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Introduction

The physics of ultracold atomic gases has been the subject of a long standing theoretical
and experimental research over the last half century. The development of evaporative
cooling techniques and the realization of the first Bose-Einstein Condensate (BEC) in
1995 gave a great advantage to the field, leading to the development of many laboratories
all over the world, investigating different atomic species and physical phenomena. A
great experimental knowledge of the fundamental properties of BECs, such as long-
range coherence, superfluidity and topological excitations, has now been acquired. On
top of these advances, current research on ultracold atoms is also focusing on quantum
simulations, which aim at building analogue models of otherwise difficult to compute
physical systems in the lab. In this context, BECs, with their enhanced coherence,
many-body dynamics and superfluid character offer a powerful platform for advances in
the field.

Shortly after the first realization of a BEC, research started also investigating the
physics of quantum mixtures of a BECs, either composed of different atomic species
or isotopes, or of atoms occupying different hyperfine states. The latter are known as
spin mixtures, or spinor condensates. The presence of multiple components interacting
through mutual contact interactions enriches the physics of the condensate, introducing
ground states with magnetic ordering as well as spin dynamics, which can be order of
magnitudes less energetic than the density one. On top of this, hyperfine states can be
coherently coupled with an external resonant radiation, either homogeneous or localized
in space. Interesting physics arises when the strength of the coupling is comparable
with the energy of spin excitations, an example of which is given by the emergence of
the internal Josephson effect. This regime has been the subject of intense theoretical
studies in the past twenty years, however its experimental realization on ultracold atomic
platforms have been proven to be challenging, with experiments strongly limited by
coherence times of few tens of milliseconds. In fact, the small energy scale of spin
excitations reflects in a high sensitivity coupling to environmental magnetic noise, which
affects the resonant condition. The experimental apparatus on which I worked during
my Ph.D. solve this problem employing a magnetic shield that surrounds the science
chamber, attenuating external magnetic fields by 6 orders of magnitudes.
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XIV INTRODUCTION

During the course of my Ph.D., I investigated the properties of a coherently cou-
pled mixture of BEC of 23Na, performing different experiments in two atomic config-
urations. The first configuration consist of a mixture of hyperfine states, namely the
|F = 1,mF = −1⟩ and |F = 1,mF = +1⟩, which is characterized by miscibility in the
ground state. This mixture, coupled by a two-photon transition, has the peculiar prop-
erties of being equivalent under the exchange of the two species, and of having an energy
scale for the spin excitations order of magnitudes lower than the density one, effectively
decoupling the dynamics of spin and density degrees of freedom. Another configuration
was instead realized working with a strongly immiscible mixture of |F = 1,mF = −1⟩ and
|F = 2,mF = −2⟩. With respect to the miscible states, this mixture is not equivalent
upon the exchange of particles, but it can be easily coupled with a one photon transition,
and, most importantly, it is robust against spin changing collisions, that might induce
atom loss.

My first experiment was devoted to the characterization of different methods of ma-
nipulation of the coupled miscible mixture in an elongated quasi-1D geometry. The
dynamics of the system, in Local Density Approximation (LDA), can be fully described
as an internal Josephson junction. The Josephson effect may arise in quantum systems
when a macroscopic wavefunction is distributed in two weakly coupled quantum states,
with the mean field energy of each state depending on the average number of particles in
the respective state. In this case, the dynamics depends on the atom number difference,
the relative phase, and coupling to mean field energy ratio. Josephson physics has been
first studied in superconductors, and recently it was extended to cold atomic systems
in point-like geometries. In our work, we characterized the dynamics of an extended
Josephson junctions with an inhomogeneous spatial profile, developing three different
protocols for state manipulations. Remarkably, one of the three protocols, relying on an
Adiabatic Rapid Passage technique, gives rise to a state of homogeneous zero magneti-
zation despite the non-homogeneity in the density profile.

In a second experiment, I developed a protocol to generate Faraday waves in an un-
polarized miscible mixture. Faraday waves are classical non-linear waves characterized
by a regular pattern, that originate in classical and quantum fluids via a parametric
excitation in the fluid. In quantum fluids, it can be demonstrated that they originate
through the interference of pairs of phonons with opposite momentum, generated para-
metrically in the bulk. The energy, fixed by the frequency of the modulation, and the
wavevector of the emitted phonons are linked by the dispersion relation of elementary
excitations, which in the case of a BEC are Bogoliubov quasi-particles. Interestingly
enough, this process resembles the phase of reheating of the early universe, where the
oscillation of the inflaton field is thought to have excited particles out of the vacuum.
In analogy with this phenomenon, the oscillation of the inflaton field can be simulated
with the periodic modulation of the trapping potential.
In a spin mixture, the parametric modulation can excite either in-phase (density) modes
or out-of-phase (spin) modes, as two possible elementary excitations are present in the
system. By extracting the spatial periodicity of the generated pattern at different mod-
ulation frequencies, I was then able to measure the dispersion relations for both density
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and spin modes of the system. In the presence of the coherent coupling, when spin exci-
tations becomes gapped, we further demonstrate the scaling of the gap with the strength
of the coupling radiation.

The third experiment I realized concerned the characterization of the magnetic
ground state of a spatially extended immiscible mixture in the presence of the coherent
coupling. The Hamiltonian of such a system is formally equivalent, in one dimension,
to a continuous version of the transverse field Ising model, which describes magnetic
materials at zero temperature. In this mapping, a nonlinear interaction term arises from
the ratio between the self-interaction energy and the strength of the coupling, which
acts as the transverse field. As the ratio between the two quantities is varied above and
below one, the ground state of the system spontaneously changes from a paramagnetic
phase to an ordered ferromagnetic phase, featuring two equivalent and opposite mag-
netizations, a signature of the occurrence of a second order quantum phase transition
(QPT). Furthermore, in the magnetic model, the degeneracy between the two ferromag-
netic ground states can be broken by introducing an additional longitudinal field, using
the ordinary notation of magnetism in condensed matter physics. In the atomic case,
the role of this additional field is taken by the detuning between the coupling radiation
and the resonant transition frequency of non-interacting atoms.
While the transition between the two paramagnetic and ferromagnetic phases have been
already studied both theoretical and experimentally with quench protocols, a full exper-
imental characterization of the ground state was still missing, due to the lack of both
long coherence times and a spatial degrees of freedom in extended geometries. Such
a control of the ground state in the different magnetic phases would be of paramount
importance for the study of magnetic phenomena in a defect free environment.
I characterized the QPT developing protocols to manipulate the spin mixture in its
spatially extended ground state, varying the longitudinal field. Leveraging on the inho-
mogeneity of a BEC trapped in the harmonic potential, a smooth variation of the spin
self-interaction energy occurs spontaneously in space, introducing different magnetic
regimes at fixed coupling strength. These protocols gave access to a characterization
of static properties typical of magnetic materials, such as the presence of an hysteresis
cycle, that occurs when varying the detuning of the coupling (longitudinal field). The
occurrence of the phase transition was instead validated by a measurement of the mag-
netic susceptibility and corresponding fluctuations, which both show a divergence when
crossing the QPT critical point. At last, I developed a protocol to smoothly manipulate
the position of magnetic domain walls, the least energetic excitations in a ferromagnet.
The smooth control of the excitations stems from the superfluid character of the BEC.
All the results were validated by GPE simulations and theoretical calculations.

While the previous study focused on static properties, the last experimental investi-
gation presented in my thesis was devoted to the study of the dynamics of the metastable
ferromagnetic region of the BEC. As a result of the presence of an hysteresis cycle, by
tuning the detuning it is possible to engineer states of the ferromagnetic energy landscape
that are homogeneously prepared either in the global minimum, with trivial dynamics,
or in the metastable, higher energy, local minima. In the latter case, a classical system
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should eventually decay towards the global minimum, driven by temperature fluctuations
which overtop the energy barrier separating the two minima. For a quantum system de-
scribed by a field theory, such as a ferromagnetic BEC, this process is of different nature,
as it occurs by tunneling through the barrier, triggered by quantum fluctuations. The
event of tunneling is known as False Vacuum Decay (FVD), and is of outstanding rele-
vance also for high energy physics and cosmology, were the first theoretical models were
developed. In the FVD model, the decay towards the global minimum, the true vacuum,
is a stochastic process that occurs only if a resonant bubble of true vacuum is formed.
Once formed, the bubble will eventually expand throughout the whole system, as the
true vacuum is energetically favourable. The probability for such a bubble to form can
be approximately calculated analytically in 1D, and should depend exponentially on the
height of the barrier the field has to tunnel through. Due to the exponentially long time
scale of the process, experimental observations of FVD were still lacking.
Thanks to the enhanced coherence time of the superfluid ferromagnetic mixture, and to
the precise control of the barrier height through the detuning from atomic resonance,
we were able to observe the event of bubble nucleation in a ferromagnetic BEC. To
corroborate the observation, I measured the characteristic timescale of the decay for
different values of the control parameters. Results were successfully compared first with
numerical simulation, and then validated by instanton theory.

Thesis Structure

• The first chapter contains a brief review of theoretical concept and literature on
the main topics of this thesis. I introduce the mathematical description, starting
from a GPE formulation of a coherently coupled spin mixture, and review the key
theoretical and experimental results, defining the current state of the art in the
field.

• In the second chapter I describe the experimental apparatus on which I worked,
focusing on the experimental methods used to manipulate the mixture, and the
constraints imposed by the regime of low coherent coupling strength.

• The third chapter describes and compare different methods for the experimental
manipulation of a miscible mixture in the presence of coherent coupling.

• In the fourth chapter, I report on the observation of Faraday waves in miscible
spin mixture in the absence and presence of coherent coupling. I first describe
the protocol, then the image analysis method used to extract the periodic pattern
of Faraday waves. This technique allows for the accurate measurement of the
dispersion relations of elementary excitations in the mixture.

• The fifth chapter is devoted to the characterization of the ferromagnetic ground
state of the coherently coupled immiscibile mixture. I first describe the map-
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ping between the atomic Hamiltonian and a semiclassical energy functional of a
continuous magnetic material. I then describe the experimental protocol used to
characterize the system, focusing on the role of systematic errors introduced by
the experimental procedure and the dimensionality of the sample. Experimental
evidence of ferromagnetic behaviour, as well as the occurrence of a paramagnetic-
ferromagnetic QPT, are then reported.

• In the sixth chapter I discuss the observation of False Vacuum Decay in a su-
perfluid metastable ferromagnetic mixture. After discussing the theory of FVD
and how it applies to coherently coupled BECs, I describe the protocol used to
generate bubbles of true vacuum from the metastable ferromagnetic state. The
observation of bubbles is then reported, along with a measurement of the scaling
of the characteristic decay rate with respect to control parameters.
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Chapter 1
Theoretical Background on Bose-Bose
Mixtures

Contents
1.1 Bose-Einstein condensation and Gross-Pitaevskii equation . . . . 2
1.2 Quantum mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Extension of GPE to two-components BECs . . . . . . . . . . . . . . . 6
1.2.2 Dispersion relations for density and spin channels . . . . . . . . . . . . 8

1.3 Coherently-Coupled BECs . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Bloch Sphere representation . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Internal Josephson Junction . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Extension to finite size systems . . . . . . . . . . . . . . . . . . . . . . 18

Bose-Einstein condensation is a many-body phase transition, arising from quantum
statistics in a system of indistinguishable bosons. Its experimental realization almost 30
years ago in a gas of ultracold atoms [1] opened the way towards a plethora of studies
on ultracold atomic gases, later extended to other platforms of bosonic systems, such
as polariton condensates [2] and photon BECs in cavity [3]. The research in the field
of atomic BEC now addresses both fundamental questions about the nature and the
dynamics of quantum many-body systems, as well as its implementation as an analogue
system.
A subfield of research focuses on characterization of multi-species BECs, where two
atomic species are Bose-condensed together. The species can be either heteronuclear, or
homonuclear with different internal states. In the latter case, the scenario can be further
enriched by adding a coherent coupling term between the two atomic species.
In this Chapter I will provide the theoretical tools that will be used throughout the rest
of this Thesis. I will first start introducing the Gross-Pitaevskii formalism for both single
and two-component systems. I will then show how, in the presence of coherent radiation
that couples the two states, the equations can be recasted in a more general equation of

1



2 CHAPTER 1

motion for the field, which carries analogy with other sectors of physics, e.g., magnetic
systems.

1.1 Bose-Einstein condensation and Gross-Pitaevskii
equation

Bose-Einstein condensation is a phase transition occurring when a gas of identical bosons,
once cooled below critical temperature Tc, that depends on its density, macroscopically
occupies the ground state of the system.
As a result of the spontaneous symmetry breaking of a U(1) symmetry, the system is
characterized by the emergence of a complex order parameter, the condensate wavefunc-
tion, which describes the macroscopic state of the system and it features long-range order.

Gross-Pitaevskii equation. Bose-Einstein condensation emerges from quantum sta-
tistical mechanics, and theoretically can occur in ideal systems of non-interacting parti-
cles. However, a more realistic description must take into account interactions between
particles.
A useful approximation, for ordinary experimental conditions, in the regime of weak cou-
pling, considers interactions among particles via elastic 2-body collisions, with s-wave
scattering length a. Typically, this regime is characterized by the diluteness condition
na3 ≪ 1 [4], with n the atomic density of the cloud, usually in the order of 1020 m−3,
while a is in the order of few tens of the Bohr radius [5].
The Hamiltonian of the N-body system can then be expressed in terms of the field
operator ψ̂(r):

Ĥ =
∫
drψ̂†(r)

(
− ℏ2

2m∇2 + Vext(r)
)
ψ̂(r)

+ 1
2

∫
drdr′ψ̂†(r′)ψ̂†(r)V (r′ − r)ψ̂(r′)ψ̂(r) (1.1)

where Vext(r) is the external trapping potential and V (r′ − r) is the two-body poten-
tial. This Hamiltonian, being expressed in terms of a quantum field, fully describes
the dynamics of the system, which obeys the equation of motion iℏ∂ψ̂∂t = [ψ̂, Ĥ]. To
first approximation, one can neglect quantum fluctuations and obtain a classical equa-
tion of motion for the quantum field ψ̂, substituting it with a complex classical field
ψ(r) =

√
n(r)eiϕ, where ϕ is the phase of the condensate. This substitution is correct

only if the field function is normalized to the total number of particles N , i.e. all the
particles occupy the ground state. In this case, one can also correctly substitute the two-
body potential V with an effective potential Veff , that relies on the Born-Oppenheimer
approximation. This approximated potential smears out any short-range details of the
scattering problem, considering only low momenta interactions. Keeping into account
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the low energy behaviour of the atomic cloud, it can be further expressed via a constant
potential term parametrized by the coupling constant

g = 4πℏ2a

m
, (1.2)

which depends only on the scattering length a. Solving the Heisenberg equation with the
simplified potential, and substituting the quantum field with its classical counterpart,
we obtain the notorious Gross-Pitaevskii equation (GPE):

iℏ
∂ψ(r, t)
∂t

=
(

− ℏ2

2m∇2 + Vext(r) + g|ψ(r, t)|2
)
ψ(r, t) (1.3)

The GPE fully describes the dynamics of the condensate wavefunction in the limit N →
∞, as it contains a mean-field interaction term, which is a valid approximation in the
thermodynamic limit. Although the external potential Vext can take arbitrary shapes, in
the experiments presented in this thesis we will use an axially symmetric 3D harmonic
confinement with shape:

Vext(x, r⊥) = 1
2m(ω2

xx
2 + ω2

⊥r
2
⊥) (1.4)

with ωx, ω⊥ the angular trapping frequency along the axial and perpendicular directions,
and r2

⊥ = z2 + y2 the radial direction in cylindrical coordinates.
Notice that the GPE can be also derived by converting Eq. 1.1 in an energy functional,
upon the substitution of ψ̂ → ψ. Applying a variational principle we obtain [6]:

iℏ
∂ψ(r, t)
∂t

= ∂E

∂ψ∗(r, t) (1.5)

Thomas-Fermi limit. Ground state properties of the condensed state can be obtained
looking for stationary solutions of the GPE. The time dependence is factorized in the
phase factor, which evolves as ϕ = µt/ℏ. Here, µ is the chemical potential, defined
as µ = ∂E/∂N . A good approximation, for spatially homogeneous or slowly varying
settings, is to neglect the quantum pressure term ℏ2∇2/2m in the GPE. In this limit,
known as Thomas-Fermi limit, we obtain a simple solution for the density of the BEC,
n(r) = |ψ|2:

n(r) =
{
µ−Vext(r)

g µ > Vext(r),
0 µ < Vext(r).

(1.6)

This equation shows that the density distribution of the condensate is fixed by the ex-
ternal potential, which for a harmonic trap is given by an inverted parabola with peak
density gn0 = µ in the center of the trap. This is also the expression that relates the
chemical potential to the density in the case of vanishing spatial curvature of the trap-
ping potential. The chemical potential can be derived from the normalization condition∫
dr|ψ(r)|2| = N , and for harmonic confinement reads [4, 6]

µ = ℏωho
2

(
15Na
aho

)2/5
(1.7)
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Here, aho =
√
ℏ/(mωho) is the oscillator length associated to the geometrical average

ωho = 3
√
ωxω2

⊥ of the two oscillator angular frequencies. The dimensions of the con-
densate, the so called Thomas-Fermi radii, Rx and R⊥, are also fixed by the chemical
potential and the trapping frequencies, and can be calculated from Eq. 1.6 as:

Ri =
√

2µ
mω2

i

(1.8)

with i = x,⊥.
The quantum pressure term becomes instead relevant if the density varies abruptly on
a length scale such that the kinetic energy balances the interaction energy. The length
scale ξ at which this occurs reads [6, 4]:

ξ = ℏ√
2mgn (1.9)

and is called healing length, as it gives the minimum size of an excitation in the conden-
sate. Typically, the healing length is much larger than the atomic separation distance.

Fundamental excitations and dispersion relations. So far we discussed the static
properties of the condensate, extracted from the stationary solution of the GPE. Pertur-
bations, however, might occur either in the density or in the phase of a condensate. We
can extract an expression for their dynamics by linearizing the GPE around equilibrium,
i.e., by solving the GPE for ψ(r, t)e−iµt/ℏ → (ψ(r) + δψ(r, t))e−iµt/ℏ, with δψ a complex
field [6, 7]. Neglecting all terms δψ2, we get two coupled equations:

iℏ
∂δψ

∂t
= (H0 − µ+ 2gn)δψ + gψ2δψ∗

− iℏ
∂δψ∗

∂t
= (H0 − µ+ 2gn)δψ∗ + g(ψ∗)2δψ

(1.10)

with H0 = −ℏ2∇2

2m + Vext. We can now expand the perturbation, looking for solutions
which are periodic in time as δψ(r, t) = ∑

k uk(r)e−iωt+v∗
k(r)eiωt. By collecting all terms

which evolve as eiωkt and e−iωkt, we obtain two coupled equations known as Bogoliubov
equations:

ℏωkuk(r) = (H0 − µ+ 2gn(r))uk(r) + gn(r)vk(r)
− ℏωkvk(r) = (H0 − µ+ 2gn(r))vk(r) + gn(r)uk(r)

(1.11)

In the particular case of a uniform gas, Vext = 0, µ = gn, and the two amplitudes uk and
vk are plane waves, with momentum k. One can then recast the two coupled equations
in a system: (

ℏ2k2

2m + gn− ℏωk gn

gn ℏ2k2

2m + gn+ ℏωk

)(
uk
vk

)
=
(

0
0

)
(1.12)
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which admits a simple analytical solution, called the dispersion relation, as it relates the
angular frequency ω of the excitation to its momentum k:

ℏω(k) =
√

ℏ2k2

2m

(ℏ2k2

2m + 2gn
)
. (1.13)

The dispersion relation admits two different regimes. The first can be found at k → 0,
and is called the phononic regime, as ω(k) ≈ ck, with c =

√
gn/m the sound veloc-

ity. These modes corresponds to collective excitations, or phonons, propagating in the
condensate. They can be also identified with Goldstone modes, associated with the
spontaneous breaking of the gauge symmetry occurring at the transition towards the
condensed state. In the opposite regime we instead find that ℏω(k) = ℏ2k2

2m + gn, which
can be identified with the dispersion relation of a free particle.
It is also interesting to point out that a similar result can be derived [8] starting from the
full Hamiltonian, promoting the classical field ψ to a quantum field ψ̂. The perturbation
δψ can then be written as a quantum term, substituting (up, vp) → (upâp, vpâ†

p). Here,
we introduced the creation and annihilation operators of the excitation of momentum p,
that follow Bose commutation rules. The Hamiltonian can then be diagonalized, using
the Bogoliubov relations, in the basis of the excitation âk, and reads Ĥ = ∑

k ℏωkâ
†
kâk.

With this procedure, in the case of Vext = 0, one recovers the result of Eq. 1.13.
However, this result is also valid in the case of harmonic trapping potential, as discussed
in [4], provided that the wavevector of the excitation satisfy k ≫ L−1, where L is the
dimension of the condensate. The dispersion relation of a BEC of 87Rb atoms have been
first measured in [9].

1.2 Quantum mixtures

The mean-field picture we have developed so far describes condensates with a single
macroscopically occupied quantum state. It is however possible to trap simultaneously
different atomic species, creating a quantum mixture. The dynamics becomes much
richer, as it is also ruled by interactions between the two components, mediated by their
mean-field energies.
One possibility to create a mixture is to reach quantum degeneracy with atoms of differ-
ent atomic species, also called heteronuclear mixtures, with variable mass ratios. Mix-
tures of different statistics can be reached, realizing Bose-Bose, Fermi-Fermi or Bose-
Fermi mixture. For instance, Bose-Bose mixtures have been realized with 41K-87Rb
[10, 11], 7Li-133Cs [12], 87Rb-133Cs [13], Fermi-Fermi with 6Li-40K [14, 15], and recently
with 161Dy-40K [16]. Bose-Fermi mixtures have been instead realized in 7Li-6Li [17, 18],
23Na-6Li [19], and 87Rb-40K [20]. In all these realizations, the populations of the two
species are fixed, leaving the equilibrium and the dynamic properties governed uniquely
by intra- and inter-component mean-field energies.
Another interesting route for the realization of quantum mixtures is to employ a single
atomic species with an additional internal spin degree of freedom. The order parameter
becomes multi-component and the system is referred to as a spinor condensate, because
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it finds a suitable description in terms of a spinor field. The spinor condensate possess
appealing properties, as it inherits the superfluid character of a single component BEC,
and magnetic properties from its internal spin structure. An excellent review on the
topic can be found at [21]. Spinor gases have been realized in alkali and alkali-earth
atoms in mixture with spin 1/2 [22, 23, 24], spin 1 [25, 26, 27], and spin 2 [28] systems.
Additionally, spinor condensates admit the possibility to change the relative population
via spin-changing collision or with external radiation. In particular, the external radia-
tion, either in the optical, microwave or radiofrequency regime, allows to select the spin
composition of the mixture and to coherently manipulate its quantum state.
In the following, I will focus on the discussion of a two-component bosonic spin mixture,
with the population of the two components independently conserved.

1.2.1 Extension of GPE to two-components BECs

In the previous section we have shown how static and dynamic properties of a single
component BEC can be studied at the mean-field level, starting from the Gross Pitaevskii
equation 1.3. It is not difficult to extend the same formulation to the case of a mixture
of BECs. The two BECs can be described in terms of two classical complex fields
ψi(r) =

√
ni(r)eiϕi , with i = 1, 2 labelling the two atomic species. The energy functional

of the system reads:

Emix =
∫
dr


∑
i=1,2

ℏ2

2mi
|∇ψi(r)|2 + Vi(r) + 1

2gii|ψi(r)|4
+ g12|ψ1(r)|2|ψ2(r)|2


(1.14)

with mi the masses of the two atomic species, and Vi the external potential, which,
in principle, is different for the two species. The intraspecies coupling constants gii =
4πℏ2aii/mi take into account interactions among two atoms occupying the same state,
while the interspecies one g12 = 2πℏ2a12/mr describes interactions between atoms 1 and
2, with mr their reduced mass.
In the particular case of mixtures of hyperfine states of 23Na, studied in this thesis, we
can further simplify the previous expression, since m1 = m2 = m = 2mr. Carefully
engineering the trapping potential, we can also assume the potential to be the same
regardless of the hyperfine state, i.e., V1 = V2 = Vext. By applying the variational
principle, for the two fields independently, it is possible to derive the coupled GPEs [6]:

iℏ
∂ψ1(r, t)

∂t
=
(

− ℏ2

2m∇2 + Vext(r) + g11|ψ1(r, t)|2 + g12|ψ2(r, t)|2
)
ψ1(r, t)

iℏ
∂ψ2(r, t)

∂t
=
(

− ℏ2

2m∇2 + Vext(r) + g22|ψ2(r, t)|2 + g12|ψ1(r, t)|2
)
ψ2(r, t)

(1.15)

Similarly to what we did in the previous section, we can start from the pair of GPEs to
study properties of the mixture. Stationary solutions of the system provide two chemical
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potentials, µi = ∂E
∂Ni

, which satisfy

µ1ψ1(r) =
(

− ℏ2

2m∇2 + Vext(r) + g11|ψ1(r)|2 + g12|ψ2(r)|2
)
ψ1(r),

µ2ψ2(r) =
(

− ℏ2

2m∇2 + Vext(r) + g22|ψ2(r)|2 + g12|ψ1(r)|2
)
ψ2(r).

(1.16)

Miscibility and Immiscibility condition. The dependence of the energy functional
1.14 on the three interaction parameters implies a rich variety of ground state configu-
rations, depending on the value of the coupling constants.
We can start the discussion investigating the stability against perturbations, in the case
of homogeneous densities n1 and n2. To ensure stability, the energy functional must
remain finite when adding particles. In other words, the system must be stable again
perturbations in the density of either the two species. This condition is ensured if the
Hessian H(E) of the energy functional, ∂2E

∂Ni∂Nj
, is positive definite [29]. In the homoge-

neous case, the energy density of the system reads:

ε = 1
2g11n

2
1 + 1

2g22n
2
2 + g12n1n2 =⇒ H(ε) =

(
g11 g12
g12 g22

)
(1.17)

The intraspecies coupling constants g11, g22 must be both independently positive, to sep-
arately ensure stability against collapse, which might occur if interactions are attractive.
From Eq. 1.17, the stability condition implies

√
g11g22 > g12 (1.18)

For repulsive interspecies interactions, g12 > 0, systems which satisfy the previous con-
dition are called miscible, otherwise they are said to be immiscible, since they tend to
phase separate. Indeed, an estimation of the energy in the two configurations, shows
that if condition 1.18 is satisfied, the energy is minimized if the two species occupy the
same volume [6]. Furthermore, if g12 < 0 and beyond mean-field effects are included [30],
the system can form self-bounded states called quantum droplets [31, 32, 33], provided
that the condition g12 < −√

g11g22 is satisfied and a critical atom number is reached.
The previous result on the miscibility criterion generalizes also to the case of non-uniform
mixtures, subject to an external harmonic potential. However, in this case, richer physics
occurs, resulting from a possible imbalance in the intraspecies components g11 ̸= g22 [34].
Indeed, the two density distributions can be position dependent, and their shape will
be determined by the interplay between the different mean-field energies, both in the
miscible and immiscible regimes. Let us consider, for instance, the case of g22 > g11. In
this case, in order to balance the intraspecies mean-field energy, component 2 will move
towards the edge of the trap, occupying a larger volume and lowering the density, while
component 1 will remain in the center. This effect is know as buoyancy. Ground state
configurations for different combinations of g11, g22, g12 are plotted in Fig. 1.1, where
the two density profiles are obtained numerically through imaginary time evolution of
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g2
12

g11g22

1.2

0.8

1 2 3 g22
g11

4

Figure 1.1: One dimensional space dependent density profile |ψi(r)|2 of component 1
(red) and 2 (blue), as a function of the ratio g22/g11 (horizontal axis), and of the stability
condition g2

12/g11g22 (vertical axis).

the coupled GPEs in 1.15, using a split-step algorithm [35].
Note that, even in the case of g12 <

√
g11g22, the two components overlap exactly only

in the case g11 = g22. The buoyancy effect is only a result of the imbalance between the
intraspecies coupling constants, and it occurs independently of the stability condition.
In the case of an immiscibile mixture, however, the two components are also separated
by sharp interfaces. The width of each interface is called spin healing length and reads:

ξs = ℏ√
m(g11 + g22 − 2g12)n

(1.19)

In analogy with the single component case, the spin healing length can be calculated
by the balance between the quantum pressure terms and the mean-field energy, and it
takes an imaginary value in the immiscible case.

1.2.2 Dispersion relations for density and spin channels

Elementary excitations, as a result of quantum or thermal fluctuations, occurs also in
spin mixtures. The presence of an additional degree of freedom, given by the presence of
the second component, is naturally associated with the emergence of a second dispersion
relation. To study it, it is easier to introduce new variables which correspond to the
normal modes of the system.
In analogy with two coupled oscillators, it is easier to think of the normal modes of the
system as “in-phase” and “out-of-phase” oscillations. In a two-component mixture, the
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former are associated to perturbations in the total density n = n1 + n2, and the second
to excitations of the difference in the two components, s = n2 − n1, also referred to as
spin modes.
A derivation similar to the one discussed for a single component BEC [7] leads to the
following dispersion relations for the density and the spin in the homogeneous case:

ℏωd,s =
√

ℏ2k2

2m

(ℏ2k2

2m + 2mc2
d,s

)
(1.20)

Here, cd and cs are the density and spin speed of sounds, that read [6]:

c2
d,s =

g11n1 + g22n2 ±
√

(g11n1 − g22n2)2 + 4n1n2g2
12

2m (1.21)

Considering a balanced mixture n1 = n2 = n/2 with equal intraspecies coupling con-
stants g11 = g22 = g, the speeds of sound reduce to

c2
d = (g + g12)n

2m , c2
s = (g − g12)n

2m = δgn

2m (1.22)

0.0 0.1 0.2 0.3
k/(2 )  [1/ m]

0
200
400
600
800

1000
1200
1400

/(2
) [

Hz
]

cs

a)

0.0 0.1 0.2 0.3
k/(2 ) [1/ m]

b)

Figure 1.2: Dispersion relations for a spin mixture. In both panels the blue line refers
to the density channel and the grey ones to the spin channel. (a) Miscible case. The
dashed line represents the spin sound velocity, which well approximates the dispersion
relation up to k = 0.05µm−1. (b) Immiscible case. The density channel is unaffected,
but the spin one contains an imaginary frequency (dot line). In the scale of the figure,
the density channel always appears in the linear regime due to the higher value of the
density sound velocity.
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where we have introduced the relevant parameter δg = g−g12. As in the case of a single
component mixture, low-energy oscillations with long-wavelength can be identified with
phononic excitations ωd,s = cd,sk, that can occur either in the density or in the spin
mode. Dispersion relations are plotted in Fig. 1.2, in both the miscible (left panel)
and immiscible cases (right panel). Notice that in the immiscible regime an imaginary
frequency emerges, for a wide range of k. It corresponds to a modulation instability
of the system [36], that develops spontaneously, as soon as the two species mixes. The
existence of two distinct sound velocities was first proven experimentally in miscible gas
of 23Na atoms in Ref.[37].
In the more general case of g11 ̸= g22 ̸= g12, we can introduce the average intraspecies
coupling constant g, and their difference

g = (g11 + g22)
2 , ∆ = (g11 − g22)

2 (1.23)

in order to introduce the definition of δg as:

δg = g11 + g22
2 − g12 = g − g12 (1.24)

It is also useful now to generalize the concept of the chemical potential to the density
and spin channels, defined as [29]

µd = g + g12
2 n; µs = g − g12

2 n (1.25)

so that the speed of sound for the two modes reduces to cd(s) =
√
µd(s)/m.

In general, cd and cs can be greatly different, due to the difference between the coupling
constants. For a miscible mixture of 23Na hyperfine states |1,−1⟩ and |1,+1⟩, the spin
sound velocity is ≈ 0.08 of the density one.

