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apple and/or pear orchards, therefore representing a great 
threat to the apple and pear production of many regions 
worldwide (Doolotkeldieva et al. 2016). The causal agent 
of fire blight is Erwinia amylovora, a Gram-negative bac-
terium reported in the European and Mediterranean Plant 
Protection Organization (EPPO) A2 lists of the of pests rec-
ommended for regulation as quarantine pests (EPPO 2022). 
Although E. amylovora exploits small wounds in plant tis-
sue caused by insects or strong winds to invade the plant, 
flowers are considered the main sites of infection. Coloni-
zation of flowers of Rosaceae plants by E. amylovora cells 
allows them to grow on stigma surfaces and subsequently 
enter the plant through the hypanthium (Cui et al. 2021c). 
Once E. amylovora enters the plant, it moves systemically 
through the parenchyma where its accumulation and its 
production of biofilms break the epidermis, leading to ooze 
formation that represents a secondary source of inoculum 
(Schouten 1989a, b; Slack et al. 2017). Ooze attracts insects 
that can become potential vectors and further spread the 
disease (Boucher et al. 2021a). Notably, the presence of E. 
amylovora within the flowers does not inevitably result in 

Introduction

Fire blight is a devastating disease affecting a wide range of 
plant species belonging to the Rosaceae family, including 
apple (Malus domestica L.) and pear (Pyrus communis L.) 
that are the major hosts. Since its first description in New 
York State at the end of the 18th century, this destructive 
disease spread to many countries and it is now present in 
New Zealand, Europe, northern Africa, Asia, and the Mid-
dle East (Van der Zwet et al. 2012; Jock et al. 2013; Park et 
al. 2017; Gaganidze et al. 2018, 2021; Doolotkeldieva et al. 
2021). Even though fire blight outbreaks are often sporadic, 
disease development can rapidly lead to the loss of entire 
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Abstract
Fire blight represents a great threat to apple and pear production worldwide. The ability of its causal agent, Erwinia amy-
lovora, to spread rapidly in the host plants makes this devastating disease difficult to manage. Copper and antibiotics are 
still the most effective solutions to control fire blight, although their application contribute to environmental pollution and 
to the development of E. amylovora resistant populations. Thus, there is an urgent need to find new alternatives to such 
plant protection products. In this review, we summarized what is known on E. amylovora biology, as the knowledge of the 
plant pathogen biology is essential to develop eco-friendly management strategies. Notably, the presence of E. amylovora 
alone does not necessarily result in the disease development as it is the final outcome of multiple interactions established 
between E. amylovora cells, flower microbiota, plant host, insect vectors and environment. For instance, specific humid-
ity and temperature create the suitable conditions for E. amylovora to grow and reach the specific cell density needed for 
plant infection. Once fire blight develops, insects act as potential vectors of E. amylovora, playing a role in the dispersal 
of the disease. The host plant represents an important factor as its susceptibility varies among the species belonging to 
the Rosaceae family. Recent studies showed apple flower microbiota might promote or hinder the infection progress, thus 
representing a possible source of new biocontrol agents effective in controlling E. amylovora.
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the disease development. Indeed, several studies report fire 
blight only occurs when there are specific environmental 
conditions that facilitate E. amylovora cell movement and 
multiplication (Dagher et al. 2020; Pusey 2000). However, 
weather conditions are not the only environmental factors 
to consider. Increasing evidence indicates that the microbial 
communities living in flowers may play an important role 
in the earliest stage of host colonization when E. amylovora 
multiplies on stigma surfaces (Cui et al. 2021b).

Since the knowledge of the ecology and biology of 
plant pathogens is essential to find new eco-sustainable 

approaches in plant protection (Morris et al. 2017), this 
review will focus on the interactions between E. amylovora 
and all the other factors involved in the development of 
fire blight, providing an insight in the ecology of this plant 
pathogenic bacterium (Fig. 1).

Influence of environmental factors on the 
establishment and virulence of Erwinia 
amylovora

As reported by Stevens (1960), a favourable environment 
is one of the three main factors needed for disease develop-
ment. But what is meant by ‘favourable environment’ in the 
case of fire blight?

First of all, relative humidity (RH) showed to strongly 
affect E. amylovora population size during flower coloni-
zation, whose density must exceed 104 bacterial cells per 
flower to cause the infection in apple plants (Philion 2014). 
At a stigmatic level, it was seen the epiphytic growth of E. 
amylovora can reach a concentration of more than 106 bac-
terial cells per crab apple flower only when RH is above 
55%, while a RH higher than 80% was required in the floral 
cup (hypanthium) (Pusey 2000). Rainy weather plays there-
fore a key role in creating a wet environment suitable for E. 
amylovora cell multiplication, but flower humidity can be 
also enhanced by the dew occurring throughout the night, 
as recently hypothesised (Slack et al. 2022). According to 
the same study, this phenomenon would be influenced even 
by light wind (Slack et al. 2022). Besides E. amylovora cell 
population size, disease development requires the activation 
of the Type 3 Secretion System (T3SS), a crucial virulence 
factor. High RH would contribute to the expression of the 
genes related to T3SS, thus enabling E. amylovora to inject 
proteins into the host plant to start the infection (Cui et al. 
2021a).

