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ABSTRACT
Visual Question Answering (VQA) has achieved significant suc-
cess over the last few years, while most studies focus on training
a VQA model on a stationary domain (e.g., a given dataset). In
real-world application scenarios, however, these methods are often
inefficient because VQA systems are always supposed to extend
their knowledge and meet the ever-changing demands of users.
In this paper, we introduce a new and challenging multi-domain
lifelong VQA task, dubbed MDL-VQA, which encourages the VQA
model to continuously learn across multiple domains while mitigat-
ing the forgetting on previously-learned domains. Furthermore, we
propose a novel replay-free Self-Critical Distillation (SCD) frame-
work tailor-made for MDL-VQA, which alleviates forgetting issue
via transferring previous-domain knowledge from teacher to stu-
dent models. First, we propose to introspect the teacher’s under-
standing over original and counterfactual samples, thereby creating
informative instance-relevant and domain-relevant knowledge for
logits-based distillation. Second, on the side of feature-based distil-
lation, we propose to introspect the reasoning behavior of student
model to establish the harmful domain-specific knowledge acquired
in current domain, and further leverage the metric learning strategy
to encourage student to learn useful knowledge in new domain. Ex-
tensive experiments demonstrate that SCD framework outperforms
state-of-the-art competitors with different training orders.

CCS CONCEPTS
• Computing methodologies → Computer vision.
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1 INTRODUCTION
Visual Question Answering (VQA) [4, 18] aims to answer textual
questions conditioned on given images, which requires intricate
vision-language reasoning. With the flourishing developments of
large-scale pre-trained models [23, 35, 65] and cross-modal learning
techniques [3, 53, 62], current VQA models have achieved state-of-
the-art performance over various datasets [4, 18, 24, 27]. Despite the
tremendous success, their training process always learns through
a stationary domain that is fixed by the choice of a given dataset.
However, this limitation violates many practical scenarios where
the data is continuously increasing from different domains. In real-
world applications, VQA systems are expected to constantly acquire
and update their knowledge, thereby catering to users’ demands.

To empower AI machines with the capacity of acquiring new
knowledge from sequentially arriving tasks with less forgetting [41]
of previously learned tasks, lifelong learning [11, 34, 44] has gained
extensive research interests, and inspired considerable delicate and
efficient approaches [12, 22, 25, 46, 52] in both CV [57] and NLP [43]
communities. However, accomplishing lifelong learning in vision-
language tasks is still challenging, especially in the fields of multi-
modal reasoning [50, 63]. In terms of VQA task, the work in [19]
is the first attempt to explore simple class-incremental learning
in the diagnostic dataset. Likewise, the method by [33] introduces
a function- and scene-incremental settings on the realistic GQA
dataset [24], and reduces the forgetting problem by replaying scene
graphs. However, in contrast to these settings that focus on inner-
domain incremental VQA within a single dataset, we argue that the
domain-incremental setting is more practical yet under-explored
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Figure 1: (a): MDL-VQA involves five tasks in different do-
mains: CLEVR [27], GQA [24], Vizwiz [20], VQA-ab [18],
AQUA [15]. The label spaces for different domains are in-
consistent, where words in red shading denote some general
answers coexist in several domains, and in yellow shading
are domain specific. (b) The performance of the initial task
(CLEVR) during the sequential fine-tuning (SFT), where VQA
model encounters the catastrophic forgetting. In contrast,
our method remarkably reduces the forgetting extent.

in VQA tasks, as different sequential tasks are typically composed
of samples represented by different visual/textual domains, and
heterogeneous label spaces.

To explore the setting, we propose a novel yet practical VQA
task, namely Multi-Domain Lifelong VQA (MDL-VQA). This task
requires VQA models to accumulate informative knowledge from
sequentially-arrived domains, while alleviating forgetting the knowl-
edge learned from previous domains. The challenges of MDL-VQA
are mainly three-fold. 1) Severe Domain Shift: as depicted in Fig.
1(a) and Fig. 8 (Appendix), MDL-VQA embraces five datasets with
vastly different domains in visual inputs, accompanied with non-
negligible domain shift in textual representations. 2) Label-Space
Variations: the label spaces (i.e., answer candidates) in different
domains are inconsistent. Some general answers (e.g. yes, one and
red) typically coexists in several or all domains. Meanwhile, a cer-
tain number of answers are only involved in one specific domain. 3)
Data Privacy: we highlight the data privacy issue in MDL-VQA, be-
cause the training data is typically collected and privacy-protected
in some specific domains. Thus, the training process can use only
current domain data, without storing and replaying any instances
from previous domains.

To address these challenges in the MDL-VQA setting, we propose
a novel Self-Critical Distillation (SCD) to overcome the forgetting
issue without data storage. SCD is built on the teacher-student
framework, and jointly introspects teacher and student based on
their understanding with respect to different instances, so as to self-
critically adjust the transfer of old knowledge and the acquirement
of new knowledge. Specifically, SCD is implemented on both logits-
level (SCDL) and feature-level (SCDF), by addressing the following
two self-critical questions for both teacher and student.

In SCDL, the frozen teacher needs to consider the question “what
is the informative old knowledge which is expected to deliver from the

teacher to the student?”. To tackle it, we introspect the discrimination
ability of teacher model over counterfactual samples, and then cre-
ate instance- and domain-relevant knowledge for adaptive knowl-
edge transfer. In SCDF, the student should introspect about “What
is the useless knowledge in new domain and which should be neglected
when reviewing the old knowledge from the teacher?”. To achieve
this, we propose to model the irrelevant knowledge by introspect-
ing the student’s reasoning behavior, and exploit metric learning
to prevent the student from acquiring useless yet domain-specific
knowledge on current task. Fig. 1(b) demonstrates the capacity of
our SCD to mitigate forgetting after incrementally learning across
five domains. Overall, our contributions are summarized as:

• We explore a new yet practical VQA setting, namely MDL-
VQA, which considers VQA problem under a multi-domain
lifelong learning scenario. Correspondingly, we propose a
benchmark to evaluate the model’s lifelong learning ability.

• We propose a novel data-free SCD approach on both sides
of logits- and features-level distillation, so as to not only
transfer informative previous-domains knowledge, but also
accumulate useful knowledge in currently-learned domain.

