
UVIO: An UWB-Aided Visual-Inertial Odometry Framework with
Bias-Compensated Anchors Initialization

Giulio Delama1, Farhad Shamsfakhr2, Stephan Weiss1, Daniele Fontanelli2 and Alessandro Fornasier1

Abstract— This paper introduces UVIO, a multi-sensor
framework that leverages Ultra Wide Band (UWB) technology
and Visual-Inertial Odometry (VIO) to provide robust and low-
drift localization. In order to include range measurements in
state estimation, the position of the UWB anchors must be
known. This study proposes a multi-step initialization procedure
to map multiple unknown anchors by an Unmanned Aerial
Vehicle (UAV), in a fully autonomous fashion. To address the
limitations of initializing UWB anchors via a random trajectory,
this paper uses the Geometric Dilution of Precision (GDOP)
as a measure of optimality in anchor position estimation, to
compute a set of optimal waypoints and synthesize a trajectory
that minimizes the mapping uncertainty. After the initialization
is complete, the range measurements from multiple anchors,
including measurement biases, are tightly integrated into the
VIO system. While in range of the initialized anchors, the VIO
drift in position and heading is eliminated. The effectiveness
of UVIO and our initialization procedure has been validated
through a series of simulations and real-world experiments.

I. INTRODUCTION

Autonomous operation of mobile robots and UAVs has
seen substantial growth and advancement in recent years.
With numerous applications ranging from industrial au-
tomation to the exploration of hazardous environments, the
requirement for accurate and low-drift state estimation is
crucial for ensuring the safe and efficient functioning of
these systems. One of the biggest challenges in autonomous
navigation is operating in GNSS-denied environments. In
such scenarios, the need for robust and reliable alternative
localization methods becomes increasingly important. VIO
has emerged as a powerful approach for providing real-time
state estimation in these scenarios. It uses a combination of
visual information from one or multiple cameras and inertial
information from Inertial Measurement Units (IMUs) that
incorporate accelerometers and gyroscopes. However, despite
its successes, VIO suffers from accumulative drift over time
due to the inherent limitations of visual-based localization
methods. In addition VIO is prone to fail in poor visual
conditions. To address this, recent research has explored the
integration of UWB range measurements into VIO systems,
leveraging the global information provided by these sensors
to improve localization performance. In this paper, we intro-
duce UVIO, a multi-sensor framework built upon the well-
known OpenVINS [1], that combines the strengths of both
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sensor modalities to overcome the limitations of traditional
VIO and achieve low-drift localization for mobile robots and
UAVs. Together with the automated detection and initializa-
tion of the UWB anchors, UVIO provides a complete, easily
deployable solution for real-time state estimation in GNSS-
denied environments. The initialization procedure starts with
a random flight with the objective of obtaining a first coarse
estimation of the anchors’ positions by solving a linear
least squares problem followed by a nonlinear optimization
on the same data. This initial estimate is then used in a
refinement procedure that consists of computing and flying
an optimal trajectory, collecting the data, and solving a
nonlinear least squares problem to refine the initial solution.
For this purpose, the GDOP, a metric tightly related to the
Fisher Information Matrix (FIM), is used as a measure of
optimality for deriving a set of waypoints that minimizes the
mapping uncertainty. The entire pipeline is carried out by the
UAV itself (navigating initially only based on VIO), without
the need for any human intervention. By incorporating the
proposed initialization procedure, the UVIO framework is
able to automatically estimate the position of the UWB
anchors, which can subsequently be included in the esti-
mation process to improve the accuracy and reliability of
the localization system. This allows the UAV to operate
in a completely autonomous manner, without the need for
human intervention, even in GNSS-denied environments. The
efficacy of the proposed procedure is demonstrated through a
series of simulations and real-world experiments, showcasing
the robustness and reliability of the UVIO framework even
in situations of poor visual conditions where pure VIO is
prone to fail.

