
A SUFFICIENT CONDITION FOR
THE CH-RECTIFIABILITY OF LIPSCHITZ CURVES

SILVANO DELLADIO

Abstract. Let γ : [a, b] → R1+k be Lipschitz and H ≥ 2 be an integer number. Then a sufficient
condition, expressed in terms of further accessory Lipschitz maps, for the CH -rectifiability of γ([a, b])
is provided.

1. Introduction

In order to state our main theorem, we need to recall that a Borel subset S of R1+k (k ≥ 1, k
integer) is said to be CH -rectifiable if there exist countably many curves Mj of class CH , embedded
in R1+k and such that

H1(S\ ∪j Mj) = 0

where H1 denotes the usual one-dimensional Hausdorff measure in R1+k, compare [1, Definition
1.1]. Observe that for H = 1 this is equivalent to say that S is countably 1-rectifiable, e.g. by [11,
Lemma 11.1].

The present paper is devoted to prove the following result.

Theorem 1.1. Let be given a Lipschitz map γ : [a, b] → R1+k and an integer H ≥ 2. Then the set
γ([a, b]) is CH-rectifiable provided the following condition is met:

There are a family of 2H−1 Lipschitz maps

γα : [a, b] → R1+k, α ∈ {0, 1}H−1

and a family of H − 1 bounded functions

ch : [a, b] → R, h ∈ {0, . . . , H − 2}

such that
γ0H−1 = γ

and

γ̇0H−1−hβ = ch γ0H−2−h1β (almost everywhere)(1.1)

for all h ∈ {0, . . . , H − 2} and β ∈ {0, 1}h (where {0, 1}0 := {∅} and γα∅ := γα for all α ∈
{0, 1}H−1).
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In order to clarify the meaning of the condition above, let us consider a particular case.

Example. If H = 4, then eight Lipschitz maps

γ000, γ001, γ010, γ011, γ100, γ101, γ110, γ111 : [a, b] → R1+k

and three bounded functions
c0, c1, c2 : [a, b] → R

have to exist such that the following equalities hold a.e. in [a, b]

γ̇000 = c0γ001

(γ̇000, γ̇001) = c1(γ010, γ011)

(γ̇000, γ̇001, γ̇010, γ̇011) = c2(γ100, γ101, γ110, γ111).

Moreover γ000 = γ. In such a case, our result asserts that γ([a, b]) is C4-rectifiable.

Theorem 1.1 marks a new step in the long-term program that we have been embarked on since
[8]. Actually, particular cases of such a result have been considered in [8] (where the program was
announced) and [9]. More precisely, if σ denotes a ±1-valued function with domain [a, b], the case

H := 2, c0 := σ‖γ̇0‖
is indagated in [8], while

H := 3, c0 := σ‖γ̇00‖, c1 := σ‖(γ̇00, γ̇01)‖
is considered in [9]. These particular cases arise naturally in the context of one-dimensional gene-
ralized Gauss graphs (see [3, 4], for the basic definitions and results) and of 2-storey towers of one-
dimensional generalized Gauss graphs (see [9]). Now, with Theorem 1.1, the program in dimension
one is completed. Hence the application to one-dimensional geometric variational problems with
integral functionals depending on the curvature and its derivatives becomes a realistic option for
the next move. We are confident that results in such a direction can be obtained by resorting to
the notion of “h-storey tower of generalized Gauss graphs” (introduced in [9], for h = 2). This is a
special kind of integral current whose orientation provides the “wizard hat” where the derivatives
of the curvature up to the order h − 1 can be picked-up from, through very simple operations of
multilinear algebra. For h = 1, namely in the context of generalized Gauss graphs, applications to
geometric variational problems can be found in [5, 6, 7], where no restriction on the dimension is
assumed. Another step towards the achievement of our program consists in extending Theorem 1.1
to arbitrary dimension and our future efforts will surely be devoted to pursue this goal.

2. Reduction to graphs

The proof of Theorem 1.1 can be easily reduced to the following result.

Theorem 2.1. Let H, γ and the families {γα} and {ch} satisfy the same assumption as in Theorem
1.1. Given a unit vector u in R1+k, consider a map

f : R → (Ru)⊥

of class CH−1 and define the set

Gf := {xu + f(x) |x ∈ R}.
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Then the set Gf ∩ γ([a, b]) is CH-rectifiable.

In order to convince ourself of this point, observe that if γ([a, b]) is Ch-rectifiable for a given
h ∈ {1, . . . , H − 1} then countably many unit vectors

uj ∈ R1+k

and corresponding maps of class Ch

fj : R → (Ruj)⊥

have to exist such that
H1

(
γ([a, b])\ ∪j Gfj

)
= 0.