• Extensive experiments show that SCD outperforms other
competitors and achieves promising results on MDL-VQA.

2 RELATEDWORKS
2.1 Lifelong Learning in Vision-Language Tasks
Lifelong learning [11, 34, 44] has been extensively explored in CV
tasks, where the mainstream research settings could be divided into
1) class- or task-incremental learning, in which models are required
to learn to classify a growing number or group of classes sequen-
tially from a single domain in general, and 2) domain-incremental
learning, where a model continually learns to solve tasks typically
crossing different domains, whereas sharing the same label space.
Inspired by the significant progress in vision-language learning,
several works explore the lifelong learning in the perceptual-level
multimodal tasks, such as cross-modal retrieval [58] and image cap-
tioning [13, 60]. For the VQA task requiring high-level reasoning,
[19] is the first attempt to exploit a simple class-incremental setting
for VQA, where samples in question types ‘wh-’ and ‘yes/no’ are
tested under different sequence. [33] proposes a CLOVE benchmark
to establish the scene- and function-incremental learning through
splitting the GQA dataset in natural visual domain.Moreover, [51]
introduces a CLiMB benchmark, where models continually learn
crossing different multi-modal reasoning tasks, including VQA.

Unlike these lifelong VQA benchmarks, our MDL-VQA aims to
overcome forgetting issues on multiple distinct domains, as anal-
ysed in Fig. 8 (Appendix). Moreover, in contrast to standard domain-
incremental learning where the label spaces are consistent across
different domains, the domains in MDL-VQA include domain-specific
and domain-shared answers, thereby leading to more challenges.

2.2 Multi-Domain Learning in VQA
In recent years, increasing amount of datasets [4, 15, 18, 20, 27]
with diverse visual and textual domains have been proposed to
facilitate VQA research. Therefore, a longstanding research topic,
multi-domain learning [5] has become an attractive yet practical
topic in VQA community, where most of related works focus on the
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model robustness against domain shift. [49] reveals that most meth-
ods perform poorly on either natural or composite dataset, and pro-
poses a conceptually simple RAMENmodel for adapting to complex
reasoning required in two domains. [6, 59] design delicate feature-
learning strategies to enhance domain adaptation across different
datasets. [64] analyzes domain shifts between nine widely-used
VQA datasets and improve domain robustness via an unsupervised
method. Except visual domain adaption, the generalization of VQA
models on different linguistic domains is also crucial, especially
due to models’ brittleness to the language variations [48].

Different from the existing works that adapt source knowledge to
a target domain, our work introduces multi-domain learning into
lifelong VQA tasks, and emphasises on retaining old domains perfor-
mance while adapting to any upcoming domain.

2.3 Anti-Forgetting Knowledge Distillation
The common strategies [11] to alleviate catastrophic forgetting in
lifelong learning are three-fold: 1) Rehearsal methods explicitly
retrain on a limited subset of stored samples while training on new
tasks. 2) Parameter isolation methods typically assign new branches
with different model parameters for new tasks, while freezing previ-
ous task parameters. 3) Regularization-based methods tend to con-
duct extra regularization incorporated in the loss function, thereby
solidifying previous knowledge when learning on new data. For
lifelong VQA, due to the potential problem derived from data pri-
vacy and constrained computation resource, regularization-based
approaches would be more valuable and practical, among which
the data-focused Knowledge Distillation (KD) [17] has drawn wide-
spread research interest. KD aims to transfer learned knowledge
from a frozen teacher model to a to-be-trained student model when
new data are used only, which is re-introduced by LwF [36] in life-
long image classification. Apart from standard classifier-based KD
characterizing the differences between the teacher and the student
through metrics such Kullback-Leibler (KL) divergence, increasing
number of advanced KD methods [8, 9, 38] have been presented to
overcome forgetting issues in various lifelong learning tasks.

Although directly applying these methods on MDL-VQA can miti-
gate forgetting problem to some extent, such a way neglects the nature
of cross-modality reasoning of VQA tasks.Thus, we analyse the prop-
erties of reliance on shortcut learning and the reasoning behaviors
implied among pair-wise instance interactions of attention modules,
and further propose a novel Self-Critical Distillation (SCD) framework,
which leverages the comprehensive analysis results to selectively trans-
fer knowledge while depressing the negative impact of the irrelevant
learned knowledge for learning on current domain.

3 MULTI-DOMAIN LIFELONG VQA
3.1 Problem Definition
In the MDL-VQA task, a unified VQA architecture is required to
learn𝑇 domains in an incremental fashion. Suppose we have a series

of datasets/domains D =

{
𝐷 (𝑡 )

}𝑇
𝑡=1

. The data in the 𝑡-th domain

is comprised of train and test splits, 𝐷 (𝑡 ) =

{
𝐷
(𝑡 )
𝑡𝑟 , 𝐷

(𝑡 )
𝑡𝑒

}
. Note

that, only 𝐷 (𝑡 )
𝑡𝑟 is available at the 𝑡-th training step. Specifically,

the dataset 𝐷 (𝑡 ) = {(v𝑖 , q𝑖 , a𝑖 )}
��𝐷 (𝑡 ) ��
𝑖=1 contains

���𝐷 (𝑡 )
��� triplets and

each triplet consists of an image v ∈ V (𝑡 ) , a question in natural
language q ∈ Q (𝑡 ) and the ground-truth answer a ∈ A (𝑡 ) . The
multi-domain setting is implemented byV (𝑖 ) ≠ V ( 𝑗 ) ,Q (𝑖 ) ≠ Q ( 𝑗 )

and A (𝑖 ) ≠ A ( 𝑗 ) , where ∀𝑖, 𝑗 ∈ {1, ..,𝑇 } and 𝑗 ≠ 𝑘 . Although
A (𝑖 ) and A ( 𝑗 ) are different, they may share few common answer
candidates (e.g., “Yes”, “No” and the numbers shown in Fig. 1).

