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Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly
it’s a wonderful problem, because it doesn’t look so easy

Richard Feynman





Abstract

Nuclei are objects made of nucleons, protons and neutrons. Several dynamical
processes that occur in nuclei are of great interest for the scientific community
and for possible applications. For example, nuclear fusion can help us produce
a large amount of energy with a limited use of resources and environmental
impact. Few-nucleon scattering is an essential ingredient to understand and
describe the physics of the core of a star.
The classical computational algorithms that aim to simulate microscopic quan-
tum systems suffer from the exponential growth of the computational time when
the number of particles is increased. Even using today’s most powerful HPC
devices, the simulation of many processes, such as the aforementioned nuclear
scattering and fusion, is out of reach due to the excessive amount of computa-
tional time needed.

In the 1980s, Feynman suggested that quantum computers might be more ef-
ficient than classical devices in simulating many-particle quantum systems [1].
Following Feynman’s idea of quantum computing, a complete change in the
computation devices and in the simulation protocols has been explored in the
recent years, moving towards quantum computations. Recently, the perspective
of a realistic implementation of efficient quantum calculations was proved both
experimentally and theoretically. [2, 3, 4, 5, 6]. Nevertheless, we are not in an
era of fully functional quantum devices yet, but rather in the so-called ”Noisy
Intermediate-Scale Quantum” (NISQ) era. As of today, quantum simulations
still suffer from the limitations of imperfect gate implementations and the quan-
tum noise of the machine that impair the performance of the device. In this
NISQ era, studies of complex nuclear systems are out of reach. The evolution
and improvement of quantum devices will hopefully help us solve hard quan-
tum problems in the coming years. At present quantum machines can be used
to produce demonstrations or, at best, preliminary studies of the dynamics of
a few nucleons systems (or other equivalent simple quantum systems). These
systems are to be considered mostly toy models for developing prospective quan-
tum algorithms. However, in the future, these algorithms may become efficient
enough to allow simulating complex quantum systems in a quantum device,
proving more efficient than classical devices, and eventually helping us study
hard quantum systems.
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This is the main goal of this work, developing quantum algorithms, potentially
useful in studying the quantum many body problem, and attempting to imple-
ment such quantum algorithms in different, existing quantum devices. In par-
ticular, the simulations made use of the IBM QPU’s [7], of the Advanced Quan-
tum Testbed (AQT) at Lawrence Berkeley National Laboratory (LBNL)[8], and
of the quantum testbed recently based at Lawrence Livermore National Lab-
oratory (LLNL) (or using a device-level simulator of this machine). The our
research aims are to develop quantum algorithms for general quantum proces-
sors. Therefore, the same developed quantum algorithms are implemented in
different quantum processors to test their efficiency. Moreover, some uses of
quantum processors are also conditioned by their availability during the time
span of my PhD.

The most common way to implement some quantum algorithms is to combine a
discrete set of so-called elementary gates. A quantum operation is then realized
in term of a sequence of such gates. This approach suffers from the large number
of gates (depth of a quantum circuit) generally needed to describe the dynamics
of a complex system. An excessively large circuit depth is problematic, since
the presence of quantum noise would effectively erase all the information during
the simulation. It is still possible to use error-correction techniques, but they
require a huge amount of extra quantum register (ancilla qubits).
An alternative technique that can be used to address these problems is the so-
called ”optimal control technique”. Specifically, rather than employing a set
of pre-packaged quantum gates, it is possible to optimize the external physical
drive (for example, a suitably modulated electromagnetic pulse) that encodes a
multi-level complex quantum gate.
In this thesis, we start from the work of Ref. [9], where a quantum simulation
of real-time neutron-neutron dynamics is proposed, in which the propagation
of the system is enacted by a single dense multi-level gate derived from the nu-
clear spin-interaction at leading order (LO) of chiral effective field theory (EFT)
through an optimal control technique.
Hence, we will generalize the two neutron spin simulations, re-including spatial
degrees of freedom with a hybrid algorithm. The spin dynamics are implemented
within the quantum processor and the spatial dynamics are computed apply-
ing classical algorithms. We called this method classical-quantum coprocessing.
The quantum simulations using optimized optimal control methods and discrete
get set approach will be presented.
By applying the coprocessing scheme through the optimal control, we have a
possible bottleneck due to the requested classical computational time to com-
pute the microwave pulses. A solution to this problem will be presented. Fur-
thermore, an investigation of an improved way to efficiently compile quantum
circuits based on the Similarity Renormalization Group will be discussed. This
method simplifies the compilation in terms of digital gates.
The most important result contained in this thesis is the development of an al-
gorithm for performing an imaginary time propagation on a quantum chip[10].



It belongs to the class of methods for evaluating the ground state of a quantum
system, based on operating a Wick rotation of the real time evolution operator.
The resulting propagator is not unitary, implementing in some way a dissipa-
tion mechanism that naturally leads the system towards its lowest energy state.
Evolution in imaginary time is a well-known technique for finding the ground
state of quantum many-body systems. It is at the heart of several numerical
methods, including Quantum Monte Carlo techniques, that have been used with
great success in quantum chemistry, condensed matter and nuclear physics. The
classical implementations of imaginary time propagation suffer (with few excep-
tions) of an exponential increase in the computational cost with the dimension
of the system. This fact calls for a generalization of the algorithm to quantum
computers.
The proposed algorithm is implemented by expanding the Hilbert space of the
system under investigation by means of ancillary qubits. The projection is ob-
tained by applying a series of unitary transformations having the effect of dissi-
pating the components of the initial state along excited states of the Hamiltonian
into the ancillary space. A measurement of the ancillary qubit(s) will then re-
move such components, effectively implementing a ”cooling” of the system.
The theory and testing of this method, along with some proposals for improve-
ments will be thoroughly discussed in the dedicated chapter.

The thesis is organized as follows:

• Chapter 1. We will introduce to the difficulty of using classical devices to
simulate (nuclear) quantum systems

• Chapter 2. We will present the essential elements of quantum comput-
ing and we will show why it should be more efficient to use a quantum
computer to simulate quantum systems

• Chapter 3. We will show the basic aspects of the hardware of quantum
processors based on superconducting device

• Chapter 4 We will start showing how we can simulate the real time evo-
lution through a quantum processor

• Chapter 5. This chapter will present the work on the coprocessing method.

• Chapter 6. We will discuss how complex it is to compile a generic quantum
gate in elementary gates. We will present the SRG compiling algorithm
to simply the compilation

• Chapter 7. We will present the quantum imaginary time propagation
method

• Chapter 8. Here we will summarize the works and will give some future
prospective.
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Chapter 1

Introduction

This chapter will present the main problems in simulating quantum systems
through a classical device (i.e., personal computers or supercomputers), mainly
focusing on nuclear systems.
We will start discussing some interesting problems that we have in contemporary
nuclear physics. Later we will briefly discuss some of the main shortcomings of
simulating quantum systems in classical devices.

1.1 From quantum chromodynamics to nuclear
physics

The Theory of strong interactions is described by quantum chromodynamics
(QCD) [11, 12, 13]. QCD’s degrees of freedom are quarks (the matter fields)
and gluons (the force carriers). It is well-known that two or three quarks can
form a bound state. These bound states describe the constituents of the nuclei
(protons, neutrons, pions, ...). In particular, hadrons, such as the proton and
neutrons, are made of three quarks and a quark and antiquark create a meson,
which mediates the interaction between hadrons.
From a theoretical point of view, the QCD theory should predict all the prop-
erties of strongly interacting particles. Nevertheless, the equations of QCD are
extremely complicated to decipher, even for a simple nucleon, proton or neutron.
Indeed, in this regime, we cannot apply perturbation theory and, therefore, we
should numerically solve all the equations through the Lattice QCD theory.
The QCD theory has some energy gaps between their different physics. Fig. 1.1

shows the main degrees of freedom one can come in contact with nuclear physics
as a function of energy.
When a general theory has some energy gaps (like in our case), phenomena with
energy below a specific energy cutoff can be described by an Effective Theory
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Figure 1.1: From the QCD elements to degrees of freedom of a nuclear calcula-
tion. Taken from Ref. [14]

(ET). The underlying interactions above a stabilized energy (cutoff) are de-
scribed by some effective interaction and parameters (called running coupling
constants that depend on the cutoff energy) [15]. Therefore, ET describes the
system with some effective degrees of freedom. However, the DoFs depend on
the resolution of our experimental microscope scale (in other words, on the
cutoff). For the sub-nuclear and nuclear systems, experiments performed with
nuclei at energies around 1000 MeV are sensitive to the internal quark-gluon
structure of the nucleons. On the contrary, those performed at energies of
100 MeV will see a nucleus as an aggregation of nucleons interacting through
complex forces (for instance, a one-pion exchange interaction). Sometimes the
nucleons are described by point-like particles. At even lower energies, 10 MeV
and below, other degrees of freedom, such as collective rotations and vibrations
of the nucleus as a whole, come into play. In the end, if some high energy scale
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Figure 1.2: Nuclear landscape Chart of nuclides plotted with atomic number
(Z) versus neutron number (N), with stable species indicated by black squares.
The colours correspond to the decay half-life T . Credits: CERN

exists, we can describe nuclear systems with a smaller set of degrees of freedom
than the complete ones coming from QCD.

1.1.1 Nuclear physics’ studies

This work will focus on simulating nuclear systems formed by nucleons. There-
fore, we are interested in the interaction between nucleons carried by pions, not
in the underlying physics of quarks. Our future goal is to completely describe all
the nuclei in the nuclides chart starting from the basic fundamental interactions
between protons and neutrons. This nucleates chart illustrates the stable and
unstable nuclei that we can get, as Fig. 1.2 shows.

Remaining at the level of the physics of nucleons, we can describe interest-
ing and exciting nuclear systems. Many of them are nuclear reactions, which
involve the real time dynamics of nucleons. In nuclear reactions, generally, we
start from some incoming particles. From simulating their real time evolution,
we can understand which particles and energy may be produced. These scatter-
ing processes are essential for producing in future green energy (in particular,
nuclear fusion) and astrophysical studies.
It is well-known that nuclear reactions occur inside the core of stars (like the
Sun). For example, the most known one is the pp-chain 1, the famous nuclear
fusion process. When the life of a star ends, we have possible different stages. In
one of them, the star becomes a Red Giant. The three-alpha process (or Helium
burning reaction) occurs, producing Carbon. Fig. 1.3 shows these two nuclear
reactions. These and other scattering processes are critical to understanding
what happens inside the stars.
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Nuclear reactions involve real time evolution (or dynamics); but, in nuclear
physics, we are also interested in studying the structure of nuclei. For example,
we want to compute the ground state of a nucleus. Regarding the ground state
calculations, there is still an open problem about the composition of the inner
core of a Neutron Star [16]. The Neutron Stars are the final stage of some
massive stars. They are composed mostly of neutrons. As we said, their inner
composition has not been established yet.
It is almost impossible with today’s most powerful computers to describe a nu-
clear complex many-body system. It can even be observed in the difficulty of
evaluating the ground state and ground energy of light nuclei with ab-initio cal-
culations. Therefore, the majority of dynamic processes, for instance, nuclear
reactions, are out of reach even with the most powerful exascale machines.

Figure 1.3: Example of nuclear reactions. Left the first pp-chain [17], right the
Helium burning process [18]

1.2 Problems in simulating quantum systems in
classical devices

The most simple reason for the complexity in simulating a quantum system is
the exponential dependence of the Hilbert space on the number of particles.
For example, in modeling nuclei, the number of states needed for describing
the spin-isospin part depends on 4A where A is the total number of nucleons.
Furthermore, we should also consider the spatial evolution in a dynamical pro-
cess or in ground state evaluations. Therefore, the number of paths increases
enormously and the calculations become very complicated. So, if we increase
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Figure 1.4: Example of dependence of computational resource (for instance, the
computational time) of classical and quantum devices on the number of particles

the number of nucleons, we must request immense computational resources to
reach an accurate result. Fig. 1.4 illustrates how depends the computational
time as a function of the number of particles.
This dependence on enormous computational resources is connected to simu-

lating entangled states. The entanglement in quantum mechanics is associated
with correlations among particles. Mapping an entangled state in classical bits,
we must consider all the correlations. It requires many powerful computational
resources, overall, for highly correlated particles.
Another problem is connected to the nature of physical particles. Quantum
particles are either Bosons or Fermions. Therefore, their wavefunction must be
symmetric or antisymmetric under the exchange of particles, respectively. Con-
sidering that many DoFs are involved in nuclear systems (for instance, spatial,
spin and isospin), it is hard to find general states that satisfy the corrected sym-
metry. Suppose that we compute the ground state of systems of Fermions, we
should expand the Hamiltonian through all the antisymmetric states. It is very
complicated to obtain all of them. Indeed, one should consider all the mixed
antisymmetric combinations of degrees of freedom. Connected to the nature
of Fermions, we have the so-called sign problem [19] typical of Monte Carlo
methods [20, 21, 22]. These are standard and efficient algorithms to evaluate
the ground state of a quantum system. The solution of this problem carries
an exponential growth of the computational time due to statistical errors. In-
deed, for example, for computing the ground energy, one should compute (see
Eq. (9.122) of Ref. [22]):

〈E〉 =
〈ψ|H |ψ〉
〈ψ|ψ〉

=

∫
dR+(ψ∗+(R+)Hψ+(R+)− ψ∗−(R−)Hψ−(R−))∫
dR+(ψ∗+(R+)ψ+(R+)− ψ∗−(R−)ψ(R−))

, (1.1)

where we split the wavefunction ψ when it is positive (R+, ψ+) and when it is
negative (R−, ψ−). ∗ symbol indicates the complex conjugate.
The problem arises from the fact that the two addends give the same solution
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for the antisymmetry of the wavefunction (f(−x) = −f(x)). Even though we
have the correct energy value, the variance of this error can be high due to
something that goes with 0

0 . In ref. [19] shows that the sign problem is a not
deterministic polynomial-time hard (Hard NP) problem (unless P = NP ). The
hard NP class indicates the problems that could not be solved in polynomial
time.

How can we simulate a complex physical system overcoming the exposed prob-
lems? In these years, different types of computers have been developed, the
quantum computers. Its physical laws are those of quantum mechanics. Follow-
ing the famous sentence of Feynman [1], we think quantum computers are more
efficient in simulating quantum systems than classical devices. Therefore, using
them, we can simplify and speed up our simulations and study complex quan-
tum systems that are very hard or impossible to simulate in today’s computers.
A natural question can rise from the reader: why is a quantum computer more
efficient than a classical computer? To answer that, we must discuss some fun-
damental concepts of quantum computing. We will answer this question at the
end of Ch. 2.
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Chapter 2

Elements of Quantum
Computing

This chapter will introduce the fundamental concepts of quantum computing,
from the definition of a qubit and which kind of operations we can implement
in a quantum device. We will discuss DeVicenzo’s criteria [23], the necessary
conditions to have a working quantum computer. Showing the basis of quantum
computing, we will explain why a quantum system simulation is more efficient
using quantum processors than classical devices.
We start explaining qubits and their properties. After that, we will introduce the
quantum gates and DeVicenzo’s criteria. In the end, some quantum algorithms
that have been proven to be more efficient than the classical counterparts will
be shown.

2.1 Quantum bit

The fundamental unit of classical computational is the well-known bit that ex-
ists in two distinct values 0 and 1, usually stored in some part of the memory of
the electronic device. A sequence of so-called logical gates describes the opera-
tions. A generic logical gate is defined by a Boolean function {0, 1}k → {0, 1}l
where k (l) indicates the initial(final) number of bit. The most famous and fa-
miliar logical gates are the NOT , OR, AND, XOR, NAND and NOR. These
famous logical gates can be put together to create complex classical circuits
performing complicated computational tasks. Moreover, one can prove that the
combination of NOT , AND and OR gates can be used to describe a generic
logical function. From this fact, we call this set of gates a universal gate set [24].
As for classical computational, we must define the fundamental units that
carry the quantum information. This is commonly called ”qubit” or ”quantum
bit” [25]. It is defined by a quantum system with two distinct levels. Examples
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of experimental physical systems that might be used as qubits1 are the 1
2 -spin

particles, the vertical and horizontal (alternatively, left or right) linear polar-
ization of photons and quantum superconducting devices.
According to quantum mechanics, the general state that describes the qubit is
given by the superposition of the two states. Using the standard notation, the
ground state of the two-level quantum system is named |0〉 and the excited state
|1〉. Therefore, using the Dirac notation, the qubit state is given by

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where α and β are complex number and |α|2 + |β|2 = 1.
A first difference respect to classical computations is that the bit can be found
only in 0 or 1, the qubit is in a continuous mixture of such two states. In par-
ticular, according to equation (2.1) the probabilities to measure the |0〉 and |1〉
states are given by |α|2 and |β|2, respectively.
We found that a two-level quantum system defines a qubit. Therefore, its Hilbert
space is described by C2. More generally, we may also fabricate a quantum pro-
cessor with N > 2 states. Hence, the Hilbert space of the simulation is described
by CN , and the general state into the quantum processor would be in a superpo-
sition of these N states. In standard textbooks, we name the quantum processor
with 3 states qutrit. Moreover, one with a number of states ≥ 4 is called qudit.
The word qubit will generally describe N level system in this thesis. When we
do not specify the number of states, a qubit will be composed of two states;
otherwise, we will specify the number of states.
Moreover, one can couple N qubits through some connections or interactions
(i.e. a electromagnetic signal). The corresponding state of this system is repre-
sented by the tensor product of the 2N states:

|ψ〉 = ⊗Ni ci |ψi〉 =

2N∑
i=0

αi |i〉 , (2.2)

where |ψi〉 indicates the i qubit state. On the right side of this equation, we
write the Fock state with 2N states, and the i index, representing the state i,
can be written in decimal or binary notation. For example the state given by
|0〉 ⊗ |1〉 ⊗ |0〉 can be written as |2〉 or |010〉.
The coupling of states can be advantageous in quantum computing because
we obtain the entanglement property. Indeed, a general state in Eq. (2.2) can
be an entangled state or a pure state. In elementary words, given a state that
describes the two systems A and B, this is pure if a measure on A does not attach
the information contained in the B state. Otherwise, it is an entangled state.
The entanglement property is another difference with classical computation. It
is very helpful in quantum computing because it can connect different qubits
without any actual ”wires” between them. In quantum mechanics, one finds
that the entanglement is connected with the correlations of states.

1The necessary conditions when a generic quantum system can be a quantum processor
will be described by Sec. 2.6
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Here, we will show the entanglement concept with simple examples. Suppose
we have two states of two system:

|ψ1〉 =
(|0〉A + |1〉A)√

2

(|0〉B + |1〉B)√
2

|ψ2〉 =
(|00〉+ |11〉√

2
. (2.3)

If A measures its states, A obtains the 0 state with a probability of one-half. For

|ψ1〉 the final state is untouched by the measure, it still is in
(|0〉B+|1〉B√

2
. Instead,

for |ψ2〉, after the measure, the system collapses in the state |00〉, so the final
state for B is the |0〉 state, not more than the |0〉 + |1〉 state. A measure in a
part of the sub-system changes the other sub-system parts.
The general mathematical definition of when a state is entangled or not is based
on the Schmidt decomposition [26, 27]. Using it, we start from a general state
|w〉 ∈ H1 ⊗ H2, where H1 and H2 are the two generating Hilbert spaces. We
write it as a sum of tensor product of states of |ui〉 ∈ H1 and |vj〉 ∈ H2, so,

w =
∑
i

ci |ui〉 ⊗ |vj〉 , (2.4)

where {ci} is the set with the minimum number of these coefficients. Moreover,
they are unique, real and positive.
The number of coefficients in the sum we need to write this equation is named
Schmidt number or rank. If the rank is 1, the state is pure; otherwise, it is an
entangled state. Therefore, an entangled state is always defined by a sum of at
least two pure states.

2.1.1 Qubit representations

Here, we will describe how we can represent the qubit state.
We have defined the qubit as

|ψ〉 = α |0〉+ β |1〉 , (2.5)

where α, β ∈ C and |α|2 + |β|2 = 1.
An other standard representation uses spinors. In particular, we define:

|0〉 =

 1

0

 |1〉 =

 0

1

 . (2.6)

So, my generic qubit state is given by:

|ψ〉 =

 α

β

 . (2.7)

We can notice that the number of free parameters of Eq. (2.5) is three, be-
cause the two complex numbers are defined by four numbers, but we have the
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probability condition, |α|2 + |β|2 = 1. Therefore, we can rewrite Eq. (2.5)
substituting

α = eiδ cos

(
θ

2

)
β = ei(δ+φ) sin

(
θ

2

)
.

(2.8)

So, we obtain

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiφ |1〉 , (2.9)

where we neglected a global phase δ because it does not have a physical signif-
icance. Indeed, it is the global phase and it can not be experimentally estab-
lished.
Looking closer at Eq. (2.9), we can notice that the two angles, θ and φ, describe
the qubit state. Therefore, a generic qubit state is represented by a point on a
sphere of radius 1 that can be parametrized by two angles θ and φ. This sphere
is called the Bloch sphere.
There are fundamental states in the Bloch Sphere. Two of them are |0〉 and |1〉,
representing the two poles of the sphere. Other important states are the |±x〉
states. They are defined by Eq. (2.10). These states are shown in the Bloch
sphere of Fig. 2.1. They are important in quantum cryptography.

|x〉 =
|0〉+ |1〉√

2
=

 1√
2

1√
2

 |−x〉 =
|0〉 − |1〉√

2
=

 1√
2

− 1√
2

 . (2.10)

Figure 2.1: Bloch sphere. Some important states are shown. The general state
v is defined by the two angles θ and φ. Picture is taken from [28]

2.2 Quantum operations: Quantum gates

After defining qubits, we must explain the operations in quantum computing
that manipulate the quantum information. A linear quantum operator describes

10



a general operation in quantum mechanics, which transforms an initial state
to another. There is a convenient representation of linear quantum operators
through matrix forms like quantum states. Indeed, matrices transform vectors
into other vectors.
A linear quantum operator must describe an operation between qubits from
the point of view of quantum mechanics. It turns out there is solely another
constraint required to define a quantum gate, the real operation implemented
in a quantum processor. In the definition of the qubit, we have the constraint
that the sum of the probabilities of measure |0〉 and |1〉 must always be equal to
1. Therefore, we have to preserve the total probability of the qubits during the
operations. There is a class of operators in quantum mechanics that preserves
the norm of a state, i.e. unitary operators. An operator U is unitary if and if
only if

U†U = 1 , (2.11)

where U† is the adjoint of U . Eq. (2.11) guarantees us that the total probability
is preserved during the operations.
This unitary condition is the only constraint on a perfect quantum gate. In
standard notation, we often want to specify onto which the gate is applied, so
we also added a label indicating such number of qubits. For example, a unitary
operator applied to a single qubit is called a single qubit gate, to two qubits a
two-qubit gate and three qubits a three-qubit gate.
Mathematically, a quantum gate that manipulates n qubits is defined by an
element of SU(d = 2n) group, where SU(d) is the Special Unitary group.
Like for classical computation, we need to translate a generic quantum algorithm
into a sequence of quantum gates, generally implementing single or two-qubits
unitary operations. In the graphical representation of operations in classical
computational, wires(lines) describe the bits story. To apply specific logical
gates to a specific sub-set of bits, we draw specific boxes and symbols (that
corresponds to the specific operation) to the lines of the bits of the sub-set.
There is an analog representation of the quantum counterpart. We draw lines
for the qubits and specific symbols (generally simple boxes) for the quantum
gates. A quantum algorithm would be drawn as a sequence of lines and boxes
that indicate the story of quantum operations. The sequence of quantum gates
that describes a generic quantum algorithm belongs to the quantum circuit of
the quantum algorithm. Like in classical computation, there may be different
equivalent quantum circuits for the same quantum algorithms.
Having only the unitarity constraint, one can implement infinite possible gates
in a quantum processor. Nevertheless, generally, one implements the standard
quantum gates shown in Tab. 2.1. They are the most common and fundamental
operations.

Pauli x-gate X =

 0 1

1 0

 X
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Pauli y-gate Y =

 0 −i

i 0

 Y

Pauli z-gate Z =

 1 0

0 −1

 Z

Rotation along x axis Rx(θ) = e−iXθ/2 =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

)
 Rx

Rotation along y axis Ry(θ) = e−iY θ/2 =

 cos
(
θ
2

)
sin
(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
 Ry

Rotation along z axis Rz(θ) = e−iZ3θ/2 =

 e−i
θ
2 0

0 ei
θ
2

 Rz

Hadamard gate H = 1√
2

 1 1

1 −1

 H

U3 gate U3(θ, φ, λ) =

 cos(θ) −eiλ sin(θ)

eiφ sin(θ) ei(φ+λ) cos(θ)

 U3

CNOT CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 •

Table 2.1: Most common quantum gates

The last row of Tab. 2.1 shows the CNOT gate. It is the simplest element of
the so-called controlled operations family. The quantum gates of such class are
essential in quantum computing because their action produce entangled states.
A controlled quantum gate has at least two qubits as input and output. Some
of these are the so-called ”control” qubits, and the others are called ”target”
qubits. The operation that is applied to the target qubits depends on the
state of the control qubits. Generally, a U -controlled operation (where U is a
unitary operator) performs the U gate on the target qubits if all the states of
the target qubits are in the |1〉 state. Otherwise, we apply the identity 1 on the
target qubits. Specifically, one finds that the CNOT gate is an X-controlled
operation. Specifically, if the target qubit is |0〉 (first and second rows of the
matrix of Tab. 2.1), we will apply an identity on the target state. Instead, we
apply the X gate (third and fourth rows). We can also write the CNOT as
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follows
CNOT = P0 ⊗ 1 + P1 ⊗X , (2.12)

where P0 and P1 indicate the projection operator in the |0〉 and |1〉 state re-
spectively. For a single qubit, they are defined by:

P0 = |0〉 〈0| =

 1 0

0 0

 P1 = |1〉 〈1| =

 0 0

0 1

 . (2.13)

A controlled operation is represented in a quantum circuit by a black dot for the
controlled qubits. The dots of controlled qubits are connected by a vertical line
and this line ends with a box on the target qubits where inside it is specified
the U operations. For the CNOT gate, the box is replaced by a tensor sum
symbol. Instead, in some cases, we want to apply the U operation when all
the controlled qubits are in |0〉. For representing it, we change the dots in the
controlled qubits in white circles.
One can observe that some gates in Tab. 2.1 can be obtained by other gates of
the same table. For example, the X, Y and Z are obtained respectively from
Rx, Rz and Rz with an angle θ = π.
A generic single qubit quantum gate (i.e., a generic operation on the Bloch
Sphere) can be described with a U3 quantum gate, defined by

U3(θ, φ, λ) = Rz(φ)Rx

(
−π

2

)
Rz(θ)Rx

(π
2

)
Rz(λ) . (2.14)

There is another expression for the U3 gate called Euler Decomposition. Its
decomposition is given by [25, 29]

U3(θ, φ, λ) = Rz

(
φ

2

)
Ry(θ)Rz

(
λ

2

)
. (2.15)

Suppose that we have a generic quantum operator U and we translate it through
a quantum circuit: how can we quantify if this circuit correctly reproduces the
operator U? A quantitative estimate is usually made in terms of the ”fidelity”
of the circuit. We will discuss the fidelity later in Sec. 2.5.