1.3 Coherently-Coupled BECs

In the previous section we described two-component mixtures, and discussed how ground
state and excitation properties are governed by the interplay between the mean-field en-
ergies. So far, we have worked under the assumption that the densities of the components
are separately conserved. Spin mixtures, however, may develop a much richer dynam-
ics, as they admit interconversion processes between the populations of the components.
Indeed, it is possible to introduce an external oscillating electromagnetic field to couple
hyperfine states. Different fields can be employed. A radiofrequency (microwave) field
can directly couple hyperfine states within the same electronic level, and produce a cou-
pling homogeneous all over the sample. A more elaborate scheme involves the use of
Raman transitions in the optical regime, which can be used to introduce a local coupling.
The latter scheme also admits the possibility of transferring momentum to the atoms, in
which case it is referred to as spin-orbit coupling, giving rise to interesting physics since
it introduces a gauge field in the Hamiltonian [38, 39]. A good review on the topic can
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be found in [40].
For the arguments explored in this thesis, I will focus on the case of a homogeneous
microwave field, which coherently couples the internal states of the mixture. The system
can be described, in analogy with a two-level model, introducing a time dependent field
ΩR(t)e−iωcplt+ϕ. Here, ΩR(t) is the time dependent amplitude of the complex field (with
phase ϕ), whose frequency ωcpl couples two generic atomic states |1⟩ and |2⟩ composing
the mixture. In the rotating wave approximation, setting δ = ωcpl −ω12 as the detuning
from the transition frequency of the bare atomic states, we can add an energy term to
the functional 1.14 as:

Ecpl = − ℏΩR(t)
2

∫
dr(ψ1ψ

∗
2 + ψ∗

1ψ2) + ℏδ(t)
2

∫
dr(n2

2 − n2
1)

= −ℏΩR(t)
2

∫
dr

√
n1n2 cos (ϕ2 − ϕ1) + ℏδ(t)

2

∫
dr(n2

2 − n2
1)

(1.26)

If we consider ΩR to be real and positive, the explicit dependence of the energy func-
tional on the relative phase of the components has important consequences. Indeed, the
relative phase is explicitly locked by the presence of the coupling, resulting in a breaking
of the conservation law for the relative number of particles. Later on, we will see how
the symmetry breaking is associated with the disappearance of one the two Goldstone
modes (gapless excitations) of the system.

Ground State (GS). Before diving into the dynamics of the system, it is interesting
to examine the structure of the ground state. To illustrate the general concept, we will
first consider the homogeneous case, with ni(r) = ni, and zero detuning δ = 0. Following
the considerations presented in [41], the energy density reads

ε = 1
2g11n

2
1 + 1

2g22n
2
2 + g12n1n2 − ℏΩR

√
n1n2 cosϕ (1.27)

where ϕ = ϕ2 −ϕ1 is the relative phase of the two components with respect to the phase
of the coupling. In the case of equal intraspecies coupling constant g11 = g22 = g, the
energy is minimized at ϕ = 0. The equilibrium condition is the solution of(

g − g12 + ℏΩR

2√
n1n2

)
(n1 − n2) = 0. (1.28)

The previous equation admits two possible solutions, depending on the ratio between
δg = g − g12 and ℏΩR. The two solutions are:

1) n1 − n2 = 0

2) n1 − n2 = ±n

√
1 −

(ℏΩR

δgn

)2 (1.29)

corresponding to either an unpolarized (s = 0) or a polarized (s ̸= 0) state. It is also
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Figure 1.3: Ground state as a function of δgn/(ℏΩR), for ϕ = 0. The bifurcation
occurs in the ground state, plotted in terms of nZ = n2 − n1, of the system in the
case of negative δg (red region). For δg > 0 (green region) the ground state is always
the unpolarized state. For an unbalanced mixture [blue dashed curve, calculated at
n(g11 − g22) = 0.07ℏΩR] the bifurcation disappears.

interesting to distinguish between the case, in the absence of coupling, of a miscible or
immiscible mixture.
In the former case, δg > 0, and Eq. 1.28 admits only an unpolarized state as the ground
state (solution 1). The opposite occurs if δg < 0. In this case, the competition between
the negative mean-field energy associated to the spin channel and the coupling energy,
stabilizing the mixture, might result in a polarized ground state with opposite magne-
tization given by solution 2). This solution corresponds to the ground state provided
that |δg|n > ℏΩR. If this condition is not satisfied, the ground state will be again an
unpolarized state. The presence of two possible ground states as a function of δgn/ℏΩR

corresponds to a classical bifurcation occurring in the spin channel, and it was experi-
mentally measured for the first time in Ref.[42]. The ground state structure is illustrated
in Fig. 1.3.
Finally, the case of ϕ = π, still gives rise to an extremum of the energy, but it will not be
an energy minimum, as the energy increases by ≈ 2ΩR. The excited state configuration
will be exactly symmetric with respect to the sign of the interactions compared to the
ground state. In other words, the bifurcation at δgn = ℏΩR will occur in the excited
state of a mixture with δg > 0, whereas a mixture with δg < 0 will always have an
unpolarized excited state.
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In the case of an imbalance between the intraspecies coupling constant g11 ̸= g22, for
δg > 0 and |δg|n < ℏΩR, the GS will have a small but finite polarization. In the polar-
ized regime, instead, the degeneracy between the two ground states disappears, and one
of the two will become the true ground state of the system [43]. The unbalanced case is
formally equivalent to the introduction of a detuning term in the energy functional, so
the bifurcation can always be restored.

Excitations Elementary excitations of the system are, once again, described at the
mean-field level by a set of coupled GPEs, which can be derived by a variational principle
adding Eq.1.26 to the energy functional of the mixture state. These equations read

iℏ
∂ψ1(r, t)

∂t
=
(

− ℏ2

2m∇2 + Vext(r) + g11|ψ1(r, t)|2 − δ

2 + g12|ψ2(r)|2
)
ψ1(r, t) − ℏΩR

2 ψ2

iℏ
∂ψ2(r, t)

∂t
=
(

− ℏ2

2m∇2 + Vext(r) + g22|ψ2(r, t)|2 + δ

2 + g12|ψ1(r)|2
)
ψ2(r, t) − ℏΩR

2 ψ1

(1.30)

which are analogous to equations 1.15, with additional terms explicitly coming from the
coherent coupling.
The derivation of the dispersion relations follows the lines described previously [44],
linearizing Eq.1.30 around the equilibrium solution. Important care must be taken, since
now the equilibrium solution differs as a function of |δgn|/ΩR, as discussed previously
[41].
In the case of a miscible mixture, the GS corresponds to s = 0, and, in the approximation
g11 = g22, the dispersion relations take the form

ℏωd =
√

ℏ2k2

2m

(ℏ2k2

2m + (g + g12)n
)

ℏωs =
√(ℏ2k2

2m + ℏΩR

)(ℏ2k2

2m + (g − g12)n+ ℏΩR

) (1.31)

These are plotted in Fig. 1.4(a), for two different values of the Rabi coupling ΩR, below
and above the interaction energy. Excitations in the density channel are not affected by
the presence of the coupling, as one would expect. The spin mode, however, changes
dramatically. For low momenta it goes as k2, and it appears to be gapped at k = 0,
with a frequency

ℏωs(k = 0) =
√
ℏΩR(ℏΩR + δgn) (1.32)

also called the plasma frequency. The dependence of the gap on the Rabi coupling is
clearly visible in Fig. 1.4(a). The gap is a consequence of the energy cost that has to
be paid to change the relative phase δϕ of the system. It results from the presence of
the Rabi coupling that explicitly breaks the continuous U(1) symmetry in the relative
phase, related to the conservation of the relative number of particles.
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Figure 1.4: Dispersion relations with Rabi coupling for a miscible (panel a) and immisci-
bile mixture (panels b, c and d). The value of the spin chemical potential µs/h = 300 Hz
is shown as a black dashed line, for the typical settings of the experiment in Trento. In
all panels, solid lines are calculated at ΩR/2π = 230 Hz, dashed lines at ΩR/2π = 600 Hz.
All dispersion relations are calculated around the ground state, which is Z = 0 for panel
(a), (c) and (d), and Z = 0.64 for panel (b). We use as value of the coupling constants
the ones for the mixtures discussed in Section 2.3. In panel (d) we used a detuning
ℏδ = −n(g11 − g22) that removes the avoided crossing shown in panel (c). In all panels
the blue line refers to the density channel, while the grey ones to the spin one.
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The situation is different in the case of an immiscible mixture. As already stated,
the equilibrium condition, around which we can linearize the GPE, depends on the
ratio between spin-interaction energy and coupling. In the unpolarized state (δgn <
ℏΩR) the ground state is the same of the miscible mixture, hence we find a gapped
dispersion relation, with a different value of the gap, as δg < 0 will lower the effective
Rabi frequency [Fig. 1.4(c) and (d)]. An avoided crossing appears if the two intraspecies
coupling constants differs [panel (c)], that vanishes if the coupling is detuned exactly
by ℏδ = −n(g11 − g22) [panel (d)]. On the other end, around the polarized state,
while the functional shape remains the same, the finite polarization always introduces a
coupling between density and spin modes, resulting in an avoided crossing, which can’t
be removed. The avoided crossing strongly depends on the ratio between δgn and ℏΩR,
i.e. on the GS polarization. For small |n1 − n2|, it is for δg ≳ ℏΩR, the avoided crossing
occurs at low k, and the energy difference between the two modes will be small. The
opposite is true for an almost fully polarized state δg ≫ ℏΩR.

1.3.1 Bloch Sphere representation

An equivalent formulation of the spin dynamics can be derived starting from the Gross
Pitaevskii equations 1.30 and writing the order parameter as a spinor complex field. This
notation provides a more convenient description for the dynamics, and helps identifying
this system in the more general framework of spin systems. We can start writing the
two order parameters as:

ψ =
(
ψ1
ψ2

)
=
(√

n1e
iϕ1

√
n2e

iϕ2

)
; =⇒ ρ = ψ ⊗ ψ† =

(
n1 ψ1ψ

∗
2

ψ∗
1ψ2 n2

)
(1.33)

where we have constructed the density matrix ρ. Taking advantage of the SU(2) algebra,
it is convenient now to use as basis the set of Pauli matrices σi, with i = 1, 2, 3. This
allows to extract a spin vector from the density matrix of the coupled BECs as

S⃗ = Tr (σ⃗ρ) = n
(√

1 − Z2 cosϕ,
√

1 − Z2 sinϕ,Z
)

(1.34)

where we have introduced the relative magnetization Z, defined as nZ = n2 −n1, while ϕ
is the relative phase between the two components. In this way we can directly represent
the system on a Bloch sphere of unitary radius. The spin state can also be identified
by a pair of variables (θ, ϕ), upon defining Z = cos θ. Note that a 3-dimensional spin
vector exists only in the context of the Bloch sphere, and has nothing to do with the
dimensionality of the physical sample.
Recalling definitions 1.23 for the coupling constants, we can introduce a 2x2 matrix for
the current density in one spatial dimension [45], whose elements read

jab = i

ℏ

[
ψa∂xψ

∗
b − ψb∂xψ

∗
a

]
= j∗

ab (1.35)

where a, b labels components 1 and 2.
From this matrix, we can derive separate hydrodynamic equations for the density and
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spin channels. The former is characterized by a continuity equation for the density
current jd = Tr(j):

∂tn+ ∂xjd = 0 (1.36)

which is the conservation law related to the U(1) symmetry preserved in the density
channel.
The spin channel behaves differently. It is useful to introduce the spin current, which is
a vector in the space of spin

j⃗s = iℏ
2m

[
(∂xψ†)σ⃗ψ − ψ†(∂xσψ)

]
(1.37)

Within this definition, we can recast the Gross Pitaevskii equations 1.30 in a hydrody-
namic equation for the spin vector S⃗:

∂tS⃗ + ∂xj⃗ = −H⃗(S⃗) × S⃗ (1.38)

where we introduced the effective magnetic field H⃗, that reads:

H⃗ = (ΩR, 0, δ − n∆ + δgnZ) (1.39)

where ∆ is defined as in Eq. 1.23. This equation allows us to link the dynamics of the
magnetization of the coupled condensates to the more generic dynamics of a spin system
under an external field. We can think of this field as an effective magnetic field which
dictates the dynamics of the atoms.
A few comments can now be expressed. Let us first consider the case of a 0-dimensional
sample, where the spatial degrees of freedom are frozen. In this case, we can neglect
the current term j⃗ in Eq. 1.38. This single mode approximation has been realized
experimentally in [42, 46, 47].
We also notice that, in then limit n → 0, Eq. 1.38 reduces to the model of a two-level
atom subject to an external coherent radiation, or of a spin subject to a spatial magnetic
field of the form H⃗ = (ΩR, 0, δ). In the Bloch sphere formalism, the eigenstates of the
Hamiltonian correspond to the dressed states of the atom-light interacting system [48].
Interesting dynamics arises instead in the case n ̸= 0, as the time evolution of the spin
vector directly depends on the spin state itself, through the term δgnZ. The latter
introduces also a coupling to the density channel, through the dependence on n. At
last, we observe that, in this picture, an imbalance between the intraspecies coupling
constants leads to a detuning term [43], also proportional to the total density.

1.3.2 Internal Josephson Junction

We have discussed how the presence of mean-field energy shifts affects the external cou-
pling with a density-dependent detuning. The physics is much deeper, as interactions
introduce a non-linear term δgnZ. The latter can be seen as a rotation around the z-
axis, with magnetization-dependent angular velocity, a general effect known as ”one-axis
twisting” [49].
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In a more general context, the quantum properties of a system with an external cou-
pling and mutual interactions have been studied in the contest of superconductors by
[50]. Such a system has been implemented also in atomic BECs as in [51, 52, 53], where
the coupling takes the form of a tunneling link. In the case of coherent coupling between
spin states, the system is instead referred to as an internal Josephson junction [42].
The equations governing the dynamics of the system are expressed in terms of the vari-
ables (Z, ϕ), equivalently to the previous description in terms of the Bloch sphere. Eq.
1.38 can be recasted as

∂tZ(t) = −
√

1 − Z(t)2 sinϕ(t)

∂tϕ(t) = δ

ΩR
+ δgn

ℏΩR
Z(t) + Z(t)√

1 − Z2(t)
cosϕ(t)

(1.40)

which explicitly depend on the ratio δgn/ℏΩR. This is not a surprise, as we already
anticipated with an energetic argument 1.28 the presence of two different ground states
as a function of the same parameter. Given this framework, we can now build a more
complete picture.

Dynamical Regime Here we assume the simple case δ = 0, since the presence of
detuning doesn’t qualitatively alter the dynamics of the system. If δgn ≪ ℏΩR, the
dynamics reduces to the simple Rabi oscillations, with orbits of period 2π/ΩR, and mean
magnetization Z = 0 and phase ϕ = (0, π). In the phase space of the system, these are
fixed points of the dynamics, corresponding to the lowest and highest eigenstate, for
ϕ = 0 and ϕ = π respectively. Notice that the correspondence between ϕ = π and
the highest energy eigenstate finds its route in the locking of the phase in the energy
functional 1.26, imposed by the coupling. For stronger interactions, δgn ≲ ℏΩR, the
velocity field due to interactions distorts the orbits. While it still preserves the location
of the fixed points, it affects the oscillation frequency, see Fig. 1.5. Small oscillations
around the fixed points are called plasma oscillation (ϕ = 0) and pi oscillations (ϕ = π)
and read:

ωpl = ΩR

√
1 + δgn

ℏΩR
; ωπ = ΩR

√
1 − δgn

ℏΩR
(1.41)

Note that the frequency of plasma oscillations is identical to the result we found for
dispersion relations around the unpolarized ground state, Eq. 1.32, strengthening the
link between a coherently-coupled system and the Josephson dynamics.
A careful look at ωπ reveals that, for positive δg, crossing δgn = ℏΩR the frequency be-
comes imaginary, revealing an unstable fixed point. This labels the transition towards a
new dynamical regime that occurs at δgn = ℏΩR, called macroscopic quantum self trap-
ping [54]. In this regime, two new stable fixed points appear in the system, characterized

by a symmetric and degenerate magnetization Z0 = ±
√

1 −
(
ℏΩR
δgn

)2
. This phenomenon

is called pitchfork bifurcation, and it hints at a second-order symmetry breaking phase
transition [55, 43].
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Figure 1.5: Dynamics of the spin vector on the Bloch sphere for different ratios Λ =
|δg|n/(ℏΩR), computed from Eq. 1.38 with δg < 0 and no detuning. a) Λ = 2/3, b)
Λ = 4/3, c) Λ = 4

Around the degenerate fixed points the relative phase is locked to revolve around ϕ = π,
by the presence of a separatrix which separates the phase space. However, for δgn >
2ℏΩR the self trapping region is so large that the separatrix encompasses the poles of
the Bloch sphere, and the phase is free to move between 0 − 2π, entering the so-called
running-phase mode.
While the magnetization of the fixed point is the same independently of the sign of δgn,
its phase depends on it. For δg > 0 (miscible mixture) the bifurcation occurs at ϕ = π,
i.e. in the excited state. The opposite holds for δg < 0, where the bifurcation occurs in
the ground state. Fig. 1.5 show the orbits that the system can sustain in the different
dynamical regimes.
The phase-dependence of the fixed point is not crucial in 0-dimensional systems, but it
is important in finite size systems. In this case, if one analyzes the dispersion relation,
the energy gain in the excited state introduces an imaginary frequency component in the
elementary excitations, thus leading to the growth of unstable modes that propagate in
the system, eventually altering the dynamics [56].

1.3.3 Extension to finite size systems

In the previous discussion we have focused on the internal spin dynamics and found
a suitable representation on the Bloch sphere, neglecting any spatial dynamics. This
description holds until the size of the sample is smaller than the size of the minimum
spin excitations, which is dictated by the spin healing length ξs, or equivalently by the
spin chemical potential µs. If ξs > Ri, for i = x, y, z, (or µs < ℏωi), then the sample can
be approximated as a giant spin vector of length n (see [57] for an in depth discussion).
However, richer physics arises if one realizes samples with µs > ℏωi along at least one
spatial direction, as this allows the study of spatial fluctuations and excitations in the
spin channel [48, 58, 59, 60]. In the case of our axially symmetric harmonic potential,
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it is possible to freeze only the radial degrees of freedom, so that the spin dynamics is
ruled by a 1D Landau Lifshitz equation (LLE) [61, 62] (assuming that the total density
remains constant), simplifying the comparison between theory and experiments. As a
consequence of the harmonic trapping, density, and thus interaction energies, will de-
pend on space. It is then possible to tune the Rabi frequency ΩR to obtain spatially
different regimes, for example with δgn > ℏΩR (Josephson dynamics) in the center of
the trap and δgn < ℏΩR (Rabi dynamics) on the tails of the cloud. Notice that, due to
the scaling of ξs with δg instead of g, the requirement of a strict 1D sample, which in
the density channel would require extremely strong trapping frequencies, and it would
rise the issue of phase diffusion in one dimension, can be relaxed.

Reduction of an elongated system to 1D The particular case relevant to the
following chapters is the elongated cigar-shaped condensate, with axial symmetry around
the horizontal axis x. The 3-dimensional density profile can be expressed as

n3D(r⊥, x) = n3D
0

(
1 − x2

R2
x

− r2
⊥
R2

⊥

)
(1.42)

where n3D
0 is the density in the center of the trap. Assuming that in the spin channel

only the axial degrees of freedom are excited, while the total density is not affected, the
spatial spin vector 1.34 can be decomposed as:

S⃗(r⊥, x, t) = n3D(r⊥, x)S⃗(x, t) (1.43)

where S⃗ is a vector which depends on spatial coordinates, and is defined in spin space
in the basis of the Pauli matrices. We can insert this ansatz in the Landau-Lifshitz Eq.
1.38 to obtain:

n3D(r⊥, x)∂tS⃗(x, t) = n3D(r⊥, x)

 ΩR

0
δ − n∆ + δgn3D(r⊥, x)Z

× S⃗(x, t) (1.44)

where we have neglected spin currents, for the sake of simplicity. Integrating out the
radial directions on both sides, the previous equation reduces to

∂tS⃗(x, t) =

 ΩR

0
δ − n∆ + κn(x)Z

× S⃗(x, t) (1.45)

Here, we have substituted
κn(x) = 2

3δgn
3D(r⊥, x) (1.46)

which is a renormalization of the coupling constant δg, that we will use in the remaining
chapters. It naturally arises from the integration along r⊥ of Eq. 1.44, in particular
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from

n1D
1 (x) =

∫
dr⊥n

3D(r⊥, x) = πR2
⊥

2 n3D
0

(
1 − x

Rx

2)2
,

n1D
2 (x) =

∫
dr⊥

[
n3D(r⊥, x)

]2
= πR2

⊥
3 (n3D

0 )2
(
1 − x

Rx

2)3
(1.47)

The relevant quantity to extract is the ratio between the two integrated densities, which
enters explicitly in the effective field H(S⃗), and it reads

n(x) = n1D
2 (x)
n1D

1 (x)
= 2

3n
3D
0

(
1 − x2

R2
x

)
(1.48)

Thus, in the 1D regime the non-linear term in the LLE takes the form of an exact
1-dimensional system with linear density n(x), the only difference being the renormal-
ization of the interaction constant δg → κ. Notice that the same result could have been
equivalently derived by a direct renormalization of the coupling constant, as shown in
[63].
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In the previous chapter I described the physics of miscible and immiscible spin mix-
tures subject to an external field which coherently couples the hyperfine states employed
in the mixture. In this chapter I will describe the setup of our laboratory, where we
produce BECs of 23Na. While BECs have been realized in many different laboratories
with different atomic species, the quest for long coherence times poses additional re-
quirements on the stability of the apparatus against the environmental noise.
The structure of this Chapter is the following. In the first section I will describe the
current setup of the experimental apparatus. In the second section I will describe the
protocol used to cool the atoms to quantum degeneracy. The third section is devoted to
the description of the coupling scheme of the two spin mixtures studied during my PhD.
The fourth section contains a detailed description of the spin-selective absorption imag-
ing protocols. In the last section I will describe the protocol we use to daily calibrate
with high precision the bias field, and characterize its stability in time. Throughout this
Chapter, I will often use the notation |F,mF ⟩ to label hyperfine states.

2.1 Experimental apparatus

Particular care was taken in the original design of the apparatus, to make it compatible
with the installation of a magnetic shield around the science chamber, used to protect the
sample from environmental magnetic field noise. In the following I will briefly summarize
the instrumentation used in our apparatus. A more detailed description can be found in
[63, 64].

2.1.1 Vacuum system

The vacuum system is composed of two separate chambers [65], made of stainless steel
tubes, one at high-vacuum (HV), and the other one at ultra-high-vacuum (UHV). A
sketch of the compact experimental apparatus is present in Fig. 2.1.
The HV chamber contains in the lower part a solid source of 23Na atoms, which is
heated with an oven at 250° C to produce the atomic vapour. The pressure inside
the chamber is kept at 1 × 10−9 mbar through a combined non-evaporable getter and
ion-pump (NEXTTorr D200-5). The connection to the UHV chamber is realized by a
differential pumping channel with a diameter of 2 mm and length of 22.8 mm. Similarly
to the HV chamber, a combined vacuum pump (NEXTTorr D500-5) keeps the pressure
inside the UHV chamber at 1 × 10−10 mbar.
The science chamber is an octagonal fused silica cell, connected to the UHV chamber
by a 65 mm long glass tube. Optical access to the science chamber is guaranteed by
two windows of diameter 50.8 mm along the vertical direction, and by seven windows
of diameter 23 mm to give optical access for beams propagating on the x-y plane. The
design of the chamber is shown in the right panels of Fig. 2.1. All surfaces of the windows
are treated with a Random-Anti-Reflection coating1, a nano-textured treatment that

1Manufactured by Precision Glassblowing, Colorado, USA.
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Figure 2.1: Sketch of the experimental apparatus. Yellow lines represent the optical
access for the ZS and the 2D MOT beams. On the left the schematics of the science
chamber is shown.

reduces reflections below 0.3% for wavelengths in the range 532-1064 nm. This reduces
spurious optical effects, that might be observable as interference fringes in atomic images.

2.1.2 Laser source

For both laser cooling and imaging we use 589 nm laser light with two independent
sources, one emitting near the 23Na D2 line (32S1/2 → 32P3/2) and one near the D1 line
(32S1/2 → 32P1/2). Both lights are produced with a frequency-doubling optical cavity
starting from infrared light at 1178 nm, emitted by two Fiber Coupled Distributed-
Feedback Laser Diode (Innolume DFB-1178-YY-50). The two sources are independently
locked at the working frequency by saturated absorption spectroscopy. Each laser light
is distributed among different paths, whose current setup is described in [64].
The primary cooling light is locked on resonance on the |F = 2⟩ → |F ′ = 3⟩ transition
of the D2 line. This light is used for the Zeeman Slower (ZS), 2D magneto-optical
trap (MOT), 3D MOT, Dark Spot (DS), imaging repumper, push, and imaging beams.
In particular, DS and repumper light are used to recapture atoms exiting the cooling
transition towards the |F = 1⟩, from where they are repumped to the |F ′ = 2⟩ state.
Light locked on resonance on the |F = 2⟩ → |F ′ = 2⟩ D1 transition line is instead used
only for grey molasses (GM) cooling [66].

2.1.3 Magnetic shield

The manipulation of coherently-coupled spin mixtures poses severe requirements on the
stabilization of the system against environmental noise. In particular, the main source
of disturbance comes from fluctuations in the bias magnetic field. Such fluctuations are
sources of decoherence, due to jitters or drifts in the resonance condition. A common
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solution is to employ active magnetic field stabilization systems [67, 68], with a magne-
tometer placed near the atomic sample, and a negative feedback loop acting on the coils
current to keep the reading of the magnetometer constant. Another choice is the use
of passive suppression of magnetic fields, that can be achieved surrounding the appa-
ratus with a layer of high-conductivity or high-permeability material, such as µ-metal.
Even if it is not possible to cover the entire apparatus with such a shield, a solution is
to enclose only the science chamber with a multi-layer shield, with small openings for
optical access. The design of such a shield has been extensively described in [69], and
the implementation in the actual experimental apparatus in [63].
The magnetic shield has a cylindrical shape and is composed of four layers of high-
permeability material. The three outer levels are composed of µ-metal, which has a
relative permeability µr = 4.5 × 105 and a saturation value of 0.75 T, while the inner
core is composed of Supra-50, a metal alloy with µr = 2.5 × 105 but with a satura-
tion value of 1.5 T. Attenuation measurements performed on the shield [70] reported a
suppression of 5-6 order of magnitudes of the external magnetic field.

2.1.4 Magnetic coils

Several pairs of magnetic coils are required to apply controllable and uniform magnetic
fields on the sample. All the coils used in the experiment are mounted on a 3D-printed
support structure that surrounds the science chamber, placed in the innermost layer of
the magnetic shield, see Fig. 2.2.
A first set of circular coils provides the quadrupole magnetic field used for both the
MOT and the levitation magnetic field. Each of them is realized with 6 loops of a
square copper tubing of 3 mm width. Cooling water circulates in the tube to dissipate
the heat generated during the MOT operation. The magnetic field produced by these

Figure 2.2: a) CAD design of the apparatus surronding the science chamber, placed
inside the inner layer of the magnetic shield. Magnetic coils are shown in blue, science
chamber in grey. b) Position of the antennas used for microwave transfer around the
science chamber. Figures from [63].
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coils is |B| = 1.34 G/A, and the associated gradient is 0.43 G/(cmA) along z.
Two pairs of squared coils, mounted outside the support structure, are used to produce
weak compensation and gradient fields along the x and y axis. Each coil produces a
magnetic field of |B| = 1 G/A and a gradient of ∂B/∂êi = 0.19 G/(cmA), with êi the
axial direction of the coils.
Another pair of coils (BCompZ fine), operating in the Helmholtz configuration, is used
to produce a high-stability vertical field, with |B| = 2.6 G/A and magnetic gradient
∂B/∂z = 0.9 G/(cmA). To minimize field inhomogeneities on the sample, these coils are
the closest to the glass cell. A similar geometry is used to realize two additional coils
for bias field and gradient along z. The magnetic field and gradient produced by these
last coils are |B| = 1.05 G/A and ∂B/∂z = 0.19 G/(cmA) respectively.

2.1.5 Microwave system

An apparatus that generates either radiofrequency or microwave fields with high preci-
sion is required to explore the energy landscape of the hyperfine Zeeman sublevels. For
sodium, the energy difference between the |F = 1⟩ and |F = 2⟩, that can be calculated
using the Breit-Rabi formula [71], is approximately 1.773 GHz, while the splitting be-
tween Zeeman sublevels in the same F is of the order of 700 kHz/G.
In our experiment, we mainly drive transitions in the microwave regime, both for imag-
ing and for physical manipulation of spin mixtures. To this purpose, the experimental
setup must possess a fast controllable switch, high frequency stability at high and low
power, and controllable phase. Furthermore, for the realization of coherent coupling
with a two photon transition, the frequency generator must be able to output two tones
from the same clocking device.
The main source is a microwave synthesizer (Marconi Instruments 2024) that produces a
carrier at 1.68 GHz (1.67 GHz for experiments in Chapters 5 and 6). Such a synthesizer
is also used as a switch, that can be controlled remotely via a TTL signal. The carrier is
then mixed with two tones, produced by a direct digital synthesis emitter (DDS, based
on the Analog Devices AD9958 chip). This produces two phase coherent waves with tun-
able amplitude and frequency, in the range 0-120 MHz, and can be controlled remotely
with a 30µs response time. The output signal from the mixer is then filtered with a
bandpass filter, and later amplified using a 100 W amplifier (Minicircuits ZHL-100W-
272+). At the output of the amplifier we use a multi-stub tuner (Maury Microwave
Triple-stub 1819A) to match the impedance of the antenna that radiates the sample.
Several antennas are available [63], all of them have been installed around the science
chamber in the inner core of the magnetic shield prior to the final assembly, as shown in
Fig. 2.2(b).
A similar setup is used to produce an auxiliary microwave field, that we use to couple the
|1, 0⟩ and |2, 0⟩ states (dressing radiation), exploiting the induced light-shift to prevent
spin changing collision in the miscible mixture (see 2.3.1).
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2.1.6 Low-noise current source

While environmental magnetic fluctuations are handled by the magnetic shield, a major
source of noise comes from the current generator driving the bias field coils. To mitigate
this effect, we use a pair of high stability Laser-Diode Controller (SRS LDC-501), that
can produce currents up to 500 mA with a rms noise of 1.5µA and a long-term drift of
15ppm over 24h [72]. We use this generator to drive a constant current of ≈ 490 mA,
further modulated by a floating DAC in a range of ±10 mA. This allows to finely tune
the bias field in a range of approximately ±20 mG around the typical value of 1.3 G.

2.1.7 Imaging system

As in the majority of cold atoms experiment, we use absorption imaging to gather infor-
mation about the density of the ultracold atomic sample. We have currently implemented
three cameras, two along x and one along z.

Hor1 : A CCD camera (Stingray F-201B), used to image the atoms along the x direc-
tion. It shares with Cam. Hor3 a f = 50 mm lens inside the shield, placed so that
the atoms are on its focal plane. The telescope is closed by another f = 50 mm
lens placed before the camera, with a unitary magnification.

Hor3 : A CCD camera (Stingray F-201B) oriented along the same direction of Cam.
Hor1, 45 cm further away from the atoms. An additional f = 300 mm focuses the
image on the camera. The demagnification of this optical system is a factor of 6.
This camera is mainly used to image thermal clouds in the MOT stage.

Vert : A fast CMOS camera (Hamamatsu Orca Flash 4.0), which is the main camera
used in the experiment. The objective is composed by an achromatic (f = 75 mm)
and a spherical lens (f = 300 mm), with an effective focal length of 60.8 mm. Image
is carried to the camera by a f = 400 mm spherical lens, with a magnification of
6.5. In the same path a 2” PBS is present, to allow auxiliary optical access from
the bottom of the experiment.

2.1.8 Optical traps

As the primary objective of the experiment is the study of mixtures of hyperfine states,
a stringent requirement in devising the apparatus is the implementation of non-spin-
selective trapping potentials. An ideal approach is to employ optical potentials, that we
use for both evaporative cooling and BEC trapping. Indeed, it can be calculated [73]
that the potential of a laser field on (alkali) atoms, in the limit where the detuning ∆
of the laser with respect to the center of the D-line dublett exceeds the fine structure
splitting ∆′

FS , reads

Udip(r) = 3πc2

2ω3
0

Γ
∆

(
1 + 1

3PgFmF
∆′
FS

∆

)
I(r) (2.1)
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Here, ω0 is the optical resonance frequency, gF the Landè factor, P the polarization
(0, ±1 for π, σ±) and I(r) the spatial intensity profile of the light beam. In this
regime, if the beam light is linearly polarized with respect to a bias magnetic field, the
trapping potential felt by the atoms is spin insensitive, making it a suitable choice for
our experiments. Furthermore, the dependence of Udip(r) on the sign of ∆ makes it
possible to build either attractive or repulsive potentials.
The main optical source used in our apparatus is a CW fiber laser (Azur Light Systems
ALS-1064-50-I-SF) which produces 40 W of infrared (1064 nm) laser light, currently used
to create both attractive and repulsive potentials.
We use a Second Harmonic Generation crystal, placed in the focus of the laser, to produce
green light at 532 nm with a conversion efficiency of 25% of the total incident power.
We then use a dichroic mirror to separate the remaining infrared light from the green
one, see in Fig. 2.3. The latter is carried to the other side of the table and shined onto
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Figure 2.3: Full optical path for trapping beams used in the experiment, the Cigar beam
and the Xaxis beam. On top, the electronic circuit used for the modulation of the Cigar
is also represented, with the signal coming from a function generator summed to the
setpoint of the PID input, to ensure the correct locking during the modulation. Green
lines refer to the path of the 532 nm light shined on the DMD, yellow ones to the imaging
path, and red ones to infrared light. The grey area on the left of the atoms indicates a
path perpendicular to the x-y plane.
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a rectangular Digital Micromirror Device (DMD, TI DLP LightCrafter6500, 1080x1920
width), whose full path is currently under construction. We use two telescopes with
cylindrical lenses to transform and magnify the circular beam exiting the fiber into an
elliptical one, that better matches the dimension of the DMD. In the future, the use of
the DMD will allow to create repulsive potentials with arbitrary shapes along the x-y
plane [74].
The remaining infrared light is instead used to create attractive potentials. A fraction
of it is sampled and carried by a fiber, to be directed along the y axis (Xaxis beam),
to create a crossed ODT in the x-y plane, mainly used to prevent sloshing along the
x axis. While this path is present in the setup, we will only use it in Chapter 3, as it
produces a more three-dimensional sample. The majority of the light is instead used for
the Cigar beam, which enters the main chamber along the x direction. This beam has
a maximum power of 7 W and is focused on the sample with a f = 200 mm lens to a
waist of 18µm. Along each optical path, light is carried to the science chamber through
large-mode-area photonic crystal optical fibers (NKT Photonics LMA-PM-10). As fast
optical switches, before each fiber we use a high power AOM. Each AOM is also used
to regulate the laser intensity using a PID controller (SRS SIM960) with an error signal
sampled after the fiber. The setpoint of the error signal is controlled remotely through
a DAC. In the electronic circuit driving the RF amplitude of the Cigar beam AOM we
also included a waveform generator (SIGLENT SDG2122X), summed to the DAC signal.
This allows to introduce a sinusoidal modulation of the beam intensity, and hence of the
trapping frequency, which we used for the generation of Faraday waves (see Chapter 4).
Modulating the setpoint of the PID allows for a precise variation of the intensity of the
beam. To monitor frequency, amplitude and phase of the modulated signal, we capture
the intensity of the Cigar beam with a fast photodiode (Thorlabs DET36A/M), placed
at the output of the science chamber, as shown at the bottom of Fig. 2.3.