II. RELATED WORK

Several studies have explored the use of UWB measure-
ments to enhance localization accuracy, which plays a key
role in autonomous navigation. This section briefly reviews
some of the most relevant works and discusses their signif-
icance in relation to our research, with a specific focus on
studies that tackle the UWB anchors’ initialization problem.
Early studies, such as [2], [3], and [4], employed UWB
measurements with prior knowledge of anchor positions,
resulting in a drift-free estimation of the robot’s pose, and
showed the potential of this approach to improve current
navigation and SLAM systems. These methods required an
offline calibration of the UWB anchors’ initial position,
reducing the autonomy of operation and making them un-
suitable for large-scale and dynamic environments.



Recent studies, such as [5], [6], [7], [8], [9] and [10],
aimed to improve localization accuracy and reduce drift
by integrating UWB range measurements and VIO. These
studies rely on the assumption that the UWB anchors’
positions are known a priori. They adopt graph-optimization
methods for state estimation, as opposed to the filter-based
method considered in this work. The choice of method
depends on the specific requirements of the problem. Graph-
based methods for state estimation can often provide more
accurate results than filter-based methods, but at a higher
computational cost. On the other hand, filter-based methods
are typically less computationally intensive and can be more
easily implemented in real-time applications where compu-
tational resources are limited.

The authors in [11] proposed a multi-sensor fusion frame-
work based on the Extended Kalman Filter (EKF) to estimate
anchors and UAV positions jointly. The initialization of the
UWB anchors is performed in a single step by solving a
linear least-squares problem, which can lead to inaccurate or
completely wrong initialization results.

[12] presents an accurate and easy-to-use method for UWB
anchor self-localization by utilizing ranging measurements
and readings from a low-cost IMU. The locations of the
anchors are estimated by freely moving the tag, using a
tightly-coupled Error State Kalman Filter (ESKF) to fuse
the UWB and inertial measurements. The anchors are first
initialized via an Iterative Least-Squares without considering
measurement biases.

In [13], a self-calibration algorithm for ultra-wideband
positioning systems with active anchor nodes is shown. The
algorithm uses iterative gradient descent and error detection
from a convolutional neural network to estimate the positions
of the fixed anchors with high accuracy, even in non-line-
of-sight (NLOS) conditions, but requires the anchors to
exchange range messages between each other.

The study in [14] addresses the drift in VIO for indoor
localization by incorporating a single UWB anchor into
the localization process. The initialization of the anchor is
performed by solving a nonlinear Least-Squares problem that
requires an initial guess for the position of the anchor that
must be provided and known a priori.

The studies of Nguyen et al. in [15] and [16] proposed two
tightly-coupled odometry frameworks that combine monoc-
ular visual feature observations with distance measurements
provided by a single UWB anchor. The first framework uses a
variant of the Levenberg-Marquardt non-linear optimization
algorithm to simultaneously estimate the scale factor and the
anchor position while the second framework leverages the
UWB measurements more effectively by addressing the time-
offset of each range data and utilizing all available measure-
ments. Later, in [17] and [18], the authors propose a graph-
based optimization approach for multi-sensor Simultaneous
Localization and Mapping (SLAM) for UAVs. The system
fuses data from various sensors, including IMU, cameras,
lidars, and UWB range measurements to estimate the state
of the vehicle in real time and with long-term consistency.

A recent paper from Jia et al. [19] proposes a Visual-

Inertial-Ranging Odometry (VIRO) approach to reduce local-
ization drift in VIO systems by incorporating UWB ranging
measurements from a minimum of 3 anchors. The method
utilizes a long-short time-window structure to initialize the
anchors’ positions and covariance. The paper also analyzes
the observability of the VIRO system with unknown UWB
anchor positions and shows that there are four unobservable
directions in the ideal case, which are reduced by fusing the
UWB measurements with a Multi-State Constraint Kalman
Filter (MSCKF).

All of the studies presented so far show the potential of
including UWB technology for localization and in particular
the mitigation of the drift in VIO navigation systems. How-
ever, none of the above-cited studies considers the fact that
the solution of anchor initialization, which in turn affects
the accuracy of the state estimation, is highly dependent on
various factors, including the geometry of the disposition of
the anchors and the trajectory of the UAV or the mobile robot
that collects the initialization data. In a recent study [20], the
authors applied the principles of FIM to determine the opti-
mal points within a designated flight volume for collecting
data for initializing the position of a single UWB anchor
together with its measurement biases. The method consists
of a coarse triangulation using random vehicle positions,
followed by fine triangulation using FIM-optimized points
that provide maximal information for the single anchor.