Together with RH, temperature is another environmental 
factor essential to reach the high cell density required for 
flower infection (Canada AeA 2006; MAAARO 2011). The 
optimal temperature for the growth of E. amylovora is 28 °C 
(Santander et al. 2017; Van der Zwet et al. 1979), which is 
consequently the most suitable temperature for fire blight 
development. However, it was recently shown E. amylov-
ora pathogenicity is maintained even at colder tempera-
tures (14 °C and 4 °C), proving that the low bacterial cell 
growth rates slowed down the infection without necessarily 
preventing it (Santander et al. 2017). Moreover, it is wor-
thy to note the pH is also a parameter to consider. Indeed, 
the optimum pH for the growth of E. amylovora is around 
7.5 (Shrestha et al. 2005) and it was reported this affects 
both growth and chemotaxis in E. amylovora (Raymundo 
et al. 1980). In addition, Pester and colleagues (2012) also 

Fig. 1 Multiple interactions occurring in the environment that may 
affect the establishment and virulence of Erwinia amylovora cells in 
the flowers of Rosaceous plants. (1) Insects may promote the dissemi-
nation of E. amylovora cells and allow the plant pathogen to reach the 
plant hosts; (2) Environmental factors such as temperature and rela-
tive humidity may affect E. amylovora ability to colonize flowers and 
infect the plant hosts; (3) Plant hosts may hinder the success of the 
infection by E. amylovora cells through the perception of Pathogen 
Associated Molecular Patterns (PAMPs) and effectors leading to the 
activation of the PAMP Triggered Immunity (PTI) and Effector Trig-
gered Immunity (ETI), respectively; (4) Microbial communities resid-
ing in the flowers may compete with E. amylovora cells for space and 
nutrients. Moreover, bacterial communities may interact directly and/
or indirectly through Type 6 Secretion System (T6SS) and chemical 
communication signals involved in the Quorum Sensing (QS), thus 
affecting E. amylovora growth and virulence. (Created with Biorender.
com)
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showed acidic conditions might affect E. amylovora patho-
genicity. Indeed, the expression of T3SS genes is no longer 
induced in acidic conditions (pH 4), proving pH has a role 
in E. amylovora virulence (Pester et al. 2012).

All the studies reported above highlighted the environ-
mental conditions that may favour the establishment of E. 
amylovora cells in plant flowers. However, E. amylovora 
cells has also to withstand environmental conditions that 
may be unfavorable (i.e., dryness). So, it comes naturally to 
wonder how E. amylovora can cope with adverse environ-
mental conditions and what strategies this bacterium may 
implement to survive and persist in the environment.

The factors described so far are all environmental vari-
ables. To a certain extent, the flower itself could be seen as 
a confined environment in continuous evolution. By their 
opening, apple and pear flowers undergo several changes 
that could explain why flower age hinders the colonization 
ability of E. amylovora (Pusey et al. 2008b; Slack et al. 
2022). One of these changes is related to the composition 
of stigmatic exudates which differs in correlation to flower 
opening stage (Pusey et al. 2008a). Moreover, visitors such 
as pollinators can disperse microorganisms that constitute 
potential competitors for the nutritional sources harboured 
within the flower, contributing to a shift in the bacterial 
community (Cui et al. 2021b, c).

It is now widely accepted that biofilm is one of the most 
important virulence factors required by E. amylovora to 
cause disease (Koczan et al. 2009, 2011; Kharadi and Sun-
din 2021; Peng et al. 2021). Biofilm consists of E. amylov-
ora cells and a polymeric matrix whose main components 
are amylovoran, levan and cellulose (Castiblanco et al. 
2018; Koczan et al. 2009, 2011) namely exopolysaccharides 
(EPSs). In addition, EPS capsule synthesized by E. amy-
lovora enhances both dry and cold tolerance, since under 
these stressful conditions their production is increased, in 
particular at low temperature (Jock et al. 2005; Santander et 
al. 2017). Moreover, it was reported that levan might protect 
E. amylovora cells from plant defence mechanisms (Geier 
and Geider 1993), while amylovoran had a protective effect 
against desiccation and salinity (Geider 2000, 2009). Simi-
larly, Ordax and colleagues (2010) showed amylovoran and 
levan protected E. amylovora cells against the toxic effect 
of copper ions. Moreover, both amylovoran and levan can 
be exploited by E. amylovora cells as an alternative carbon 
source when the nutrient availability in the environment is 
limited (Ordax et al. 2010).

The lack of nutrients is one of the several stresses plant 
pathogenic microorganisms are exposed to, especially when 
they are not in the host plant. It was observed E. amylovora 
undergoes numerous morphological changes under starva-
tion, altering cell size and shape, as well as producing vesi-
cles whose function has not been determined yet (Santander 

et al. 2014). Additionally, nutrient deprivation resulted in 
loss of motility even though flagellar biosynthesis was not 
reduced, as proved by gene expression analysis (Santander 
et al. 2014). Strikingly, E. amylovora cells kept under star-
vation condition were still able to cause symptoms compa-
rable to cells kept under optimal conditions (Santander et 
al. 2014).

Similarly to other Gram-negative plant pathogenic bacte-
ria (Grey et al. 2001; Kong et al. 2014), E.amylovora cells 
may also enter into Viable But Not Culturable (VBNC) 
state to withstand unsuitable environmental conditions. For 
instance, the entry into VBNC is a strategy used by E. amy-
lovora cells to counteract the presence of chlorine and cop-
per ions (Ordax et al. 2006, 2009; Santander et al. 2012) 
as well as resist starvation. VBNC in E. amylovora, is also 
triggered under starvation and is particularly influenced by 
temperature (Santander et al. 2014), proving once again 
how much the environment may influence life of E. amy-
lovora cells.