2.2.1 Quantum universality

In classical computing, we can decompose a generic logical gate to a specific
finite combination of AND, OR and NOT gates. This primitive gate set is
called universal.
One finds sets of primitive quantum gates in quantum computing whose finite
sequence can describe all generic quantum gates. This statement is called quan-
tum universality.
The set formed by Rx, Rz and CNOT gates is the most common set of universal
quantum gates. Indeed, these gates are the fundamental gates implemented in
several quantum processors.
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Toffoli gate



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



•

•

Phase gate S =

 1 0

0 i

 S

π/8 gate T =

 1 0

0 ei
π
4

 T

SWAP SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ×

×

Table 2.2: Toffoli, π/8, phase and SWAP gates

In the literature, one can find other universal gate sets. One is given by
Hadamard, π/8, phase and CNOT gates; another is obtained from Toffoli,
Hadamard, phase and CNOT gates. The phase, π/8 and Toffoli gates are shown
in Tab. 2.2.
Nevertheless, we have a problem with quantum universality. We know that a

generic operator can be translated into a sequence of elementary gates. How-
ever, we do not know if the number of requested quantum gates is finite or
not. There is a very useful theorem in the literature, the Solovay–Kitaev theo-
rem [30, 31] that can solve this problem. It guarantees that a generic quantum
gate applied to a constant number of qubits can be efficiently approximated by
a sequence of elementary gates. In particular, its formulation of Ref. [32] says:

Theorem 2.2.1. Let G be an instruction set for SU(d), and let the desired
accuracy ε > 0 be given. There is a constant c such that for any U ∈ SU(d)
there exists a finite sequence of gates from G of length

O

(
logc

(
1

ε

))
(2.16)

such that the operator distance d(U, S) < ε.

14



In this case, the distance d(U, S) between the two operators U and S is defined
as d(U, S) = sup‖ψ‖=1 ‖(U − S)‖. The instruction set G indicates the universal
set of quantum gates operating in the Hilbert space of dimension d. Specifically,
Ref. [32] defines it as a finite set of quantum gates such that

1. All gates in G are SU(d).

2. For each gate in G, its inverse gate is in G

3. G is a universal set for SU(d).

The theorem states that the cost of approximating a quantum gate is a poly-
nomial of the logarithm of the inverse of error. Ref. [32] shows that the upper
bound of the exponent c of the logarithm in Eq.(2.16) is equal to c = 3.97.

2.2.2 Ancilla qubits

To give all the essential elements of quantum computing, we should deal with
the concept of ancilla qubits, or simply ancillas. The use of ancillary qubits is
widespread in quantum algorithms.
In the standard terminology, ancilla qubits indicate extra qubits that we add to
the simulation to achieve a specific implementation or aim of a quantum algo-
rithm. Practically, their purpose is to extend the Hilbert space of the system
carrying the information. Their use helps us in the quantum calculation, sim-
plifying the compilation or allowing for some particular operation.
For example, the ancilla qubits are used in error-correcting algorithms, which
correct the results from the contribution of noise presented in quantum proces-
sors to the simulation. We will utilize ancillary qubits in the quantum algorithm
of Ch. 7.

2.3 Measurement

After implementing the desired quantum algorithm on some qubits, we would
extract some information from the qubits. To do that, we must employ a (quan-
tum) measurement on the quantum processor. Generally, in quantum comput-
ing, measurement gives us back the probability distribution of the qubits on
a computational basis. A measurement by its nature is a not-unitary and ir-
reversible operation. After that, we cannot go back to the state before the
measurement.
The symbol of a measurement in the graphical representation is represented by
a ”meter”. Fig. 2.2 shows it.
The general definition of measurement comes from the postulates of quantum

mechanics. Specifically, the measurement is defined by a set {Mm} of observ-
ables such that after the measurement, we get the resulting outcome m. Some
examples of observables of a quantum system are energy, momentum and spatial
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Figure 2.2: Meter symbol for the quantum measure

distribution. If the state before the measurement is |ψ〉, after it, we may obtain
as a result for the outcome m with probability

pm = 〈ψ|M†mMm |ψ〉 . (2.17)

The final state would be the collapse of |ψ〉 in

|ψm〉 =
Mm |ψ〉

〈ψ|M†mMm |ψ〉
. (2.18)

The operators {Mm} must satisfy∑
m

M†mMm = 1 . (2.19)

There are two different measurements in quantum mechanics: the Projection
Valued Measurement (PVM) and Positive Operator-Valued Measure (POVM).

2.3.1 Projection Valued Measurement(PVM)

We can write the set {Mm} of a generic projective measurement described as

Mm = Pm , (2.20)

where m indicates the outcome of Mm and Pm is the projection operator to the
subspace of M with the m eigenvalue. The projector operator is defined by the
operator such that P 2

m = Pm.
The set of projection operators Pm forms an orthogonal and complete set.
Therefore, for a discrete set {Pi}, we have Pm Pn = δnm and

∑
m Pm = 1.

After measuring, suppose we obtain the outcome m, iterating measurements
with the same observable we always obtain the m outcome. This fact is due to
the orthogonal condition of the projector.
The PVM definition describes the standard measurement that one finds in quan-
tum mechanics and quantum computation. Specifically, the general measure-
ment implemented in all the QPUs is to measure the probability distribution
of qubits in the computational basis |0〉 , |1〉 , .... In some QPUs, there is the
possibility of changing the measurement’s computational basis. For example, a
useful computational basis in quantum cryptography is described by |±x〉 states.
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2.3.2 Positive Operator-Valued Measure(POVM)

For many applications, we are interested in the probabilities of the outcomes,
not in the post-selected state. A mathematical tool named POVM describes
a measurement procedure where we have the probability of outcome without
entirely collapsing the state.
The measurement operators of POVM set must obey solely to Eq. 2.19. The
POVM is a generalization of PVM where we lose the orthogonality condition.

2.4 Density matrix formulation

In the previous sections, the basic elements of quantum computing were pre-
sented in the state vector formulation. In many cases, it is convenient to use
a different formulation, the density matrix one. This is very useful when we
include the noise of the quantum processor because it involves not-unitary and
irreversible processes.
We start from the link between density matrix and vector states. The density
matrix ρ of a pure state |ψ〉 is given by

ρ = |ψ〉 〈ψ| . (2.21)

The generalization of the formulation of a density matrix is given by Eq. (2.22)
considering an ensemble of pure states {pi, |ψi〉}.

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.22)

A general density matrix ρ is defined by an operator if and only if it satisfies

1. Tr(ρ) = 1.

2. ρ is a positive operator

The quantum gates are still represented by unitary operators. Their action on
the density matrix ρ is given by

ρ
U−→ ρ1 = U ρU† . (2.23)

The measurement in density matrix formulation becomes for the probability

pm = Tr
{
MmρM

†
m

}
= Tr

{
M†mMmρ

}
(2.24)

and the final density matrix

ρ1 =
MmρM

†
m

Tr
{
MmρM

†
m

} . (2.25)
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In the last two equations Mm and m represent the collection of measurement
operators and their experimental outcomes, respectively.
Studying complex quantum systems, the density matrix formulation is very
convenient for distinguishing between pure and entangled states. Considering
a general density matrix ρ, one finds that Tr

[
ρ2
]
≤ 1. Moreover, one proves

that Tr
[
ρ2
]

= 1 if and if only if ρ is a pure state. Therefore, if the result of

Trρ2 is 1, we have a pure state, otherwise, ρ is a entangled state if Tr
[
ρ2
]
< 1.

The last operation about density matrix formulation that we will discuss is
the reduced density operator. Considering two systems A and B, we have the
density matrix ρAB that describes the two systems. The reduced density matrix
of A is defined by

ρA = TrB
[
ρAB

]
=
∑
ψB

〈ψB | ρAB |ψB〉 , (2.26)

where |ψB〉 are generic generators of B. Applying this operation, we focus on
the system A regardless of the state of B.

2.5 Fidelity

Fidelity is a quantum property that quantifies how two states or two operators
are close. One possible definition for states in the Hilbert space is given by

F (σ, ρ) =

(
Tr

[√
σ

1
2 ρσ

1
2

])2

, (2.27)

where ρ and σ are density matrices of two states. We should apply a different
definition for computing the closeness of two operators.
One can prove that the fidelity has the following properties.

• Symmetry: F (σ, ρ) = F (ρ, σ).

• It has a lower and an upper bound: 0 ≤ F (ρ, σ) ≤ 1.

• For two pure states ψ and φ: F (ψ, φ) = |〈φ|ψ〉|2

• Unitary invariance: F (ρ, σ) = F (UρU†, UσU†)

• F (ρ, σ) = 1 if and only if ρ = σ. This is a consequence of Uhlmann’s
theorem [33].

The definition of fidelity to measure the closeness of two operators is given
by [34]

F (U1, U2) = 〈U1|U2〉 〈U2|U1〉 , (2.28)

where 〈U1|U2〉 is defined as:

〈U1|U2〉 =
1

N
Tr(U†1U2) , (2.29)
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with N the dimension of the two operators and Tr the trace operation.
One can prove that the definition of Eq. (2.28) is invariant under a global phase
change of two operators. Finally, using this definition we recover the the last
properties of the state fidelity in the bullet points. If two operators U and V
are the same if and only if F (U, V ) = 1. The translation of a unitary operator
O in a quantum circuit represented by an operator Q gets better if the fidelity
F (O,Q) tends to 1.

2.6 Necessary conditions to get a quantum com-
puter

A common question concerns whether a generic quantum system can easily ask
when a generic quantum system can be used as a quantum processor (QPU).
There are different answers to this questions. DiVincenzo et al. in Ref. [23]
found five essential criteria when a quantum system can become a quantum
processor. Here, we will show and discuss them.

1. A scalable physical system with well-characterized qubits

This first criterion seems very obvious. The first requirement of a quantum
computer is to have its fundamental units, the qubits implemented by a phys-
ical system. This simple criterion can be experimentally very problematic in
the words ”well-characterized”. Indeed, we must know the entire Hamiltonian
that rules the quantum systems with its internal parameters. For example, we
must characterize all the interactions and couplings among all quantum states.
A quantum gate is implemented in all quantum machines by coupling a sub-
part or the whole qubits with a time-dependent external field (for instance, an
electromagnetic pulse). The resulting operator that describes the evolution of
the quantum processor would be the desired quantum gate. A further discus-
sion is found in Sec. 3.2. Moreover, one should also characterize the quantum
machine’s noise contribution to get a full characterization. This experimental
characterization can be very challenging.

2. The ability to initialize the state of the qubits to a simple
fiducial state

Suppose the initial state of a simulation is in some wrong state. In that case,
the result of the application of our transformation will not be the expected
one. Many error-correcting codes, which are routines to correct the simulations
from the contributions of noise sources, are based on the assumption that the
initial state can be exactly reached. Therefore, we must prepare the quantum
processor at least in an initial state that can be precisely characterized.
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3. Long relevant decoherence times, much longer than the
gate operation time

This criterion indicates we cannot have accurate results from a quantum algo-
rithm if the quantum noise in the quantum processor destroy the coherence of
the physical qubit. Furthermore, a good knowledge of how the system loses its
coherence can be very useful in finding quantum error-correcting code that can
help in the quantum simulation. The simulations of this work are implemented
in quantum processors based on superconducting devices. They have a decoher-
ence time of order of 10-100 µs currently; the time for applying a quantum gate
is 10− 100 ns. From this fact, we can be sure that a small number of quantum
gates can be implemented in today’s quantum machines. We will discuss deeper
some aspects of noise source contribution in Ch. 3.

4. A ”universal” set of quantum gates

This criterion declares that we need to translate a quantum algorithm in some
quantum operations that the quantum machine can perform. There are two
approaches in implementing a general gate: the analog quantum simulator and
the digital quantum simulator. The analog quantum simulation is based on a
quantum processor whose dynamics look like the action of the desired imple-
mented quantum gate. We will find a deeper discussion in Sec. 3.2. Instead,
the digital quantum simulator is based on compiling operations using universal
gate sets.

5. A qubit-specific measurement capability

Also, this requirement is self-evident: after performing the operations, we would
read out the results. Therefore, we request the ability to measure the proba-
bilities of qubits. This measuring process must be independent of the states of
qubits, and it must not change the rest of the quantum system.

2.7 Is quantum computing more efficient than
classical computation?

Unluckily, we cannot answer this question with mathematical proof. Indeed,
Preskill declares in Ref. [4] We cannot yet prove this claim, either mathemati-
cally or experimentally, but we have reason to believe it is true; arguably, it is one
of the most interesting distinctions ever made between quantum and classical. It
means that well-controlled large quantum systems may ”surpass understanding,”
behaving in ways we find surprising and delightful.
Some quantum algorithms in the literature have been proven to be more effi-
cient than their classical counterpart. The most famous are those of Shor [6]
and Grover [5]. Furthermore, an experiment proving this statement was done
by a research team based on Google [2]. We will discuss these algorithm in the
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following subsections. In the end, another simple example of quantum efficiency
is presented, the position in a sphere.

Shor’s algorithm

Shor’s algorithm [6] describes an efficient way to compute the integer factor-
ization on a quantum computer. The integer factorization involves finding the
prime factor of an integer number N . Using a quantum computer, one finds the
order of the computational time (that is connected to the number of quantum
gates) of Shor’s algorithm is given by

O(log(N)
2

log(log(N)) log(log(log(N)))) , (2.30)

where N is the integer to factorize.
On the contrary, in classical computation the most efficient algorithm [35] re-
quests a computational time of order:

O(e1.9 log(N)
1
3 log(log(N)) . (2.31)

We can see that the quantum computational time is exponentially shorter than
one of classical computational.

Grover’s algorithm

Another quantum algorithm that is proved to be much faster than a classical
one is Grover’s one [5]. He developed a method for the unstructured search of
a database. The quantum computational time is of order O(

√
N). Instead, it

is O(N) on a classical device.

Experiment of Google

The work of Ref. [2] is the most famous experimental proof of quantum supremacy.
We call quantum supremacy the tasks implemented by quantum devices that
classical computers cannot perform in any feasible amount of time and memory.
Google’s authors used 53 superconducting qubits to compare the computational
time obtained between quantum and classical computers in sampling the output
of a pseudo-random quantum circuit. The quantum computational time takes
200 seconds instead of 10 000 years on a supercomputer in its experiment.

Point on a sphere

A trivial example of quantum efficiency is the determination of the position of
a point in a sphere (for example, a position on the Earth). With a single qubit,
we can describe this position. It is simply the position of the qubit on the Bloch
sphere. On the contrary, we must describe the coordinates at least with two
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angles in a classical computer. So, at least we must duplicate the computational
power.

Some evidence of quantum efficiency have just been discussed. Going back
to the original problem of overcoming the present issues of classical device in
simulating quantum systems, we have some signs that a quantum simulation
in a quantum processor should solve some problems. However, we must be
attention to declare that quantum computers are the solutions because so far
there is not a clear proof. Moreover, this topic is still being debating in the
scientific community.

2.7.1 Quantum simulations

We have seen in Ch. 1 that the most powerful supercomputers have many prob-
lems in simulating quantum systems. Specifically, the main one is the exponen-
tial growth of computational resources with the number of particles for describ-
ing their high-entanglement
From a theoretical point of view, a possible solution of simulating efficiently
quantum systems may be found on what Richard Feynman stated [1]. He de-
clared that a quantum machine should be more efficient in simulating a quantum
system than a classical device because the quantum processor applies the same
physical laws of the systems and nature. Indeed, it is very straightforward to
obtain entangled states in a quantum processor. For example, it is sufficient to
apply a CNOT gate to a generic pure state. Instead, in a classical device, we
should spend a lot of computational resources to describe the same entangled
state.
Along this direction, Ref. [36] says that a quantum processor with 50 qubits
represents a milestone of quantum simulations between classical and quantum
computers. Indeed, it states that we cannot simulate by brute force using the
most powerful supercomputer quantum systems with 50 qubits. Quantum com-
puters would easily have more than 50 qubits in the future, overcoming the most
advanced classical resources.
In Ch. 1 we discussed that the nature of particles could be a problem in simu-
lating quantum systems. In particular, this issue is represented by the Fermion
sign problem. This problem in quantum simulations may be eliminated by map-
ping only the antisymmetric states in the qubit states.
However, a theoretical or mathematical proof is not present in the literature [4].
We should also consider that we could have the possibility to have a classical al-
gorithm that may simulate a quantum system more efficiently than all quantum
algorithms in the future. Despite this, we are at a point in which it is becoming
absolutely worth studying a quantum system in a quantum processor. Indeed,
we can find situations and physical problems were it is better to use the quan-
tum processor and in others classical devices. In any case, quantum computing
is a fresh way of rethinking problems, which might lead to better performing
classical algorithms.
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Chapter 3

Basic aspects of quantum
hardware

This chapter will review some fundamental hardware elements of quantum com-
puters based on superconducting devices. The quantum processors of IBM’s[7]
and the quantum testbed of LLNL [37] are made of transmon devices [38].
Transmons are essentially LC-like circuits where the inductance is replaced by a
Josephson Junction [39, 40], a non-linear element. We will investigate this cir-
cuit showing some of its fundamental aspects. Some devices based on Josephson
Junctions will be presented. However, we will mostly focus more on the trans-
mon.
After showing that the transmon is a good candidate for a qubit, we will discuss
how we can experimentally implement a quantum gate. At this point, we will
also discuss noises sources. At the end of this chapter, we will see the readout
procedure. It is the method to obtain the probabilities from a quantum proces-
sor.
This chapter is based mostly on Ref. [41, 42].

3.1 From LC circuit to transmon

We start from the Lagrangian of LC circuit, where L and C are an inductor and
a capacitor, respectively:

LLC =
1

2
C

(
dΦ

dt

)2

− 1

2L
Φ2 . (3.1)

From this equation using the Legendre transformation we can get the Hamilto-
nian of the LC circuit:

HLC =
1

2
C V 2 +

1

2
LI2 (3.2)
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where

Q =
∂L

∂ dΦ
dt

= C
dΦ

dt
(3.3)

indicates the charge operator and is the momentum conjugate to the flux.
We can notice that HLC is a harmonic oscillator Hamiltonian with m = C and
ω = 1√

LC
. To write the quantum version of this Hamiltonian, we must compute

the Poisson bracket:

{Φ, Q} =
∂Φ

∂Φ

∂Q

∂Q
− ∂Q

∂Φ

∂Φ

∂Q
= 1− 0 = 1 (3.4)

and associate the commutator relation[
Φ̂, Q̂

]
= i ~ , (3.5)

where now Φ̂ and Q̂ are quantum operators. From now on, we will drop the hat
symbol for simplicity and clearness.
We define the reduced flux φ = 2πΦ

Φ0
and the reduced charge n = Q

2 e where Φ0

is the quantum superconducting magnetic flux Φ0 = h
2e and e is the electric

charge. We used the value 2 e because in these regime we can assume that the
electrons form Cooper-pairs. Hence, we can rewrite eq. (3.2) using these new
definitions as:

H = 4EC n
2 +

1

2
EL φ

2 , (3.6)

where EC = e2

2C is the energy required to add a Cooper pair to the capacitor,

and EL =
φ2

0

(2π)2 L is the inductive energy. We have that [φ, n] = i.

As we said, the Hamiltonian of eq. (3.6) is the same of one of 1 dimensional
Harmonic Oscillator with ω = 1√

LC
. Therefore, using creation and annihilation

operators, we get:

H = ~ωr
(
a† a+

1

2

)
(3.7)

where

n = i n0 (a− a†) (3.8)

φ = φ0(a+ a†) (3.9)

with n0 =
(

EL
32EC

) 1
4

.

Eq. (3.7) is the quantum Hamiltonian for the LC circuit. This system cannot be
a qubit because it does not respect the first DeVicenzo’s criteria (see Sec. 2.6).
We know from 1-d Harmonic oscillator theory that the energy difference between
levels i and i + 1 is always given by ωr. This is a real problem in performing
controllable operations. Consider that we want to flip the state from |0〉 to |1〉
of a N -state qubit. For doing that, we will send a photon with energy ω. But,
for the degeneracy of the level differences, we could also excite different levels
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(a) LC spectrum
(b) Josephson Junction spectrum. The
transmon is a specific type of Josephson
Junction

(c) LC circuit (d) Josephson junction circuit

Figure 3.1: Spectrum of LC circuit (Harmonic oscillator) (3.1a) vs one with a
Josephson junction (3.1b). We have also the graphical representation of these
two circuits (3.1c) and (3.1d)

with the same transition probability, for example, from the first to second or
from the second to the third.
We must add a non-linear element to the quantum circuit to modify the spec-
trum. In standard CQEd (Circuit Quantum Electrodynamics), one replaces the
inductor with a Josephson Junction [39, 40].
The Hamiltonian of the quantum circuit including a Josephson Junction be-
comes:

H = 4ECn
2 − Ej cos(φ) , (3.10)

where EC = e2

2CΣ
with CΣ = C +CJ (CJ indicates self-capacitance of the junc-

tion) and Ej = IcΦ0

2π , the Josephson energy.
Fig. 3.1 shows the difference between the spectra of the LC circuit and the one
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with a Josephson Junction. Moreover, in the same figure, the pictorial represen-
tations of their circuits are shown. We should observe how the energy differences
change.
The quantum circuit formed by a Josephson Junction and a capacitor may be
a good candidate for being a qubit.

3.1.1 Josephson Junction Hamiltonian

The Josephson Junction (JJ) is made of two (or more) layers of a superconduct-
ing material separated by a thin insulating film. This sandwich structure can
explain why the JJ has intrinsic capacitance CJ of eq. (3.10). Fig. 3.2 shows
an example of JJ.
Due to the thin insulator layers, a Cooper pair, a bound state of two electrons

Figure 3.2: A Josephson junction. The two superconducting sides of JJ are this
figure’s darkest grey parts. In the middle, there is an insulator of a thickness of
400 nm. Figures is taken from Ref. [41]

with opposite spin, can coherently tunnel through the insulator giving raise to
a superconducting current. This is called DC Josephson effect.
We can write the Schrödinger equations for the two superconducting parts,
where ψ1 and ψ2 describes the wavefunction on each side [43] :

dψ1

dt
=
eV

2
ψ1 +Kψ2

dψ2

dt
=
eV

2
ψ2 +Kψ1 (3.11)

where V indicates the potential across the JJ. K is a characteristic constant of
the JJ and it describes the coupling between the two superconducting sides.
Using a simple description of the wavefunction of two superconducting parts,

ψi =
√
ρie

iθi i = 1, 2 , (3.12)
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one can get:

dρ1

dt
=

2

~
K
√
ρ1ρ2 sin(φ) , (3.13)

dρ2

dt
= −2

~
K
√
ρ1ρ2 sin(φ) , (3.14)

dθ1

dt
= −

K
√
ρ2

~√ρ1
cos(φ)− qV

2~
, (3.15)

dθ2

dt
= −

K
√
ρ1

~√ρ2
cos(φ) +

qV

2~
, (3.16)

where φ = θ2 − θ1.
The first two equations tell us how the charge densities change. Therefore, they
describe which kind of current flows in the JJ. The current from side 1 to side
2 is simply dρ1

dt .
Usually, the two layers of the JJ are connected by wires to a battery that makes
the voltage V constant across it. Including it in the JJ’s equation, one has
that the two densities ρ1 = ρ2 = ρ0 do not change during time. (If the two
densities change, they will produce further voltage). Then, we have found the
first relation of JJ:

I = Ic sin(φ) (3.17)

where we have recalled φ as the phase different of two superconducting materials
φ = θ1 − θ2 and IC = 2Kρ0

~ .
Subtracting eq. (3.16) with eq. (3.15), we get:

dφ

dt
=
d(θ2 − θ1)

dt
=

2e V

~
(3.18)

This equation is called the second relation of JJ.
The energy of the JJ is given by:

E =

∫
V I dt =

∫
Ic sin(φ)

1

2e

dφ

dt
dt =

∫
Ic sin(φ)

1

2e
dφ = − Ic

2e
cos(φ) (3.19)

We have proved that the energy depends on the cosine of the phase differ-
ence.This final result proves the term in eq. (3.10).