2.2 Production of a BEC

In the following section I will describe the current experimental sequence used to create
the condensed sample.

2.2.1 Pre-Cooling in the HV chamber

In the HV chamber, an atomic vapour at 250° C is heated in the oven, and then slowed
down in the vertical direction by a 12-cm-long Zeeman slower. The magnetic field for
the ZS is produced by four permanent magnets, while the optical radiation is a 1” beam
laser to increase capture efficiency. The laser beam has an intensity of I = 160 mW/cm2,
and it propagates in the negative z direction with a linear polarization orthogonal to
the magnetic field. The laser frequency is red-detuned by 330 MHz from the D2 line. To
increase the cooling efficiency, it is also necessary to use an EOM to produce sidebands.
In this way, 50% of the total power is used for cooling, 25% address the repumper
transition, and the remaining 25% sideband is out of resonance. Once slowed down by
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the ZS, the atomic vapour enters the capture zone of the 2D Magneto-Optical-Trap (2D
MOT).
The 2D MOT is oriented to capture the atoms in the x and z directions. The magnetic
field is provided by the same permanent magnets used for the ZS. The laser radiation is
composed of two orthogonal beams and is produced with the same EOM of the ZS, so
it has the same spectral decomposition, only the carrier being 13 MHz red-detuned from
the D2 line. The two laser beams are orthogonal to each other, and propagate along
the z-x plane, rotated by 45° from the cartesian axis (see Fig. 2.1) and retro-reflected.
Their intensity is of I = 10 mW/cm2, and are circularly polarized with respect to the
magnetic field.
The atomic vapour trapped in the 2DMOT enters the UHV chamber passing through
the differential stage, pushed by a low-intensity push beam, resonant with the D2 line,
which propagates along the positive y axis.

2.2.2 Dark Spot MOT

Atoms cooled by the 2DMOT enters the science chamber, where are captured by a Dark-
Spot (DS) 3DMOT [75]. The trap uses the MOT coils in anti-Helmholtz configuration,
with a magnetic field gradient of the order of 7.5 Gcm−1 along z.
The light used for cooling is 18 MHz red-detuned from the cooling transition, is divided
into three pairs of counter-propagating beams with opposite polarization σ+ and σ−.
Beams propagate along three orthogonal axis: a vertical one, which coincides with the z
axis, and two horizontal ones, oriented with a 45° angle with respect to the x (or y) axis.
The beam propagating along the positive z axis is carried to the science chamber by a
motorized translation stage, placed below the magnetic shield. The mirror is removed
at the end of the MOT stage, since the optical path of the MOT overlaps with the path
of the vertical imaging.
Due to the relatively small splitting, of 58 MHz [71], between the |F ′ = 3⟩ and |F ′ = 2⟩
states, there is a finite probability that a fraction of the atoms decays in the |F = 1⟩
state. Such a state is a dark state for the cooling transition. To circumvent this issue,
we use an additional repumper beam, resonant with the |F = 1⟩ → |F ′ = 2⟩ transition,
to reinsert the atoms in the cooling cycle. We optimize the cooling efficiency using an
Axicon and a circular obstacle to convert a collimated Gaussian beam in a hollow-core
beam, imaged on the atoms by a f = 150 mm spherical lens. Such a configuration is
known as Dark Spot [75]. The key advantage is that only hot atoms, located on the outer
regions of the MOT, are reintroduced in the cooling transition. This limits light-assisted
collisions and re-absorption of scattered photons in the center of the trap, where colder
atoms are located.
The MOT stage reaches a steady state with 2 × 109 atoms in 15 s from the beginning of
the experimental sequence, with a temperature of 300µK. This temperature is slightly
above the Doppler limit TD = ℏΓ/(2kB) (Γ = 10 MHz is the natural linewidth), which
for 23Na is around 225µK.
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2.2.3 Grey Molasses

The subsequent step toward quantum degeneracy is to employ a sub-Doppler cooling
mechanism. In our laboratory we operate a scheme called Grey Molasses (GM) [76],
which was demonstrated for 23Na in [66]. The efficiency of this scheme relies on a com-
bination of polarization gradient cooling [77] with Velocity Selective Population Trapping
[76, 78, 79]. This combination gives the advantage of moving atoms with the lowest ve-
locity in a dark state, thus reducing light-scattering induced reheating.
The coupling radiation used for GM cooling must be blue-detuned from transitions of
type |F ⟩ → |F ′ = F ⟩ or |F ⟩ → |F ′ = F − 1⟩ [64]. Given the energy structure of 23Na,
this implies the use of the D1 line, coupling the hyperfine states |F = 2⟩ → |F ′ = 2⟩.
During the GM stage, all magnetic fields are switched off, and a pulse of 40 MHz blue-
detuned light, with intensity 150 mW/cm2, is shined for 0.5 ms. After this first stage, the
atomic cloud is cooled down at approximately 25µK. In a second stage we first quench
the detuning to 100 MHz, and then we reduce the intensity of the laser with a 5 ms long
linear ramp. This final stage allows to reach a temperature of 13µK. This temperature
is just an order of magnitude above the single photon recoil energy Trec = ℏ2k2

L/mkB,
which for sodium atoms amounts to 2.4µK.
After GM cooling, the atoms are ready to enter the final evaporation stage and reach
quantum degeneracy.

2.2.4 Evaporative Cooling

After sub-Doppler cooling, a standard procedure to reach Bose-Einstein condensation
is implemented to perform evaporative cooling [80]. In our apparatus, we perform the
evaporation step directly in the optical trap, with the protocol discussed in [81], to pro-
duce a BEC of approximately 2 millions atoms, in the hyperfine state |1,−1⟩.
Loading of the atoms in the optical trap occurs using a Hybrid Trap configuration. It
consists of a magnetic quadrupole field with gradient ∂B/∂z = 13 G/cm, with the addi-
tional Cigar trapping beam turned on at maximum power (7 W), which corresponds to
a depth of kB 440µK. The loading in the optical potential is assisted by an adiabatic
compression of the quadrupole to 22 G/m in 500 ms, that allows to accumulate up to
30 × 106 atoms. Atoms not collected by the optical trap are let escape by ramping
the quadrupole field to 7.7 G/cm, so that gravity is compensated but the confinement
vanishes.
The remaining atoms undergo a first evaporation cycle, performed by linearly lowering
the depth of the trap to kB 52µK in 2s. We then turn on a uniform high-stability bias
field of 1.3 G in the z direction, while adiabatically removing all other fields. In the
last step, we perform a half-gaussian ramp in 1 s to complete the evaporation procedure,
reaching a typical trap depth of kB 3.5µK with 2 × 106 atoms and neglectable thermal
component. The same trap is then recompressed adiabatically in 1s.
The final condensate has the typical shape of an elongated cigar, with axial symmetry
around the x direction. Typical Thomas-Fermi radii are (Rx, R⊥) = (300, 3 )µm for
the experiments shown in Chapters 3 and 4, and (Rx, R⊥) = (200, 2)µm for the ex-
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periments discussed in Chapters 5 and 6. The corresponding trapping frequencies are
(ωx, ωr) = (10, 1000)Hz and (20, 2000)Hz, respectively. As a side effect, the compression
to a higher trapping frequencies introduces heating, that enhances the thermal fraction
at the expense of the number of atoms in the BEC, which reduces to 1 × 106.

2.3 Spin manipulation

The most important part of the experiment involves the generation and control of Bose-
Bose spin mixtures. In contrast with their close cousins, i.e., mixtures involving different
atomic species, the former are much more simple to create, since they do not require a
dedicated laser cooling system, but rather an apparatus which guarantees the possibility
to generate and manipulate the mixture. In my PhD, I worked on the realization of
two different mixtures, one already studied in previous works [63, 82, 58] and the other
which constitutes a novelty in the field.
As explained in the previous section, during the transfer to the Hybrid trap we prepare
a sample in the |1,−1⟩ state. From this state, we populate other states using microwave
driven transitions. The exact transition frequency can be calculated using the Breit Rabi
formula [71], but, in first approximation, the energy of each Zeeman sublevel is given
by ∆E = gFmFµBB, which is well resolved at the bias field Bz = 1.3 G. Looking at
the values of scattering length listed in Appendix 6.3, one can then find two suitable
configurations for a miscible and immiscible mixture, highlighted in Fig. 2.4(a) and (b)
respectively. The advantages and disadvantages of these specific choices will be discussed
in the following, for each configuration separately.
For both configurations, our apparatus allows us to switch off the coupling at will,
giving us the possibility to study the properties of spin mixtures within and without the

Figure 2.4: Scheme of the hyperfine splitting of the ground state of 23Na. In both panels,
grey state represent Zeeman sublevels not involved in the coupling, the red represent |↓⟩
state and the blue the |↑⟩ state. a) Raman transition used to create and couple the
miscible mixture. Solid arrows represent the two coupling fields, while the dashed-dot
arrow represent the dressing. b) Single photon coupling used to create and couple the
immiscible mixture.
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presence of the coupling, with tunable population imbalance. The majority of this thesis
is focused on the study of mixtures in the presence of the coherent coupling. However, we
will study the use of uncoupled spin mixture as an atomic magnetometer in Section 2.5.1,
and their collective oscillation in Chapter 4. Specific details on the spin manipulation
protocols used in the experiments will be given in each Chapter.

2.3.1 Realization of a miscible mixture

We produce a miscible mixture by coupling the states |1,−1⟩ ≡ |↓⟩ and |1,+1⟩ ≡ |↑⟩
via a two-photon (Raman) transition [see Fig. 2.4 (a)]. One can demonstrate that such
a system can be mapped exactly to a two level system [83].
We use two microwaves (with frequencies ω+, ω−), to drive the off-resonance single
photon transitions |1,±1⟩ → |2, 0⟩, with tunable detuning ∆2,0 ± δ/2 from the |2, 0⟩
state. This state must be highly detuned, as populating it will break coherence, as
well as induce phase separation in the BEC. The two single-photon transitions have
Rabi frequencies Ω+ and Ω−. An additional asymmetric frequency term ±δ/2 can be
applied to the two fields to introduce a detuning δ from the two-photon-resonance. The
resonance condition corresponds then to E↓ − E↑ = ℏ(ω+ − ω− + δ).
The total Rabi frequency which couples |1,−1⟩ and |1,+1⟩ reads ΩR = Ω+Ω−

2∆2,0
, and

reduces to Ω2

2∆2,0
if the condition Ω+ = Ω− is satisfied, which corresponds to the maximum

value of ΩR. For practical purposes, the easiest to tune parameter is the detuning ∆2,0,
which allows to cover a range of ΩR from a few tens of Hz up to the kHz. Typical values
of Ω+ and Ω− are instead around 5 kHz.
At Bz = 1.3 G, a Breit Rabi evaluation of the Zeeman sublevels energy of the |F = 1⟩
manifold shows that E−1 + E+1 > 2E0, meaning that it is allowed for spin-changing
collision to populate the |1, 0⟩ in time. We prevent this effect addressing the |1, 0⟩
→|2, 0⟩ transition with an additional microwave radiation of Rabi frequency 2.27 kHz,
20 kHz blue-detuned from resonance. This produces a light shift on the |1, 0⟩ that inverts
the previous energy-balance.
Particular care must also be taken when tuning ΩR to high values, as reducing the
detuning ∆2,0 introduces atom losses. Indeed, at low ΩR the 1/e lifetime is around 1 s,
but decreases to 200 ms at ΩR/ℏ ≈ 1 kHz. This, however, does not really affect the
results presented in this thesis, as the explored physics is in the regime with ℏΩR ∼ µs.
At last, it is useful to estimate an order of magnitude for the energy scale of this mixture.
As discussed in Chapter 1, the magnitude of the spin chemical potential, given by Eq.
1.25 for a uniform system, is related both to the atomic density n and to the difference
between intraspecies (g↑,↑, g↓↓) and interspecies coupling constant g↑↓. As reported in
Appendix 6.3, the scattering lengths aij , related to the coupling constants through gij =
4πℏ2aij/m, read:

a↓↓ = 54.5a0, a↑↑ = 54.5a0, a↓↑ = 50.8a0 (2.2)

Within this values, and a typical atomic density in the optical trap (with the parameters
given in Section 2.2.4) of 4 × 1014 atoms/cm3, one can calculate that the spin chemical
potential is of the order of µs/ℏ ∝ (g − g↓↑)n ≈ 200 Hz. Furthermore, this mixture
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has the nice property of being Z2 symmetric, due to the symmetry in the intraspecies
coupling constants g↑↑ = g↓↓ = g.
This mixture has been used in the experiment presented in Chapter 3 and Chapter 4.

2.3.2 Realization of an immiscible mixture

Starting from |1,−1⟩ = |↓⟩, an immiscible mixture can be created populating the |1, 0⟩
state, either with a single photon RF transition, or with a two-photon Raman transition
in the microwave range. Another possibility could be to populate the |2,−2⟩ = |↑⟩
state with a single photon microwave transition. While the former would be in principle
preferable due to the similarity of the coupling constants (see Table 3), preliminary
attempts revealed difficulties in stabilizing the mixture. The choice of the stretched
states has instead the key advantages to be realized with a single-photon coupling on a
transition with unitary Clebsch-Gordan coefficient, and to be robust again spin-changing
collisions, which induce decoherence. It also avoid all the problems related to the loss of
atoms arising from the two-photon coupling.
The Rabi frequency ΩR can be directly tuned through the amplitude of the microwave
field, up to a maximum value of about 6 kHz. The detuning on the other hand is simply
given by ℏδ = E2,−2 −E1,−1 − ℏω, easily tunable either by changing the bias field or by
changing the microwave frequency.
For this mixture, the value of the scattering lengths are

a↓↓ = 54.5a0, a↑↑ = 64.3a0, a↓↑ = 64.3a0 (2.3)

At equal density of the sample, the spin chemical potential is 1.3 times larger than the
one of the miscible mixture. However, while performing experiments we discovered that
a much larger trapping frequency was required to freeze the radial spin degree of freedom
(see discussion in Section 1.3.3). As a result of using a larger trapping frequency, the
density of the sample increased, leading to a spin chemical potential µs ∼ 1200 Hz. A
much larger spin chemical potential, introduces a key advantage, since it relaxes the
stability condition for the magnetic field. Using the expression for the linear Zeeman
energy ∆E/B = h2.1 MHz/G it is easy to calculate that, in order to have fluctuations
of 10 Hz, it is required to have shot-to-shot fluctuations of the order of 5µG.
As a final note, the asymmetry in the intra-species coupling constants, g↓↓/g↑↑ ≈ 0.85,
introduces an asymmetry in the ground state configuration of the mixture, as explained
in Section 1.2.1 and shown in Fig. 1.1. Due to the harmonic confinement of the ODT, in
an immiscible mixture with n↑ = n↓, the |↓⟩ state will always be the center of the cloud
while the |↑⟩ on the side.

2.4 Spin-selective imaging

As in many experiments involving mixtures, a spin selective imaging is required [84].
For Cam. Hor1 (and Cam. Hor3), we distinguish different spin states performing a Stern-
Gerlach (SG) operation. In particular, after a given spin manipulation of the system, we
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release the optical trap and let the atoms expand, to avoid imaging saturation, and fall
for 5 ms. We then turn on the quadrupole magnetic field to introduce a magnetic field
gradient of 8 G/cm, enough to compensate gravity for a few ms. Gradient compensation
is exact only for the state |F = 1,mF = −1⟩, while the other state will either fall or
accelerate, depending on the sign of gF .
Standard resonant absorption imaging is then performed. We first populate the |F = 2⟩
manifold with a fast pulse of the repumper light, and then illuminate the atoms with
a circularly polarized probe beam propagating in the x direction, resonant with the
|F = 2⟩ → |F ′ = 3⟩ transition. Since probe polarization is important in order to correctly
count the atom number [85], we switch off the magnetic field gradient just before the
probe pulse, and turn on a small bias field along y.
This imaging direction is useful for measurements that characterize the global response
of the sample, e.g. the Rabi frequency measurements, spectroscopic calibration of the
magnetic field (see Section 2.5), or temperature measurements.
The z direction provides a better field of view, since it allows to observe axial dynamics in
the condensate. However, the cylindrical shape of the magnetic shield does not allow for a
SG imaging, since a strong gradient in the horizontal plane could permanently magnetize
the shield. Instead, we use microwave spin selective imaging to gather multiple images
of each |mF ⟩ state, with a 1 ms delay between each image. This is allowed by the fast
acquisition rate of the CMOS camera [86].
Specifically, we use a technique based on Partial Transfer Absorption Imaging (PTAI),
which has been useful for in-situ imaging [82, 87] where, in order to avoid density-related
saturation, only a fraction of the sample is imaged. This is achieved by promoting atoms
from the ground state to an auxiliary state, resonant with the probe pulse.
In our spin selective imaging protocol, 1 ms after releasing the trap, we apply a resonant
microwave transfer, which lasts a few tens of µs, to transfer atoms from the |1,−1⟩ to
the stretched state |2,−2⟩, and then shine a probe pulse to gather the image of the first
state. The same procedure is repeated for the state |1,+1⟩, with a time delay of 1 ms,
that can be handled with a careful choice of the exposure timings, and the dimension of
the region of interest (ROI) of the camera. Indeed, as the camera records photos row by
row [86] starting from the central one, choosing a smaller ROI in the vertical direction
allows for a faster acquisition rate.
We address the problem of in-situ saturation by applying a small TOF of 1 ms before
starting the imaging procedure. As a result of the expansion, the dimensions of the
sample will change as Ri(t)/Ri(0) =

√
1 + ω2t2 [88], where i = x,⊥. This quantity is

approximately 12 in the radial direction and 1.01 in the axial direction. In this way,
we reduce the density by a factor 100, enough to avoid saturation, while leaving the
dynamics along the axial direction unaltered.
In particular, for experiments on the miscible mixture, we separately send the atoms in
|1,±1⟩ to the stretched states |2,±2⟩ with a π-pulse, using the same antennas used for
coherent coupling, with Rabi frequencies of the order of 25 kHz, higher than any other
energy scale. For experiments on the immiscible mixture, since the stretched state is
already occupied by the mixture itself, we first gather the image of the state |2,−2⟩ then
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perform the π-pulse transfer and image the |1,−1⟩. In this experiment, due to the radial
trapping frequency at 2 kHz, the radial size of the atomic sample in the second image
will be twice as large as the one in the first image.

2.5 Low magnetic field noise environment

For the realization of coherently-coupled mixtures at low Rabi frequency, two impor-
tant requirements are the precise knowledge of the detuning between the microwave
frequency and the atomic resonance, fundamental to control the population imbalance
of the mixture, and coherence times long enough to perform experiments. In the fol-
lowing, I will discuss the protocol we use to precisely calibrate the resonance condition
through a fine-tune of the bias field, and show a characterization of its stability over a
day of measurements.

2.5.1 Calibration of the resonance condition

To create spin mixtures, it is fundamental to finely tune either the transition frequency
or the bias field to match the resonance condition. In both cases, a precise measurement
of the magnetic field is required. The optimal solution for our setup, since it is impossible
to place a magnetometer inside the shield, is to use the atoms as a sensor. Several ideas
have been developed in the past years to use atomic spin systems as magnetic sensor
[89]. A fast and sufficiently precise measurement is Rabi spectroscopy, which, in the
regime ℏΩR ≫ δgn, works for both mixtures discussed in the previous section. For a
generic Rabi-coupled system, we can identify the two states as |↑⟩ and |↓⟩. Starting with
all the atoms in |↓⟩, the population of |↑⟩ varies as a function of ΩR, δ and t as

ρ↑↑ = Ω2
R

Ω2
R + δ2 sin2


√

Ω2
R + δ2

2 t

 (2.4)

As discussed in Chapter 1, it is useful the introduce the relative magnetization Z ≡
ρ↑↑ − ρ↓↓, so that Z ∈ [−1, 1]. A spectroscopic measurement of δ can be performed,
for a known Rabi frequency ΩR, applying a squared pulse of duration π/ΩR at different
detunings δ. The detuning is varied applying a small correction to the bias field with
respect to a reference value, keeping fixed the microwave frequency. After the pulse, we
separate the two states with a SG and measure the two populations with Cam. Hor1.
The magnetization Z as a function of δ, measured after the π-pulse, has a characteristic
sinc-shape, and can be fitted with the function

Z = −
δ2 + Ω2

R cos
(√

Ω2
R + δ2

)
t

Ω2
R + δ2 (2.5)

with δ as a fitting parameter. The last expression can be derived by expressing Z =
2ρ↑↑ − 1 and using Eq. 2.4. In order to avoid density-related shifts in the resonant
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Figure 2.5: a) Spectroscopic measurement of the resonance condition at ΩR = 100 Hz
and 300 Hz. The broadening of the linewidth with increasing ΩR is clearly visible.
Measurements are taken in two different days. b) Example of calibration of the Rabi
frequency, once the resonance condition is known.

frequency, one can either work with a BEC with very large ΩR, but this leads to a less
precise measurement as the linewidth of the sinc is given by ΩR [see Fig. 2.5(a)]. An
optimal choice is then to work with a dilute thermal cloud, which allows to reduce ΩR

around a few hundred Hz. We produce low density thermal clouds lowering the initial
intensity of the Cigar beam during the loading in the Hybrid Trap, without modifying
other parameters in the evaporation procedure. This allows us to reduce the number of
atoms, thus drastically lowering the critical temperature necessary to achieve condensa-
tion2.
Once the resonance condition is known, the same procedure can also be used to measure
the Rabi frequency, by applying pulses of different duration at zero detuning. Indeed
formula 2.5, for δ = 0, reduces to the usual cosine function. An example of this mea-
surement is reported in Fig. 2.5(b).

2.5.2 Daily stability

While the former procedure allows to measure the resonant condition in a few minutes,
more precise measurements can be performed to quantify its time variation. Shot-to-
shot fluctuations, for example, can be extracted measuring the population imbalance over
time. This is achieved applying a pulse of duration π/ΩR at δ ̸= 0, such that the resulting
magnetization is Z = 0. The shot-to-shot value of Z can then be mapped to a value of
Bz with the help of the spectroscopy reported in Fig. 2.5. A 3-hour long measurement
performed at ΩR = 150 Hz is reported in Fig. 2.6 (a). The measurement shows a slow
drift of the magnetic field, that occurs on a time scale of approximately two hours. As a

2We recall that, for a gas at equilibrium in a harmonic trap, the critical temperature reads Tc =
0.94ℏωhoN1/3[6].



2.5. LOW MAGNETIC FIELD NOISE ENVIRONMENT 37

0 50 100 150 200 250

20

10

0
B 

[
G]

100 101 102

Number of experiments

100

2 × 100

3 × 100
4 × 100

6 × 100

Al
la

n 
De

vi
at

io
n 

[
G]

N 1/2

N

100 101 102
t [minutes]

0 25 50 75 100 125 150 175
t [minutes]

Figure 2.6: a) Drift of the magnetic field in time, which show a drift of approximately
20µG. b) Allan deviation calculated on the same dataset.

more quantitative measurement, I also report the Allan deviation [90] calculated on the
same dataset in Fig. 2.6 (b). The Allan deviation can be used to estimate the nature
of the noise. We observe that up to 10-12 experiments (approximately 7-8 minutes)
fluctuations are dominated by white noise, which scales as 1/

√
N , with σ ≈ 4µG. For

integration time of up to 10 minutes, magnetic noise is as low as 2µG. At longer times,
we observe a drift which scales linearly with N in the Allan deviation, compatible with
a low-frequency noise. This can be due to temperature effects on the magnetic shield,
or on the current source driving the bias magnetic coils.
This measurement confirms that magnetic field noise in our apparatus is low enough
for the apparatus to produce and manipulate coherently-coupled condensates with high
precision, even if the Rabi frequency is much lower than the spin interaction energy. The
studies presented in Chapters 5 and 6 will heavily rely on this stability, as the detuning
from resonance will become an important tuning knob in the experiment.
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Chapter 3
Characterization of a Coherently Coupled
miscible mixture
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3.4 Plasma Oscillation and Scaling of the gap . . . . . . . . . . . . . . . 47

In Chapter 1 we discussed the ground state properties and dynamics of a miscible
spin mixture in the presence of an external radiation that coherently couples the two
states. The dynamics of such a system is described by a dissipationless Landau-Lifshitz
equation, Eq. 1.38, and it is equivalent to the Josephson dynamics, as demonstrated
experimentally in coherently-coupled [42] and double-well [52, 91] systems.
We have also briefly anticipated that the presence of an inhomogeneous density profile
introduces an additional tuning parameter to the dynamics, as the relevant parameter
κn/ℏΩ smoothly varies in space. In this case, we refer to the system as an elongated
Josephson junction, which has been studied both theoretically [54] and experimentally
[53, 91, 92] in double-well systems. On top of this results, the possibility to engineer
a Josephson junction in the internal state of the atoms [42], makes a further step in
the study of Josephson systems, introducing a bridge towards the study of magnetic
materials with ultracold atomic gases. Particularly important is the presence of a spatial
degree of freedom, as it adds to the picture the possibility of engineering magnetic
heterostructures [58] and study the behaviour of magnetic fluctuations [93, 94]. In
this Chapter, I will discuss the experimental realization of a one-dimensional elongated
Josephson junction using a coherently-coupled two-component miscible mixture of 23Na
atoms, describing the characterization of the system dimensionality, as well as different
methods to manipulate the sample. The results of this work are published in Ref.[95].
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3.1 Investigation of spin dimensionality

As anticipated in the previous chapters, we produce three dimensional condensates
with the shape of an elongated cigar, with a Thomas-Fermi density profile n(x, r⊥) =
n0

[
1 −

(
x
Rx

)2
−
(
r⊥
R⊥

)2
]
, Rx and R⊥ being the axial and radial radii. Being fully 3D

in the density channel, in principle the system can support both three dimensional as
well as lower dimensional spin excitations, as in the latter case the relevant mean-field
energies are more than one order of magnitude smaller as compared to the density ones.
A natural question to address is about the parameters for which the crossover between
the two regimes occurs. As already discussed in [96, 97], the transition between the
1D and 3D regime for a single component condensate confined in an axially symmetric
trap occurs when the radial trapping frequency ω⊥ is much larger than the mean-field
interaction, which is equivalent to ξd > R⊥, a necessary condition to essentially freeze
the radial excitation of the condensate. In analogy, for a spin mixture this occurs when
the minimum length scale for spin excitations, i.e., the spin healing length ξs, is compa-
rable with the transverse Thomas-Fermi radius, R⊥/ξs ∼ 1. Using the definition of the
healing length for the density and the spin channel, we obtain

R⊥
ξd

= 2n0g

ℏω⊥

R⊥
ξs

= 2n0g

ℏω⊥

√
δg

g

(3.1)

with the definition of g and δg given in Chapter 2. For 23Na atoms at 1.3 G, we have that√
g/δg = 0.26, see Appendix 6.3. This last consideration relaxes the condition to reach

the 1D regime, since the ratio required for the spin channel can be approximately 4 times
larger than the one needed to have a one dimensional single component condensate.
The dimensionality of spin dynamics can be investigated by employing a protocol that
produces spin excitations along the transverse direction. The key idea is to take ad-
vantage of the Josephson dynamics of the system, along with the inhomogeneity of the
density profile, to create different dynamical regions in the sample. Let us focus on a
region around the x = 0 plane, with peak density n0, limited at R⊥. An ideal protocol
would start with all the atoms in the |1,−1⟩ ≡ |↓⟩, to which one applies a squared Rabi
pulse at resonance with |1,+1⟩ ≡ |↑⟩, for a time which would correspond to a π-pulse
for an ensemble of non-interacting atoms. If we choose 2ℏΩ < δgn0, the center part
of the cloud will remain self-trapped [see Fig. 1.5 (c)], whereas the low-density tails, at
some finite value of r⊥, will follow the usual Rabi dynamics. The resulting magnetiza-
tion profile would present transverse spin excitations if R⊥ > ξs, otherwise they would
be suppressed. The presence or absence of radial excitations would then distinguish
between the 3D and 1D regimes.

Experimental Protocol We run a set of experiments to determine for which pa-
rameters the spin dynamics can be reduced to be effectively one dimensional. Every
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experiment begins with a BEC of 2 × 106 atoms in the state |1,−1⟩, produced with
the protocol described in Chapter 2, with the atom loaded in a crossed optical dipole
trap composed of Cigar and Xaxis beams. The Cigar beam is the main trapping beam,
propagating along x, while the Xaxis is only used to prevent axial sloshing of the BEC.
Due to the axial symmetry of the Cigar, the sample has an elongated cigar shaped distri-
bution, confined by an harmonic trap with longitudinal trapping frequency ωx = 10 Hz.
The radial trapping frequency can be instead tuned by acting on the intensity of the
Cigar after the recompression ramp. We use this latter as a control parameter to vary
the ratio R⊥/ξs, by changing the value of ω⊥ in each experiment. This allows us to tune
the radial trapping frequency ω⊥/2π between 500 Hz and 1000 Hz, only little affecting
the axial trapping frequency.
After trap compression, we turn on the coupling and apply a resonant π-pulse on the
cloud, with ℏΩR = 0.3δgn0, to ensure that the center of the cloud remains self trapped.
The value of ΩR and the resonance condition δ = 0 are independently calibrated on a
very dilute thermal cloud, as explained in Chapter 2.
After the π-pulse, we gather absorption images from the z direction using Cam. Vert. to
image the radial and longitudinal spin distributions. Details about the imaging proce-
dure are given in section 2.4. We gather data for different values of the control parameter
ω⊥, tuning R⊥/ξs from 1.2 to 4.9.
Results for the optical density of the two components are shown in Fig. 3.1, at the cross-
over from the 1D (a) to the 3D (b) regimes. In the first case (panel a), R⊥/ξs = 1.6, one
can observe that the self trapped region around x = 0 extends homogeneously along the
y direction. Atoms in the low-density tails of the BEC have been instead promoted to

Figure 3.1: Spatial distribution of the two components, |↑⟩ in blue and |↓⟩ in red for (a)
1D regime and (b) 3D regime. R⊥/ξs are 1.6 and 4.9 respectively. (c) Magnetization
along y, integrated along z, in the different regimes. Shaded areas represent confidence
intervals of one standard deviation.
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the |↑⟩ state, due to the π-pulse. In the other regime (panel b), R⊥/ξs = 4.9, and regions
with atoms in |↑⟩ are present also around x = 0. Due to the imaging integration along
the z direction and the axial symmetry of the sample, the ODs shown do not strictly
represent the true radial shape of the excitation. The latter could be best reconstructed
through an inverse Abel transform. Nevertheless, it is clear that radial spin excitations
are present in the system.
To better investigate the transition between the two regimes, we measure the radial
magnetization Z(y), averaging over the central 100µm of the trap. Results are shown in
panel (c), for different values of R⊥/ξs. We observe that Z(y) is constant for R⊥/ξs ≤ 3.
Above this value, oscillations along y are present, reflecting the structures present in
absorption images. Throughout the rest of the work, we will then set R⊥/ξs < 3, to
reduce to the simpler 1D study case. This allows us to integrate out the radial degrees
of freedom and monitor only the behaviour of Z(x), simplifying the study of the rele-
vant physics that arises from the inhomogeneity. Working in the 1D regime implies also
that the parameter δg must be substituted with the renormalized constant κ = 2

3δg, as
discussed in Section 1.3.3.