Our approach extends and improves the ideas in [20]
on information-driven UWB anchor initialization and usage
by developing a fully automated initialization approach for
simultaneous initialization and subsequent use of multiple
initially unknown UWB anchors with measurement biases.
We make use of the GDOP as a novel metric to guide the
optimization of data collection, initialization, and uncertainty
reduction for a scalable set of UWB anchors. More precisely,
our contributions are:

• Fully automated procedure to detect, initialize and use
initially unknown UWB anchors in a vision-UWB sup-
ported estimation approach.

• Novel least squares formulation, dubbed the optimal
double method (Sec. IV-A), increasing the matrix condi-
tion number for improved coarse anchors initialization.

• Optimal waypoint generation in arbitrarily shaped vol-
umes based on the GDOP metric to enable optimal data
collection for precise and simultaneous initialization of
UWB anchors.

• Validation of the proposed approach in simulations and
in real experiments with an autonomously flying UAV
(and open sourcing of the code).

• Real-world demonstration of the resilience of our ap-
proach against camera dropouts.

III. UWB-AIDED VISUAL INERTIAL ODOMETRY FILTER
DESIGN

A. UVIO filter state

Our proposed EKF-based UVIO filter has the following
structure. Beside the classical MSCKF-VIO core state, IX,



including the orientation I
Gq, position GpI , and velocity GvI

of the IMU frame {I} in the global frame {G}, as well
as the gyroscope and accelerometer bias bω , ba, the clones
state CX, including the clones of the IMU pose at different
past time steps, the features state F X, including the position
of N features in the global frame, and the calibration
state W X, including camera intrinsics and extrinsics for
each camera present, the UVIO filter is augmented with
the UWB state UX. The latter includes the UWB extrinsic
parameter, that is the position of the UWB tag with respect
to the IMU frame IpU , the position of M anchors in
the global frame GpA1

, · · · ,GpAM
, as well as the bias

parameters β1, γ1, · · · , βM , γM for each anchor. The bias
parameters include the so-called distance bias and constant
bias, described in later sections. Therefore, the UVIO state
is denoted as

x =
(
IX,C X,F X,W X,U X

)
. (1)

In the proposed filter, each UWB anchor can be treated as
fixed, i.e., their values are kept constant, or can be refined
online and hence added to the UWB state. With two anchors
fixed, we can set a non-drifting global frame (in fact, a non-
linear observability analysis shows that fixing one anchor in
position and the heading toward another anchor would be
sufficient; fixing two anchors in position is done to simplify
the implementation in the results section).

B. UVIO range update

For each anchor A, a range measurement zA = h(x) + n,
is described by the following model

h(x) := βd+ γ = β‖GpU − GpA‖+ γ,

= β‖GpI + I
GRT IpU − GpA‖+ γ,

(2)

where β and γ, firstly introduced in [20], are respectively a
multiplicative scalar that acts as a distance-dependent bias,
and a constant bias term.

For each range measurement zA from anchor A, define

Γ(x̂) = β̂

(
Gp̂I +

I

GR̂T I p̂U − Gp̂A

)T
‖Gp̂I +

I

GR̂T I p̂U − Gp̂A‖
,

then, the measurement Jacobian HzA is defined
through the following derivatives evaluated at x̂

∂h(x)

∂ I
GR

= Γ(x̂)
I

GR̂T bI p̂Uc×,

∂h(x)

∂ IpU
= Γ(x̂) I

GRT ,

∂h(x)

∂β
= ‖Gp̂I +

I

GR̂T I p̂U − Gp̂A‖,

∂h(x)

∂ GpI
= Γ(x̂),

∂h(x)

∂ GpA
= −Γ(x̂),

∂h(x)

∂γ
= 1.