3.1.2 Quantum circuits with Josephson Junction

Eq. (3.10) gives us:
H = 4ECn

2 − Ej cos(φ) , (3.20)

27



Figure 3.3: Scheme of three basic superconducting quantum circuits and their
potential energies. (a) Charge qubit (b) flux qubit and (c) phase qubit. It is
taken from Ref. [42]

Considering the effect of offset charge noise [44] ng = Qr
2 e +

CjV
2e , with Qr is the

charge induced by the environment, Vg and C are the gate voltage and capacitor
respectively, the general Hamiltonian is given by:

H = 4EC(n2 − n2
g)− Ej cos(φ) . (3.21)

We have three types of Josephson Junction and they are determined by the
values of two parameters EC and Ej . Considering that the n and φ obey to the
Heisenberg principle

[
eiφ, n

]
= eiφ or ∆φ∆n ≥ 1, when EC > EJ the circuit is

dominated by the capacitance and n is a good quantum number (φ has a large
quantum fluctuations). Instead for EJ > EC , the JJ dominates the circuit with
a well-defined φ but with a large fluctuations for ng.
Therefore, the classification of Josephson Junctions depends on the ratio EJ

EC
.

The standard rank for JJ circuit is

• When EJ
EC
� 1. (in particular EC

EJ
∼ 10). The device in this regime is

called charge-qubit. The Hamiltonian of eq. (3.21) becomes:

H =
∑
n

4EC (n− ng)2 |n〉 〈n| − 1

2
EJ (|n+ 1〉n+ |n〉 〈n+ 1|) (3.22)

This device at first order is insensitive to offset charge noise.

• When EJ
EC
∼ 1 − 50. The circuit in this regime is called the flux-qubit

circuit. We must consider all the terms of the Hamiltonian and Fig. 3.3(b)
shows its spectrum.

• When EJ
EC
� 50. This device is called a phase-qubit circuit. Its spectrum

is very similar to one of the harmonic oscillators with a small anharmonic-
ity. This circuit is very insensitive to offset-charge noise.
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Fig. 3.3 shows the quantum circuits for the three basic types of superconducting
quantum circuits and their potential energies.

Several improvements of the three presented devices are proposed. A complete
list can be found in Refs. [41, 42]. The modifications are realized to obtain a
long coherence time, an easy connectivity between qubits or a full control of
the circuit. The main one are the quantronium [45, 46],the four-junction flux-
qubit circuits [47, 48, 49, 50], the tunable-gap flux-qubit circuit [51, 52, 53],
the transmon [44, 54], the fluxonium-qubit [55, 56], the Xmon-qubit [57], the
Gmon-qubit [58, 59].
We currently limit our focus on the transmon circuit that better approximates
the LLNL quantum testbed [37]. The transmon works with a ratio EJ

EC
∼ 10−

100, so we are in the regime of phase qubit.

3.1.3 Transmon’s Hamiltonian

In the regime when EJ
EC
� 1, the superconducting phase φ becomes a good

quantum number. We have that the N lowest states, which we will use as states
of the N qubit, are localized inside the well as Fig. 3.1b shows. Therefore,
we can expand the cosine part of eq. (3.10) around the minimum (φ = 0),
obtaining:

EJ cos(φ) =
Ej
2
φ2 − 1

24
EJφ

4 +O(φ6) . (3.23)

The constant is just an energy shift that we can neglect in our calculation
because as we will see it is fundamental to the transition energies. At the
second order, we obtain a Harmonic oscillator term φ2, but the fourth-order
term gives us an anharmonicity. We need the anharmonicity to well-control the
transmon’s states as the first DiVicenzo criterium [23] requests.
Therefore, the general transmon Hamiltonian becomes

H = 4EC(n2 − n2
g)− Ej cos(φ) ' 4EC(n2 − n2

g) +
Ej
2
φ2 − 1

24
EJφ

4

= ωqa
†a+

α

2
a†a†aa ,

(3.24)

where α is the anharmonicity α = ω21 − ω10 and a (a†) is the annihilation
(creation) operator of the eigenstates of Harmonic oscillator states defined by
eq. (3.9)). The transmon devices work when α� ωq. Hence, we recognize that
the final transmon Hamiltonian is the weakly anharmonic oscillator one.
Fig. 3.4 shows the transmon energies as a function of offset charge ng for different
ratios EJ

EC
. The actual transmon range is when EJ

EC
= 50. From the figure we

observe that the energies are insensitive to the offset charge ng. Furthermore,
the spectrum is very similar to one of weak Anharmonic oscillator.
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Figure 3.4: First three energies Em of transmon device as a function of offset
charge ng for different ratios EJ

EC
. The energies are scaled by the factor E10.

Taken from Ref. [44]

3.2 Operations in real hardware

We have described how we can build a qubit with a superconducting device.
Now, we are interested in implementing our quantum gates that are indicated
by a quantum algorithm.
We start from the fact that the (transmon) qubit system can be made to in-
teract with a time-dependent microwave pulse. The evolution of the quantum
processor interacting with this pulse after some time Tm is a way to implement
a particular quantum gate. Its action is obtained from solving the Schrodinger
equation for the real time dynamics. Tailoring the pulses, we get different
quantum gates. Therefore, for a set of quantum operations or gates, we should
optimize the time dependent shape of the pulses.
Ch. 2 introduced analog and digital quantum computation for implementing
a general quantum gate. In the analog scheme, we need to optimize the mi-
crowave pulse, such that the whole evolution of the quantum processor after
a particular time Tm gives the desired quantum gate. In the digital scheme,
instead, we translate and optimize the general quantum gate in a sequence of
elementary gates. However, these digital elementary gates are implemented via
specific time-dependent microwave pulses. An example can be found in IBM
digital gates that are implemented through specific pulse shapes.

30



In order to determine the pulses suitable to the desired operation, we start from
the lab Hamiltonian that describes a generic interaction between a microwave
pulse with amplitude ε(t) and a multi-level system quantum system [60],

Hint = u(t)H(t) = (c+ c†)
[
ε(t)e−iωdt + ε(t)∗eiωdt

]
=

(c+ c†) (2 Re(ε(t)) cos(ωd t) + 2 Im(ε(t)) sin(ωd t)) , (3.25)

where c and c† are the annihilation and creation operators for transmon’s levels.
ωd indicates the frequency of the electric field. The free-transmon Hamiltonian
is given by H0 = ~

∑
ωk |k〉 〈k| where ωk is the energy of k-th level. In standard

notation, the real part of electric signal, εI(t) = Re [ε(t)], is called in-phase com-
ponent and the imaginary part, εQ(t) = Im [ε(t)], the quadrature component .
To facilitate the tailoring of the time-dependent microwave pulse, one can change
the reference frame into an easier one, called Rotating Frame (RF). This is de-
fined by applying the following time-dependent unitary operator to the system:

R(t) = exp

[
iωdt

N−1∑
k=0

k |k〉 〈k|

]
, (3.26)

where N is the total number of states of the transmon device.
The action of the unitary operator R(t) to the transmon Hamiltonian is de-
scribed by:

Hrot = R(t)(H0 +Hint)R(t)† − i R(t)
d

dt
R(t)† . (3.27)

Leading to the rotating-frame Hamiltonian Hrot:

Hrot =

N−1∑
k

(ωk − k ωd) |k〉 〈k|+ εI(t) (a+ a†)− i εQ(t) (a− a†) (3.28)

where a and a† are the lowering and raising operator in the rotating frame. We
impose that ωd is equal to the difference between the first two states of the
transmon, ωd = ω10 = ω1 − ω0. Moreover, using the rotating wave approxima-
tion we can also neglect terms oscillating with frequency ωk + kωd.
Finally, the RF Hamiltonian is given by:

H =

N−1∑
k=0

(ωk − kωd) |k〉 〈k|+ εI(t)H
c
1 − iεQ(t)Hc

2

= H0 + εI(t)H
c
1 − iεQ(t)Hc

2

(3.29)

where Hc
1 = a+ a† and Hc

2 = −i(a− a†).
In the end, for a desired quantum gate Uwanted, one should tailor the microwave
pulse to drive the evolution of the quantum processor according to the gate
itself. The formal general real time evolution operator for the transmon device
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interacting with a time-dependent microwave pulse is given by the right side of
the following equation:

Uwanted ∼ T exp

{
− i
~

∫ Tm

0

dτ
[
H0 + ~εI(t)(a† + a) + i~εQ(t)(a† − a)

]}
(3.30)

where H0 indicate the free Hamiltonian of the qubits, the terms a†± a describe
the control Hamiltonian. The operator T is the time order operator.
Therefore, one must optimize for a fixed machine period Tm the in-phase and
quadrature components of the pulse such the previous equation (eq. (3.30)) is
valid within a small error.
How do we tailor the pulse and how do we quantify whether the evolution op-
erator implements correctly the desired gate or not? We have already discussed
that in Ch. 2 one must compute the fidelity between two operators to measure
the closeness between the experimental evolution operator and desired gate.
Recapping a fundamental property of the fidelity, two operators are the same if
and if only if the fidelity is equal to 1.
In conclusion, in order to implement a quantum gate Uwanted in a transmon
device, one has to tailor a time-dependent pulse with real and imaginary parts,
named εI and εQ, such that we maximize the fidelity between the two operators
of Eq. (3.30). The right side operator describes the actual evolution of the
quantum processor, and the left side represents the desired gate. Generally, we
stop optimizing the pulse when we reach a preset value of fidelity. Instead of
maximizing the fidelity, one may rather minimize the error fidelity defined by:

Ef = 1− F (U1, U2) (3.31)

where F is the fidelity between the operators U1 and U2.
The exposed procedure is very general. Indeed, it is also valid when we couple
different transmons with different microwave pulses {εj}. In this case, one
should compute the general Hamiltonian that describes the quantum processor
interacting with this set {εj} of microwave pulses.

3.3 Noise sources in quantum processors

Random and uncontrollable physical processes occur in devices for quantum
computing s in any other experimental setup. We have them even in quantum
computing. These noise sources are classified into errors in the readout process,
the gate implementation (gate infidelity), or the qubit’s interaction with the
environment. All of them cause loss of coherence of qubit states destroying the
quantum simulation.
The read-out errors and gate infidelity can be corrected a posteriori by some
algorithms. Nevertheless, it is very hard to deal with the most physical source of
noise, the interaction of the quantum processor with the environment1. In this

1In this thesis we will often refer to such interaction as ”quantum noise
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section, we will discuss a simple characterization of its effects with the so-called
Bloch-Redfield model [61, 62, 63]. In this model, the effect of noise on a single
qubit state,

|ψ〉 = α |0〉+ β |1〉 , (3.32)

can be described by the following density matrix for the qubit after some time
tm:  1 + (|α|2 − 1)e−

tm
T1 αβ∗e−

tm
T2 e−

tm
2T1 eiωt

α∗βe−
tm
T2 e−iωte−

tm
2T1 |β|2e−

tm
T1

 , (3.33)

where the time T1 and T2 describe the so-called relaxation and dephasing time,
respectively. We can describe the effect of noise with these two parameters.
The third parameter eiω t with ω = ω10 − ωd describes the case when the fre-
quency qubit ω10 differs from the rotating-frame frequency ωd (it describes the
frequency of oscillations of the electric field signal). In our work, we will neglect
this contribution.

3.3.1 Relaxation process

We start with the parameter T1, called relaxation time. The process related to
T1 is called relaxation process or longitudinal relaxation. It indicates the decay
from the excited state ( the logical state |1〉) to the ground state (|0〉) and vice
versa. Formally, it is given by:

1

T1
=

1

T ge1

+
1

T eg1

(3.34)

where T eg1 (T ge1 ) indicates the typical time of decay from excited state (ground
state) to the ground state (excited state).
For superconducting qubits one can estimate with the Boltzmann distribu-

tion T ge = Tege
− ω10
kBT where T is the temperature (T ∼ 2 − 20 mK) and

ω10 = E1−E0. In this case, one can easily demonstrate that the second contri-
bution (ground to excited state) is exponentially suppressed, hence, T1 ∼ T eg1 .
Experimentally, to measure T1, one prepares the qubit in the |1〉 state and sam-
ples the probability to find the qubit in |1〉 state as a function of time. An
example with the first device at LLNL is shown in Fig. 3.5. The function that
interpolates the points of this process is well-fitted by a single exponential. The
parameter in the exponent is connected to T1.

3.3.2 Dephasing process

The other very important contribution to the noise is due to T2, the dephasing
time. This is the main contribution to noise in superconducting devices. It
formally describes the depolarization of the Bloch sphere in the x− y plane. In
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Figure 3.5: Result of T1 estimation of LLNL testbed. Taken from Ref. [64]

other words, this process describes the loss of the relative phase between the
|0〉 and |1〉 states. The relative phase of a qubit is described by the off-diagonal
terms of the diagonal matrix. According to the Bloch-Redfield model, the T2

contribution kills these terms exponentially (see eq. (5.23)).
To visualize what this process describes, one could imagine to have the initial
state in x-state, |x〉 = 1√

2
(|0〉+|1〉). This represents the point along the x axis in

the Bloch sphere. The dephasing noise starts to rotate the qubit state randomly
along the z-axis. Therefore, after some time t, we have a cloud of states around
the equatorial plane of the Bloch sphere. Fig. 3.6 plots this process.
Starting from the state |x〉 and waiting for a long time, the result of this noise
source is a mixture of states equally distributed around the equatorial plane.
We lose the relative phase between the two states entirely in this situation. For
the T2 estimation one can use the Ramsey interferometry [66]. First, the initial
state is obtained applying a Xπ/2 = Rx(π2 ) gate (i.e., a rotation along the x-axis
of angle π/2) to |0〉). After some time τ , one applies a Xπ/2 pulse. Repeating
this process for different values of τ , one gets some oscillation of Fig. 3.7. In-
terpolating the exponential decay gives the time T2.
Spin Echo experiments [67, 68] are another way to estimate T2. This applied a
Yπ = Ry(π) pulse in the middle of the two Xπ/2 pulses. This variation helps to
reduce the sensitivity of qubits to other sources of noise (for example, relaxation
processes).

3.3.3 Markovian Lindblad master equation

We have seen that the quantum noise source can be parameterized with the two
times T1 and T2 describing the relaxation and dephasing processes. The Bloch-
Redfield model is too simple to compute the actual effect of quantum noise in
a real device simulation of a quantum algorithm.
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Figure 3.6: Bloch spheres for different sources of noise. We should notice how
the dephasing process (T2) and the relaxation process (T1) may move the initial
state creating a mixture of states. Taken from Ref. [65]

Figure 3.7: Result of T2 estimation of LLNL testbed.Taken from Ref. [64]

A better description is provided by the Markovian Lindblad master equation [69]
describing the real time evolution of a quantum system (in our case, the qubits)
with some noise sources. As previously mentioned the noise sources are the
relaxation process, parameterized by T1 and by the operator a, and dephasing
one, parameterized by T2 and by the operator a† a. The operator a and a†

describe the annihilation and creation operator on the qubit state, respectively.
The Markovian Lindblad master equation for a qubit system is given by

dρ

dt
= − i

~
[HQPU , ρ] +

(
1

T1
D̂[a] +

1

T2
D̂[a†a]

)
ρ (3.35)

HQPU = H0 +Hc (3.36)
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D[O] = O ρO − 1

2

{
O†O, ρ

}
, (3.37)

where ρ is the density matrix of N -state qubit. HQPU is the Hamiltonian in
the exponent of eq. (3.30), the sum of free Hamiltonian (H0) and the control
Hamiltonian (Hc).

3.4 Qubit Readout

The qubit readout is the procedure that allows us to extract the probabilities
of the states. Generally, a quantum measurement can be described as an inter-
action between a quantum system (qubit) with a classical variable of a classical
probe. Then the probe is classically measured to have the information about
the observable of the quantum system.
In CQEd, the qubit is entangled with a classical resonator. By measuring the
electric field properties of the cavity, for instance, the number of photons, one
can have information about the probability of the qubits.
The simple model that describes the dynamics of an atom or a transmon with
two states with a resonator is the James-Cummings model [70]. In this model,
the Hamiltonian is given by:

H = ωr(a
†a+

1

2
) +

ωq
2
σz +

Ω0

2
(aσ+ + a†σ−) , (3.38)

where ωq and ωr indicates the frequency of qubit and resonator respectively and
Ω0 = 2 g with g is the vacuum Rabi frequency. σ+ and σ− are the qubit ladder
operators.
The energy and eigenstates of these Hamiltonian are:

E±n = ωr (n+
1

2
)± 1

2

√
∆2 + Ω2

n (3.39)

|n,+〉 = cos

(
θn
2

)
|e〉 |n〉+ sin

(
θn
2

)
|g〉 |n+ 1〉 (3.40)

|n,−〉 = cos

(
θn
2

)
|g〉 |n+ 1〉 − sin

(
θn
2

)
|e〉 |n〉 , (3.41)

where |g〉 and |e〉 indicate the two state of the qubit, the ground state and
excited one respectively, and the |n〉 describes the state with n photons in the
cavity. The parameters ∆, Ωn and θn are given by:

∆ = ωq − ωr tan(θn) =
Ωn
∆

Ωn = Ω0

√
n+ 1 (3.42)

A useful regime of the JC Hamiltonian for a readout procedure is when g �
|ωq − ωr|. This regime is called the dispersive regime. If the ratio g

∆ is small,
we can expand the Hamiltonian as follows,
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H ∼
(
a†a+

1

2

)(
ωr +

g2

∆
σz

)
+

1

2

(
ωq +

g2

∆

)
σz

∼
[
ωr +

g2

∆
σz

]
a†a+

1

2

(
ωq +

g2

∆

)
σz . (3.43)

This Hamiltonian is at the first order in g/∆. It has been obtained using
the Schrieffer-Wolff transformation in which we eliminate the linear-order term
aσ+ + a†σ− [71].
Eq. (3.43) shows an essential property of transmons, the Quantum non-demolition
(QCD) readout. The outcomes of the qubit measurement (the qubit probabili-
ties) are not altered from the acts of measuring the photon number. Indeed, if
the number of photons is small, the σz operator commutes with the interaction
term in eq.(3.43).
The most important result from Eq. 3.43 is that the resonator frequency takes
a energy shift depending on the qubit state. The shift magnitude is given by
g2

∆ 〈σz〉. Our readout procedure is derived from a two-state system, but it can
be generalized for N state qubit. Therefore, we can infer the qubit probabilities
by measuring the resonator frequency.
Note that the qubit frequency due to the vacuum fluctuations of the resonator

picks up a term g2

∆ . This is called the Lamb shift. There is another significant

effect, called ac-Stark shift, coming from the term 2 g
2

∆ a
†aσz. This effect con-

tributes to the qubit dephasing.

3.4.1 Readout in I-Q plane

We have just described the physics of the readout. The system is set up in order
to be in the dispersive regime, where the cavity photon picks a contribution
due to the qubit state. Moreover, this also prevents the interaction of the
measurement process on the qubit.
The standard way to read the cavity states is to use the in-phase and quadrature
components plotted in the so-called I-Q plane of the voltage coming from the
reflection or transmission of the cavity.
The cavity is coupled with an electric signal of shape sini(t) = A cos(ωRO t),
where ωRO is the carrier frequency used to probe the resonator. This signal
after the interaction with the resonator has the form :

s(t) = ARO cos(θRO + ωROt) , (3.44)

where ARO and θRO are respectively the amplitude and phase due to the con-
tribution of the qubit states. Fig. 3.8 shows the results for a single qubit. In
the figure, the amplitude and phase are shown as a function of the difference
between signal frequency (ωRF ) and the frequency of the resonator (ωr). When
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ωRF = ωr, one can notice that two phases have the most significant difference.
The I-Q plane is a standard method to find the amplitude and phase of an elec-
tric signal [72]. Employing it, one rewrites for each frequency ωRO the signal
s(t) of (3.44) in this way

s(t) = ARO cos(θRO) cos(ωROt) + iARO sin(θRO) sin(ωROt)

= I cos(ωROt) + iQ sin(ωROt) . (3.45)

where the functions I and Q functions are called ”in-phase” and ”quadrature”
components respectively.
We use the I-Q plane because it is easy to read the measurement results. Indeed,
after some analysis, one may obtain the plot shown in Fig. 3.9. Each point
represents a measure in a specific qubit state and the big spots represent the
qubit states. Classifying and counting the number of data for each spot and
dividing them by the total number of data, one obtains the qubit probabilities.

Figure 3.8: Readout example for the signal (absolute value and phase) due to
reflection outcome when the qubit is the |0〉 or in the |1〉 state. (c) I-Q plane
for the qubit. Taken from Ref. [41]
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Figure 3.9: Readout plane I-Q for the LLNL quantum testbed for a qudit of 4
states. Taken from Ref. [37]
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Chapter 4

Determination of the
spectra from a real time
evolution of a quantum
system

This chapter will focus on the work of Ref. [9]. The paper presents a study
of the real time evolution (or dynamics) of two interacting neutrons through a
level device quantum simulation. The unitary time propagation of the nuclear
dynamics is efficiently encoded into a single multi-level quantum device present
at the Lawrence Livermore National Laboratory (LLNL).
We will begin illustrating the nuclear problem of Ref. [9]. Then, the funda-
mental steps to simulate the dynamics of a quantum system will be illustrated.
After that, we will discuss numerical algorithms that tailor the experimental
microwave pulse for implementing the desired quantum gate according to the
analog quantum simulation approach.
The device level simulation of Ref. [9] and the actual data from the LLNL quan-
tum testbed [37] will be shown.
In the end, the simulations applying the same method for a different quantum
system, the Hydrogen atom, will be presented. They were done before the actual
run on the LLNL testbed.

4.1 Nuclear system

Ref. [9] presents a simulation for computing the real time evolution (or dynam-
ics) of two neutrons interacting with a simple potential derived by the leading
order(LO) of chiral effective field theory (χ-EFT), derived in details in App. C.
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The Hamiltonian of two neutrons is written as

H = T + VLO(~r) , (4.1)

where the potential is (see eq. (C.33))

VLO(~r) =
1

12π

g2
a

F 2
π

mπ(τ1 · τ2)

[
Tmπ (r)(1− e

− r4

R4
0 )~S12 + (1− e

− r4

R4
0 )Ymπ (r)σ1 · σ2

]
+

+ csαe
− r4

R4
0 + ctσ1 · σ2αe

− r4

R4
0 ,

(4.2)

and T indicates the Kinetic energy operator.
The Hamiltonian can be split in two terms, a spin-dependent (SD) (VSD) and
spin-independent (SI) (HSI) components. We then write:

H = VSD +HSI (4.3)

with

HSI = T + VSI = T + csαe
− r4

R4
0 , (4.4)

VSD =
1

12π

g2
a

F 2
π

mπ(τ1 ·τ2)

[
Tmπ (r)(1− e

− r4

R4
0 )~S12 + (1− e

− r4

R4
0 )Ymπ (r)σ1 · σ2

]
+ ctσ1 · σ2αe

− r4

R4
0 . (4.5)

The evolution at time t of a generic state of this system, |ψ(t)〉, is obtained from

|ψ(t)〉 = e−i∆tH |φ〉 = e−i∆t (HSI+VSD) |φ〉 , (4.6)

where |φ〉 is the state at time t = 0.
If we consider the time step ∆t in the limit of ∆t −→ 0, we can apply the Trotter
decomposition to the propagator splitting the spin-dependent part from the
spin-independent. Therefore, we get:

e−i∆tH ' e−i∆t (T+VSD)e−i∆t VSI |φ〉 . (4.7)

Looking closer at the spin dependent potential, whose operators are ~S12 and
σ1 · σ2, one can rewrite this potential in term of Pauli matrices[22]

VSD =
∑

α,β= x,y,z

Aαβ(r)σ1
α · σ2

β , (4.8)

where Aα,β(r) indicates the projection of the spin-dependent potential in the α
and β-axis. For example, one has:

Axx =
1

12π

g2
a

F 2
π

mπ(τ1 · τ2)

[
Tmπ (r)(1− e

− r4

R4
0 )(3r2

x − 1) + (1− e
− r4

R4
0 )Ymπ (r)

]
+ ctαe

− r4

R4
0 . (4.9)
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Axy =
1

12π

g2
a

F 2
π

mπ(τ1 · τ2)Tmπ (r)(1− e
− r4

R4
0 ) 3 rx ry , (4.10)

where rx = ~r · ~x and ry = ~r · ~y.
In Ref. [9] a further approximation was introduced in order to simplify the cal-
culations. The authors considered the two neutrons ”frozen” in their positions.
In this condition the spin-independent component is the only one participant in
the dynamics, while the radial wavefunction is described by two delta functions
in the position of two neutrons, δ(~r − ~r1)δ(~r − ~r2). Therefore, the two neutron
dynamics is restricted to a spin evolution, where the distance ~r = ~r1 − ~r2 be-
comes a constant parameter of the spin-independent potential.
Now, we will discuss how to implement the nuclear spin dynamics. After that,
we will continue showing the results of Ref. [9].

4.2 Fundamental steps for Quantum Simulations

This section will explain the fundamental steps to perform a quantum simula-
tion of a physical quantum system, referring to the particular case mentioned
above.
In quantum simulation, we want to evaluate some properties of a physical quan-
tum system (for example, its ground state or its real time evolution). In the
Hilbert space of this system, we start from an initial physical state, |φ〉 and we
perform some operations Ut. After their application, the final state will become
|φt〉 = Ut |φ〉. Our goal is to measure properties from |φt〉.
To extract the desired information using a quantum processor, we map the phys-
ical states in the states of the quantum processor. The requested operation Ut
is transformed in unitary operations Ug. We start from |ψ〉, the initial state of
the processor that emulates |φ〉. Then, Ug is applied to obtain the final state of
quantum processor |ψt〉 = Ug |ψ〉. This final state is equivalent to |φt〉. Fig. 4.1
shows a scheme of the quantum simulation.
In order to do a quantum simulation correctly, we must employ the following
steps. The derived two spatial-blocked spin neutrons will be taken as an exam-
ple .

