(t) is completely monotonic, we know
that for any p > 0, r,(t) belongs to L'(R}) N C(0,00), it is completely
monotonic, 0 < r,(t) < pa(t) and

” _7.0) = 1O
/0 ru(s)ds =7,(0) = T+ 4a(0) <L

Moreover, if 4 < 0, then r,(t) belongs to Lj,.(Ry) N C(0,00) and r,(t) <
pa(t) < 0, compare also Friedman (1963).

The relation between s,(t) and 7,(t) is clarified in the following state-
ment.

Proposition 3.4. It holds that

t
sult) = (1— / ru(r) dT), t> 0. (3.4)
0
We shall resume, in the next proposition, some results about the limit
behaviour of r,(-) and s,(-) as p — oo.

Proposition 3.5. The following relation holds between s,(t) and the func-
tion k(t):

usult) = (1 k) (0) + koru(0). (3.5)

Moreowver,

t
p /0 5 (r) dr — k(1)

for a.e. > 0.

Proof. Let us briefly sketch the idea of the proof. Taking convolution in (3.3)
with k1 (%), recalling that from (3.1) it follows that kga(t) + (k1 * a)(t) = 1,
we obtain

(T * k1) (2) + p((ry + k1) % @) (t) = p(a * k1) (t) = (1 — koal(t)).
On the other hand, again from (3.3) and (3.2) it follows that
(s — kory)(t) + H((#Su — kory) * a) (t) = (1 = koa(2)),

and comparing this expression with the previous one we prove (3.5).
The Laplace transform of fot ru(8) ds verifies

as pu — oo, hence
t
/ Too(8)ds =1 for a.e. t > 0. (3.6)
0

Integrating both sides of (3.5) in (0,t), using the limit in (3.6), yields
the thesis. O



3.3 A Gronwall-type lemma

In this section, we shall discuss a Gronwall-type lemma, that will allow us
to prove estimates for the solution of a Volterra equation. We shall state
two results, the first more general, while the second is best adapted to our
needs.

Lemma 3.6. Let v(t) be a continuous, nonnegative function, which satisfies
the estimate

v(t) < g(t) +(axv)(?) (3-7)

where v > 0, g(t) € L} (Ry) and a(t) satisfies Hypothesis 1a. Then

loc

—~

v(t) < — (9% s—)(t) = g(t) — (9 x7—)(®), (3.8)

where s_,(t) and r_(t) are solutions to (3.2) and (3.3), respectively.

S

The proof of this and the other results in this section are postponed to
the Appendix. Let us now get to a more particular case.

Lemma 3.7. Let v(t) be a continuous, non negative function which satisfies
the estimate

v(t) < sa(t)z + %f(t) + So(t) + 7 xv(1), (3.9)
where s)(t) and ry(t) are defined in (3.2) and (3.3) respectively. Then
o(t) < (Bt A Fax ) xs ) @), (3.10)

where s_, (t) is defined as in (3.2) with wy = )\’\_—‘*’w

Remark 3.2. In case f = 0 we obtain from the above lemma the following
estimate:

v(t) < Pxs_y,(t). (3.11)
If we consider, instead, the case w = 0, then estimate (3.10) becomes

v(t) <z + FF(t) + (ax f)(2). (3.12)

3.4 Volterra operators

In this section we shall discuss some properties of the linear Volterra operator

t
Lu(t) = % [kou(t) +/0 ki(t — s)u(s)ds| , t>0. (3.13)

The operator L is m-accretive in LP(R,; X), for any p > 1, see Clément &
Nohel (1981). There is a natural representation of its inverse operator L~*
in terms of the kernel a(t).



Lemma 3.8. Given the operator L defined in (3.13), the operator L™! is
defined by

t
L () :/ a(t — s)v(s) ds. (3.14)
0
Proof. Let us prove one implication, say that L(a * v)(t) = v(¢), the other
being similar. We start from (3.1), taking the convolution of both sides with
v(t), to get
ko(a xv)(t) + (k1 * axv)(t) = (1 % v)(t). (3.15)
Next, observe that the definition of L implies

L(ax o)) = & ko(a * v)(1) + (ks * (a* 0)) (0]

if we substitute what we have found in (3.15), and use the identity 4 (1 «
f)(t) = f(t), we obtain the thesis.