3.2 Density dependent spectroscopic shift

In dense atomic clouds, transitions between atomic levels are strongly affected by the
presence of interactions. In the GPE framework, this effect is well captured by the
mean-field energy shifts, arising from intra and inter-species interactions. In a Josephson
system, they manifest when the linear coupling strength is smaller than the non-linear
interaction energy κn.
To probe this effect, we perform a set of experiments, following the same spirit of the

(a) (b) (c)

Figure 3.2: (a) Spin dynamics represented on the Bloch sphere, with blue (orange) lines
in the presence (absence) of the nonlinear contribution. Direction of the Rabi vector
is represented by a black arrow. (b) Local magnetization Z(x) for different values of
detuning δ. The center of the cloud is at x = 0 and extends up to Rx = ±1, external
regions being filled with the thermal component. (c) Numerical solution of the LLE for
a Thomas-Fermi shaped nonlinear interaction κn(x), calculated at different values of δ.
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spectroscopic measurement presented as a calibration in Chapter 2. Each experiment
starts with a sample in |↓⟩, to which we apply the linear coupling ΩR/2π = 68.5(5) Hz
for a period t = π/Ω, to transfer the population to |↑⟩. We repeat the measurement
for different values of the detuning δ from the resonant transition frequency for a single
atom, which we refer to as δ = 0. This protocol consists in a rotation of the spin vector
on the y-z plane of the Bloch sphere, perpendicularly to the Rabi vector, which, for
δ = 0, is oriented along x [see Fig. 3.2(a)]. As we vary δ, the Rabi vector acquires an
additional component along z, whose amplitude is given by δ. Since we work in the 1D
regime, for each δ we can extract the 1D magnetization Z(x), calculated from previous
separate integration of the 2D densities along y.
Results for Z(x) are shown in the color plot of Fig. 3.2(b), as a function of space and
detuning. We also compare the experimental data with the numerical solution of the
Landau-Lifschitz equation, shown in panel (c). The latter is evaluated in the Local
Density Approximation (LDA), with κn(x) that varies is space, following a 1D Thomas-
Fermi profile. Although this simulation does not keep into account spatial dynamics
arising from spin currents, it remarkably matches the experimental data.
At first, we observe that thermal atoms (|x| > Rx) and the low density tails of the
cloud are not affected by the presence of interactions, and behave as an ensemble of
non-interacting atoms. We refer to this behaviour as the deep Rabi regime. The dynam-
ics in this region, and hence the local magnetization Z, is governed only by the value
of the detuning δ, as expected for a two-level system. The dependence of Z on δ is
characterized by the common squared sinc-like shape, shown in orange (dots and lines)
in Fig. 3.3(a). On the other hand, the central region of the cloud x = 0 satisfies the
condition ℏΩ < κn0, thus Josephson dynamics is expected. The different behaviour of
the center of the cloud, as compared to the dynamics of the tails, is evident from data

(b)(a)

Figure 3.3: (a) Vertical cuts of data shown in Fig. 3.2(b) at x = 0 (blue points) and
at x = 0.8Rx (orange points), fitted with the Josephson equations with κn as free
paramater (blue and orange lines). (b) Black points show the value of κn at different
x, with the error resulting from the fit. Blue shaded area shows the predicted κn(x)
extracted knowing the Thomas-Fermi profile, the trapping frequency and total atom
number.
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of panel (b).
In particular, the spectroscopy curve measured at x = 0, plotted in Fig. 3.3(a), becomes
asymmetric and shifted towards positive value of δ. The direction of this shift, and the
degree of asymmetry, depend respectively on the sign and the strength of the nonlinear
parameter κn. Both these quantities can be extracted by fitting the experimental data
with a numerical integration of the Josephson equations, leaving κn as the free param-
eter.
Points in Fig. 3.3(b) show the value of κn extracted from several fit of Z(δ), performed at
different spatial position x, and compared with the expected Thomas-Fermi profile (blue
shaded area). The shaded area is obtained measuring the atom number from absorption
imaging, averaged over the whole dataset. From the fit, we obtain κn0/2π = 192(11) Hz,
which is consistent with the expected value for κn/2π = 173(20) Hz.

3.3 Density dependent Adiabatic Rapid Passage

The discussion of the previous section demonstrates that a Rabi pulse cannot be used
to produce states with spatially homogeneous magnetization, unless one works in the
deep Rabi regime, with ℏΩR ≫ κn0 even in the center of the cloud. Nevertheless,
the preparation of a state with uniform magnetization at low coupling strength gives
substantial advantages for further manipulation of the mixture [98, 99]. A different
approach could be to employ Adiabatic Rapid Passage (ARP) techniques [100], which
could be used, for instance, to generate number-squeezed states [101]. This procedure
heavily relies on the existence of an avoided crossing between the energies of the dressed
states of a two-level system coupled with a coherent radiation [102].
During an ARP, the coupling is applied to a fully polarized state (|↓⟩ for example) with
an initially large detuning |δ| ≫ Ω. This ensures that no spin dynamics is excited, as
the system is close to the ground state. The detuning is then slowly swept towards
lower absolute values (frequency chirping), with a speed ∂tδ(t) ≪ Ω2(t), that ensures
adiabaticity. If the evolution is adiabatic, the system will follow the change of δ and
rotate on the Bloch Sphere with the Rabi vector [see Fig. 3.4(a)], passing through a state
with Z = 0, until the system has been fully converted to |↑⟩.
During the ramp, the values of Z and δ are related by [101]:

ℏδ = ℏΩ Z√
1 − Z2

+ κnZ (3.2)

This expression can be obtained from the Josephson equations 1.40 imposing that the
phase is null, ϕ = 0, and constant during the evolution, ∂tϕ = 0. This approximation
might fail in two cases. The first occurs if the initial detuning is not large enough.
In this case, turning on the coupling abruptly will introduce spin oscillations on the
Bloch sphere, around the Rabi vector, with an amplitude that will become larger and
larger during the Adiabatic Passage. The second case occurs instead if the change in
detuning ∂tδ(t) is too fast compared to the Rabi frequency, thus breaking the adiabaticity
condition. If this occurs, a portion of the state might jump over the avoided crossing,
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Figure 3.4: (a) Illustration of the change in the Rabi (orange) and spin (blue) vectors dur-
ing the ARP. (b) Experimental data for the integrated magnetization Z(x), represented
as a colorplot for varying detuning and spatial position. (c) 1D numerical evaluation of
the Josephson dynamics with the same parameters used in the experiment.

resulting in a incoherent superposition of the two states.
From Eq. 3.2, we can see that in the deep Rabi regime the magnetization Z depends only
on δ/Ω, while a correction due to the Josephson dynamics appears for larger values of
κn. In both cases, however, the magnetization reaches Z = 0 at δ = 0, independently of
the value of κn. In addition, interactions helps stabilizing the mixture against magnetic
field fluctuations, as the sensitivity of Z to a change in δ, given by

∂Z

∂δ

∣∣∣
Z=0

= 1
ΩR + κn

(3.3)

is decreased by κn. This effect can be used to produce number squeezed state [101].
A crucial detail is the initial sign of the detuning, as it determines whether, during the
ARP, the system will cross the δ = 0 plane of the Bloch sphere as the lowest energy
(ϕ = 0) or the highest energy (ϕ = π) dressed state. For a coherently-coupled BEC,
this is even more dramatic as spin instabilities [56] develop when the system acquires
a relative phase ϕ = π. As we identify the GS of the BEC with the highest energy
state of the |F = 1⟩ manifold of the atomic Hamiltonian, then the coupling must start
blue detuned. However, as the choice of the detuning sign is only a convention, and
we represent |1,−1⟩ as |↓⟩ on the Bloch sphere, we will still refer to this as a negative
detuning.
We investigate the response of the elongated Josephson junction to an ARP with a
dedicated set of experiments, all starting with all the atoms in |↓⟩. After condensation, we
turn on the coupling with ΩR/2π = 273(1) Hz and initial detuning δi/2π = −3 kHz. The
detuning is swept adiabatically with a 50 ms long half-gaussian ramp (with HWHM =
25 ms) up to a value δf . The detuning can be tuned either through the microwave
generator, or by finely adjusting the magnitude of the bias field at constant microwave
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(a) (b)

Figure 3.5: (a) Vertical cuts of data shown in Fig. 3.4(b) at x = 0 (blue points) and
at x = 0.8Rx (orange points), fitted with the Josephson equations with κn as free
parameter (blue and orange lines). (b) Black points shows the value of κn at different x,
with the error resulting from the fit. Shaded area shows the predicted κn(x) extracted
from trapping frequency and atom number.

frequency. We choose the latter for practical purposes1. According to the previous
discussion, to reduce the detuning we increase the value of the bias field.
This protocol is applied for different values of δf . The behaviour of the magnetization
Z as a function of x and δf is shown in Fig. 3.4(b). At the beginning of the ramp,
the cloud is uniformly in the state |↓⟩. During the evolution, regions with different spin
density κn(x) evolve differently, with a transition towards |↑⟩ that is smoother in the
trap center with respect to the tails. Nevertheless, the cloud homogeneously reaches
Z = 0 at vanishing detuning δ = 0, as expected from Eq. 3.2; a non-trivial result
since the rotation speed varies in space. This behaviour also stems from the symmetric
intraspecies coupling constant of the mixture (see Appendix 6.3), which results in a Z2
symmetric mixture. This will not be the case for the immiscible mixture studied in
Chapter 5 and 6. At last, further increasing the detuning leads to a full transfer of the
cloud in the |↑⟩ state.
As we did in the previous section, we can compute the local value of κn, by fitting Z(δ)
at different x, with a numerical model extracted from the Josephson equation. In this
case, we fit Z(δ) with a sigmoidal function, from which we can extract both the slope
in the center and the value of κn, using formula 3.3. Examples are given in Fig. 3.5(a)
in the center (blue points) and on the side (orange points) of the condensate. With
this procedure we obtain κn0/2π = 200(15) Hz in the center. The values of κn fitted in
different regions are shown in panel (b), and compared with the expected Thomas-Fermi
profile, reconstructed from atom number.

1Specifically, the value of the bias field can be varied smoothly, as it is set by a digitally-controlled
current source, with a time delay in the order of a few µs resulting from the impedance of the coils. On
the other hand, a ramp in microwave frequency is limited by the writing time of the Look-Up-Table of
the DDS, which takes around 30 µs to update, but it features a ”sharp” frequency change. This might
introduce discretization effects in the ramp.
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As a final remark, this procedure allows to prepare a uniform Z = 0 ground state of a
balanced mixture, since the condition ϕ = 0 that minimizes the energy (see Eq. 1.26) is
satisfied for any value of δ. This method of mixture manipulation will be also used for
the preparation of a balanced miscible mixture in Chapter 4.

3.4 Plasma Oscillation and Scaling of the gap

The ground state of the mixture, at finite ΩR and δ = 0, is a homogeneous state with
Z = 0 and ϕ = 0. Once represented on the Bloch sphere (Fig. 3.6(a)), it is also a
fixed point of the dynamics. For small deviations from this state, Josephson dynamics
predicts the appearance of small amplitude oscillations in Z around the fixed point (see
Fig. 3.6(a)), called plasma oscillations [52], with frequency:

ωpl =
√

ΩR(ΩR + κn/ℏ) (3.4)

The dependence of the plasma frequency on the nonlinear interaction term κn suggests
the possibility of measuring the latter from independent measures of ΩR and ωpl. The
dependence of κn only on frequencies provides a key advantage, as compared to the
previously discussed methods, in terms of high precision and insensitivity to systematic
errors coming from imaging calibrations.
To measure plasma oscillations in our system, we prepare a stationary state at Z = 0
and ϕ = 0 with the ARP protocol described in the previous section, stopping the ramp
at δf = 0. To start the dynamics, we suddenly change the phase of the coupling from
0 to 0.1π, and measure the time evolution of the state, shown in Fig. 3.6(b). For
different positions x, we extract Z(t), and fit it with a sinusoidal function, to extract the
frequency of oscillation. We initialize the fit by setting as an initial guess the Fourier
transform of the data. Since ΩR is homogeneous in space to a few percent (see [63] for a

(a) (b) (c)

Figure 3.6: (a) Spin dynamics represented on the Bloch sphere, with blue (orange) lines
in the presence (absence) of the nonlinear contribution. Direction of the Rabi vector is
represented by a black arrow. (b) Experimental values of the integrated magnetization
Z(x), as a function of time after the quench in the coupling phase. (c) Evolution of Z(x)
obtained from numerical evaluation of the Josephson equation, with the same protocol
used in the experiment.
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(c)(a) (b)

Figure 3.7: (a) Plasma oscillation extracted in the center (blue points) and on the edge
(orange points) of the trap, fitted with a sinusoidal curve (solid lines). At the edge of the
trap, oscillations last only two Rabi periods, probably due to interactions with thermal
atoms. (b) Black points show extracted values of κn(x) from a sinusoidal fit. Solid area
is the estimation of κn(x) from atom number and trapping frequency. (c) Scaling of the
plasma frequency as a function of the Rabi coupling ΩR (blue points), compared with
the theoretical prediction, Eq. 3.4.

detailed discussion), this measurement allows to reliably reconstruct the local non-linear
parameter from Eq. 3.4. The efficiency of this method is high in the center of the
trap, where we extract κn0/2π = 161(3) Hz [Fig. 3.7(a), blue points and lines] with a
relative error of 4%. The efficiency is also supported by the long coherence times of the
oscillations. Close to the edge of the trap, signal-to-noise ratio is lower and oscillations
are less visible, so we can track only a couple of periods. Results of the fit [orange points
and lines in panel (a)] show that the dynamics is determined by the Rabi frequency only,
which is compatible with the value independently calibrated. As we did in the previous
sections, we reconstruct the Thomas-Fermi profile, shown in Fig. 3.7(b).
To further validate our result, we repeat the same experiment for different values of ΩR.
In every experiment, we perform the ARP at fixed ΩR, then we quench both the phase
ϕ and ΩR, set by changing the detuning from the virtual state. The quench in ΩR does
not trigger dynamics, as the adiabatic preparation ensures that the spin and the Rabi
vectors are aligned on the Bloch sphere.
By extracting the plasma frequency for each dataset, we measure the scaling of the
plasma frequency on ΩR, shown in Fig. 3.7(c). A fit of ωpl as a function of ΩR in
the trap center allows again to extract κn0/2π = 164(3) Hz, which corroborates the
robustness of the previous measurement.
Given the high precision and reliability of the measure of κn0 with plasma oscillations, in
the next chapter we will use this method to obtain a precise measurement of the density
in the center of the trap.
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Bose-Einstein condensates, when perturbed, can exhibit a rich variety of oscilla-
tions, sustained by superfluidity. In trapped BECs, elementary excitations, like dipole,
quadrupole, breathing or scissor mode, can be excited by introducing time dependent
trapping potentials. On top of this, a different class of excitations can be created in a
BEC. They are known as Faraday waves, as they were first studied by Michael Faraday
in vertically shaken fluids [103]. These modes are nonlinear parametric excitations oc-
curring in a fluid system, visible as spatial and temporal oscillations of the fluid itself. A
coupling between the external driving and the medium is required, which usually occurs
through nonlinear properties of the medium itself.
The study of Faraday waves in superfluid systems, such as BECs, has attracted theo-
retical attention in recent years [104, 105, 106] due to the high degree of tunability of
ultracold atoms setups and the reduced damping compared to their classic counterpart.
In quantum fluids, the first experimental investigation was carried out in an elongated
cigar-shaped BEC of 87Rb [107], by modulating in time the transverse trapping fre-
quency. It was demonstrated theoretically [106] that this protocol allows to modulate
the nonlinear mean-field interaction term, through a modulation of the density. After
this pioneering work, research on the topic has also expanded to superfluid fermionic
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systems of 6Li [108], to generation of Faraday patterns by direct modulation of the in-
teraction term [109], as well as production of matter-wave jets in BECs of Cs atoms
[110, 111]. Interestingly enough, Faraday waves have also been identified with discrete
space-time crystals [112, 113].
In this chapter I will describe the novel generation of Faraday excitations in a two-
component mixture of 23Na atoms in two different miscible spin states, with and with-
out the presence of external coupling between the two states. In the first section I will
introduce the theoretical background we developed, to describe, at a quantum level, the
generation of Faraday waves as excitations of a pair of entangled phonons with opposite
momenta ±k. In the second section, I will discuss the experimental protocol, along with
the method we used to extract relevant information from absorption images. A charac-
terization of the dynamics and the dependence on external parameters is also reported.
In the last section, I will demonstrate how Faraday waves can be used as a spectroscopic
tool to measure dispersion relations, in both density and spin channels. All results
discussed in this chapter are published in Ref.[114].

4.1 Theoretical introduction to Faraday waves

In classical systems, Faraday waves are excited by a parametric resonance of the system,
when it is subject to a periodic driving at some frequency ωM [115], that couples to a
non-linearity of the system. After some time, a pattern with a well defined wavevector
grows in the fluid, whose visibility grows exponentially and oscillates in time. The dy-
namics of the excited mode is well captured by a Mathieu equation. In single component
harmonically trapped BEC, it has already been shown [106, 116] that the GPE can be
reduced to a Mathieu equation. In this case, the excited non-linearity is the mean-field
term ∝ gn, modulated either through a direct modulation of the coupling constant g
[110], or through an indirect modulation of the density [106].
Our derivation follows a different approach, as we derive the equation of motion at the
quantum level [117]. Indeed, the parametric process can be seen as the emission of
pairs of entangled phonons, at frequency ωM/2 and momentum ±k each, in the BEC.
This derivation is more suitable for an analogue gravity [118] interpretation, as the pro-
cess of phonon generation resembles the preheating phase of the early universe [119].
In this context, the external modulation plays the role of the oscillating inflaton field,
whose oscillation produces entangled particles out of the vacuum [120]. An experimental
investigation of this analogy in BECs, focused on the measurement of density-density
correlation [121], is carried out with metastable He∗ in Paris [122].
In a BEC, the pair of phonons originates from the Beliaev decay of a phonon with fre-
quency ωM and momentum k = 0, injected in the condensate by the driving itself. The
emitted phonons, in order to conserve energy and momentum, must follow the dispersion
relation of elementary quasi-particle in a BEC, i.e., they are Bogoliubov modes. In a
spin mixture, the decay can in principle occur in both channels separately, as sketched
in Fig. 4.1. The interaction of the phonons with the bulk will then give rise in time
to the classical pattern with momentum k. We can start the derivation considering in
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Figure 4.1: Illustration of the Beliaev decay in spin mixtures. The modulation of the
trapping potential introduces phonons with zero momentum, which decay to the density
(red) or spin (modes). In a spin mixture, the presence of a finite coherent coupling, ΩR,
introduces a curvature at k ∼ 0, which makes the excitation acquire a mass.

first approximation a 1D homogeneous BEC with total density n and chemical potential
µ = gn. The presence of an external modulation f(t) = αsin(ωM t) can be modelled as
a modulation of the coupling constant in time, g(t) = g[1 + f(t)]. The dynamics of the
excitation, within Bogoliubov theory, is given by the time dependent Hamiltonian

Ĥ(t) =
∑
k ̸=0

[ε(k) + µS(k)f(t)]b̂†
k b̂k +

∑
k>0

µS(k)f(t)(b̂†
k b̂

†
−k + h.c) (4.1)

Here, bk (b†
k) is the annihilation (creation) operator of the quasi-particle of momentum k,

with ε(k) = ℏω(k) its energy, as discussed in Chapter 1, and S(k) is the static structure
factor, related to the probability that a density probe transfers a momentum k to the
system. This Hamiltonian describes the process of generation of pairs of phonons out of
the Bogoliubov vacuum, which, to same extent, resembles also the dynamical Casimir
effect [123, 124].
From the Hamiltonian 4.1, we can compute the Heisenberg equation of motion for the
operators b̂ and b̂†, as:

iℏ∂t

(
b̂k
b̂†

−k

)
=
(

εk(t) µS(k)f(t)
−µS(k)f(t) −εk(t)

)(
b̂k
b̂†

−k

)
(4.2)

Where we have introduced, for convenience, a time dependent energy εk(t) = ε(k) +
µS(k)f(t). We can then perform a Bogoliubov transformation to obtain the time evolu-
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tion of the operators b̂k, b̂†
−k, using the Ansatz:(
b̂k(t)
b̂†

−k(t)

)
=
(
β1(t) β2(t)
β∗

2(t) β∗
1(t)

)(
b̂k(0)
b̂†

−k(0)

)
(4.3)

where the Bogoliubov coefficients β1(t), β2(t) are time-dependent complex amplitudes.
Solving Eq. 4.2 with the previous Ansatz leads to an equation for the Bogoliubov
coefficient βi of the form iℏ∂tβi = εkβi + µS(k)f(t)β∗

3−i, for i = 1, 2. We can then solve
the problem for the real and imaginary part of β introducing β± = β ± β∗. This leads
to the equation:

iℏ∂tβ± = [εk(t) ∓ µS(k)f(t)]β∓ (4.4)

We can now derive again on both side of the previous equation to obtain

ℏ2∂2
t β +

[
ε2
k(t) − (µS(k)f(t))2

]
β = 0 (4.5)

where we have removed the index ±, since the equation of motion is the same for both.
If we introduce the dimensionless variable τ = ωM t/2, we can derive a Mathieu equation
for the excitation amplitude β:

∂2
t β +A(k, ωM )[1 +B(k) sin(2τ)]β = 0 (4.6)

where the parameters A and B are defined as :

A(k, ω) = ω2(k)
(ωM/2)2 B(k) = 2µα S(k)

ℏω(k) (4.7)

The stability chart of the Mathieu equation, which can be found, e.g., in [125], shows a
series of unstable modes, β(t) ∝ eγτξ(τ), where ξ(τ) is an oscillating function with the
same periodicity of the driving. In the case of small driving, B(k) ≪ 1, such instabilities
are narrow in k and centered around A(k, ωM ) = l2 [126], with l integer. The instability
rate associated to each mode is given by [119, 125]:

γ(k, ωM ) = 1
4

√
A2(k, ωM )B2(k) − 4 [A(k, ωM ) − 1]2 (4.8)

The most unstable mode occurs for l = 1, which corresponds, in terms of frequency, to
the excitation of a mode with 2ω(k) = ωM , coherent with the quantum picture we have
developed. In this case, the growth rate simplifies to:

γ(q, ω) = B(q)
4 = αµ

S(q)
2ℏω(q) (4.9)

where q is the wavevector satisfying the resonant condition. Note that if B ∼ 1, the
parametric amplification process results in a broadening of the instability lobe in k,
leading to the population of secondary unstable modes with higher wavevector.
In the previous derivation we have only assumed the Hamiltonian to have the form
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Figure 4.2: Structure factors (a) and values of γ(k) normalized on the modulation am-
plitude α, for µd/h = 3 kHz, µs/h = 145 Hz and ΩR/2π = 80 Hz. In both panels, the
black curve shows the density channel, the grey one the spin channel and the red one
the spin channel (ΩR = 0) with a finite value of the coherent coupling. The grey area
indicates the range in k that can be measured in the experiment, due to the imaging
resolution.

of Eq.4.1. In the case of an unpolarized BEC mixture, density and spin modes are
decoupled (see Chapter 1), and the Hamiltonian can be written as the sum of density
and spin Hamiltonians. A direct consequence is that Eq. 4.6 allows for the generation of
Faraday waves both in the density and spin channels independently, with and without
the coupling. Mathematically, one has to substitute the chemical potential µ → µd,s with
the density (or spin) chemical ones, as defined in Eq. 1.25, along with the appropriate
structure factors, which read:

Sd(k) = ℏk2/2m
ωd(k) , Ss(k,Ω) = ℏk2/2m+ ΩR

ωs(k) (4.10)

where we have considered also the presence of the Rabi frequency ΩR. The structure
factors Sd(s)(k) are plotted in Fig. 4.2, along with the corresponding curve of γ(k),
calculated with the parameters used in the experiment.
In the region of k that can be experimentally measured (grey area in Fig. 4.2) the
structure factors of the density and the spin channel differ. Indeed, the higher value of
the spin healing length compared to the density one shifts Ss(k) towards lower values
of k. Furthermore, the presence of the gap in ωs(k), arising from the coherent coupling,
introduces a gap in the structure factor (see red curve in Fig. 4.2). The scaling of the
gap in Ss(k) is the same of the scaling in ωs(k): lower values of ΩR tend to close the
gap.
It is also interesting to look at the shape of the growth rate γ(k), plotted in Fig. 4.2(b),
normalized to the value of the modulation amplitude α. There exists a region where,
due to the different shapes of the structure factors, and the difference between µd and
µs, the growth rate for spin modes is higher than the density one. For our experimental
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parameters, this occurs around k/2π = 0.12µm−1, if ΩR = 0. For finite values of ΩR,
instead, the crossing point is shifted toward lower values of k, as the value γ(0) decreases
for increasing ΩR, up to ℏΩR = µs, when the growth rate for the spin channel drops
below the density one. Anticipating the results discussed below, in the experiment we
find that this point is a crossover between the excitation of spin modes and density
modes, above which only density modes are excited.

4.1.1 Reduction of GPE to Mathieu equation

In the previous section we have derived a Mathieu equation, starting from a time-
dependent Hamiltonian that describes the excitation of pairs of quasi-particles with
energy ε(k), which we assumed to be Bogoliubov modes. We wish now to derive an ex-
plicit formula for the excitation spectrum resulting from the modulation, as the geometry
of the system might change the shape of the dispersion relation 1.31. We start consider-
ing the coupled Gross-Pitaevskii equations 1.30, with a radial potential V (r) = 1

2mω
2
⊥r

2,
with r =

√
y2 + z2. This approximates the condensate as a cylinder with homogeneous

density along the axial direction x. This is a rough but good approximations in the
center of the cloud, as in our experiment ωx ≪ ω⊥. Defining n↑,↓(r) = |ψ↑,↓(r)|2, the
density of the two components, we can write two hydrodynamic equations [6] for density
and spin perturbations δnd,s = δn↑ ± δn↓ in the density and spin channel. In the more
general form, the hydrodynamic equations for the density and spin channel, read:

∂2
t δnd = (g + g12)

2m ∇(n∇δnd + Pd)

∂2
t δns =

[ 1
2m∇(n∇) − ℏΩ

n

] [(
g − g12 + ℏΩ

n

)
δns + Ps

] (4.11)

where we have set g11 = g22 = g, which is valid for our experimental settings, see Section
2.3. Here, Pd,s are second order correction, arising from the inclusion of the quantum
pressure term, which corresponds to:

Pd,s = − ℏ2

2mn∇
[
n∇

(
δnd,s
n

)]
(4.12)

This term can be neglected if the healing length of the excitation ξ is much smaller than
the transverse size of the condensate, a limit known as the hydrodynamic regime.
Since we are interested in the longitudinal modes, it is useful to find solution of Eq. 4.11
of the form δn = f(z)w(r). For the sake of simplicity, we will discuss separately the
solution for the density and the spin channels.

Density Modes For the configuration of the experiment, ξd ≪ R⊥. This implies that
the term Pd vanishes and thus the hydrodynamic equation takes the simple form:

∂2
t δnd = (g + g12)

2m ∇(n∇δnd) (4.13)
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As long as ξd ≪ R⊥, an appropriate Ansatz for the radial profile of the perturbation is a
uniform one w(r) = θ(R⊥ − r). Under this condition, in the region r ≤ R⊥, the previous
equation reduces to:

∂2
t f = (g + g12)

2m n(r)∂2
xf (4.14)

We can now eliminate the radial dependence in the region r ≤ R⊥, integrating along the
radial and polar coordinates the previous equation. This leads to

∂2
t δnd = (g + g12)

2m nd,eff∂
2
xf (4.15)

where nd,eff = n0/2 is the density in the center of the trap, rescaled by a factor of 2. In
the hydrodynamic formulation, this leads to a decrease in the speed of sound by a factor√

2 [127], whose physical origin can be understood as an averaging of the inhomogeneous
density in the radial direction.

Spin Modes In contrast with density modes, in the experiment spin modes are soft
enough to violate the hydrodynamic regime, as ξs ∼ R⊥. In this case, while it is still
correct to assume the propagation of longitudinal modes, the correct Ansatz for the
radial profile of the excitation is w(r) = n(r). In this case, Eq. 4.11 for the spin modes
can be rewritten as:

n∂2
t f = − n

ℏ2

(
−ℏ2D2

x

2m + (g − g12)n
)
ℏ2D2

x

2m f + (g − g12)
2m ∇

(
n∇n

)
f (4.16)

with D2
x = ∂2

x − 2mΩR/ℏ a modified spatial derivative. As we did for density modes, we
can integrate along the radial and polar coordinates to obtain:

∂2
t f =

(
−ℏ∂2

x

2m + (g − g12)ns,eff
ℏ

+ ΩR

)(
ℏ∂2

x

2m + ΩR

)
f (4.17)

where ns,eff = 2n0/3 is the renormalized density for the spin channel. As for the den-
sity channel, a lower value of the density comes out naturally from the integration along
the radial direction. Notice that, while the physical meaning of the renormalization is
the same of the density modes, the use of a different Ansatz in the choice of w(r) leads
to a different prefactor, which is the same factor we have derived at the end of Chapter 1.

To summarize the results, longitudinal modes propagate in the condensate following
the dispersion relations

ωd(k) =
√

ℏk2

2m

(ℏk2

2m + 2µd
ℏ

)
(4.18)

ωs(k) =
√(ℏk2

2m + ΩR

)(ℏk2

2m + 2µs
ℏ

+ ΩR

)
(4.19)
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where, according to the previous discussion, the density and spin chemical potentials are
given, in terms of the peak density n0, as:

µd = (g + g12)
2

n0
2 , µs = (g − g12)

2
2n0
3 . (4.20)

Notice that, in the case of a homogeneous 1D condensate of density n, the chemical
potentials read µd,s = (g ± g12)n/2, and we recover expressions 1.31 for Bogoliubov
excitations.

4.2 Experimental Realization of Faraday Waves

As in a classical system, Faraday waves in a BEC can be excited by modulating the trap-
ping frequency [107], or equivalently by modulating the scattering length via Feschbach
resonances [109]. As the modulation of the scattering length in our apparatus is pro-
hibited by the strong magnetic fields required [128, 129], we generate Faraday patterns
modulating the frequency of the harmonic potential.

Experimental Protocol The protocol we use to produce Faraday waves is sketched
in Fig. 4.3. We start each experiment by preparing a cloud of 2×106 atoms in the |1,−1⟩
state, with Thomas-Fermi radii R⊥ = 3µm and Rx = 300µm, and negligible thermal
component, obtained by a slow recompression of the trapping frequency after evaporation
[panel (I)]. At the end of the compression ramp, we produce a two-component BEC
with homogeneous zero magnetization [panel (II)] using the ARP procedure described
in Section 3.3, with ΩR/2π = 180 Hz. After the ARP, we either switch off the driving
microwave, or quench it at some desired value [panel (III), black or grey line respectively].
Following the protocol used in Ref. [107], we excite the mixture modulating in time the
intensity of the Cigar laser, applying an electronic sinusoidal modulation, of angular
frequency ωM , to the RF amplitude of the beam AOM, as explained in Section 2.1.8.
Exploiting the dependence of the trapping frequency on the intensity I0 of the laser,
ω2

⊥ ∝ I0 [73], this allows us to introduce a modulation of the trapping frequency as
ω⊥(t) = ω⊥(0)[1 + α sinωM t], see panel (III) of Fig. 4.3.
The modulation amplitude α has a value between [0.38-0.6], depending on the value of
ωM . The need to vary the modulation amplitude results mainly from the lifetime of the
condensate, which limits the number of modulation cycles that can be applied to the
sample. The modulation time tm is varied between 50 and 400 ms.
We gather results for ωM/2π between 40 Hz and 600 Hz. Since the modulation frequency
is always higher than the axial trapping frequency and lower than the radial one, the
radial Thomas Fermi radius will follow adiabatically the compression and decompression
cycle of the trapping potential, preventing the excitation of radial modes. The opposite
is true in the axial direction, where 1D Faraday waves are generated [106, 130]. After
Ncycle modulation cycles, we release the harmonic trap and image independently the
atoms in the two states, along the vertical direction, as explained in Section 2.4. At
last, in order to increase the signal-to-noise ratio, for each set of control parameters
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(I) (II) (III)

Figure 4.3: Protocol used to generate Faraday waves. Top panel shows the frequency of
the trapping potential, middle panel a representation of the dynamics of the condensate,
bottom panels the detuning and intensity of the coupling. (I) Compression of the radial
trap after evaporation, to create a one-component elongated cigar-shaped BEC. (II)
Adiabatic Rapid Passage at constant ω⊥ and finite ΩR, with decreasing detuning to
transfer part of the population from n↓ to n↑. (III) Modulation of ω⊥ squeezes in time
radially the mixture, eventually generating a longitudinal pattern. ΩR is either 0 (black
solid line) or kept at a finite value (grey dashed line).