Recent findings showed the expression of virulence genes 
in E. amylovora changes throughout apple flower infection 
(Schachterle et al. 2022). Specifically, T3SS and flagella are 
highly induced during the colonization of flower stigmas 
and at the flower base (Schachterle et al. 2022). The biosyn-
thesis of amylovoran have a similar regulation, while genes 
involved in the sulfur/oxidative stress are expressed during 
all stages of the infection (Schachterle et al. 2022). These 
outcomes suggest the E. amylovora might modulate its 
virulence according to the environmental stimuli perceived. 
Previous studies were carried out to understand how this 
takes place at a molecular level (Schachterle et al. 2019a, b, 
2022; Yang et al. 2020; Kharadi et al. 2022). Yang and col-
leagues (2020) reported the RelA/SpoT system is activated 
in E. amylovora under adverse conditions, such as starva-
tion and oxidative stress, leading to an increase in the pro-
duction of the nucleotide second messenger (p)ppGpp that 
positively regulates T3SS and motility (Yang et al. 2020). 
Cyclic di-GMP, another nucleotide second messenger, has 
an important role during xylem invasion. Indeed, its accu-
mulation inside E. amylovora cells promoted the surface 
attachment mediated by the Type IV pilus and the produc-
tion of EPSs, two factors involved in the biofilm formation 
(Kharadi et al. 2022). However, E. amylovora virulence 
traits and oxidative stress adaptation are also influenced by 
ArcZ, OmrAB and RmaA, small RNAs regulators acting at 
a transcriptional and post-transcriptional level (Schachterle 
et al. 2019a, b). Overall, these observations highlighted the 
complexity of the regulatory systems activated by E. amy-
lovora in response to the environment.
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attention of fire blight research. Medfly is classified as one 
of the most dangerous threats to fruit production worldwide 
due to its invasiveness and ability to easily settle in new 
areas, that make it difficult to control this pest (Aluja and 
Norrbom 2000). It was seen this pest can acquire E. amy-
lovora by feeding on inoculum drops of infected apples and 
harbour the plant pathogenic bacterium both in inner and 
outer parts of insect’s body for 8 and 28 days, respectively, 
similarly to the previously observations conducted on hon-
eybees (Ordax et al. 2015).

Trees infected by fire blight present small bacterial ooze 
droplets on fruits or other plant tissues depending on how 
the stage of disease is advanced (Johnson 2000). In contrast 
to honeybees, flies such as D. melanogaster can be contami-
nated by E. amylovora directly from ooze and later transfer 
the pathogen, even though this transmission was only tested 
on selective medium (Boucher et al. 2019). E. amylovora 
cell acquisition, but not its abundance, was positively cor-
related to the amount of time D. melanogaster individuals 
were exposed to bacterial ooze (Boucher et al. 2019) tested 
3, 6, 12 and 24 h of exposure, but it is questionable these 
times represent what really happens in the field, where flies 
can be attracted by several ooze sources and could probably 
keep flying from one source to another. So, it is difficult to 
know whether the time they are exposed to ooze is suffi-
cient to acquire enough E. amylovora cells to further spread, 
also because the E. amylovora population harboured in ooze 
could differ.

A recent study carried out on Delia (De.) platura, another 
fly species, underlined EPSs contained in ooze would also 
enhance the attachment of the E. amylovora cells to the 
surface of the insects (Boucher et al. 2020). Surprisingly, 
insects showed no preference for infected apples with or 
without ooze droplets (Boucher et al. 2021a), although it 
is known the attractive effect exerted by ooze on insects 
(Agrios 2008). Investigating the role of odours emitted by 
infected and uninfected apples emerged that De. platura 
seems to prefer healthy fruits to those diseased when the 
infection was in an advanced stage (Boucher et al. 2021a). 
To a certain extent, this is consistent with what reported by 
Cellini et al. (2019) on the role of VOCs in the honeybee 
transmission. These observations were conducted on con-
trolled experimental conditions, but what happens in open 
field? According to recent findings, the role of pollinators in 
the E. amylovora dispersal may be overestimated (Boucher 
et al. 2021b). However, it is conceivable that data collected 
in open field are strongly affected by several environmental 
factors, such as temperature and humidity. In addition, the 
outcomes reported by Boucher et al. (2021b) are just pre-
liminary and limited to a specific area. Further studies on 
other orchards are needed to provide other data to confirm 
what observed.

Influence of the interaction with insect 
on the dispersal and infection by Erwinia 
amylovora

Due to their essential role in agriculture, honeybees and 
other pollinators have always been seen as potential carri-
ers of plant pathogenic microorganisms (McArt et al. 2014; 
Cellini et al. 2019). This is of particular interest in the case of 
fire blight because pollination takes place in flowers, which 
are regarded as the primary sites of infection. Honeybees’ 
involvement in E. amylovora dispersal was demonstrated in 
the first half of the 1900 (Keitt et al. 1941; Pierstorff et al. 
1934). To be transmitted, E. amylovora cells must survive 
inside and/or outside the body of the insects. Early results 
reported contaminated honeybees can carry E. amylovora 
on the body surface and in the intestine for up to 48 and 
36 h, respectively. However, E. amylovora cell longev-
ity strongly depended on temperatures (Alexandrova et al. 
2002a, b; Sabatini et al. 2006). In contrast, Choi et al. (2022) 
recently revealed E. amylovora cells can be detected for a 
longer period inside the honeybees that can disseminate the 
plant pathogenic bacterium in a time span of 10 days after 
contamination. Moreover, the same authors showed honey-
bees may acquire E. amylovora from diseased apple plants 
and further spread the pathogen to healthy plant hosts (Choi 
et al. 2022). This raises questions on the way the interac-
tion involving E. amylovora, pollinators and host plants is 
modulated. Honeybees seem to be more attracted by healthy 
apple flowers rather than infected ones and this phenom-
enon could be driven by the emission of Volatile Organic 
Compounds (VOCs) (Cellini et al. 2019). It was hypothe-
sised honeybees may distinguish between diseased and non-
diseased apple flowers by recognizing their VOCs profile. 
In particular, methyl salicylate, whose emission is associ-
ated to E. amylovora infection, would discourage pollina-
tors’ visits (Cellini et al. 2019). If on one hand the honeybee 
preference for healthy flowers would prevent the dissemina-
tion of the E. amylovora, on the other hand the attractive-
ness of healthy flowers towards honeybees infected with E. 
amylovora might facilitate disease transmission (Cellini et 
al. 2019). The epidemiological implications behind these 
observations highlighted by Cellini et al. (2019) are unclear 
yet and further studies are needed to disentangle the com-
plicate interaction between honeybee-E. amylovora-apple 
flowers.