We now proceed to analyze the operator L, = L(I + %L)_l.
Lemma 3.9. The operator L, = L(I + %L)*1 is given by
t
Loo(t) = p (v(t) _ / o(t — 8)ru(s) ds) , (3.16)
0

where 1,(t) is a solution to (3.3).
Proof. Let y = L,v; then

(I—I—%L)L‘ly:v = L_ly—l—%y:v — a*y—l—iy:v.

If we take convolution with r,, recalling (3.3), we get

a*xy=ry,*v = p(ry *v) +y = po.
U
Remark 3.3. We shall use (3.16) in this equivalent form:
L) = 1 (o) » 5, ()0) (3.17)

10



3.5 Some estimates on convolution operators

Let a be a positive real number, o« € (0,1), and a(t) be a completely
monotonic function on Ry and a(t) € L} (0,00). We define a measure
p([0,s]) = a+ [y a(o) do. The following lemmas treat the estimates on the
convolution powers of a(t) and p, respectively.

Lemma 3.10. Let a(t) satisfies Hypothesis 1a; then, for each T > 0 and
for any constant C > 0,

C™la™ || L1 o,y — O
More precisely, we have

o0
> a1y < oo (3.18)

n=0

Proof. Let C > 0 be fixed, and define the operator A : L'(0,7) — L*(0,T)
as

Av(t) = Cla * v)(1), t e (0,7).

A is a linear bounded operator from L!(0,T) into itself. We claim that the
spectral radius o(A) is 0. Then it will follow, from the formula

1
o(A) = lim [|A™|7,

n—00 £1(0,7))

(here || - ||c(z1(0,r)) is the norm of operators on L'(0,T)), that

— 0.

N 1
Clla™ 17102y < IA™ME 0.

In particular, from the root test for the convergence of a series we have
o
ZCnHa*nHLl(o,T) < 00,
n=0

and so it holds that
™ la |z 0.7y — 0.

It remains to show that o(A) = 0. From the definition of spectral radius
it is sufficient to show that for any o > 0 and any function « € L'(0,T) the
following problem has a solution v € L'(0,T):

u(t) = Cla*v)(t) + Cav(t).
But, since a(t) is a completely monotonic kernel, we have

v(t) = 5o (u(t) = (rija * (1),

and this shows the lemma. O

11



Next, we state a useful generalization of the previous lemma.

Lemma 3.11. Let p a completely positive measure on R, defined by

t
p(10,1]) = o+ /0 a(s) ds,

where a € (0,1) and a satisfies Hypothesis 1a. Let us define

([0, 1)) = /0 p((0,1 — o) 6V (doy).

Then we have that

o0

> p7([0,1]) < +o.

n=0

Proof. By direct calculations it follows that

* - n — *
om0, =3 () *Hla*luro,

k=0

so we have

o0 o0 n n

S0 =33 () Hla oo

n=0 n=0 k=0

> >
= _Ha*kHLl(O t) —— a7k,
1 ; EFAY
= k! — (n —k)!
Now
> et = Y (kR 1) (4 Do
n==k n=0
But
dk
(n+k)(nt+k—1)---(n+1)a" = ﬁan%,
o
then
f: n! ok ﬁoo n+1c:al_lC ak.
n—k (n = k)! do® n=0 dof1—a
Since
% 1




we have

o) n| —k dk ]_ k'

Z aTL —_ el

n==k (n —k)! dofl—a (1-a)Ftt
Hence we have

2 () = illa™ s m—oye

n=0 k=0

o0

1 Ha*k”Ll(O,t)
_1—akZ_0 (1—a)k <%

where the last series converges thanks to estimate (3.18) in Lemma 3.10. O

4 Construction of the approximate solution

In this section, we shall prove the results stated in Theorem 2.1. As ex-
plained in section 2.1, we shall only be concerned with the case kg = 0. We
first consider the approximate equation:

Ly(uu() = 2)(t) + Gluu(t)) = f(£), >0 (4.1)

Applying J, to both sides of (4.1), we get that this is equivalent to the
following

t
uu(t) = Jy (%uu(t) + %f(t) + su(t)z —I—/O Uy (t — s)ru(s) ds) . (4.2)

Lemma 4.1. Let y > w; then for each T > 0 there exists a unique solution
uy to (4.1) in C([0,T); X).

Proof. For fixed f € C(R;+;X) and z € X, we define the mapping

K)(t) = Ju <%v(t) + if(t) + su(t)z —I—/O v(t — s)ru(s) ds) ) t>0.