1. Map the Hilbert space on quantum processor. To effectively simulate a
physical quantum system, we need to map its states onto the states of
quantum processors. We must have a biunivocal correspondence between
the states of physical systems and quantum processors. Furthermore,
one should choose the most efficient map that cancels possible errors, for
instance, removing the contribution of the quantum noise.
An easy map of the 2-spin neutron spins consists of:

|0〉 ⇐⇒ |↓↓〉 ,

|1〉 ⇐⇒ |↓↑〉 ,
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|φ〉 Ut |φt〉 = Ut |φ〉

|ψ〉 Ug |ψg〉 = Ug |ψ〉

Map Enconding Measuring

Figure 4.1: Scheme of quantum simulation. The upper row represents the phys-
ical system; the lower one indicates the quantum simulation performed in a
quantum processor. From left to right: the first boxes indicate the initial states,
ones with Ut and Ug the performed operations and the final boxes the obtained
final states. If the map and encoding are correct, extracting information from
the final state of the quantum processor gives the same properties of the physical
system.

|2〉 ⇐⇒ |↑↓〉 ,

|3〉 ⇐⇒ |↑↑〉 ,

where 0, 1, 2, 3 indicate the states of the 4-level transmon qubit (or the
states of two qubits). Different mappings can be used, assigning, for ex-
ample, the triplet and singlet states to the levels of transmon qubit.

2. Encoding the Quantum Operator. After mapping physical states to states
of the QPU, one has to translate the quantum algorithm into quantum
gates (unitary operations). There are two main approaches to translating
a general quantum gate into physical hardware gates.
In the digital quantum simulation approach, the gate is translated in a
sequence of elementary gates, a quantum circuit. This is the most com-
mon approach. This method suffers from the possible very large requested
depth of quantum circuits; in other words, we would have a massive num-
ber of basic gates in the circuit. The depth of a quantum circuit is the
quantum version of the depth of a classical circuit[73]. The depth of a
circuit is defined as an integer number that describes the number of gates
of the longest path from the input to the output qubits, moving forward
in time along the wires. We can simply define the depth as the integer
number that minimizes the times for running the entire quantum circuit
counting each gate 1 in unit time. Having a massive number of gates
causes that the requested machine time to implement them is longer than
the decoherence time of the qubits. Moreover, having many gates, we
should consider the contribution of the gate infidelity. These problems
can be mitigated by techniques for efficiently compiling a quantum gate
into a quantum circuit.
The other approach is the analog quantum simulation or Optimal Control
(OC). We compute the microwave pulse for implementing the desired op-
eration in a single quantum gate application using the theory presented
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in App. 3.2. This approach addresses in part the problem of noise since it
reduces the required machine time. However, this approach also presents
some problems with this approach. The main ones are the amount of clas-
sical computational resources required to compute the pulses. Indeed, one
finds that the computational time grows exponentially with the number of
states and consequently with the number of degrees of freedom in the sys-
tem. App. A will discuss some details of the optimal control approach and
it will present numerical algorithms that compute pulses. A method for re-
ducing the classical computational resources will be discussed in App. B.
In our case, the quantum operator U , which we want to implement, is
the real-time evolution operator of the two neutron spins, U = e−i∆tH .
Ref. [9] implemented it through the optimal control technique.

3. Initial State. One needs to decide the initial state of the quantum simula-
tion. Most simulations start for convenience in the |0〉 state, because it is
the default state of quantum processors. Ref. [9] prepared the initial state
in |1〉 representing the nuclear state |↓↑〉.

4. Extract the information from the simulation. We should decide what in-
formation we can extract from the quantum simulation. We measure the
probability distribution from the quantum processor on some computa-
tional basis. We must link the occupation probability to observables of
the physical system that we are interested in.
For example, in the real time evolution of two neutron spin systems, we are
interested in the probability distribution of spins at different time steps.

5. Execution. Finally, we run on the quantum processor.

4.3 Real time evolution of two blocked neutrons

We listed all the elements to simulate the nuclear spin evolution of two inter-
acting neutrons through a quantum computer.
Now, we will focus on implementing it in quantum processor available at LLNL [37].
Tab. 4.1 summarizes the fundamental elements of the quantum simulations of
Ref. [9] applies for studying the real time evolution of two blocked neutrons
interacting with a potential derived by a LO Chiral EFT.
The numerical optimization problem for finding the pulse for the dynamics was

done by the python software Quantum Toolbox in Python (QuTiP) [74] with
the optimize pulse unitary function implementing the GRAPE algorithm (see
App. A for algorithm’s details). Specifically, Ref. [9] uses six states for the trans-
mons. The authors used six states instead of four to improve the accuracy of
the numerical optimization of the pulse. The quantum gate implements the real
time propagator for the four lowest levels of the transmon (using as map one
of Tab. 4.1). The fourth and fifth levels are evolved through an identity gate.
The calculations of in Ref. [9] are device simulations with parameters tailored
on the physical machine. The results are expected to be very similar to ones
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Map |0〉 ⇐⇒ |↓↓〉 , |1〉 ⇐⇒ |↓↑〉 , |2〉 ⇐⇒ |↑↓〉 , |3〉 ⇐⇒ |↑↑〉

Unitary gate Real time evolution e−i∆tVSD(r)

Implementation
of the quantum
gate

Optimal control computed with GRAPE (see App. A)

Measure

We measure the probability of the states of the qudit af-
ter the implementation of k real time propagators. The
obtained values of probability correspond to the spin
probability of the two neutrons at time t = k∆t

Table 4.1: Elements for simulating nuclear physics

gotten from actual LLNL quantum testbed. Tab. 4.2 shows the experimental
parameters used for emulating the quantum processor1.
The real (εI) and imaginary part (εQ) of the obtained optimal pulse is shown
in Fig. 4.2 (a). Fig. 4.2 (b) presents the Discrete Fourier Transform of this
amplitude, highlighting the transition frequency of the transmon.
Fig. 4.3 presents the results obtained from the simulation of Ref. [9]. The cir-

Figure 4.2: The two (a) figures show the optimized time dependent real (εI)
and imaginary (εQ) amplitude pulse for the nuclear propagators. The (b) panel
shows the Discrete Fourier Transform of the pulse amplitude. Plots taken from
Ref. [9]

cles represent the simulated probability output for the transmon states solving
the Markovian Lindblad master equation (see eq. 3.35). The solid lines indicate
the exact evolution of two neutrons scaled by device noise terms.
The discrete wavefunction |ψ(t = j∆t)〉, which represents the spin state at time
t = j∆t (j ∈ N) of the two neutrons, is obtained by repeating j-times the nu-

1This fact was confirmed in later experiments
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3D transmon anharmonicity αT 200 MHz

Transmon states 6

Relaxation time T1 30 µs

Dephasing time T2 50 µs

Total decoherence time T−1 = T 1
1 + T−1

2 27 µs

Pulse duration (pd) 100 ns

Pulse sampling frequency (srate) 32 Gsamples

Number of points of the pulse 3200

Fidelity error 10−4

Initial pulse for optimization
Gaussian function with height

amplitude smaller than 2 MHz

Maximum Drive strength 20 MHz

Table 4.2: Parameters of the quantum testbed. The first four parameters in-
dicate the hardware parameters (for more information see Ch. 3). The others
describe the parameters for the pulse calculation

clear propagator,

|ψ(t = j∆t)〉 =

j∏
i=0

e−i∆tVSD |ψ(t = 0)〉

=
∑
k

cke
−itVSD |φk〉 =

∑
k

cke
−itλk |φk〉 , (4.11)

where we have expanded the wavefunction in eigenstates of the Hamiltonian,
V |φk〉 = λk |φk〉 and ck = 〈φk|ψ(t = 0〉.
Introducing the computational basis |ζ = 0, 1, 2, 3〉 for measuring the quantum

processor, the i-th occupation probability is given by:

Pi(t) = |〈ζ|ψ(t)〉|2 =

∣∣∣∣∣∑
k

cke
−itλk 〈ζi|φk〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
k

cke
−itλkbik

∣∣∣∣∣
2

=
∑
kl

e−i t(λk−λj)ckc
∗
j bkib

∗
ji , (4.12)

where bik = 〈ζ|φk〉.
Eq. (4.12) shows that the occupation probability depends by the difference of
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Figure 4.3: Occupation probabilities as a function of time in the quantum simu-
lation of the spin evolution of the two interacting spins. Colored circles indicate
the output probability as a function of the time steps. Each point is obtained
by solving the Lindblad master equation, including dissipation and dephasing
terms. Lines indicate the analytical evolution. They are obtained by integrat-
ing the LO Chiral EFT potential scaled by dephasing and relaxation processes.
The collapses of the four probabilities at the latest time steps are due to device
decoherence. Taken from Ref. [9]

the energies. Therefore, we can compute its its Fourier Transform, obtaining

Pi(ω) =

∫
dtei t ωPi(t) =

∑
kl

ckc
∗
j bkib

∗
ji

∫
dte−it(λk−λj)+i ω t

=
∑
kl

ckc
∗
j bkib

∗
jiδ(ω − (λk − λj)) . (4.13)

We can see from Eq. (4.13) that the Fourier transform of the occupation proba-
bility for each transmon level will show peaks centered at the difference between
the energies. The overlap factors give the height of these peaks, ckc

∗
j bkib

∗
ji. Look-

ing closer at eq. (4.13), we can note that number of expected peaks is d(d−1)
2 .

This value is equal to all possible combinations between the two different ener-
gies.
Fig. 4.4 shows the Discrete Fourier Transform of occupation probability for the
|1〉 state of Fig. 4.3. By the analysis described in App. B of Ref. [9], one can
obtain the energy differences shown in Tab. 4.3.
This procedure is not sufficient to fully determine the spectrum. One needs at
least one energy value, for instance, the lowest one λ0, to reconstruct all the
energy values.
Ref. [9] carries a very clever solution to this problem. One should do the same
analysis for the real time evolution again, but changing the Hamiltonian of the
propagator from VSD to V 3

SD. Thereby, we will obtain the difference between
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Figure 4.4: Energy Spectra. The circles are obtained from the Fourier Transform
of the probability distribution of |1〉 state in Fig. 4.3. The line indicates the
Fourier Transform of the analytical evolution for the |1〉 state without including
noise. Taken from Ref. [9]

λ3
k−λ3

i energy. The first eigenvalue will then be determined by solving the linear
system with all the results. The use of the cube of the Hamiltonian guarantees
the correct sign of the eigenvalue.
The results obtained for the energies of the two neutron system are shown in
Tab. 4.4. We can note that such results are compatible with the exact ones.
The introduced scheme will be updated in Ch. 5 using a hybrid scheme with
a classical device to approximately evolve the spatial degrees of freedom. We
named this method coprocessing.
At the end of this chapter, the applicability of this method for a different quan-
tum system, the Hydrogen atom, expanded by the STO-2G Hamiltonian, is
shown.

4.3.1 Experimental results using LLNL testbed

This subsection will present the actual results obtained from the LLNL quan-
tum testbed.
Primarily, the map between physical states and transmon levels was changed
representing the three triplet states of the neutron spins by the three levels of
the transmon.
The same procedure described before was performed, but there is a variation:
the real time evolution is computed from a sequence of a set of real time prop-
agators. For example, suppose that the real time propagators for final intervals
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λij Exact (MeV) Simulated (MeV)

λ2 − λ1 2.5254 2.55(2)

λ1 − λ0 3.3951 3.41(3)

λ2 − λ0 5.9205 5.93(1)

Table 4.3: Difference between energies (λi − λj) computed from the Discrete
Fourier Transform of the occupation probability (Simulated column) and the
analytical ones (Exact column). Note that two states are degenerate. Taken
from Ref. [9]

Energy Exact (MeV) Simulated (MeV)

λ0 = λ1 -2.329 -2.3(2)

λ2 1.066 0.9(6)

λ3 3.592 3.6(2)

Table 4.4: Exact and simulated energies for the operator VSD obtained from
the quantum simulation. Taken from Ref. [9]

∆t = 0.1, 0.2, 0.5, 1.0 MeV−1 are available. The various time steps are com-
puted, optimizing the sequence between these basic propagators. For example,
the time t = 8.9 MeV−1 would be computed applying eight times the propa-
gators with ∆t = 1.0 MeV−1, one with ∆t = 0.5 MeV−1, two with ∆t = 0.2
MeV−1 and one ∆t = 0.1 MeV−1.
Fig. 4.5 shows the results of the actual simulation. The circles are the actual
occupation probabilities obtained from the quantum testbed. The lines indicate
the analytic evolution of the two neutrons.

4.4 Results for the Hydrogen atom

We have discussed how we can extract the spectrum of a Hamiltonian from the
occupation probability. Ref. [9] proves it with a numerical simulation. How-
ever, the actual results with the LLNL quantum testbed were obtained in 2021.
Before that, we need a single qubit to describe the states. Using the procedure
described in App. C.1.1, one derives a 2× 2 Hamiltonian that can be simulated
in a quantum computer with the correct spectra of Hydrogen atom system.
We mapped the first Gaussian to the |0〉 and the second one to |1〉. We imple-
mented as quantum gate the propagator e−itH in order to extract the Hamilto-
nian spectra as we discussed in the previous sections.
We used the same quantum simulator for a transmon qubit of the previous sec-
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Figure 4.5: Occupation probability for the two neutron spin evolution from the
LLNL quantum testbed. Circles indicate the real data and lines the analytic
evolution. Taken from Ref. [75]

tion with parameters shown in Tab. 4.5 and the (Rigetti Aspen−4 ) quantum
processor [76]. We computed the optimal pulse through the GRAPE algorithm
for a transmon device (see App. A for algorithm’s details). For the Righetti
QPU, the logical gates were translated as a sequence of its elementary gates
(Rx, Rz and CZ) through the PyQuil Software Development Kit [77]. The out-
put of the translation optimizes the quantum circuit. So at each time step, the
quantum circuit of Righetti has the same depth but with different gates.
The occupation probabilities as a function of time for the two different simu-

lations are shown in Fig. 4.6a. The lines indicate the analytical evolution. The
squares and circles represent respectively the results of the device level simula-
tions of qubit transmon and Righetti, respectively.
The Righetti simulation follows approximately the analytical evolution. In the
qubit transmon data, we instead observe decoherence. Indeed, in the qubit
transmon simulation, the evolution is implemented through a sequence of prop-
agators. On the contrary, we do not have this issue in the Righetti calculation
because the software internally optimizes the gate, shrinking the sequence of
gates into a single one. The parameter of qubit transmon simulation through
optimal control is shown in Tab. 4.5.
Fig. 4.6b shows the Discrete Fourier Transformations of these occupation prob-
abilities. We see that the obtained peaks are compatible with the exact peaks
obtained from the Hamiltonian spectrum. Iterating the same algorithm chang-
ing the Hamiltonian in the propagator in H3, we get the results of Fig. 4.7.
Tab. 4.6 presents the obtained results of two simulations with the analytic val-
ues. The energies in the table are expressed in Hartree units, where 1 Hartree
is defined as twice the binding energy of Hydrogen atom, i.e., 1 Hartree' 27.21
eV.
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Transmon parameters
3D transmon anharmonicity αT 200 MHz

Transmon states 2

Noise parameters
Relaxation time T1 7 µs

Dephasing time T2 50 µs

GRAPE parameters

Pulse duration (pd) 50 ns

Pulse sampling frequency (srate) 32 Gsamples

Number of points of the pulse 1600

Fidelity error 10−8

Initial pulse A zero-pulse

Maximum Drive strength 20 MHz

Table 4.5: Parameters of the superconducting transmon qubit, noise of the
quantum machine and of optimal control

Righetti (Hartree) transmon qubit (Hartree) Exact (Hartree)

λ1 − λ0 0.1432(8) 0.1439(8) 0.14285

λ3
1 − λ3

0 0.0309(8) 0.0303(8) 0.02924

λ0 -0.516(15) -0.508(17) -0.48199292

λ1 0.383(5) 0.389(5) 0.415579

Table 4.6: Analytic (Exact column) and simulated results of Righetti and the
device level simulation of transmon qubit for the Hydrogen STO-2G Hamil-
tonian. In bracket, the uncertainties of the Righetti and the transmon qubit
results are shown.
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(a) Occupation probabilities of the cube of Hydrogen atom Hamiltonian as function
of time

(b) the Discrete Fourier Transform of |0〉 probability

Figure 4.6: Results for real time evolution and the Fourier transform of probabil-
ity for Hydrogen atom. The lines indicate the analytical evolution. The circles
and squares represent respectively the results of the device level simulations of
qubit transmon and Righetti, respectively
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(a) Occupation probabilities of the cube of Hydrogen atom Hamiltonian as function
of time.

(b) the Discrete Fourier Transform of |0〉 probability

Figure 4.7: Results for real time evolution and the Fourier transform of the
measured probability for the Hydrogen atom for H3. The lines indicate the
analytical evolution. The circles and squares represent respectively the results
of the device level simulations of qubit transmon and Righetti, respectively
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Chapter 5

Quantum-classical
simulations in time
evolution

The first simulation presented in Ch. 4 was the real time evolution of a spin sys-
tem of two spatial blocked neutrons. This chapter generalizes it, (re-)including
the spatial evolution. The exposed method, named Coprocessing, employs a hy-
brid calculation between a classical device and a quantum one. Specifically, the
spin of neutrons will be computed through a quantum processor and the space
dynamics through a classical device. The main aim of this method is to com-
putationally simulate a scattering process starting from incoming particles and
obtaining the probability (or the final state) of the outgoing particles through
real time evolution.
We will start exposing the coprocessing scheme and showing the results obtained
from the device level simulation on the transmon qudit of Tab. 4.5. Then, we
will present the results obtained using the Advanced Quantum Testbed (AQT)
testbed [8] in different approaches. In the end, we will show a method based on
a reinitializing procedure to possibly improve the noisy results. Results will be
reported.

5.1 Coprocessing scheme for nuclear scattering
simulation

In the first sections of Ch. 4 we have dealt with the nuclear system studied in
Ref. [9]. Its authors simulated the real time dynamics of the spin system of two
neutrons that are fixed in their position.
We will briefly recap the fundamental steps to simulate the two neutrons’ real
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time evolution. The entire Hamiltonian of Ref. [9] is given by:

H = T + VSI + VSD (5.1)

where T indicates the kinetic energy, VSI the spin independent potential, VSD
the spin dependent one. (see App. C.2 for details)
The quantum gate to study the real time evolution defined by:

U(t) = e−i∆tH ' exp{−i∆t (VSI + T )} exp{−i∆t VSI}+O(∆t2) , (5.2)

where we have used the Trotter decomposition to split the propagator in the
limit of ∆t −→ 0.
The red factor evolves the spatial degrees of freedom and the blue operator the
spin ones. In Ch. 4 and Ref. [9] only the blue propagator is considered because
the two neutrons are deemed blocked in space.
A fundamental problem remains: how can we include the spatial degrees of free-
dom (red operator of Eq. (5.2)) to simulate a real scattering process of nuclear
particles?
We have two possible solutions. The more formal method would treat the whole
propagator as a true quantum operator, expanding the states of the system in
a basis set that includes all the spatial, spin and isospin degrees of freedom.
Then the states would be mapped on the levels of a quantum processor. We
will compute the quantum circuit that implements the real short-time evolution
described by this Hamiltonian. This method can require more qubits than those
presented in today’s quantum machine and also an excellent compiler to trans-
late the propagator in gates. Therefore, we can conclude that this approach
cannot be implemented in today’s quantum processors. A further discussion
will be presented in Ch.6.
The other approach uses a hybrid algorithm to study the spatial spin-isospin
dynamics. The idea is to simulate the spin-isospin evolution in a quantum pro-
cessor and the spatial component in a classical device. We name it coprocessing
scheme. Therefore, the real time evolution of two neutrons would be obtained
by the following scheme:

1. Map the spin states of two neutrons in the quantum processor levels.

2. At each time step ∆ t:

(a) Evolve spatial coordinates with standard algorithms in classical de-
vices.

(b) Compute propagators that evolves the spin from time t to t + ∆ t
using the following equation:

Uspin(t) = T exp

(
−i
∫ t+∆t

t

dtHSD(r(t))

)
(5.3)

where T is the time order operator and HSD is the spin-dependent
Hamiltonian that usually depends on the spatial components.
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r0(t) r1(t) r2(t) ...

|χ1〉 = U (r0(t)) |χ0〉 |χ2〉 = U (r1(t)) |χ1〉 |χ3〉 = U (r2(t)) |χ2〉 ...

Figure 5.1: Coprocessing scheme. The spatial evolution is computed by solving
the Newton equation. For the spin evolution, we must update the new relative
position to compute the spin propagator at each step. The top row represents
the spatial evolution at each time step, bottom row the spin evolution. The
time arrow goes from left to right

(c) Translate the spin propagators in a quantum circuit through digital
gates or the optimal control approaches.

(d) Implement the quantum circuit.

(e) If requested to evolve the spatial dynamics, identify the spin state.

This chapter will present numerical device level and actual results using this
scheme for the study of two neutrons dynamics using the potential derived by
Leading Order chiral EFT (see App. C.2).
The results shown in this chapter are obtained by solving the Newton equation
for spatial dynamics. This simplification was not done to reach realistic results
but solely to test the coprocessing method. However, from a quantum point of
view, the obtained classical trajectory describes the most probable path that
the two neutrons could do as the saddle point approximations guarantees [78].
Looking closer at the potential, the spin-independent operator (that evolves the
spatial DoFs) does not depend explicitly on the spin state. Therefore, we can
further simplify the calculations by computing the spatial evolution before the
quantum simulation. Fig. 5.1 shows a scheme of the simulations.

5.2 Coprocessing scheme using optimal control
approach with pulse fitting

This section will focus on the coprocessing method where we performed device
level simulation on the transmon device of Tab. 4.5 implementing the Opti-
mal Control (OC) approach through the Gradient Ascent Pulse Engineering
(GRAPE) algorithm (see App. A.2 for details). The obtained results from these
simulations would be very close to ones that we would get running on LLNL
quantum testbed [37].
We start from the spatial dynamics of the two neutrons. As we said before,
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the trajectory can be computed previously or at the same time of the spin evo-
lution. We solved the Newton equation of two neutrons through the velocity
Verlet integration [79, 80]. Their initial position and velocity in their relative
frame system1 are x(t = 0) = [4., 0.5, 0.5] fm and v(t = 0) = [0., −5.0, 0.] fm
MeV. Specifically, our integration method at each time step ti is based on:

1. v(ti + ∆t
2 ) = v(ti) + ∆t

2 ai with ai = F (x(ti),v(ti))
µ (F is the radial force in

Newton equation and µ the two neutron reduced mass);

2. x(ti+1) = x(ti) + v(ti + ∆t
2 )∆t;

3. v(ti+1) = v(ti + ∆t
2 ) + ∆t

2 ai+ 1
2

with ai+ 1
2

=
F (x(ti+1),v(t

i+ 1
2

))

µ .

Fig. 5.2 shows the results of the three spatial components evolution as a function
of time. This simulation was computed used a short-time step ∆ t = 0.0025
MeV−1 with a total number of time step of N = 2000.
According to the described coprocessing scheme, the spin evolution is simulated
in a quantum processor. We numerically perform device level simulations using
a 4 level transmon ( using the parameters of Tab. 4.5). The implemented map
is shown in Sec. 4.2. We apply the Fourier Transform interpolation algorithm
described in App. B for obtaining the experimental pulses that drive the trans-
mon dynamics in the desired nuclear real time evolution. In this simulation, the
time step is ∆t = 0.01 MeV−1 and the number of time steps is N = 100.
The obtained results are shown in Fig. 5.3. The circles represent the data with-
out including the quantum noise. Instead, the squares show the data obtained
from solving the Lindblad Master equation with realistic noise sources. Lines
represent the analytical evolution. We can observe that the results obtained
in the absence of the quantum noise closely follow the analytic evolution. A
very light shift can be observed at the end of the simulation; it may be due to
some numerical errors or small infidelity contributions. Nevertheless, this figure
shows that our interpolation model of the pulses works. Instead, the numerical
data computed from the Master equation present a substantial problem. After
some time step, the noise ruins the simulation. Therefore, we could not extract
any desired physical information in this time interval anymore. For instance, if
we are interested in obtaining the final spin probability, through the simulated
results of Fig. 5.3 we will get wrong values due to the contribution of noise.

As we have observed, simulating the short-time spin evolution for the total
number of time steps requires clean qubits (with a very long decoherence time).
This experimental constraint would avoid the quantum noise killing the simu-
lation in today’s quantum machine. Unluckily, today’s quantum processors do
not have this condition .
A simple solution is to group the short-time propagators in a small set that de-
scribes the same evolution but with a longer time step {Ti}. Using this coarse
set, we can study the entire scattering process. Hence, the spin propagator from

1r and v variables are defined from ~r = ~r2 − ~r1 and ~v = ~v1 − ~v2
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(a) x, y, z and r =
√

x2 + y2 + z2 coordinates as a function of time

(b) Trajectory in relative frame in the plane x−z. The enumerated points correspond
to the position at time t = 0, 1, 2, 3, 4 MeV−1

Figure 5.2: Spatial evolution

time Tj to Tj+1 is computed from the short-time propagators as it follows:

U(Tj) = T
K∏
k=0

e−i∆tHSD(r(tk)) =

e−i∆tHSD(r(tK)) e−i∆tHSD(r(tk1
)) ... e−i∆tHSD(r(t1))e−i∆tHSD(r(t0)) ,

(5.4)

where T is the time order operator, e−i∆tHSD(r(tk)) are the discretized short-
time propagator at time k.
We computed the set of coarse propagator {U(Tj)} and through GRAPE algo-
rithm (see App. A.2) we tailor their pulses. We perform a device level simula-

58



Figure 5.3: Results of the spin evolution of two neutrons in the coprocessing
approach. The simulation is computed using a four-level transmon with the
interpolation of the pulse of App. B. The squares and circles represent the
results with and without the inclusion of noise, respectively. The lines indicate
the analytic evolution.

tion solving the Lindblad Master equation. The parameters of the simulation
are shown in Tab. 4.5.
Fig. 5.4 shows the obtained numerical results. The circles indicates the numeri-
cal results and the line the exact spin evolution. We observe that the simulated
evolution is very close to the analytic one.