3.2 Baseline Approach
Considering the data privacy issues in MDL-VQA, we exploit three
replay-free knowledge distillation (KD) approaches, based on log-
its [36], feature [61] and correlation [9], as our baseline. These
methods often combine two learning objectives for model training.
One (L𝑛𝑒𝑤 ) is to acquire knowledge in the current domain, and the
other (L𝑜𝑙𝑑 ) aims at maintaining the old knowledge learned from
previous domains. At the 𝑡-th domain, the objective is:

L(𝑡) = L𝑛𝑒𝑤 + 𝜆L𝑜𝑙𝑑 , (1)

where 𝜆 controls the contribution of the L𝑜𝑙𝑑 .
In our baseline,L𝑛𝑒𝑤 is implemented by a standard cross-entropy

loss in our MLD-VQA tasks. We define a classification-based VQA
model as 𝑓 (·;𝜃, 𝜙), comprised of amultimodal fusion encoder𝑚(·;𝜃 )
with parameters 𝜃 and a classifier 𝑐 (·;𝜙) parameterized by 𝜙 . Given
a newly-coming domain 𝐷 (𝑡 ) at the 𝑡-th training step, we minimize
the loss to acquire knowledge in the current domain by:

L𝑐𝑒 = −
∑︁

(v,q,a) ∈𝐷 (𝑡 )

log(𝝈 (𝑓 (v, q;𝜃, 𝜙 (𝑡 ) )) [a], (2)

where 𝜎 (·) is the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function, and 𝜙 (𝑡 ) is the classifier spe-
cialized for the domain 𝐷 (𝑡 ) . Moreover, the L𝑜𝑙𝑑 needs to consider
the knowledge type which is efficient for transferring knowledge.

For logits-based KD [36], by feeding a training sample into the
to-be-trained student model 𝑓

(
v, q;𝜃, 𝜙 (𝑘 )

)
, its output logits can

be represented by z(𝑘 ) =
[
𝑧1, 𝑧2, . . . , 𝑧 |A (𝑘 ) |

]
∈ R1×|A (𝑘 ) | , where

𝑧𝑖 is the logit of the i-th class and |A𝑘 | refers to the number of
classes in the label space of the 𝑘-th task (1 ≤ 𝑘 < 𝑡 ). Then, the
classification probabilities p(𝑘 ) (𝜏) is calculated by:

𝑝𝑖 =
exp (𝑧𝑖/𝜏)∑ |A (𝑘 ) |

𝑗=1 exp
(
𝑧 𝑗/𝜏

) , (3)

where 𝑝𝑖 represents the probability of the i-th class in p(𝑘 ) , and
𝜏 is the temperature to scale the smoothness of two distributions.
Analogously, we can obtain the probabilities p̂(𝑘 ) through feeding
the same training instance into the teacher model 𝑓

(
v, q;𝜃, 𝜙 (𝑘 )

)
.

Concretely, 𝜃 and 𝜙 (𝑘 ) for the 𝑘-th learned task are copied from
𝜃 as well as 𝜙 before current-step training, respectively. Finally,
we adopt the common Kullback-Leibler (KL) Divergence [28] to
constrain the teacher and the student. Given input sample, the loss
function is:

L𝑙𝑘𝑑 (p̂(𝑘 ) (𝜏), p(𝑘 ) (𝜏)) = 𝜏2KL
(
p̂(𝑘 ) (𝜏)∥p(𝑘 ) (𝜏)

)
. (4)

Practically, we set 𝑘 = 𝑡 − 1 to avoid the linearly-increased usage
of computation sources in long-sequence lifelong learning.

For feature-based KD [61], the output feature 𝒇 ∈ R1×𝑀 ex-
tracted from the multimodal fusion encoder 𝑚(𝑣, 𝑞;𝜃 ) in frozen
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teacher is regarded as the knowledge learned from previous tasks.
𝑀 refers to the dimension of the intermediate feature. Then, feature-
based KD employs Mean Square Error [2] (MSE) to distill the knowl-
edge from teacher into student:

L𝑓 𝑘𝑑

(
𝒇 ,𝒇

)
=




𝒇 − 𝒇



2
2
, (5)

where𝒇 is the corresponding feature from the studentmodel𝑚(𝑣, 𝑞;𝜃 ).
Correlation-based KD [9] focuses on transferring the knowl-

edge about semantic correlation of features in a training batch.
Based on L2-normalized outer products [54], we can obtain the
pairwise similarities 𝐺 and 𝐺 of the mini-batch features yielded
from teacher and student, respectively. The correlation-based KD
loss is given by:

L𝑐𝑘𝑑

(
𝐺,𝐺

)
=

1
𝑏2

∑︁

𝐺 −𝐺


2
2 , (6)

where𝑏 implies the batch size.We adapt the above-mentionedmeth-
ods into our MDL-VQA setting and evaluate their effects in Tab. 1.
We find that most of these methods achieve unsatisfactory perfor-
mances, since they overlook the inherent reasoning mechanism of
VQA. We analyse and discuss the drawbacks below.

3.3 Limitations
As for a practical and flexible regularization-based approach, KD
could be easily deployed into any sequentially-leaning process to
handle the forgetting. However, unlike other tasks in the incremen-
tal fashion, we suggest that VQA models may encountered two
important challenges in the process of knowledge transferring: (i)
For logits-based distillation depicted in Eq. (4), the old knowledge
from previous domains is obtained by feeding the training samples
in current domain into the frozen teacher model. However, due to
the over-reliance of language shortcut learning [1, 26, 31, 32, 42] in
VQA model, when the old model meets the new data with visual do-
main shift, the teacher is prone to establish the old knowledge only
relying on the language questions from current-domain samples. In
this case, the question-dominated old knowledge is typically irrele-
vant to overcome the forgetting ratio in previous domain, as it may
lose some useful semantic information of current input. Moreover,
the negative effect of question-dominated knowledge would be
more serious in our MDL-VQA, because VQA model can easily cap-
ture the correlations between question types and general answers
co-existed in different datasets. (ii) For student learning knowledge
from a new domain, it is inevitable to acquire the domain-specific
knowledge (e.g. visual and linguistic styles), which is not only point-
less to understanding visual concepts for question answering, but
also accelerate the process of forgetting previous knowledge.

4 SELF-CRITICAL DISTILLATION
In this section, we attempt to break the aforementioned limitations,
and propose a Self-Critical Distillation (SCD) to improve the anti-
forgetting efficiency from dual-level knowledge transferring.