Even though bees and hoverflies represent the most 
important pollinators of apple flowers (Delaplane and 
Mayer 2000; Klein et al. 2007; Pardo and Borges 2020), 
orchards are visited by a wide population of non-pollina-
tors throughout the seasons. Among them, fruit flies such 
as Ceratitis capitata (the Mediterranean fruit fly, or med-
fly) and the common Drosophila melanogaster attracted the 
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was expressed also in the susceptible apple rootstock M.26, 
the formation of necrotic tissue in the leaves was signifi-
cantly reduced upon the infection by E. amylovora (Piazza 
et al. 2021). The case reported shows how finding candidate 
genes in the genome of plant species belonging to families 
other than Rosaceae can be a possible strategy to increase 
resistance in apple trees. However, the same can be done 
focussing on the Malus genus. The receptor-like kinase pro-
tein (FB_Mfu10) found in M. fusca might be involved in 
the resistance of this wild apple species (Emeriewen et al. 
2018). Even though further studies are needed to confirm 
this hypothesis, this receptor harbours a domain that might 
bind the exopolysaccharide amylovoran, thus recognizing 
E. amylovora cells and contributing to activate the plant 
defence (Emeriewen et al. 2018).

To silence PTI, plant pathogens evolved a strategy 
based on the secretion of specific proteins called effectors. 
In Gram-negative plant pathogenic bacteria, such as E. 
amylovora, effectors are delivered into host cells through 
the T3SS encoded by the hrp box (Lindgren et al. 1986; 
Büttner et al. 2009). On the other side, plant genome can 
harbour genes able to specifically suppress the effector’s 
activity, leading to resistance. This gene-for-gene resistance 
mechanism is called ETI (Effector Triggered Immunity). By 
acquiring additional effectors or modifying the recognised 
ones, pathogens can avoid ETI until natural selection leads 
plants to have new resistance genes and this never-ending 
evolution in attack-defence response was named ‘The zig-
zag model’ (Jones et al. 2006).

It is difficult to apply the zigzag model to Malus-E. amy-
lovora pathosystem because several studies showed how 
complicated it is to understand the gene-for-gene interac-
tion between E. amylovora and Malus species. However, 
the possible molecular mechanisms involved in the interac-
tion between E. amylovora and Malus spp. are summarized 
below.

In E. amylovora, T3SS gene expression is activated in 
the first 48 h after flower inoculation (Pester et al. 2012; 
Schachterle et al. 2022). Particularly, its activation would be 
strongly induced during the epiphytic colonization of stig-
mas and reduced when E. amylovora cells reach the hypan-
thium (Cui et al. 2021a). Several effector genes, namely 
hrpN and hrpW (Wei et al. 1992; Kim and Beer 1998); 
dspE, involved in plant cell apoptosis (Bogdanove et al. 
1998); hopPtoCEa, whose function is not known yet (Zhao 
et al. 2005); avrRpt2EA, homologous to avrRpt effector of 
Pseudomonas syringae pv. tomato (Zhao et al. 2006); eop3, 
similar to effectors belonging to HopX family (Nissinen et 
al. 2007); xopX1Ea (Bocsanczy et al. 2012); eop1 (Wöh-
ner et al. 2018) were identified in E. amylovora sequenced 
genomes. One of the most widely studied effectors is 
avrRpt2EA, which has a single nucleotide polymorphism at 

To summarise, both pollinators and non-pollinators 
showed the ability of acquiring E. amylovora, which can 
be maintained in internal parts of the insect body, particu-
larly in the digestive tract. E. amylovora internalisation 
might result in its transmission to the progeny. Research 
carried out on the egg parasitoid Anaphes nitens focussed 
on this aspect. By studying the endosymbionts of this insect, 
Ribeiro et al. (2022) found E. amylovora was inherited by 
the F1 and F2 generations, but it was absent on the eggs 
of Gonipterus platensis, the beetle species parasitised by 
A. nitens (Ribeiro et al. 2022). These outcomes represent 
the first evidence E. amylovora can be vertically transmit-
ted in a parasitoid, raising question on the possibility this 
phenomenon taking place also in other insect species able 
to disseminate E. amylovora. So far, E. amylovora was not 
detected in the eggs of medfly (Ordax et al. 2015), but no 
data are available on honeybees.

Impact of host plants on the pathogenicity 
of Erwinia amylovora

Plant disease could be seen as a never-ending war in which 
the invader, namely the plant pathogenic microorganism, 
fights to conquer a new niche, represented by the host 
plant, where it can acquire substances needed for its sur-
vival (Agrios 2005). It is an arms race in which each side 
tries to attack and protect itself from the other (Anderson 
et al. 2010). Due to their short generation time, plant patho-
genic bacteria evolve more rapidly than their host plants 
(Frantzeskakis et al. 2020), giving them an advantage on the 
host and keeping the interaction with the plant constantly 
evolving.

Plant immunity is based on two main response mecha-
nisms, namely Pattern-Triggered Immunity (PTI) and Effec-
tor-Triggered Immunity (ETI) (Anderson et al. 2010). In 
PTI, plant defence reactions are activated after widely con-
served microbial molecules (Pathogen-Associated Molecu-
lar Patterns, PAMPs) are recognised by specific receptors 
namely Pattern Recognition Receptors (PRRs) (Chisholm 
et al. 2006; Zhang and Zhou 2010). Transcriptional analy-
sis revealed apple plants activate this basal defence in the 
first two hours after E. amylovora inoculation (Norelli et 
al. 2009), thus representing the first barrier E. amylovora 
cells must overcome to establish disease. For this reason, 
improving this earliest immune response of the plant would 
be a promising strategy to withstand fire blight. As seen for 
several species belonging to the Solanaceae and Poaceae 
families, transgenic plants expressing the Arabidopsis thali-
ana EF-TU RECEPTOR (EFR) have an increased resis-
tance to bacterial plant pathogens (Schoonbeek et al. 2015; 
Schwessinger et al. 2015; Boschi et al. 2017). Once this PRR 

1 3



Journal of Plant Pathology

These outcomes add information to the resistance reaction 
in Malus ×robusta 5, but further studies are needed to have 
a more detailed view.

