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The mainstream motion prediction methods usually focus on short-term prediction, and their predicted long-term motions

often fall into an average pose, i.e. the freezing forecasting problem [27]. To mitigate this problem, we propose a novel

Bidirectional Transformer-based Generative Adversarial Network (BiTGAN) for long-term human motion prediction. The

bidirectional setup leads to consistent and smooth generation in both forward and backward directions. Besides, to make full

use of the history motions, we split them into two parts. The irst part is fed to the Transformer encoder in our BiTGAN while

the second part is used as the decoder input. This strategy can alleviate the exposure problem [37]. Additionally, to better

maintain both the local (i.e., frame-level pose) and global (i.e., video-level semantic) similarities between the predicted motion

sequence and the real one, the soft dynamic time warping (Soft-DTW) loss is introduced into the generator. Finally, we utilize

a dual-discriminator to distinguish the predicted sequence at both frame and sequence levels. Extensive experiments on the

public Human3.6M dataset demonstrate that our proposed BiTGAN achieves state-of-the-art performance on long-term (4�)

human motion prediction, and reduces the average error of all actions by 4%.
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1 INTRODUCTION

Being able to predict the future motion of a person is essential for autonomous agents, e.g., assistant robots [21]
and self-driving cars [29], in order to understand human behaviors during human-agent interactions, human-robot
collaboration [28], and robot navigation. For instance, it is important to understand the behavior of pedestrians
and make proactive decisions for autonomous vehicle systems [29].

Due to the complexity of predicting high-dimensional features jointly, it is challenging to capture the various
motion patterns e.g., spatial-temporal dependencies for long-term motions. Speciically, one problem in the
motion prediction task is that the predicted future poses are often the static average poses with the highest
probability. This problem is also known as the freezing prediction problem [27]. Moreover, it is also diicult to
measure the similarity between two human motion sequences explicitly and semantically.

To address the aforementioned issues, recent motion prediction methods mainly use recurrent neural networks
(RNNs) [1, 12, 18, 35], feed-forward networks [23, 33, 34], and GANs [15, 46]. However, the RNNs struggle to
encode long-term historical information for high-dimensional time-series data like human motion. For instance,
Martinez et al. [35] showed that RNNs have problems with the discontinuity of the predicted sequence at the last
seen frame, as well as a prediction that converges towards the mean pose of the ground-truth data for long-term
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Fig. 1. Overview of the proposed BiTGAN. It consists of a Transformer-based motion generator and a dual-discriminator.
The motion generator has a bidirectional processing loop. In the forward processing (red rectangle shown on the top), the
input is the history motion sequence, while the output is the predicted future motion sequence. In the backward processing
(blue rectangle shown at the botom), the predicted motion sequence will be flipped and fed to the same motion generator as
the input, and the output is the history motion sequence. An inverse loss is used to compute the diference between the
predicted historical motion and the real one. By adding the adversarial loss, we make the predicted frames look realistic to
the real ones in an adversarial way. The dual-discriminator contains a sequence-based discriminator and a frame-based
one. Both try to distinguish the predicted motion sequence from the real one but at two diferent levels, i.e., sequence level,
and frame level. Besides, the Sot-DTW loss is used to beter measure the similarity between the predicted motion sequence
and the real one.

predictions. While the feed-forward networks can achieve more realistic predictions than RNNs, they still sufer
from long-term predictions. In addition, conventional approaches compare human motion sequences based on
estimating the �2 displacement error [35]. As shown by Martinez et al. [35], such measure tends to ignore the
speciic motion characteristics, since the same representative poses repeated over a sequence may result in a
better match to a reference sequence compared to visually similar motion with diferent poses.
To sum up, previous works, in general, cannot capture long-range relationships, resulting in incoherent and

unnatural prediction results. To address this limitation, recently, Transformer has been employed [4, 5]. Cao
et al. [5] proposed a Transformer-based framework to exploit the scene context, while Cai et al. [4] exploited
Transformer with the global attention mechanism to capture the long-range spatial correlations and temporal
dependencies. Although these methods have achieved better performance, the freezing prediction problem still
persists.

To address the aforementioned problems, in this paper, we propose a novel Bidirectional Transformer Generative
Adversarial Network (BiTGAN), which can efectively exploit historical information and model the long-term
relationships among frames. BiTGAN consists of a novel Transformer-based motion generator and a dual-
discriminator (see Figure 1). We build our motion generator based on Transformer to model the long-range
relationships between historical frames and predicted frames.
Speciically, to tackle the freezing forecasting problem in long-term prediction, we use the bidirectional

generation strategy, leading to consistent forward and backward prediction results. The intuitive idea behind it is
that if the generated future poses converge to the mean pose for a long time, then the backward predicted results
will become worse with fewer dynamics compared to the history motion. Therefore, we add this constraint to
penalize the predictions. Such bidirectional generation is inspired by the cycle consistency in the image-to-image
translation task [49]. However, there are two major diferences: (i) Our generator is diferent in content (human
poses) but the same in style (running, jumping, etc.), while cycle consistency is originally used to enforce the
same content (but diferent styles) in both input and output. (ii) We utilize forward and backward predictions to
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preserve the motion consistency temporally in the video domain rather than the spatial correspondence in the
image domain. In this way, our generator can predict the future motion frames from the input history motion
frames in the forward processing, while in the meantime, it can predict the history motion frames from the
predicted motion frames in the backward processing as shown in Figure 1.
In addition, there is a context discrepancy problem between the training and testing stages in the standard

Transformer, which is known as the exposure bias problem [37]. The discrepancy refers to the fact that the
decoder of the Transformer uses ground truth as input at training while using the predictions as input at testing.
The distributions of the predictions and the ground truth have a discrepancy. To avoid this problem, instead of
using the predicted sequence as the input of the decoder, we use part of the ground truth history sequence as the
input of the decoder. In this way, we can keep the consistency between training and testing. Moreover, we use 10
frames as a mini-batch during training and testing and this setup allows batch-wise inference.
Besides, to better maintain the high-level semantic similarity between the predicted motion sequence and

the real one both locally and globally, we add the soft dynamic time warping (Soft-DTW) loss to regularize our
motion generator. Diferent from the traditional L2 loss, which is widely used in motion prediction tasks, the
Soft-DTW loss is robust to shifts or dilatations across the time dimension, but it has been rarely used.

We also employ a GAN-based dual-discriminator [38], which is composed of a sequence-based discriminator
and a frame-based discriminator. Both discriminators aim at distinguishing the predicted sequences from both
local frame and global sequence levels. Extensive experiments on the Human3.6M dataset show that our BiTGAN
achieves new state-of-the-art results on human motion prediction for both periodical and non-periodical actions
and substantially improves the accuracy of the predicted long-term (4�) poses.

The contributions of this paper are summarized as follows:

• We propose a novel bidirectional Transformer GAN (BiTGAN) for long-term motion prediction. The novel
bidirectional generation strategy can alleviate the freezing forecasting problem.

• For the Transformer-based generator, we design a novel data split strategy to alleviate the exposure bias
problem [37].

• We introduce a new dynamic time warping (DTW) metric to evaluate the underlying similarity between
two-time series and show that our method performs better.

2 RELATED WORK

Traditional Recursive Human Motion Prediction. Following the success of deep learning methods in
computer vision, various deep learning models have been investigated for human motion prediction, such as
RNNs and GANs.

With the rise and impressive performance of RNNs in sequence-to-sequence tasks, researchers leverage RNNs
to learn temporal dependencies for motion prediction [12, 14, 18, 22, 30, 35]. Jain et al. [18] developed a structural-
RNN incorporated with ixed spatial-temporal graphs to model human motion. However, the model is trained
for each motion individually, incurring a high computational cost. Tang et al. [43] incorporated an attention
module to summarize the recent pose history, followed by an RNN-based prediction network. Moreover, based
on the observations from the statistics research on hand motion [16], Martinez et al. [35] proposed a residual
architecture to model irst-order motion derivatives, i.e., velocities instead of human poses. They show that their
simple method outperforms previous works.