It is easy to show that X maps C([0,7]; X) into itself; moreover, we can
bound the norm of X by

1K (v2) = X(v1)[[(#) < $(v2 = v1) (@] + (ry * [[oz = v2[])(2)

(recall that J, is nonexpansive). Let us introduce the measure p on R by
t
pl0.8) = %+ [ nu)as

13



Then p is a completely positive measure; moreover
13 (vg) — I (01)[| oo 0,1y < Nlv2 = w1l oo 0,1y™ ([0, T)),

where p*([0,1]) ft *(=1)([0,t — s]) p(ds).
It holds that

p0.0) =3 (1) & IiF s,

k=0

and from Lemma 3.11 this goes to zero. O

Let us denote U(z, f, u) the solution to (4.1) constructed in Lemma 4.1.
Before we establish the convergence of U(z, f, ), we proceed to study a
priori estimates.

Lemma 4.2. Let uy = U(x1, f1,4) and ug = U(xa, fo, u) be two solutions
to (4.1); then it holds that

luz(t) — m (@) < w2 — 1]l5-0, (2)
F (@150~ AOI+ @ 150) = AOD) #5-0,) (0. (43)
Proof. 1t follows from (4.2) and the fact that J, is nonexpansive that
lua(t) — ur ()]l < su@®)llwz — zall + L1l f2(8) = F1(B)]
4 2ua®) = @] + (ry ua() = () (),
so we have from Lemma 3.7 that for every y > w
luz(t) — w (@) < w2 — 1|50, (2)
£ L (50~ HOI+ @ 160~ AOD) * 52, ) O

where s_,, (t) is defined in (3.2) with w, = 5. O

Lemma 4.3. Assume further that

f(t) € BVioe(Ry; X), (4.4)

and let the assumptions of Theorem 2.1 be satisfied. Then the solution u,(-)
belongs to BV,.(Ry) and it holds that

var([|uy (1) — s [t1, 22])
< (el + SIG @) + SIF O (s-w, (t2) = 5, (t1))

- / 1 (o) va(f max{0, — s}, t2 — o]) ds
0

+ Lvar(f;t1,12]).  (4.5)

14



Proof. For any h > 0, from (4.2) it holds that

uu(t+h) —uu(t) = Jy (su(t + h)z + Suy(t + h)
t+h
+Lf(t+h)+ / wp(t + b — 7)r(7) dT>

( )z + % uu

+ %f( )+/ uy(t — 7)ru(r )dr)
Taking the norm, since J, is nonexpansive, we get

(4 B) — (W) < 2wt + h) — (O + SI1F E+R) — FB)]

+ [ e+ b =) = e = lra(r) o

t+h
—I—/ lup(t +h — 1) — z||r () dr.
t
Thanks to Lemma 3.7 we obtain the estimate

lun(t + ) = wu ()] < Sralus by t) + (a(p, by ) % a) (1), (4.6)

where we set

q(p, h,t) = H/tt+h||uu(t+h —7) —zllru(r)dr + || f(t+ k) — (D)l
—u/t (/thuu(sm—f) — alru(r) dT) e, (t — 5) ds
/ 1£(5+ B) — F(8)llru, (t — 5)ds
_ M/H—h“uﬂ(t tho1)— g <r“(7') —/Otru(r ) (5) ds) dr

ClFE ) n—/WUs+h () 17—, (¢ — 5) ds.

Let us consider next the convolution term which appears in (4.6):
(st =)y = [ o] pate=9) [ untn—m) s
) % = - —7) =
g\, v, a ; Ha . Uy T xT
9

( u(04+7) — / (0 + 71— 8)r_y,(s) ds) dT:|

/ 1£(s +B) — £(5)]lalt — 5) ds

/ [/ 1f (s +h) — ||rw(19—s)ds] alt — 9) do
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t+h
,u/ dr [Hu“ (t+h—71)—2x|
t

/ota ( Ot 197"u(7 = = 8)r—u,(s) ds) dﬂ]
n /0 tllf b h) -
( a(t —s —d)r_ (ﬂ—s)dﬂ) ds.