If we further assume that the condition in Theorem 1.1 is verified and Theorem 2.1 holds, then
γ([a, b]) has to be Ch+1-rectifiable. The conclusion follows by iterating this argument for H − 1
times and recalling that γ([a, b]) is C1-rectifiable (e.g. by [11, Lemma 11.1]).

3. The proof of Theorem 2.1
Preliminaries I: The derivatives of f in terms of {γα}

For h ≥ 1 let B1
h := {1h}, while, for h ≥ 2 and i ∈ {2, . . . , h}, let Bi

h denote the set of all i-tuples
(β1, . . . , βi) whose elements βj belong to {0, 1}h and are such that

• β1 > . . . > βi > 0 as binary numbers;
• for each l ∈ {1, . . . , h}, there exists one and only one βj with a 1 occupying the l-th position.

Examples. One has

B3
3 = {(100, 010, 001)},

B4
4 = {(1000, 0100, 0010, 0001)},

B2
3 = {(100, 011); (101, 010); (110, 001)},

B3
4 = {(1000, 0100, 0011); (1000, 0101, 0010); (1000, 0110, 0001);

(1001, 0100, 0010); (1010, 0100, 0001); (1100, 0010, 0001)}.

Now let {γα}, {ch}, u and f be as in the statement of Theorem 2.1 and introduce some further
notation. First of all, if H ≥ 3, in order to simplify the formulas below, we set the shortened
notation

γβ := γ0jβ

for all j = 1, . . . , H − 2 and β ∈ {0, 1}H−1−j . For example, when H = 4, one has

γ0 = γ00 = γ000, γ1 = γ01 = γ001, γ10 = γ010, . . .

For h ∈ {1, . . . , H − 1} define

Γ0
h(t) := 0, t ∈ [a, b],(3.1)
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and

Γi
h :=

∑
(β1,... ,βi)∈Bi

h

i∏
j=1

(γβj
· u) (i = 1, . . . , h)(3.2)

Remark 3.1. In particular we have (h = 1, . . . , H − 1)

Γ1
h = γ1h · u(3.3)

and

Γh
h =

h−1∏
j=0

(γ10j · u).(3.4)

Proposition 3.1. Let s ∈ [a, b] be such that γ̇α(s) exists for all α ∈ {0, 1}H−1. Then Γi
h is

differentiable at s, for all h ∈ {1, . . . , H − 1} and i ∈ {0, . . . , h}. Moreover, if H ≥ 3, the following
formula

Γ̇i
h(s) = ch(s)

(
Γi

h+1(s)− [γ10h(s) · u]Γi−1
h (s)

)
.(3.5)

holds for all h ∈ {1, . . . , H − 2} and i ∈ {1, . . . , h}.

Proof. The differentiability of Γi
h at s is obvious. As for the second assertion, observe, first of all,

that
Γ̇1

h(s) = γ̇1h(s) · u = ch(s) γ1h+1(s) · u = ch(s)Γ1
h+1(s)

for all h ∈ {1, . . . , H − 2}, by (3.3) and (1.1). Hence the equality (3.5) with i = 1 follows, by also
recalling that Γ0

h(s) = 0. For i ≥ 2 (note: this case occurs only when H ≥ 4), one has

Γ̇i
h(s) =

∑
(β1,... ,βi)∈Bi

h

 i∑
j=1

[γ̇βj
(s) · u]

i∏
l=1
l6=j

[γβl
(s) · u]



= ch(s)
∑

(β1,... ,βi)∈Bi
h

 i∑
j=1

[γ1βj
(s) · u]

i∏
l=1
l6=j

[γβl
(s) · u]


for all h ∈ {i, . . . ,H − 2}, by (3.2) and (1.1). Now, the formula (3.5) follows observing that

Bi
h+1 = {(β1, . . . , βi) ∈ Bi

h+1 |β1 = 10h} ∪ {(β1, . . . , βi) ∈ Bi
h+1 |β1 6= 10h}

=
(
10h ×Bi−1

h

)
∪
(
∪(β1,... ,βi)∈Bi

h
∪i

j=1 {(1βj , β1, . . . , β̂j , . . . , βi)}
)

hence

Γi
h+1 = (γ10h · u)Γi−1

h +
∑

(β1,... ,βi)∈Bi
h

 i∑
j=1

(γ1βj
· u)

i∏
l=1
l6=j

(γβl
· u)

 .

�

Remark 3.2. Define L as the set of t ∈ γ−1
0 (Gf ) such that:

γ̇β(t) exists and (1.1) holds at t

for all β ∈ {0, 1}h with h = 0, . . . , H − 2, and

γ̇0(t) 6= 0.
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From the Lusin Theorem it follows that, for any given real number ε > 0, there exists

Lε ⊂ L, Lε closed

such that
L1(L\Lε) ≤ ε

and
the map γ̇α|Lε is continuous

for all α ∈ {0, 1}h with h = 0, . . . , H − 2. If L∗ε denotes the set of density points of Lε, then

L∗ε ⊂ Lε

in that Lε is closed. Moreover one has

L1(Lε\L∗ε) = 0

by a well-known Lebesgue’s result. In the special case when L1(L) = 0 we define Lε := ∅, hence
L∗ε = ∅.