Although these RNN-based approaches performed an interesting exploration, one can still observe unsatisfac-
tory aspects in the predicted motion sequences. In order to ix these limitations, several works use feed-forward
networks other than RNNs to model human pose [3, 23, 26, 33, 34, 40, 48]. For example, Butepage et al. [3]
proposed a deep learning fully-connected network that investigates diferent strategies to encode temporal,
and historical information and generalizes well to new, unseen motions. Li et al. [23] presented an approach
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based on convolutional neural networks (CNNs) to human motion modeling. The hierarchical structure of a
CNN enables it to efectively capture both spatial and temporal correlations. This method is more efective
than the RNN-based ones, but the manually-selected size of the convolutional window heavily inluences the
temporal encoding. Mao et al. [34] show that encoding the short-term history in the frequency space using the
discrete cosine transform (DCT) followed by a graph convolutional network (GCN) to encode spatial and temporal
connections leads to better performance. They [33] further introduce a motion attention mechanism that allows
capturing the motion recurrence in the long-term history. The work related to ours is [34] and [33], which also
use DCT to encode motions, leverage GCNs as predictors as well as Mean Per Joint Position Error (MPJPE)[17] as
the evaluation metric. However, there are three important diferences between our approach and theirs. First,
our method is developed to alleviate the problem of freezing forecasting for long-term (4s) prediction by the
proposed bidirectional setup, while [33] and [34] are mainly designed for mid-term (1s) forecasting. Second, we
design a Transformer-based Generative Adversarial Network for long-term human motion prediction. Finally, we
introduce a novel dynamic time warping (DTW) metric to better measure the semantic similarity between the
predicted motion sequence and the real one at video-level.
Apart from RNNs and feed-forward networks, some other models have also been proposed. For instance,

to facilitate more realistic human motion prediction and alleviate the discontinuity problem, Gui et al. [15]
incorporated adversarial training mechanisms to simultaneously validate the global plausibility and coherence
of the predicted motions. Recently, Lyu et al. [31] reformulate the human motion problem based on stochastic
diferential equations and GANs. Moreover, to dynamically adjust the focus of the model, Li et al. [24] presented
a more generic motion forecasting framework with dynamic key information selection and ranking procedures
based on reinforcement learning and hybrid attention mechanism. Wang et al. [46] also introduced imitation
learning under a reinforcement learning formulation, which is computationally efective. However, one can still
observe that these methods cannot predict coherent and semantic-consistent motion sequences. More importantly,
most existing human motion prediction works mentioned above only forecast human motions for maximum 1s,
which is insuicient in many applications e.g., human-robot interaction.
Vision Transformers for Motion Prediction. Transformer is a state-of-the-art attention-based approach in
natural language processing (NLP) [7, 9, 32, 36, 47] and computer vision [10, 13, 19]. It was originally proposed
for NLP [44] and has recently been successfully applied for many computer vision tasks. For human motion
related tasks, there have also been several works that use Transformer-based methods. For instance, Duan et

al. [11] use Transformer to solve the motion completion problem under diferent application scenarios with a
uniied framework. Li et al. [25] presented a two-stream motion Transformer generative model, which can capture
long-term dependencies and generate music-conditioned lexible poses. Li et al. [27] designed a cross-modal
Transformer-based architecture, which can generate realistic 3D dance motion given music and efectively
prevent freezing or drifting problem, which is common for long-term motion generation. The advantages of the
Transformer lie in the self-attention mechanism, which can capture global dependencies. Some of the recent
methods in the ield of motion forecasting adopt Transformer as well [4, 5]. For instance, Cao et al. [5] applied
the standard Transformer network to predict 3D poses, but it requires an extra scene image as the input, which
is diferent from the setup in this paper.Cai et al. [4] proposed to leverage the Transformer-based architecture
to simultaneously capture the long-range spatial and temporal dependencies of human motion by treating the
sequential joints with encoded temporal features as the input.
Our proposed Transformer-based approach is diferent from these methods. We focus on developing a novel

bidirectional Transformer generative adversarial network (i.e., BiTGAN) for long-term human motion prediction.
Moreover, to tackle the freezing forecasting problem for long-term prediction, we propose a novel bidirectional
generation strategy in the generator. In the backward prediction, as shown in Figure 1, we reuse the generated
future frames as the input to the Transformer, and the outputs are the history motion frames and pose an
extra inverse loss. Intuitively, in the backward prediction, if the input generated future frames are uniform
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Fig. 2. Overview of our Transformer-based motion generator. It has five components, i.e., Transformer encoder, Transformer
decoder, DCT, cross-modal atention, and GCN predictor. The earlier history motions are encoded directly by the Transformer
encoder. The recent history motions are the inputs of the Transformer decoder, and in the meanwhile, the Transformer decoder
aggregates the encoded earlier history motions. The DCT further encodes the temporal information of the recent historical
motions. The cross-modal atention is employed to fuse the outputs of the Transformer decoder and DCT coeficients. The
GCN predictor with learnable adjacency matrices models the spatial relationship among joints. During testing, as illustrated
by the black dashed line, we add the predicted frames as input and reversely forecast future poses.

freezing average pose, the predicted history poses will deviate far away from the ground truth. Thus, posing an
extra inverse loss may help us to calibrate the forward prediction results and force the model to capture more
human motion dynamics for a long-term span. Note that the inverse loss has a close relationship with the cycle
consistency loss in [49]. The major diference is that the cycle consistency loss in [49] computes the loss between
the original image and the reconstructed image, whereas the proposed inverse loss computes the loss between
the original motion sequence and the backward predicted motion sequence. Our emphasis is on the sequential
motion pattern consistency in the video domain rather than the correspondence of appearance structures in the
image domain.

3 METHODOLOGY

In this work, our goal is to tackle the task of human motion prediction. Given the sequence motion coordinates
�1:� , of one person for the past � steps, we aim to predict the future motion for the next � steps, i.e., ��+1:�+� . In
our case, �� ∈ R3� describes the 3D coordinates of human joints, where � represents the number of the human
joints. Figure 1 illustrates the framework of our GAN-based bidirectional motion prediction model. The inverse
loss in the backward direction deals with the long-term average prediction problem. The Transformer-based
motion generator is employed for long-term motion prediction. Moreover, we observe that the Euclidean distance
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can only measure the physical diference between two individual frames at the same time stamp, failing to capture
the high-level long-term semantic diference. To solve this problem, we introduce a GAN-based dual-discriminator
which evaluates the predictions implicitly both at the frame level and the sequence level which encodes the
semantics. A soft-DTW loss is used to measure the similarity at the sequence level as it is robust to shifts or
dilatations across the time dimension.

3.1 Inverse Loss in the Bidirectional Generation

Inspired by the unsupervised vision tasks, e.g., domain adaption [2] and image translation [42, 49], with large
enough capacity, a network can map a set of input images to any permutation of images in the target domain, and
any of these learned mappings can produce an output distribution that matches the target distribution. To narrow
down the possible mapping functions, even more, Zhu et al. [49] argue that the learned mapping functions should
be cycle-consistent, meaning that for each image � from domain � , the image translation cycle should be able to
return � to its original form, as follows:

� → � (�) → � (� (�)) ≈ � . (1)

Eq. 1 formulates the cycle consistency. Similarly, as shown in Figure 1, for the previous sequence �1:�= {�1, · · ·, �� },

ourmotion prediction network� should also satisfy the forward-backwardmotion consistency. Let �̃� :1=

{

�̃� , · · ·, �̃1

}

be the reversed prediction. We pose an inverse loss (i.e., �2 loss) to measure the distance between �1:� and �̃� :1.
To make the two sequences match each other in the time dimension, we reverse �1:� to �� :1 before computing
the inverse loss:

L��� = �2 (�� :1, �̃� :1), (2)

where �̃� :1 = � (� (�1:� )). Note that we share the network parameter between � and � to reduce the model
capacity.