Contrary to [19], we do not interpolate range measure-
ments to align them with the camera measurements, but, to
avoid introducing extra source of errors due to interpolation,
we rather perform what we called Delayed Update. As shown
in Fig. 1, this update strategy consists of collecting range
measurements in between the latest update at time tn and

Fig. 1. This figure shows an example of what we described as delayed up-
date strategy. In this example, the actual state estimate is at the time the last
camera measurement has been received, thus t1. Two UWB measurements
are received at time t2 and t3. At the next camera measurement, at time
t4, the state is propagated and updated through all the UWB measurements
collected, and finally, at time t4 a new clone is added and then the state is
updated with the newest camera measurement.

the next camera image at time tk. Upon receiving a new
camera image at time tk, a series of chained propagation-
update from time tn to time tk are performed.

IV. UWB ANCHOR INITIALIZATION

In order to be able to exploit UWB measurements in
the UVIO filter an initial position of the UWB anchors
needs to be provided. To minimize the setup time from
the practitioner’s perspective, the UVIO framework provides
an anchors detection and self-initialization module. The
anchors’ self-initialization routine only assumes that the
robot pose (through VIO in our case), as well as UWB
range measurements, are available to the system. Firstly,
data is collected from a short random or standard trajectory,
which is used to obtain a rough initial solution by solving
a linear least squares problem. Subsequently, a nonlinear
optimization problem is built on the same data, and it is
solved to refine the first coarse anchors positioning. The
resulting anchor’s position estimate is then used to compute
a set of waypoints optimizing our proposed GDOP metric to
maximize triangulation information for all involved UWB
anchors. The data from these optimal waypoints is then
used in a nonlinear optimization problem to refine all UWB
anchors positions simultaneously.

A. Coarse anchor positioning: Optimal Double Method

Obtaining a first rough estimation of the anchors’ positions
is fundamental for having an initial guess for the nonlinear
optimization. In [11] and [20], the coarse anchors’ initializa-
tion is modeled as a least square problem, which provides a
fast initial guess of the anchors’ positions. However, the least
square formulation is in practice often ill-posed yielding poor
solutions. In this respect, [11] introduced a measurement
inclusion test, where measurements are added to the least
square problem only if the condition number of the problem
is decreased by adding such a measurement. In this work,
we reformulated the least square problem described in [20]
with what we called optimal double method, aiming at
increasing the condition number of the least square problem
and minimizing the uncertainty of the solution.



The first choice we made to improve the conditioning
of the least square formulation of the anchors’ coarse ini-
tialization problem is to consider a known β = 1 in the
measurement model in Equ. (2), therefore, for a given range
measurement z from anchor A, we write

z = ‖GpU − GpA‖+ γ + n n ∼ N
(
0, σ2

n

)
.

Ignoring the measurement noise, we can square the previous
equation and rewrite it as follows

z − γ = ‖GpU − GpA‖,

(z − γ)
2

=
(
GpU − GpA

)T (GpU − GpA
)

z2 = ‖GpU‖2 + ‖GpA‖2 − 2GpTU
GpA + 2zγ − γ2.

(4)
By applying the double method [21], it is possible to derive
a linear relation with respect to GpA and γ. More precisely,
consider zi and zj being two different (not necessarily
consecutive) range measurements from the same anchor A,
and GpU i and GpUj the UWB tag positions at the time the
measurements have been collected. Then by subtracting the
two equations (4) we obtain

z2i − z2j = ‖GpU i‖
2 − ‖GpUj‖

2−

− 2
(
GpU i −

GpUj

)T
GpA + 2 (zi − zj) γ,

leading to the following least square formulation:
...

Ak

...

 x =


...
bk
...

⇒ A x = b,

with

Ak :=

[
−
(
GpU i − GpUj

)T
(zi − zj)

]
,

bk :=
1

2

((
z2i − z2j

)
−
(
‖GpU i‖

2 − ‖GpUj‖
2
))

,

x :=
[
GpA γ

]T
.

In order to identify the pair zi and zj , an optimal pivot
measurement to be subtracted from any other that minimizes
the uncertainty of the solution should be determined. To this
end, let nk ∼ N

(
0, σ2

n

)
, be the noise associated with the k-

th range measurement from anchor A, and εk ∼ N (0,Σε)
be the noise associated with the k-th position of the UWB
tag. In the analysis that follows, we consider only the vector
b being a stochastic entity while treating the matrix A as
deterministic. Even though this is an approximation, it makes
the analysis easier leading to a meaningful criterion for the
choice of the optimal pivot.