Now, by the same argument as in [9, §2], one can prove that

H1
(
Gf ∩ γ0([a, b])\ ∪∞j=1 γ0(L∗1/j)

)
= 0.

Then, in order to prove Theorem 2.1, it will be enough to verify that

γ0(L∗ε) is CH -rectifiable(3.6)

for all ε > 0.

Remark 3.3. Setting

β :=

{
∅ if h = 0
0h if h = 1, . . . , H − 2 (provided H ≥ 3)

in the equality (1.1), we find

ch(t) 6= 0(3.7)

for all t ∈ L and for h = 0, . . . , H − 2.

Proposition 3.2. Define
x(t) := γ0(t) · u, t ∈ [a, b],

let ε > 0 and consider
s ∈ L∗ε.

Then one has

x′(s) 6= 0(3.8)

and

Γh
h(s) 6= 0, h ∈ {1, . . . , H − 1}.(3.9)

Moreover the following formula holds
h∑

i=1

f (i)(x(s))Γi
h(s) = γ1h(s)− [γ1h(s) · u]u, h ∈ {1, . . . , H − 1}.(3.10)
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Proof. Observe that

f(x(t)) = γ0(t)− [γ0(t) · u]u = γ0(t)− x(t)u

for all t ∈ γ−1
0 (Gf ). Moreover the members of this equality are both differentiable at s, in that

L∗ε ⊂ L. Since s is a limit point of Lε ⊂ γ−1
0 (Gf ), it follows that

x′(s)f ′(x(s)) = γ′0(s)− x′(s)u(3.11)

which implies (3.8).

Recalling (1.1), we find

ci(s)[γ10i(s) · u] = γ̇0(s) · u = x′(s) 6= 0, i ∈ {0, . . . , H − 2}.

Then

γ10i(s) · u 6= 0, i ∈ {0, . . . , H − 2}

by (3.7). Now (3.9) follows at once from (3.4).

We will prove (3.10) by induction on h. As for h = 1, the formula follows from (3.11) recalling that

γ̇0(s) = c1(s)γ1(s), c1(s) 6= 0

by (1.1) and (3.7), respectively, while

Γ1
1 = γ1 · u

by (3.3). The argument proceed now under the hypothesis H ≥ 3 (for H = 2 the proof is com-
pleted). Let us assume that (3.10) holds for a generic h ≤ H − 2 and at all s ∈ L∗ε. We shall prove
that

h+1∑
i=1

f (i)(x(s))Γi
h+1(s) = γ1h+1(s)− [γ1h+1(s) · u]u(3.12)

for all s ∈ L∗ε. Actually, by the same argument as above, we can differentiate (3.10) and get (let us
omit, for simplicity, the argument s)

ch [γ1h+1 − (γ1h+1 · u)u] =
h∑

i=1

chf (i+1)(x)(γ10h · u)Γi
h + f (i)(x)Γ̇i

h

by (1.1), namely

ch [γ1h+1 − (γ1h+1 · u)u] = ch

h+1∑
i=2

f (i)(x)(γ10h · u)Γi−1
h + ch

h∑
i=1

f (i)(x)
[
Γi

h+1 − (γ10h · u)Γi−1
h

]

= ch

(
f ′(x)Γ1

h+1 +
h∑

i=2

f (i)(x)
[
Γi

h+1 − (γ10h · u)Γi−1
h + (γ10h · u)Γi−1

h

]
+ f (h+1)(x)Γh+1

h+1

)
by (3.1), (3.4), (3.5) and (1.1). Hence (3.12) follows recalling (3.7). �
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Now consider the (H − 1)-order lower triangular matrix field

Γ :=


Γ1

1 0 · · · 0
Γ1

2 Γ2
2 · · · 0

...
...

. . .
...

Γ1
H−1 Γ2

H−1 · · · ΓH−1
H−1


and the orthogonal projection

P : R1+k → (Ru)⊥

that is
Pv = v − (v · u)u = (u ∧ v) u.

One has the following result.