3.2 Transformer-Based Motion Generator

Transformer-Based Prediction. The tremendous success of Transformers has been recently notable for their use
to model long-range dependencies between sequential data. As illustrated in Figure 1, we propose a Transformer-
based motion generator for the bidirectional prediction with the weight-sharing strategy. In particular, as shown
in the left part of Figure 2, in order to modify the Transformer to it the motion prediction task, we propose to
deine the latest observed frames as queries of the Transformer decoder, which is diferent from the most visual
Transformer architectures such as [10]. Firstly, our modiied Transformer generator can avoid the exposure bias
[37] problem existing in the original Transformer structure. Exposure bias refers to the discrepancy of context
between the training and testing stages. Speciically, it is the scenario of the model trained to predict the next
object using the ground truth as context, while during inference only conditioned on the previous sequence
generated by the resulting model. This discrepancy results in error accumulation among the sequence since
the model has to predict based on a never seen distribution during training. While our proposed Transformer
generator has the same context at training and inference with no gap between them. Secondly, for every predicting
step, our modiied Transformer generator allows for parallel computation not only at training but also at testing,
which can signiicantly reduce the inference time consumption compared to the original Transformer.

The detailed structure of the Transformer encoder and decoder is depicted in the right part of Figure 2. We
maintain the standard structure of the Transformer module described in [44] for simplicity. The Transformer
consists of several stacked encoder and decoder blocks. Each encoder block is constructed by multi-head self-
attention, layer normalization (LN), residual connections, as well as a position-wise feed-forward multi-layer
perceptron (MLP) block. The MLP contains two layers with a GELU non-linearity, while each decoder block has
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an extra encoder-decoder attention layer compared to the encoder. In addition, before the encoder and decoder
block, a learnable temporal positional encoding is conducted.

Speciically, given the motion sequence �1:� = {�1, · · ·, �� }, we split it to {�1, ..., �� } and {��+1, ..., �� } as encoder
input and decoder input, respectively. For each frame �� , we add the position embedding to retain the positional
information. The input of Transformer encoder F� with the size of [�, � , �] is the result after adding position
embedding, where � is the number of human joints and � is the embedding dimension of each joint. While the
input of Transformer decoder is F� with the size of [� − �, � , �]. The Transformer structure is the same as the
one in [44]. Notice that there is no mask when computing the multi-head attention in our Transformer decoder.
The output of Transformer encoder and decoder is O��� and O��� . The size of these two outputs is the same as
their inputs, respectively.
Cross-Modal Attention.We utilize the cross-modal attention proposed in [41] as shown in Figure 2, whose
inputs are the output of the Transformer decoder O��� and the DCT coeicients O��� . The output of the cross-
modal attention is the reined feature, which will be fed into the GCN predictor. Speciically, we directly perform
a matrix multiplication between O��� and O��� , and apply a Softmax layer to produce a correlation matrix A,

A�� =

exp(O���� O���� )
∑�
�=1 exp(O

���
� O���� )

, (3)

where A�� measures the impact of the �-th position of O��� on the �-th position of the frequency code O��� . In

this crossing way, the model can capture more joint inluence between O��� and O��� , producing a richer feature.
We then perform a matrix multiplication between O��� and the transpose of A and reshape the result to the

original size of O��� . Finally, we multiply the result by a scale parameter � and conduct an element-wise sum

operation with the original O��� to obtain the reined feature Ô��� ,

Ô��� = �

�︁

�=1

(A��O
���
� ) + O��� , (4)

where � is 0 in the beginning but is gradually updated. By doing so, each frame of the reined feature Ô��� is a

weighted sum of all frames of O��� and the previous O��� . Thus, it has a global contextual view between Ô���

and Ô��� , and it selectively aggregates useful contexts according to the correlation matrix A.
At the same time, we can update O��� using the cross-model attention model. Similar to Equation (3), we irst

perform a matrix multiplication between O��� and O��� , and apply a Softmax layer to produce another correlation
matrix B. Similar to Equation (4), we then perform a matrix multiplication between O��� and the transpose of B
and reshape the result to the same size of O��� . After that, we multiply the result by a scale parameter � and

conduct an element-wise sum operation with the original feature O��� . Finally, we concatenate both Ô��� and

Ô��� in channel-wise, and feed the result to the GCN predictor to produce the motion sequence.

3.3 Adversarial Dual-Discriminator

Frame-Based Discriminator. To achieve frame-based prediction between the generated sequence and the
real sequence, we use a frame-based discriminator �� in [38] as one of the objectives of the proposed motion
generator � . The adversarial loss of the frame-based discriminator (�� ) can be expressed as follows,

L��
=

�+�︁

�=�+1

(

E�� [log�� (�� )] + E�̂�

[

log(1 − �� ( �̂� ))
] )

. (5)

By doing so, we make the generated frame �̂� look realistic to the real frame �� in an adversarial way.
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Sequence-Based Discriminator. Another objective of the proposed motion generator � is to achieve temporal
coherence of the generated skeleton sequence. For example, when a man moves his left hand, his right hand
should keep still for multiple frames. Thus, we utilize a sequence-based discriminator �� proposed in [38] to

achieve the coherence between consecutive frames of the generated sequences F� = �̂�+1:�+� and the real one
F ����
�

= ��+1:�+� . Therefore, the adversarial loss of sequence-based discriminator �� is deined as,

L��
=EF����

�

[

log�� (F
����
� )

]

+ EF� [log(1 − �� (F� ))] . (6)

Thus, the inal adversarial loss of the GAN framework is the sum of both Equations (5) and (6),

L��� = L��
+ L��

. (7)

3.4 Optimization Objective

Mean Per Joint Position Loss. Similar to prior work [33, 34], we use the Mean Per Joint Position Error (MPJPE)
proposed in [17].

LMPJPE =

1

� × �

�+�︁

�=�+1

�︁

�=1





 �̂�,� − ��,�







2
, (8)

where �� ∈ R3, �̂� ∈ R3 are the ground truth and predicted motions at future time step � respectively.
Soft-DTW Loss. To measure the overall similarity between two-time series signals, we use the Soft-DTW loss
proposed in [6]. One advantage of Soft-DTW is that it is diferentiable with respect to all of its arguments. It is
derived from the original DTW discrepancy. Diferent from the Euclidean distance, DTW is robust to time shifts
or dilatations.

Speciically, given two sequences x = (�1, . . . , ��) and y = (�1, . . . , ��), the Soft-DTW loss LSot-DTW is deined
as:

DTW� (x, y) = −� log

�︁

�=1

exp

(

−
⟨C,Δ(x, y)⟩

�

)

, (9)

where � > 0 is the smoothing parameter, C is the alignment matrix. Δ(x, y) :=
[

�
(

�� , � �
) ]

� �
∈ R�×� is the cost

matrix, where � is the substitution-cost function, which in most cases is the squared Euclidean distance.
Overall Optimization Objective. We use four diferent losses as our full optimization objective, i.e., adversarial
loss L��� , inverse loss L��� , Soft-DTW loss LSot-DTW, and the mean per joint position loss LMPJPE, which can be
expressed as,

min
�

max
�� ,��

L = ����L��� + ��� ���LMPJPE + ����LSot-DTW + ����L���, (10)

where ���� , ��� ��� , ��� and ���� are the weights, measuring the corresponding contributions of each loss to the
total loss L. Here, we experimentally set these weights. However, we found that lower L��� will obtain better
performance since the inverse loss produced by the reconstructed input sequence is not that important compared
to the losses L��� , LMPJPE and LSot-DTW with the real data.