Let us start by considering Ak x = bk = b̄k + ηk, with
ηk ∼ N

(
0, σ2

ηk

)
and

σ2
ηk

=
(
z2k + z2p

)
σ2
n + GpUkΣεk

GpU
T

k + GpUpΣεp
GpU

T

p ,

where p is the index of the pivot. Define
Ση = diag

[
σ2
η1 , · · · , σ

2
ηM

]
being the covariance of the

vector b, then the information matrix of the least square
solution is written

Σ−1
x = Ix = ATΣ−1

η A =

[
I11 I12

I21 I22

]
,

I11 =

M∑
k=1

(
GpUk − GpUp

)(
GpUk − GpUp

)T
σ2
ηk

,

I12 = −
M∑
k=1

(
GpUk −

GpUp

) (zk − zp)
σ2
ηk

,

I21 = −
M∑
k=1

(zk − zp)
σ2
ηk

(
GpUk −

GpUp

)T
,

I22 =

M∑
k=1

(zk − zp)2

σ2
ηk

.

Then, it turns out that the optimal pivot index p can be
chosen to fulfill the A-optimality criteria, that is such that
the associated information matrix Ix has maximum trace.

B. Nonlinear Refinement
The next step of our anchors’ initialization routine is a

nonlinear refinement of the first coarse solution based on the
Levenberg-Marquardt (LM) algorithm, executed on the same
data collected during the first random trajectory. In particular,
we seek to minimize the following cost function:

min
x

1

2
‖y − f (x)‖2 , (5)

where x is the vector of unknown parameters to be estimated,
y is the vector of the measurement outputs, and f (x) =
ŷ is the vector of estimated outputs. In contrast to the
linear solution where only the constant bias γ was estimated
for each anchor, in the nonlinear optimization problem we
include the distance-dependent bias β for each anchor. The
initial guess for the distance bias is set to 1.

In our problem formulation, the nonlinear relation between
input and output is described by (2). For each anchor, the
vector of parameters is defined to be x = [GpA, γ, β] where
GpA is the anchor position in the global reference frame,
γ and β respectively the constant and distant-dependent
measurement bias. The LM algorithm iteratively updates
the values of x by linearizing the nonlinear function f(x)
around the current estimate xk, and solving the resulting
linear system JT

k (y−f (xk)) ≈ 0 where Jk is the Jacobian
matrix at the current estimate. The algorithm adjusts the
step size by introducing a scalar factor λk that trades off
between the steepest descent direction and the Gauss-Newton
direction. The updated estimate is given by xk+1 = xk+δx
where:

δx = (JT
k Jk + λkdiag(JT

k Jk))−1 JT
k (y − f (xk)).

The algorithm stops when either the change in the objective
function ‖y − f (x)‖2 is below a certain tolerance or the
maximum number of iterations is reached. The estimated
parameters covariance matrix of the final solution is:

Σ̂ = MSE(H + λkdiag(H ))−1.



C. Optimal Waypoints

Estimating the position of UWB anchors using the rang-
ing measurements collected during a random trajectory has
noticeable limitations despite the above introduced optimal
double method. The optimality of the trajectory with respect
to information for anchor initialization can be evaluated
based on different measures. In [20], a first estimate of the
anchor’s position is refined by collecting data navigating
through a set of waypoints computed via maximization of
the Fisher information matrix. In this study, GDOP [21]
is employed as a measure of optimality for estimating the
position of multiple anchors simultaneously. A trajectory
that minimizes the UWB mapping uncertainty is synthesized
as follows. Let H be the Jacobian in terms of the cosine
directions of the nonlinear ranging measurements in Equ. (2).
Considering one UWB anchor A and np waypoints we have

H =


cosϕ1 cos γ1 cosϕ1 sin γ1 sinϕ1 1
cosϕ2 cos γ2 cosϕ2 sin γ2 sinϕ2 1

...
cosϕnp

cos γnp
cosϕnp

sin γnp
sinϕnp

1

 ,
(6)

where

γi = arctan

(
GpAy − q

(i)
y

GpAx − q
(i)
x

)
,

ϕi = arctan

 GpAz − q
(i)
z√

(GpAx − q
(i)
x )2 + (GpAy − q

(i)
y )2

 ,

are, respectively, the Azimuth and Elevation angles of the
i-th waypoint position q(i) = [q