4.1 Logits-level SCD
Logits-level SCD (SCDL) seeks to introspect the reasoning pro-
cess of teacher model and transfer informative knowledge to stu-
dent, thereby alleviating the first limitation described in Sec. 3.3.

Specifically, SCDL first introspects the discrimination capac-
ity of frozen teacher between counterfactual training sample and
its original counterpart, to decomposes the logits knowledge into
instance-relevant knowledge (IRK) and domain-relevant knowl-
edge (DRK). Then, the teacher separately transfers the two types of
knowledge to the student with adaptive temperature generated
by the introspection.

Intuitively, IRK more likely refers to the high-response classes
in the answer prediction, which involves the information about
potential correct answers to each training samples. On the other
hand, the classes with lower predicting probabilities can be regarded
as DRK, including the semantic relationships of different answer
candidates. Thus, we decompose the original answer prediction
p̂(𝑘 ) (𝜏) from the frozen teacher model into aforementioned two
types of knowledge, based on their responses over different answer
candidates illustrated in Fig. 2. Specifically, we denote the IRK as
p̂(𝑘 )
𝐼

(𝜏) = [𝑝𝑎, . . . , 𝑝𝑏 , 𝑝\[𝑎,...,𝑏 ] ], where ∀𝑝𝑖 ∈ [𝑝𝑎, . . . , 𝑝𝑏 ] is the
possibilities of Top-C high-response classes. 𝑝\[𝑎,...,𝑏 ] refers to the
summations of low-responded probabilities:

𝑝\[𝑎,...,𝑏 ] =

∑ |A (𝑘 ) |
𝑘=1,𝑘∉[𝑎,...,𝑏 ] exp (𝑧𝑘/𝜏)∑ |A (𝑘 ) |

𝑗=1 exp
(
𝑧 𝑗/𝜏

) . (7)

Then, we define the DRK as the p̂(𝑘 )
𝐷

(𝜏) ∈ R1×( |A (𝑘 ) |−𝐶 ) , where
𝐶 is the number of classes with high-responded probabilities in
classes [𝑎, . . . , 𝑏]. Concretely, we compute the probabilities in p̂(𝑘 )

𝐷
(𝜏)

by taking only the low-responded classes into account. The 𝑖-th
element 𝑞𝑖 of p̂

(𝑘 )
𝐷

(𝜏) can be formulated as:

𝑞𝑖 =
exp (𝑧𝑖/𝜏)∑ |A (𝑘 ) |

𝑗=1, 𝑗∉[𝑎,...,𝑏 ] exp
(
𝑧 𝑗/𝜏

) . (8)

Based on the separated knowledge and Eq. (4), we derive the
separated logits-based KD L𝑠𝑙𝑘𝑑 , which separately transfers IRK
and DRK from teacher to student:

L𝑠𝑙𝑘𝑑 = 𝜏2KL
(
p̂(𝑘 )
𝐼

(𝜏)∥p(𝑘 )
𝐼

(𝜏)
)
+ 𝜏2KL

(
p̂(𝑘 )
𝐷

(𝜏)∥p(𝑘 )
𝐷

(𝜏)
)
.

(9)
Furthermore, we propose a self-critical temperature to adapti-

valy adjust the knowledge transfer of IRK and DRK. To obtain the
adaptive temperature, we seek to quantify the teacher’s reliance
on textual information to create the old knowledge in previous do-
main, which is achieved by introspecting teacher’s understanding
about discriminating the original and counterfactual samples. To
be specific, in contrast to the multimodal feature yielded from the
original VQA instance f̂ as𝑚(v, q;𝜃 ) , its counterfactual logits b̂ is
computed by replacing the raw image input v into the zero-padding
counterparts o as𝑚(o, q;𝜃 ). Finally, by reformulating the Equ. (9)
with knowledge-specific temperatures (𝛼 and 𝛽), the SCDL loss is:

L𝑠𝑐𝑑𝑙 = 𝛼
2KL

(
p̂(𝑘 )
𝐼

(𝛼)∥p(𝑘 )
𝐼

(𝛼)
)
+ 𝛽2KL

(
p̂(𝑘 )
𝐷

(𝛽)∥p(𝑘 )
𝐷

(𝛽)
)
,

(10)

𝛼 = max( f̂ · b̂
∥f̂ ∥∥b̂∥

, 0) · 𝜏𝑚𝑎𝑥 , 𝛽 = 𝜏𝑚𝑎𝑥 − 𝛼, (11)
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and student respectively, which are separated into dual-level knowledge based on high-response classes. The purple region
depicts how to compute the temperature 𝛼 via introspecting the teacher about raw (red) and counterfactual (pink) samples.

where the self-critical temperature 𝛼 for IRK is determined by the
maximum temperature setting 𝜏𝑚 , accompanied with the cosine
similarity between teachers’ features derived from original (f̂ ) and
counterfactual (b̂) samples.

Discussion: Through the comparison of the output logits yielded
from counterfactual and original samples, the teacher can intro-
spect itself about whether it forms old knowledge by understanding
both visual and textual information for input sample (lower cosine
similarity). Otherwise, it may extract spurious class-related knowl-
edge overwhelmingly from question input. If the old knowledge is
dominated by question with higher value of 𝛼 , the teacher would
create the more smoothed IRK with relatively high temperature,
while turning to establish more informative DRK, as the overused
question information is typically involved more ‘dark knowledge’
about semantic correlations among different classes.
4.2 Feature-level SCD
Compared with SCDL that handles high-level semantic information,
the intermediate feature typically covers knowledge across a wide
range of semantic levels, from superficial visual/linguistic styles to
the question-related visual concepts. However, when the student
learns from the data in newly-arrived domain, it unavoidably ex-
tracts harmful domain-specific knowledge (DSK), such as the
low-level information irrelevant for question answering. This be-
havior plays a negative role on maintaining crucial knowledge for
question answering in previous domains. To mitigate this issue, we
present a feature-level SCD (SCDF), whose idea is first to model the
negative DSK by introspecting students’ reasoning behavior
that is suggested by the instance interactions in attention modules,
and propose a metric learning strategy to promote student to
bypass the deleterious effect from such knowledge when reviewing
the old knowledge from previous domain.