Plant defence may also be triggered indirectly, without 
any physical contact between the plant pathogen and the 
host. In this regard, the VOCs profile emitted by apple (cv. 
Golden Delicious) plantlets infected with E. amylovora Ea 
ICMP 1540 was characterized (Cellini et al. 2018). Interest-
ingly, Cellini and colleagues (2018) reported the exposure 
of apple plants to these volatiles enhanced the activation of 
the signalling pathways related to salicylic acid (SA), a phe-
nolic compound known for its role in plant immunity (Vlot 
et al. 2009), thus highlighting a possible innovative applica-
tion of VOCs in the disease management.

Looking at E. amylovora during the interaction with 
apple plants, Puławska and colleagues (2017) inoculated 
E. amylovora 650 either in a resistant or susceptible apple 
cultivar. The main difference was seen for E. amylovora 
genes related to stress response indicating that E. amylov-
ora 650 implemented molecular mechanisms involved in 
the protection of secondary metabolites and cell from toxic 
compounds. Indeed, genes encoding heat shock proteins, as 
well as those related to multidrug efflux pumps, were highly 
expressed when E. amylovora 650 was inoculated in plants 
of the resistant apple cultivar Free Redstar (Puławska et al. 
2017).

Influence of bacterial communities on 
Erwinia amylovora establishment in flowers

An increasing body of knowledge is highlighting the impor-
tance of the plant host microbiota in the establishment of a 
pathogenic interaction between a plant pathogenic microor-
ganism and its plant host.

For instance, Ralstonia solanacearum caused a drastic 
shift in the composition of tomato root-associated bacterial 
taxa that strongly influenced the R. solanacearum abun-
dance, as well as the biochemical soil properties (Wei et al. 
2018). Similar changes in the rhizosphere microbial com-
munities have been reported also for Verticillium dahliae. 
This plant pathogenic fungus might select collaborative 
microorganisms within the plant host microbiota through 
the secretion of a specific effector, attributing these proteins 
a new role in plant disease (Snelders et al. 2021). These 
are just two examples that show manipulation of plant host 
microbiota might be a strategy exploited by several plant 
pathogenic microorganisms during plant host colonization. 
Is this ability shared by E. amylovora also?

Recently, Cui and colleagues (2021a) tried to understand 
what happens within the stigmatic bacterial communities 
upon E. amylovora inoculation. Metagenomic analysis 

position 156 of its amino acidic sequence, where a cysteine 
residue can be replaced with a serine (Vogt et al. 2013). E. 
amylovora strains carrying cysteine, such as E. amylovora 
Ea273, belong to the “C-allele” group, while those present-
ing serine, like the Canadian E. amylovora strains, belong to 
the “S-allele” group (Vogt et al. 2013). Recently, Schröpfer 
and colleagues (2018) observed the effect of avrRpt2EA on 
the susceptible M. domestica cultivar Pinova (Schröpfer et 
al. 2018). Transgenic lines expressing avrRpt2EA activated 
the salicylic acid-mediated defence response and devel-
oped typical fire blight symptoms, suggesting this effector 
alone is sufficient to cause disease (Schröpfer et al. 2018). 
Moreover, the interaction between the effector HrpN and 
the Malus spp. specific protein named HIMP resulted in the 
disease development (Wei et al. 1992; Oh and Beer 2007). 
As a consequence, transgenic apple plants with a reduced 
expression level of HIMP were more resistant to E. amy-
lovora infection (Campa et al. 2019).

Since most of commercial apple tree varieties are sus-
ceptible to fire blight, genome mining studies aimed at iden-
tifying resistance genes mainly in wild apple genotypes. 
Resistance quantitative trait loci (QTLs) were found in 
M.floribunda 821 (Durel et al. 2009), Malus × robusta 5 
(Peil et al. 2007), M.fusca (Emeriewen et al. 2018), Malus 
× arnoldiana (Emeriewen et al. 2021), and in the ornamen-
tal crab apple M. evereste (Durel et al. 2009). So far, only 
the FB_MR5 gene from Malus × robusta 5 showed a gene-
for-gene interaction with effector avrRpt2EA, but this was 
strongly influenced by the E. amylovora strain inoculated. 
Indeed, E. amylovora strains belonging to the S-allele group 
were able to overcome plant defence, unlike strains having 
the cysteine allele (Vogt et al. 2013). These results were 
confirmed by transforming M. domestica cv. ‘Gala’ with 
FB_MR5 (Broggini et al. 2014). Strain-dependent suscepti-
bility was also observed in M. floribunda 821 and Evereste, 
whose resistance mechanism to E. amylovora is thought to 
be related to effector eop1, even though it was not proved 
yet (Wöhner et al. 2018).

In addition to the immunity response triggered by FB_
MR5 gene, other mechanisms presumably occur during the 
resistance response. A recent study compared the response 
of Malus ×robusta 5 inoculated with either the wild type 
strain E. amylovora Ea1189, triggering the ETI and there-
fore avirulent, and the mutant in the avrRpt2EA, which is 
virulent since it is not anymore recognized by the apple 
plants. Several differentially expressed genes were reported 
in plants inoculated with either the E. amylovora Ea1189 
virulent or avirulent strain. For instance, Malus ×robusta 
5 plants induced a higher expression of genes involved in 
the flavonoids pathway and in the biosynthesis of (E)-ß-
caryophyllene (Schröpfer et al. 2021), a VOC compound 
known for its antimicrobial activity (Cellini et al. 2019). 
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lactones (AHLs) produced by N-acyl homoserine lactone 
synthases encoded by luxI homologs (Papenfort and Bassler 
2016). However, Gram-negative bacteria may produce 
another AI called Autoinducer-2 deriving from cyclization 
of 4,5-dihydroxy-2,3-pentanedione synthesized by ribosyl-
homocysteine-cleavage enzyme encoded by luxS homologs 
(Schauder et al. 2001; Pereira et al. 2013). It is now widely 
accepted that AIs might be at the basis of interspecies com-
munication within plant pathogenic bacteria and bacte-
rial communities residing on plant host organs (Dulla and 
Lindow 2009; Cellini et al. 2020). Homologs of the genes 
mentioned above were found in E. amylovora genomes and 
their functionality was confirmed by the detection of AHLs 
and Autoinduer-2 in several strains (Molina et al. 2005; 
Rezzonico et al. 2007; Venturi et al. 2004). It was reported 
AHL release would contribute to EPS production, virulence, 
and tolerance to hydrogen peroxide (Molina et al. 2005). 
Interestingly, AI production was not observed for some E. 
amylovora strains isolated in Germany and Switzerland 
(Mohammadi et al. 2007), probably because of the low titre 
of signal molecules that would not allow their detection. 
Thus, it is still questionable whether QS is strain-dependent 
and further research is needed to characterise its role in the 
interaction with the plant host microbiota and the establish-
ment of the disease.