(i)
x , q

(i)
y , q

(i)
z ] with respect to

the UWB anchor GpA. Now considering a minimum of four
target positions, we can calculate the GDOP as follows:

GDOP =
√

Trace(HTH)−1 =

√
Trace

[
adj(HTH)

det(HTH)

]
, (7)

with
det(HTH) = (h1 − h2 + h3 − h4)2, (8)

where
ht = −CγtCϕt

(Cϕk
Sγkδsji + Cϕj

Sγjδsik + Cϕi
Sγiδskj),

δsij = Sϕi
− Sϕj

, Cγi = cos(γi), Sγi = sin(γi),

Cϕi
= cos(ϕi), Sϕi

= sin(ϕi),

and adj(HTH) is readily defined by the co-factor of HTH.
Maximizing (8) is equivalent to minimizing the volume of the
estimation uncertainty ellipsoid, which is a function of only
the Azimuth and the Elevation angles of the waypoints with
respect to the UWB anchor position, thus indicating those
angles as the optimization parameters. Despite this remark,
multiple anchors should be considered as well. In addition,
operational search volumes for the waypoints can have
any arbitrary shape (with UWB anchor locations potentially
outside of the drone operational volume). As such, the way-
points determination turns into a challenging optimization
problem, especially in unstructured environments. Moreover,

 

Fig. 2. The sample representation of the drone operational volume with 8
initial waypoints (i.e. q−). The cube volume is divided into 8 smaller cubes
(3D grids), each one indicating all the possible positions (denoted by small
white dots) for the corresponding waypoint.

instead of optimizing multiple trajectories separately for each
anchor, as in [20], we are interested in generating one optimal
trajectory that minimizes the estimation accuracy for all the
UWB anchors simultaneously. To this end, instead of angles,
we consider the waypoint positions directly as the parameters
of the following optimization problem

min
q

g(q), s.t. I(q) = 1, (9)

where:

g(q) =
1

na

na∑
i=1

√
Trace(HT

i Hi)−1,

with Jacobian Hi given in (6) and computed for all the na
anchors, i.e., ∀i ∈ [1, na], and I(q) is an indicator function
to check the feasible volume of the waypoints (i.e., a 3D
polygon [22]) and being I(q) = 1 if a point is inside the vol-
ume, I(q) = 0 otherwise. To tackle this problem, we applied
the grid-based evolutionary algorithm in [23]. The algorithm
starts with the drone operational volume considered as a cube
with height h, width w and length `, and np initial waypoints
(i.e. q(1,−), . . . , q(np,−)) (see Fig. 2). The cube volume is
divided into np = nhp

×n`p×nwp
smaller cubes, where nhp

,
n`p and nwp

indicate the number of coordinate variations
along Z (height), X (length) and Y (width) axis. Each small
cube is a 3D grid denoted by G1 . . . Gnp

, which defines
all the possible positions for the corresponding waypoint.
The evolutionary Alg. 1 has each chromosome defined as a
3×np matrix whose genes indicate 3 indexes along the three
axes of a sample grid point for the corresponding waypoint.
Each chromosome represents one particular configuration of
the set of waypoints in the discrete space (see Fig. 3). As
shown in Alg. 1, the Grid-Based Evolutionary Algorithm has
as input the 3D environment configuration parameters and
its center cv , the initial estimates of the UWB anchors (i.e.

ˆGpA) and the current position of the UWB tag (i.e. ˆGpUk
at time tk), and returns the optimal set of waypoints (i.e.
q?1 , . . . , q

?
np

) that minimizes (7).
Here, we report the results of applying Alg. 1 on two

sample anchor configurations for two different random con-
figurations of UWB anchors, reported in Fig. 4. The algo-
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Fig. 3. Schematic representation of a sample chromosome in the ith iter-
ation of the Grid-Based Evolutionary Algorithm. G(i)j,x, G

(i)
j,y , G

(i)
j,z indicate

the 3 indexes (xyz) of a sample grid point for the jth waypoint.