(namely α, ωM , tM or Ncycle) we collect data from 10 to 30 repetitions. We find that in
the regime of strong driving (identified by B(k) ∼ 1 in the Mathieu equation 4.6), in
which the experiment is performed, this number is sufficient to clean the signal.
We first conduct experiments turning off the coupling at the end of the ARP. However,
the analysis method discussed below applies also to the case of the coupled mixture.



58 CHAPTER 4

Figure 4.4: Density and spin Faraday waves at ΩR = 0 for ωM/2π = 400 Hz (left) and
ωM/2π = 200 Hz (right). (a) Absorption images of the two states. Faraday patterns
appears as longitudinal stripes on the both the components. (b) Density (red) and spin
(blue) 2D Faraday patterns, along with their integrated 1D profile (central panel). The
white areas in the central panels indicate the region of calculation of the PSD.

Results and image analysis Absorption images of the two states are shown in
Fig. 4.4(a), for two different modulation frequencies, namely ωM/2π = 200 Hz and
ωM/2π = 400 Hz, with Ncycle = 80.
The data clearly show that a regular pattern appears in both components. From the
images, we extract the 2D total density n = n↑ + n↓ [Fig. 4.4(b) top, shown in orange]
and the spin s = n↑ − n↓ [Fig. 4.4(b) bottom, shown in blue]. It is straightforward to
observe that, at ωM/2π = 400 Hz the two components are spatially modulated in phase,
and the pattern is visible as a density modulation. Out-of-phase modulation is instead
observed at 200 Hz, where the pattern is visible as a spin modulation. Furthermore, as
expected, no radial excitations are present in both cases. For this reason, the analysis
can be simplified by separately calculating the integrated profile (in the radial direction)
of each component, and then summing or subtracting the two to obtain n and s along
the axial direction only. Results of this procedure are shown in the central panel of
Fig. 4.4(b). As expected, the radial integration preserves the nature of the pattern in
the two direction.
In order to gather quantitative information about the nature of the pattern, we calculate
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Figure 4.5: Analysis of the PSD of integrated 1D profiles, for density (top) and spin
(bottom) modes. Different colors represent different shots with the same parameters.
At ωM/2π = 200 Hz only a peak in spin is visible, with a density one at low k suppressed
by one order of magnitude. At ωM/2π = 400 Hz, a peak is instead visible only in the
density channel. In both cases, the amplitude of the modes changes drastically from shot
to shot. Panels c) and f) capture the distribution of the amplitude of the most excited
k (excluded the signal at k = 0) for all the experimental data discussed in this Chapter,
for density and spin modes respectively.

the Power Spectral Density (PSD) of the 1D profile, as

PSDd,s(k) =
∣∣∣∣∫ (n↑ ± n↓)eikxdx

∣∣∣∣2 (4.21)

which corresponds to the squared modulus of the Fourier Transform. To suppress in-
homogeneous broadening effects in the peaks of the PSD, we focus the analysis in the
300µm-wide central region of the condensate [white region in Fig. 4.4(b)], where the
condensate is approximately flat. Our methodology is justified by the studies conducted
in Ref. [106], where it was shown numerically that a small inhomogeneity in the back-
ground density only gives tiny corrections to the spacing between Faraday peaks. As
the signal is discrete, we calculate the Fast Fourier Transform using a built-in python
function. Example of the PSD are shown in Fig. 4.5 for both density (top panels) and
spin channels (bottom panels).
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To improve the signal to noise ratio, we average PSDs of absorption images taken with
the same control parameters. This is necessary since Faraday waves are characterized
by an exponential growth with a random seed, which depends on the noise present in
the experiment. The noise in the peak visibility, the latter being defined as the ampli-
tude of the most excited mode with respect to the background noise, is clearly shown in
Fig. 4.5, where the histograms represents the peak visibility measured over a wide range
of modulation frequencies.
As a last note, the use of the FFT introduces a discretization in the observable range of
k. In particular, due to the imaging resolution of dx = 1 pixel = 1µm, the resolution in
k-space is fixed to dk/2π = 1/(Ndx) = 0.0033µm−1, where N = 300 is the number of
pixels. Correspondingly, the maximum wavevector observable is kmax/2π = Ndk/2 =
0.49µm−1.

4.2.1 Faraday waves dynamics

Faraday patterns are characterized by a time-oscillation, at frequency ωM , of the visibil-
ity of the most excited mode, with a growing exponential envelope. Both this features
are well characterized, for example, in Ref.[108].
We prove that the excited patterns correspond to Faraday waves by measuring the time
oscillation of the amplitude of the excited mode. We perform this measurement by releas-
ing the trap at different phases of the modulation frequency. This allows us to measure
the excitation during a cycle. Precise information about the phase of the modulation are
gathered by monitoring the intensity of the trapping beam with a photodiode, placed
after the science chamber.

Oscillation of most excited mode Let us focus our attention on the case of ωM/2π =
200 Hz. From the PSD of absorption images we extract the amplitude of the dominant
peak at different times. Results for density and spin modes are shown in color plots of
Fig. 4.6(a) and (b) respectively, with the most excited mode shown with a darker color,
compared with the reference signal measured by the photodiode.
The observed time oscillation of the most excited mode is in agreement with theoretical
prediction for a single component condensate [106, 130], and, remarkably, extends also to
the spin channel. In particular, comparing the phase of the driving (top panel) with the
phase of Faraday waves, we observe that the visibility of the excited mode, in both the
density and spin channels, is maximal when ω⊥(t) is minimum, at t = (2j + 3/2)π/ωM ,
with j ∈ Z. Based on this measurement, data shown in the following sections are ob-
tained releasing the trap at the minimum of the modulated signal, in order to maximize
the visibility of the peaks. It is also interesting to look at the time behaviour of the
whole PSD distribution as a function of k. From the color plot, it is clear that, on top
of the oscillating character of the excited mode, no incoherent excitations are produced:
in particular, the position of the excited mode in wavevector space remains fixed, and
no broadening is observed. It is true, however, that small-amplitude auxiliary modes are
generated in the density channel. The wavevectors of this modes are integer multiples of
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Figure 4.6: Time oscillation of the Faraday waves amplitude for the density [panel a)]
and spin [panel b)]. The top panel shows the modulation amplitude in time, while
the corresponding fringe visibility is shown at the bottom. Data are obtained with
ωM/2π = 200 Hz.

the primary excitations, and are generated from the strong pumping applied to observe
the signal, as predicted by the Mathieu equations.

Radial Dynamics It is also interesting to extract the local dynamics of the transverse
Thomas-Fermi radius R⊥, in particular for the spin channel, where the two components
could in principle oscillate out of phase in the radial direction. We measure it fitting
a 1D Thomas-Fermi profile for each axial position x of 2D absorption images of the
previous dataset. Results are reported in Fig. 4.7, for n↓ [panel b)] and n↑ [panel c)], and
compared with the reference signal. We observe that R⊥ in both components oscillates
at the modulation frequency. The oscillation is homogeneous in space (as evident from
the color scale) and, remarkably, in phase between the two components. To verify this,
we first perform a sinusoidal fit for each position x. From these, we extract the phase
shift of R⊥(t) with respect to the modulation, plotted as a histogram in panel d). We
observe that the distribution, for both n↑ and n↓, is skewed and centered around a value
of ϕ = π/16, indicating a delay with respect to the driving. A measurement of the
relative phase shift of the components, δϕ = ϕ↑ − ϕ↓, confirms instead that the relative
phase shift follows a Gaussian distribution with zero average (panel e)). Points on the
tails of the distribution are further away from the center of the condensate, where density
variations starts to become appreciable.
This analysis, in first place, confirms that for frequencies ωM ≪ ω⊥ the radial direction
follows adiabatically the perturbation, as stated before. More interestingly, it suggests
that spin Faraday waves originate from perturbation of the density channel, as the two
components always oscillate radially in phase.
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Figure 4.7: Dynamics of R⊥(t). Panel a) shows the modulation signal, as a reference
for R⊥(x) of component n↓, n↑ shown in panel b), c) respectively. Colors indicate axial
position. Panel d) represents the phase ϕ distribution of the two components with respect
to the perturbation, whereas panel e) shows the distribution of relative phase ϕ↑ − ϕ↓.

4.2.2 Dependence on the initial magnetization

In a two-component spin mixture, the spin and density channels are independent only in
the case of equal densities n↑ = n↓ = n/2. A small imbalance between the two, instead,
leads to a hybridization of the two modes [41]. To investigate this effect, we perform
experiments varying the imbalance between the two populations, tuned changing the
final detuning of the ARP, while fixing the modulation frequency ωM/2π = 200 Hz, the
amplitude α = 0.6, and the number of modulation cycles Ncycle = 60. For each value
of the detuning, we extract the amplitude of the dominant mode, which is stable at
k = 0.06µm−1, as a function of the imbalance. The latter is expressed in terms of the
normalized magnetization Z = n↑−n↓

n↑+n↓
. Results are shown in Fig. 4.8.

Starting from equal populations, the visibility increases, eventually reaching a maximum
value at Z = 0.07. As expected, the hybridization between the two channels introduces
a coupling, which makes spin excitations more sensitive to density perturbations. At
increasing value of Z, however, the visibility decreases, eventually reaching zero for a
fully polarized mixture, where the spin channel disappears.
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Figure 4.8: Amplitude of the dominant spin mode at k = 0.06µm−1 for different pop-
ulation imbalances. The maximum amplitude of the spin mode is at small but finite
imbalance, due to the increased coupling to the density channel where the modulation
happens. In this dataset, the experimental parameters are ωM/2π = 200 Hz, modulation
time 300 ms, α = 0.6.

4.3 Measurement of dispersion relations

We already theoretically discussed how modulation frequency and wavevector of the
excited pattern are fixed by the dispersion relations of Bogoliubov modes. Fig. 4.6
already provides an experimental proof of the different response of the two channels for
a given modulation frequency. This suggests the possibility of experimentally measuring
both dispersion relations. In a single component condensate, this measurement was
performed in [9], using a Bragg spectroscopy technique, i.e., by exciting a wavevector k
and measuring the frequency ω of the excitation. In the same spirit, we can exploit the
dependence of k on the modulation frequency to attempt the same experiment, exciting
ω instead of k. In comparison with the measurement of two distinct sound velocities in a
two component 23Na condensate, performed in [37], our methodology allows to directly
map the dispersion relation, even outside the sonic regime.

4.3.1 Miscible Mixture without coupling

We apply the protocol discussed in the previous sections to a balanced mixture (Z = 0)
scanning the modulation frequency ωM . We first conduct this measurement on the mis-
cible mixture without the coupling (ΩR = 0). To obtain a good visibility of the fringes,
we modified the driving amplitude: we use α = 0.6, 0.48, 0.38 for frequencies ωM/2π be-
tween 40 and 90 Hz, between 100 and 300 Hz, and between 310 and 600 Hz, respectively.
The results are shown as colorplots in Fig. 4.9, for the density channel [panel (a)] and the
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Figure 4.9: PSD of density (a) and spin (b) excitations as a function of the modulation
frequency. The thick lines indicate the parameter-free theoretical predictions (Equations
4.19) for the dispersion relations (dark) and sub-harmonics (light), with ΩR = 0 and no
fitting parameters. The line thickness corresponds to one standard deviation confidence
interval originating from the uncertainty in the atomic density. The dashed line in panel
(a) indicates the position of the spin branch, where a spurious signal is present due to
some crosstalk between spin and density modes.

spin channel [panel (b)]. The dominant wavevectors at different modulation frequencies
follow extremely well the dispersion relation of the Bogoliubov density and spin modes
of Eq. 4.19, shown as solid black lines, computed without free parameters. In the eval-
uation of the dispersion relations, the only non-trivial parameter is the peak density n0.
We calibrate it by measuring the plasma oscillations frequency in the coherently-coupled
mixture, with the protocol described in Chapter 3. This measurement leads to an esti-
mate of the density and spin chemical potentials of 3 kHz and 145 Hz respectively.
From the data, we observe that the position of the most excited mode of density
Faraday waves grow linearly with the modulation frequency, and starts being visible
around ωM/2π ∼ 200 Hz. The linear growth results from the scan of frequencies con-
tained in the sonic region of the dispersion relations up to ωM ≈ µd/ℏ, or equivalently,
k/2π ≈ 1/ξd ≈ 0.2µm−1. On the other hand, spin Faraday waves exhibit non-linear
behaviour, typical of the dispersion relations for wavelength shorter than the healing
length. For our experimental parameters, this occurs at k ≈ 2π × 0.05µm−1, where
ℏωM ≈ µs.
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A crossover between the two channels occurs around ℏωM ≈ 2µs, where spin Faraday
waves disappear, and only the density ones are excited. Interestingly enough, a compar-
ison with the theoretical evaluation of the growth rate γ(k) [Fig. 4.2(b)], shows that the
crossover between the two modes occurs when the growth rate of spin modes becomes
lower than the density one.
Additional interesting features arise from density channel data. First, one can observe in
the PSD the existence of higher harmonics of the most excited mode, for example around
ωM/2π = 400 Hz. These signals, which lie on subharmonics of the dispersion relation
(grey lines), are typical of Faraday waves, and come out naturally from the solution of
the Mathieu equation, as excitations of instabilities with l > 1.
At last, we observe that there exists a residual signature of spin modes in the density
channel, and viceversa. This originates from a weak coupling between the density and
spin channels due to a possible imbalance in the magnetization, as well as from some
crosstalk arising from the imaging procedure.

4.3.2 Coherently-Coupled miscible mixture

We now perform the same experiment in the presence of coherent coupling (ΩR ̸= 0),
for which the spin dispersion relation is gapped at k = 0. As the system now possesses
an additional tuning parameter, given by the strength of the Rabi coupling, we gather
results for two different values of ΩR/2π, specifically 30 Hz and 80 Hz.
Compared to the uncoupled case, we observed that the growth rate of spin Faraday
waves becomes much smaller when ωM ∼ 2ωp. As a consequence, we had to fine tune
the driving parameters, in particular the modulation amplitude α, starting from 0.38 at
ωM = 2ωpl up to 0.66 for ωM > 2ωpl.
Interestingly enough, in contrast with the previous result, this time we had to increase
the modulation amplitude to observe a signal in the spin channel when driving above
the plasma frequency, up to the point where spin modes are impossible to be excited
within the range of parameters available in the experiment.
Experimental results are plotted in Fig. 4.10 for both ΩR = 30 Hz [panel (a)] and 80 Hz
[panel(b)], with the corresponding density modes shown below each panel. Plasma
frequencies are ωpl/2π = 120 Hz and ωpl/2π = 175 Hz.
From the data presented in Fig. 4.10, it is clear that our protocol is able to excite
Faraday waves even in the presence of a finite coupling strength. The observed signals
nicely follow the theoretical predictions, with spin excitations present only above ωM =
2ωpl. The observation of spin waves only above 2ωpl clearly shows the tunability of
the gap with the coupling strength ΩR. In addition, in the case of ΩR/2π = 30 Hz, we
measured Faraday waves with a well-defined wavevector, around, k ≈ 2π×0.04µm−1. At
ΩR/2π = 80 Hz the excitation spectrum is broadened in Fourier space, probably due to
the fact that we increased the modulation time, introducing further nonlinear dynamics
or turbulence in the system [131, 132, 133]. Nevertheless, increasing the modulation time
allows to efficiently sample the sonic dispersion relation in the density channel, which
remains clearly unaffected by the coupling.
The experimental generation of spin excitations with a gapped mode is appealing for
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Figure 4.10: PSD of the spin excitations in the presence of a coherent coupling. In
(a), ωpl/2π = 120 Hz, ΩR/2π = 33 Hz, µs/ℏ = 225 Hz; in (b), ωpl/2π = 175 Hz,
ΩR/2π = 80 Hz, µs/ℏ = 150 Hz. The thick lines indicate the theoretical predictions
for the dispersion relations (dark) and subharmonics (light). The line thickness corre-
sponds to one standard deviation confidence interval originating from the uncertainty
in the atomic density. Panels (c) and (d) show the corresponding PSD of the density
channel (unaffected by the coupling). The dashed line in panel (b) indicates the position
of the density branch, where a spurious signal is present due to the crosstalk between
spin and density modes.

studies in the context of analogue gravity, as the excited gapped mode acquires a massive
character. This is evident if one writes the spin dispersion relation 4.19 for small k as:

ℏωs(k) ∼ ℏωpl + ℏ2k2

2M ; M = 2mωplΩR

ω2
pl + Ω2

R

(4.22)

where M is a tunable effective mass of the excitation. For the data shown in panels (a)
and (b), the effective mass is approximately 25% and 75% of the atomic mass respectively.
The demonstration of the creation of massive many-body excitations might extend the
current research on two-component atomic BECs as analogue systems [134, 135, 136] to
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the investigation of massive fields interacting with the gravitational background [118],
and to back-reaction processes of the field with the background space-time [137].
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Chapter 5
Quantum Phase Transitions with
Coherently-Coupled BECs
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Phase transitions are ubiquitous in nature, and can occur in ordinary systems, like
the boiling of water or the melting of ice, or in more exotic scenarios, like the low temper-
ature transition of a bosonic gas in the condensed state or the transition of a metal to the
superconducting regime. In classical systems, phase transitions occur upon a variation
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of an external parameter, usually temperature, and are characterized by a qualitative
change in system properties, from a disordered (high temperature) to an ordered (low
temperature) state, upon crossing a critical point. This phenomenon is usually captured
by the behaviour of an order parameter, which is non-zero only in the ordered state. For
instance, in the ferromagnetic transition, well described by the Ising Model [138], the
order parameter is the total magnetization.
A modern classification of phase transitions, similar to the original proposed by Ehren-
fest [139], distinguishes between first-order phase transitions, where the order parameter
jumps at the transition, from second-order transitions, where the order parameter van-
ishes continuously at the transition point, but its first derivative is discontinuous. In
the latter case, even if the order parameter averages to zero in the disordered phase,
its (thermal) fluctuations do not vanish, and their correlation length in space and time
exhibits a power law divergence as a function of the distance from the transition point.
These divergences imply that, at the critical point, fluctuations occur at all length and
time scales, leading to a highly correlated state of the system, which is usually said to
be scale-invariant. Accordingly, all observable quantities have a power law scaling, fully
characterized in terms of a set of critical exponents [140, 141]. The divergence of the
correlation length also implies that, at the transition point, the system averages its dy-
namics over large volumes, rendering microscopic details of the Hamiltonian irrelevant.
As a consequence, critical exponents identify a universality class for the phase transition,
which depends only on the system dimensions and symmetries.
A different class of phase transitions occurs in nature, when temperature is sufficiently
close to zero for quantum effects to dominate. In this case, the critical point is ap-
proached upon the variation of a control parameter different from temperature. The
transition is ruled by quantum fluctuations, and is known in the literature as a quantum
phase transition (QPT) [142, 143]. In the quantum version of the Ising model, for exam-
ple, temperature is substituted by the competition of interactions between neighbouring
spins with a transverse magnetic field.
The role of interactions is peculiar in QPTs. In solid state system, an example is the
Mott transition [144], while in spinor Bose-Einstein Condensate [21] interactions are
critical in determining the structure of the spinor order parameter, and the transition
from a disordered state to magnetic ordering [145].
In recent years, quantum phase transitions have been vastly investigated with ultra-
cold atomic gases. Examples are the superfluid-to-Mott-insulator phase transition [146],
magnetic phases in spin-orbit coupled spinor gases [147], and parity-symmetry breaking
phase transitions [148, 149].
In coherently-coupled spin mixtures, it was theoretically anticipated [40] the existence
of a QPT from a disordered (paramagnetic) state to a Z2-symmetry-breaking ordered
(ferromagnetic) state. The transition, within mean-field theory, is fully driven by inter-
actions, and belongs to the quantum Ising universality class. The low-energy magnetic
fluctuations near the critical point are well described by a ϕ4 theory, based on the
Ginzburg-Landau functional for second-order phase transitions [150].
Some properties of this QPT, such as the existence of a classical bifurcation for the
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spin order parameter [42], and hysteresis phenomena for a single component BEC in a
tunable double-well potential [148], have been already investigated with ultracold gases.
However, the lack of an extended dimension inhibited the possibility of describing the
observed phenomena in terms of a quantum phase transition, as it is impossible to define
a typical correlation length. Critical exponents were instead measured with a spatially
extended mixture [94], following the evolution of the system after a quench of the order
parameter.
In this Chapter I will describe the experimental characterization of the static phase
diagram of the ferromagnetic phase transition, along with the possibility of generating
magnetic domain walls, taking advantage of the spatial extension of the sample. In the
first section, I will discuss in details the ferromagnetic phase diagram, derived in a semi-
classical approximation, and show how it exactly maps on an immiscible spin mixture
coupled with a coherent radiation. In the second section I will describe the protocol we
used to experimental measure the ground state phase diagram, along with the image
analysis method. In the third section I will discuss in details our procedure to extract
quantitative information to characterize the phase transition, such as the hysteresis cy-
cle and the divergence of magnetic susceptibility and related fluctuations. In the fourth
section I will show how our platform gives the possibility to perform an experimental
measurement of the fluctuation-dissipation theorem. In the last section, I will demon-
strate how our system supports the generation and precise control of magnetic domain
walls. All results discussed in this chapter are published in Ref.[93].

5.1 Paramagnetic to Ferromagnetic Phase Transition

In Chapter 1 we already discussed both the ground state properties and the dynamics
of the internal degrees of freedom of coherently-coupled spin mixtures. In particular,
we have seen how we can construct a spin vector S⃗, that evolves on the Bloch sphere
under the effect of the coupling, with amplitude ΩR and detuning ∆. The dynamic of
such a system is very similar to the dynamics of a magnetic material, whose spin dipole
µ⃗ couples to an external field B⃗ = (B1, B2, B3). Let us first recall the semiclassical
continuous description, based on a mean field theory, of a ferromagnetic material.

5.1.1 Magnetic Model

We consider a generic magnetic material, with a local spin vector S⃗ = (S1, S2, S3),
subject to internal spin-spin interactions, parameterized by a matrix ¯̄K, that keeps into
account crystalline anisotropies. Interactions are of outstanding importance for magnetic
properties, as they are responsible for the macroscopic magnetization. An additional
external field B⃗ can be added, whose effect is to give a preferential direction for spin
alignment. At finite temperature, a discrete model of this system is the notorious Ising
model [138], which predicts a phase transition from a paramagnetic to a ferromagnetic
state at a critical temperature, which depends on the interaction, Tc ∝ ¯̄K. At zero
temperature, this model has to be replaced with its quantum version, called Quantum
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Ising model, or Transverse Field Ising model [138, 143] due to the presence of a transverse,
field perpendicular to the alignment direction of the spins. A continuous version of this
model can be derived by integration of the Ising Hamiltonian [151], leading to the energy
functional:

E(S⃗) ∝ −
∫
B⃗ · S⃗ − 1

2 S⃗ · ¯̄K · S⃗ − 1
2 |∇S⃗|2dV (5.1)

Here, the first term is the well known dipole interaction µ⃗ · B⃗, for which each spin must
be aligned to the external field to minimize the energy. The second term contains the
energy arising from spin-spin interactions, and it sets the preferential directions for spin
self-alignment, called easy axes, if B = 0. The last term adds an energy cost in the
formation of magnetic domains, and arises from exchange energy between neighbouring
spins. At a quantum level, it corresponds to the Heisenberg energy functional [151].
The dynamics of the local spin, in the absence of damping, is given by a dissipationless
Landau-Lifshitz equation [61]:

∂tS⃗ = −H⃗eff × S⃗; H⃗eff = −∂E

∂S⃗
(5.2)

To better connect this model with the more familiar 1D spin chain, and for later analogy
with our atomic platform, we considered the ferromagnet to be translationally invariant,
∇S⃗ = 0, with spin density n = |S⃗| and uniaxial magnetic anisotropy such that the only
non-zero element is K33 = α < 0. We also consider the magnetic field to have the shape
B⃗ = (B1, 0, B3), with B3 called longitudinal field and B1 the transverse field, in analogy
with the Ising model. With this assumptions, the effective field reads:

Heff = (B1, 0, B3 − αS3) (5.3)

while the energy functional reduces to:

E(Z, ϕ) ∝ −B3Z − |α|n
2 Z2 −B1

√
1 − Z2 cosϕ, (5.4)

where the Z = S3/n is the relative magnetization and ϕ = arctan (S2/S1) is the angle
of the spin on the transverse plane.
Useful information come from the calculation of the ground state (ZGS , ϕGS). This can
be extracted by minimizing the energy functional Eq. 5.4 with respect to (Z, ϕ). One
can notice that, assuming B1 > 0, the only ϕ-dependent term is the last element of Eq.
5.4, which is minimized by setting ϕ = 0. Thus, the calculation reduces to the evaluation
of ZGS as a function of the parameters B3/B1 and |α|n/B1.
We numerically solve Eq. 5.4 to reconstruct the phase diagram of a magnetic material,
shown in the central panel of Fig. 5.1. Examples of 8 different energy profiles, as a
function of Z, for 8 different values of B3/B1 and |α|n/B1 are shown in the side panels.
Several features can be extracted from both the phase diagram and the energy profiles.
In the absence of a longitudinal field, B3 = 0, the physics is dominated by the competi-
tion between the transverse field, which tends to align the spins along direction 1, and
magnetic interactions |α|n. One can identify a phase transition, shown in the bottom
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Figure 5.1: Phase diagram of the magnetic model. The relative magnetization Z of the
system’s stationary states is shown as a function of the non-linearity and of the longitu-
dinal magnetic field strength, both in units of the transverse field. The system can be
paramagnetic (|α|n < B1), ferromagnetic (|α|n > B1 ≫ B3), or saturated ferromagnetic
(|α|n > B1 and B3 ≫ B1). Panels (A)–(H) show the dependence of the energy (Eq. 5.4)
on the relative magnetization Z in several points of the phase diagram. Three gray side
panels show the value of Z at the energy minimum, as a function of |α|n/B1 for B3 = 0
(bottom) and as a function of B3/B1 for |α|n/B1 = 0 (left) or |α|n/B1 = 3 (right).
Numbered dashed yellow lines mark four different single-shot experimental realizations
in the atomic system as reported in Fig. 5.2. See Section 5.1.2 and Table 5.1 for mapping
from magnetic to atomic system.

panel of Fig. 5.1, as the energy landscape goes from a single minimum with Z = 0, when
|α|n/B1 < 1, to a symmetric double minimum with Z ̸= 0, for |α|n/B1 > 1, associated
with a spontaneously broken Z2 symmetry, Z ↔ −Z. The emergence of two ground
states corresponds to an ordered state, dominated by ferromagnetic interactions, where
all spins tend to align along the easy axis.
At finite B3, the ground state is shifted towards positive or negative values of Z. For
|α|n/B1 < 1, Z smoothly follows a variation of the longitudinal field, as the energy is
minimized when the spins are aligned with the external field. This behaviour, shown
on the right panel of Fig. 5.1, is typical of paramagnetic materials, so we identify the
left side of the phase diagram with a paramagnetic phase. For α|n|/B1 > 1, a finite
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longitudinal field introduces a preferential direction for spin alignment, as it breaks the
degeneracy between the two ground states at ±Z, see panels E - G . Depending on the
sign of B3, one of the two becomes a ground state, while the other becomes a metastable
state. The appearance of a metastable state implies that a system, originally prepared
with the all spins aligned to the longitudinal field, will maintain its magnetization, even
when the longitudinal field is anti-parallel to the spins. Such a behaviour is typical of
a ferromagnetic phase, and is at the origin of the hysteresis cycle, of the magnetization
as a function of an applied external field. The latter is shown in the left grey panel, as
well as in the central dashed region of the main panel, where is evident that the size of
the hysteresis cycle in B3/B1 monotonically grows moving away from the critical point
|α|n/B1 = 1.
At last, if B3 is strong enough, one of the two metastable states disappears (panels D
and H ), corresponding to a saturated ferromagnetic phase.
We will now discuss how this model can be mapped one-to-one to our superfluid platform.

5.1.2 Atomic System

The magnetic model can be exactly mapped on a coherently-coupled superfluid mixture,
where the spin vector arises from the internal degree of freedom, and evolves on the Bloch
sphere. Recalling the notation used in Chapter 1, we identify the component S3 = n↑−n↓
with the population imbalance. The components S1 and S2 are instead identified with
the intercomponent coherences, i.e., with the relative phase with respect to the coupling
vector ΩR. The latter plays instead the role of the transverse field, being oriented along
direction 1. A detuning of the coupling with frequency ω from atomic resonance, defined
as δB = ω − ω0, adds a component along direction 3 to ΩR, hence it can be identified
with the longitudinal field B3. The frequency ω0 is the frequency difference between
the two internal hyperfine states, including the Zeeman linear shift. At last, spin-spin
interaction are mediated by the difference between intracomponent and intercomponent
mean field energy δgn, as defined in Eq. 1.24, which represents the anisotropic magnetic
interaction, uniaxial along direction 3.
In the case of a highly elongated spin mixture, as the one used in our experiment, it is
also important to take into account the spatial dimension. If spin dynamics is strictly
1D, the radial direction can be integrated out, leading to the substitution δgn3D(x, r⊥)
with κn(x), that takes into account the transverse inhomogeneity (see Eq. 1.46). The
axial inhomogeneity cannot be averaged, however it is always possible to work in the
Local Density Approximation (LDA), n = n(x), if density variations are smooth.
As we discussed in details in Chapter 1, the magnetization Z = S3/n, n being the total
density, undergoes a bifurcation at ΩR = κn for ϕ = 0, π, which we can now identify
with a phase transition. For the bifurcation to occur in the ground state, ϕ = 0, it is
necessary that κ < 0, i.e., that the mixture is immiscibile. In the ferromagnetic phase,
where Z ̸= 0, the magnetization grows like S3 ∼ [−(κn+ ΩR)]β, with the typical mean-
field critical exponent β = 1/2 [40].
We also recall that an imbalance between the two intracomponent coupling constants



5.1. PARAMAGNETIC TO FERROMAGNETIC PHASE TRANSITION 75

introduces an additional mean-field correction, as for equal densities the two chemical
potentials are different. The energy of the bare atomic states coupled by the radiation
will be shifted accordingly by different amounts, and the net energy difference n∆ ∝
n(g↓↓ −g↑↑) has to be compensated for the coupling to be resonant. One can then define
an effective detuning as δeff = δB + n∆.
The one-to-one mapping between magnetic and atomic quantities is shown in Table 5.1.

Physical Quantity Magnetic System Atomic System
Anisotropic Interactions αn κn
Axial field B3 δeff = δB + n∆
Transverse field B1 ΩR

Spin States |↑⟩ |2,−2⟩
|↓⟩ |1,−1⟩

Magnetization S(|S| = n)
Relative Magnetization Z = S3/n

Table 5.1: Mapping between magnetic and atomic systems.

Recalling the definition we gave in Chapter.1, the effective magnetic field for the atomic
system is given by

Heff
(
S⃗
)

= (ΩR, 0, δB + n∆ − κnZ) + ℏ2

2mn∇2S⃗ (5.5)

which is very similar to Eq. 5.3, including also the contribution of quantum mechanical
currents in the effective field, contained in the term ∝ ∇2S⃗. This last term, which
we neglect at the moment, arises from the superfluid character, in particular from the
quantum pressure term of the GPE, and describes the energy that the system has to
pay to sustain the formation of a domain wall, or more in general, a spin interface [58].
A straightforward substitution of both the effective field and the new spin variables in
the energy functional 5.1 leads to the expression

E(Z, ϕ) ∝ −δeffZ + κn

2 Z2 − ΩR

√
1 − Z2 cosϕ, (5.6)

which describes the energy density of a uniform spin mixture with density n, or the local
energy of an inhomogeneous spin mixture in the LDA. Stationary solutions are found
minimizing Eq. 5.6 with respect to Z and ϕ, leading to{

(−δeff + κnZ)
√

1 − Z2 + ΩRZ = 0
sinϕ = 0

(5.7)

from where solution for ZGS can be found numerically. We will now use this formulation
to derive analytical expressions for characteristic magnetic quantities, such as the width
of the hysteresis region and the magnetic susceptibility.
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Magnetic Hysteresis It is useful, for later purposes, to find a mathematical definition
for the width of the hysteresis region. We can start the derivation by calculating the
value of δeff in the stationary case. For practical calculations, as Eq. 5.7 contains terms
in Z and

√
1 − Z2, it is useful to make use of the parametrization of Z on the Bloch

sphere, defining Z = cos θ. With this substitution, the expression for δeff from Eq. 5.7
reads

δeff
ΩR

=
( |κ|n

ΩR
− 1

sin θ

)
cos θ (5.8)

In the FM phase, the edge of the hysteresis region δhys,± corresponds to an abrupt
jump in Z, thus ∂Z/∂δeff |δeff=δhys,± → ∞. It is more convenient, however, to evaluate
∂δeff/∂Z → 0, as the latter derivative has a simple analytical expression:

1
ΩR

∂δeff
∂Z

= 1
ΩR

∂δeff
∂ cos θ = |κ|n

ΩR
− 1

sin3 θ
= 0 =⇒ sin θ =

( ΩR

|κ|n

)1/3
(5.9)

Inserting this solution in Eq. 5.8 one finds

δhys
ΩR

= δhys,+ − δhys,−
ΩR

= 2
[( |κ|n

ΩR

)2/3
− 1

]3/2

(5.10)

which gives the size of the hysteresis region in the FM phase.