Given a training sample, we assume that it is sophisticated to
directly recognize the DSK, such as visual and linguistic styles in
current domain. Thus, we turn to model such useless knowledge
via removing the indispensable visual/textual components from
the original sample. To this end, we firstly identify crucial question
words as well as image regions by introspecting the attention maps
in student network, which reveals how the student network under-
stands and reasons over different visual/textual components for an-
swer prediction. In VQA task, the widely-used attention mechanism

is Multi-Head Attention (MHA) [55, 56] equipped in competitive
transformer-based VQA models [29, 53, 62]. Hence, we average
attention maps existing the final layer of MHA as the attention
weights for different components in each image-question training
pair. From the statistics of attention weights (see Fig. 9 in Appen-
dix), among more than 200 visual and textual components in a VQA
instance, merely several visual/textual components are crucial.

Based on the observation, we propose to intervene the original
VQA sample by removing its components (e.g. question words and
visual regions) with Top-K attention weights, where the corrupted
image-question pair is denoted as ( ¤𝒗, ¤𝒒. Then, we feed ¤𝑣 and ¤𝑞 into
the currently-trained student model to obtain the ¤𝒇 = 𝑚( ¤𝑣, ¤𝑞;𝜃 ).
We assume that the ¤𝒇 is pointless for VQA task, since it has lost
reasoning cues for question answering. Meanwhile, the rest part
still maintains the DSK. In order to prevent the student from over-
exploiting useless information in current domain when reviewing
the old-domain knowledge, we utilize metric learning to implement
our SCDF. Specifically, the anchor/positive feature in metric learn-
ing is the intermediate feature yielded from the student/teacher
model (𝒇 /𝒇 ), whereas the negative is the corrupted feature ¤𝒇 from
self-criticism of reasoning behaviour. The SCDF loss is given by:

L𝑠𝑐𝑑 𝑓

(
𝒇 ,𝒇

)
= max

(
∥𝒇 − 𝒇 ∥2 − ∥ ¤𝒇 − 𝒇 ∥2, 0

)
. (12)

Meanwhile, we also propose to substitute the correlation-based KD
(Eq. (6)) by metric learning, which is formulated by:

L𝑠𝑐𝑑𝑐

(
𝐺,𝐺

)
= max

(
∥𝐺 −𝐺 ∥2 − ∥𝐺 − ¤𝐺 ∥2, 0

)
, (13)

where ¤𝐺 is the similarities of corrupted features within a mini-batch.
Discussion: From the conceptual example in Fig. 3, through the

self-criticism from reasoning behaviour of attention, the corrupted
current-domain samples in purpose usually represent the uninfor-
mative (e.g. no question intention with related visual cues) but
domain-specific (e.g. keeping the cartoon style) information. The
output feature in red from teacher typically involves the associated
knowledge and scenarios from previous domain, even though the
input picture is described in abstract domain. The metric learning
in feature-level SCD aims to narrow the semantic distance between
samples with consistent domain-invariant concepts, andmeanwhile
weaken the negative impact from domain-specific biases.
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Table 1: Non-forgetting evaluation in MDL-VQA benchmark. We test model after sequentially training on all datasets in five
domains (t=5), where we select two different orders starting from synthetic (CLEVER) and real-world (GQA) datasets.

Method CLEVR→GQA→Vizwiz→AQUA→VQA-ab 𝑠 𝑓 GQA→Vizwiz→AQUA→VQA-ab→CLEVR 𝑠 𝑓

SFT 52.35 47.98 36.57 76.88 75.01 57.76 10.46 42.20 34.06 67.24 62.24 68.25 54.80 14.07
EWC [30] 52.14 48.05 36.68 77.13 74.92 57.78 10.40 41.68 33.99 67.38 62.77 68.15 54.79 14.05

ALASSO [45] 52.43 48.28 36.24 77.37 75.19 57.90 10.32 42.41 34.39 67.19 62.89 68.44 55.07 13.78
FKD [61] 54.77 50.45 37.56 78.12 75.26 59.23 8.68 44.98 36.03 69.14 64.47 68.01 56.53 11.85
SPD [54] 53.97 49.16 37.88 77.89 76.15 59.01 9.19 42.52 35.11 69.04 63.99 68.91 55.91 12.84
LWF [36] 55.43 50.74 37.93 78.36 74.82 59.46 8.29 45.98 38.65 69.02 65.63 67.91 57.44 10.69
IRG [37] 56.32 51.02 37.14 77.97 75.43 59.58 8.29 46.18 39.90 68.76 65.33 68.50 57.73 10.46
ECD [8] 54.30 49.86 37.99 77.94 75.67 59.15 8.88 42.82 35.21 68.45 64.23 68.44 55.83 12.83
DKD [9] 55.54 51.15 37.83 78.25 76.15 59.79 8.21 46.20 37.74 68.84 65.82 69.20 57.76 10.86
MBP [38] 57.58 51.24 40.77 77.87 74.69 60.43 7.04 47.73 39.85 73.56 68.15 67.95 59.44 8.19
Ours 59.48 52.47 43.41 79.44 74.90 61.94 5.30 50.11 40.98 74.98 69.52 68.14 60.74 6.61

Reference 68.93 59.21 46.10 81.38 75.34 66.19 - 59.21 46.10 81.38 75.34 68.93 66.19 -
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Figure 3: Conceptual illustration of Feature-level SCD, where
we suppose the currently-trained samples are in abstract
domain, and the training data utilized in the previous task is
in realistic domain. The samples in red, and blue refer to the
intermediate features extracted from teacher and student.

4.3 Optimization
Ultimately, our proposed Self-Critical Distillation (SCD) can be
achieved by the proposed dual-level distillation strategies. For the
overall objective at the training step 𝑡 (𝑡 ≥ 2), we train the param-
eters of whole VQA model with classifiers in all involved tasks
{𝜃, 𝜙 (1) , . . . , 𝜙 (𝑡 ) } on dataset D𝑡 . The overall loss function is:

Ltotal = Lce + 𝜆𝑙L𝑠𝑐𝑑𝑙 + 𝜆𝑓 (L𝑠𝑐𝑑 𝑓 + L𝑠𝑐𝑑𝑐 ), (14)

where L𝑠𝑐𝑑𝑙 and (L𝑠𝑐𝑑 𝑓 + L𝑠𝑐𝑑𝑐 ) denote the loss terms of logits-
and feature-level SCD defined in Equ. (10), (12) and (13), respectively.
They enforce VQA model to remember the old knowledge from
previous domains and avoid forgetting. 𝜆𝑙 and 𝜆𝑓 are the weighting
factors to adjust the contributions between dual-level distillations.