Algorithm 1 Grid-Based Evolutionary Algorithm for esti-
mating optimal set of way points

Input :(h, `, w, cv, ˆGpA, ˆGpUk, np = nhp × n`p × nwp)
Output :(q?1 , . . . , q?np

)
G[nhp×n`p×nwp ] = GenerateCubeGrid(h, `, w, cv, np)

Require: nP , P = [C1, . . . , Cnpop ], ∀ i Ci ∈ G
P ← Initialize(P)
while termination criterion not fulfilled do
F ← Fitness_assignment(P) . based on Equ. (9)
P ′ ←Mating_selection(P)
P ← V ariation(P ′) . Cross-over, Mutation

end while
q? ← min

C
F

rithm was executed with 2000 maximum evolution of the
genetic algorithm, tuned with a population size equal to 40,
crossover probability of 0.6, mutation probability 0.3 and
elitism probability of 0.1. The initial set of 8 waypoints was
used which results in 8 sub-cubes as shown in Fig. 2, and
the configuration space of each waypoint has 203 different
positions. The calculated optimal waypoints for the anchor
configuration of Fig. 4 (a) have the cost g(q) = 1.4, while
for the corresponding anchor configuration of Fig. 4 (b)
g(q) = 1.18. In order to have an idea of the repeatability
of the solution provided by the Grid-Based Evolutionary
Algorithm and of the corresponding execution time, we have
carried out Monte Carlo (MC) simulations for the two sample
anchor configurations shown in Fig. 4 with 500 trials. For the
computation time analysis, we have used the same MC test

  

(a) (b)
Fig. 4. Two Optimal sets of waypoints estimated as the solutions of the
Grid-Based evolutionary algorithm in two different random configurations of
UWB anchors. The black curves show a minimum snap trajectory generated
for the corresponding waypoints with zero velocity boundary conditions.

  

(a) (b)
Fig. 5. Average GDOP and time distribution analysis for the two sample
configuration cases (1) Fig. 4(a) and (2) Fig. 4(b).

and called the algorithm, which is written as a static C++
library and interfaced with Matlab Mex-Compiler, in each
iteration of the MC trial. Fig. 5 shows the average GDOP and
time distribution analysis for the two sample configuration
cases (1) Fig. 4(a) and (2) Fig. 4(b).

After obtaining the set of optimal waypoints, the UAV
can fly through them and collect data that will then be used
again in a nonlinear refinement explained in Sec. IV-B on
the previously obtained solution. With this last step, we best
leverage the information contained in the optimal waypoints
previously calculated such that a precise initialization of all
UWB anchors in range can be performed simultaneously.

V. EXPERIMENTS

A. Simulation

The initialization procedure was simulated and extensively
tested in MATLAB, with a comprehensive exploration of
multiple scenarios with different anchors configuration, UAV
trajectories, parameter values, and noise levels. Particularly,
we compared the solutions of the initialization after each
step and against random waypoints, i.e., initial coarse least
squares solution, nonlinear least squares on the same ini-
tialization data, refinement of the nonlinear least squares
via random waypoints, and via optimal waypoints. It is
important to underline that the refinement via random and
optimal waypoints is performed on "new" data with respect
to the first two methods. For fairness of comparison, we
considered the same amount of samples for all the methods.
In all cases, the refinement procedure via optimal waypoints
exhibited superior performance compared to other tested
methods (Fig. 6) with notably improved minimization of
both variance and mean error of the solutions. This outcome
underscores the efficacy of incorporating an information-
theoretic supported optimization-based approach for refining
the initial solution of the anchor’s mapping, increasing the
reliability of the initialization process even in situations with
challenging anchor configurations.

B. Real-world experiments

In this section, we describe the real-world experiments
conducted to validate the effectiveness of UVIO and the
proposed multi-step initialization procedure. The experi-
ments were carried out using an UAV equipped with an
onboard flight computer (Raspberry Pi 4), an IMU, a camera



Fig. 6. Average position error for 10 different MC simulations of the full
initialization procedure, with 100 realizations each, in a flight volume of
6 × 6 × 7 m3. Each simulation has a different initial trajectory and 4 or
5 randomly placed UWB anchors with different biases. The measurement
and position noise values are respectively σy = 0.3 m and σp = 0.03 m.