4 EXPERIMENTS

In this section, we evaluate our method on the publicly available Human3.6M dataset [17] which is one of the
widest benchmark datasets in motion prediction. The dataset contains 15 activities collected from 7 diferent
human subjects. The high-quality 3D data are recorded by using a Vicon motion capture system. For each clip in
the dataset, there are 32 joints with 3D locations captured for one person. To enable the comparison of the results,
we follow the data processing settings of previous works. In particular, we calculate the 3D joint coordinates
using forward kinematics on a standard skeleton as in [33, 34]. As in [15, 23, 33ś35, 45], we delete the global
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rotation, translation as well as constant angles. As in [15, 23, 33ś35] we down sample the frame rate from 50
to 25. At inference time, we also test our method on Subject 5 as in [15, 33ś35] and report our results on 256
sub-sequences per action for 3D coordinates as in [33].
Evaluation Metrics.We evaluate our model in terms of two metrics. Speciically, to measure the similarity of
the pose sequences directly, we evaluate our model in terms of the widely used Mean Per Joint Position Error
(MPJPE) [17] in millimeter. To capture the semantic relationship between two sequences, DTW error is also
reported. In particular, for the 3D position of each joint, MPJPE is computed by the average �2 distance between
ground truth and our prediction motion sequence overall predicted time steps. While the DTW error estimates
similarly of two sequences.
Implementation Details. The proposed network is implemented in PyTorch framework. Following the same
settings of [33], our method is trained using the Adam optimizer [20] for 50 epochs with data batches of size 32
for Human3.6M. For Equation (10), note that we split LMPJPE and LSot-DTW to two parts, which are L�

MPJPE and

L�
MPJPE, L

�
Sot-DTW

and L�
Sot-DTW

, respectively. Here, L�
MPJPE represents the loss of earlier predicted frames, while

the L�
Sot-DTW

represents the latter part of the predicted sequence. Accordingly, ��� ��� and ��� are separated to

���� ��� and �
�
�� ��� , �

�
��

and ��
��
, respectively.

Speciically, both ���� ��� and �
�
��

are set to 9.8, while both ���� ��� and �
�
��

are set to 0.1. This selection is based

on the assumption that the irst predicted poses will afect the later prediction due to the recursive forecasting
mechanism, as shown in Figure 2. In addition, ���� is set to 0.1 because of the reason described in Section 3, and
���� is set to 1.
State-of-the-Art Comparisons.We compare our approach with one RNN-based methods, residual sup. [35]
and three feed-forward models, ConvSeq2Seq [23], LTD [34], and His. Rep. [33], which constitutes the state of
the art. For the prediction sequence lasting within 1000ms, we take the results from [33] directly. Otherwise, we
use the results of His. Rep. [33], we utilized the pre-trained model released by the authors for Human3.6M, then
predict the longer motion sequence recursively.

4.1 uantitative Results

Following the settings of our baselines [23, 33ś35, 43], we present the results for mid-term and long-term
prediction. Speciically, in order to make comparisons with recent SOTAs conveniently, we deined those two
time scales as (500, 1000]�� and (1000, 4000]�� .
For Human3.6M, our model is trained with past 50 frames as input and predict future 10 frames. We further

produce poses literately in a recursive way by concatenating the predictions with the history.
Results on Human3.6M. We compare our method with seven state-of-the-art methods, including Residual
sup. [35], ConvSeq2Seq [23], LTD [34], His. Rep. [33], DMGNN [26], MSR-GCN [8], and STSGCN [39]. As shown
in Table 1, Table 2 and Table 3, we provide the results for mid-term and long-term prediction in 3D space,
respectively. Methods His. Rep. [33], MSR-GCN [8] and STSGCN [39] released their codes publicly, we used
the results from their pre-trained models or re-trained the models and tested under the same protocol for fair
comparison.
The results in Table 1 and Table 2 indicate that our method outperforms all the competing methods on

average for both mid-term and long-term prediction. Note that we surpass LTD-50-25 [34], DMGNN [26], and
STSGCN [39] almost all the time. In particular, as shown in Table 2, for the MPJPE metric, our method exceeds
STSGCN [39] and His. Rep. [33] by 12.8 and 7.8 averaging for the 4s prediction respectively. Also, we outperform
STSGCN [39] and His. Rep. [33] for 14 and 13 (15 totally) action classes in long-term prediction. Besides, Table 2
illustrates the efectiveness of our method especially for those acyclic motions, e.g., łwalking dogž, łposingž and
łdirectionsž, we even outperform the previous most competitive baseline MSR-GCN [8] by a large margin, which
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Table 1. MPJPE error of 3D joint position on Human3.6M for mid-term prediction. The error is measured in millimeter. The
two numbers ater the method name łLTDž indicate the number of observed frames and that of predicted frames respectively.
Best results in bold.

Walking Eating Smoking Discussion

Milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Residual sup. (CVPR’17) [35] 71.6 72.5 76.0 79.1 74.9 85.9 93.8 98.0 78.1 88.6 96.6 102.1 109.5 122.0 128.6 131.8

ConvSeq2Seq (CVPR’18) [23] 72.2 77.2 80.9 82.3 61.3 72.8 81.8 87.1 60.0 69.4 77.2 81.7 98.1 112.9 123.0 129.3

LTD-50-25 (ICCV’19) [34] 50.7 54.4 57.4 60.3 51.5 62.6 71.3 75.8 50.5 59.3 67.1 72.1 88.9 103.9 113.6 118.5

LTD-10-25 (ICCV’19) [34] 51.8 56.2 58.9 60.9 50.0 61.1 69.6 74.1 51.3 60.8 68.7 73.6 87.6 103.2 113.1 118.6

LTD-10-10 (ICCV’19) [34] 53.1 59.9 66.2 70.7 51.1 62.5 72.9 78.6 49.4 59.2 66.9 71.8 88.1 104.5 115.5 121.6

His. Rep. (ECCV’20) [33] 47.4 52.1 55.5 58.1 50.0 61.4 70.6 75.7 47.6 56.6 64.4 69.5 86.6 102.2 113.2 119.8

DMGNN (CVPR’20) [26] 73.4 - - 95.8 58.1 - - 86.7 50.9 - - 72.2 81.9 - - 138.3

STSGCN (ICCV’21) [39] 58.0 60.7 64.1 70.2 57.4 69.7 77.9 82.6 55.5 65.6 72.3 76.1 91.1 105.3 114.2 118.9

MSR-GCN (ICCV’21) [8] 53.3 55.4 58.1 63.7 50.8 61.4 69.7 75.4 50.5 59.5 67.1 72.1 87.0 101.9 111.4 116.8

Ours 49.8 55.0 58.5 60.5 48.5 59.2 68.2 73.0 48.4 57.5 65.0 70.0 85.8 101.2 111.6 116.4

Directions Greeting Phoning Posing Purchases Sitting

Milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Residual sup.(CVPR’17) [35] 101.1 114.5 124.5 129.1 126.1 138.8 150.3 153.9 94.0 107.7 119.1 126.4 140.3 159.8 173.2 183.2 122.1 137.2 148.0 154.0 113.7 130.5 144.4 152.6

ConvSeq2Seq (CVPR’18) [23] 86.6 99.8 109.9 115.8 116.9 130.7 142.7 147.3 77.1 92.1 105.5 114.0 122.5 148.8 171.8 187.4 111.3 129.1 143.1 151.5 82.4 98.8 112.4 120.7

LTD-50-25 (ICCV’19) [34] 74.2 88.1 99.4 105.5 104.8 119.7 132.1 136.8 68.8 83.6 96.8 105.1 110.2 137.8 160.8 174.8 99.2 114.9 127.1 134.9 79.2 96.2 110.3 118.7

LTD-10-25 (ICCV’19) [34] 76.1 91.0 102.8 108.8 104.3 120.9 134.6 140.2 68.7 84.0 97.2 105.1 109.9 136.8 158.3 171.7 99.4 114.9 127.9 135.9 78.5 95.7 110.0 118.8

LTD-10-10 (ICCV’19) [34] 72.2 86.7 98.5 105.8 103.7 120.6 134.7 140.9 67.8 83.0 96.4 105.1 107.6 136.1 159.5 175.0 98.3 115.1 130.1 139.3 76.4 93.1 106.9 115.7

His. Rep. (ECCV’20) [33] 73.9 88.2 100.1 106.5 101.9 118.4 132.7 138.8 67.4 82.9 96.5 105.0 107.6 136.8 161.4 178.2 95.6 110.9 125.0 134.2 76.4 93.1 107.0 115.9