Corollary 3.1. Let ε > 0 and s ∈ L∗ε. The following facts hold:

(1) The matrix Γ(s) is invertible;
(2) If Nij(s) denote the elements of Γ(s)−1 and define

Θi(s) :=
i∑

j=1

Nij(s) γ1j (s), i ∈ {1, . . . , H − 1}(3.13)

then

f (i)(x(s)) = PΘi(s) = [u ∧Θi(s)] u, i ∈ {1, . . . , H − 1}.(3.14)

Proof. (1) is an immediate consequence of (3.9). As for (2), let {e1, . . . , ek} be an orthonormal
basis of (Ru)⊥ and set

fm := f · em, m ∈ {1, . . . , k}.
Then the equality (3.10) can be written as follows

Γ(s)
(
f (1)

m (x(s)), . . . , f (H−1)
m (x(s))

)t
= ([γ1(s) · em], . . . , [γ1H−1(s) · em])t

i.e. (
f (1)

m (x(s)), . . . , f (H−1)
m (x(s))

)t
= Γ(s)−1 ([γ1(s) · em], . . . , [γ1H−1(s) · em])t

for all m ∈ {1, . . . , k}. Hence we get

f (i)(x(s)) =
k∑

m=1

f (i)
m (x(s))em =

k∑
m=1

i∑
j=1

Nij(s)[γ1j (s) · em]em

for all i ∈ {1, . . . , H − 1}, that is just (3.14). �

4. The proof of Theorem 2.1
Preliminaries II: Taylor-type residues formulae

Let us continue to consider {γα}, {ch}, u and f as in the statement of Theorem 2.1. The following
result provides the highest order Taylor-type residue formula we are interested to, in order to apply
the Whitney extension theory.
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Theorem 4.1. Let ε > 0 and s ∈ L∗ε. Define

∆s := γ0 − γ0(s),

Φ1,s := γ1 −
H−1∑
i=1

(∆s · u)i−1Γ1
1

(i− 1)!
Θi(s)

and, for h ∈ {2, . . . , H − 1} (provided H ≥ 3)

Φh,s := γ1h −
h−1∑
i=1

Θi(s)
i−1∑
j=0

(∆s · u)jΓi−j
h

j!
−

H−1∑
i=h

Θi(s)
i−1∑

j=i−h

(∆s · u)jΓi−j
h

j!
.

Then the maps Φh,s are Lipschitz, for all h ∈ {1, . . . , H − 1}, and the following equalities hold:

(1) For all t ∈ γ−1
0 (Gf ),

f(x(t))−
H−1∑
i=0

f (i)(x(s))
i!

[x(t)− x(s)]i = P

(∫ t

s
c0Φ1,s

)
=
(

u ∧
∫ t

s
c0Φ1,s

)
u;

(2) For h ∈ {1, . . . , H − 1},
Φh,s(s) = 0;

(3) For ρ ∈ [a, b], H ≥ 3 and h ∈ {1, . . . , H − 2},

Φh,s(ρ) =
∫ ρ

s
chΦh+1,s.

Proof. Since the maps γα are Lipschitz, the functions Γj
h have to be Lipschitz too. Hence the

lipschitzianity of the Φh,s follows.

(1) Let t ∈ γ−1
0 (Gf ). Then, invoking (3.14) and observing that

f(x(t))− f(x(s)) = γ0(t)− x(t)u− [γ0(s)− x(s)u] = ∆s(t)− [∆s(t) · u]u = P (∆s(t)) ,

we obtain

f(x(t))−
H−1∑
i=0

f (i)(x(s))
i!

[x(t)− x(s)]i = P

(
∆s(t)−

H−1∑
i=1

Θi(s)
i!

[∆s(t) · u]i
)

= P

(∫ t

s

[
γ̇0 −

H−1∑
i=1

Θi(s)
i!

i(∆s · u)i−1(γ̇0 · u)

])
.

The first claim follows now, recalling that

γ̇0 = c0γ1, a.e. in [a, b]

by (1.1), while
γ1 · u = Γ1

1

by (3.3).

(2) Indeed, for h = 1, one has

Θ1(s) = N1,1(s)γ1(s) =
γ1(s)
Γ1

1(s)
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by (3.13), hence

Φ1,s(s) = γ1(s)−
H−1∑
i=1

[∆s(s) · u]i−1Γ1
1(s)

(i− 1)!
Θi(s) = γ1(s)− Γ1

1(s)Θ1(s) = 0.

As for H ≥ 3 and h ∈ {2, . . . , H − 1} (note: for H = 2 there is nothing more to prove), we find

Φh,s(s) = γ1h(s)−
h−1∑
i=1

Θi(s)Γi
h(s)−Θh(s)Γh

h(s)

= γ1h(s)−
h∑

i=1

Θi(s)Γi
h(s)

= γ1h(s)−
h∑

i=1

i∑
j=1

Nij(s)Γi
h(s)γ1j (s)

= γ1h(s)−
H−1∑
i=1

H−1∑
j=1

Nij(s)Γi
h(s)γ1j (s)

= γ1h(s)−
H−1∑
j=1

δhjγ1j (s)

= 0

again by (3.13).