Both T6SS and QS can be considered as direct mecha-
nisms possibly exploited by E. amylovora for microbiota 
manipulation. However, influence on microbial commu-
nities can be exerted indirectly through a competition for 
available nutrient sources (Dubinkina et al. 2019). The major 
components of stigmatic extracts of pomaceous plants are 
free sugars and amino acids (Pusey et al. 2008a). Glucose 
and fructose strongly prevail on sugars such as sorbitol and 
sucrose, and this pattern is preserved among different apple 
cultivars (Fuji, Gala, Golden), with an increase in sugar con-
tent related to the stage of anther dehiscence (Pusey et al. 
2008a). Since their amount was very low, amino acids were 
detected in the order of femtograms per pomaceous flowers, 
with proline, asparagine, glutamine, and glutamic acid being 
the most abundant ones (Pusey et al. 2008a). Stockwell and 
collaborators (2010a) reported E. amylovora Ea153 might 
grow well in a minimal medium amended with one of the 
principal stigmatic compounds, giving the first evidence 
these components support the growth of the plant patho-
gen. Understanding E. amylovora nutrient requirements and 
metabolism is important because they strongly influence its 
cell multiplication ability and virulence. For instance, apple 
fruitlets and shoots inoculated with E. amylovora HKN06P1 
mutants impaired in the biosynthetic pathways of isoleu-
cine/valine, leucine, methionine, adenine, and tryptophan 
showed a reduction in the severity of symptoms (Klee et 
al. 2019). In addition to these amino acids, another study 

revealed Pseudomonadaceae and Enterobacteriaceae are 
the most represented bacterial families on stigma of healthy 
flowers (Cui et al. 2021a), consistently with previous obser-
vations underlining the conservation of microbial commu-
nity structure among different apple cultivars (Steven et al. 
2018). Moreover, it was seen Pseudomonadaceae family 
slowly take over the Enterobacteriaceae family in the time 
span of five days, which is the opposite of what observed 
in flowers inoculated with E. amylovora, where members 
of the Enterobacteriaceae family rapidly become predomi-
nant (Cui et al. 2021a). As already mentioned for other plant 
pathogens, it is conceivable the changes observed are the 
results of a selection promoted by E. amylovora aimed at 
recruiting microbial communities that can support the plant 
host colonization and infection. Understanding how E. amy-
lovora induces a shift in the microbial communities of apple 
flowers and how this phenomenon takes place might shed 
the light to the early step of the infection.

There are several direct and undirect mechanisms E. 
amylovora may exploit to manipulate plant host microbiota.

Type Six Secretion System (T6SS) is one of the secre-
tion systems owned by Gram-negative bacteria (Coulthurst 
2019). Unlike T3SS, whose function is limited to plant 
invasion, T6SS can influence the interaction among bacte-
ria, as reported for Agrobacterium tumefaciens (Ma et al. 
2014). E. amylovora harbours three T6SS gene clusters in 
its genome (Kamber et al. 2017; Tian et al. 2017) and they 
seem to have a role in antibacterial competition, as reported 
for E. amylovora NCPPB1665 (Tian et al. 2017). Moreover, 
they can affect both levan and amylovoran production, thus 
reducing E. amylovora NCPPB1665 virulence on imma-
ture pears (Tian et al. 2017). To see whether what reported 
by Tian and colleagues (2017) could also apply to other E. 
amylovora strains, single or double mutants defective in 
T6SS were created for E. amylovora CFBP 1430 by delet-
ing either cluster one, three or both. A slightly difference in 
virulence was reported on apple flowers and shoots, prob-
ably due to an alteration in the motility showed by the E. 
amylovora mutants (Kamber et al. 2017). Also in this case 
a possible involvement of T6SSs in antibacterial competi-
tion was hypothesised. However, results of the competition 
assay performed with E. coli revealed E. coli survival was 
not so significantly higher compared with what observed for 
NCPPB1665 strain (Kamber et al. 2017; Tian et al. 2017).