(Matrix Vision BlueFOX), and an UWB transceiver (Qorvo
MDEK1001). The vehicle was flown in a large indoor envi-
ronment within a flight volume of 4× 6.5× 7 m3 equipped
with an Optitrack motion capture system for recording the
ground-truth poses. Four additional UWB modules (Qorvo
MDEK1001) were arbitrarily placed in the environment and
their ground truth positions were captured. The system-
autonomy framework introduced in [24] was used to enable
the UAV to autonomously fly through waypoints inside
the given flight volume. For the first set of experiments,
we deployed the UAV at the center of the flight volume
and executed the initialization procedure as described in
Sec. IV. For the purpose of evaluating the accuracy of
the proposed method, we used the ground-truth position of
the UAV to perform the initialization. We performed three
experiments with two configurations for the anchors and
the corresponding position errors are shown in Tab. I. The
increase in error compared to the simulation experiments
is explained by the non-ideality of the UWB measurement
model that assumes constant values for the biases during the
initialization phase, while in reality interference, reflections,
and other unwanted physical phenomena may change their
values. Moreover, the results of the experiments show that
the accuracy of the proposed method is influenced by the

Fig. 7. Experiment 3: initialization

Anc. ID 19333 22660 7435 19110 Avg.
Exp. 1 0.169 m 0.470 m 0.271 m 0.193 m 0.276 m
Exp. 2 0.153 m 0.225 m 0.150 m 0.316 m 0.211 m
Exp. 3 0.085 m 0.492 m 0.283 m 0.205 m 0.266 m

TABLE I
INITIALIZATION ERRORS AND AVERAGES.

OpenVINS:

UVIO:

Fig. 8. Real-world experiment: comparison between OpenVINS and UVIO
position and orientation Absolute Trajectory Error (ATE). The Root Mean
Square Error (RMSE) of the error is reduced of approximately 10% in
position and 20% in orientation

placement of the anchors with respect to the flight volume.
In particular, anchors that are located outside of the volume
and in a corner, result in higher initialization errors. On the
other hand, anchors that are placed in favorable locations,
such as near the center of a face of the flight volume,
produce much lower initialization errors. A comparison with
the results from [20] suggests that the proposed approach is
superior since it considers multiple anchors simultaneously
and is capable of achieving a comparable or even lower
initialization error for single anchors that are optimally
placed, such as for anchor 19333 in Fig. 7.

A second set of experiments was carried out to evaluate the
real-time performance of UVIO. This time, the initialization
was performed considering the poses estimated by the VIO
framework and stopped with the UAV hovering in place. This
was followed by a manual flight of roughly the same dura-
tion, allowing for more agile maneuvering compared to the
automatic flight through waypoints. For the evaluation of the
trajectories, we chose the Absolute Trajectory Error (ATE) as
a metric [25] for the assessment of the UVIO performance.
In all the experiments, we noticed an overall improvement in
localization performance using UVIO compared to a VIO-
only. This was reflected in a decrease of the ATE Root
Mean Square Error (RMSE) (Fig. 8). To further test and
validate the reliability of our framework when compared to
pure VIO we simulated a camera dropout of 10 seconds after
the initialization of the anchors. As shown in Fig. 9, after an



Fig. 9. UVIO and OpenVINS performance comparison with camera faults.

initial transient caused by the VIO settling, UVIO is capable
of fully recovering from the dropout, making it a reliable
framework also in situations of poor visual conditions or
camera faults, where pure VIO would fail.

VI. CONCLUSION

In conclusion, this paper proposes UVIO, a multi-sensor
framework that combines UWB technology and VIO to
provide reliable and low-drift localization for mobile robots
and UAVs operating in GNSS-denied environments. The
proposed information-driven initialization procedure enables
the automatic detection and mapping of multiple unknown
anchors even in situations with challenging anchor con-
figurations. The effectiveness of UVIO and the proposed
initialization procedure is validated through simulations and
real-world experiments, proving it to be a complete, eas-
ily deployable solution for real-time state estimation in
challenging scenarios. Future work could focus on further
improving the initialization procedure by including a robust
outlier detection for received UWB range measurements and
expanding the applicability of the proposed approach to other
robotic systems.
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