DMGNN (CVPR’20) [26] 110.1 - - 115.8 152.5 - - 157.7 78.9 - - 98.6 163.9 - - 310.1 118.6 - - 153.8 60.1 - - 104.9

STSGCN (ICCV’21) [39] 79.9 95.0 103.9 109.6 106.3 119.9 130.1 136.1 73.1 87.9 100.6 108.3 119.7 146.3 165.4 178.4 106.8 122.1 134.1 141.0 84.7 102.4 114.8 121.4

MSR-GCN (ICCV’21) [8] 75.8 89.9 100.5 105.9 106.3 120.0 131.5 136.3 67.9 82.5 95.8 104.7 112.5 140.1 162.8 176.5 99.2 114.0 126.9 134.4 77.6 94.0 107.7 115.9

Ours 73.3 87.9 99.7 106.3 101.1 117.8 131.3 136.4 67.3 82.3 94.9 103.2 107.1 134.6 156.7 171.0 99.0 113.7 127.1 135.1 76.0 92.0 105.4 114.4

Sitting down Taking photo Waiting Walking dog Walking together Average

Milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Residual sup. (CVPR’17) [35] 138.8 159.0 176.1 187.4 110.6 128.9 143.7 153.9 105.4 117.3 128.1 135.4 128.7 141.1 155.3 164.5 80.2 87.3 92.8 98.2 106.3 119.4 130.0 136.6

ConvSeq2Seq (CVPR’18) [23] 106.5 125.1 139.8 150.3 84.4 102.4 117.7 128.1 87.3 100.3 110.7 117.7 122.4 133.8 151.1 162.4 72.0 77.7 82.9 87.4 90.7 104.7 116.7 124.2

LTD-50-25 (ICCV’19) [34] 100.2 118.2 133.1 143.8 75.3 93.5 108.4 118.8 77.2 90.6 101.1 108.3 107.8 120.3 136.3 146.4 56.0 60.3 63.1 65.7 79.6 93.6 105.2 112.4

LTD-10-25 (ICCV’19) [34] 99.5 118.5 133.6 144.1 76.8 95.3 110.3 120.2 75.1 88.7 99.5 106.9 105.8 118.7 132.8 142.2 58.0 63.6 67.0 69.6 79.5 94.0 105.6 112.7

LTD-10-10 (ICCV’19) [34] 96.2 115.2 130.8 142.2 72.5 90.9 105.9 116.3 73.4 88.2 99.8 107.5 109.7 122.8 139.0 150.1 55.7 61.3 66.4 69.8 78.3 93.3 106.0 114.0

His. Rep. (ECCV’20) [33] 97.0 116.1 132.1 143.6 72.1 90.4 105.5 115.9 74.5 89.0 100.3 108.2 108.2 120.6 135.9 146.9 52.7 57.8 62.0 64.9 77.3 91.8 104.1 112.1

DMGNN (CVPR’20) [26] 122.1 - - 168.8 91.6 - - 120.7 106.0 - - 136.7 194.0 - - 182.3 83.4 - - 115.9 103.0 - - 137.2

STSGCN (ICCV’21) [39] 105.2 124.8 139.2 148.4 84.2 104.6 116.6 126.3 80.8 95.7 106.4 113.6 115.4 128.1 141.6 151.5 58.9 62.3 66.9 72.5 85.1 99.4 109.9 117.0

MSR-GCN (ICCV’21) [8] 102.4 122.7 139.6 149.3 77.7 96.9 112.3 121.9 74.8 87.8 98.2 105.5 107.7 120.8 135.7 145.7 56.2 60.9 65.0 69.5 80.0 93.9 105.5 112.9

Ours 96.2 114.5 129.9 141.3 74.2 92.6 107.4 117.7 72.9 87.3 97.7 104.9 105.4 120.4 136.4 148.3 54.3 59.7 64.2 67.3 77.3 91.7 103.6 111.1

are 10 and 11 for 4s prediction respectively. The most probable reason is that the other methods tend to generate
representative static poses or failed to forecast the long horizon dynamics.

Furthermore, we also provide the comparison results of the DTW metric in Table 3. Our approach surpasses all
the baselines on average. Speciically, the proposed method is much better than the previous method STSGCN [39]
by a margin of 2.4×107 averaging for 4s prediction. We also achieve the best results on 9 activities such as łeatingž,
łsmokingž, łdiscussionž, and so on. This performance gain clearly indicates that our method can produce sequences
more similar to the ground truth globally.

4.2 ualitative Results

We also provide qualitative results in Figure 3 and Figure 4 for long-term and mid-term prediction including
smoking, eating, taking photo, walking dog and greeting actions. Compared with His. Rep. [33], STSGCN [39]
and MSR-GCN [8], our approach can predict more dynamic and accurate future poses, which can capture both
the key poses of the deined classes and the underlying dynamics for long-term prediction.

For instance, for the smoking action (see Figure 3 (a)), we can predict someone lighting a cigarette with right
hand, then put this hand down, while His. Rep. [33] can only predict the movement of lighting a cigarette, and
the frames in the black dashed box illustrate that the smoking poses almost stand still in more than a quarter
of the forecast duration. For the greeting action (see Figure 4 (a)), we can also forecast the underlying pattern
which is rising hands to greet and then laying down them, while His. Rep. [33] can only forecast the movement
of rising hands and quickly produce freezing motion (as shown in the black dashed box).
Furthermore, we can learn the action-conditioned pattern for parts of the human body. For example, for the

walking dog action (see Figure 3 (d)), our prediction is sitting while walking the dog, but His. Rep. [33] can not
predict the dynamic of human arms and tend to converge to the mean pose for a long time.
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Table 2. MPJPE error of 3D joint position on Human3.6M for long-term prediction. Best results in bold.

Milliseconds 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Walking

His. Rep. (ECCV’20) [33] 59.1 61.6 66.5 72.2 73.4 79.8 83.0 84.9 84.5 93.8 94.7 96.7 100.3 109.8 106.5

STSGCN (ICCV’21) [39] 81.6 84.3 86.8 91.7 95.4 95.9 98.2 100.2 104.2 125.9 109.5 108.8 110.4 120.9 112.3

MSR-GCN (ICCV’21) [8] 62.8 60.9 68.0 76.8 78.8 79.7 83.6 84.4 83.2 88.9 93.0 94.7 96.4 102.0 102.3

Ours 61.9 63.4 71.4 77.4 81.0 84.5 90.8 93.0 94.2 101.8 107.6 107.7 111.4 120.2 119.7

Eating

His. Rep. (ECCV’20) [33] 82.6 87.9 90.7 93.1 96.1 98.6 100.3 103.5 106.3 106.1 105.7 108.0 110.6 112.3 116.1

STSGCN (ICCV’21) [39] 105.5 112.0 113.8 119.5 124.0 126.3 127.1 128.5 132.0 153.2 133.4 135.6 136.2 143.2 136.8

MSR-GCN (ICCV’21) [8] 85.2 88.9 91.3 94.4 96.3 97.3 98.7 100.2 102.7 103.0 104.2 106.7 108.4 108.3 111.7

Ours 80.6 85.3 89.4 92.4 95.4 97.0 99.8 102.0 104.8 104.0 104.2 105.8 107.6 109.3 114.0

Smoking

His. Rep. (ECCV’20) [33] 77.2 84.0 89.4 94.8 101.8 106.8 110.4 114.0 117.5 122.5 125.7 130.9 134.9 139.6 142.2

STSGCN (ICCV’21) [39] 112.9 121.5 126.2 132.9 140.6 145.7 147.7 152.1 155.8 170.1 160.8 161.3 164.1 168.9 165.7

MSR-GCN (ICCV’21) [8] 84.9 93.4 99.2 104.5 111.3 117.0 120.4 123.6 125.3 130.0 132.0 135.0 138.6 142.7 144.7

Ours 77.7 84.4 89.5 94.4 100.5 105.3 109.8 113.1 117.1 122.4 125.7 129.7 133.8 136.8 140.2