(3) According to the claim, we assume H ≥ 3. Since the Φh,s are Lipschitz and vanish at s, by (2),
one has

Φh,s(ρ) = Φh,s(ρ)− Φh,s(s) =
∫ ρ

s
Φ̇h,s(4.1)

for all ρ ∈ [a, b] and h ∈ {1, . . . , H − 2}. Hence, by also recalling (1.1), (3.4) and (3.5), it follows
that

Φ1,s(ρ) =
∫ ρ

s
γ̇1 − Γ̇1

1

H−1∑
i=1

(∆s · u)i−1

(i− 1)!
Θi(s)− Γ1

1

H−1∑
i=2

(∆s · u)i−2(γ̇0 · u)
(i− 2)!

Θi(s)

=
∫ ρ

s
c1

(
γ12 − Γ1

2

H−1∑
i=1

(∆s · u)i−1

(i− 1)!
Θi(s)− Γ2

2

H−1∑
i=2

(∆s · u)i−2

(i− 2)!
Θi(s)

)

=
∫ ρ

s
c1

(
γ12 − Γ1

2Θ1(s)−
H−1∑
i=2

[
(∆s · u)i−2

(i− 2)!
Γ2

2 +
(∆s · u)i−1

(i− 1)!
Γ1

2

]
Θi(s)

)

=
∫ ρ

s
c1Φ2,s
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for all ρ ∈ [a, b], which completes the proof in the case H = 3. For H ≥ 4 and h = 2, by (4.1),
(1.1), (3.4) and (3.5), we get

Φ2,s(ρ) =
∫ ρ

s
γ̇12 −Θ1(s)Γ̇1

2 −Θ2(s)
[
Γ̇2

2 + (γ̇0 · u)Γ1
2 + (∆s · u)Γ̇1

2

]
+

−
H−1∑
i=3

Θi(s)

[
(∆s · u)i−2

(i− 2)!
Γ2

2 +
(∆s · u)i−1

(i− 1)!
Γ1

2

]′

=
∫ ρ

s
c2

(
γ13 −Θ1(s)Γ1

3 −Θ2(s)
[
Γ2

3 − (γ102 · u)Γ1
2 + (γ102 · u)Γ1

2 + (∆s · u)Γ1
3

]
+

−
H−1∑
i=3

Θi(s)
[
(∆s · u)i−3(γ102 · u)Γ2

2

(i− 3)!
+

(∆s · u)i−2(Γ2
3 − (γ102 · u)Γ1

2)
(i− 2)!

+

+
(∆s · u)i−2(γ102 · u)Γ1

2

(i− 2)!
+

(∆s · u)i−1Γ1
3

(i− 1)!

])

=
∫ ρ

s
c2

(
γ13 −Θ1(s)Γ1

3 −Θ2(s)
[
Γ2

3 + (∆s · u)Γ1
3

]
−

H−1∑
i=3

Θi(s)
i−1∑

j=i−3

(∆s · u)jΓi−j
3

j!

)

=
∫ ρ

s
c2Φ3,s

for all ρ ∈ [a, b]. We are now reduced to the case H ≥ 5. Under this assumption, consider
h ∈ {3, . . . , H − 2} and observe that the following equalities hold trivially:

i−1∑
j=1

(∆s · u)j−1

(j − 1)!
Γi−j

h − (∆s · u)j

j!
Γi−j−1

h = Γi−1
h (i = 2, . . . , h)

and

i−1∑
j=i−h

(∆s · u)j−1

(j − 1)!
Γi−j

h − (∆s · u)j

j!
Γi−j−1

h =
(∆s · u)i−h−1

(i− h− 1)!
Γh

h (i = h + 1, . . . , H − 1).
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Hence, invoking again (4.1), (1.1), (3.4) and (3.5), we find

Φh,s(ρ) =
∫ ρ

s
γ̇1h −Θ1(s)Γ̇1

h −
h−1∑
i=2

Θi(s)

Γ̇i
h +

i−1∑
j=1

(∆s · u)j−1(γ̇0 · u)Γi−j
h

(j − 1)!
+

(∆s · u)jΓ̇i−j
h

j!

+

−Θh(s)

Γ̇h
h +

h−1∑
j=1

(∆s · u)j−1(γ̇0 · u)Γh−j
h

(j − 1)!
+

(∆s · u)jΓ̇h−j
h

j!

+

−
H−1∑

i=h+1

Θi(s)
i−1∑

j=i−h

(∆s · u)j−1(γ̇0 · u)Γi−j
h

(j − 1)!
+

(∆s · u)jΓ̇i−j
h

j!

=
∫ ρ

s
ch

(
γ1h+1 −Θ1(s)Γ1

h+1 −
h∑

i=2

Θi(s)

[
Γi

h+1 − (γ10h · u)Γi−1
h +

+
i−1∑
j=1

(∆s · u)j−1(γ10h · u)Γi−j
h

(j − 1)!
+

(∆s · u)j
(
Γi−j

h+1 − (γ10h · u)Γi−j−1
h

)
j!