Magnetic Susceptibility In a magnetic system, the susceptibility is defined as the
variation of the material magnetization to a small change in the external field, i.e.

χ =
∣∣∣∣ ∂Z∂δeff

∣∣∣∣
δeff=0

(5.11)

As before, it is easier to seek an expression for 1/χ, where we can use the previously
calculated formulas. In this case, one must distinguish between the PM and the FM
phases. In the former, at δeff = 0 we expect Z = 0, or equivalently cos θ = 0, as only
one minimum is present. As a result we get

1
χPM

=
∣∣∣∣∂δeff
∂Z

∣∣∣∣
sin θ=1

= |κ|n
( ΩR

|κ|n
− 1

)
(5.12)

In the FM phase, the magnetization is instead finite, and takes the value (see e.g. Chap-

ter 1) Z = ±
√

1 −
(

ΩR
|κ|n

)2
, or equivalently, sin θ = ΩR

|κ|n . The susceptibility thus reads:

1
χFM

=
∣∣∣∣∂δeff
∂Z

∣∣∣∣
sin θ= ΩR

|κ|n

= |κ|n
[( |κ|n

ΩR

)2
− 1

]
(5.13)

Combining the two expressions, we get the final result

1
χ

=
∣∣∣∣∂δeff
∂Z

∣∣∣∣
δeff=0

= |κ|n


ΩR

|κ|n
− 1 |κ|n < ΩR,(

|κ|n
ΩR

)2

− 1 |κ|n > ΩR.

(5.14)
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5.2 Space-resolved measurement of magnetic phase dia-
gram

The dependence of the magnetic phases on the atomic density n(x) suggests the possi-
bility of measuring, in principle in a single-shot experiment, different magnetic phases
within the same elongated condensate. In particular, as for harmonic trapping the den-
sity is always higher in the center, for sufficiently low strength of the Rabi frequency
there will always be a central ferromagnetic region, with paramagnetic regions on the
tails, where the density is lower and eventually reaches zero.
Furthermore, in contrast with previous experiments on spatially extended coherently-
coupled mixtures [48, 94], the magnetic field stability at the few µG level allows to
investigate static properties of the system across the QPT. Indeed, the combination of
a very high spin interaction energy µS ∼ |κ|n0 and of a very low Zeeman shift induced
by magnetic fluctuations, δEZeeman/ℏ ≪ |κ|n0 (see discussion in Sections 2.3 and 2.5.2),
allows us to finely tune the relevant parameter |κ|n/ΩR around the critical point.

5.2.1 Sample Preparation

In our experiments we create an immiscible superfluid mixture of states |1,−1⟩ = |↓⟩
and |2,−2⟩ = |↑⟩. Condensation is achieved following the protocol described in Section
2.2.4, producing a sample with typical atom number and peak density of N0 = 1 × 106

and n = 7 × 1014 atoms/cm3, held in the optical trap provided by the Cigar beam,
with trapping frequencies ωx/2π = 20 Hz and ω⊥ = 2 kHz. The resulting geometry is
a cigar-shaped condensate, with Thomas-Fermi radii Rx = 200µm and R⊥ = 2µm. In
this configuration, due to the value of the coupling constants and atomic densities, the
mixture has a peak spin chemical potential κn0/2π ∼ −1100 Hz, and possesses the Z2
symmetry-breaking term n∆/2π ∼ −1100 Hz1.
The compression to a stronger trapping frequency, as compared to the samples studied
in Chapters 3 and 4, is required to have 1D spin dynamics [96, 97]. This procedure,
however, introduces a relevant thermal fraction in our samples. We measure, on a single
component BEC, from Camera Horizontal 1 (see Section 2.4) a condensed fraction of
N0/N = 35%, with an associated temperature of T ∼ 1µK, measured with time of flight
thermometry [152]. Since a non neglectable thermal fraction has a relevant impact on
the measurements, we will remove it with a specific data analysis procedure. A detailed
explanation on this procedure will be given in Section 5.2.3.

5.2.2 Experimental Protocol

To characterize the magnetic phase diagram presented in the previous section, it is im-
portant to guarantee that the system remains locally in its ground state. To ensure
this, we adopt the Adiabatic Rapid Passage protocol, characterized in Chapter 3. As
we did previously, we control the value of δB acting on the magnetic field. Since the

1This values have been first estimated with the spectroscopic protocol described in Chapter 3, and
later confirmed with a more sophisticated measurement, explained in Section 5.3.1
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Figure 5.2: (a-b) Absorption images of the atoms in the states |↑⟩ and |↓⟩ (only the left
half of the system is shown) for the parameters marked by the yellow lines in Fig. 5.1,
for forward (a) and backward (b) ramps of δB. The solid arrows on the side of the
plot indicate the direction of the ramp on δB. The vertical black dashed line marks the
position where |κ|n = ΩR and the system switches from PM to FM.

hyperfine state |1,−1⟩ is less energetic than the state |2,−2⟩ (see Fig. 2.4), to decrease
the detuning, at fixed frequency ω0, we increase the value of the bias field.
We perform a first set of experiments starting with all the atoms in state |↓⟩, to which
we apply the coherent coupling, with a strength ΩR and an initial detuning of −3.5 kHz,
which we linearly ramp to a final positive value with a speed of 100 Hz/ms (forward
ramp). The choice of the ramp speed is a compromise between adiabaticity, which re-
quires a very slow ramp, and decoherence induced by collisions [45]. We will characterize
more in depth the effect of the ramp speed in Section 5.3.3.
In a second set of similar experiments, we transfer all the atoms with a fast π-pulse
(ΩR/2π ∼ 25 kHz) to the state |↑⟩, and apply a linear ramp to decrease the detuning,
starting from 4 kHz (backward ramp). In this case we have to use a higher value of initial
detuning to compensate for the density-dependent frequency shift n0∆. Usual ramp
times ranges between 30 ms and 55 ms for forward ramps, and between 20 ms and 45 ms
for backward ones. Both are compatible with the expected coherence times of 100 ms,
estimated from collision properties and condensate densities [153, 45]. For all values of
ΩR and δB, we get at least 3 shots, to reduce errors in δB due to fluctuations in the
magnetic bias field.



5.2. SPACE-RESOLVED MEASUREMENT OF MAGNETIC PHASE DIAGRAM 79

1

0

1

Z

-2 -1 0

x/Rx

 (b)

-2 -1 0

x/Rx

0

5

B
/

R

 (a)

Figure 5.3: (a-b) Bare experimental data of the axial magnetization as a function of
δB and position x for forward (a) and backward (b) ramps at fixed ΩR/2π = 400 Hz.
The yellow dashed lines mark experimental shots shown in panels (a-b), corresponding
to number 1⃝- 4⃝ as in Fig. 5.1 (δB,1/ΩR = −0.8, δB,2/ΩR = +1.2, δB,3/ΩR = +3.2,
δB,4/ΩR = +4.2). Dot-dashed black lines in panels mark the local resonance condition
δB = −n(x)∆.

In both the experiments, we stop at different detunings δB and gather absorption im-
ages of the two states with Cam. Vertical 1 (see Section 2.4). Absorption images of
the clouds, at four different values of δB, with ΩR/2π = 400 Hz, are shown in Fig. 5.2,
for the forward [panel a)] and backward [panel b)] ramps. Due to the symmetry of the
cloud, we only show the left side of the cloud, so that density, and thus |κ|n, grows on
the positive x-axis.
As one can assert from absorption images, transverse spin dynamics is suppressed, hence
we can extract the 1D magnetization Z(x) by integrating along the y axes. The inte-
grated magnetization is shown in the color plot of Fig. 5.3 as a function of position x and
detuning δB, where it is evident that the response of the system to the forward [panel
a)] or backward [panel b)] ARP ramps is different, especially in the center of the cloud.
We first observe that the thermal tails of the cloud, x < −Rx, rotates homogeneously
when δB = 0, in both the backward and forward ramp, since mean-field effects are ne-
glectable.
The appearance of a parabolic dome, starting at x = −Rx, is instead a consequence of
the density dependent detuning n(x)∆, which makes the position where Z changes sign
space dependent. In a fully paramagnetic cloud, where |κ|n(x) < ΩR ∀x, the Z = 0
line follows a parabola in the (x, δB) plane, represented by the dashed black line in the
figure, and is given by the locus of points satisfying δeff = 0 (local resonance).
Despite this effect, we observe that, at fixed x the amplitude of the dome in δB, differs
between the two ramps, a signature of the appearance of an hysteresis behaviour, as the
magnetization depends on both the initial state and the direction of the detuning ramp.
The amplitude of the hysteresis region, given by the deviation from the δeff = 0 curve,
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and marked by the interface Z = 0, is also space dependent, increasing towards the
center of the trap, in qualitative agreement with the ferromagnetic model. Indeed, at
fixed δB, we observe that the interface spatially lags behind the local resonance: toward
the tail of the cloud in the forward ramp, and toward the center for a backward ramp.
Furthermore, we observe a dependence of the slope of the interface on the detuning δB,
becoming steeper for higher δB.
While the main physical features of magnetic phenomena are qualitative described by
the previous data, a quantitative measurement of magnetic properties is hindered by the
presence of the thermal component, which alters the measured value of the magnetization
of the condensate and must be subtracted.

5.2.3 Thermal part subtraction

We remove the thermal distribution directly on 2D absorption images with a postpro-
cessing imaging analysis divided in several steps.
The in-situ distribution of a harmonically trapped bosonic gas at finite temperature,
represented in Fig. 5.4 (a), is characterized by a dense condensed part in the center of
the cloud, which expels thermal atoms from the center of the trap. To quantify the
strength of this effect, we run a Hartree-Fock calculation [4, 87, 154] for a single com-
ponent condensate, with 30% of condensed fraction (measured with Cam. Hor 1) and
T = 1µK. This calculation predicts a thermal fraction of only 10% in the center of
the cloud n(0, 0, z) [see central figure of panel (b)], much lower than the global one.
To mimic the effect of the integration along the line of sight z, naturally performed to
obtain 2D absorption images [152], we numerically integrate the 3D distribution along
the line of sight, shown in panel c). It is evident that, at least in the center, the thermal
distribution seen in our ODs is almost flat.
Assuming that during the small time-of-flight expansion the thermal distribution does
not change significantly, we first reconstruct the total density profile of the cloud. To do
so, we radially rescale the image of |↑⟩ to match the dimension of |↓⟩, in order to eliminate
the effect of the radial expansion during the TOF. Once the two images matches, we cal-
culate the total density summing the two. To identify the thermal part contribution, we
fit the 2D total density with a bimodal distribution, i.e., n(x, y) = nBEC(x, y)+nth(x, y),
where 

nBEC(x, y) = nBEC,0

[
1 −

(
x−mx
Rx

)2
−
(
y−my

Ry

)2
]3/2

x2

R2
x

+ y2

R2
y

≤ 1;

nth(x, y) = nth,0 exp
{[

− (x−mx)2

2σ2
x

− (y−my)2

2σ2
y

]}
x2

R2
x

+ y2

R2
y
> 1.

(5.15)

Although the use of a Bose distribution [152] would be more appropriate to extract
quantitative information about the thermal fraction, we found that for our purposes a
Gaussian fit is good enough. Indeed, from the bimodal fit we only extract the size and
location of the BEC fraction, in terms of the parameters mx,my, Rx, Ry. We then use
this parameters to construct an elliptic mask that isolates the thermal component on
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Figure 5.4: Thermal and condensate atomic distribution. (a) Schematic three-
dimensional view of the condensate (dark green) and thermal (light green) distribu-
tion. A, B and C cylinders highlight the lines of sight of the central atoms and of the
thermal atoms just outside Rx. (b) Line density profiles along the imaging direction
for x = −Rx, 0,+Rx, calculated using Hartree-Fock theory for our partially condensed
(30%) gas. (c) The integrated density for the thermal component

∫
n(x, 0, z)dz has an

almost flat distribution in the region occupied by the condensate.

the tails of both images of |↑⟩ and |↓⟩, to which we apply a second, more precise, 2D
Gaussian fit.
At last, considering the results of Hartree-Fock calculation, we remove the contribution
of the thermal component from each image by subtracting the fitted Gaussian profile
(outside the condensate) and a flattop one(inside). The flattop profile, which resemble
the result of the Hartree-Fock calculation, is set to a level by given the average of nth
at (x, y) = (±Rx, 0) and (x, y) = (0,±Ry). The impact of this choice will be further
discussed in 5.3.5.

5.3 Quantitative measurement of magnetic properties

To obtain quantitative information about magnetic properties of the system we gather
data at different values of ΩR/2π, namely 400 Hz, 600 Hz, 800 Hz and 1200 Hz, for both
forward and backward detuning ramps. The dependence of the spatial extension of the
ferromagnetic region on |κ|n(x)/ΩR implies that, at constant |κ|n0, for stronger ΩR the
position of the transition point moves toward the center. Indeed, the critical point scales
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Figure 5.5: (a-d) Thermal fraction removed magnetization as a function of δB/ΩR for
forward (left) and backward (right) ramps, at ΩR/2π = 400 Hz (a-b) and ΩR/2π =
1200 Hz (c-d). Data shown in panels (a-b) are the same of Fig. 5.3, without the thermal
component. (e-f) Magnetization as a function of δB/ΩR, measured at x = −0.52Rx for
ΩR/2π = 400 Hz (e) and ΩR/2π = 1200 Hz (f). In both panels, red rectangles mark
the point of local resonance, grey points are experimental data, and black lines are the
arctan+lin fit (see Sec. 5.3.2).

in space as:

xCP = ±Rx

√
1 −

( ΩR

|κ|n0

)2
(5.16)

which becomes imaginary for ΩR > |κ|n0. Here we assumed that the spin-interaction
energy |κ|n(x) scales as a 1D Thomas-Fermi. This is the underlying assumption we also
used at the end of Chapter 1 to derive the renormalization δg → κ. We will come back
to the verification of this assumption in Section 5.3.1.
The possibility of performing detuning ramps at different ΩR adds an additional tuning
parameter, on top of the already spatially varying spin-spin interaction energy: it allows
to gather data in a vast portion of the |κ|n(x)/ΩR axis, rendering the cloud almost fully
ferromagnetic or fully paramagnetic. We use this tunability of the critical point in space
to measure both the width of the hysteresis region δhys and the magnetic susceptibility
χ, as defined at the end of Section 5.1. We will show that, as expected, when the
magnetization is plotted in terms of universal quantities, such as δB/ΩR and |κ|n/ΩR,
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the behaviour of both δhys and χ is almost independent of both the sample and specific
parameters.
In Fig. 5.5 we show an example of such tunability, for both forward and backward ramps
at ΩR/2π = 400 Hz [panels (a) and (b)] and ΩR = 1200 Hz [panels (c) and (d)]. At
first, one can appreciate how the removal of the thermal distribution has increased the
contrast in the magnetization. It is also easy to see how the deviation of the Z = 0
interface from local resonance vanishes at high ΩR even in the center of the cloud, as
compared to the case at ΩR/2π = 400 Hz.
More importantly, for ΩR/2π = 1200 Hz, the value of δB at which Z changes sign is
almost the same for both ramps, independently from our determination of the curve
δeff = 0. This marks the absence of an hysteresis cycle, thus the whole cloud is in the
paramagnetic regime.

5.3.1 Calibration of the local resonance

We calibrate the local resonance curve from the dataset with ΩR/2π = 1200 Hz, using
both a forward and a backward ramp. As the whole cloud is now paramagnetic, the only
term which contributes to the formation of the parabolic dome with Z = 0, in the plane
(x, δB), is the density dependent detuning n(x)∆. Since ∆ and |κ| differ only at the
1 × 10−3 level (see Appendix 6.3), a measurement of n0∆ allows to determine also |κ|n0.
We first isolate the Z = 0 interface calculating the absolute value of the magnetization,
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Figure 5.6: (a) Calibration of local resonance for a fully paramagnetic cloud, and exam-
ples of determination of mx, Rx for forward [panel (b)] and backward ramps [panel (c)]
in a ferromagnetic sample. In all panels, the grey scale corresponds to the value of |Z|,
while green lines are fit of the function 5.17.
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|Z|, to which we fit a modified Thomas-Fermi profile

n(x) = n0

[
1 −

(
x−mx

Rx

)2
]α

(5.17)

where we included a positive exponent α to include possible deviations from a pure one-
dimensional profile. To perform the fit on the 2D magnetization Z2D(x, δB), we first
construct a 2D matrix MTF , with the same dimensions of Z2D, which has unitary values
only at the Thomas-Fermi profile shown above, and zero everywhere else. The optimal
parameters are then calculated by minimizing the mean of the element-wise multiplica-
tion between Z2D and MTF . An example of this fit is shown in Fig. 5.6 (a).
This procedure returns values of n0∆/2π ∼ |κ|n0/2π = 1100 Hz and 1000 Hz for forward
and backward ramps respectively. We also find α ∼ 1, confirming our previous assump-
tion of a 1D Thomas-Fermi profile and a value for the radius Rx, compatible with the
one obtained fitting the density.
We then apply the same procedure for each dataset at different ΩR, with α as a free ex-
ponent, once again to fit the Z = 0 interface. Examples of such fits are shown in Fig. 5.6
(b) and (c) for a forward and backward ramp respectively. We are mainly interested in
precisely knowing Rx and mx, which we then use to construct the local resonance curve
δeff = 0. In this case, the inclusion of the exponent α ̸= 1 as a free parameter helps
adjusting the fit to the |Z| = 0 interface. At last, the peak density of the i-th dataset is
obtained comparing the average atom number Ni with the one of the calibration dataset,
as |κ|n0,i = |κ|n0,cal(⟨Ni⟩ / ⟨Ncal⟩)2/5.

5.3.2 Measurement of hysteresis

Quantitative information about the phase transition are better obtained as a function
of [|κ|n(x)/ΩR, δeff/ΩR], as this plane is independent of the details of the experimental
platform. From the raw data shown in Fig. 5.5(a-b), we reconstruct the phase diagram
shown in the central panel of Fig. 5.1 plotting the same data as a function of the adi-
mensional quantities x → |κ|n(x)/ΩR and δB/ΩR → δeff/ΩR.
For each dataset we apply the procedure described above, to extract Rx, mx and the
local resonance curve δeff = 0. Once these parameters are known, the reference profile is
translated pixel-wise along the y axis, to obtain δeff/ΩR, while the x axis is transformed
in the Thomas-Fermi density, x → n(x), and multiplied for |κ|n0/ΩR.
Results of this procedure are shown in Fig. 5.7 for ΩR = 400 Hz. Panels (a) and (b)
show that the magnetization Z of the atomic system closely resembles the one calcu-
lated numerically from Eq. 5.4. In particular, one can appreciate how the magnetization
smoothly crosses zero around δeff/ΩR = 0 for |κ|n/ΩR < 1, while the position of the
Z = 0 interface shifts towards positive (negative) values of δeff/ΩR for the forward (back-
ward) ramp, as expected from hysteresis. Comparing this result with the phase diagram
of Fig. 5.1, one can assert that for |κ|n/ΩR > 1 the Z = 0 interface found experimentally
separates the saturated ferromagnetic (SFM) region from the ferromagnetic one (FM).
From the phase diagram it is interesting to quantify the width of the hysteresis region
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Figure 5.7: Magnetic hysteresis. (a)-(b) Experimental magnetization data from
Fig. 5.5(a-b), rescaled according to the |↑⟩-|↓⟩ asymmetry and to the density profile,
see main text. White regions in the bottom-left corner are due to a lack of data that
manifests when applying the vertical-axis rescaling. Yellow dashed lines mark experi-
mental shots shown in panel (a), corresponding to number 1-4, as in Fig. 5.1. Black and
white dashed lines show the border of the hysteresis region as predicted from theory (Eq.
5.10. (c) Width of the hysteresis δhys. Green points are experimental data with their
uncertainties resulting from the binning procedure and systematic errors. The dotted
line stands for theory, while the purple and red points results from numerical 1D and
2D simulations respectively.

as a function of |κ|n/ΩR. To extract it, we slice the phase diagram of Fig. 5.7 (a) and
(b) at fixed |κ|n(x)/ΩR, to obtain Z(δeff), and then find the position of the interface.
For practical purposes, we take columns of data as a function of x/Rx, after averaging
Z(x) in a window of 10 pixels, where the curvature of Z(x) due to the dome is almost
negligible. Examples of such profiles, measured at x = −0.52Rx, were shown in Fig. 5.5
(e) and (f), as a function of δB/ΩR. We fit each profile Z(δB/ΩR) with an empirical
function, composed of an arctangent and a linear function

Zfit

(
δB
ΩR

)
= A

[1
2 + 1

π
arctan

(
δB − δ0
ΩR σ

)]
+
[
m
δB
ΩR

+ q

]
(5.18)

from which we extract the slope σ and the center δ0. The linear function is a tiny
correction necessary to reduce the χ2 of the fit.
From the results of each fit, we identify the position of the interface with the center of
the sigmoid δ0. Notice that δ0 slightly differs from the value of δB at which Z vanishes,
due to the saturation of Z to a value smaller than 1 at the end of the ramps. As shown
in Fig. 5.5 (e) and (f), we then calculate δhys as the distance (red arrow) between δ0
and δeff (shown as a red rectangle for each profile). Averaging and binning with data
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extracted from all the dataset at different ΩR we are able to reconstruct the width of
the hysteresis region in a wide range of the distance from the critical point.
The behaviour of δhyst as a function of |κ|n/ΩR is shown in Fig. 5.7 (c), compared with
the theoretical curve (dashed-dot) line and both 1D and 2D GPE simulations [93]. The
uncertainty along the δhys/ΩR axis takes into account both fluctuations of the magnetic
field, which we estimate to be in the order of 10 Hz, and the standard deviation of points
averaged in the binning region. The uncertainty along |κ|n/ΩR is calculated as the
standard deviation in each binning region.
The results well capture the presence of hysteresis above the critical point |κ|n = ΩR

and its monotonic growth within the ferromagnetic region. However, we observe that
δhys/ΩR is much larger than the theoretically predicted one, and it starts to grow in
the PM side, before the critical point. We attribute the discrepancy to both a loss of
adiabaticity (see Section. 5.3.3) and a residual transverse dynamics. While the effect of
a loss of adiabaticity can be easily investigated experimentally, the effect of transverse
dynamic is much more difficult to capture, as a change in the trap configuration would
affect other parameters, like the spin interaction energy κn0. We instead decided to
run 2D GPE simulations [93, 155], assuming axial symmetry, and compare the result
with the ones obtained by 1D GPE simulations. We find that, with the inclusion of the
transverse direction, simulations better match experimental results. Finally, it is worth
to point out that additional beyond-LDA effects, given by the term ∝ ∇2S⃗, included in
the GPE but neglected in our theoretical model, still might play a small, although not
neglectable, role, increasing the extension of the hysteresis region.
The same measurement of an hysteresis cycle was performed in details in [148] in a zero
dimensional system trapped in a tunable double well potential. Building on this work,
the hysteresis cycle measured in a coupled mixture has the crucial difference that it
originates spontaneously from atom-atom interactions, and it is well described within
mean-field theory. Furthermore, the spatial extension of our platform allows for the study
of the interplay between relaxation from hysteresis and spatial dynamics [156, 157].

5.3.3 Dependence of the hysteresis width on ARP parameters

A crucial detail in the characterization of δhys is the choice of the parameters of the ARP,
such as the shape of the ramp, initial detuning and detuning sweep rate. As already
stated, the time scale for the change in ΩR(t) should be much larger than the inverse of
the energy difference between the ground and the excited state, which is given by ℏΩR

itself. However, in real experiments, this requirement is hard to accomplish, especially
at low Rabi coupling.
To investigate the impact of different choices of sweep rate ∂tδB(t), we use the same proto-
col described above, performing forward ramps at ramp speeds of 600 Hz/ms, 100 Hz/ms
and 50 Hz/ms. To evaluate possible effects in both the PM and FM phases, we set
ΩR/2π = 400 Hz for all ramps. Data are shown in Fig. 5.8.
We observe that, for a very fast ramp [panel (a)], it is difficult to dynamically keep the
system in its ground state at all times. In particular, while on the paramagnetic side
there is a full transfer of atoms to the Z = 1 state, in the central ferromagnetic regions
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Figure 5.8: Comparison between ARP ramps. In all panels we show the cleaned ax-
ial magnetization as a function of δB/ΩR for different detuning sweep speed, namely
600 Hz/ms, 100 Hz/ms and 50 Hz/ms from left to right.

strong spin waves are excited. This results from a sudden energy gain when the system
transits from the FM to the SFM phase. While this is true for any adiabatic ramp in the
ferromagnetic phase, in this case spin waves are enhanced by the extra energy injected
by the loss of adiabaticity.
On the other hand, for a very slow ramp [panel (c)] no ripples are visible, but the fi-
nal value of Z is suppressed, especially in the paramagnetic region, due to decoherence
arising from magnetic collisions. The width of the hysteresis region is also slightly lower
as compared to the measurement at 600 Hz/ms. This effect however is neglectable, as
compared to the shift induced by the transverse direction, in the measurement of δhys
reported in Fig. 5.7 (c).
A good compromise is shown in panel (b), where some small wavelength excitations are
visible, right after the change in Z from red to blue, which damp quickly. On top of
this, the transfer of atoms in the PM region is more efficient, even if not optimal, as
compared to data at 50 Hz/ms.

5.3.4 Measurement of the magnetic susceptibility

When a system approaches the critical point of a phase transition, many quantities
characterizing the system’s response to external parameters are expected to diverge [143],
due to the divergence of the correlation length of the system. In the para-ferro magnetic
phase transition, one of this quantity is the susceptibility χ, defined in section 5.1, which
measures the response of the order parameter Z to a variation in the longitudinal field.
As such, it is expected to acquire a finite value in the paramagnetic phase, corresponding
to a smooth change in magnetization, and to approach zero in the ferromagnetic phase,
at vanishing transverse field, as Z is locked in state |↑⟩ or |↓⟩ by interactions. Finally,
it should diverge at the critical point |κ|n = ΩR, where the response of the system to
external fluctuations is enhanced.
Within our data, we can extract the value of χ, leveraging on the fact that the derivative
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Figure 5.9: Magnetization as a function of δB/ΩR, measured at x = −0.52Rx for
ΩR/2π = 400 Hz (a) and ΩR/2π = 1200 Hz (b). In both panels, red rectangles mark
the point of local resonance, grey points are experimental data, black lines are the arc-
tan+lin fit (see Sec. 5.3.2) and blue dashed lines are linear fits to the black lines used
to measure the susceptibility. Same data shown in Fig. 5.5.

with respect to δeff is equivalent to the derivative with respect to δB, thus:

χ = 1
n

∂sz
∂δeff

∣∣∣∣
δeff=0

= 1
n

∂sz
∂δB

∣∣∣∣
δeff=0

∂δB
∂δeff︸ ︷︷ ︸

1

∣∣∣∣
δeff=0

. (5.19)

We follow the same analysis procedure applied to extract the hysteresis width δhys, only
this time we calculate the derivative of the arctan+lin fit at δeff = 0. Examples are shown
as dashed lines in Fig. 5.9. We make use of the fit instead of the direct calculation of
the derivative of the data since the latter enhances the noise of the measurement. In
addition, for each χi the value of |κ|n is given by an averaged density profile of the
experimental shot with δeff closest to zero. Since the determination of the δeff(x) = 0
curve is not reliable on the tails, due to the strong gradient in n(x), we omit points with
|κ|n/ΩR < 0.3.
Example of values of χi obtained with this procedure are shown in panels panel (c-d)
of Fig. 5.10, measured for a forward ramp at ΩR/2π = 400 Hz and a backward one at
ΩR/2π = 600 Hz. Different colors indicate the distance from the center of the cloud.
Spatial positions where we evaluated χ are shown as points in panels (a) and (b). As
we did for the hysteresis, we bin and average the data along |κ|n/ΩR axis to reduce
statistical errors, and obtain the curve shown in Fig. 5.10 (e) (green dots), which is
compared with theoretical prediction of Eq. 5.14 (red lines) and with numerical solution
of noisy 1D GPEs (purple dots, see [93] for details).
We observe a very good agreement between experimental data, numeric and theory
on the ferromagnetic side, while in the paramagnetic region experimental data for χ
are lower then expected. This behaviour can be justified by the enhanced decoherence
when Z = 0, which mostly affect the paramagnetic side, because the interface lies
approximately on the local resonance curve, leading to a smaller contrast in Z(δeff).
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Figure 5.10: Measurement of susceptibility. Panel (a) and (b) show a forward ramp at
ΩR/2π = 400 Hz and a backward one at ΩR/2π = 600 Hz respectively. In both panels
dots represent the position along the curve δeff = 0 where we measure χ. (c-d) Example
of values of χ extracted from data in (a-b). Colors of the points are a visual guide
to identify the spatial position of each of them in panels (c-d). Values of χ measured
from the backward ramp are systematically higher than the one obtained with a forward
one. (e) Susceptibility obtained after averaging over all datasets. Green points are
experimental data with their uncertainties resulting from the binning procedure and
systematic errors, red line is the theory prediction, purple points connected by dashed
line are simulation results.

Furthermore, both experimental data and simulations show a peak at the |κ|n = ΩR,
rather then a divergence, with the peak position slightly shifted above the critical point.
While the shift is likely a result of both a loss of adiabaticity and the presence of a small
but finite temperature in the system [158], the absence of a divergence in the data is
most probably due to finite size effects [159, 160].

Critical Exponents In statistical mechanics it is well known that the divergence of
characteristic quantities, such as χ, has a power-law scaling as a function of the distance
to the critical point, as

χ ∼
∣∣∣∣ |κ|n

ΩR
− 1

∣∣∣∣−γ (5.20)

where γ is called critical exponent. Theoretical values of critical exponents can be found
within a renormalization group approach [142, 143], and are expected to be universal,
i.e. they do not depend on the microscopic details of the Hamiltonian.
Critical exponents ν and z, which predicts the scaling of spatial and time correlation
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Figure 5.11: Calculation of critical exponents. Panels (a) and (b) show values of χ in
the PM and FM phase respectively, obtained with a smaller binning compared to data
shown in Fig. 5.10 (e). Green points are experimental data, purple ones come from
numerical simulations, while red lines show the theory prediction. Linear fits, evaluated
on a subset of data (highlighted with a black contour), to extract γ are shown as black
lines.

length, have been already measured, in a coherently coupled mixture of 87Rb atoms
[48], following the evolution of the magnetization, crossing the critical point after a
quench in the transverse field. Since we can keep the system in its local ground state,
we have instead, in principle, access to both the order parameter critical exponent β
and the susceptibility one γ. To measure the latter, it is useful to look at the values of
susceptibility in log-log scale as a function of ||κ|n/ΩR − 1|, plotted in Fig. 5.11, as in
this plane a linear fit of the data would allow to extract the critical exponent in both
phases.
Within the Landau class of universality, the critical exponent γ associated with the
divergent susceptibility should be γ = 1 in both phases, for |κ|n/ΩR approaching 1.
Performing a linear fit we obtain γPM = 0.86 ± 0.25 and γFM = 1.8 ± 0.2. While in the
PM phase we find an agreement with the predicted exponent for mean-field theory, in
the FM region the experimental value differs from the theoretical one.
This discrepancy arises from the lack of a true divergence in both experimental data and
GPE simulations (purple dots in Fig. 5.11). Indeed, the critical exponent can be defined
only in the proximity of the critical point (shown as a grey region in Fig. 5.11), where,
unfortunately, finite size effects [160] bend the data toward a finite value. This issue
is apparently not present in the PM phase, only because χ is predicted to always scale
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with γ = 1, see Eq. 5.14. This is not true, however, in the FM phase, as it is evident
from both Eq. 5.14 and the theoretical curve, shown in red in panel (b).
Finally, it is important to notice that the presence of the density dependent detuning n∆
prevents a measurement of the exponent β, related to the scaling of the order parameter
Z ∝ [−(κn+ΩR)]β, since the phase transition is only crossed at a specific point in space,
corresponding to the condition of local resonance. Such a measurement would be instead
possible in a spatially homogeneous BEC with constant density n, where the condition
of local resonance can be simultaneously satisfied across the sample.