5 EXPERIMENTS
5.1 Implementation Details
For the training of lifelong learning, we optimize VQA models
by the AdamW optimizer [39] with a learning rate of 10−4 and
weight decay of 10−2. The total number of training epoch across all
datasets is set to 10. We warm up the learning rate in the first epoch,
and linearly decay it to zero in the remaining of training epochs.
We set the minibatch size as 32, which is evenly distributed on

Table 2: The statistics of datasets in the MDL-VQA. ‘*’ denotes
the modification of random sampling from the raw datasets.

Train Test Label Frequent Answers

GQA* 93786 12946 1657 no, yes, left, right, man, white
CLEVR* 69852 10000 28 no, yes, 1, 0, small, rubber, metal
VQA-AB 59074 29476 426 yes, no , 2, 1, red, 3, white, blue
AQUA 29568 1508 453 person, people, building, church
Vizwiz 20524 4320 3648 unanswerable, unsuitable, no, yes

two GPUs. For network architecture, We use a pre-trained Vision-
Language Transformer (ViLT) [29] as the backbone multimodal
fusion encoder. Unlike other pre-trained vision-language models
[10, 40] that build upon region-level features extracted from Faster
R-CNN [47], ViLT directly operates on image patches without using
any convolutional layers, which is suitable for image representation
across diverse domains in our MDL-VQA benchmark. We select the
trade-off factors 𝜆𝑙 = 1 and 𝜆𝑙 = 0.5. We set the number of high-
response classes as the IRK is 𝐶 = 3, and 𝜏𝑚𝑎𝑥 = 4. The number of
visual/textual components to be removed in feature-level SCD is
set to 10. All the hyper-parameters are validated in Appendix.

5.2 Datasets
To comprehensively evaluate the MDL-VQA models, we propose
a MDL-VQA benchmark. We exploit five VQA datasets where the
images are represented in various visual domains, including artis-
tic, abstract, real-world, synthetic and blurred-objects scenes. To
be specific, AQUA dataset [15] aims to ask questions about art-
works, where the artistic images are obtained from SemArt [14]
dataset. VQA-abstract [18] contains the images of abstract/cartoon
scenes. GQA [24] is a large-scale dataset to test multiple reason-
ing skills through compositional questions, where images are de-
scribed in high-quality real-world scenes. Vizwiz [20] is proposed to
help visually-impaired people, which is involved the images about
blurred objects. It focuses on validating VQA models about the per-
ceptual understanding of visual objects. In contrast, CLEVR [27] is a
diagnostic dataset with synthetic images, which emphasises on the
model capacities of spatial and logical reasoning. The numbers of
train/test VQA samples and the labels, accompanied with frequent
answer candidates for five datasets are depicted in Tab. 2.
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Figure 4: Evaluation against order variations. (a)/(b) and (c)/(d) illustrate the trend of accuracy computed from initial tasks
against 4 different sequences.We use shadowed bar to represent the SFT, and lines with different colors for KD-based approaches.

5.3 Performance Evaluation
We validate the SCD on our MDL-VQA benchmark against the
competitive methods in Tab. 1, with the evaluate metrics of average
accuracy 𝑠 and forgetting 𝑓 (details in Appendix). The SFT is to
sequentially train VQA model with newly-arrived datasets without
reviewing old knowledge. EWC [30] and ALASSO [45] refer to the
prior-focused regularization methods, which focuses on penalizing
network parameters in sequential training. FKD [61], SPD [54], LWF
[36] and IRG [37] are data-focused KD approaches firstly deployed
in the scenarios of model compression, among which LWF, FKD,
SPD [54] denote our baseline strategies described in Eqs. (4) to (6).
ECD [8], DKD [9] and MBP [38] are the advanced KD strategies
tailored to class-incremental lifelong learning.

We conduct two training orders with different initial datasets
(i.g., synthetic CLEVER and real-world GQA). The results are sum-
marized as follows. First, SFT, EWC and ALASSO encounters signif-
icant forgetting in our long-sequence training settings. In the com-
parisons of the three strategies, LWF achieves superior efficacy of re-
ducing forgetting by transferring logits-based knowledge, whereas
feature-correlation based SPD obtains better accuracy when learn-
ing the last task. Among the state-of-the-art KD specialized for
lifelong learning, our proposed SCD occupies the first place on
both metrics of average accuracy and average forgetting. It should
be noted that, similar to our SCD, the competitive MBP jointly
considered logits- and feature-based distillations, and further im-
proves them by protecting model’s ranking behaviors. SCD acts as
a more effective strategy to eliminate forgetting, since it enhances
the effectiveness to acquire new and review old knowledge.

Furthermore, to validate the robustness of the aforementioned
strategies against order variations, we propose to fix the initial tasks
in two orders, and alter the raw sequences among last four domains.
We mainly compare SCD with the basic SFT and the typical KD
approaches LWF (logits-based KD), FKD (feature-based distillation),
SPD (correlation-based distillation), and MBP (logits- and feature-
level KD). Specifically, the process of accuracy degradation in the
first task under different orders is illustrated in Fig. 4. From the
accuracy obtained from the last-step training, we can notice that,
when training a group of datasets with different orders, the degree
of the forgotten old knowledge is typically different. In comparison,
our SCD demonstrates stable improvements in terms of alleviating
forgetting against different sequences, and outperforms the SFT by
approximately 8% averaged from four depicted orders.

Table 3: Ablation study under the setup of a five-task se-
quence order1 (CLEVR→GQA→Vizwiz→AQUA→VQA-ab)
and a two-task sequence (VQA-ab→AQUA).