5.3 Coprocessing scheme using discrete gate sets
on the LNBL Advance Quantum Testbed
(AQT)

This part of the work pertains to a collaboration with the Advance Quan-
tum Testbed (AQT) team in the Berkeley Lawrence Berkeley National Lab-
oratory(LNBL), established at the beginning of 2021. In this Laboratory, a
quantum processor is currently developed [8]. The Trento/LLNL group partici-
pated in the collaboration providing the theory and codes for the simulation of
the two neutron problem described in the previous section. The experimental
group at LBNL ran the quantum simulations on their device.
The difference between the AQT and the LLNL quantum testbeds is in the im-
plementation of the gates. The quantum testbed at LBNL is based on applying
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Figure 5.4: Results of the numerical simulation of LLNL testbed of the spin
real time evolution of two neutrons using the coprocessing scheme with the OC
method. Lines represent the analytic evolution and circles the numerical results

a sequence of digital gates. In the LLNL device, we apply the Optimal Control
method.
The quantum codes needed to be adopted in terms of a decomposition of the
long real-time evolution propagators (Eq. (5.4)) in elementary gates. In our
case, the fundamental digital gates are Rx, Rz and CNOT ones (see Sec. 2.2
and Tab. 2.1). The propagators are computed from Eq. (5.4) and they are
translated with decompose function of QISKit open-source software develop-
ment kit [81].
In calculations, different strategies will be implemented on the AQT QPU to
simulate the quantum evolution of a simple scattering process. They will be
presented in the following subsections as they were implemented in chronologi-
cal order.
The applied approaches study the same two neutron evolution of Sec. 5.2.
Fig. 5.2 recaps the spatial evolution of the two neutrons.
Like as we did in Sec. 5.2, our simulation starts from computing the entire
classical trajectory solving the Newton equation. The short time spin propaga-
tors are computed and they are grouped using Eq. (5.4). Hence, we will have
Ntot = 20 coarse operators UTOT (tj).

5.3.1 Simulation using a full-optimized quantum circuit

The first implemented quantum circuits are composed of two quantum gates.
Fig. 5.5 shows a scheme of such quantum circuit. The first implements a quan-

60



Uini U(ti)

Figure 5.5: Scheme of gates for the quantum circuit of the full-optimized quan-
tum circuit. The first gate represents the reinitializing gate and the second gate
evolves from time ti to ti+1. In the actual simulation each two qubit gates is
decomposed by three CNOT gates and 10 U3 gate

tum operation that evolves the state of the quantum processor from the default
state |0〉2 to the state at time ti, that is given by

Uini(ti) = exp

[
−i
∫ ti

0

dtHSD(r(t))

]
= T

ti∏
j=0

UTOT (tj) . (5.5)

The second gate applies the coarse propagator U(ti) that evolves the spins from
time ti to ti+1.
We call this scheme a fully optimized approach. Indeed, for the time ti all the
sequence of propagators before ti are grouped in a single gate, called reinitial-
izing gate, Ureini = U(ti) · ...U(t1) · U(t0). In other words, we have optimized
the quantum circuit of the sequence of propagators in a single two-qubit gate.
In App. E, an actual implementation of a quantum circuit is shown.
We should highlight that each quantum circuit does not depend on the others
because the reinitializing operators are computed from the theoretical propaga-
tors. This approach was our first test of the coprocessing method with discrete
gates.
Fig. 5.6 presents the obtained results. The circles indicate the real results of

the AQT quantum processor and lines represent the analytic evolution. We can
see good compatibility between data and theoretical evolution.
However, this approach carries no information from a physicist point of view.
We added further information to simulate the spin evolution. Specifically, the
reinitializing gate is computed from the analytic propagators.

5.3.2 Simulation using a sequence of propagators

After applying the full-optimized approach, the same scheme of Sec. 5.2 was
implemented. The two neutron scattering was simulated using a sequence of the
real time coarse propagators {Uj} (computing from Eq. (5.4)). This strategy is
more realistic than a full-optimized approach.
Fig. 5.7 shows an example of such quantum circuit. Once more, in App. E the
actual quantum circuit for the time step t = 8 is shown. One can observe that
the presented quantum circuit is very deep. The very large number of gates

2if one wants to start from a different state, one must implement another two-qubit gate
that moves from |0〉 to the desired state
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Figure 5.6: Results from the simulation of coprocessing approach using the
full-optimized quantum circuits. The spin evolution is plotted as a function of
time. For the spin evolution, circles indicate the simulated results, the lines the
analytic evolution. In this figure, the simulated spin evolution time is one half
of the time shown for the coordinates

should be noticed.
The obtained results are shown in Fig. 5.8. Circles indicate the actual results of
the AQT quantum processor, and lines represent the analytic evolution. After
a few time steps, we observe that the noise impairs the simulation.
The problem of noise in the simulation is an issue to deal with. Indeed, for
studying the real-time evolution of complex systems, all the physical information
may be lost in very few steps using today’s quantum processor.
We studied possible solutions from the software side to increase the accuracy of
the quantum simulations. One should implement error mitigation procedures at
the hardware level to remove some or all contribution of the noise present. The
experimentalists employed error mitigation algorithms to reduce the dephasing
contribution from the AQT quantum processor. The results can be seen later
in Fig. 5.11. Even though the accuracy is increased, the obtained results are
not close to the analytic evolution yet.
We also study an algorithm that tries to overcome noise problems. It is based
on the reinitializing procedure and is reported in the following sections.

U(t0) U(t1) U(t2) U(t3) U(t4)

Figure 5.7: Schematic quantum circuit for a sequence of real time propagators
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Figure 5.8: Obtained results using coprocessing results through the quantum
circuits given a sequence of real time propagators. The coordinate evolution as
a function of time are shown in Fig. 5.2

5.3.3 Reinitializing procedure

Our solution to overcome the noise problem is to merge the two approaches
presented in previous subsections.
We can observe that after a few time steps, the actual results of the quantum
processor in Fig. 5.8 are very close to the analytic evolution and have a small
contribution to the noise. Specifically, we can conclude that we still have good
compatibility after 3− 4 time steps. Therefore, if we could stop here, the state
of the quantum processor, |φ〉 would be very close to the analytical one. Hence,
the evolution of the next time steps would be much closer to the analytic one if
the initial state of the quantum processor could be reinitialized on the state |φ〉.
Indeed, we reduce the actual machine time for which the noise starts destroying
the simulation.
The quantum circuit in this approach is based on the first gate that reinitializes
the state at time t and the following gates that evolve the spin from time t. An
example of this quantum circuit is shown in Fig. 5.9, where the gate Uini evolves
the initial state, |0〉, in the state previously obtained at time t = 2 . Then, we
implement the real time evolution propagators that evolves from t = 2 to t = 4.
In App. E an actual quantum circuit is reported.

Results of reinitializing approach are shown in Figs. 5.10 and 5.11. The
two figures differ from the time step where we reinitialize. However, we should
consider that the reinitializing gate is computed from the exact propagators.
Fig. 5.11 also shows results that have been corrected through error mitigation
algorithms. Specifically, the experimentalists corrected readout error and gate
infidelity.
Looking at the figures, we observe that we start to reduce the contribution of
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Uini(0− 2) U(t3) U(t4)

Figure 5.9: Scheme for the quantum circuit in the merged approach. We took
the quantum circuit shown in Fig. 5.7 and the three gates (U(t0), U(t1) and
U(t2)) are grouped in one single two qubit Uini(0−2). The Uini(0−2) represents
the reinitilizing gate

Figure 5.10: Coprocessing results with Treini = 3. The dashed lines indicate
the steps when there is a reinitializing process.

the noise using this approach.
At the end of this section, we conclude that this merged approach, named
reinitializing procedure, solves the quantum noise problem. However, here, we
added more information to have accurate results, since the reinitializing gates
are determined from the analytical propagators. In the following sections, we
will answer the following question: can the real time evolution be simulated
using the exposed reinitializing procedure without using analytic propagators in
the reinitializing gates? In other words, can the state of the quantum processor
be reinitialized using only the experimental data?

5.4 State tomography and reinitialization algo-
rithm

In the results shown before, we have seen that after some application of real
time propagators for studying the spin evolution, we have several issues with
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Figure 5.11: Coprocessing results with Treini = 7. The dashed lines indicate
the steps when there is a reinitializing process. The E.M. results (diamonds)
indicate the data corrected through error mitigation algorithms.

the quantum noise that kills the accuracy of our results.
A simple solution to reach a good precision on the evolution is to perform a
state tomography process [25] to identify the state at some early time step,
when the noise’s contribution is not so significant to do. After that, we continue
to study real time evolution, but we start from the state that we identified with
the state tomography. This initial state should be very close to the final state of
the previous run. Iterating this method, we can study long-time dynamics with
reasonable accuracy. We have called it reinitializing procedure. It is similar in
spirit to the ”restarting” procedure proposed in Ref. [82], where the state after
one step of dynamical evolution is approximated by optimizing a variational
circuit before performing the next time step. We will see that, in general, the
state tomography procedure proposed here is not scalable to more than a few
qubits but can provide interesting benchmarks on small scale near-term devices.
State tomography is a process that uniquely identifies a given state ρ (pure or
mixed) computing some observables. These observables have to be a complete
operator basis of the Hilbert space to provide all the state’s information.
Let us do a simple example to better clarify. The general state of a single qubit
can be written as [25]:

ρ =
1

2
1 +

1

2
(cx σx + cy σy + cz σz) c2x + c2y + c2z ≤ 1 , (5.6)

where ρ indicates its density matrix. If c2x + c2y + c2z = 1 the state is pure,
otherwise is a mixed state.
The most common way to identify the state of Eq. (5.6) is to measure the
expectation values of the Pauli matrices, X, Y and Z. Their expectation values
are linked to the coefficient of the density matrix. In particular, one can find
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cx = 〈X〉, cy = 〈Y 〉 and cz = 〈Z〉.
For a generic N -qubit system, its density matrix can be decomposed as:

ρ =
1

2N

∑
~v

Tr{Ov1
⊗ ...⊗Ovn ρ}Ov1

⊗ ...⊗Ovn , (5.7)

where ~v = (v1, ..., vn) with entries vi are chosen from {0, 1, 2, 3}. The most
popular basis set for {O} are given by {I, X, Y, Z} (identity and Pauli matri-
ces).
The general decomposition of the density matrix of Eq. (5.7) shows the main
problem of the state tomography process that is its scalability. In the Hilbert
space of n qubit one should measure 4n observables to uniquely identify the
desired state. There are experimental tricks that one can use to reduce the
number of quantum circuits to perform a quantum tomography (generally, one
implements 3n quantum circuits). For instance, for two qubits one should run
9 different quantum circuits because the expectation value of XI and IX can
be computed from the simulation XX.
Our research developed a different state tomography algorithm. Through it the
state is identified reducing the number of implemented quantum circuits. The
essential idea of this new state tomography process is to approximate the state
inside the quantum processor with a pure state. The rationale of this choice is
that reinitialization can be easily achieved by unitary gates.
For example, the general parametrizations of pure states are shown in Eq. (5.8)
for a single qubit, and in Eq. (5.9) for two qubits. In these equations, Pi indi-
cates the i state probability and φi represents the relative phase of the |i〉 state.
We can neglect the phase of the first state because it represents the global phase
of the state. A global phase cannot be evaluated through any quantum gates in
this Hilbert space.
Our state tomography process will be shown starting from the case of single
qubits and two qubits. Then, it will be generalized in the case of n qubit. At
the end of this section, we will expose how to build the reinitializing gate from
the results of the state tomography.

|ψ〉 =

 √
P0

√
P1 e

i φ1

 (5.8) |ψ〉 =


√
P0

√
P1 e

i φ1

√
P2 e

i φ2

√
P3 e

i φ3

 (5.9)

5.4.1 Tomography for a single qubit

Our aim is to evaluate P0, P1 and φr = φ1 − φ0 of the following qubit:

ψ =

 a+ i b

c+ i d

 = ei φ0

 √
P0

√
P1e

i(φ1−φ0)

 , (5.10)
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where we can consider φ0 = 0 because it represents a global qubit phase. We
will start by presenting the state tomography for the state formulation. After
that, it will be generalized for the density matrix formulation.
Our state tomography process for a single qubit is based on the following steps.

1. Measure the probabilities of the bare circuit. We thereby obtain P0 and
P1.

2. Measure the probabilities of the bare circuit with a final Ry(−π2 ) rotation.

3. Measure the probabilities of the bare circuit with a final Rx(−π2 ) rotation.

Why do we need the two rotations? They establish the relative phase uniquely.
Applying Ry to the state of Eq. (5.8), we obtain:

Ry

(
−π

2

)
|ψ〉 =

1√
2

 1 1

−1 1

 √
P0

√
P1 e

i φ1

 =

 1√
2

(√
P0 +

√
P1e

iφ1
)

1√
2

(√
P1e

iφ1 −
√
P0

)
 .

(5.11)
In particular, computing the probability for the |0〉 state one gets

P y0 =
1

2

∣∣∣√P0 +
√
P1e

iφ1

∣∣∣2 =
1

2

(
P0 + P1 +

√
P0 P1 e

iφ1 +
√
P0 P1 e

−iφ1

)
=

1

2

(
P0 + P1 + 2

√
P0 P1 cos(φ1)

) .

(5.12)

Therefore, we have:

cos(φ1) =
1√
P0P1

(
P y0 −

1

2
(P0 + P1)

)
. (5.13)

We have connected the relative phase with the experimental probabilities. How-
ever, we have a problem with the cosine because we will have two possible solu-
tions for φ1. Therefore, another operation should be implemented, for example
Rx
(
−π2
)

to univocally determine the angle.

Similarly, implementing Rx
(
−π2
)

to the desired state, we obtain:

Rx

(
−π

2

)
|ψ〉 =

1√
2

1 i

i 1

 √
P0

√
P1 e

i φ1

 =

 1√
2

(√
P0 + i

√
P1e

iφ1
)

1√
2

(
i
√
P0 +

√
P1e

iφ1
)
 .

(5.14)
Like before, computing the probability for the |0〉 state one gets

P x0 =
1

2

∣∣∣√P0 + i
√
P1e

iφ1

∣∣∣2 =
1

2

(
P0 + P1 + i

√
P0 P1 e

iφ1 − i
√
P0 P1 e

−iφ1

)
=

1

2

(
P0 + P1 − 2

√
P0 P1 sin(φ1)

)
.

(5.15)
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Therefore, we have:

sin(φ1) =
1√
P0P1

(
−P x0 +

1

2
(P0 + P1)

)
. (5.16)

With these two equations ((5.13) and (5.16)) we can establish uniquely the angle
φ1. Hence, the relative phase φ1 is given by

φ1 = arctan

(−P x0 + 1
2 (P0 + P1)

P y0 − 1
2 (P0 + P1)

)
, (5.17)

where the function arctan must be considered as the function which returns a
correct and unambiguous value for the angle φ1 (in other words, the numerical
arctan2 function). In the following, all the arctan will indicate this specific kind
of function.

Density matrix formulation

Here, we will show what our state tomography algorithm connects in the density
matrix formulation.
The general density matrix for a single qubit can be expressed as follows:

ρ =
1

2
(1 + cxX + cy Y + cz Z) . (5.18)

Applying Rx(−π2 ) and Rx(−π2 ) gates to ρ, one gets:

ρx = Rx(−π
2

)ρRx(−π
2

)† =
1

2
(1 + cxX − cy Z + cz Y ) (5.19)

and

ρy = Ry(−π
2

)ρRy(−π
2

)† =
1

2
(1 + cx Z + cy Y − czX) . (5.20)

Measuring the |0〉 state for both the two density matrices, one obtains:

P x0 =
1

2
(1− cy) and P y0 =

1

2
(1 + cx) . (5.21)

Using the formula in eqs. (5.13) and (5.16) in the case of a general density
matrix, one gets

φ1 = arctan

((
−P x0 + 1

2 (P0 + P1)
)(

P y0 − 1
2 (P0 + P1)

) )

= arctan

(− 1
2 (1− cy) + 1

2
1
2 (1 + cx)− 1

2

)
= arctan

(
cy
cx

)
.

(5.22)
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We have linked the relative phase to the two parameters cx and cy.
To show how the proposed state tomography procedure is robust respect to
quantum noise, we use the same Bloch-Redfield model for density matrix [61,
62, 63] used in Sec. 3.3 to write the noise contribution to the qubit state. Starting
from the pure qubit state, α |0〉+ β |1〉, the contribution of noise sources can be
described by the following density matrix

ρ =

 1 + (|α|2 − 1)e−
t
T1 αβ∗e−

t
T2

α∗βe−
t
T2 |β|2e−

t
T1

 . (5.23)

Looking at the dephasing contribution e−
t
T2 , we can conclude that our state

tomography is insensible to this noise source. Indeed, the dephasing process

changes cx in c1x = cxe
− t
T2 and cy in c1y = cy e

− t
T2 according to Bloch-Redfield

density matrix. But, when φ1 is computed, we have the ratio between c1x and
c1y. The result is the true value for φ1.
Tab. 5.1 shows the expectation values of 〈X〉 , 〈Y 〉 and 〈Z〉 and the fidelity with
the state without noise obtained using the exposed tomography method with
the Bloch Redfield density matrix (see Eq. (5.23)) for the some random states.
We can conclude that our purification and tomography procedure resists the
dephasing error but not the relaxation process because it changes the values of
P0 and P1.
App. D reports further studies about differences between standard and pre-
sented state tomography processes.

5.4.2 Tomography for 2 qubits

For the tomography of two qubits, we can find a similar algorithm to the single
qubit case.

1. Measure the probabilities of the bare circuit

2. Measure the probabilities of the bare circuit with a final 1⊗Ry(−π2 ) and
1⊗Rx(−π2 ) rotations.

3. Measure the probabilities of the bare circuit with a final Ry(−π2 )⊗ 1 and
Rx(−π2 )⊗ 1 rotations.

According to calculations of the previous subsection, one can prove that the
second steps given us

φ1 = arctan

(−P x0 + 1
2 (P0 + P1)

P y0 − 1
2 (P0 + P1)

)
, (5.24)

φ3 − φ2 = arctan

(−P x2 + 1
2 (P2 + P3)

P y2 − 1
2 (P2 + P3)

)
. (5.25)
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〈X〉 〈Y 〉 〈Z〉 fidelity

0.9177 |0〉+ (0.1479 + 0.3687 i) |1〉

no noise 0.2714 0.6767 0.6844 1.0000

1
T1

= 0 1
T2

= 1 0.2714 0.6767 0.6844 1.0000

1
T1

= 1 1
T2

= 1 0.1741 0.4341 0.8839 0.9864

0.1252 |0〉+ (0.6997 + 0.7034 i) |1〉

no noise 0.1751 0.1761 -0.9687 1.0000

1
T1

= 0 1
T2

= 1 0.1751 0.1761 -0.9687 1.0000

1
T1

= 1 1
T2

= 1 0.6779 0.6815 0.2758 0.6970

0.6689 |0〉+ (0.7396 +−0.0747 i) |1〉

no noise 0.9894 -0.0999 -0.1051 1.0000

1
T1

= 0 1
T2

= 1 0.9894 -0.0999 -0.1051 1.0000

1
T1

= 1 1
T2

= 1 0.8008 -0.0809 0.5935 0.9322

0.6038 |0〉+ (−0.2969 +−0.7397 i) |1〉

no noise -0.3586 -0.8933 -0.2708 1.0000

1
T1

= 0 1
T2

= 1 -0.3586 -0.8933 -0.2708 1.0000

1
T1

= 1 1
T2

= 1 -0.3153 -0.7855 0.5325 0.9139

Table 5.1: Results of 〈X〉 , 〈Y 〉, 〈Z〉 and fidelity with the state without noise
implementing the exposed tomography method with the Bloch Redfield density
matrix using randomic qubit states

The probabilities of the third step link the relative phases as follows

φ2 = arctan

(−P x0 + 1
2 (P2 + P0)

P y0 − 1
2 (P2 + P0)

)
, (5.26)

φ3 − φ1 = arctan

(−P x1 + 1
2 (P1 + P3)

P y1 − 1
2 (P1 + P3)

)
, (5.27)

From these equation we can evaluate all the phase solving the linear system
composed by equations (5.24), (5.26) and (5.26). This algorithm will be imple-
mented for simulating the real time spin evolution of two neutrons in Sec. 5.5.

Generalization for n qubit

For the case of n qubit 2n + 1 quantum circuits should be implemented to
evaluate the state. The previous algorithm can be generalized as it follows:

1. Measure the bare probability
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2. For i = 0, 1, ..., n.

• Measure the probability after the application of Rx and Ry to qubit
i and identities to the others.

For instance, the first two operations are described by R0
x = 1⊗....⊗1⊗Rx(−π2 )

and R0
y = 1⊗ ....⊗ 1⊗Ry(−π2 ). Their actions gives us the following relation:

φi+1 − φi = arctan

(−P xi + 1
2 (Pi + Pi+1)

P yi − 1
2 (Pi + Pi+1)

)
i = 0, 2, 4, ..., 2n − 2 . (5.28)

The second step of rotations, given by R1
x = 1⊗ ....⊗Rx⊗1 and R1

y = 1⊗ ....⊗
Ry ⊗ 1 connects the relative phases as it follows:

φi+2 − φi = arctan

(−P xi + 1
2 (Pi + Pi+2)

P yi − 1
2 (Pi + Pi+2)

)
i = 0, 2, 4, ..., 2n − 2 . (5.29)

To better visualize the action of the tomography operations are doing, we look
at the spinor of Eq. (5.30). It describes the relative phases of the state. It is
written in the ”binary” decomposition of the relative phases. The first relative
phase φ0 is neglected because it represents the global phase.



1

eiφ1

eiφ2

eiφ3

eiφ4

eiφ5

eiφ6

...


=



1



1


1

 1

eiφ1


eiφ2

 1

eiφ3−iφ2





eiφ4


1

 1

eiφ5−iφ4


eiφ6−iφ4

 1

eiφ7−iφ6






...



(5.30)

At step i = 0, ..., n− 1, the two rotations are implemented to the qubit i. From
these probabilities the relative phase inside the binary decomposition i can be
evaluated. Specifically, the rotations to qubit 0 gives φ1, φ3 − φ2, ..... The
rotations to 1 qubit linked φ2, φ6−φ4, .... The third would give us φ4, φ8−φ4.
Iterating for the N qubits we would have all the equations for the relative phases.
It is important to mark that this procedure moves the exponentially increasing
cost from the number of quantum circuits needed (for a fixed number of shots)
in standard tomography to the number of required measurements for a fixed
number of quantum circuits. Therefore, we should highlight again that the
state tomography process is not scalable for a quantum simulation with a huge
number of qubits.
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5.4.3 Reinitializing operator

With the presented tomography, the state in a quantum processor can be iden-
tified. After doing that, evaluating for instance the state of the previous time
step, we must reinitialize the state to continue our study of the real-time evolu-
tion. This subsection will discuss how we can build the reinitializing operator.
Again we must highlight that the most common default initial state of QPUs
is the |0〉 state (the ground state of the quantum processors). It is for IBM
QPUs [7] and AQT QPU [8]. Therefore, |0〉 will be considered as the initial
state for our reinitializing operator.
We suppose the following pure state with N states has been identified:

|ψ〉 =


P0

P1 e
i φ1

...

Pn e
i φN

 . (5.31)

First of all to build the reinitializing gate that moves |0〉 to this state, we start
by moving the default state |0〉 to one with the right probabilities distribution.
To do that we observe that the Ry(θ) gate moves |0〉 to

|ψ1〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉 . (5.32)

Choosing θ correctly, |ψ1〉 can be in the state with correct probability distribu-
tion. Specifically, for a single qubit θ = 2 arcsin

(√
P1

)
.

Suppose to work in a generic Hilbert space of dimension N , we can implement
the rotation in Eq. (5.33) with θ1 = 2 arcsin

(√
P1

)
.

R1 =



cos
(
θ1
2

)
− sin

(
θ1
2

)
0 0 ... 0

sin
(
θ1
2

)
cos
(
θ1
2

)
0 0 ... 0

0 0 1 0 ... 0

0 0 0 1 ... 0

... ... ... ... ...

0 0 0 0 ... 1


(5.33)

The action of this rotation moves the state |0〉 to a new one with the correct
probability for the state |1〉. The obtained state would be described by |ψ1〉 =
(cos

(
θ1
2

)
, sin

(
θ1
2

)
, 0, ..)T .

To obtain the correct probability distribution for the state |2〉, we can apply the
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following rotation matrix,

R2 =



cos
(
θ2
2

)
0 − sin

(
θ2
2

)
0 ... 0

0 1 0 0... 0

sin
(
θ2
2

)
0 cos

(
θ2
2

)
0 ... 0

0 0 0 1 ... 0

... ... ... ... ... ...

0 0 0 0 ... 1


. (5.34)

This evolves |ψ1〉 to |ψ2〉 = (cos
(
θ1
2

)
cos
(
θ2
2

)
, sin

(
θ1
2

)
, cos

(
θ1
2

)
sin
(
θ2
2

)
, 0, ...)T .

To get the probability for the second state equal to P2, we should choose θ2 =

2 arcsin

( √
P2

cos( θ12 )

)
.

Iterating this algorithm for the state k, we should y-rotate the |k − 1〉 and |k〉
state with an angle of

θk = 2 arcsin

( √
Pk∏k−1

i cos
(
θi
2

)) (5.35)

The general rotation matrix that moves the state |0〉 to the state (
√
P0,
√
P1, ...,

√
PN )T

is obtained from

RTOT = RN RN−1RN−2... R2R1R0 . (5.36)

The last step to reach the state of Eq. (5.31) is to implement the relative phases.
To do that we can apply after RTOT , the following phase gate:

Ph =



1 0 0 ... 0

0 ei φ1 0 ... 0

0 0 ei φ2 ... 0

... ... ... ... ...

0 0 0 ... ei φN


. (5.37)

The action of this gate implements the right phases to the state RTOT |0〉.
Finally, the final reinitializing operator is given by

Ureinit = PhRTOT , (5.38)

where RTOT and Ph is given by eqs. ((5.36)) and ((5.37)) respectively.