Quorum Sensing (QS) is a regulatory system that con-
trols gene expression according to the bacterial cell popula-
tion size (Rutherford and Bassler 2012). QS relies on three 
main components consisting in a signal molecule released 
by bacteria cells, namely the autoinducer (AI), an enzyme 
that synthesises the AI and a transcriptional factor able to 
perceive the AI (Papenfort and Bassler 2016). In Gram-neg-
ative bacteria, the most common AIs are N-acyl homoserine 
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Pourjafari et al. 2022; Pusey et al. 2009). Nevertheless, it is 
conceivable those one isolated from apple flowers can rep-
resent the best antagonistic candidates against E. amylovora 
because their adaptation to live in such an environment. 
Recent findings showed apple stigma-colonizing bacteria 
can reduce disease severity when applied on flowers, even 
though efficacy strongly depends on the bacterial mixtures 
and is not comparable to streptomycin treatment (Cui et 
al. 2021b). Among the bacterial isolates tested, treatments 
including Pantoea sp. CT-1039 gave the best reduction of 
disease incidence, indicating this strain may be responsible 
for the effect observed (Cui et al. 2021b). Strains belonging 
to Pantoea spp. are indeed the active ingredients of com-
mercial biopesticides used in the fire blight management. 
At the moment, commercial biopesticides developed to 
control E. amylovora are based on Gram-negative bacteria 
isolated from apple trees, such as Pantoea (Pa.) agglomer-
ans E325 (Bloomtime), Pa. vagans C9-1 (BlightBan C9-1) 
and Pseudomonas (Ps.) fluorescens A506 (BlightBan A506) 
(Sundin et al. 2009). All these strains can produce antibi-
otics, such as herbicolin O and pantocin A (Kamber et al. 
2017; Stockwell et al. 2010b). Interestingly, Ps. fluorescens 
A506 can release the antibacterial compound only in an 
iron-rich environment, which is not the case of apple and 
pear floral surface (Temple et al. 2004). The efficacy of Ps. 
fluorescens A506 may be mainly attributed to the nutrient/
niche competition (Stockwell et al. 2010a), even though the 
number of carbon sources utilized by Ps. fluorescens A506 
was lower than the one of Pa. vagans C9-1 and E. amy-
lovora Ea135 (Stockwell et al. 2010a). On the opposite, the 
two BCAs share almost all the nitrogen requirements with 
E. amylovora Ea135 (Stockwell et al. 2010a). In compari-
son to E. amylovora Ea135, both Pa. vagans C9-1 and Ps. 
fluorescens A506 had a faster growth when cultivated in the 
sugar compounds contained in the apple stigmatic exudates 
(Pusey et al. 2008a; Stockwell et al. 2010a). Unexpect-
edly, the application of both the BCAs did not enhance the 
reduction of fire blight symptoms because Ps. fluorescens 
A506 produces a protease degrading the antibiotic pro-
duced by Pa. vagans C9-1, thus erasing its effect (Stockwell 
et al. 2010b). This study highlighted the incompatibility of 
BCAs is an important aspect to consider when developing 
new biopesticides. Considering Gram-positive bacteria, the 
biopesticide Serenade is based on Bacillus subtilis QST713 
whose antimicrobial activity is related to the production of 
lipopeptides (Sundin et al. 2009). The application of Ser-
enade on apple blossoms reduced fire blight symptoms 
similarly to BlightBan A506, BlightBan C9-1 and Bloom-
time (Sundin et al. 2009). Another product used to control 
fire blight is Blossom Protect, whose active ingredients are 
the yeast-like fungal strains Aureobasidium pullulans CF10 
and CF40. Regardless of the incubation temperature, these 

highlighted E. amylovora HKN06P1 mutated in the arginine 
biosynthetic pathway lost its pathogenicity on immature 
apples (Ramos et al. 2014). This auxotrophic mutant, but 
not its dead cells, inhibited the colonization of the E. amy-
lovora HKN06P1 wild type strain when applied on flowers 
(Klee et al. 2019). It is not known yet whether this effect 
is due to nutrient competition alone or other mechanisms 
(i.e., plant immunity stimulation) are involved. However, 
Klee and collaborators (2019) proved specific amino acids 
are necessary for full virulence of E. amylovora and they 
are not sufficiently available in the host, forcing the plant 
pathogen to synthesise them. Iron is another important ele-
ment for bacterial cell growth because DNA replication, as 
well as tolerance to oxidative stress, would not be possible 
without this cofactor (Krewulak et al. 2008; Cornelis et al. 
2011). Thus, iron might represent a limiting factor for bacte-
rial cell survival, particularly when several microorganisms 
are present in the same environmental niche. Latest findings 
confirmed this hypothesis by comparing the growth of E. 
amylovora CFBP1430 deficient in the iron-uptake receptor 
gene foxR on greenhouse and orchard apple flowers. Green-
house flowers, that can be considered as semi sterile, well 
supported the colonization of the E. amylovora CFBP1430 
mutant in contrast to those collected from the orchards, 
whose established microbial communities might be poten-
tial iron-competitors (Müller et al. 2022).

Application of microorganisms for the 
sustainable control of Erwinia amylovora

For many years antibiotics and copper-based compounds 
have been the most effective solutions to limit E. amylov-
ora spread and damages. However, these plant protection 
products cause environmental pollution and contribute to 
the development of resistance that make their application 
useless, as reported in the USA where streptomycin- and 
copper-resistant E. amylovora strains were isolated already 
in 1991 (Loper et al. 1991). For these two main reasons, 
research has focused on finding new strategies that can be 
both effective and eco-friendly.

Besides increasing the knowledge on the fire blight, 
unveiling how interaction between flower microbiota and E. 
amylovora occurs may also help to improve the sustainable 
management of the disease. Indeed, microorganisms, such 
as yeasts and bacteria, able to reduce the ability of plant 
pathogens to cause disease might be used as biocontrol 
agents (BCAs) and developed as the main active ingredient 
of commercial biopesticides (Gupta et al. 2021).

Over the years, microorganisms tested against E. amy-
lovora were isolated from different environmental niches 
(Aktepe et al. 2022; Barbé et al. 2022; Mikiciński et al. 2016; 

1 3



Journal of Plant Pathology

trees in Germany and North America were characterized 
and tested against several E. amylovora strains (Müller et al. 
2011). Müller and colleagues (2011) showed bacteriophages 
belonging to the Myoviridae family significantly reduced E. 
amylovora population on apple flowers in comparison to the 
members of the Podoviridae family.

In general, the use of bacteriophages has two important 
disadvantage such as the time of application. Since bacterio-
phage survival is strictly dependent on the presence of their 
host bacteria, there is reduction of bacteriophage popula-
tion when flowers do not harbour E. amylovora (Ritchie and 
Klos 1979; Schnabel et al. 1999; Schnabel and Jones 2001). 
This issue can be solved by using a carrier like Pa. agglo-
merans Eh21-5 to deliver bacteriophages, as developed 
by Lehman (2007) and employed in later studies (Lehman 
2007; Boulé et al. 2011; Geyder et al. 2020). The efficacy 
of this method might be negatively affected by the sensitiv-
ity of the bacterial carrier to the bacteriophages delivered, 
making the study of the bacteriophage-carrier interactions 
essential (Geyder et al. 2020). Moreover, E. amylovora 
may rapidly develop resistance to bacteriophages, as seen 
for other plant pathogenic bacteria (Dong et al. 2018; Fuji-
wara et al. 2011), thus limiting their efficacy. To overcome 
this problem, research has focussed on creating mixtures 
of several bacteriophages that can reduce the emergence 
of resistance in E. amylovora by using different infection 
strategies (Sieiro et al. 2020). The synergy between several 
bacteriophages was proved, but in some cases the validation 
in planta has not been tested yet (Born e al. 2011, 2015; 
Gayder et al. 2020; Jo et al. 2023).