Discussion

His. Rep. (ECCV’20) [33] 131.3 138.6 144.3 149.0 151.1 152.4 159.3 163.1 163.5 166.6 166.9 169.7 170.7 173.5 174.0

STSGCN (ICCV’21) [39] 138.1 142.4 147.3 149.0 152.2 154.1 158.0 162.3 161.4 176.7 164.7 168.3 169.0 173.8 168.0

MSR-GCN (ICCV’21) [8] 132.1 136.5 140.4 144.9 147.2 147.2 151.4 153.7 154.3 157.4 159.0 162.6 164.2 167.1 166.3

Ours 125.2 130.8 136.0 140.0 142.6 143.2 148.4 151.5 152.2 155.6 157.4 160.0 161.8 163.9 163.2

Directions

His. Rep. (ECCV’20) [33] 116.3 121.4 126.7 130.0 132.9 136.1 138.0 139.1 141.8 147.4 152.8 153.8 153.8 154.8 156.7

STSGCN (ICCV’21) [39] 140.2 145.3 147.1 151.2 153.1 155.6 156.5 157.4 157.2 183.0 161.2 160.2 158.4 168.7 156.4

MSR-GCN (ICCV’21) [8] 126.3 132.9 138.8 143.9 146.4 149.6 151.9 152.9 154.6 158.4 162.4 161.3 159.5 158.1 157.1

Ours 116.1 121.0 126.4 129.7 132.1 134.4 135.6 136.0 138.2 142.6 146.7 147.3 146.6 145.8 147.1

Greeting

His. Rep. (ECCV’20) [33] 148.2 152.4 153.1 150.2 150.6 151.8 150.7 151.3 155.5 157.8 159.0 158.4 159.9 160.1 158.6

STSGCN (ICCV’21) [39] 158.6 157.8 161.9 160.9 163.3 163.9 162.7 164.2 166.4 172.1 167.0 166.0 163.9 163.5 164.8

MSR-GCN (ICCV’21) [8] 151.1 154.9 154.0 151.9 150.9 150.8 148.3 149.2 153.4 154.2 155.3 155.3 154.1 152.7 151.7

Ours 144.3 147.3 148.0 144.4 142.4 144.2 145.1 144.5 148.3 149.5 151.7 150.1 152.0 153.0 152.3

Phoning

His. Rep. (ECCV’20) [33] 118.9 132.4 144.2 153.4 162.3 169.6 176.0 181.4 187.6 192.5 195.4 196.6 200.1 202.2 203.4

STSGCN (ICCV’21) [39] 142.3 150.3 157.6 163.8 167.9 170.7 173.9 178.6 182.6 196.1 190.5 190.7 191.2 193.4 191.0

MSR-GCN (ICCV’21) [8] 120.2 131.5 141.8 150.4 157.4 162.3 167.0 171.5 176.4 180.7 184.5 186.4 188.9 190.2 191.8

Ours 116.8 128.9 140.4 148.6 156.5 161.1 167.0 171.8 177.0 181.0 183.7 184.2 186.7 188.4 189.3

Posing

His. Rep. (ECCV’20) [33] 202.5 220.4 233.3 246.4 254.6 257.6 256.3 254.8 254.9 252.0 251.2 247.2 247.5 249.8 246.6

STSGCN (ICCV’21) [39] 206.1 212.9 221.5 229.9 234.3 237.2 237.5 239.1 243.1 249.6 244.0 240.6 239.8 238.0 235.9

MSR-GCN (ICCV’21) [8] 208.4 221.3 227.7 233.6 236.3 236.6 236.3 238.6 241.0 240.3 239.9 235.9 234.4 235.0 232.1

Ours 191.8 205.9 216.4 228.0 236.5 238.7 237.7 236.7 237.9 235.0 233.5 226.9 224.7 224.2 220.6

Purchases

His. Rep. (ECCV’20) [33] 145.9 154.0 162.5 166.2 172.2 181.6 186.7 189.5 192.8 193.7 194.9 197.3 207.3 211.7 213.5

STSGCN (ICCV’21) [39] 158.6 166.3 170.2 173.6 176.9 184.1 186.8 188.8 190.9 210.4 193.3 195.1 199.8 210.1 200.8

MSR-GCN (ICCV’21) [8] 147.8 153.8 160.4 163.8 169.8 178.2 181.2 182.1 183.5 183.7 184.2 185.3 193.3 197.2 199.6

Ours 145.2 151.3 156.6 158.2 164.0 172.1 175.9 177.6 179.4 179.5 180.6 183.0 192.0 195.6 197.1

Sitting

His. Rep. (ECCV’20) [33] 132.3 147.7 158.5 168.2 178.9 189.2 200.7 209.7 217.1 223.1 227.2 232.0 236.0 239.7 241.9

STSGCN (ICCV’21) [39] 177.0 187.3 198.6 206.9 213.6 217.5 221.6 224.7 227.6 221.1 232.0 231.7 232.1 226.9 231.5

MSR-GCN (ICCV’21) [8] 140.2 156.2 166.6 175.7 185.5 193.5 200.6 205.8 209.2 211.2 214.1 216.6 217.9 219.4 219.0

Ours 131.3 146.4 156.7 165.6 176.1 185.9 195.7 202.6 208.8 213.2 217.7 222.1 226.1 228.2 228.8

Sitting Down

His. Rep. (ECCV’20) [33] 159.9 177.6 191.5 204.3 217.4 231.7 246.7 257.9 268.0 276.3 283.3 290.2 294.9 299.9 301.8

STSGCN (ICCV’21) [39] 216.2 227.2 236.9 247.1 255.3 263.8 271.5 277.3 284.3 287.8 288.3 290.2 292.2 292.3 291.2

MSR-GCN (ICCV’21) [8] 179.3 196.7 209.5 221.1 232.1 242.6 252.8 261.0 269.4 274.8 278.9 282.7 283.8 285.0 284.3

Ours 157.1 173.7 188.0 200.7 213.3 225.9 239.2 248.5 258.1 264.9 272.2 278.6 283.4 286.8 289.0

Taking Photo

His. Rep. (ECCV’20) [33] 133.1 148.5 161.0 172.3 182.3 191.7 199.8 208.1 212.2 217.2 226.1 231.1 234.7 238.9 241.5

STSGCN (ICCV’21) [39] 181.7 196.9 202.1 211.8 221.4 230.3 233.9 240.9 243.6 254.7 249.0 253.0 253.6 257.9 251.8

MSR-GCN (ICCV’21) [8] 153.3 168.9 179.0 189.3 197.3 203.6 208.7 213.9 216.0 217.4 221.9 224.6 225.5 225.9 226.6

Ours 134.8 149.8 160.5 171.3 181.6 190.7 198.3 205.7 208.3 211.8 219.2 224.2 227.2 229.1 230.8

Waiting

His. Rep. (ECCV’20) [33] 119.5 129.5 138.1 147.8 156.3 166.6 172.4 177.0 181.9 186.2 189.7 193.1 196.6 201.1 203.7

STSGCN (ICCV’21) [39] 154.6 161.0 167.7 174.0 175.8 179.0 182.9 185.6 189.7 201.0 193.9 194.2 195.0 197.9 194.9

MSR-GCN (ICCV’21) [8] 130.4 139.1 144.7 152.6 157.8 163.9 169.6 172.3 175.3 177.5 180.4 182.8 186.1 188.7 187.4

Ours 115.5 124.7 132.6 142.5 151.3 161.1 167.6 171.6 175.7 178.6 183.0 187.4 191.4 194.1 196.3

Walking Dog

His. Rep. (ECCV’20) [33] 158.4 170.2 180.2 189.8 195.7 204.3 214.7 221.5 227.2 230.6 227.6 228.0 230.7 233.7 233.5

STSGCN (ICCV’21) [39] 181.4 192.4 197.8 206.8 213.0 222.1 231.7 238.0 242.7 256.7 250.9 251.2 255.8 264.4 262.2

MSR-GCN (ICCV’21) [8] 166.6 177.2 187.2 194.7 200.1 207.4 215.3 224.0 230.0 233.9 235.5 238.7 245.0 250.7 250.8

Ours 161.6 174.5 184.6 193.7 199.9 206.9 214.4 216.3 220.8 221.9 216.5 216.6 221.0 224.7 227.3