Configurations Order1 VQA-ab→AQUA
Case Lce L𝑠𝑐𝑑𝑙 L𝑠𝑐𝑑 𝑓 L𝑠𝑐𝑑𝑐 𝑠 𝑓 VQA-ab AQUA

(a) ✓ 57.76 10.46 65.34 80.31
(b) ✓ ✓ 60.45 6.96 70.86 79.74
(c) ✓ ✓ 59.18 8.53 68.19 80.44
(d) ✓ ✓ 58.43 9.61 66.14 80.77
(e) ✓ ✓ ✓ 59.60 8.37 68.37 80.46
(e) ✓ ✓ ✓ ✓ 61.94 5.30 71.97 79.92

5.4 Ablation Study
(1) Efficacy of Different Components We first analyze the ef-
fectiveness of different components in our SCD. Specifically, the
experimental results are reported in Tab.3, which are obtained from
the first order involved in Tab. 1, as well as a two-task sequence
(VQA-ab→AQUA). Based on fine-tuning, independently exploiting
logits- and feauture-level SCD could effectively reduce the forget-
ting, where the logits-level SCD yields remarkable performance
for reviewing old knowledge, and correlation-based SCD (case (d))
performs better on the plasticity when acquiring new knowledge.
In case (e), through blending dual-level knowledge, our complete
SCD cooperatively overcomes forgetting from the perspectives of
label prediction and intermediate representation.

(2) Logits-level SCDvs Logits-basedKD: In this subsection, we
make detailed comparisons between Logits-level SCD (SCDL) and
the standard logits-based KD (LKD) (Eq. (4)) with differentmanually-
defined temperatures (𝑇 = 1, 2, 3). We conduct the comparative ex-
periments under double-task sequences (VQA-ab→AQUA), where
the performance on the former and latter implies the plasticity and
stability, respectively. Moreover, to validate the effectiveness of
our self-critical temperature 𝛼 in Equ. (11), we also take the SCD
counterpart that creating the instance-aware and domain-aware
knowledge with the same temperatures into the comparison. From
the comparative results in Fig. 6, We can see that our approach is
consistently superior to the standard KD under various setting of
trade-off factor 𝜆𝑙 with different temperatures. Meanwhile, even
though our method without self-critical temperature 𝛼 slightly sur-
passes the standard KD, but still performs worse than the complete
Logits-level SCD on both plasticity and stability on previous and cur-
rent domains, respectively. It verifies that our knowledge-separated
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operation is beneficial to overcome forgetting in the MDL-VQA
with label-space variations, and the self-critical temperature can
further promotes teacher to transfer more informative knowledge.

(3) Feature-level SCD vs Feature-based KD: We compare stan-
dard feature-based KD (FKD+CKD in Eqs. (5) and (6)) with feature-
level SCD, and the counterparts that corrupting components ran-
domly (RAND) in Fig. 7. We notice that our self-criticism of model
behaviour (attention) for sample corruption is indispensable, as the
random-removing counterpart fails to attain any accuracy boost. In
contrast, benefiting from well-established DSK and metric learning,
our method fulfils significant improvements for anti-forgetting on
previous VQA-ab dataset, and meanwhile maintains the plasticity
on AQUA dataset when acquiring new knowledge.

5.5 Qualitative Results
Fig. 5 reveals the qualitative results of VQA samples in different
domains, when employed in lifelong learning. Generally, thanks
to remarkable performance of attention mechanism, the corrupted
samples can be roughly considered as the uninformative domain-
specific counterparts, since the majority of important question
words with related image regions are removed. For the samples (b)
and (c) grounded by general answers (‘1’ and ‘white’), their labels
typically co-exist in the instance-aware knowledge of previous
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domains, even without annotations. In case (a), the high value of
self-critical temperature 𝛼 can smooth the spurious instance-aware
knowledge (‘yes’ and ‘no’) when reviewing previous domains.

6 CONCLUSION
In this paper, we introduce a new yet practical VQA task, coined
Multi-Domain Lifelong VQA. To solve this task, we propose a Self-
Critical Distillation (SCD) framework to allow the VQA model to
introspect its learned knowledge and further reduce forgetting ratio
while efficiently learning on new data. According to this, we pro-
pose the counterfactual sample based introspection for rectifying
logit-based distillation, and the reasoning behavior introspection to
filter the negative knowledge transferred by the feature-based distil-
lation. Extensive experiments show that SCD remarkably improves
model’s anti-forgetting ability and outperforms other competitors
by large margins on MDL-VQA. Moving forward, we will explore a
learnable loss weight to coordinate dual-level distillations.
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APPENDICES
.1 Dataset Analyses of Multi-Domain Lifelong VQA Benchmark
In this paper, we reorganize five popular VQA datasets to build a new multi-domain lifelong VQA benchmark, in which each dataset servers
as a domain with domain-specific visual scenes. As illustrated in Fig. 1 (a), these domains include real-world scenes (GQA [24]), abstract
scenes (VQA-ab [18]), synthetic scenes (CLEVR [27]), paintings (AQUA [15]) and blur-object scenes (Vizwiz [20]).

To explicitly investigate and expose this problem, we propose to measure the visual and textual correlations among the five domains via
Maximum Mean Discrepancy (MMD). Formally, the MMD between D (𝑖 ) and D ( 𝑗 ) is given as:
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(15)

where 𝑘 denotes the RBF kernel. Specifically, we randomly select 5000 VQA samples in each dataset, and attempt to acquire multimodal
representation. For visual features, we exploit pre-trained ResNet [21] to extract visual inputs, and obtain a 2048-D high-level representation
for each image. For textual representation, because current VQA models are prone to be brittle to linguistic variations [48], we follow the
work [16] to extract 20 low-level features: question length, prepositions, number of conjunctions, pronouns, etc.

By analysing the MMD comparisons among the five datasets in Fig. 8, we find that domain shifts are severe among every pair of datasets.
Especially, the question domain gap between CLEVR and other four datasets is remarkable, as CLEVR involves more complex linguistic
expressions to test the VQA reasoning abilities. Thus, it is important to prevent the model from learning only DSK across different domains.

Figure 8: Visual and textual domain gaps measured by MaximumMean Discrepancy (MMD). The green and blue shadings are
MMD over the textual syntax statistics and visual features, respectively. Domain shifts are severe among every pair of datasets.

.2 Evaluation Metrics
For each dataset involved in MDL-VQA, we determine the ground-truth answer for each sample via the soft voting of ten annotated answers,
following by the same rule in VQA-v2 dataset [18]. To quantitatively validate the efficiency of related strategies to alleviate forgetting
problem, we exploit the Average Accuracy [8] and Average Forgetting [7] as evaluation metric in our MDL-VQA.