Finally, since r_,,, < 0, we obtain the following bound

[un(t + h) = uu (D) < ( sup |[|uy(2) —$||>

te(0,h)

[ [ v [ oute o) = ([t =)
+M/ /Mrw - dsa(q‘})dﬂ)]
ﬁ(”f’“rh @l - /||fs+h 7w )d)

/Ilfs+h ) ra, (& — 5 ds

< ( sup ||u,(t) — I||>
te(0,h)
/t e [(m(f) +u /0 (e — 9)a(0) dﬂ)
- ( /0 tr_w“(s)(ru(r s) 4 / Hru(f s — 1) (19)419) ds)]
FLIf(E+R) - £ - 1/||f FB) = [ (t—5)ds  (4T)

Now, we divide the interval [t1, %3] in (N + 1) intervals of length h, and
we compute the variation of U(z, f, 1) along this partition to get

N
S g (k + 1)) uu(kh>||<<sup o (2) - xn)
k=0

t€(0,h)

N

;) /k :m)h dr [(m(f) + p /0 ; (T — 9)a(?) dz?)
_ ( /0 () (ru(T —5) +u /0 O e — 5 — 9) a(9) dz‘}) ds)]
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+ 1 Z ((k +1)h) — f(kh)||

': |

kh
Z/ 1£((k + 1)k = 8) — f(kh — 8)[[7—a, (s) ds. (4.8)

Now we estimate the expression supyc(q ) [|uu(t) — z||. Subtracting to
both sides of (4.2) J,(z) we have:

then

u(t) = Ju(@) ]| < 2lu(®) — 2
w 1 K
+lall+ IO+ [ uate = 3) = alru(s) ds

and since J,(z) —z = %Gu(x), we have

e (8) = ] < 2 s () —
+2lall+ 2170l + HGu@) + [ st = 8) = (o) ds
Using Lemma 3.7, we obtain
o (8) = 2 < 2 @l + Gy @) [Es-, () + (@5 5-0,) 1)
+ 2 L (O @r 17OD) * 50, ) 0
- %wnxn +1Gu @) [£ + &5, () = )]
+ 2 L(FON+ @x 1FOD) * 5, ) (@)

therefore
sup (1) = 2| < 2 (2 + 1Gu (@) [& + L (50, () = 1)]
te(0,h)

h
2 s 701 4+ [ ato)ds
t€(0,h) 0

B 5/0hr_wu(s)ds—/0h (a*r_wu(s))ds)
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SO

[wllwll + [|Gu(@)] + sup IIf(t)||] - (4.9)
te(0,h)

In case w = 0 the above estimate simplifies to

h
sup [, (0) ol < (3 + [ a(s)as )
te(0,h) 0

Sending h — 0, the right hand side of (4.8) becomes

|Gu(z)]| + sup ||f(t)||] :
te(0,h)

s Wzl + IGu @)+ 11 01D

/: dr [(m(f) +u/OT ru(r —9)a(v) d,ﬁ)
_ (/OT T, (8) (ru('r — ) +:“/OT_S ru(r — s —9) a(9) dq?) ds)]

+ o var(f; [t t2]) — %/h r—w,(s) var(f;[max{0,¢; — s}, 12 — s]) ds
t1

= S wlzll + 1Gu@)] + [1F(0-H)1])

/: dr [ () - (/OT T, (s)a(r — s) ds)]

+ %Var(f; [t1,t2]) — %/:2 7w, (s) var(f; [max{0,t; — s},t2 — s]) ds
12
— (e + L1G, @)l + LIFO4)]) (— [ ra dT)

2]
+ Lvar(f; [, ta]) - 5/t r-w, (s) var(f; [max{0, £, — s},t5 — ) ds
= (llzll + SIGu@) + SO (-, (B2) = -, (1))

t2
+ Lvar(fi [t ta]) — L / P, (8) var(f; [max{0,t; — s},t, — s]) ds.
1
Therefore, the thesis follows:

var(u(-) — 2l [t1, t2]) < (=] + SIGu(@)I) (5w, (t2) = 50, (t1))
T

+ Lvar(fiftr,ta]) = 3 [ v, (s) var(f; [max{0, t, — s}, ¢ — s]) ds.
0

O
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Corollary 4.4. Let the assumptions of Theorem 2.1 and (4.4) be satisfied.
Then it follows from (4.9) that

10, £,1)(04) = all < 725 (wllzl + 1Gu @) + 17 0)). (4.0

Remark 4.1. We note that for u large enough respect to w, and x € ﬁ(G),
the estimates in (4.5) and (4.10) are bounded by constants independent from
78

In order to make the paper self contained, we recall the following result,
that is proved in Gripenberg (1985), Lemma 3.4, and will be needed in our
proofs.