5.5 Coprocessing scheme using discrete gate sets
implementing the reinitialization procedure

In this section, the presented state tomography procedure and the reinitializing
operator will be used to simulate the same nuclear system of Sec. 5.3.
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Figure 5.12: Coprocessing results with Treini = 1. The dashed lines indicate
the steps when there is a reinitializing process.

The same algorithm used at the end of Sec. 5.3 was employed. Instead, the
obtained experimental data will be used to reinitialize the state.
Different simulations were performed using the quantum processor of AQT (see
Ref. [8]) using different time steps where we reinitialize the state. This time step
index is represented in this work with the variable Treini. The results of simu-
lations are shown in Figs. 5.12, 5.13 and 5.14 respectively with Treini = 1, 3, 7.
Squares represent the obtained data, lines the analytic spin evolution and the
vertical dashed lines when we applied the reinitializing gate.

Observing the residuals between the obtained values and the analytical evo-
lution, we can notice that the tomography results with the smaller Treini get
good accuracy. For example, this is very evident looking at the asymptotic
limit, where for Treini = 1 we have a slight discrepancy; instead, for Treini = 7,
a significant error is obtained. These results are obtained from the bare simula-
tion without employing any error mitigation procedure. Using error-correcting
algorithms, one might expect an improvement of the results.
Furthermore, Fig. 5.15 shows the fidelities between the state computed from the
analytic evolution and experimental one obtained from our state tomography
for different Treini values.
We obtained another proof that the results with small Treini get good compati-
bility with the analytic evolution. Nevertheless, the cost of performing this kind
of tomography is exponentially huge. One should implement five different quan-
tum circuits for studying a single time step for two qubits. As we said earlier,
studying a complex system with n qubits, one should implement 2n+ 1 quan-
tum circuits. However, one must implement an exponential number of measures
causing the scalability problem.
The last figure of this chapter Fig. 5.16 shows how the experimental reinitial-
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Figure 5.13: Coprocessing results with Treini = 3. The dashed lines indicate
the steps when there is a reinitializing process.

Figure 5.14: Coprocessing results with Treini = 7. The dashed lines indicate
the steps when there is a reinitializing process.

izing procedure increases the accuracy of the simulated data compared to one
obtained applying the full sequence of propagators, plotting the residuals be-
tween the obtained data and the analytical evolution. In Fig. 5.16, squares and
circles indicate the results with the reinitializing procedure and those applying
the full sequence, respectively.
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Figure 5.15: Error fidelity between the obtained results using the partial tomog-
raphy and the analytic states for the different Treini

Figure 5.16: Residuals between results and analytical evolution. The
squares(circles) represent the data with(without) applying the reinitializing pro-
cedure with the exposed state tomography process. The black solid line shows
the 0 value.
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Chapter 6

Application of Similarity
Renormalization Group to
the compilation of a
quantum gate in digital
gates

This chapter will focus on how to efficiently translate a generic N qubit gate
into a quantum circuit with digital gates. The generic quantum operation to
be compiled will be the real time propagator of a deuteron system, the nucleus
formed by a neutron and a proton.
We will start from the deuteron Hamiltonian. Then, we will show why it is
difficult to compile a generic quantum operator with the known algorithms effi-
ciently. In the end, a possible strategy to simplify the compilation of this kind
of operators by applying the Similarity Renormalization Group (SRG) theory
will be shown.

6.1 Full quantum simulation of a deuteron sys-
tem

We are interested in simulating the real time evolution of a deuteron system.
Indeed, we want to compute from the real time probabilities its ground energy
(following the method of Ch. 4).
To simulate this quantum system in a quantum processor, we may use the co-
processing method of Ch. 5. But, using a classical method the fermionic nature
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of the two constituents may be lost. Therefore, we may have a problem with its
energies.
The solution is to employ a full quantum simulation. We will expand the Hamil-
tonian in a basis set that includes all spatial, spin and isospin degrees of freedom.
Each element of the basis set will be mapped into the levels of the quantum
processor. We will encode the real time propagator in a quantum circuit. This
allows us to simulate the real time evolution of the deuteron through a quantum
computer.
We start from the nuclear Hamiltonian derived from a LO chiral EFT (for de-
tails, see App. C.2). Being interested in the ground energy of deuteron, we
know that it has isospin T = 0 and angular momentum L = 0, 2. We also
know that this kind of Hamiltonian has isospin symmetry. It is also invariant
under the total angular momentum J = L + S (S indicates the total spin) and
Jz. Hence, we have degenerate states with different J and Jz, and they cannot
interact with other states with different J and Jz. These symmetries are used
to simplify the simulation. Therefore, we will restrict the calculation to states
with isospin T = 0 and J = 1 Jz = 0 with L = 0 and L = 2. Calculations with
Jz = 1,−1 will give the same result.
The general basis set is given by:

|ψ〉 = R(r) |J, Jz, L〉 , (6.1)

where the function |J, Jz, L〉 connects the spherical harmonic Yl,m and the spin
states with same J , Jz and L. R(r) indicates the spatial distribution. We
expand the spatial basis set R(r) with the Laguerre polynomials.
Expanding the Hamiltonian, we should choose when we truncate the expansion
with Laguerre polynomials. This number in this thesis is indicated with Nmax.
In Fig. 6.1 the obtained ground energy of the deuteron Hamiltonian is shown
as function of Nmax.
For simulating the deuteron dynamics in a quantum computer, we choose as
truncation for the basis Nmax = 3 since it is sufficient to describe the ground
energy with reasonable accuracy. Therefore, we need at least 4 qubits (or a
transmon qudit with N = 16 levels) to simulate this system through a quantum
processor.

6.2 Translating a n qubit gate in elementary
gates

We are using a quantum processor based on the elementary gate approach.
Given a generic n qubit quantum gate U , how may we compile it in elementary
gates (for instance, in terms of Rx, Rz and CNOT )? In our case, U is the real
time evolution of the deuteron using 4 qubits.
Ch. 2 presented the quantum universality and the Solovay–Kitaev theorem.
The former declares that it is always possible to translate a n qubit in terms
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Figure 6.1: Deuteron ground energy as a function of Nmax

of elementary gates. The latter demonstrates that we can efficiently approxi-
mate a quantum operator with a quantum circuit with a gate depth1 of order
O(log(ε−1)c) with c = 3.97 and ε the error of the approximation. However,
these two statements do not tell us how to do that numerically.
Many algorithms translate a generic operator in a quantum circuit in the liter-
ature. The most common are the sine-cosine decomposition (CSD) [83] and a
method that uses the so-called Gray code [84, 85].
Applying these analytical compiling methods, the obtained quantum circuit is
made of a huge number of elementary gates. For instance, a general 3 qubit gate
using the Grey code requires 196 elementary gates and CSD compiling algorithm
131 elementary gates. The found quantum circuit can not be implemented in
a real machine because of its immense depth. The machine’s noise would kill
the quantum simulation employing this number of gates. Furthermore, we also
have to consider the contribution of gate infidelity.
Our goal is to evaluate the ground energy of deuteron. According to Ref. [9] (see
Ch. 4), simulating its real time evolution and computing the Fourier Transform
of the obtained real time probability, we will obtain its spectra. The problem is
how we compile the real time evolution operator of a deuteron system mapped
in 4 qubits in a quantum circuit based on digital gates avoiding the immense
depth of quantum circuit.
We investigate different alternatives to compile a quantum gate efficiently. The
most exciting result is employing the Similarity Renormalization Group (SRG)
method [86, 87, 88]. The next section will present it.

1The depth of a quantum circuit is the quantum version of the depth of a classical
circuit[73]. The depth of a circuit is defined as an integer number that describes the number
of gates of the longest path from the input to the output qubits, moving forward in time along
the wires. We can simply define the depth as the integer number that minimizes the times
for running the entire quantum circuit counting each gate 1 in unit time.
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6.3 Compiling Similarity Renormalization Group
method

6.3.1 Theory of Similarity Renormalization Group

We start presenting the basic aspects of the general theory of Similarity Renor-
malization Group (SRG).
Let H0 be a very complicated Hamiltonian. The SRG algorithm aims to de-
compose H0 into simpler Hamiltonians with the same spectra. More specifically,
through the SRG method, we transform H0 in a new Hamiltonian Hn with a
block structure.
To conserve the spectrum, we must transform the Hamiltonian with unitary
operators:

H(s) = U†H0U , (6.2)

This procedure is iterated and s identifies which Hamiltonian we have.
In the SRG method, the U operator is obtained from

U = exp

{
−
∫
ds η(s)

}
. (6.3)

The operator η(s) in eq. (6.3) is named generator of SRG evolution. How do we
choose η correctly to simplify the calculations? First of all, choosing that the
operator η is anti-hermitian, η† = −η, we ensure that the operator U is unitary.
In standard SRG applications, one defines η = [T,H(s)], a commutator of an-
other generator T . This other commutator ensures that the operator η is anti-
hermitian. If T is a block matrix, the magic power of SRG transforms the
Hamiltonian H to a block matrix with the same structure of T . In nuclear
physics, one generally selects T equal to the kinetic energy (working in momen-
tum space it is diagonal).
Differentiate eq. (6.2), one obtains the SRG flow equation.

d

ds
H(s) = [η(s), H(s)] = [[T,H(s)] , H(s)] . (6.4)

In practical calculations, one solves the SRG flow equation to obtain a block
Hamiltonian.

6.3.2 Quantum compilation with SRG for real time evo-
lution

Let H be the (deuteron) Hamiltonian of the quantum system in n qubit, we
want simulate its evolution with U(t) = e−i tH . Computing the Fourier trans-
form, the spectrum will be computed. We have problems compiling U in digital
gates for number qubits greater than 2. Having 2 qubit gates, we have effi-
cient methods to translate them, for example, using the decompose function of
Qiskit [81].
We have seen that, using SRG, a complex Hamiltonian will be simplified in one
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with block diagonal structure. The idea is to use the SRG method to compile
complex unitary operators in digital gates using ancilla qubits. Specifically, we
start from the Hamiltonian H0 ∈ 2n×2n. Then, the SRG is used with generator
T = σnz (the z-Pauli matrix of qubit n). The obtained Hamiltonian would be
block 2n−1 × 2n−1 matrices. Using ancilla qubits, the quantum circuits can be
split into smallest ones.
Now, the fundamental steps will be presented.
As we said, we start from some Hamiltonian H0, a hard Hamiltonian mapped
to n qubit (as an example, the deuteron Hamiltonian mapped on 4 qubits).
We evolve the Hamiltonian through the SRG flow equation with T = σnz . The
obtained final Hamiltonian would be given by:

HSRG =

H1
1 0

0 H1
2

 , (6.5)

where H1
1 and H1

2 are Hamiltonian mapped on n−1 qubit. The lower and upper
indices indicate the number of resulting Hamiltonian and the step of iteration
with SRG respectively. We can notice that if we compute the real time evolution
operator it has the same block structure of the Hamiltonian, specifically:

USRG(t) =

U1
1 (t) = e−i tH

1
1 0

0 U1
2 (t) = e−i tH

1
2

 . (6.6)

The structure of USRG(t) would allow add n − 2 ancilla qubits for spliting the
real time evolution into two distinct quantum circuits, one for U1

1 (t) and the
other for U1

2 (t).
For example, in our case, we start from a Hamiltonian with 4 qubit, and through
the SRG method, we arrive at two Hamiltonians (quantum circuits) of 3 qubits.
We know that a 2 qubit gate can efficiently be translated with a maximum of
3 CNOT gates. Therefore, the SRG compiling method would be iterated until
we arrive to 2 qubit gates.
Fig. 6.2 shows the scheme for compiling a 4-qubit real evolution operator. In
conclusion, through the SRG compilation algorithm, we can have a simpler
quantum circuit. However, the price is to have many more qubits than the
ones initially required. Luckily, some quantum circuits can be removed. For
the SRG properties, the obtained quantum circuits describes the same spectra
of Hamiltonian. For instance, if we are interested in computing the properties
of the deuteron using the potential derived by the LO chiral interaction, we
know that there is a limit in the validity of the theory for energies >400 MeV).
Therefore, one has to neglect in general the quantum circuits with energies
greater than some cutoff Ec.
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U(t) ⇒

U1
1 (t)

U1
2 (t)

(a) First iteration of compilation with SRG

⇒

U2
1 (t)

U2
2 (t)

U2
3 (t)

U2
4 (t)

(b) Second iteration of
compilation with SRG

Figure 6.2: An example of employing SRG to simplify the compilation of 4
qubit gates in 4 quantum circuits with 2 qubit gates. For SRG theory, the
obtained spectra of the real time evolution are equal to the initial one. Panel
(a) represents the first iteration (from four qubit gate to two three qubit gates),
panel (b) the second one (from three qubit gate to two two qubit gates)

6.4 Deuteron result through the SRG compila-
tion

We want to compute the ground energy of a deuteron system through real time
evolution. We start from the Hamiltonian described in Sec. 6.1 with Nmax = 8.
To simulate this Hamiltonian, at least 4 qubits are requested. 8 states describes
the spatial component of the deuteron Hamiltonian expanded in the n = 0, 1, .., 7
Laguerre polynomials with |J = 1, Jz = 0, L = 0〉; the others describe the same
with |J = 1, Jz = 0, L = 2〉.
We start from the 4 qubit gate representing the real time evolution with a generic
time step t. The SRG compiling method is iterated two times. The scheme of
the obtained quantum circuits is shown in Fig. 6.2. Fig. 6.3 presents the actual
quantum circuits. The circuits are sorted according to the relative eigenvalues in
decreasing order. Being interested in evaluating the ground energy of deuteron,
we can just implement the quantum circuit with the lowest eigenvalue. Tab. 6.1
presents the initial energy of the Hamiltonian and the final obtained energies of
four quantum circuits. We cannot observe any difference between the original
and obtained spectra.
The final quantum circuits were implemented in the IBM iqmq quinto processor
with a number of shots Nshot = 4000 where we reduced fully optimized the
circuits.
Fig. 6.4a shows the obtained results employing this quantum circuit. Lines
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and circles indicate the analytical and obtained results, respectively. Fig. 6.4b
presents the Fourier Transform of the real time probabilities of Fig. 6.4a. Again
lines and circles indicate the analytical and obtained results, respectively. The
vertical dashed line represents the value given by E1−E0

2π .

The experimental value of E1−E0

2π is 0.52(4). Iterating the same algorithm for

H3, the experimental data for
E3

1−E
3
0

2π is 1.5(4). The obtained value of ground
energy is −1.96 ± 0.09 MeV. This result is compatible with 3 sigmas with the
lowest eigenvalue of the Hamiltonian, −1.75 MeV.

Original Hamiltonian
[-1.75, 1.37, 2.92, 5.52, 8.20, 13.44, 17.95, 29.63, 37.50,

64.80, 82.03, 173.38, 217.16, 718.30, 818.02, 8650.24] MeV

From quantum circuits

[ 217.16, 718.30, 818.02, 8650.24] MeV

[ 37.50, 64.80, 82.03, 173.38]MeV

[ 8.15, 13.44, 17.95, 29.63] MeV

[-1.75, 1.37, 2.92, 5.57] MeV

Table 6.1: Energies of original deuteron Hamiltonian and ones obtained from
the 4 quantum circuits.
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Figure 6.3: Actual obtained quantum circuits of the real time evolution of
deuteron system with t = 0.30 MeV−1. The corresponded energies of each
quantum circuits are shown in Tab. 6.1
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(a) Real time probabilities

(b) Fourier transform of the probability for |0〉 state. The dashed line indicates the
analytical difference between the energy of first excited and the ground energy

Figure 6.4: Theoretical results of real time probabilities and their Fourier Trans-
form after applying the SRG compiling method to simplify the calculation. Lines
and circles indicate the analytical and obtained results respectively.
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Chapter 7

Quantum Imaginary Time
Propagation

In the previous chapters, we focused on studying the real time evolution of a
quantum system. Instead, this chapter will focus on evaluating or preparing the
ground state(GS) of a quantum system in a quantum processor.
In standard computation, one possibility for computing ground state properties
of a given system is to operate a Wick rotation on the real time evolution
operator. The resulting propagator is not unitary, implementing a dissipation
mechanism. Evolution in imaginary time is a well-known technique for finding
the ground state of quantum many-body systems [22].
A possible way to introduce dissipation in a quantum algorithm through an
imaginary time method will be presented. It is implemented by expanding the
Hilbert space of the system under investigation by introducing ancillary qubits.
The projection is obtained by applying a series of unitary transformations to
evolve the components of the initial state along excited states of the Hamiltonian
H to the ancillary space. A measurement of the ancillary qubits should then
remove such components.
We will begin reviewing the Imaginary Time Propagation (ITP) in classical
computation. Then, its quantum version will be presented. We will speak
about some improvements and results. In the end, we will discuss how we can
use Trotter decomposition. This chapter is based on Ref. [10].

7.1 Standard Imaginary Time Propagation

The time-dependent Schrödinger equation reads:

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (7.1)
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where |ψ(t)〉 is a state and H is the Hamiltonian of a system.
If we perform a Wick rotation t→ −i ~ τ , the Schrödinger equation becomes:

− ∂

∂τ
|ψ(τ)〉 = Hψ(τ) . (7.2)

If H does not depend on time, we can compute the state |ψ(τ)〉 by:

|ψ(τ)〉 = e−Hτ |ψ(τ0)〉 , (7.3)

where e−Hτ is called imaginary-time propagator (ITP) and |ψ(τ0)〉 indicates the
initial state.
Writing the initial state |ψ(τ0)〉 as a linear composition of the eigenstates of the
Hamiltonian, H |φn〉 = En |φn〉,

ψ(τ0) =
∑
n

cn |φn〉 , (7.4)

with cn = 〈φn|ψ(t0)〉, the imaginary time propagation becomes

|ψ(t)〉 =

∞∑
n=0

cn e
−Hτ |φn〉 =

∞∑
n=0

cne
−Enτ |φn〉 , (7.5)

If we evolve Eq. (7.5) in the limit τ →∞ the term c0 e
−E0τ becomes dominant

because the other terms, cn e
−Enτ , are exponentially suppressed. Hence, in the

limit of τ −→∞ the wave function tends to the ground state (GS) of H:

|ψ(τ)〉 τ→+∞−−−−−→ c0e
−τE0 |φ0〉 , (7.6)

where |φ0〉 indicates the ground state.
Therefore, if we propagate along imaginary time any arbitrary state, which
must be not orthogonal to the ground state, the obtained state converges to the
mathematical ground state of H. Notice that the physical ground state needs to
account for the symmetry of particles and might not coincide with the ground
state of H in the mathematical sense. For instance, the mathematical ground
state of Fermions is not the actual physical GS because one should consider the
Pauli principle that requires the state to be antisymmetric.
We must notice that the imaginary-time propagator is hermitian but not unitary,
and this causes the normalization of the projected state to be not guaranteed.
Generally, the state norm drops to 0 for τ → ∞. It is possible to preserve the
normalization at the projected state redefining the propagator as:

|ψ(τ)〉 = e−τ(H−ET )) |ψ(τ0)〉 , (7.7)

where ET is called trial energy.
ET is generally chosen equal to the ground energy E0. Indeed, it is easy to
prove that if ET = E0 the final state has a lower bound in the normalization
given by |c0|2. In standard applications, it is not strictly necessary to know in
advance the exact ground state E0, since it is sufficient to evaluate an upper
bound ET = E0 + ε (for instance, from a variational method). If the error ε is
small enough, the ITP method is stable and convergent.

87



7.2 Quantum Imaginary Time algorithm (QITP)

In the previous section, we have seen that the standard ITP algorithm is based
on the application of the ITP propagator e−(H−ET )τ . If one wants to translate
this method on a quantum computer, one should fight with the non-unitarity
of the ITP propagator.
Indeed, quantum operations must be described by unitary operators, but the
ITP propagator is not unitary:(

e−τ (H−ET )
)†
e−τ(H−ET ) = e−2 τ (H−ET ) 6= 1 . (7.8)

A possible solution is to extend the Hilbert space of the simulation by adding
ancilla qubits, external qubits [89, 90]. Working with ancilla qubits is at the
basis of several algorithms [91, 92, 93, 94].
We start mapping the states of the physical system that we are interested in
computing the ground state in some qubits. For instance, all the N = 2n states
are mapped in n qubits. We start from an initial wavefunction |ψs(τ0)〉 describ-
ing a specific initial state of the physical state. Then, an ancilla is added to the
simulation extending the Hilbert space from 2n to 2n+1. This external qubit
is prepared in the state |0〉. Hence, the total wavefunction into the quantum
processor will be given by:

|Ψinit〉 = |0〉 ⊗ |ψs〉 =

 1

0

⊗ |ψs〉 , (7.9)

where in our notation for the tensor product the left state represents the ancilla
and the right one the physical state.
Now, we must look for a unitary operator in this extended Hilbert space that
implements a dissipation mechanism with the ITP method. Eq. (7.10) shows a
good candidate for our aims:

Û(τ) =

 e−τ(H−ET )√
1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

− e−τ(H−ET )√
1+e−2(Ĥ−ET )τ


=

 Q̂ITP(τ) 1√
1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

−Q̂ITP(τ)

 .

(7.10)

In this equation QITP (τ) = e−τ(H−ET )√
1+e−2(Ĥ−ET )τ

and 1 are operators acting in the

Hilbert space of the physical systems and 1 indicates the identity matrix. One
can observe that the operators in the main diagonal are variations of the stan-
dard ITP propagator. Specifically, they are given by multiplying the stan-
dard ITP operator by a normalization operator. The normalization operator is
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needed to have a final unitary operator. Indeed, computing U† U one can find:

U† U =


 e−τ (H−ET )√

1+e−2(Ĥ−ET )τ
1√

1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

− e−τ(H−ET )√
1+e−2(Ĥ−ET )τ



† e−τ (H−ET )√

1+e−2(Ĥ−ET )τ
1√

1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

− e−τ(H−ET )√
1+e−2(Ĥ−ET )τ



=

 e−τ (H−ET )√
1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

− eτ(−(H−ET )√
1+e−2(Ĥ−ET )τ


2

=


(

e−τ (H−ET )√
1+e−2(Ĥ−ET )τ

)2

+

(
1√

1+e−2(Ĥ−ET )τ

)2
1√

1+e−2(Ĥ−ET )τ
− 1√

1+e−2(Ĥ−ET )τ

1√
1+e−2(Ĥ−ET )τ

− 1√
1+e−2(Ĥ−ET )τ

(
− eτ(−(H−ET )√

1+e−2(Ĥ−ET )τ

)2

+

(
1√

1+e−2(Ĥ−ET )τ

)2


=

1+e−2(Ĥ−ET )τ

1+e−2(Ĥ−ET )τ 0

0 1+e−2(Ĥ−ET )τ

1+e−2(Ĥ−ET )τ 0

 =

1 0

0 1

 = 1⊗ 1

(7.11)

From the first line to the second one, we used that the identity and ITP operator
are hermitian.
One can also rewrite the QITP operator U(τ) as:

U(τ) = σz ⊗QITP (τ) + σx ⊗
1√

1 + e−2(Ĥ−ET )τ
, (7.12)

where σ̂z and σ̂x are the Pauli Z and X operators acting on the ancillary qubit.
We can notice from this equation that U(τ) entangles the ancilla and physical
states.
The application of U(τ) to the initial state of Eq. (7.9) yields:

|Ψ(τ)〉 = |0〉 ⊗ Q̂ITP(τ) |ψs〉+ |1〉 ⊗ 1√
1 + e−2(Ĥ−ET )τ

|ψs〉

=

 QITP(τ) |ψs〉
1√

1+e−2(Ĥ−ET )τ
|ψs〉

 .

(7.13)

We can notice that the physical state when the ancilla qubit is in |0〉 is given by
the application of ITP times the normalization to the initial state. In Sec. 7.2.3
we will prove that the final state is always closer to ground state than starting
one.
Therefore, performing a (partial) measurement along the ancilla qubit and ob-
taining |0〉 (with some probability), the state becomes:

|Ψfin〉 = C |0〉 ⊗ Q̂ITP(τ) |ψs〉 = C |0〉 ⊗ e−τ(H−ET )

√
1 + e−2τ(H−ET )

|ψs〉 , (7.14)

89



where the constant C is introduced in order to normalize the state. This fi-
nal state is analogous of applying the standard imaginary time propagator.
However, here in the QITP, the parameter C is really fundamental because it
represents the success probability of this algorithm (called also Ps).
The following subsections will deeply investigate some essential properties of
the QITP method. We will study the asymptotic limits of the QITP algorithm
for τ −→ 0. After that, the success probability and fidelity with the GS will be
discussed. The subsection of the fidelity will also demonstrate that the final
state of the QITP algorithm is always closer to GS than initial state. In the
end, a numerical test that proves the results of fidelity and success probability
will be shown.

7.2.1 Asymptotic behavior of QITP for small time step

This subsection will discuss the asymptotic limit of QITP algorithm when τ −→
0. It is very crucial when one wants to study many-body systems because
generally their Hamiltonian is a sum of two- or three body interactions. Hence,
we should prove that the Trotter decomposition can be used to simplify the
QITP algorithm.
We look closer at the QITP operator, and the two exponentials are expanded
for τ −→ 0. We obtain

QITP =

∑
n

(−τ(H−ET ))n

n!√
1 +

∑
n

(−2τ(H−ET ))n

n!

. (7.15)

and we get at first order in τ

QITP =
e−τ(H−ET )√

1 + e−2(Ĥ−ET )τ
' 1− τ(H − ET )√

1 + 1− 2τ(H − ET )
+O(τ2)

= (1− τ(H − ET ))
1√
2

(
1 +

1

2
τ(H − ET )

)
+O(τ2)

=
1√
2

(
1− 1

2
τ(H − ET )

)
+O(τ2))

=
1√
2
e−

τ
2 (H−ET ) +O(τ2) .