Walking Together

His. Rep. (ECCV’20) [33] 69.2 72.0 76.7 82.4 85.7 87.5 90.0 93.1 94.3 95.1 97.1 98.6 100.5 102.4 103.9

STSGCN (ICCV’21) [39] 113.9 120.0 122.4 129.7 135.3 139.6 141.2 144.7 146.7 163.5 147.2 149.1 150.0 162.0 156.2

MSR-GCN (ICCV’21) [8] 72.3 74.6 78.2 85.3 89.6 92.5 95.1 95.2 96.1 99.0 101.8 104.6 105.6 110.1 111.6

Ours 72.6 75.2 81.7 84.4 89.3 91.4 96.5 97.0 98.9 99.3 103.7 104.1 106.0 107.8 112.0

Average

His. Rep. (ECCV’20) [33] 123.6 133.2 141.1 148.0 154.1 160.4 165.7 169.9 173.7 177.4 179.8 182.1 185.2 188.6 189.6

STSGCN (ICCV’21) [39] 151.3 158.5 163.8 169.9 174.8 179.1 182.1 185.5 188.5 201.5 192.4 193.1 194.1 198.8 194.6

MSR-GCN (ICCV’21) [8] 130.7 139.1 145.8 152.2 157.1 161.5 165.4 168.6 171.4 174.0 176.5 178.2 180.1 182.2 182.5

Ours 122.2 130.8 138.5 144.7 150.8 156.2 161.4 164.5 168.0 170.7 173.6 175.2 178.1 180.5 181.8

ACM Trans. Multimedia Comput. Commun. Appl.



12 • Mengyi Zhao, Hao Tang, Pan Xie, Shuling Dai, Nicu Sebe, and Wei Wang

Table 3. DTW error
(

×107
)

of diferent actions on Human3.6M for long-term (4s) prediction. Best results in bold.

Actions Walking Eating Smoking Discussion Directions Greeting Phoning Posing Purchases Sitting Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

His. Rep. (ECCV’20) [33] 3.1 6.5 6.7 13.8 12.3 14.7 15.5 27.1 17.4 17.5 28.5 17.4 14.4 21.4 4.3 14.7

STSGCN (ICCV’21) [39] 4.7 8.2 9.8 12.6 13.0 14.6 14.0 24.6 16.2 18.6 28.3 20.9 15.4 22.5 9.6 15.5

MSR-GCN (ICCV’21) [8] 3.9 5.9 6.7 11.9 12.5 13.7 12.3 23.5 15.2 14.6 24.1 16.6 12.9 20.3 5.1 13.3

Ours 3.6 5.8 6.5 11.7 10.9 13.1 13.0 22.5 15.1 15.7 25.8 15.8 13.3 19.0 4.6 13.1

Fig. 3. ualitative results of long-term (4s) prediction including smoking, eating, taking photo and walking dog actions on
the Human3.6M dataset. The first two frames are the latest observed frames, the others are predicted frames. The whole
sequence is down-sampled to 5 frames per second. (Best viewed when zoomed in.)
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Fig. 4. ualitative results of 2s prediction on greeting action on the Human3.6M dataset. The first two frames are the latest
observed frames, the others are predicted frames. The whole sequence is down-sampled to 5 frames per second. (Best viewed
when zoomed in.)

Moreover, for motions with more complexity and randomness, e.g., taking photo and walking dog, our method
can generate more dynamic sequences than [33] evidently (see Figure 3), which instead produces mostly static
motions. The visualization results comparison shows the consistency that using the bidirectional predictor could
alleviate the average forecasting problem to a large extent.

In addition, although MSR-GCN [8] and STSGCN [39] can generate more dynamic motions than His. Rep. [33],
some of them are wrong or less accurate than ours. For example, for the smoking behavior in Figure 3(b), both
methods predict a person walking while smoking, but the ground truth sequence shows that the person stands
there most of the predicted duration. Also, as shown in other cases in Figure 3 and Figure 4, our results are closer
to the ground truth.

4.3 Ablation Studies

We conduct extensive ablation studies on the Human3.6M dataset to evaluate the efectiveness of diferent
components of the proposed BiTGAN. As shown in Table 4, the proposed BiTGAN has ive variants (i.e., B1, B2,
B3, B4, B5). We also compare the performance of variants by the statistics and visualizations in Figure 5 and
Figure 6 respectively. In Figure 5(a), the average MPJPE errors are plotted at each future time stamp. In Figure
5(b), the MPJPE error at 4s for each action category are plotted.

• (i) B1: Motion Transformer. B1 only uses our designed Transformer module (as shown in Figure 2) to
encode and decode the motion sequence. The output of motion Transformer is then concatenated with the
DCT coeicients of the last observed sub-sequence, fed as the input of GCN to predict the future poses.

• (ii) B2: B1 + Cross-modal Attention. Based on B1, B2 utilizes the cross-modal attention to model the
crossing relations between the outputs of Transformer decoder and DCT coeicients.

• (iii) B3: B2 + bidirectional generation strategy. B3 adopts the proposed bidirectional generation strategy.
• (iv) B4: B3 + adversarial discriminators. B4 employs the associated adversarial discriminators to encour-
age the outputs indistinguishable from the ground truth at both frame and sequence levels.

• (v) B5: B4 + Soft-DTW loss. B5 adopts the Soft-DTW loss to add more constraints to the generator.
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Table 4. The ablation study of each component on Human3.6M. B6 is our BiTGAN which combines with each component

Method 80 160 320 400 560 720 880 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 Ave.

His. Rep. [33] 10.4 22.6 47.1 58.3 77.3 91.8 104.1 112.1 123.6 133.2 141.1 148.0 154.1 160.4 165.7 169.9 173.7 177.4 179.8 182.1 185.2 188.6 189.6 138.9
B1 Motion Transformer 10.7 22.9 47.3 58.8 77.7 92.3 104.4 111.2 122.5 133.0 140.6 147.3 152.5 158.2 164.5 168.7 173.1 176.1 179.5 180.4 183.2 186.3 187.9 138.0
B2 B1 + Cross-Modal Attention 10.7 23.7 47.8 59.0 78.3 92.1 104.3 112.4 122.9 132.5 140.3 147.2 150.9 157.3 163.0 167.6 172.8 175.2 178.9 179.5 182.6 185.1 186.4 137.6
B3 B2 + Bidirectional Generation 10.9 23.3 48.2 59.2 77.7 92.1 104.0 111.5 122.9 132.1 139.6 145.7 151.5 157.2 162.6 166.2 169.5 172.6 175.4 177.1 180.1 182.8 184.2 136.4
B4 B3 + Adversarial Discriminators 11.0 23.3 48.4 59.4 77.7 91.7 103.3 110.5 121.7 130.4 137.9 144.4 150.7 156.3 161.4 164.9 168.7 171.6 174.8 176.4 179.2 181.5 183.0 135.5
B5 B4 + Soft-DTW Loss 11.0 23.3 48.2 59.0 77.3 91.7 103.6 111.1 122.2 130.8 138.5 144.7 150.8 156.2 161.4 164.5 168.0 170.7 173.6 175.2 178.1 180.5 181.8 135.2

Fig. 5. (a) Comparison of average prediction error (MPJPE) over all action categories at diferent forecast times on the H3.6M
dataset. (b) Comparison of prediction error for each action category at 4s on the H3.6M dataset.