Proposition 4.5. Assume that b € L}, (R} ) and v € BV,,.(Ry; X). Then
the function t — f(f b(t — s)v(s) ds is locally absolutely continuous and dif-
ferentiable almost surely on Ry. Moreover,

r

t
%/0 b(t — s)v(s)ds

T
< (/0 Ib(t)ldt) [lo(0-H)[| + var(v; [0, TT)].  (4.11)

Lemma 4.6. Under the additional assumptions f € BVj,(Ry,X), = €
D(G), we have

lim Uz, f,n) < Uz, f) (4.12)

1—00
. . 1 .
exists in L, (Ry; X).

Proof. If we replace A by p in (4.1), then, by adding and subtracting the
same quantity, we get

Lx(uy — z)(t) + G(uu(t)) — f(t) = La(uy — 2)(t) — Lu(uy — 2)(2).
Setting
p()"u’t) = L)\(uli - .’E)(t) - LM(’U’M - .13) (t)a (4'13)

and using formula (3.16), we get

PO s 1) = Alup(t) = (up x 72) (8) = sa(t)z] = f(2) + G(up(?))

hence u,(t) satisfies the equation

up(t) = Iy (sx()z + 3 F(t) + 1A, 1, 1) + Fwuy () + (ra *u,)(2)) -
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Since J), is nonexpansive, this equation combined with (4.2) implies

lur(®) = wu @l <3llp(A 1, 1)l
+ 3wllun(®) = @)l + (ra * flua() = wa (1) ().

Using Lemma 3.7 we obtain

o (8) ()] < 2 ((3llpO0s 1t )+ % ph, 1) # 5, ) (),

that in another form we can write
lun(®) = ()1 < 25 1pCn 1Dl = 5525 (12O 1, ) 5 7)1

We now proceed to prove that p(A, u,-) converges to 0 as A,y — o0 in
L} (Ry;X). Recall that p(A, i, ) is defined by (4.13); then by (3.17)

t
pOwint) = 5 [ wlr) = 2)salt =) = (e = ) o

By formula (4.11) we obtain

/ 1O 1, 1) dt < var(uy (-) — ]; [0, T]) / s () — s, (1) dt.
0 0

Since the variation of |lu,(-) — z|| is bounded by a constant for y large
enough, compare Remark 4.1, and the integral tends to 0 by Proposition
3.5, we have the thesis. O

We conclude the preparatory material for the proof of Theorem 2.1 with
the following theorem, where we collect some useful estimates for the solution
of problem (2.1).

Theorem 4.7. Let z; € ﬁ(G) and f; € C(Ry;X) for i = 1,2, and let
u; = Ul(xy, f;) be the generalized solutions of equation defined in Theorem
2.1. Then we have, for each t >0 and h > 0,

Jua (t) = wr ()] < 1z = w1 lls—o(®) = 3 (7o 1 20) = AON) @) (414)

sup |[|u(t) — z|
te(0,h)

< (w(s—w(h) = 1)) <w||w||+supllGu(w)ll+ sup IIf(t)II)- (4.15)
u>0 te(0,h)
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Proof. Notice first that (4.15) were already proved in Lemma 4.3, see formula
(4.9).

For the proof of (4.14), let for i = 1,2, u;(u;t) = U(wi, fi,u). Now,
observe that

[ua(t) — w1 (t)|]
< luz(t) —ua(ps t)|| + llur () — wr (g5 8)[] + [Jua (s t) — ua(pst)]]-

Since (4.3) holds for any g > 0, while u;(p;t) — wu;(t) for i = 1,2 and for
any t > 0, it follows from the previous estimate that

[[ug () — w1 (¢)[] < liminf [Jug(ps£) — ua (ps2)]]-
U—>00

It remains to evaluate the right-hand side of the previous estimate where we
get, using (4.3):

lim inf [lug (p; ¢) — w1 (p; 8)|| < [lz2 — 21([s-w ()
U—>00

+ %((a [ f2(-) = f10)]]) * 3—w) (t)-

Now since

2 (@150 = RO *5-0) @) = & (r-w* 120~ AO) @

we finally obtain

s (t) = ()] < N1z = w1lls—w(t) = 5 (r # 12() = HLON) ().
]

We are in a position to conclude the proof of Theorem 2.1. Under the
additional assumptions f € BVjo(Ry, X), z € D(G), we obtain the conver-
gence of U(z, f, ) towards U(z, f) in LjS (R4 ; X) and the continuity of the
limit function via a Ascoli-Arzela theorem, by invoking the equicontinuity of
the functions U(z, f, u) that follows from Lemma 4.3. Then it follows from

Remark 4.1 and Corollary 4.4 that U(z, f) € BVje.(R4; X) and
Uz, f)(0+) = z.