5.3.5 Systematic errors induced by thermal part subtraction

The relevant quantities that we extracted in the previous sections, namely the width
of the hysteresis region and the susceptibility χ are sensitive to the amplitude of the
magnetization Z, especially for what concerns the susceptibility. As such, systematic
errors on Z might originate in our procedure to remove the thermal part. Indeed, the
choice of the central thermal profile, which coexist with the BEC, might alter the value
of one population with respect to the other. To check the magnitude of this effect, we
perform the previous analysis extracting δhys and χ after having removed the thermal
fraction with four different profiles:

• a full Gaussian, constructed from the parameters of the 2D gaussian fits;
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Figure 5.12: Effects of removing the thermal component. Panel (a) shows the hysteresis
width obtained through the four different methods of thermal part subtraction, as ex-
plained in the text. Correspondingly, panel (b) presents the same comparison performed
on the susceptibility. In both panels blue empty symbols correspond to paraboloid, or-
ange to flat top, green to linear and red to Gaussian profiles. Both panels show a good
agreement between the four methods. Black dotted lines are the theory predictions.
Error bars are standard variations resulting from averaging different experimental real-
ization and from systematic errors.
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• a linear plane with non-zero slope along the x direction, extracted from the value of
the thermal components at x = ±Rx, where the y value is the mean of nth(0,±Ry).
This profile should account for spatial asymmetries;

• a flattop profile, with height given by the average of nth at (x, y) = (±Rx, 0) and
(x, y) = (0,±Ry);

• an inverse paraboloid with fixed height, to take into account depletion.

Results of this test are shown in Fig. 5.12. From these data, it is clear that the main
features, like the growth of the hysteresis region for stronger ferromagnetic interactions,
and the peak in the susceptibility, are not affected by the choice of the flattop profile.
We observe, however, that a quantitative measurement of χ in the paramagnetic region
is highly sensitive to the thermal profile. This is natural, as a change in the extremes
of Z(δeff) is reflected in a higher or lower derivative, which is even more sensitive at
δeff = 0.

5.3.6 Measurement of magnetic fluctuations

Another interesting quantity to measure are the fluctuations of the order parameter,
which are expected to diverge at the critical point. To measure fluctuations, we gather
a set of data tuning ΩR above and below the critical point, while setting the detuning
δB to local resonance in the center of the cloud. In this way, the almost zero spatial
gradient of δeff in the center of the trap allows us to measure spatial fluctuations of the
order parameter. In particular, in order to increase the SNR of our measurement, we
gather up to 100 shots for 20 values of ΩR.
For each shot i, we calculate the distance from the critical point comparing the number
of atoms Ni in each shot with the reference Ncal of the calibration dataset, as we did
in the calculation of both hysteresis and susceptibility. Once the shot-to-shot value of
|κ|n/ΩR is known, we calculate fluctuations as the standard deviation σ of the spatial
magnetization Z(x), in a region wx = 120 pixel ∼ 123µm. As the size of this region
corresponds to 1/3 of the Thomas-Fermi radius, we can consider the density n(x) to be
constant within a 10%. To reduce inhomogeneities arising from the integration along
the transverse direction, we calculate Z(x) in a region with size wy = 20 pixel in the
center, slicing the 2D image prior to integration. This region is shown as an orange box
in Fig. 5.13 (b). Finally, as the fluctuations strongly depend on the volume element
that contributes to the signal [161, 162, 163], it is important to reduce systematic errors
arising from the finite resolution of the imaging system. Our strategy is to perform the
σ2 analysis grouping Np pixels, with various Np, and averaging the resulting values of
σ2
Np

. The main idea behind this procedure is to try to emulate the effect of having half,
a third, etc.., of the actual imaging resolution. The procedure behind this calculation of
the fluctuation can be summarized by the formula

σ2 =
〈

1
wx/Np

wx/Np∑
i

Zi −
wx/Np∑
j

Zj
wx/Np

〉
Np

(5.21)
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Figure 5.13: Magnetic fluctuations. Panel (a) shows experimental data, obtained with
formula Eq. 5.21. (b) Examples of the optical density of the removed thermal distribu-
tion. Inner white region is the position of the BEC. The orange rectangle (top panel)
shows the region where σ2 and Nth,ref are measured. Blue rectangles (bottom panel)
on the side show the region where σ2

th is calculated. (c) Histograms of the reference
distribution Nth,ref (orange) and of the thermal distribution Nth,ext (blue). An example
of a non-optimal thermal distribution N ′

th,ext, calculated on a different region, is shown
in grey. (d) Histogram of σ2

th, showing the fluctuations of the thermal component.

Here, Zi is the relative magnetization of the i-th grouping element and ⟨...⟩Np
indicates

the average over different grouping size. The appearance of wx/Np is only a normalization
factor. Final results are plotted in Fig. 5.13 (a), binned in intervals of |κ|n/ΩR. Here,
errorbars are given as the combination of the standard deviation of the fluctuations and
the scattering of the points arising from both different binning and Np grouping.
The data clearly shows a peak around the critical value, which reflects the observed
divergence of the susceptibility. The last fact comes with no surprise, as the two are
related via the fluctuation-dissipation theorem [164].

Contribution of thermal atoms It is important to exclude that the enhancement
of magnetic fluctuations around the critical point is correlated with fluctuations of the
underlying thermal distribution, which are not supposed to show magnetic phenomena.
This problem arises from the fact that our procedure to remove the thermal contribution
only subtracts the bulk distribution, leaving untouched fluctuations (or noise) of the
thermal component.
To quantify the magnitude of this contribution, since we do not have direct access to
thermal fluctuations within the BEC bulk, we have to find a spatial region with only
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thermal atoms. We follow a procedure divided in different steps:

• we first find, over the entire dataset, the distribution of the number of atoms Nth,ref

in the central 120×20 pixel region of interest [see orange rectangle in Fig. 5.13 (b)]
where we measured σ2. This distribution is shown in orange in panel (c).

• We then select several areas in the 2D magnetization of the thermal component,
i.e., where |x| > Rx, with different position and size. For each of them, we calculate
the atom number distribution Nth,ext over the entire dataset.

• We then compare the mean and variance of each Nth,ext with the one of Nth,ref .
The optimal distribution, shown in blue in Fig. 5.13(c) is measured in two regions,
starting at (x, y) = (±|Rx + 10|,−6), with dimensions wx = 54 px, wy = 12 px.
These regions are shown in the bottom figure of panel (b) as blue rectangles.

• For each image, we evaluate the fluctuations of Zth in the two regions, as we did
for ZBEC .

Shot-to-shot results for σ2
th obtained with this procedure are shown in the histogram of

Fig. 5.13(d). The main result of this analysis is that σ2
th seems to follow a Poisson dis-

tribution, with mean value centered at 5×10−4, which is well below any value measured
in the condensate.

5.4 Fluctuation-Dissipation theorem

The measurement of the width of the hysteresis region and of the diverging suscepti-
bility justify the validity of the mean-field description of our system. However, beyond
mean-field terms, such as magnetic fluctuations, play a crucial role while approaching
the phase transition. Indeed, as the correlation length in the system diverge [143] at the
critical point, also fluctuations of the order parameter are expected to diverge. Linear
response theory provides a brilliant connection between the response of the system in
the presence of an external force, and its fluctuation in the absence of driving. This
connection is known as fluctuation-dissipation theorem [164] and is a fundamental and
general theorem, which applies to many out-of-equilibrium systems. In solid-state sys-
tems, for example, it gives the mathematical foundation to the use of neutron scattering
techniques, widely employed to extract relevant information about the crystalline struc-
ture.
As demonstrated above, in our system we have access to both magnetic fluctuations,
within a spatially extended probe region, and to the magnetic susceptibility, which con-
stitute the response of the system to the variation of the external field. As such, our
experimental platform provides an optimal test-bed for a direct measurement of the
fluctuation-dissipation theorem. In the following, we will first derive an exact formula-
tion of this theorem in an uniform sample. We will then compare analytical results with
experimental data, and discuss the validity of this measurement.
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5.4.1 Theoretical model in uniform BEC

In single component BECs, a notorious example of the fluctuation-dissipation theorem
is the link between fluctuations in the number of particles of the condensate and the
system compressibility [6]. For single component condensates, particle number fluctu-
ations ⟨δN2⟩ in a finite cell of volume V can be calculated starting from the 2-point
density-density correlations ng(|r1 − r2|) = ⟨n(r1)n(r2)⟩ − n2, see e.g. [161, 162, 163]
as:

⟨δN2⟩ = n

∫
g(r)H(r)dr (5.22)

where H(r) is a geometrical factor that keeps into account the shape of the probe region.
On the other hand, it is well known, in any condensed matter system, that density-
density correlation are related to the structure factor through the Fourier transform
[162, 165], as

g(r) =
∫

d3k

(2π)3/2S(k)eikr (5.23)

Thus, the evaluation of the fluctuation term reduces to

⟨δN2⟩ = n

∫
S(k, T )H(k)dk (5.24)

where H(k) is the Fourier transform of the volume element where fluctuations are
probed. The effect of a finite and low temperature, below Tc, can be included in the
structure factor through detailed balance [6], leading to the expression for the structure
factor of the density channel [163]

S(k, T ) = ℏ2k2

2mε(k) coth ε(k)
2kBT

(5.25)

This expression stems from the fact that the imaginary part of the response function
is T independent for a weakly interacting gas [6]. The T dependence is particularly
important, as it dramatically changes the shape of the structure factor for T ̸= 0, as
shown in [163].
In analogy with the density channel case, one can write an expression for the fluctuations
of the magnetic order parameter Z in a coherently-coupled spin mixture:

⟨δM2⟩ = n

∫
Ss(k, T )H(k)dk (5.26)

expressed in terms of the magnetization M = nZ, for a better analogy with the previous
formulation.
If the probe volume V is large enough, the integral is dominated by the k → 0 compo-
nents, and we can find the simple approximation

⟨δM2⟩ ∼ NSs(0, T ); Ss(k, T ) = ℏ2k2/2m+ ΩR

εs(k) coth εs(k)
2kBT

(5.27)
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where Ss(k, T ) is the structure factor in the spin channel at finite temperature T , and
εs(k) is the dispersion relation, evaluated around the ground state. For a single com-
ponent condensate, in this limit one recovers the well known result linking fluctuation
of number of particles to the system compressibility [6]. This expression have been also
used to measure the (density) dynamic structure factor in a 2D-Bose gas [166].
In our system, we can push the derivation further, and connect magnetic fluctua-
tions to the response of the system, given by the magnetic susceptibility χ. This is
straightforward in the PM phase, as for k = 0 the dispersion relation simplifies to
ε(k) =

√
ℏΩR(ℏΩR − |κ|n) =

√
ℏΩRχ

−1
PM , where we have used the definition given in

Eq.5.14 in the last passage. Combining this result with Eq.5.27 we obtain the expression

σ2
z = ⟨δM2⟩

N2 =
√
χ

N
coth ℏΩR

2kBT
√
χ

(5.28)

which is a form of the fluctuation-dissipation theorem for the magnetic spin mixture.
Here we have introduced σ2

z = ⟨δM2⟩ /N2 to connect with our experimental measurement
of magnetic fluctuations, and substituted χ → χ/ΩR, to match the results of Fig. 5.13.
We have also dropped the PM index in the susceptibility, as the same relations holds
also in the FM phase.
Two important cases are worth discussing, in the limit of high and low temperature.
In the spin channel, the correct energy scale for the temperature T is given by the
temperature associated with the gap εs(0). At low temperatures, kBT ≪ εs(0), Eq.
5.28 reduces to σ2 = √

χ/N , as thermal effects on the structure factor disappear, and
fluctuations are purely quantum. Thermal fluctuations are instead recovered in the
opposite limit, kBT ≫ εs(0), where fluctuations grow linearly with the susceptibility as
σ2 = 2kBT/(NℏΩ)χ.
With this machinery in mind, we can attempt a direct measurement of the fluctuation-
dissipation theorem with our previous measurements of both χ and σ2.

5.4.2 Measurement of the fluctuation-dissipation theorem

In Fig. 5.14 (a) we plot the magnetic fluctuations σ2, as measured in Section 5.3.6, as a
function of ΩRχ. We observe a nice scaling between the two quantities for all |κ|n/ΩR

(represented as a colorscale for each point), a signature of the expected correlation.
This gives a qualitative proof of the fluctuation-dissipation theorem. To extract more
quantitative information, we fit formula 5.28 to our data. Results of the fit are shown as
red diamonds, calculated at each value of ΩRχ. A crucial point in the fit is the evaluation
of the number of atoms in the probe region. We fix N to

N = Nawy ⟨Np⟩ (5.29)

where Na = 60 is the number of atoms in each pixel, measured from the optical density
n(x, y) of the condensate, wy is the size of the integration region along y and ⟨Np⟩ is the
average of different grouping sizes, see Eq.5.21. Then, the only free parameter of the fit
is the temperature T , which we found to be T = 1.3(1)µK.
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Figure 5.14: (a) Correlation between fluctuations σ2 and susceptibility χ. The colorcode
is used as a reference to label the values of |κ|m/ΩR. Red dots are fit of Eq.5.28. (b)
Scaling of the measured spin temperature with the number of atoms in the probe region,
see Eq.5.29, for three different grouping size Np. The red point in panel (b) refers to a
result of a fit similar to the one shown in panel (a).

Despite the agreement with a time-of-flight measurement of the temperature of a single-
component sample, one has to be careful in the interpretation of the previous result.
In particular, the temperature found from fluctuation-dissipation theorem should be in-
terpreted as an emerging temperature associated to the spin degree of freedom, being
extracted from magnetic fluctuations, and might differ from the equilibrium tempera-
ture of the condensate. In this framework, our value seems to be to high as compared
to the spin interaction energy |κ|n0 ∼ kB50 nK. In fact, one could argue that such a
high temperature would smear out any detail of the phase transition around the critical
point, making impossible to measure the onset of the histeresis region or the divergence
of the susceptibility.
As the previous formula heavily relies on the exact evaluation of the number of atoms
contributing to the signal, we test our result calculating σ2 for different integration re-
gions wy and for different grouping sizes Np. Indeed, varying both wy or Np affects both
the value of σ2 and N . In particular, fluctuations, according to Eq.5.28, should scale
with 1/N , and the temperature T should remain constant. In Fig. 5.14 (b) we report
the values of T obtained from fit of Eq. 5.28 as a function of wy, for three different
values of Np. We observe that in both cases T grows with the number of atoms, instead
of remaining constant, demonstrating that the measurement of the temperature, as re-
ported in panel (a), is not reliable. Further investigations show that this effect arises
from a scaling of σ2 ∼ 1/N2 instead of 1/N . Experimentally, we attribute this scaling to
a combination of a high shot-to-shot variance of the number of atoms and to the inho-
mogeneous density profile. The conclusion of this analysis is that, although we capture a
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correlation between fluctuations and susceptibility, confirming at a qualitative level the
validity of the fluctuation-dissipation theorem, a quantitative and precise measurement,
which would help discriminating between quantum and thermal fluctuations, cannot be
performed with the current experimental setup.

5.5 Domain walls

In an extended ferromagnetic material, the presence of two equally energetic ground
states allows for the formation of extended domains with opposite magnetization. The
interface separating two domains is the least energetic excitation in a ferromagnet, and
is called a domain wall (DW). In a spin chain, or in any discrete lattice model, with only
two possible value of σ̂z, domain walls are sharp interfaces, often called kinks [167], that
interpolates between two adjacent and opposite spin domains. On the other hand, in
an extended system with a continuous spin degree of freedom, such as a ferromagnetic
BEC, they have a finite size, with the magnetization Z continuously changing value from
Z → −Z or viceversa, eventually crossing Z = 0 at some point in space.
The formation of different domains can be of stochastic nature [25], via the Kibble-
Zurek mechanism [168, 169, 170, 171], if the system is quenched across the critical
point starting from a paramagnetic phase. Another possibility is to engineer different
phases with a deterministic protocol. Recent investigations on the spontaneous and
deterministic generation of DWs in ferromagnetic BECs under periodic driving were
conducted in [172, 173].
In our platform, we are able to control precisely the size of the ferromagnetic region,
with both the coupling strength ΩR and the detuning δB, and control the position of an
interactions-sustained DW in a flexible, yet precise, way.

Deterministic creation of domain walls To control the position of the DW, we
exploit the dependence of the Z = 0 boundaries, separating the inner FM region from
the outer SFM one, on the detuning δB, see for example Fig. 5.3. In particular, for a
forward ramp, increasing δB shrinks the FM region, moving the interface towards the
center of the trap.
Our protocol to generate the DW is divided in three steps:

I we first ramp the detuning δB, from negative values, to some value δDW for which
part of the system is in the ferromagnetic regime. This step determines the location
of the DW in space;

II we wait 25 ms to let the system relaxes. This is motivated by our finding that
non-adiabatic ramps increase the hysteresis width δhys, thus leaving the interface
with some extra energy, which we suppose is dissipated through a slight shift of the
interface towards the center;

III we then ramp back δB to a fixed detuning δref = 2.5ΩR, with ΩR = 400 Hz. This
step is crucial to enlarge the ferromagnetic region.
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Figure 5.15: Deterministic creation of FM domain walls. (a) Experimental protocol
used to create DWs through a ramp on δB. (b) Schematics of the spatial variation of the
phase diagram as a result of the protocol shown in (a). Different regimes are labelled
with the same color as in (c) and (d). (c) Absorption images of the two components
(left half of the system only) at the initial point (I) and after a wait time of 25 ms (IV),
when δB/2π = δref/2π = 1 kHz [dashed line in panel (a)]. (d) Absorption images of
the two components corresponding to the solid line ramp in panel (a), where δB reaches
δDW/2π = 1.13 kHz (II) and is then ramped back down to δref (III). PM, S-FM and
FM regions are illustrated in the line between the absorption images. The third (III)
image in panel (d) shows the presence of a DW between two FM domains with opposite
magnetization. In both panels (c) and (d) dashed lines marks the position at which
Z = 0.

This protocol is illustrated in Fig. 5.15 (a), along with the time diagram in panel (b),
showing the various magnetic phases and the position of the boundaries during the ramp
of δB.
In the first step, the ramp in δB moves the boundaries of the FM region towards the
center of the BEC, approximately following a curve in the (x, δB) plane given by the
hysteresis curve δhys(x)/2 summed to the Thomas-Fermi profile. The detuning δDW fixes
the size of the FM region at the end of the ramp, and consequently, the position of the
boundaries. During the 25 ms at fixed δB (step II), the position of the interface remains
in first approximation stable in space. In the third step, ramping δB towards lower
values enlarges again the FM region [see black line in panel (a)], leaving the interface in
its position. We compare this protocol with a reference signal, obtained applying only
steps (I) and (III) [line (IV) in panel (a)].
In Fig. 5.15 (c) and (d) we show the left half of the cloud from absorption images of
the two states at each step, for the reference signal and the actual protocol respectively,
gathered at ΩR = 400 Hz. For each image, we represent the size of the different magnetic
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phases as a colorbar. We first observe that, in the reference images [panel (c)], the
position of the DW remains almost constant, with a slight shift toward the center, which
could result both from relaxation dynamics after the ARP ramp or from shot-to-shot
noise, for instance in the atomic density |κ|n(x). On the other hand, we notice that
applying our protocol [panel (d)], the interface moves towards the center of the BEC (in
agreement with Fig. 5.5 data), in step II, and it remains in this position also after step
III. As a result of lowering δB, the blue region, which previously was in the SFM regime,
is now a FM domain, thus the Z = 0 has now become a domain wall.
We characterize the degree of tunability of the position of the DW gathering data for
δDW ranging from 1 kHz to 1.16 kHz. The displacement of the DW with respect to the
reference position xref , measured at δref = 1 kHz is shown in Fig. 5.16, as a function of
δDW . We check the outcome of our protocol with numerical simulation of the 1D GPE,
which shows a complete agreement, further corroborating the validity of the mean-
field description. A deviation from the simulations starts at (δDW − δref )/ΩR = 0.5.
Interestingly enough, this value is approximately equal to n0∆, which sets the onset of
the hysteresis region in the center of the condensate. We suspect that this deviation is
linked to further relaxation dynamics [156, 157], triggered while entering the hysteresis
region for δDW > n0∆.
Nevertheless, what stems out clearly is the smooth variation of the position of the DW
as a function of the detuning. This demonstrates a great advantage with respect to
condensed matter platforms, where usually DWs are pinned in space by some defects or
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Figure 5.16: Continuous dependence of the position xDW of the DW with respect to
the initial interface position xref (in units of Rx) as a function of (δDW − δref)/ ΩR.
The red line is extracted from numerical simulations. Error bars show the experimental
uncertainties (horizontal axes) and the shot-to-shot standard deviation (vertical axes).
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impurities in the material [174]. In a ferromagnetic BEC, such problems are overcome by
the smoothness of the trapping potential and by the superfluid character of the system.
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Chapter 6
False Vacuum Decay in ferromagnetic
BECs
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Metastability, originating from first order phase transitions, is ubiquitous in physical
systems. A notable example is superheated or supercooled water, where the passage to
the true gaseous or solid ground state occurs via bubble nucleation, when the surface
tension of the bubble is compensated by the energy gain provided by the inner gas.
In classical physics the decay occurs when the metastable state jumps over the energy
barrier separating it from the ground state, and is driven by thermal fluctuations [175]
or by the presence of impurities in the system, which act as nucleation seed.
The extension of this idea to quantum systems, in particular to quantum field theo-
ries, is a fascinating subject. It ranges from the understanding of the early universe
[176, 177, 178] to the characterization of spin chains [156, 179, 180]. In a field theory,
the first order phase transition originates from a field-dependent asymmetric double well
potential, where the metastable minimum is identified as the false vacuum. In this case,
it is the field itself that changes configuration, after a macroscopic tunneling through
the barrier. The resulting configuration is a bubble of true vacuum, which expands in
a sea of false vacuum. The key difference with classical decay lies in the dependence of
the characteristic decay rate on the area of the energy barrier, rather than on its height.
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In its purest form, the false vacuum decay process is driven by quantum vacuum fluc-
tuations, as first studied by Coleman [181, 182]. However, as for example in the early
universe, the tunneling is equally likely to be boosted by thermal fluctuations, and is
called ”finite temperature false vacuum decay” [183, 184].
Despite intense theoretical effort in the study of the tunneling process, its experimental
observation in the framework of quantum field theories, such as the inflaton or Higgs
field in the cosmological scenario, proved to be elusive so far, due to energy scales well
above any experimental range.
Taking advantage of the degree of tunability of the control parameters in ultracold atomic
platforms, several experiments have been proposed in order to address such fundamental
questions [185, 186, 187, 188, 189, 190]. Many of these works [185, 186] proposed the use
of coherently-coupled BEC to create a metastable stable in the relative phase between
the two components, through a time modulation of the coupling strength. Another work
[191] extended this proposals suggesting the use of additional coupling radiations to get
rid of instabilities introduced by the time modulation.
Alongside the promising route opened by the previous proposals, we demonstrated in the
previous Chapter that a first order phase transition spontaneously occurs in coherently-
coupled BECs, provided that the ground state is a ferromagnetic one. Such a system
naturally admits a field description, in terms of the magnetization Z(x), and has an
interaction-dependent energy functional similar to the one of a ϕ4-theory. Our appa-
ratus also offers the experimental capability to study the decay process, thanks to the
spatial extension of the sample and, most importantly, to the high stability and accuracy
of the tuning parameters.
In this Chapter I will describe the first experimental observation of finite temperature
false vacuum decay via bubble nucleation. In the first Section I will give a tentative
and concise summary of the instanton theory used to describe the tunneling process in
quantum field theories. This section is written following the lines of the original works
of Coleman [181, 182] and of the recent theoretical review [192]. In the second Section
I will describe the experimental protocol and characterize relevant quantities related to
the bubble nucleation process. Particular care will be given to the measurement of the
characteristic decay time τ of the tunneling. In the last Section I will compare the de-
pendence of the measured decay rates on the control parameters to the predictions of
instanton theory. The results reported in this Chapter are available as a preprint in Ref.
[157].

6.1 Theory of False Vacum Decay

The phenomenon of tunneling through a potential barrier is very well known in quantum
mechanism. It states that, for example, if an electron beam with energy E scatters
through a potential U(x) greater than E, the beam has a finite probability of crossing
the barrier. A similar process occurs for a quantum particle, with unitary mass m = 1,
initially at rest in the metastable minima of a tilted double well potential, of the shape
U(x) = λ/a2(x2 − a2)2 + εax, with U(a) = U0 > 0. An example of this potential
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is sketched in Fig. 6.1 (a). While in classical mechanism there is no possibility for
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Figure 6.1: (a) Tilted double well potential U(x), with a metastable minimum in x = a.
(b) Same potential after change of sign. Gold curve is an indication of the bounce
solution.

the system to exit the metastable minimum, in quantum mechanism there is a finite
probability for this transition to occur, which is given by the matrix element:

P = ⟨−a|eiHt/ℏ|a⟩ (6.1)

In QM, the width of this process, also called the characteristic decay rate, is given, in
the semiclassical approximation, by [193]:

Γ = Ae−B, B = 2
ℏ

∫ a

−a
dx
√

2[U(x) − U0] (6.2)

It is useful, for the later extension to a quantum field theory scenario, to show that this
result can be equivalently derived within the Lagrangian formalism. The Lagrangian for
a moving particle reads:

L = 1
2 ẋ

2 − U(x) (6.3)

It is useful, and also a standard approach, to work in Euclidean time, τ = it, where the
Lagrangian reads:

LE = −1
2 ẋ

2 − U(x) (6.4)

It is well known that the equation of motion associated to the Lagrangian can be derived
from the stationary-action principle [194]. This is given by the Euler-Lagrange equation,
which in Euclidean time reads

d2x

dτ2 = U ′(x) (6.5)
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Solutions of this equation constitutes trajectories, in Euclidean time, for which the as-
sociated action

SE =
∫ ∞

−∞
dτLE (6.6)

is stationary. In a quantum field theory contest, we will refer to these solutions as
instantons [195], which depend on the specific shape of the potential U(x).
Let us seek solutions for the particular case of the titled double well potential. It is easier
to look at Eq. 6.5 as describing the motion in real time of a particle, originally at x = a,
moving in potential −U(x), shown in Fig. 6.1 (b). It is evident that what was a minimum
energy configuration is now an unstable equilibrium point. In this configuration, a small
fluctuation can trigger the particle to roll down the potential, reaching the turning point
xTP at τ = 0, with U(xTP ) = U0, where its kinetic energy vanishes, and then coming
back. For this reason, the particular solution xB(τ) associated to this process was
originally called the bounce by Coleman [181]. From energy conservation, or equivalently
rearranging Eq. 6.5, we get

1
2

(
dẋ

dt

)2
= U(x) − U0 (6.7)

from which it is now easy to see that

S[xb] − S[x] =
∫ ∞

−∞
dτLE(τ, xb, ẋb) = 2

∫ xT P

a
dx
√

2[U(x) − U0] (6.8)

arising from the assumption that the particle at τ → −∞ is sit at x = a and that it
reaches the turning point xTP at τ = 0 with vanishing kinetic energy.
Remarkably, Eq. 6.8 is exactly the same expression we gave for ℏB in Eq. 6.2. Thus,
the rate associated to the tunneling process is equally given by the Euclidean action,
provided that it is evaluated on the instanton solution.

6.1.1 Tunneling in Quantum Field Theories

It is now straightforward to extend this formalism to the case of a one-dimensional
scalar quantum field theory for a field ϕ, characterized by a scalar potential U(ϕ), which
now depends on the field itself, with a local minimum ϕFV and a global minimum at
ϕTF . An example of such a theory is the ϕ4-theory, with a potential of the shape
U(ϕ) = λ/a2(ϕ2 − a2)2 + εaϕ. For a field theory, the bounce solution now satisfies the
Euler-Lagrange equation in Euclidean time:(

∂2

∂τ2 + ∂

∂x2

)
ϕb = U ′(ϕb) (6.9)

and the exponent B is given by

B = SE [ϕb] − SE [ϕFV ]
ℏ

(6.10)
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Figure 6.2: Sketch of the false vacuum decay process in the 1+1 ϕ4-theory. Quantum
fluctuations trigger the formation of ”virtual” bubbles (on the left), until the energy cost
balances the formation of the interfaces. After creation, the bubble expands rapidly in
space.

where the action is defined as

SE =
∫
dτdx

[
1
2

(
∂ϕ

∂τ

)2
+ 1

2

(
∂ϕ

∂x

)2
+ U(ϕ)

]
(6.11)

Finally evaluating of the action at ϕb gives the decay rate as

Γ = Ae−(SE [ϕB ]−SE [ϕF V ])/ℏ (6.12)

There is a small caveat that must be taken into account when dealing with the quantum
field treatment of the decay process. Unlikely in quantum mechanism, it is now the field
ϕ that, somewhere in space, at τ = 0 tunnels through the potential barrier, from which
it evolves classically. While doing so, it passes from a homogeneous configuration in
space to a space-dependent configuration, which in three dimensions has the shape of a
bubble [181, 196] of true vacuum.
As we said previously, the particular shape of the instanton solution ϕb depends on
the dimensionality and the shape of the potential U(ϕ), and it is usually hard to find
analytically. In the case of the 1+1 ϕ4-theory with the potential U(ϕ) given above, in
the limit ε → 0 (thin wall approximation) the instanton has the form of a kink-antikink
pair [197]. The solution can been found if one looks for static configuration in Eq. 6.9,
and has the shape:

ϕB(x) = tanh (x− b) − tanh (x+ b) (6.13)

with b some point in space that locates the boundaries of the 1D bubble.
We immediately see an important point: the bounce solution has a non-vanishing spatial
derivative, that introduces a positive energy cost in the evaluation of the action 6.11,
that must be taken into account in the bubble nucleation process.
Intuitively, one can understand this contribution in the following manner: quantum
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fluctuations will make a bubble appear somewhere in space, but the bubble will be
reabsorbed if the energy gain provided by the inner true vacuum region is not enough
to compensate for the formation of the bubble walls, which separates the two vacua.
This imposes a strict requirement for the bubble dimension, as for very small imbalance
between the two minima (or very high energy barrier), a vast region of space has to turn
into ϕTV , as intended to be shown in Fig. 6.2, making the process very unlikely to occur.

Extension to finite temperature cases The theory developed so far deals with the
decay process of a quantum field at T = 0. There is however much interest in the study
of temperature dependent field theories, developed, for instance, in the study of phase
transitions in cosmology [184, 198].
The extension of the theory to the finite temperature case was developed shortly after
the work of Coleman by Linde [199, 200, 183]. In its series of papers, he showed that
temperature can be taken into account substituting the Euclidean time τ with a ”time”
given by β = 1/kBT .
Considering the previous 1+1 ϕ4-theory, the action reduces to SE = βS1, where S1 is
simply given by

S1 =
∫
dx

[
1
2

(
∂ϕ

∂x

)2
+ U(ϕ)

]
(6.14)

and the decay rate takes the value

Γ = A (βS1)
1
2 e−βS1 (6.15)

Remarkably, this expression is very similar to a rate equation in the thermodynamic the-
ory of boiling [183], where the transition probability is mediated by the term exp{−β∆F},
with F the free energy. Indeed, it is easy to identify the action S1 with the free energy
of this process, as it contains a ”volume” energy U and a surface tension (∂xϕ)2. As
such, the extension of the false vacuum decay to finite temperature allows to take into
account on the same ground bubble nucleation due to both quantum fluctuations and
thermal fluctuations.