]
+

−
H−1∑

i=h+1

Θi(s)

[
i−1∑

j=i−h

(∆s · u)j−1(γ10h · u)Γi−j
h

(j − 1)!
+

(∆s · u)j
(
Γi−j

h+1 − (γ10h · u)Γi−j−1
h

)
j!

])

=
∫ ρ

s
ch

(
γ1h+1 −Θ1(s)Γ1

h+1 +

−
h∑

i=2

Θi(s)

[
Γi

h+1 − (γ10h · u)Γi−1
h + (γ10h · u)Γi−1

h +
i−1∑
j=1

(∆s · u)j

j!
Γi−j

h+1

]
+

−
H−1∑

i=h+1

Θi(s)

[
(∆s · u)i−h−1

(i− h− 1)!
(γ10h · u)Γh

h +
i−1∑

j=i−h

(∆s · u)j

j!
Γi−j

h+1

])

=
∫ ρ

s
ch

(
γ1h+1 −Θ1(s)Γ1

h+1 −
h∑

i=2

Θi(s)
i−1∑
j=0

(∆s · u)j

j!
Γi−j

h+1 +

−
H−1∑

i=h+1

Θi(s)
i−1∑

j=i−h−1

(∆s · u)j

j!
Γi−j

h+1

)

=
∫ ρ

s
chΦh+1,s.

�

In the following result, formulas for the Taylor residues, at s ∈ L∗ε, of the f (h)(x) are provided in
terms of the Φi,s.

Theorem 4.2. For s, t ∈ [a, b] and h ∈ {0, 1, . . . , H − 1}, define

Rh,s(t) := f (h)(x(t))−
H−1∑
i=h

f (i)(x(s))
(i− h)!

[x(t)− x(s)]i−h.

Let ε > 0. Then the following facts hold true:
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(1) For all s ∈ L∗ε and t ∈ γ−1
0 (Gf ),

R0,s(t) =
(

u ∧
∫ t

s
c0Φ1,s

)
u;

(2) For all s, t ∈ L∗ε and h ∈ {1, . . . , H − 1},

Rh,s(t) =

(
u ∧

h∑
i=1

Nhi(t)Φi,s(t)

)
u.

Proof. The first claim just rephrases Theorem 4.1(1), so there is nothing more to prove.

As for the second one, it will be enough to prove that the following equality

h∑
j=1

Rj,s(t)Γ
j
h(t) = [u ∧ Φh,s(t)] u(4.2)

holds for all s, t ∈ L∗ε and h ∈ {1, . . . , H − 1}. Indeed, the equality in (2) follows immediately from
(4.2) by recalling that (Nij) is the inverse matrix of Γ.

We shall prove (4.2) by induction. Since each t ∈ L∗ε is an accumulation point of L∗ε, we can derive
the formula in (1), thus getting

c0(t) [u ∧ Φ1,s(t)] u = R′
0,s(t) = R1,s(t) x′(t) = c0(t)R1,s(t)Γ1

1(t)

for all s, t ∈ L∗ε, by (1.1) and (3.3). Hence the equality (4.2) with h = 1 follows at once by recalling
(3.7). Now suppose H ≥ 3 (for H = 2 the proof of (4.2) is completed) and assume (4.2) to be true
for all s, t ∈ L∗ε and for a given h ∈ {1, . . . , H − 2}. By the same argument as above, we can derive
such an equality. Recalling Theorem 4.1(3), we find that

ch(t) [u ∧ Φh+1,s(t)] u =
h∑

j=1

R′
j,s(t)Γ

j
h(t) + Rj,s(t)Γ̇

j
h(t)

for all s, t ∈ L∗ε. From (3.5) and since

R′
j,s(t) = Rj+1,s(t)x′(t) = Rj+1,s(t)ch(t)(γ10h(t) · u)
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for all s, t ∈ L∗ε, by (1.1), it follows that

ch(t) [u ∧ Φh+1,s(t)] u = ch(t)(γ10h(t) · u)
h∑

j=1

Rj+1,s(t)Γ
j
h(t) +

+ ch(t)
h∑

j=1

Rj,s(t)
[
Γj

h+1(t)− (γ10h(t) · u)Γj−1
h (t)

]

= ch(t)(γ10h(t) · u)

 h∑
j=1

Rj+1,s(t)Γ
j
h(t)−

h∑
j=1

Rj,s(t)Γ
j−1
h (t)

+

+ ch(t)
h∑

j=1

Rj,s(t)Γ
j
h+1(t)

= ch(t)(γ10h(t) · u)
(
Rh+1,s(t)Γh

h(t)−R1,s(t)Γ0
h(t)

)
+

+ ch(t)
h∑

j=1

Rj,s(t)Γ
j
h+1(t)

for all s, t ∈ L∗ε. Recalling (3.1), (3.4) and (3.7), we conclude that

[u ∧ Φh+1,s(t)] u =
h+1∑
j=1

Rj,s(t)Γ
j
h+1(t)

for all s, t ∈ L∗ε. �

5. The proof of Theorem 2.1
Conclusion: Whitney-type estimates and the proof of (3.6)

In order to simplify many formulas below, for all h ∈ {0, . . . , H − 2}, let us set

‖ch‖ := sup
[a,b]

|ch|.