Now it follows from Theorem 4.7 that U(z, f,u) converges to U(z, f) in
L} .(Ry; X), respectively in C(R; ; X), also in the case that the assumptions

f € BV Ry, X), z € ﬁ(G) are not satisfied, but z is in D(G) and f
belongs only to LI (R, ;X), resp. C(R;; X).

loc
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Remark 4.2. From the proof of the Lemma 4.3, compare (4.7), we obtain,
for w = 0, the estimate

[ut + h) —u(@)] < /0 If(E+h—s) = f(t = s)la(s) ds

t+h
+ (Sup”Gli(w)“-l_ sup ||f(t)||>/ a(s)ds, (4.16)
©>0 t t

(0,h)

for each ¢ > 0 and A > 0. This is the same formula that is proved in
Cockburn et al. (1996). Using this result, Gripenberg et al. (2000) were
able to prove the existence of a strong solution for (2.1).

A similar estimate, up to now, does not seem to hold for w # 0; we hope
to return to this problem in a future work.

5 Lipschitz nonlinearity

In this section, we shall prove the results stated in Theorem 2.2.
Let us define the mapping H : C(R;; X) — C(R4+; X)

:}C(u) = U(JZ,F(-,U)), (51)
then a generalized solution to equation (1.1) is a function u(t) such that
u = H(u).

We can achieve the existence of the solution from a fixed point theorem if
we prove that some iterate of J is contractive. At this purpose we need the
following lemma.

Lemma 5.1. There exists k > 1 such that the k-iterate of H is a contrac-
tion:

1HF (u) — :}fk(v)HLw(O,T;X) <ellu —vl|Lo(o1:x)
for some € < 1.

Proof. From (4.14) and (2.4) we have

t
19¢(w) (£) = H(w) ()] < /0 (=r—w(t = s)IF(s,uls)) = F(s,v(s))| ds

<

IS

t
/0 (=r—w(t = s))n(s)lu(s) — v(s)ll ds.
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Iterating this procedure we have
195 () (£) — 3¢ () (2)]]
t T1
<& [rstt=smen) [ roster - snta) -

Tr—1
.. / (—r—w(zp—1 — zg))n(z) |u(zk) — v(zg)| dog . . . dzo dz;.
0
Then

||5Hk(u) - fHk(“)”LOO(O,T;X) < lu - U||L°°(0,T;X)w7kHnHIzOO(O,T)
T T1 Tp_1
/0 /0 /0 (—wa(T_-Tl))"'(_rfw(-rk—l —:ck))d:ck... dxq,

but, by a repeated use of Fubini theorem, we have

19¢* () — H* ()| oo (0,13x)
<|lu - U||L°°(0,T;X)w7k||77||l[c,°°(0,T)H(_T—w)*k”Ll(O,T)-

Finally by Lemma 3.10 we have that the right hand side converges to zero,
so for sufficiently large £ we have the lemma. O

As stated before, this lemma provides the proof of Theorem 2.2. We
insist on the following explanation.

Remark 5.1. Let u = U(z, F(-,u)) be a generalized solution to (1.1): then,
by definition, this means that there exists a sequence u,(t) such that

Ly(uy — 2)(t) + Gy (1)) = F(t, u(t))
and u, — win L} _(Ry; X) N C(Ry; X).

6 Dissipative nonlinearity

In this section, we shall prove the results stated in Theorem 1.1. Here, we
follow the ideas in the proof of Theorem 7.13 of Da Prato & Zabczyk (1992).
Let us introduce, for any a > 0, the approximating equation

L(uq — z)(t) + G(ua () = Falt, ua(t)), (6.1)

where F,(t,-) are the Yosida approximations of F(t,-). We denote with
J&*(-) the resolvent operators associated to F(t, ).