(7.16)

We have applied (1 + x)α =
∑
n

 α

n

xn for |x| < 1 to pass from the first

line to the second. one
Therefore, we have obtainedQITP

τ→0−−−→ e−
τ
2 (H−ET ). It is equivalent to applying

the standard ITP propagator but halving time step. The ancilla probability to
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measure |0〉 is obtained from:

Ps =

∥∥∥∥ 1√
2
e−τ(H−ET ) |ψini〉

∥∥∥∥2
τ→0−−−→ 1

2
‖(1− 1

2
Hτ) |ψini〉 ‖2 ∼

1

2
+O(τ) . (7.17)

If Ps is plotted as a function of the time step for a particular value of ET , the
curve always starts from 1

2 .
Looking at the result of (7.16), we can also notice that at the first order, our
quantum imaginary time step can be decomposed according to the Trotter for-
mula. For example, this is the case when the Hamiltonian is a sum of two-body
interactions, H =

∑
n hn. Indeed, we can write at first order in τ

QITP ∼
1√
2
e−τ(H−ET ) ∼ 1√

2
e−τ(

∑
n hn−ET ) ∼ 1√

2
e−τET

∏
n

e−τhn +O(τ2) .

(7.18)
Sec. 7.7 will explore formally the Trotter decomposition of QITP.

7.2.2 Success probability

This subsection will analyze the success probability (Ps) of the QITP algorithm.
We have seen that after implementing U(τ) and measuring the ancilla qubit in
|0〉, the resulting physical state will be closer to the ground state. The success
probability of the presented QITP is equal to the probability of measuring the
ancillary qubit in |0〉 state.
The unnormalized state after the application of U(τ) when the ancilla qubit is
found in |0〉 is given by:

∣∣Ψ0
〉

=
e−τ(H−ET )

√
1 + e−2τ(H−ET )

|φs〉 . (7.19)

The success probability Ps is equal to:

Ps =
∥∥ ∣∣Ψ0

〉 ∥∥2
=
〈
Ψ0
∣∣Ψ0
〉
. (7.20)

We start decomposing
∣∣Ψ0
〉

with the eigenvectors of the HamiltonianH, H |φn〉 =
En |φn〉, getting

∣∣Ψ0
〉

=
e−τ(E0−ET )

√
1 + e−2τ(E0−ET )

c0 |φ0〉+
∑
n 6=0

cn
e−τ(En−ET )

√
1 + e−2τ(En−ET )

∣∣φ⊥0 〉 . (7.21)

where c0 = 〈φ0|ψs〉 represents the initial overlap with the GS and the other
{cn} are the overlaps with the other eigenstates of H.
The success probability Ps becomes:

Ps =
e−2 τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2 +

∑
n 6=0

|cn|2
e−2 τ(En−ET )

1 + e−2τ(En−ET )
, (7.22)
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where we used the eigenstates of H are orthogonal. Therefore, the probability
is obtained by the sum of the squares of absolute values of the single eigenstate
contributions.
From Eq. (7.22) an upper bound for Ps can be obtained. Fixing c0, the upper
bound is given when we have a slow convergence to ground state. The slowest
decay to the ground state is obtained when the state is a mixture of the ground

state (we fixed c0) and the first excited state with overlap c1 =

√
1− |c0|2.

Hence, the upper bound of Ps, P
u
s , is given by

Ps ≤ Pus =
e−2 τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2 +

(
1− |c0|2

) e−2 τ(E1−ET )

1 + e−2τ(E1−ET )
. (7.23)

Instead, to obtain the lower bound we may use that the spectral norm of the
Hamiltonian ‖H‖∞1. Hence, the success probability can be bounded from below
with:

Ps ≥ P bs =
e−2 τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2 +

(
1− |c0|2

) e−2 τ(‖H‖∞−ET )

1 + e−2τ(‖H‖∞−ET )
. (7.24)

Therefore, we can conclude that our exact success probability is between:

e−2 τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2 +

(
1− |c0|2

) e−2 τ(‖H‖∞−ET )

1 + e−2τ(‖H‖∞−ET )
≤ Ps

≤ e−2 τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2 +

(
1− |c0|2

) e−2 τ(E1−ET )

1 + e−2τ(E1−ET )
. (7.25)

In the limit τ −→ ∞, we can notice that the trial energy ET , a parameter of
the QITP algorithm, becomes very crucial. Indeed, tuning ET , the success
probability can be increased or decreased. One finds that the fundamental
threshold of the success probability is given for ET = E0.
In the limit ET < E0, the upper bound given by Eq. (7.24) drops to 0 because
all the exponentials have a negative exponent. Therefore, tuning ET < E0, a
large number of measurements must be performed to obtain the ancilla qubit
in the |0〉 state. This can also be seen that in the limit of τ −→ ∞ the QITP
operator converges to the X gate for ancilla. Therefore, the action of U(τ) is
just to flip the states of the ancillary qubit.
Instead, for ET ≥ E0, it is easy to show that the lower bound of the ancilla
qubit at least goes to a constant value. Specifically, it is given by

Pmin =
e−2 τ(E0−ET )

1 + e−2τ(E0−ET )
|c0|2 . (7.26)

This contribution does not drop to 0. In particular when τ −→∞ we obtain that
Pmin = |c0|2 for ET > E0 and 1

2 |c0|
2 for ET = E0. An other important range

for ET is when ET > ‖H‖∞. In this interval, the lower bound of the ancilla
probability goes to 1. However, in the next subsection, we will see that in this
range we have a very slow convergence to the GS.

1‖H‖∞ = maxi |Ei| with Ei energy of H
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7.2.3 Fidelity between the projected state and Ground
State

This subsection will compute the fidelity with the ground state and it will prove
that the final state of QITP algorithm is always closer to the Ground State (GS)
than the initial one.
We start from the final measured state

|Ψfin〉 =
1√
Ps
|0〉 ⊗ e−τ(H−ET )√

1 + e−2(Ĥ−ET )τ
|ψini〉 , (7.27)

where Ps is the success probability, the probability of measuring the ancilla
qubit in |0〉.
The fidelity (see Sec. 2.5) between the state of Eq. (7.27) and the GS is given
by:

F = |〈φ0|Ψfin〉|2 =

∣∣∣∣ c0e
−τ(E0−ET )

√
1 + e−2τ(E0−ET )

1

Ps

∣∣∣∣2 =
|c0|2 e−2τ(E0−ET )

1 + e−2τ(E0−ET )

1

P 2
s

, (7.28)

where the final state is decomposed using the eigenvectors of the Hamiltonian
H (see Eq. (7.21)).
Eq. (7.22) gives the probability of measuring the ancilla in |0〉,

P 2
s =

∑
n

|cn|2 e−2τ(En−ET )

1 + e−2τ(En−ET )
. (7.29)

Like for the success probability, a lower bound for the fidelity can be computed.
The lower fidelity can be computed minimizing the whole function of Eq. (7.28)
or maximizing its denominator, that is the success probability Ps. Hence, we
use the upper bound for Ps (see Eq. (7.23)), obtaining:

F ≥ |c0|
2
e−2τ(E0−ET )

1 + e−2τ(E0−ET )

1
|c0|2e−τ(E0−ET )√

1+e−2τ(E0−ET )
+ |c1|2e−τ(E1−ET )√

1+e−2τ(E1−ET )

, (7.30)

where E1 is the energy of the first excited state.
Rewriting this last equation, we get

F ≥ Fb =
1

1 + 1−|c0|2
|c0|2

1+e2τ(E0−ET )

1+e2τ(E1−ET )

=
|c0|2

|c0|2 + (1− |c0|2) 1+e2τ(E0−ET )

1+e2τ(E1−ET )

. (7.31)

Eq. (7.31) shows the lower of the fidelity of the final state with GS.
Now, we will demonstrate the following lemma.

Lemma 7.2.1. The final state of the QITP algorithm is always closer to the
ground state that the initial state. Therefore, given the initial fidelity |c0|2 to
the GS and the final fidelity F , we have

F ≥ |c0|2 . (7.32)

93



Proof. We demonstrate this lemma proving that the lower bound fidelity of
Eq. (7.31) is greater than |c0|2.
Therefore, we have:

Fb =
|c0|2

|c0|2 + (1− |c0|2) 1+e2τ(E0−ET )

1+e2τ(E1−ET )

≥ |c0|2 (7.33)

Dividing both sides by |c0|2 > 0, we obtain

1

|c0|2 + (1− |c0|2) 1+e2τ(E0−ET )

1+e2τ(E1−ET )

≥ 1

1

|c0|2 + (1− |c0|2) 1+e2τ(E0−ET )

1+e2τ(E0−ET )

− 1 ≥ 0

1 + e2τ(E1−ET ) −
(

(1 + e2τ(E1−ET )) |c0|2 + (1− |c0|2)(1 + e2τ(E0−ET ))
)

|c0|2 (1 + e2τ(E1−ET )) + (1− |c0|2)(1 + e2τ(E0−ET ))
≥ 0 .

(7.34)

The denominator is always positive, the sign is given by the numerator:

1+e2τ(E1−ET )−|c0|2−e2τ(E1−ET ) |c0|2−1−e2τ(E0−ET ))+|c0|2+e2τ(E0−ET ) |c0|2 ≥ 0

e2τ(E1−ET ) − e2τ(E1−ET ) |c0|2 − e2τ(E0−ET ) + e2τ(E0−ET ) |c0|2 ≥ 0

(1− |c0|2)
(
e2τ(E1−ET ) − e2τ(E0−ET )

)
≥ 0

(1− |c0|2) e2τ(E0−ET )
(
e2τ(E1−ET )−2τ(E0−ET ) − 1

)
≥ 0

(7.35)

The last equation is valid if and only if E1 ≥ E0 ∀ET because τ ≥ 0. Since
E1 has been defined as the energy of the first excited state; we always have
E1 ≥ E0 by definition. Therefore, we can conclude that the fidelity of the final
state of the QITP algorithm is always closer to GS than the initial one.

Like for the success probability, we should find the optimal range of values of
ET that maximizes the fidelity. We consider for simplicity the limit of τ −→ ∞.
Looking at Eq. (7.31), we have three possible intervals of ET , ET < E0, E0 ≤
ET ≤ E1 and ET > 1.
Starting from ET < E0, all the exponents are positive, therefore we can write

Fb
τ→∞−−−−→ |c0|2

|c0|2 + (1− |c0|2) e
2τ(E0−ET )

e2τ(E1−ET )

∼ |c0|2

|c0|2 + (1− |c0|2)e2τ(E0−E1)
∼ 1 .

(7.36)
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In this case the fidelity goes to 1. The other interval, E0 ≤ ET ≤ E1, we have

Fb
τ→∞−−−−→ |c0|2

|c0|2 + (1− |c0|2) 1+0
e2τ(E1−ET )

∼ |c0|2

|c0|2 + (1− |c0|2)e−2τ(E1−ET )
∼ 1 .

(7.37)
In the last range ET > E1, all the exponents are negative. Therefore, we obtain:

Fb
τ→∞−−−−→ |c0|2

|c0|2 + (1− |c0|2) 1+0
1+0

∼ |c0|2 (7.38)

Finally, we conclude that the best tuning of ET for maximizing the fidelity is
when ET < E1.
Recapping also the result for the success probability, ET > E0, we conclude
that the best interval is given by E0 ≤ ET < E1.
Moreover, if ET < E1, the ground state of the system can be prepared just
applying once the QITP operator U(τ) tuning τ −→ ∞. This comes from the
fidelity results. Furthermore, in the optimal interval E0 ≤ ET < E1 the
success probability is 6= 0 in this limit.

7.2.4 A numerical test for fidelity and success probability

We tested the final results for fidelity and success probability (Eq. (7.22)) for
different values of the trial energy ET . The taken test system was very simple,
specifically, it was a system with spectra described by

[
0, 1, π2

]
. The overlaps

with the ground state, first and second excited state were c0 = 0.1, c1 = 0.4 and
c2 =

√
1− c20 − c21 respectively.

Fig. 7.1 shows for different values of ET the exact fidelity (Eq. (7.28)) and its
bound limit (Eq. (7.31)) as function of the imaginary time step τ . The dashed
horizontal line indicates the initial fidelity with the GS. We took a wide range
of values of ET covering all the possible combinations.
Furthermore, the success probability (Eq. (7.22)) and its lower bound (Eq. (7.24))
were also evaluated as a function of the imaginary time τ . Fig. 7.2 presents our
results. As we expected, all curves of the fidelity and its lower bounds are
greater than the initial fidelity for all the ET values. Hence, we have had an-
other ”experimental” proof of the statement about the closeness of the QITP
final state to the GS.
We notice that when ET < E1 the obtained fidelity and its lower bound
monotonously grow as a function of τ . In the end, they converge to the value 1
for τ → ∞ as we expected from eqs. (7.36) and (7.37).
Instead, for ET ≥ E1 the fidelity may show a peak for some value of τ . More-
over, it is interesting to observe the asymptotic limit of the fidelity for τ →∞.
For ET < E2 (and in general for ET < ‖H‖∞) the fidelity tends to a constant

value between |c0|2 and 1. In this range, all contributions of eigenstates of H
with energies En > ET have been dissipated. The resulting final state would be
in a normalized superposition of the rest of the eigenstates.
In the limit τ → ∞ and for ET ≥ E2 (in general, ET > ‖H‖∞), the fidelity
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Figure 7.1: Fidelity with the GS for different values of ET as a function of τ .
The initial fidelity with the GS is shown by the black dashed horizontal line
(with value |c0|2). Solid and dashed lines indicate the exact and its lower bound
values respectively

Figure 7.2: Probability to measure the ancilla in |0〉 (Ps) for different values of
ET as a function of τ .
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ET Ancilla probability Fidelity with GS

ET < E0 0 1

ET = E0
|c0|2

2 1

E0 < ET < E1 |c0|2 1

ET = E1 |c0|2 + |c1|2 |c0|2

|c1|2+|c0|2

E1 < ET ≤ ‖H‖∞
∑
En<ET

|cn|2
∑
En<ET

|c0|2

|cn|2

ET > ‖H‖∞ 1 |c0|2

Table 7.1: Ancilla probability and fidelity for different ranges of ET in the limit
τ →∞

converges to the initial fidelity. In this range, the energy of the system is not
dissipated.
Fig. 7.2 shows the expected behavior for the success probability. As previously
discussed, for ET < E0, it drops to 0. Instead, for E0 ≤ ET < E2 it goes to a
constant value. While for ET > E2 it converges to 1.
In conclusion, from the two figures, we also demonstrate that the obtained op-
timal interval to tune ET is when E0 ≤ ET < E1. In this interval, we have a
good tradeoff for the convergence to GS and reliable success probability.
Tab. 7.1 summarizes the different ranges of ET for the fidelity and success prob-
ability in the limit of τ →∞.

7.3 Possible improvements of QITP algorithm:
Quantum Amplitude Amplification

This section will present a possible improvement of the QITP algorithm. In-
deed, the most significant problem of this method is the limitation due to the
probability of measuring the ancilla qubit in |0〉.
One possible strategy is to use the quantum Amplitude Amplification (AA) al-
gorithm [95, 96, 97] that raises the success probability.
The following subsection will illustrate the basic theory of the AA method.

7.3.1 Theory of Quantum Amplitude Amplification

Let us consider the Hilbert space H of dimension n and a quantum algorithm
A : H → H that has success probability Pg to reach the desired subspace (or
state) (called good subspace in Ref. [97]). The failure probability is then Pb =
1−Pg. The Amplitude Amplification (AA) method increases the probability of
obtaining the desired subspace.
We start from the state |ψ〉 that is given by the application of A to an initial
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state |φ〉, |ψ〉 = A |φ〉. We can write |ψ〉 as linear combination of the generators
of good (|ψg〉) and not-desired (|ψb〉) subspaces as it follows:

|ψ〉 = cos(θ) |ψb〉+ sin(θ) |ψg〉 , (7.39)

where the angle θ is connected to the success probability. Specifically, it is
obtained from θ = arcsin

(√
Pg
)

and it belongs to
[
0, π2

]
.

We define the following amplitude amplification operator

Q = −(1 − 2Pψ) (1 − 2Pg) , (7.40)

where Pψ and Pg are projector to the state |ψ〉 and to good subspace spanned by
|ψg〉 respectively. We can write Pψ = |ψ〉 〈ψ| and Pg = |ψg〉 〈ψg|. The operator
(1− Pψ(Pg)) flips the sign of the state |ψ〉 (|ψg〉).
Applying Q to the two subspace one obtains:

Q |ψb〉 = (2 cos(θ)
2 − 1) |ψb〉+ 2 sin(θ) cos(θ) |ψg〉 (7.41)

and
Q |ψg〉 = −2 sin(θ) cos(θ) |ψb〉 + (1− 2 sin(θ)

2
) |ψg〉 . (7.42)

From these equations, writing the generators of good and not-desired subspace
in spinors terms as it follows

|ψ〉 =

|ψb〉
|ψg〉

 (7.43)

one can notice the action of the operator Q is a rotation between the two
subspaces. Therefore, we can write the operator Q as follows:

Q =

cos(2 θ) − sin(2 θ)

sin(2 θ) cos(2 θ)

 . (7.44)

Applying n times the operator Q to the state |ψ〉 we obtain

Qn |ψ〉 = cos ((2n+ 1) θ) |ψb〉 + sin ((2n+ 1)θ) |ψg〉 . (7.45)

Soon we can conclude that if n is chosen such that sin ((2n+ 1)θ) = 1, applying
n times Q to |ψ〉 the good subspace (|ψg〉) is selected with probability 1.
The optimal strategy to find the AA operator QTOT = Qn, the optimal way is
to find n1 that is given by (2n1 + 1)θ = π

3 and then n2 that finally rotates to
π
2 . With this optimization one fixes some numerical issues.
A typical case when we have problem of increasing the success probability is
when Ps = 1

2 . The integer number n such that sin
(
(2n+ 1)π4

)
= 1 (where

θ = arcsin
(√

1
2

)
) is given by solving (2n+1)π4 = π

2 kπ with k ∈ Z. The solution

is n = k − 1
2 . But, there is not any values of k such that n becomes integer.
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Therefore, in this case, the success probability cannot be increased to 1 with a
single rotation. Instead, two intermediate steps can be used to raise Ps. First,

the success probability is increased to
√

3
2 corresponding of having an angle

θ = π
3 . After that, we can find an other Qn2

1
2 such that the action of Qn2

1 Qn1

increases the success probability to 1.

7.3.2 Amplitude amplification applied to QITP

In order to increase the probability of measuring the ancilla in |0〉, we can study
how to implement the AA algorithm in the QITP method.
First one needs to identify the good and not-desired subspace defined in the
AA method. It is easy to see that the ancilla spans the desired subspace in |0〉
(because we are closer to the GS). The other spanned by |1〉 is the undesired
subspace.
The initial state for the AA algorithm is given by the QITP final state, |Ψfin〉 =
U(τ) |Ψini〉.
Hence, the amplitude amplification operator Q for the QITP algorithm is ob-
tained from:

Q = −(1−2 |Ψfin〉 〈Ψfin|) (1−2P 0
A) = − (1− 2U(τ) |Ψini〉 〈Ψini|U(τ)†) (1−2P 0

A) ,
(7.46)

where P 0
A is the projector to the subspace spanned by the ancilla in |0〉. In our

notation, it is given by:

P 0
A = |0〉 〈0| ⊗ 1 =

1 0

0 0

 . (7.47)

The other parameter of AA algorithm, the angle θ, is computed from the prob-
ability Ps of measuring the ancilla in |0〉. In particular,

θ = arcsin
(√

Ps

)
. (7.48)

Through this AA method the success probability of QITP can be raised to 1
and the GS would be reached more easily than the raw QITP algorithm.
The following section will show some results of QITP using or not the AA
method.

7.4 Results of QITP algorithm for the STO-2G
Hydrogen atom Hamiltonian

As a first application, we consider the determination of the ground state of Hy-
drogen atom described in the STO-2G Gaussian basis (for details, see App. C.1).

2the amplification operator is different from one of the first step due to a different initial
state
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q0
U3(2.8593,−π2 , 0) • U3(π,−0.0278, 4.6846) • U3(0.2823, 0,−π)

q1
U3(π2 , 0.2823, 3π

2 ) U3(π2 ,
3π
2 , 0.7854) U3(0.5031, 0, 0)

Figure 7.3: Gate set for implementing U(τ) for the Hydrogen atom Hamiltonian
with τ = 15 Hartree−1. q1 represents the ancilla qubit and q0 the system qubit

We begin with computing the STO-2G Hamiltonian and transforming it with
the algorithm presented in App. C.1.1. In the end, we obtain a Hamiltonian
with the correct spectrum.
We have previously seen that a useful way to implement the QITP method is to
use τ → ∞ to obtain the GS with a single application. Specifically, this limit
is obtained choosing τ � 1

E1−E0
. In our case the energy difference is about

∼ 1 Hartree3, therefore, a good candidate is τ = 15 Hartree−1. For the trial
energy, we chose ET = E0.

For the implementation of the propagator U(τ = 15 Hartree−1) we can use
the two approaches: decomposing the QITP operator in elementary gates (the
digital one) and the optimal control technique (the analog one).
We use two qubits for the whole simulation, one is for the system, and the other

is for the ancilla. The initial state was prepared in the |x〉 = |0〉+|1〉√
2

state via

the Hadamard gate. This state has an overlap probability with the ground state
of 0.361.
For decomposing in a digital gate set Rx, Rz and CNOT are used as elementary
gates. Moreover, the function decompose() of qiskit [81] is applied to compute
the quantum circuit with these gates set. The result of this decomposition is
shown in Fig. 7.3 where the gates U3 are given by the specific combination of
Rx and Rz.
We implemented and ran the quantum circuit of Fig. 7.3 on the ibmq santiago
free-access IBM QPU [7] sampling 8192 values for the probability. A partial
measurement of the ancillary qubit on the IBM quantum processors cannot be
performed. Instead, all probability distributions of the four states can be ob-
tained. We want the normalized probabilities when the ancilla in |0〉 (according
to Eq. (7.14)). Therefore, one can compute them from experimental occupancies
when the ancilla qubit is measured in the |0〉 state, p0β , according to:

pβ(τtot) =
p0β(τtot)∑

i∈{β} p0i(τtot)
, (7.49)

where β indicates the index of the physical state (for n qubit β runs from 0 to
2n − 1), in our case |β〉 = |0〉 , |1〉. In other words, we are normalizing the state
neglecting the contribution coming from the ancillary qubit in |1〉.

31 Hartree' 27.21 eV
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Figure 7.4: Real and Imaginary part of the optimal amplitude computed with
GRAPE algorithm

Hydrogen atom system

Simulation Fidelity

Simulator of transmon qudit with noise1 0.9978

Simulator of transmon qudit without noise1 1.00000000

IBM ITP2 0.942(4)

IBM ITP+AA2 0.9968(4)

Table 7.2: Fidelity results for the different applications of the ITP algorithm. 1

indicates the fidelity is computed with the density matrix obtained solving the
Master equation. 2 indicates indicates the fidelity is computed with the state
estimated with the tomography described in Sec. 5.4.

For the implementation via optimal control, we compute the pulse for U(τ) for
a 4 level superconducting transmon (see parameters in Tab. 4.5). The optimal
obtained amplitude is shown in Fig. 7.4. We perform a device level simulation
solving the Lindblad Master equation, including the dephasing and decaying of
qudit. Fig. 7.5 shows the obtained results. We also report the results after
implementing the Amplitude Amplification method on the IBM QPU.
The blue bars of the histogram indicate the initial probability distribution (given
by |x〉 state), the green the results after the raw QITP, the red the obtained
values of QITP with the AA, the orange the numerical results through OC on
the transmon, and the gray the exact ground state probability. The black boxes
are the uncertainties for the IBM results. The uncertainties of AA simulation
are presented, but there are very small).
It is important to highlight two main facts. First, in the simulations on IBM,
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Figure 7.5: Normalized occupation probabilities (pβ) for the computed wave
function of the Hydrogen atom using the STO-2G basis set at τ = 0 (blue bar
with vertical lines) and τ = 15.0 Hartree−1 in two different approaches: the IBM
result (green with rhombus grid and red bars with a square grid) and the device
level simulations using optimal control with inclusion of hardware noise (dots
orange bars) compared to the exact ground-state distribution (gray bar with
horizontal line). The black bar represents the uncertainties. The green IBM
results are obtained applied the QITP algorithm, and the red results applied
the QITP operator with the amplitude amplification (AA) algorithm

Figure 7.6: Ancilla probability in the |0〉 state as a function of time step τ and
for different overlap with the ground state (GS) applying the ITP operator and
ITP operator with the amplitude amplification(AA) with different values of the
trial energy ET . All uncertainties are smaller than 5 10−3.

we did not apply any error mitigation. Therefore both results of the two ap-
proaches are bare. The second important thing to consider is that the results
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QPUs GS Fidelity R. q0 R. q1 Cnot
√
σx(q0)

√
σx(q1)

ibmq lima 0.885(9) 0.0207 0.0169 0.0051 0.00021 0.00023

ibmq manila 0.882(14) 0.020 0.023 0.0062 0.00016 0.00017

ibmq santiago 0.950(3) 0.014 0.015 0.0072 0.00023 0.00022

ibmq quito 0.889(4) 0.036 0.018 0.017 0.00077 0.00031

QPUs T1(q0) (µs) T2(q0) (µs) T1(q1) (µs) T2(q1) (µs)

ibmq lima 71.88 116.87 98.84 126.62

ibmq manila 184.94 131.68 100.90 97.51

ibmq santiago 113.05 64.23 202.74 80.14

ibmq quito 78.81 67.26 114.10 154.79

Table 7.3: Obtained fidelities between the GS and the normalized state ob-
tained after quantum ITP simulation with τ = 15.0 Hartree−1 for different
IBM QPUs. The parameters (Readout error of qubit 0 and 1, of Cnot and

√
σx

implementations) of IBM QPUs are also shown. The initial fidelity was 0.361

for the OC method are obtained from a numerical simulation. Hence, in a real
simulation using the OC approach, one can obtain worse results due to readout
errors and possible quantum error sources not included in the numerical analy-
sis. However, we can reasonably expect that the realistic experimental results
would not move away from what we obtained because a realistic model (with
realistic parameters) is used for the quantum machine. Nevertheless, we expect
that the results obtained via the OC method would be more accurate than those
via elementary gates due to the shorter experimental time machine and less gate
infidelity of the OC approach.
However, the probabilities shown in Fig. 7.5 are not the most accurate indi-
cations to understand whether this method works or not. Indeed, one should
quantify the convergence to the GS with the fidelity between the final state and
the GS itself. We calculated the fidelity of the final state and GS using the
tomography method presented in Sec. 5.4 to identify the final state. Tab. 7.2
shows the experimental fidelities.
The same quantum circuit of Fig. 7.3 was run on different free access IBM
Quantum Experience machines [7].
We kept the same algorithm parameters of the previous execution of IBM re-
sults, and using 8192 shots starting from the |x〉 = 1√

2
(|0〉+ |1〉) state whose

fidelity with the GS is 0.361. We chose the trial energy ET = E0. The numer-
ical results are shown in Tab. 7.3 for different IBM QPUs. The main errors of
the QPUs were reported in the same table. In Fig. 7.3, the quantum circuit is
based on the Rx, Rz and CNOT , but on IBM QPU the Rx gate is not standard.
Indeed, in IBM QPUs the elementary gates are

√
X =

√
σx (square root of the
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x-pauli matrix), Rz and CNOT . Like for U3 gate, the Rx can be decomposed
in a sequence of Rz and

√
σx gates.