As a corollary of Theorem 4.1, we obtain the following estimate.

Proposition 5.1. Let ε > 0 and s ∈ L∗ε and, for h ∈ {1, . . . , H − 1}. Define

µH−1(s) := Lip(ΦH−1,s)

and, in the case H ≥ 3

µh(s) :=
Lip(ΦH−1,s)

(H − h)!

H−2∏
i=h

‖ci‖, h ∈ {1, . . . , H − 2}.

Then the inequality

‖Φh,s(t)‖ ≤ µh(s)|t− s|H−h(5.1)

holds for all t ∈ [a, b] and h ∈ {1, . . . , H − 1}.
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Proof. First of all, observe that one has

‖ΦH−1,s(t)‖ = ‖ΦH−1,s(t)− ΦH−1,s(s)‖ ≤ Lip(ΦH−1,s)|t− s| = µH−1(s)|t− s|(5.2)

for all t ∈ [a, b], by Theorem 4.1. In particular, for H = 2 the proof of (5.1) is completed.

Hence we are reduced to H ≥ 3. In such a case, if (5.1) is verified for a certain h ∈ {2, . . . , H − 1}
then it has to be true also for h− 1. Indeed, by invoking again Theorem 4.1, we obtain

‖Φh−1,s(t)‖ =
∥∥∥∥∫ t

s
ch−1Φh,s

∥∥∥∥ ≤ ‖ch−1‖µh(s)
H − h + 1

|t− s|H−h+1 = µh−1(s)|t− s|H−(h−1)

for all t ∈ [a, b]. Recalling (5.2), the inequality (5.1) follows at once by induction. �

In order to proceed into proving our main theorem, we need to cover L∗ε by sets where Whitney-type
estimates hold uniformly. So (given ε > 0), for j ∈ {1, 2, . . . }, let us define Γε,j as the set of points
s ∈ L∗ε such that the inequalities

‖Rh,s(t)‖ ≤ j |x(t)− x(s)|H−h, h ∈ {0, 1, . . . , H − 1}(5.3)

hold for all t ∈ L∗ε satisfying |t− s| ≤ (b− a)/j.

One obviously has

Γε,j ⊂ Γε,j+1 ⊂ L∗ε(5.4)

for all j. More difficult is to prove that the Γε,j actually cover L∗ε, as the following result states.

Proposition 5.2. Let ε > 0. Then ∪jΓε,j = L∗ε.

Proof. By virtue of (5.4), it is enough to prove that any fixed s ∈ L∗ε has to belong to some Γε,j .

To this aim, observe that

‖R0,s(t)‖ ≤
∥∥∥∥∫ t

s
c0Φ1,s

∥∥∥∥ ≤ ‖c0‖
∣∣∣∣∫ t

s
‖Φ1,s‖

∣∣∣∣ ≤ ‖c0‖µ1(s)
∣∣∣∣∫ t

s
|τ − s|H−1dτ

∣∣∣∣
=
‖c0‖µ1(s)

H
|t− s|H

(5.5)

for all t ∈ γ−1
0 (Gf ), by Theorem 4.2(1) and (5.1).

Now we can invoke (3.9) and an obvious continuity argument to find an open interval Is, centered
at s, such that

νh(s) := max
i

sup
Is

|Nhi| < +∞, h ∈ {1, . . . , H − 1}.
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Then, if H ≥ 3 and h ∈ {1, . . . , H − 2}, we find

‖Rh,s(t)‖ ≤
∥∥∥∥∥

h∑
i=1

Nhi(t)Φi,s(t)

∥∥∥∥∥ ≤
h∑

i=1

|Nhi(t)| ‖Φi,s(t)‖

≤ νh(s)
h∑

i=1

∣∣∣∣∫ t

s
|ci| ‖Φi+1,s‖

∣∣∣∣
≤ νh(s)

h∑
i=1

‖ci‖µi+1(s)
∣∣∣∣∫ t

s
|τ − s|H−i−1dτ

∣∣∣∣
= νh(s)

h∑
i=1

‖ci‖µi+1(s)
H − i

|t− s|H−i

≤ νh(s)

[
h∑

i=1

‖ci‖µi+1(s)
H − i

(b− a)h−i

]
|t− s|H−h

(5.6)

for all t ∈ L∗ε ∩ Is, by Theorem 4.2(2), Theorem 4.1(3) and (5.1).