Let us recall that Fy, is Lipschitz continuous; moreover, for any z,y € X
and z* € J||z||,

(Fo(t,z +y),2") = (Fu(t,z +y) — Fu(t,y),z") + (Falt,y), z")
<(Falt y),z") < [|F (@ y)-
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From Theorem 2.2 we know that there exists a generalized solution uq (%)
to equation (6.1). Then, there exist sequences u,,, and d,,, such that

Uau = Ua € Li,(Rp; X)NC(Ry; X),

(6.2)
Ly(vau — z)(t) + G(uau(t)) — Fo(t, uapu(t)) = dau — 0.
Now, let y € D(G), then for some y* € 0||uq,,(t) — y|| we get, from
(Lp(vapu(t) —9),v") — (Lu(z — y),y") + (G(ua,u(t)) — G(y),y*)
+{G(Y),y*) — (Falt,uau(®),y") = (bau,y")

the estimate
(e (®) = 9l = () =yl 1) (1))
< ltau(®) = yll + su®llz = yll + IGOI + 1P + 15aull

Lemma 3.7 now implies
Wy d 1 5
() =yl < 52 Lz =yl + (g[IIG(y)II FIEC I+ 19a,ll]

+ (@ GO+ IFC + 15asll)) -0, ) 0

and passing to the limit as y — oo we get

lua(t) ~yll < (2~ yll +a * GG +IFCI) *5-0) (0. (63)

We can simplify this expression. If we consider separately the case w = 0,
then the estimate (6.3) has the simpler form

[ua(®) = yll < llz =yl + (ax [IGWI + [1FC,9)1]) @)

In the general case w # 0 we get

lua(t) = yll < s—w(®) 2 =yl = & (r—o * [IGWI + 1FC9)ID) @)

This shows that the sequence {uy(-)} is bounded uniformly on bounded
sets.
To show the convergence of the sequence, we set, for any a, 8 > 0,

9P (t) = ua(t) — ug(t).
Let us consider the functions gﬁ’ﬂ (t) = vau(t) — up,,(t), where uq ,(t) and
ug,,(t) are the approximating functions solving

Ly(ta,u — ) (t) + G(uau(t) =Fa(t, ualt))
Ly(ugu — 2)(t) + Glug u(t)) =Fp(t, us(t))
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respectively; moreover we have that
Ugu — Uo and ug, — ug

in L} (Ry; X) N C(RT; X). Then g*#(t) shall be a generalized solution to

the problem
Lg™ (8) + Glua(t)) — Glus(t) = Falt,ua(t)) — Fy(t, us(2)).
Now we have, for y* € 8||g%” ()],
(Lug™ (0),4") + (Glttau(®) — Glug,(®),y")

= (Fa(t, ua(t)) — Fp(t,up(t), "),

which becomes, thanks to (3.17):

i (I P @ = (g | 7)) = wllge @]
< (Fa(t ua(t)) — Fa(t,us(t)),y") . (6.4)
Let us notice that

(Fa(t, (1)) — Fi(t,u5(2)),7)
< (F(t, t0,u(1)) — F(tug,u(0),y7)
T AE (8, T () — F(t0u(0) + F (b up,u(0)) — F(t, T4 ug(0)),5°)
< (1, TE (1)) — F (b, ()] + [ F(t, T4 up (1)) — F(t,ug, (1)

Now, by (6.3) and recalling that F' is uniformly bounded on bounded subsets
of Ry x X, for a fixed T > 0 there exists R > 0 such that

lua()[| <R and [|[F(tua(t))]| <2R  VtE€[0,T],
for all @. Then we have
[ua(t) = I3 (wa ()] < Sl Faltua(®))] < 2R;
and, for u sufficiently large
lua @) <R VEe0.T]
so we have

[t (t) — uau(t)]] < 2R.
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Therefore, it follows
17 (.5 (wa (1)) = F(t, ta,u ()]
< ||F(ts o (wa(t) = F(t ua ()] + 1F (8 ualt) — F(t tau(®)) |
< pr(2R) + pr(|[ua(t) — uau @),

where pp is the modulus of continuity? of F(¢,-) restricted to [0,7] x
B(0,2R).
The above construction, starting from (6.4), leads to

u(lgg PO = Ulge? | <)) = wlige? @)
< pr(2R) + pr(3R) + pr(cau) + pr(ep.u);
where

Eq,u — SuUp ”ua(t) - ua,N(t)H < 2R,
te[0,T7]

egu = sup |lug(t) —upg,(t)] < 2R.
te[0,T

Lemma 3.7 now implies
lggP Ol < 2 [ pr(2R) + pr(3R) + prr(Ean) + pr(es,)]
(%s_w# )+ (axs_w,) (t))
From the above inequality, as we pass to the limit for ;4 — oo, we have

lg™P @)1l < [pr(2R) + pr(53R)] (a* s-u) (1)-

This yields the convergence of the sequence u,(t) in C([0,T]; X) to a func-
tion u, which is easily seen to be a generalized solution to (1.1). The re-
maining of the proof now follows as in Da Prato & Zabczyk (1992).