6.1.2 Model of FVD in ferromagnetic BECs

False vacuum decay originates from the concept of metastability, which is intrinsic of
every first order transition. In coherently-coupled BECs, a first order phase transition
originates in the spin channel when the system is ferromagnetic, i.e. when |κ|n > ΩR,
with κ < 0, following a variation of the longitudinal field at fixed |κ|n/ΩR. Magnetic
properties of this system have already been discussed in great detail in Chapter.5. Here,
however, we have to focus on additional terms that we have left aside in the characteri-
zation of the QPT. In particular, as already stated, the formation of a resonant bubble
is a dynamical process, that carries extra energy with respect to the LDA approximation
used in Chapter 5. To take this into account, we have to consider the space-dependent
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full energy functional, which reads:

E =
∫
n

2

{
ℏ2

4m

[
(∇Z)2

1 − Z2 + (1 − Z2)(∇ϕ)2
]

+ κn

2 Z2 − δeffZ − ΩR

√
1 − Z2 cosϕ

}
dx

(6.16)
where, with respect to Eq. 5.6, we have included also contributions from the gradient of
both phase and magnetization. We have assumed that the density profile varies smoothly
in space, on a length scale much larger than ξd, and that there is no background flow
(total phase is constant in space). At last, we already made the usual substitution
δg → κ, to average the transverse inhomogeneity of the experimental sample. As already
seen before, the decay rate for thermally activated bubbles is given by [184]:

Γ = 1
τ

= A

(
Ec
kBT

)1/2
e

− Ec
kBT (6.17)

where A is a prefactor, and we identified the action S1, previously defined, with the (free)
energy of the system Ec. The prefactor exponent 1/2 takes into account the number of
translation symmetries of the field Z, which is 1 for spin 1D dynamics. The energy Ec
is calculated as the energy gain of the field with respect to the value of the potential in
the false vacuum ZFV as

Ec =
∫
n

2

[
ℏ2

4m
(∇Z)2

1 − Z2 + ℏ[V (Z) − V (ZFV )]
]
dx (6.18)

where we approximated the relative phase to be constant and null in space. In order
for a bubble to form, the energy gain of the true vacuum region inside the bubble must
be enough to compensate the formation of a highly energetic interface. In our case the
interface is a magnetic domain wall, separating the external false vacuum from the inter-
nal true vacuum region. This makes clear why we had also to include the kinetic energy
term inside the energy functional 6.16.
For convenience we rescale the energy barrier as Êc = Ec/(ℏn2

0ξs|κ|), where n0 is the
integrated peak density, and ξs = ℏ/

√
m|κ|n. The resonant condition for bubble nucle-

ation can be found by solving the Euler-Lagrange equation of motion in imaginary time
for the field Z(x), i.e. in the inverted potential, that reads

1
2

(∇Z)2

1 − Z2 = V (Z) − V (ZFV ) (6.19)

whose analytical solution gives the shape of the bubble, which should be a somehow
complicated form of the usual kink-antikink solution.
It is useful to rearrange Eq. 6.19 to extract the differential dx

dZ

dx
=
[2(V − VFV )

κn

]1/2
(1 − Z2)1/2 (6.20)

which we can invert to write

Êc = 1
42
∫ ZZF V

ZT P

[
2(V − VFV )

|κ|n

]1/2
dZ√

1 − Z2
(6.21)
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where ZTP is the classical turning point in the inverted potential, and the factor 2 in
front of the integral takes into account the bounce of the instanton [181]. Here we have
relied on the assumption that the magnetization is only x-dependent. The analytical
calculation of the previous integral is still tricky, but it can be simplified by considering
the small-barrier limit [183]. In this approximation, the potential can be expanded to
cubic order around an inflection point at Zc and δeff = δc, where:

δc = κn(1 − Z3
c ), Zc =

(
1 − ΩR

|κ|n0

)1/2
(6.22)

In this case, the energy barrier 6.21 can be calculated exactly, leading to the expression:

Êc ∼ 1.77
(
δB − δc
|κ|n0

)5/4 ( ΩR

|κ|n0

)1/6 ( |δc|
|κ|n0

)−1/4
(6.23)

We will use this last expression later to compare experimental data with instanton theory.

6.2 Experimental observation of Bubble nucleation

This experiment is the natural extension of the study conducted in Chapter 5, focusing
on the characterization of the system dynamics instead of its ground state properties.
The basic idea to study the false vacuum decay problem is to prepare a homogeneous field
Z(x) located in the metastable stable state of its potential V (Z). We can easily identify
this configuration in the x-dependent representation of the magnetic phase diagram of
Fig. 5.1, if the system is initialized in the |↑⟩ state. This is shown again, for clarity, in
Fig. 6.3 (b). Indeed, a careful look at the energy profiles shows that, for δB < n0∆,
the magnetization enters a region, which we identified in the previous Chapter as the
hysteresis region, where the magnetization is homogeneously in state |↑⟩, but the system
is metastable. Due to the Z2 symmetry breaking term n∆, the system is not invariant
upon a change of initial state, and is not possible to create a metastable state with
homogeneous magnetization starting with all atoms in |↓⟩.

Protocol As we did in Chapter 5, we prepare cigar-shaped condensates with N =
1×106 atoms and density n = 7×1014 atoms/cm3 in |1,−1⟩ = |↓⟩ trapped in an harmonic
potential with frequencies ωx/2π = 20 Hz and ω⊥/2π = 2 kHz. The corresponding
Thomas-Fermi radii are Rx = 200µm and R⊥ = 2µm, with peak chemical potential
κn0/2π ≈ n0∆/2π = −1100 Hz. As before, the condensed fraction and single component
temperature are N0/N = 30% and T = 1µK respectively, thus for all data shown in this
Chapter we will subtract the thermal distribution, using the same routine developed in
Chapter 5.
The internal state of the system is initialized transferring all the atoms in the state
|2,−2⟩ = |↑⟩ with a resonant π-pulse, with ΩR/2π = 25 kHz.
We then coherently couple the states |↑⟩ and |↓⟩ with an external radiation, with initial
detuning δi/2π = 5.5 kHz and strength ΩR < |κ|n0, so that the center of the cloud is
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Figure 6.3: Experimental protocol. (a) Adiabatic ramp in detuning δB. (b) Magneti-
zation profile Z(x) as a function of detuning at t = 0. Dash-dot line labels the upper
bound of the hysteresis region, δB = n0∆. White lines indicate values of δ where the
energy at x = 0 has a double well profile. (c) Representation of the expected shape of
the cloud at two different values of δ. Corresponding energy profiles are shown on the
right at x = 0 (black) and x = −0.4/Rx (orange).

ferromagnetic (see Chapter 5). The detuning is then adiabatically reduced to a final value
δB with a linear ramp of slope ∂tδB(t) = 50 Hz/ms [see Fig. 6.3 (a) and corresponding
magnetization Z(x) for different values of δB in (b)]. We use a slower ramp as compared
to the one used in Chapter 5 as it is now important to keep the system as close as possible
to its own ground state, to avoid a boost of the tunneling process induced by oscillations
of the field around the stationary state. As the magnetization is almost uniform in Z ∼ 1
during the ramp, decoherence is not boosted by the presence of an interface, thus the
only limitation in the measurement are atom losses. The latter do not play a major role
in the spin channel, if not for a small change in the position of the critical point, see Eq.
5.16.
We stop the ramp at various values of δB, and we gather separate absorption images of
the two states after a variable time t from the end of the ramp.
For δB > n0∆ [phase (I)], the system is and remains in the absolute ground state of the
energy profile, see panel (I) on the right of Fig. 6.3. Further decreasing δB below n0∆
[phase (II)] the system enters the metastable region with a homogeneous magnetization.
After a long enough time t > 0, a macroscopic region in the center of the cloud flips
to |↓⟩, generating a bubble [phase (III)]. Finally, for small enough δB, bearing in mind
the results of Chapter 5, the metastable state disappears and the system will be in |↓⟩
even at t = 0, see panel (b) of Fig. 6.3. We label this value of δB as critical detuning δc,
which marks the end of the hysteresis region.
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Figure 6.4: (a-b) Collection of integrated magnetization profiles Z(x) after different
waiting times t. For each value of t, different realizations are shown. (c-d) Measured
probability P (blue circles) to observe a shot with a bubble at fixed time is shown. The
probability is well fitted to an exponential curve (grey continuous line) until it saturates
to 1. Data gathered at ΩR = 400 Hz.

From 2D absorption images of the two states we reconstruct the 1D magnetization Z(x)
after having removed the thermal part. As the process of bubble nucleation is stochastic,
being driven by quantum or thermal fluctuations, for each value of t we gather up to
10 shots. Two typical dataset are shown in Fig. 6.4, for two different values of δB at
ΩR/2π = 400 Hz, where shots gathered at same t are grouped in the same windows.

Results After some variable time t, which depends on the detuning δB, we observe that
a macroscopic fraction of the system flips towards the opposite state |↓⟩. We identify
this event with the formation of a bubble. We observe that, within the same time t
and detuning δB, the occurrence probability of bubble formation grows in time, and
eventually, at t → ∞, a bubble is always present.
We observe that, on average, bubbles tend to form near the center of the trap. This
results from the combination of both the terms κn0 and n0∆, which makes, at fixed δB,
the energy barrier Êc smaller in the center than towards the tails (see energy profiles
in Fig. 6.3), thus favouring the tunneling process. We take advantage of this effect to
quantify the bubble occurrence probability P [see panel (c) and (d) of Fig. 6.4] as the
number of shots in which a 40% of the atoms has changed state at the same time t. This
corresponds to ⟨Z⟩ < 0.2, where ⟨Z⟩ is a spatial average in a 40 pixel wide region around
the center. We observe that our measurement of P well captures the behaviour shown
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Figure 6.5: Determination of δc from the hysteresis end. (a) Integrated profile of the
magnetization Z(x) for different detuning δ and no waiting time. (b) The change of
sign of the magnetization Z(x) averaged on the central 40 pixels allows to determine
δc = 630(20) Hz. This calibration is used for a subset of data shown in the main text for
ΩR/2π = 400 Hz.

by raw data, with P growing at early times, eventually saturating to 1 when bubbles
are always visible.
At last, we also observe that, on average, the size of the bubble grows in time, eventually
reaching a final dimension σf . This is a well known behaviour in the false vacuum decay,
resulting from the relaxation towards the global ground state of the system.

Calibration of critical detuning The expected high sensitivity of τ on a small vari-
ation of δB − δc requires a very precise calibration of the critical detuning. We first
calibrate the resonant condition of the coupling radiation with the spectroscopic proto-
col described in Section 2.5.1. Once this is known, we initialize the system in |↑⟩ and
follow the protocol described above, gathering absorption images at t = 0 for different
values of δB. Data for the magnetization Z(x) are shown in Fig. 6.5 (a) as a function of
the absolute value of detuning. In the same spirit of the measurement of the hysteresis
width δhys presented in Chapter 5, we fit Z(x), averaged over the central 40 pixels, with
a sigmoidal function (see Section 5.3.2 for more details). For this particular dataset, we
find a value of δc/2π = 630(20) Hz see Fig. 6.5 (b).
Due to the large amount of statistics required to obtain one value of τ , a typical mea-
surement lasts one to three hours. Unfortunately, the measurement of the stability of
the magnetic field in time reported in Section 2.5.2 shows that drifts and shot-to-shot
fluctuations are not neglectable in this time interval. To overcome this issue and achieve
the high stability required to fine tune δB − δc within, for example, a 100 Hz interval,
we calibrated both the resonance condition and the detuning δc several times during
each experimental run. This allow us to either correct experimental parameters during
the data acquisition campaign, or to take into account magnetic field drifts during data
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post-analysis.

6.2.1 Measurement of characteristic decay time

In the study of the false vacuum decay, the relevant quantity to extract is the charac-
teristic decay rate Γ, and its dependence on the area of the barrier separating the two
vacua. From all our dataset, we measure τ = 1/Γ with two different methods, that lead
to very similar results.

Determination of τ50% from occurrence probability P The first method relies
on the measurement of the previously defined occurrence probability P . We define the
characteristic timescale τ50% as the time at which the probability to observe a bubble is
50%. We identify τ50% by first fitting P as a function of time

P (t) = Min
[
a1

(
e

t
a2 − 1

)
, 1
]

(6.24)

with a1, a2 are fitting parameters. Examples of such fits are shown as grey dash-dot
lines in panels (c) and (d) of Fig. 6.4. From Eq. 6.24, we then extract the characteristic
timescale, shown as a vertical grey line in the two panels, as:

τ50% = a2 ln
(

1 + 1
2a1

)
(6.25)

This method is a valid measurement for dataset with limited number of statistics.

Determination of τ from false vacuum fraction An useful quantity to extract the
characteristic decay time τ is the so called false vacuum fraction, which we define as

Ft = 1
2

(
1 + ⟨Z⟩t

⟨Z⟩t=0

)
(6.26)

in analogy with the definition given in [156], used to compare an exact diagonalization
approach in a zero-temperature spin chain to instanton predictions. We observe that,
within this definition, Ft has unit value for t = 0 and eventually tends to 0 for t → ∞,
if a fraction of the system has changed state. We use ⟨Z⟩t to specify the average, over
many experimental realizations, of the magnetization measured at time t. Thus, Eq.
6.26 quantifies the fraction of the system which is still in the false vacuum state after a
time t.
Two examples of the average magnetization ⟨Z⟩t are shown in Fig. 6.6 (a) and (b), as
a function of time, for two different values of detuning. It is evident that Z changes
smoothly value in time, as compared with the raw data shown in Fig. 6.4 (a) and (b).
Since bubbles seems to appear more likely in the center, as it is evident also from the
position of the white region at early times, we evaluate Ft only in the central 20-µm-wide
region the cloud.
The measured Ft, shown in Fig. 6.6 (c), shows a flat plateau at early times, while
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Figure 6.6: Measurement of the time evolution of Z(x) after the ramp on δ for ΩR/2π =
300 Hz for δB/ΩR = 2.13 in (a) and 2.04 in (b). (c) Values of Ft evaluated in the 20µm
central region of the cloud are fitted by the empirical expression reported in the text
[diamonds for data in (a) and pentagons for (b)]. (d) Experimental timescale τ of
the bubble formation as a function of (δB − δc)/|κ|n0. Error bars include statistical
uncertainties on the fit and uncertainty on (δB −δc) coming from magnetic field stability
and calibration. (e) Comparison between τ and τ50%, which shows a full agreement
within experimental errorbars. Different colors label different ΩR.

it decays exponentially due to bubble nucleation for t → ∞, in agreement with the
findings of [156]. We extract quantitative information fitting the experimental data with
an empirical function of the form

Ft,fit = 1 − ε√
1 +

(
et/τ − 1

)2 + ε (6.27)

which is 1 for t = 0, decreases as t2 for t ≪ τ and decays exponentially to ε for t → ∞,
capturing the expected behaviours for Ft in all regimes. The fitting parameters are τ ,
which we identify as the characteristic time it takes for the FV to decay, and ε, which
we included to take into account the observed finite magnetization ⟨Z⟩∞ ̸= −1 at long
times. Example of these fits are shown in Fig. 6.6 (c)
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This formula proved to be highly robust against the initialization of the fitting param-
eters, and provides a precise determination of τ that can be compared with theoretical
values. However, the use of only a fitting parameter τ considers at the same level both
the slope of the exponential decay and the initial plateau, whose duration can be in
principle different, and its origin is still an open theoretical question.
The results for 6 values of τ are shown in Fig. 6.6 (d), measured at ΩR/2π = 300 Hz,
and plotted as a function of the distance from the critical detuning (δB−δc)/|κ|n0. Data
show an exponential growth of τ , from a few to a hundred of ms, as a response to a very
small variation of the tuning parameter. Since moving away from the critical detuning
increases the energy barrier, see Eq. 6.23, the observed growth in the characteristic
decay time is in qualitative agreement with theoretical expectations.
In Fig. 6.6 (e) we check the consistency between the two methods, comparing the values
of τ50% and τ measured for all our dataset. Independently of ΩR and δB, we observe an
excellent correlation between the two methods, with a Pearson correlation coefficient of
0.82, proving the robustness of our methods to extract τ .

6.2.2 Bubbles Properties

From the data we gathered, it is also possible to extract spatial information of the bubble,
like the minimum observable size, the position of the nucleation event and the expansion
the bubble in space. To obtain such quantities, we first need to precisely identify the
boundaries of the bubble.
For each shot, if a bubble is counted (see previous explanation), we fit the magnetization
profile Z(x) with a double sigmoidal function of the shape

Zfit(x) = A

[
arctan

(
x− xr
sr

)
− arctan

(
x− xl
sl

)]
(6.28)

where A is the amplitude and xr(l) and sr(l) are the right (left) centers and sigmas of the
sigmoids respectively. Two typical magnetization profiles, for bubbles of different sizes,
are shown in Fig. 6.7 (a) and (b). We then use the fitted parameters as initial values
for a second fit, that analyses independently the right and left side of Z(x). This second
step allows us to measure with high precision the right and left position xr and xl of the
domains of the bubble. We use them to define the position x̄B and the width σB of each
bubble as

x̄B = xr + xl
2 , σB = xr − xl (6.29)

The definition of x̄B relies on the assumption that bubbles expand isotropically in x,
which is typically assumed to be true in many theoretical models [196].

Bubble Growth A relevant quantity to measure is the expansion dynamics of the
bubble after its nucleation [201, 202], as it would shed light, for example, on the study of
confinement dynamics [203]. Unfortunately, a precise tracking of a single bubble is not
possible within the current experimental apparatus, as it would require a spin-selective
[84, 204] non-destructive imaging system [205]. We can, however, follow the averaged
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Figure 6.7: (a-b) Magnetization profiles of a typical experimental shot showing the
appearance of a bubble. After a first global fit (orange line), two independent fits are
performed at the two interfaces (left green and right red). (c) Statistical width σB of the
bubbles. Dashed grey line show the sigmoidal fit used to extract the asymptotic value
σf , shown as an horizontal black line. (d) Size of the bubble in the stationary state at
t ≫ τ . The points of different colour label different ΩR, and they are in good agreement
with the size expected from the numerical model (shaded area). Vertical rectangles show
the position of δc for each dataset, where the width is given by the uncertainty in the
calibration.

size ⟨σB⟩ after a variable time t from the nucleation event, and measure with reasonable
accuracy its asymptotic value σf .
To calculate it, we first measure ⟨σB⟩t by averaging σB for shots at equal time, setting
⟨σB⟩ = 0 if bubbles are not present. We then fit ⟨σB⟩ (t) with an empirical function of
shape

⟨σ⟩ (t) = σfMax
[
0, arctan

(
t− t0
τσ

)]
(6.30)

where t0, τσ and σf are fitting parameters. An example of this procedure is shown in
Fig. 6.7 (c). The resulting values of σf are then averaged within the dataset at constant
ΩR to obtain the values shown in Fig. 6.7 (d). As bubbles originate in the ferromagnetic
region, its extension bounds σf , as intended to be shown with the grey region. For
increasing ΩR, we notice that σf gets smaller, as the ferromagnetic region occupies a
small fraction of the sample, eventually vanishing for δB = |κ|n0.

Bubbles nucleation position and size As an attempt to track the nucleation posi-
tion of the bubbles, we plot in the histogram Fig. 6.8 (a) the values for x̄B, measured on
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Figure 6.8: (a) Histogram of the initial position of bubbles with size less then 50µm.
(b) Histogram of bubble size σB. Different colors label dataset at different ΩR.

a subset of the data where σB < 50µm, to take into account only small bubbles. Results
show that the initial position of the bubble, independently of ΩR, follows a Gaussian
distribution, centered in the middle of the cloud. This comes with no surprise, as the
energy profile strongly favours the tunneling rate in the center of the cloud.
In Fig. 6.8 (b) we instead show the size of the smallest bubbles observed during our data
campaign, keeping into account only the ones with σB < 50µm, for consistency with
panel (a). We observe in a very limited number of shots the formation of bubbles whose
size is about 2-3µm, suggesting that the initial size of the bubbles could be much lower
than the imaging resolution. In fact, theoretical calculations on a uniform system [155],
based on the evaluation of Eq. 6.19 for a typical kink-antikink shape of the bubble, show
that the smallest bubble has a size of approximately 0.3µm.
Comparing the two histograms, we observe that a non-neglectable fraction of the bubbles
contributing to the histogram of panel (a) has a size much smaller than the full width of
the Gaussian distribution. This observation, along with the theoretical prediction of the
nucleation size, proofs that the histogram shown in panel (a) is a measurement of the
randomness of the nucleation point of each bubble, and is not just shot-to-shot noise.
This suggest that the location of the nucleation site in the center of the cloud has not
to be confused with the existence of a seeding mechanism, as the one proposed in [187],
where it was shown that the presence of topological defects can pin the nucleation site
and enhance the tunneling rate. In our system, the smoothness of the trapping potential
and the homogeneity of Z in space prevent the existing of such a seeding process.
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6.3 Dependence of decay rate on control parameters

It is instructive to compare the characteristic decay time τ with the prediction based on
the instanton theory, see Section 6.1.2, to confirm the false vacuum decay interpretation
of the observed macroscopic tunneling.
For each ΩR, we measure values of τ at different δB with the procedure described in
Section 6.2.1. Results are shown in Fig. 6.9, plotted as a function of the distance from the
critical point (δB − δc)/|κn|. Instanton theory can then be adjusted to our experimental
data with a two-parameter fit of equation 6.17, i.e.

ln τ = − lnA+ bÊc − 1
2 ln bÊc (6.31)

with A and b = n0ξs(ℏ|κ|n0/kBT ) as fitting parameters. For each of the four dataset,
Êc, given by formula 6.23, is independently calculated from the known experimental
parameters. Results of the fit are shown in Fig. 6.9 as dashed lines, and reported in
Table 6.1. We observe that, for every dataset, instanton theory, although being derived
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Figure 6.9: Decay time τ and instanton theory. Values of τ are obtained as explained
in the text for ΩR/2π = 300, 400, 600, and 800 Hz. Black dashed curves are fits of the
experimental data according to the instanton formula. Dotted lines refers instead to Ê(1)

c ,
dash-dot ones to Ê(2)

c , and solid ones to Ê(3)
c . Error bars include statistical uncertainties

on the fit and uncertainty on the δB due to the uncertainty on the magnetic field stability.
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in the small barrier approximation with the strong assumptions of a one-dimensional
uniform system, well fits experimental data.

ΩR/2π Aexp(σA) bexp(σb)
300 1.8(0.1) 56.5(1.9)
400 1.54(0.3) 44.4(6.1)
600 3(1) 30.3(3.7)
800 2(1) 25.8(5.7)

Table 6.1: Fitting coefficients for the thermal instanton model of vacuum decay. The fit
is limited to (δB − δc)/ΩR > 0.05 to ensure that bÊc > 1.

Despite the agreement between instanton theory and experimental data, we observe a
residual dependence of the fitting parameter b, which is related to both the temperature
T and the density n of the system, on the Rabi frequency ΩR. Fitting a power-law
1/b ∝ Ωβ

R, we indeed find β = 0.8 ± 0.05. As 1/b is proportional to the temperature,
at first sight it looks like the effective temperature contributing to the decay process
changes with the Rabi frequency, which might sound unphysical, unless heating process
induced by the microwave dressing are taken into account.
A sensible explanation is that our approximated instanton formula for Êc, given by
Eq. 6.23, does not completely capture the scaling of τ with the control parameters
(δB − δc) and ΩR. Limitations in the theory might either arise from the non completely
1D dimensionality of the sample, as demonstrated in Chapter 5, from the small barrier
approximation of the potential V (Z), or from relative phase contributions, present in
Eq. 6.16 and neglected in the calculation of Êc.
As an attempt to provide scaling exponents for a more refined theory, we correct the
expression for Êc, leaving exponents unbounded. In particular, we try to fit τ with three
different definitions of the energy barrier:

Ê(1)
c = 1.77

(
δB − δc
|κ|n0

)5/4 ( ΩR

|κ|n0

)β ( |δc|
|κ|n0

)−1/4

Ê(2)
c = 1.77

(
δB − δc
|κ|n0

)α ( ΩR

|κ|n0

)β ( |δc|
|κ|n0

)−1/4

Ê(3)
c = 1.77

(
δB − δc
|κ|n0

)α ( ΩR

|κ|n0

)β
(6.32)

For each definition of Ê(i)
c , i = 1, 2, 3, we repeat the fit of ln τ merging the dataset at

different ΩR. With this procedure we now obtain, for each Ê
(i)
c , a single value of b and,

more importantly, values for α and β, as reported in Table 6.2.
Results of the fits are also reported in Fig. 6.9, where different definitions of Êc are
labelled by different lines. We observe that, instanton theory still well matches exper-
imental data, and, independently of ΩR, the three curves are very similar between one
another.
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Êc αexp(σα) βexp(σβ) bexp (σb)

Ê
(1)
c 5/4 -0.84(0.12) 15(2)

Ê
(2)
c 1.03(0.2) -0.77(0.13) 10(4)

Ê
(3)
c 1.01(0.2) -0.40(0.13) 33(12)

Table 6.2: Fitting exponents for the scaling of the energy barrier Êc on the control
parameters. Each exponent is extracted from a two-variable fit of τ(Êc). In the first line
α is kept fixed.

From the fitted values of α and β, we observe that α is compatible, although slightly
lower, with the one predicted by the theory. On the other hand we find a negative value
of β, which also varies very much with each definition of Êc. The theoretical calculation
of such a different scaling, along with an in depth investigation of its origin, is still an
open question.
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Conclusions

In this Thesis, I reported on several experiments done on a Bose-Einstein condensate of
23Na atoms in the presence of a coherent radiation that couples two spin states. Such an
effective two-level system can be manipulated with a high degree of control, in particular
thanks to the extreme stability of the magnetic field of our apparatus. Our experimental
system is well suited for emulating a large variety of systems belonging to different fields
of physics. Examples of them are magnetism in solid state matter and false vacuum
decay in quantum field theory or particle creation in cosmology.

Two different spin mixtures were used. The first one represents a perfectly symmetric
combination that is fully miscible and not subject to buoyancy effects. This represents an
ideal experimental platform for the investigation of elementary oscillations and in fact we
succeeded in measuring, for the first time, the Bogoliubov spectrum for both density and
spin channels on the same system. The measurement was performed generating Faraday
waves in the absence of coherent coupling, showing the expected behavior as expected
from GPE simulations and revealing the presence of two distinct speeds of sound. The
addition of the coherent coupling introduces a gap in the spin channel, that we measured
as a function of the coupling strength. In this case, the generation of Faraday waves can
be interpreted as the creation of massive excitations, and paves the way for analogue
gravity studies with our platform. In particular, on the long run, the use of our protocol
for a detailed measurement of density-density or spin-spin spatial correlations could
shed light on the generation of entangled massless and massive particles in a modulated
space-time.

We also used a second spin mixture that instead undergoes spatial phase separation,
in the absence of coherent coupling. In the presence of coupling, the specific interaction
constants of such a mixture allow it to exhibit a quantum phase transition from a single-
minimum paramagnetic state to a double-minimum ferromagnetic one. Thanks to the
exquisite stability of the bias magnetic field and the tunability of the control parameters
we were able to experimentally measure the phase diagram of a magnetic material. The
emergence of a phase transition was further validated through a measurement of diverg-
ing magnetic susceptibility and fluctuations. Taking advantage of the spatial extension
of our sample, we also demonstrated the deterministic formation of domain walls, be-
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tween ferromagnetic regions with opposite sign. This study places our platform as a
promising candidate for the study of magnetic properties and the dynamics of magnetic
excitations, in an environment free of dissipation and defects.

Finally, we used the same spin mixture to study the dynamics of a macroscopic
field prepared in an extended metastable state. We observed the decay from such a
metastable state to the absolute ground state of the field, which occur through the
formation of macroscopic spin regions (bubbles), delimited by domain walls, that expand
indefinitely. We performed a detailed measurement of the characteristic decay rate,
which is characterized by an exponential growth as a function of the control parameters.
Experimental data were compared with an instanton theory developed specifically for
our platform. This allows us to interpret our results in strong analogy with the problem
of false vacuum decay via bubble nucleation in quantum field theory.

The validity of the results detailed in this Thesis already demonstrates the capabil-
ities and tunability of our platform. However there is still room for several upgrades
on the experimental apparatus, which would help pushing our research further. A first
major upgrade would be the use of a Digital Micromirror Device to generate arbitrary
trapping potentials and create a homogeneous sample. This would give the possibility,
for example, to create a controlled environment for the test of the fluctuation-dissipation
theorem, allowing for a measurement of the spin temperature and for an investigation of
the quantum or thermal origin of the magnetic fluctuations. On top of this, the addition
of a local coherent coupling with optical radiation would give the possibility to create
analogues of magnetic heterostructures and magnetic interfaces.
An arbitrary trapping potential could also be used to create a homogeneous two dimen-
sional BEC, which would allow for a further characterization of the spatial properties of
bubbles and for the study of their collisions. The implementation of a non-destructive
imaging system is another interesting upgrade, since it would give the possibility to
study the expansion dynamics of a stochastically generated bubble after its nucleation.
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Scattering Lengths

In this Appendix I report the values of the scattering lengths between all Zeeman sub-
levels of |F = 1⟩ and |F = 2⟩ of 23Na, calculated for B = 1.5 G, but valid between 0
and 2 G. We thank E. Tiemann for providing the calculated values [206]. Here, Table
3 reports the absolute value of the scattering length aij , in units of the Bohr radius
a0 = 0.53 Å, for interactions between different hyperfine states i and j. Table 4 reports
the ratio ∆a/a = a−aij

a , where i, j again label different hyperfine states, and a = aii+ajj

2
is their mean value.

1,1 1,0 1,-1 2,-2 2,-1 2,0 2,1 2,2
1,1 54.538 54.519 50.750 56.983 53.156 53.060 56.781 64.273
1,0 52.633 54.495 49.002 60.524 64.273 60.550 48.747
1,-1 54.482 64.273 56.684 52.832 52.830 56.687
2,-2 64.265 64.265 53.587 48.272 41.817
2,-1 56.268 61.605 49.808 48.322
2,0 53.047 61.614 53.655
2,1 56.319 64.265
2,2 64.265

Table 3: Absolute value of the scattering lengths for atoms in different (or same) hyper-
fine states of the ground state of 23Na.
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1,1 1,0 1,-1 2,-2 2,-1 2,0 2,1 2,2
1,1 -0.018 0.069 0.035 0.040 0.014 -0.024 -0.079
1,0 -0.017 0.187 -0.101 -0.178 -0.101 0.193
1,-1 -0.079 -0.023 0.018 0.049 0.044
2,-2 -0.064 0.090 0.246 0.537
2,-1 -0.113 0.130 0.244
2,0 -0.113 0.088
2,1 -0.064
2,2

Table 4: Relative difference between intraspecies and interspecies scattering lengths,
calculated as explained in the main text. Green (red) cells label miscible (immiscible)
mixtures.
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Littlewood, B. Deveaud, and Le Si Dang. Bose–Einstein condensation of exciton
polaritons. Nature, 443(7110):409–414, Sep 2006. Cited at page 1

[3] Jan Klaers, Julian Schmitt, Frank Vewinger, and Martin Weitz. Bose–Einstein
condensation of photons in an optical microcavity. Nature, 468(7323):545–548,
Nov 2010. Cited at page 1

[4] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory
of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys., 71:463–512, Apr
1999. Cited at pages 2, 3, 4, 5, and 80

[5] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances
in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010. Cited at page 2

[6] Lev Pitaevskii and Sandro Stringari. Bose-Einstein condensation and superfluidity.
International series of monographs on physics. Oxford University Press, Oxford,
2016. Cited at pages 3, 4, 6, 7, 9, 36, 54, 95, and 96

[7] C. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cambridge
University Press, 2002. Cited at pages 4 and 9

[8] Alexander L. Fetter. Ground state and excited states of a trapped dilute condensed
Bose gas. Czechoslovak Journal of Physics, 46(6):3063–3069, Jun 1996. Cited at
page 5

[9] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson. Excitation Spectrum of a Bose-
Einstein Condensate. Phys. Rev. Lett., 88:120407, Mar 2002. Cited at pages 5
and 63

https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://link.aps.org/doi/10.1103/RevModPhys.71.463
https://link.aps.org/doi/10.1103/RevModPhys.71.463
https://link.aps.org/doi/10.1103/RevModPhys.82.1225
https://link.aps.org/doi/10.1103/RevModPhys.82.1225
https://cds.cern.ch/record/2143198
https://www.bibsonomy.org/bibtex/20720f0961188e047b7d5753f24d6d69a/lindoze
https://doi.org/10.1007/BF02548111
https://doi.org/10.1007/BF02548111
https://link.aps.org/doi/10.1103/PhysRevLett.88.120407
https://link.aps.org/doi/10.1103/PhysRevLett.88.120407


128 BIBLIOGRAPHY

[10] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio. Two Atomic
Species Superfluid. Phys. Rev. Lett., 89:190404, Oct 2002. Cited at page 5

[11] A. Burchianti, C. D’Errico, S. Rosi, A. Simoni, M. Modugno, C. Fort, and F. Mi-
nardi. Dual-species Bose-Einstein condensate of 41K and 87Rb in a hybrid trap.
Phys. Rev. A, 98:063616, Dec 2018. Cited at page 5

[12] A. Mosk, S. Kraft, M. Mudrich, K. Singer, W. Wohlleben, R. Grimm, and M. Wei-
demüller. Mixture of ultracold lithium and cesium atoms in an optical dipole trap.
Applied Physics B, 73(8):791–799, Dec 2001. Cited at page 5
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[100] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Mart́ınez-Garaot,
and J. G. Muga. Shortcuts to adiabaticity: Concepts, methods, and applications.
Rev. Mod. Phys., 91:045001, Oct 2019. Cited at page 44

[101] M. J. Steel and M. J. Collett. Quantum state of two trapped Bose-Einstein con-
densates with a Josephson coupling. Phys. Rev. A, 57:2920–2930, Apr 1998. Cited
at pages 44 and 45

[102] Daniel Steck. Quantum and Atom Optics. revision 0.12.6 edition, 2019. Cited at
page 44

[103] M Faraday. On a peculiar class of acoustical figures; and on certain forms assumed
by groups of particles upon vibrating elastic surfaces. 1821. Cited at page 49
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[108] Diego Hernández-Rajkov, José Eduardo Padilla-Castillo, Alejandra del Ŕıo-Lima,
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manuel Bloch. Quantum phase transition from a superfluid to a Mott insulator in
a gas of ultracold atoms. Nature, 415(6867):39–44, Jan 2002. Cited at page 70

[147] D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, and
I. B. Spielman. Magnetic phases of spin-1 spin–orbit-coupled Bose gases. Nature
Communications, 7(1):10897, Mar 2016. Cited at page 70

[148] A. Trenkwalder, G. Spagnolli, G. Semeghini, S. Coop, M. Landini, P. Castilho,
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