As for H ≥ 3 and h = H − 1, we have

‖RH−1(t)‖ ≤
H−1∑
i=1

|NH−1,i(t)| ‖Φi,s(t)‖ ≤ νH−1(s)

[
H−1∑
i=1

Lip(Φi,s)

]
|t− s|(5.7)

for all t ∈ L∗ε ∩ Is, by Theorem 4.2(2) and Theorem 4.1(2).

From the inequalities (5.5), (5.6) and (5.7) it follows that a constant C(H, s) has to exist such that

‖Rh,s(t)‖ ≤ C(H, s)|t− s|H−h, h ∈ {0, 1, . . . , H − 1}
for all t ∈ L∗ε ∩ Is. Since x is differentiable at s and x′(s) 6= 0, by (3.8), one has∣∣∣∣x(t)− x(s)

t− s

∣∣∣∣ ≥ |x′(s)|
2

> 0

provided |t− s| is small enough. Then

‖Rh,s(t)‖ ≤
2H−hC(H, s)
|x′(s)|H−h

|x(t)− x(s)|H−h, h ∈ {0, 1, . . . , H − 1}

whenever t ∈ L∗ε and |t− s| is small enough. Hence the conclusion follows immediately. �

We can now proceed to the proof of (3.6).

Proof of (3.6). First of all observe that, as a consequence of Proposition 5.2, we are reduced to
prove that

γ0(Γε,j) is CH -rectifiable(5.8)

for all ε > 0 and j ∈ {1, 2 . . . }. To this aim, let us define

aji := a +
(b− a)i

j

for i ∈ {0, 1, . . . , j} and
Γji := Γε,j ∩ [aji, aj,i+1], Fji := x(Γji)
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for i ∈ {0, . . . , j − 1}. Then, given arbitrarily

ξ, η ∈ Fji,

two sequences
{sl}, {tl} ⊂ Γji

have to exist such that
lim

l
x(sl) = ξ, lim

l
x(tl) = η.

Since (5.3) holds with s = sl and t = tl, namely

‖Rh,sl
(tl)‖ ≤ j|x(tl)− x(sl)|H−h, h ∈ {0, 1, . . . , H − 1},

we get (by letting l →∞)∥∥∥∥∥f (h)(η)−
H−1∑
i=h

f (i)(ξ)
(i− h)!

(η − ξ)i−h

∥∥∥∥∥ ≤ j |η − ξ|H−h, h ∈ {0, 1, . . . , H − 1}.

By the Whitney extension Theorem [12, Ch. VI, §2.3], it follows that each f |Fji can be extended
to a map in CH−1,1(R, (Ru)⊥). Finally the Lusin type result [10, §3.1.15] implies that γ0(Γji) is
CH -rectifiable (compare [2, Proposition 3.2]). Hence (5.8) follows. �

References

[1] G. Alberti: On the structure of singular sets of convex functions. Calc. Var. 2, 17-27 (1994).
[2] G. Anzellotti, R. Serapioni: Ck-rectifiable sets. J. reine angew. Math. 453, 1-20 (1994).
[3] G. Anzellotti, R. Serapioni and I. Tamanini: Curvatures, Functionals, Currents. Indiana Univ. Math. J. 39,

617-669 (1990).
[4] S. Delladio: Do Generalized Gauss Graphs Induce Curvature Varifolds? Boll. Un. Matem. Italiana 10−B,

991-1017 (1996).
[5] S. Delladio: Minimizing functionals on surfaces and their curvatures: a class of variational problems in the setting

of generalized Gauss graphs. Pacific J. Math. 179, n. 2, 301-323 (1997).
[6] S. Delladio: Special Generalized Gauss Graphs and their Application to Minimization of Functionals Involving

Curvatures. J. reine angew. Math. 486, 17-43 (1997).
[7] S. Delladio: On hypersurfaces in Rn+1 with integral bounds on curvature. J. Geom. Anal. 11, n. 1, 17-41 (2000).
[8] S. Delladio: A result about C2-rectifiability of one-dimensional rectifiable sets. Application to a class of

one-dimensional integral currents. To appear in Boll. Un. Matem. Italiana [PDF available at the page
http://eprints.biblio.unitn.it/archive/00000783/].

[9] S. Delladio: A result about C3-rectifiability of Lipschitz curves. An application in Geometric Measure Theory.
Submitted paper [PDF available at the page http://eprints.biblio.unitn.it/archive/00000833/].

[10] H. Federer: Geometric Measure Theory. Springer-Verlag 1969.
[11] L. Simon: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Can-

berra, Australia, vol. 3, 1984.
[12] E.M. Stein: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Prince-

ton, 1970.