A Proof of auxiliary results

In this section we shall give the proofs of the results introduced in section
3.3.

Proof of Lemma 3.6. Since s_,(t) is positive, taking the convolution in both
sides of (3.7) with s_,(t) we have

ta t2
/t v(x)s_(t2 —x)dz < / g(x)s—y(to — z) dx

1 t1

to T
+ /tl /0 fya,(,q; — y)’l)(y) 8_7(t2 - 37) dy dr.

2A function p = psr is called the modulus of continuity of a function f if p(s) =
sup {||f(t1) — f(t2)ll = 1,22 € [0, T), [t1 — t2] < s}.
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Applying Fubini’s theorem to the last integral we have

to T
/ / Ya(z — y)o(y)s—(tz — 7) dy dz
t1 0

_ /: (/yt2'ya(:1: —y)s_s(t — 3) dw) v(y) dy
# [ ([ rate st = 2o oo

to t2
:/ s_y(tQ—y)v(y)dy—/ v(y) dy

t1 t1

11 to
+/ (/ va(z — y)s—y(t2 — z) dw) v(y) dy.
0 t1
Then we have

to 2]
/ v(z)s_y(tg —z)dz < / g(z)s_(t2 — z) dz

t1 tl

to to
+[Cott—peway— o dy

i1 t1

+ /Ot1 (/t1t2'ya($ —y)s_y(t2 — x) dx) v(y) dy,

and we read

[“owavs [ o@s 1ty

t1 t1

+ /Otl (/ttzya(a: —y)s—y(ta — x) dw) v(y) dy. (A.1)

1

We analize now the last term of previous inequality: since y < t1,
to
[ rat = v (ta ~5)da
t1
to t1
= / ya(z — y)s—y(t2 — z) dz — / ya(z —y)s—y(t2 — z) dz
y y
t1
—lslta =) = 1= [ 1o = s (t —5)d
y

t1
- /y ya(@ —y)[s 4 (ts — ) — 5 4 (t1 — 2)] da
=[5yt —y) — 1= (54 (t1 —y) = 1)]

_ /y lfya(aj B y)[877(t2 _ CL‘) _ 377(t1 — .1')] dz.
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If we return to (A.1), we get

to to
/ oly) dy < / 9()sr (t2 — ) do
t1 t1

11

+ i [s ~(t2 —y) — s (t1 — y)]v(y) dy
11 t1
- ( [ ot = )lsatta = 0) — st — ) dm) o(y) dy
Y
[2)
— [ g@ss(ta - o) o

t1
t1

+ i [s—y(t2 —y) — s (t1 — y)]v(y) dy
11 T
- ( [ rate -0t dy) (5 (t2 — 7) — 5_(t1 — )] da

and, since s_,(t) is an increasing function, we can use here (3.7)

t2
S/ g(z)s—y(ta — z) dx
t

1 .

+ | [s—y(t2 —y) — s—y(t1 —y)]v(y) dy

t1
- [ (010) ~ gt st =) = 51~ ) do

hence

to to t1
[ o< [ g@syta—a)do- [ gladsttr -5 do. (A2)

t1 0 0

Now dividing (A.2) by t2 —t1 and letting t2 —¢; — 0 we have the thesis. [

Proof of Lemma 3.7. If we take convolution with a(-) of both sides of (3.9),
we have

(a*xv)(t) < (a*s))(t)z+ F(a* f)(t) + Llaxv)(t) + (a*7x*v)(2).
Using the very definition of 7)(-) in the above expression we get

(axv)(t) < (a*sx)(B)z+5(axf)(8)+§ (axv)(t) +(a*v)(t) = 5 (raxv) (D),
that we read

(ra*v)(t) < Ma*sy)(t)z + (a* f)(t) + w(a*v)(1). (A.3)
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Now we substitute what we have found in (3.9) to get

v(t) < sa(t)z + 5 () + §u(t) + Aa*52) () + (a* (1) +w(a*v)(2),

and the definition of s, implies

)‘_T“’v(t) <z+ %f(t) + (a* f)(t) + w(a *v)(t)
o(®) < 525 (o4 L) + (ax D) +wrlas ).

Now we conclude since we can apply Lemma 3.6 with g(t) = ﬁ (z+ % f)+

(ax f)(t))- =
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