Average Accuracy. Suppose that, after sequential learning across 𝑡 domains, 𝑎𝑐𝑐 (𝑖 )𝑡 is the model accuracy obtained from the test set 𝐷 (𝑖 )
𝑡𝑒 ,

whose related train split 𝐷 (𝑖 )
𝑡 was learned in the 𝑖-th stage (𝑖 ≤ 𝑡 ). The average accuracy 𝑠𝑡 at the 𝑡-th stage is defined as 𝑠𝑡 = 1

𝑡

∑𝑡
𝑖=1 𝑎𝑐𝑐

(𝑖 )
𝑡 .

Average Forgetting is to quantify the forgetting ratio 𝑓 𝑡 after learning the 𝑡-th domain (𝑡 ≥ 2). Specifically, the ratio for a particular task
(e.g. dataset 𝑖) is determined by the difference between the maximum accuracy 𝑎𝑐𝑐 (𝑖 )𝑚𝑎𝑥 gained throughout the lifelong training process in the
past, and the accuracy of the currently-trained model. Then, the forgetting ratios 𝑓 𝑡 for all previous 𝑡 − 1 domains is defined as:

𝑓 𝑡 =
1

𝑡 − 1

𝑡−1∑︁
𝑖=1

(
max

𝑙∈{1,...,𝑡−1}
𝑎𝑐𝑐

(𝑖 )
𝑚𝑎𝑥 − 𝑎𝑐𝑐 (𝑖 )𝑡

)
,∀𝑖 < 𝑡 . (16)

.3 Distribution of attention weights
Fig. 4 visualizes the distribution of sorted attention weights generated from ViLT model [29] mentioned in Section 4.2, which evenly considers
10,000 VQA samples from five datasets in MDL-VQA benchmark. The extreme long-tail distribution demonstrates that, among more than
200 components in a VQA instance, merely several visual/textual components are crucial to deduce the correct answer. As a result, in
our proposed Feature-level SCD, we select to remove Top-10 visual/textual component with highest attention weights in our proposed
feature-level SCD, and the corrupted samples maintained with less-attended components can be regarded as the domain-specific knowledge.

.4 Experiments for hyper-parameters
Trade-off factors 𝜆𝑙 and 𝜆𝑓 : we first jointly discuss the trade-off factors 𝜆𝑙 and 𝜆𝑓 in the total loss function (Equ. (14)), which not only
control the equilibrium with the cross-entropy function, but also dynamically adjust dual-level SCD to review different old knowledge. We
dynamically adjust the value of 𝜆𝑙 and 𝜆𝑓 in the reasonable range of {0, 0.1, 0.25, 0.5, 1, 2}, respectively. The experiments are carried out
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Figure 9: The Distribution of sorted attention weights based on 10,000 VQA samples from five datasets as depicted in Section 4.2.

under the first five-domain order in Tab. 1. As shown in Tab. 4, increasing the impact of 𝜆𝑙 from 0 to 1 would consistently boost the efficacy
of reducing forgetting. If we fix the 𝜆𝑙 (e.g. 𝜆𝑙 = 1), introducing the Feature-level SCD is beneficial to the forgetting problem, which leads
to a further improvement by 1.5% when 𝜆𝑓 = 0.5. Based on the observation, the optimal setting is 𝜆𝑙 = 1 and 𝜆𝑓 = 0.5, where dual-level
distillations in our SCD are mutually complementary when reviewing old knowledge.

Table 4: Comparison of the average accuracy with diverse setting of trade-off factors 𝜆𝑙 and 𝜆𝑓 under five-domain sequence
CLEVER→GQA→Vizwiz→AQUA→VQA-ab.

𝜆𝑓
𝜆𝑙

0 0.1 0.25 0.5 1 2

0 57.75 58.37 59.12 59.84 60.45 59.97
0.1 58.11 58.31 58.87 59.65 61.43 60.13
0.25 59.60 59.67 59.98 60.10 61.67 60.35
0.5 59.98 60.13 60.24 60.89 61.94 60.15
1 59.43 60.45 60.35 59.75 59.13 58.84
2 58.35 58.68 58.57 58.23 57.91 57.81

The number of high-responsed classes Top-C for logits-based SCD: Then, we analyze the hyper-parameters of 𝐶 to identify the
number of high-responsed classes for our logits-based SCD (SCDL), which acts as a crucial role on separating instance- and domain-aware
knowledge. From the results in Tab. 5, when the 𝐶 increasing from 0 to 3, our method reaches it highest performance, which reveals that
top-3 predictive answers could better cover the semantic of ground-truth answer for input VQA sample. In contrast, the other extreme setting
of threshold (𝐶 ≥ 4) would also impair the both representations of instance- and domain-level knowledge. Hence, we select 𝐶 = 3 in SCD.

Table 5: Comparison of the average accuracy with dynamic settings of Top-C in logits-level SCD (SCDL).

Method Top-C
1 2 3 4 5 7 10 15

SCDL 58.1 59.8 60.5 60.3 60.0 59.5 59.1 58.9

The number of to-be-removed components Top-K for feature-based SCD: Finally, we experimentally validate the hyper-parameters
of 𝐾 to remove a specific number of visual/textual components with highest attention weights for our feature-based SCD, which acts as a
crucial role on formulating the harmful domain-specific knowledge. In tab. 6, our method achieves the best performance when removing
Top-10 important components based on attention weights (𝐾 = 10), which is consistent to the observation in Fig. 9. However, when
considering more to-be-removed components (e.g., 𝐾 > 15), the improvements caused by feature-level SCD would be impaired, since it
reduces the difficulty for student model to distinguish the domain-specific knowledge from the useful knowledge learned in current domain.

Table 6: Comparison of the average accuracy with dynamic settings of Top-K in feature-level SCD (SCDF+SCDC) under five-
domain sequence CLEVER→GQA→Vizwiz→AQUA→VQA-ab.

Method Top-K
3 5 7 10 15 20 50 100

SCDF+SCDC 57.5 58.5 59.3 60.0 59.6 58.9 58.0 57.8
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