Future perspectives

As discussed so far, fire blight is influenced by many factors 
that make this disease complex and difficult to study and 
manage.

For instance, the growth of E. amylovora is strongly 
affected by environmental conditions such as humidity, 
rain, and temperature that also influence the efficacy of 
eco-sustainable strategies such as BCAs. These variables 
are impossible to control, especially nowadays that global 
warming causes more and more extreme climate events 
(Seneviratne et al. 2021) and for this reason it is important 
to test the response of new strategies to adverse environ-
ment phenomena.

In addition to heavy rain and winds, insects might play 
an important role in fire blight disease. E. amylovora can 
survive on the surface but also inside the body of pollinators 
and non-pollinators, thus becoming vectors able to spread 
the plant pathogen to healthy host plants. So far, most of 
the experiments were carried out in controlled laboratory 

strains isolated from apple fruits were effective in reducing 
the fire blight severity both on detached apple flower and 
in open field (Kunz 2004). In a recent study, Temple et al. 
(2020) compared the efficacy of Blossom Protect to other 
yeasts strains, including Cystofilobasidium infirmominiatum 
YY6 and Cryptococcus neoformans C9 and C16. None of 
the tested yeast strains was as effective as Blossom Protect, 
whose mode of action is not related to reduction of E. amy-
lovora populations in the flower (Temple et al. 2020).

As the mode of action of A. pullulans may rely on its abil-
ity to compete for space and nutrients, Slack et al. (2019) 
evaluated the impact of a preventive application of hydro-
gen dioxide and peroxyacetic acid before the application of 
Blossom Protect, in order to reduce the competition of the 
microbial populations residing in the apple flowers. How-
ever, the removal of the flower microbiota did not result in 
an increase of the Blossom Protect plant protection efficacy 
(Slack et al. 2019), an indication that the mode of action of 
A. pullulans might rely on multiple mechanisms. Accord-
ingly, Zeng and colleagues (2023) reported flower treat-
ment with A. pullulans would trigger the Systemic Acquired 
Resistance in the apple flowers by increasing the level of 
salicylic acid and inducing the expression of PR1 and PR2 
genes. Interestingly, the immune response in the plant host 
would be active until five days after treatment. As this time 
period is also the life span of apple flowers, it is conceiv-
able that fewer applications of Blossom Protect would be 
needed to have an effective plant protection efficacy (Zeng 
et al. 2023).

Despite the initial promises, years of experiments in open 
field showed the application of the above mentioned BCAs 
alone were not sufficient in controlling fire blight unless 
they were used together with streptomycin or other products 
(Sundin et al. 2009; Johnson et al. 2013, 2022). For instance, 
a significant increase in the fire blight control was achieved 
by applying Blossom Protect after fruit load thinning treat-
ment with lime sulfur, reaching an efficacy comparable to 
streptomycin (Johnson et al. 2013). Recently, Johnson and 
colleagues (2022) suggested the different protection prod-
ucts may be applied at different bloom stage, e.g. Blossom 
Protect, copper and Serenade at 70% bloom, full bloom and 
petal fall, respectively. Notably, several trials showed this 
combination would reduce both disease severity and fruit 
russeting (Johnson et al. 2022).

Besides microbial BCAs, E. amylovora might be con-
trolled using bacteriophages, viruses widespread in all 
habitats where their host, namely bacteria, live (Sieiro et al. 
2020). The main characteristic of bacteriophages is they can 
infect and kill specific bacterial species or strains by lysing 
their cells, thus representing a valid alternative to antibiotics 
in plant disease management (Sieiro et al. 2020). Concern-
ing fire blight, several bacteriophages isolated from apple 
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conditions and very few data were collected on the impact 
of insects’ transmission in open field. This is an aspect to be 
investigated, as well as the heritability of E. amylovora over 
generations, which has been recently proved in A. nitens 
(Ribeiro et al. 2022), without testing the viability and the 
pathogenicity of the bacterial cells. It would be also of inter-
est to dig into the complexity of the system “E. amylovora 
- host plant – vectors” by pursuing the work carried out 
by Cellini et al. (2019) to understand the attractive/repul-
sive effect of VOCs, in addition to the stimulation of plant 
defence.

The interaction between E. amylovora and host plants is 
also an open research field. Since PTI is the earliest immune 
response activated, it would be conceivable to focus on its 
implementation. However, since plant pathogens overcome 
this barrier by releasing effectors, ETI must not be forgot-
ten. In this view, instead of concentrating only on wild apple 
varieties, looking in the genomes of other species belonging 
to the Rosaceae family might lead to identify QTLs har-
bouring new resistance candidate genes.

During the earliest phase of infection, when E. amylovora 
cells try to colonize flower stigmas, microbial communities 
residing in the flowers can influence the infective process, 
hindering or enhancing the establishment of E. amylovora 
population. By creating E. amylovora knock-out mutants 
in the genes related to QS and T6SS it will be possible to 
see their involvement in the interaction with the microbiota, 
expanding the knowledge on the mechanisms that E. amy-
lovora might implement to manipulate the flower micro-
biota. Moreover, studying the bacterial community residing 
in apple flowers might lead to find new microbial species to 
use in the sustainable management of fire blight. BCAs so 
far commercialized are not sufficient to achieve a complete 
control of the disease. So, in the future, combining yeasts 
and bacteria may result in the development of new effective 
biopesticides.

The use of different strategies might possibly enhance the 
chance of reaching a complete fire blight control, avoiding 
environmental pollution, but further research is required.
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