Efect of Motion Transformer. As illustrated in Figure 5(a), by comparison B1 with His. Rep. [33], the proposed
motion Transformer B1 improves performance over all the time stamps, especially for the long-term time stamp
(e.g., 3400ms, 3600ms, 3800ms, 4000ms). In Table 4, for 4s prediction, B1 reduces the error from 189.6 to 187.9,
which shows the motion Transformer can better capture long-range dependency.
Efect of Cross-Modal Attention. In Figure 5(a), adopting the cross-modal attention to model the crossing
relations between the outputs of Transformer decoder and DCT coeicients achieves a small gain over B1 all the
time, which uncovers the beneits of utilizing these features efectively.
Efect of Bidirectional Generation. As shown in Figure 5(a), there is an obvious improvement from B2 to
B3, highlighting the importance of the proposed bidirectional generation strategy for encoding motion patterns
and human dynamics. Furthermore, as observed by the diference in performance between His. Rep. [33] and
ours in Figure 6, B3 alleviates the freezing prediction problem for a long-term span, which produces poses that
keep moving during the forecast period. Speciically, B3 forecasts the right hand moves forward, which is the
same as the moving trend of ground truth. While many frames (in the black dashed box) are predicted by His.
Rep. [33] illustrate that the predicted poses do not change in more than half of the forecast duration. Regarding
the mitigation of our bidirectional structure to the average predicting problem, please refer to Section 4.2 for
more comparison.
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Fig. 6. Visualization of predicted poses of diferent methods on a sample of the H3.6M dataset for long-term prediction.
From top to botom sequences correspond to ground truth, His. Rep. [33], B3, B4, B5 (our BiTGAN) respectively. The first two
frames are the latest observed frames, the others are predicted frames. The whole sequence is down-sampled to 5 frames per
second. (Best viewed when zoomed in.)

Efect of Adversarial Discriminators. As illustrated Figure 5(a) and in Table 4, B4 steadily improves over B3 for
long-term time stamps and achieves around 1.4 gain on the MPJPE metric at 4s. In visualization comparison (see
Figure 6), B4 predicts both hands are moving, which is more closely related to the ground truth sequence in general.
The boosted performance shows the advantage of adversarial discriminators (i.e., frame-based discriminator and
sequence-based discriminator), which leads to more realistic results by distinguishing the predicted results at
frame and sequence levels.
Efect of the Soft-DTW Loss. In Table 4 and Figure 5(a), we can see that the overall performance is further
facilitated by adding the Soft-DTW loss. Moreover, Figure 5(b) shows that B5 is better than B3 and B4, especially
on some diicult motions e.g., łposingž and łdiscussionž. In Figure 6, B5 forecasts the movement of the right hand
and legs over time, further narrowing the gap with the ground truth in the video level. These results are probably
due to the fact that Soft-DTW loss enables B5 better capture the overall movement of human joints, resulting in
more coherent and natural motion predictions. Note that B5 is our inal model, which is signiicantly better than
His. Rep. [33], validating the efectiveness of each component of our BiTGAN.
Efect of Loss Hyper-Parameters. We also investigate the inluence of ���� ��� , �

�
�� ��� , and ���� to the per-

formance of our model. As shown in Table 4, we list nine diferent loss parameter settings (i.e., L1-L9) and the
corresponding results. Note that we adopt the baseline model B4 in Table 4 with the proposed motion Transformer,
cross-modal attention and bidirectional generation for parameter selection since those three parts are more
critical to the proposed BiTGAN. When ���� ��� = 9.8, ���� ��� = 0.1, ���� = 0.1, the prediction performance

achieves the best.

Table 5. The influence of the loss hyper-parameter on Human3.6M.

���� ��� ���� ��� ���� 80 160 320 400 560 720 880 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 Ave.

L1 11 0.1 0.1 11.0 23.4 48.7 59.8 78.4 92.9 104.6 111.9 122.7 131.2 138.7 145.0 150.9 157.0 162.2 165.8 169.4 172.7 175.9 177.9 181.3 184.6 186.2 136.6
L2 9 0.1 0.1 11.0 23.4 48.6 59.7 78.5 93.0 105.2 112.8 124.0 133.2 140.7 146.8 152.6 158.1 163.4 167.0 170.7 174.1 177.6 179.2 181.7 184.4 186.0 137.6
L3 0.5 0.4 0.1 13.2 26.4 53.0 64.8 85.0 101.4 116.0 125.0 136.1 145.6 152.8 159.1 163.8 168.2 172.6 175.1 177.3 179.1 181.4 182.4 184.2 185.6 186.0 145.0
L4 5 4 1 13.3 26.8 53.4 65.3 85.3 101.2 115.0 123.9 134.8 144.6 151.3 157.8 162.6 167.1 170.7 172.9 175.2 177.2 179.2 180.5 182.7 184.4 185.3 143.8
L5 0.95 0.04 0.01 11.5 24.3 50.0 61.2 79.9 94.0 105.8 113.2 124.2 132.8 140.6 147.0 153.0 158.4 164.2 167.6 171.1 174.1 177.0 178.6 181.3 183.8 185.0 137.8
L6 9.5 0.4 0.1 11.5 24.2 49.8 60.9 79.6 94.0 105.7 113.1 124.5 133.3 140.9 147.3 153.1 158.7 163.8 166.9 170.0 172.5 174.9 176.9 180.0 182.8 184.5 137.3
L7 30 0.1 0.1 11.0 23.4 48.7 60.0 78.7 93.2 104.9 112.0 122.9 131.7 139.2 145.4 151.4 157.4 162.7 166.2 169.7 173.1 175.7 177.4 180.5 183.2 184.3 136.6
L8 7 2 1 12.3 25.3 51.1 62.9 82.8 98.9 113.0 122.4 134.1 144.7 152.3 159.3 164.1 168.6 172.4 174.9 176.8 178.4 180.1 180.6 181.9 183.6 184.2 143.7
L9 9.8 0.1 0.1 10.9 23.3 48.2 59.2 77.7 92.1 104.0 111.5 122.9 132.1 139.6 145.7 151.5 157.2 162.6 166.2 169.5 172.6 175.4 177.1 180.1 182.8 184.2 136.4
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Fig. 7. Failure case (walking action) of our human motion prediction method for long-term (4s) prediction on the Human3.6M
dataset. The first two frames are the latest observed frames, the others are predicted frames. The whole sequence is down-
sampled to 5frames per second. (Best viewed when zoomed in.)

4.4 Limitations

Although our BiTGAN can produce dynamic poses for long-term prediction, it also has some limitations. Figure 7
illustrates a failure case of walking activity of our method. As we can see, for some frames, our prediction in leg
joints is less accurate, e.g., the knee bends a bit more, the steps are a bit smaller than the ground truth. The most
probable reason is that, for such simple poses, our model will introduce more uncertainties, which will afect the
accuracy of those actions with more certainties.

Table 6. The average MPJPE error of all actions on Human3.6M for short-term prediction. The best two results are highlighted
in red and blue.

Milliseconds Residual sup. [35] ConvSeq2Seq [23] LTD-50-25 [34] LTD-10-25 [34] LTD-10-10 [34] His. Rep. [33] Ours

80 25.0 16.6 12.2 12.4 11.2 10.4 11.0
160 46.2 33.3 25.4 25.2 23.4 22.6 23.3

Besides, our model has competitive performance for short-term motion prediction. We have provided the
short-term prediction results in Table 6. We can observe that our approach achieves the second best results
(highlighted in red) while the best is His. Rep [33]. The underlying reason might be that our method is designed
for long-term prediction, which tends to produce more dynamic poses. Thus, compared with the static mean pose
produced by His. Rep [33], our method leads to higher errors for short-time but lower errors for a long-range
prediction.

5 CONCLUSIONS

In this paper, we propose a novel bidirectional Transformer GAN (BiTGAN) for long-term human motion
prediction. Our novel bidirectional generation paradigm can efectively leverage the limited training samples as
well as refrain from the freezing pose generation problem, especially for long-term prediction tasks. Besides,
we split the history sequence into two parts, with the earlier part being fed to the encoder and the recent one
being fed to the decoder. In this way, the Transformer generator can keep the distribution consistency between
training and testing, thus alleviating the exposure problem and making the inference eicient. Moreover, we also
introduce a soft-DTW loss and two discriminators to improve the capacity of maintaining the similarity between
the predicted sequence and the real one implicitly and semantically. Our experimental results demonstrate the
superiority of the proposed BiTGAN in predicting dynamic poses for both acyclic and periodic motions.
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