Furthermore, we also simulated on ibmq manilla IBM QPU the ancilla proba-
bility in |0〉 as a function of time step τ in the propagator for different initial
overlap with the GS and different values of the trial energy ET . As previously,
we also obtained the results using amplitude amplification.
Fig. 7.6 shows the obtained results. The green circles and squares are computed
from an initial state with an overlap probability of 0.361 with the GS. The blue
diamonds and triangles represent the calculation with initial GS fidelity of 0.639.
The dashed and continuous lines represent the exact results. Applying ampli-
tude amplification, the probability to measure the ancilla in |0〉 is significantly
improved. Moreover, the success probability when ET = E0 + 1

2E1 > E0 was
computed. These results are indicated by the red plus symbols and line. As we
expected, the ancilla probability is higher than one with ET = E0.
In the end, we observe that more or less all the points follow their exact curves.
The discrepancies are due to the quantum noise present in the processor. As
for Fig. 7.5 we did not employ any error mitigation technique to improve the
results.

7.5 QITP applied to 2 neutron spin system

The second test of the presented QITP algorithm is the evaluation of the ground
state of two ”frozen”-neutron systems studied in Ch. 4.
Briefly, our system is composed of two blocked neutrons in their spatial po-
sitions. Their dynamics are reduced to the spin part and, the Chiral EFT
potential at Leading Order described in Sec. C.2 describes their interactions.
We studied the QITP only via optimal control technique on the transmon de-
vice in this test. The used parameters are the same as Tab. 4.5. Fig. 7.7 shows
the obtained optimal pulse through the GRAPE algorithm (see App. A.2 for
details).
Like before, the required states are mapped on the transmon levels. In this case,
four states are needed to describe the spin states couple with an ancilla qubit.
Therefore, the total number of states is 8. Our mapping to the quantum proces-
sor is as follows: the |0〉 state corresponds to the tensor product of the ancilla
qubit in-state |0〉 with the uncoupled spin state of |0〉 ⊗ |↓↓〉, |1〉 to |0〉 ⊗ |↓↑〉,
|2〉 to |0〉 ⊗ |↑↓〉 and |3〉 o |0〉 ⊗ |↑↑〉. The next four Fock states have a similar
mapping, except for the ancilla qubit being in the |1〉 state.
Like before, we want to run the QITP algorithm to find the GS with a single
application. To do that, we chose as time step τ = 1 MeV−1 and ET = E0.
The initial state was chosen as the state with maximum overlap between all the
spin states. Specifically, it is given by

|ψs(τ = 0)〉 =
1

2
(|0〉+ |1〉+ |2〉+ |3〉) . (7.50)

We find that the initial overlap with the GS is 0.407.
Fig. 7.8 and Tab. 7.4 present the obtained normalized probability and final
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Figure 7.7: Optimal pulse for the QITP application for the two spin neutron
system. It is computed through the GRAPE algorithm

Nuclear spin system

Simulation Fidelity

Simulator of transmon qudit with noise 0.9919

Simulator of transmon qudit without noise 0.999999996

Table 7.4: Fidelity results for the different applications of the ITP algorithm.

fidelity with the GS, respectively. In Fig. 7.8 the blue, orange and gray bars
represent the initial state, the results from the device level simulation and the
ground state distribution, respectively. Once again, the results show that the
GS is approximated by the projected state with a great accuracy. As before,
these results can be affected by readout errors, but we expect that the final
experimental data might still be very close to the simulated ones.

7.6 Sequential applications of QITP

In standard calculation employing the Imaginary Time Propagation method,
one usually does not employ the ITP operator with a long time step. Instead,
we split the imaginary time into small time steps. Applying a sequence of these
short-time ITP propagators, one reaches the ground state. The short-time limit
can be as usual expressed by the Trotter decomposition to break the propagator
into a product of propagators containing simpler Hamiltonian (generally two-
or three- body ones).
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Figure 7.8: Normalized occupation probabilities (pβ) for the two spin neutron
system with τ = 1 MeV−1 in the optimal control approach. Same legend of Fig.
7.5

Specifically, writing this concept in formula, the whole evolution is given by

e−τ(H−ET ) |ψ0〉 =

(
N∏
i

e−δτ(H−ET )

)
|ψ0〉 , (7.51)

where δτ = τ
N .

Also in QITP, we can implement the imaginary evolution through a sequence
of short-time propagators. At each time step, the ancilla is prepared in the
|0〉 state. Then, the U(δτ) operator will be implemented. In the end, the
ancillary state will be measured. If the |0〉 state is obtained, the evolution will
be continued. After some time steps the ground state will be reached. All this
concept is summarized by the following equation,[

P0 UQITP

(τ
r

)]r
|0〉 ⊗ |ψinit〉 −−−→

r→∞
c |0〉 ⊗ |φ0〉 , (7.52)

where P0 describes the projection operator of the ancillary state in the |0〉 state.
A drawback of the presented algorithm is the necessity of measuring the ancilla
qubit in the |0〉 state at each time step. This requirement slows down the effi-
ciency of QITP. Sec. 7.7 will study better the scaling of QITP algorithm.
Here possible solutions will be investigated to avoid measuring the ancilla qubit
increasing the efficiency of the presented method.
The first solution is to use the Amplitude Amplification method (see Sec. 7.3.2).
The second solution is to add to the simulation many ancilla qubits. The idea
is to implement the same QITP gate, changing only the ancillary qubit. The
closest final state to GS for the physical system is obtained measuring all the
ancilla qubits in |0〉 states. For instance, we implement a quantum circuit for
U(τ) using the first ancilla qubit; then, we copy and paste the same quantum
circuit for U(τ) changing from the first to the second the ancillary qubits. If we
have N ancilla qubits, we will continue to do until we finish the ancilla qubits.
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Figure 7.9: Quantum circuit using two ancilla qubits to further propagate in
imaginary time step. The first qubit q0 represents the physical system, in this
case, the STO-2G Hydrogen atom, q1 and q2 the ancilla qubits

Figure 7.10: Results for the expectation value of the energy as a function of
imaginary time for different time steps τ with a reinitializing procedure. The
light-green color bar indicates the energy range with fidelity with GS greater
than 80%. The cases indicated with AA are computed with Amplitude Ampli-
fication. The case labeled with “2nd ancilla” represented the simulation done
with two ancilla qubits. The integer factor in front of the time step indicates
the number of repetitions of the ITP quantum circuit before the tomography
procedure.

Implementing the QITP with N ancillary qubits allow us to propagate longer
the imaginary evolution reaching a time step of N τ . Fig. 7.9 shows an example
of a quantum circuits.

In addition, the last third possible solution is to employ a reinitializing pro-
cedure (see Ch. 5). We perform a state tomography to identify the state of
the physical system. Then, we would reinitialize the quantum circuit into the
evaluated state. For example, we propagate an initial state employing the QITP
algorithm, reaching some final state for the physical state. This final state which
can be identified by tomography is closer to the GS. Now, starting from this
identified state and applying the QITP method again, we keep converging to-
wards the GS. As we said in Sec. 5.4, state tomography is not a scalable method.
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However, it can be applied to study physical systems with few qubits.
Fig. 7.10 shows the obtained results of the ground state of STO-2G Hamilto-
nian through a sequence of short-imaginary time QITP employing the three
discussed solutions. The simulations were implemented through the manilla
IBM quantum processor [7] with 8192 shots. The plotted energies indicate the
Hamiltonian’s expectation value as a function of the imaginary time evolution.
To evaluate these energy values, the state tomography of Sec. 5.4 (for a single
qubit case) was employed, obtaining a pure state that approximates the state
in the quantum processor. With this state, we evaluated its energy. The results
are plotted in the figure.
To continue the evolution after identifying the state, we reinitialize the quantum
circuit through a U3 gate (the general single-qubit gate). This U3 gate moved
the |0〉 state of the processor to one we had identified before.
In Fig. 7.10, squares indicate the results obtained applying the reinitializing
procedure after implementing a single QITP operator. Stars represent the re-
sults obtained by the imaginary time propagation through two ancilla qubits.
Specifically, we implemented the circuit of Fig. 7.9 where the QITP operator is
given by U(τ = 0.75 Hartree−1). The state tomography was employed identify-
ing the state when the two ancillary qubits are in the |00〉 state.
The diamonds, circles and hexagons of the figure Fig. 7.10 represent the ob-
tained results implementing the AA method. In the legend, the time step is
written as a multiplication of an integer number and a real number. The in-
teger factor indicates how many times the quantum circuits of U(τ) operator
with the corresponding amplification operator are implemented. The real num-
ber indicates the value of τ in the QITP operator.
The green bar of Fig. 7.10 indicates the energies of states that have fidelity with
GS greater than 0.80. It is shown to highlight the accuracy of our propagation.
Indeed, if the final state gets a fidelity larger than 0.80, we can conclude that the
ground state is obtained. This threshold value is chosen because the performed
simulations have run through a noisy free access IBM quantum processor.
Observing Fig. 7.10, we observe that the results from amplitude amplification
reach final energies very close to the ground energy. The others slowly converge
to the ground energy. Nevertheless, we conclude that we obtain the ground
state from all the final experimental states because they get fidelity higher than
80%.

7.7 Scalability and Trotter decomposition of QITP
algorithm

This section will focus on the limit for τ −→ 0 to show the scalability of the
QITP algorithm implemented with the Trotter decomposition.
Specifically, let H be the total Hamiltonian of the physical system and H =∑L
l=0Hl where Hl are Hamiltonians acting on a small fraction of qubits. For

example, the nuclear Hamiltonian is a sum of two- and three-body interactions;
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therefore, Hl would be the single term of the one-, two- or three-body Hamilto-
nian.
We start building the short-time imaginary propagators. Given the final imagi-
nary time τ , we want to apply r times the U(δτ) where δτ = τ

r and r describes
the total number of time steps. The QITP algorithm is based on measuring the
ancilla qubit in |0〉. Therefore, in the case of L Hamiltonians and r Trotter time
step, this can be done with r L ancillary qubits and post-selecting their state in

|0〉⊗
Lr
i . It is the second presented solution of Sec. 7.6. Equivalently we can use

a single ancilla qubit where we post-selecting it in |0〉 state for r L times.
We start generalizing the U(τ) operator with the following

Û(τ, η) =

 e−τ(Ĥ−ET )√
η2+e−2τ(Ĥ−ET )

η√
η2+e−2τ(Ĥ−ET )

η√
η2+e−2τ(Ĥ−ET )

− e−τ(Ĥ−ET )√
η2+e−2τ(Ĥ−ET )

 , (7.53)

where η is a real positive number. The operator U(τ) exposed in this chapter
is given by η = 1.
We are interested in implementing the Trotter decomposition through r time
steps. The generalized QITP operator of r time step is given by

(
P̂0Û(τ, η)

)r
=


(

e−τ(Ĥ−ET )√
η2+e−2τ(Ĥ−ET )

)r
0

0 0

 , (7.54)

where P0 = |0〉 〈0| is the projection operator of the ancilla qubit in the |0〉 state.
Appendix F of Ref. [98] shows an upper bound of the error using the Trotter
decomposition for a standard real or imaginary time propagation. Summarizing

the results, the error grows as (ΛδtL)
r eΛδtL. (for details, see App. F)

We generalize the results of the paper for the QITP algorithm obtaing the fol-
lowing Lemma.

Lemma 7.7.1. Let H be a Hermitian operator expressed as the sum of L Her-

mitian operators {Ĥ1, .., ĤL} as Ĥ =
∑L
l Ĥl and ΛT = maxj

∥∥∥Ĥj − ET
∥∥∥
∞

.

Then, ∥∥∥∥∥Q̂ITP (η, τ)−
L∏
k

Q̂
(k)
ITP (η, τ)

∥∥∥∥∥ ≤ L2Λ2
T τ

2 , (7.55)

where

Q̂
(k)
ITP (η, τ) =

e
−τ
(
Ĥk−

ET
L

)
√
η2 + e

−2τ
(
Ĥk−

ET
L

) . (7.56)

Proof. We first introduce the notation Rk(f) to denote the remainder of the
truncated Taylor series of an analytic function f . Explicitly, for a generic func-
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tion f(x) it is given by:

Rk(f) =

∞∑
i=k+1

1

i!

dif

dxi
(a)(x− a)i =

∞∑
i=k+1

f i(a)

i!
(x− a)i . (7.57)

In the literature, one can find that different forms of the remainder, the Lan-
grange form [99],

Rk(x) =
fk+1(ε)

k + 1!
(x− a)k + 1 (7.58)

with ε ∈ [x, a] and or the integral form [99]

Rk(x) =

∫ x

a

fk+1(t)

k!
(x− t)k dt . (7.59)

We are interested in the following simplified form of the QITP operator,

f(x) =
e−x√

η2 + e−2 x
, (7.60)

with η > 0. This is analytic for any real x and using Langrange’s expression for
the Taylor series remainder with a = 0 we can write

Rk(f ;x) =

∞∑
m=k+1

fm(x)

m!
xm =

fk+1(ξ)

(k + 1)!
xk+1

(7.61)

for some ξ ∈ [0, x]. We want a bound for the full QITP operator. Therefore we
must study the case when k = 1.
Computing the second derivative of f(x), we have

∣∣f2(x)
∣∣ =

∣∣∣∣∣ e−x√
η2 + e−2 x

− 4
e−3x

(η2 + e−2 x)
3/2

+ 3
e−5x

(η2 + e−2 x)
5/2

∣∣∣∣∣
=

∣∣∣∣∣ e−x√
η2 + e−2 x

(
1− e−2x

η2 + e−2x

(
4− 3

e−2x

η2 + e−2x

))∣∣∣∣∣
≤

∣∣∣∣∣ e−x√
η2 + e−2 x

(
1− e−2x

η2 + e−2x

)∣∣∣∣∣
≤

∣∣∣∣∣ e−x√
η2 + e−2 x

∣∣∣∣∣ ≤ 1 .

(7.62)

The last two ineequalities come from the fact that f(x) is between 0 and 1.
Fig. 7.11 shows f(x), f1(x) and f2(x) as a function of x. Consider now the
generalization of f(x) with an operator function

f(tĤ) =
∑
n

|n〉〈n|f(tEn)

=

∞∑
m=0

∑
n

|n〉〈n|f
m(tEn)

m!
(tEn)m ,

(7.63)
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Figure 7.11: f(x), f1(x) and f2(x) as a function of x

where |n〉 indicates the eigenstate of H with eigenvalue En.
Noting that f(x) is positive definite we can bound the remainder for k = 1 with

∥∥∥R1(f, tĤ)
∥∥∥ =

∥∥∥∥∥f2(tĤ)

2
(tĤ)2

∥∥∥∥∥ ≤ t2‖Ĥ‖2

2
. (7.64)

Consider now the remainder of the product

fL(t, ~x) =

L∏
l=1

f(txl) , (7.65)

written in terms of derivatives with respect to the scalar variable t (for book-
keeping purposes)

f1
L(t, ~x) =

L∑
m=1

xmf
1(txm)

L∏
l 6=m

f(txl) , (7.66)

and

f2
L(t, ~x) =

L∑
m=1

x2
mf

2(txm)

L∏
l 6=m

f(txl)

+

L∑
m=1

L∑
k 6=l

xmxk f
1(txm)f1(txk)

L∏
l 6=m,k

f(txl)

≤
L∑

m=1

x2
mf

2(txm) +

L∑
m=1

L∑
k 6=l

xmxkf
1(txm)f1(txk)

≤ L2 max
k

[x2
k] ,

(7.67)
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since |f1(x)| ≤ 1 and |f2(x)| ≤ 1 for any real x. This follows the same
argument used to derive Eq. (7.62).
We now get for the remainder:

R1

[
L∏
l=1

f(tĤl)

]
=

∥∥∥∥∥f2
L(t, Ĥ)

2
t2

∥∥∥∥∥
≤ t2L2 maxl[‖Ĥ‖2l ]

2
.

(7.68)

In order to simplify the notation we will use Q = QITP (η, τ) and Q(k) =

Q
(k)
ITP (η, τ) whenever there is no risk of confusion. Using the triangular in-

equality, we get:∥∥∥∥∥Q−
L∏
k

Q(k)

∥∥∥∥∥ =

∥∥∥∥∥R1

(
Q−

L∏
k

Q(k)

)∥∥∥∥∥
=

∥∥∥∥∥R1 (Q)−R1

(
L∏
k

Q(k)

)∥∥∥∥∥
≤ ‖R1 (Q)‖+

∥∥∥∥∥R1

(
L∏
k

Q(k)

)∥∥∥∥∥ .
(7.69)

Using the results obtained above we have

‖R1 (QITP (η, τ))‖ ≤ τ2‖Ĥ − ET ‖2

2

≤ τ2L2Λ2
T

2
,

(7.70)

while for the product ∥∥∥∥∥R1

(
L∏
k

Q(k)(η, τ)

)∥∥∥∥∥ ≤ τ2L2Λ2
T

2
. (7.71)

Note that neither bound explicitly depends on the choice of the η parameter.
The results easily follow by summing these two contributions. From Eq. (7.70),
we get: ∥∥∥∥∥Q−

L∏
k

Q(k)

∥∥∥∥∥ ≤ ‖R1 (Q)‖+

∥∥∥∥∥R1

(
L∏
k

Q(k)

)∥∥∥∥∥
≤ τ2L2Λ2

T

2
+
τ2L2Λ2

T

2
≤ τ2L2Λ2

T .

(7.72)
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We have proved that the error of the Trotter decomposition is of order ε ∼
O(τ2L2Λ2

T ). Considering τ = rδτ , we need that ε � 1 to obtain a good
approximation of the total QITP operator. Therefore, we need that

δτ = O
(√

ε

r

1

LΛT

)
� 1 . (7.73)

Applying r times the Û(δτ, η) with the measuring the ancilla qubit in |0〉 gives
that the fidelity with GS becomes:

F =

(
1 +

∑
n

|cn|2

|c0|2

(
η2e2 δτ (E0−ET ) + 1

)r(
η2e2 δτ r (En−ET ) + 1

)r
)−1

(7.74)

Using the result of Eq. (7.31) for the fidelity bound, considering a generic η and
r ∈ N we get:

F ≥

(
1 +

1− |c0|2

|c0|2

(
η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1

)r)−1

. (7.75)

In order to bound the behavior in the parenthesis we use

η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1
=

η2 + e−2δτ(E0−ET )

η2e2δτ∆ + e−2δτ(E0−ET )

= 1− η2 e2δτ∆ − 1

η2e2δτ∆ + e−2δτ(E0−ET )
,

(7.76)

where ∆ = E1 − E0.
Now assume then we choose E1 > ET > E0. This means that ET − E0 < ∆,
and we have:

η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1
< 1− η2

1 + η2

e2δτ∆ − 1

e2δτ∆

≤ 1− η2

1 + η2

2δτ∆

1 + 2δτ∆
.

(7.77)

Considering an error ε sufficiently small or r sufficiently large to be in the limit
2δτ ∆ < 1, one can prove that:(

η2e2δτ(E0−ET ) + 1

η2e2δτ(E1−ET ) + 1

)r
≤
(

1− η2

1 + η2

2δτ∆

1 + 2δτ∆

)r
≤
(

1− η2

1 + η2
δτ∆

)r
≤ exp

(
− η2

1 + η2
rδτ∆

)
.

(7.78)

Hence, we found that the fidelity is given by

F ∼
[
1 +

1− |c0|2

|c0|2
O
(

exp

(
− η2

1 + η2

∆

LΛT

√
rε

))]−1

. (7.79)

113



Looking at the result of the last equation, we can conclude that the fidelity
approaches sub-exponentially 1 in the r −→∞ limit.
We must also compute the success probability as a function of r. We have

P (0; r) = 〈Ψ|
(
M̂0Û(δτ, η)

)2r

|Ψ〉

= 〈Ψ|Q̂ITP (δτ)2r|Ψ〉
≥ |c0|2〈φ0|Q̂ITP (δτ)2r|φ0〉

≥ |c0|2

(η2e2δτ(E0−ET ) + 1)r

(7.80)

which, for the choice E1 > ET > E0 can be rewritten more clearly as

P (0; r) ≥ |c0|2

(η2e−2δτ |E0−ET | + 1)r
≥ |c0|2

(η2 + 1)r
, (7.81)

which exponentially decays with the number of steps. By tuning η one can make
also this behavior to be sub-exponential, at the expense of a slower convergence
of the fidelity with step number r. This results holds only for the exact short-
time unitary Û(δτ, η) but using the approximation in Eq. (7.55) of the Lemma
above we still have that the difference in probabilities is bounded as:

δP =

∣∣∣∣∣〈Ψ|Q̂ITP (δτ)2r|Ψ〉 − 〈Ψ|
L∏
k

Q̂
(k)
ITP (η, τ)2r|Ψ〉

∣∣∣∣∣
=

∣∣∣∣∣〈Ψ|
(
Q̂ITP (δτ)2r −

L∏
k

Q̂
(k)
ITP (η, τ)2r

)
|Ψ〉

∣∣∣∣∣
≤

∥∥∥∥∥Q̂ITP (δτ)2r −
L∏
k

Q̂
(k)
ITP (η, τ)2r

∥∥∥∥∥
≤ 2rL2Λ2

T δτ
2 .

(7.82)

In other words, if we use an approximation for the full sequence of r steps with
error bounded by ε, the success probability will be at most 2ε smaller. Since
the decay of P (0; r) is exponential in r, the lower bound in Eq. (7.81) will go
to zero at some finite number of steps. This is possibly a consequence of the
looseness of the bound for δP given above.

7.7.1 Case for standard QITP

The obtained results of this section are general. This subsection will present
them in the case of η = 1. When η = 1, we obtain the QITP operator discussed
in this chapter.
Therefore, the Lemma 7.7.1 becomes

Lemma 7.7.2. Let H be a Hermitian operator expressed as the sum of L Her-

mitian operators {Ĥ1, .., ĤL} as Ĥ =
∑L
l Ĥl and ΛT = maxj

∥∥∥Ĥj − ET
∥∥∥
∞

.
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Then, ∥∥∥∥∥Q̂ITP (η, τ)−
L∏
k

Q̂
(k)
ITP (η, τ)

∥∥∥∥∥ ≤ L2Λ2
T τ

2 , (7.83)

where

Q̂
(k)
ITP (η, τ) =

e
−τ
(
Ĥk−

ET
L

)
√
η2 + e

−2τ
(
Ĥk−

ET
L

) . (7.84)

In order to use the Trotter decomposition in r steps, we need

δτ = O
(√

ε

r

1

LΛT

)
� 1 . (7.85)

The order of the fidelity bound becomes

F ≤ 1

1 + 1−|c0|2
|c0|2 O

(
exp

(
− 1

2
∆
LΛT

√
rε
)) . (7.86)

The success probability after r steps is given by:

P (0; r) ≥ |c0|2

(e2δτ(E0−ET ) + 1)r
, (7.87)

which, for the choice E1 > ET > E0 can be rewritten more clearly as

P (0; r) ≥ |c0|2

(e−2δτ |E0−ET | + 1)r
≥ |c0|

2

2r
, (7.88)

that decays exponentially with the number of steps.
In conclusion, we summarize the obtained results for scalability. We proved
that the probability decays exponentially with r, and the fidelity goes to 1
subexponentially. The first fact can be a massive problem for a long imaginary
time propagation. After some time steps, the success probability is very close
to 0. However, we have proved that we increase the fidelity with the ground
state. We may also improve the convergence to GS with high order Trotter
expansions [98, 100] or we can raise the success probability. A further study
should be done.
The presented method, though not scaling perfectly, could still be used as a
preconditioner for some quantum algorithms to efficiently increase the initial
fidelity with the GS. Indeed, Ref. [91] presents one of the most efficient quantum
algorithms to prepare the ground state. The efficiency is given by (taken from
Tab. 1 of Ref. [91])

O

(
α

γ∆
log

1

ε

)
, (7.89)

where ∆, γ and ε indicate the gap between first excited and ground states, the
initial fidelity with GS and the final fidelity error, respectively (α is another
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parameter of the algorithm, for more details, see the reference). We notice a
possible problem of this algorithm: it depends explicitly on the initial fidelity
∼ 1

γ .

Suppose we want to prepare/study the ground state of some complex Hamil-
tonian where its GS is unknown. In that case, we usually start with a state
that has a very small overlap with GS. If we use just the algorithm of Ref. [91]
we will be in a situation where the efficiency of the calculations is reduced due
to the low overlap with the GS. Applying the QITP algorithm for a few time
steps, a new state with greater fidelity can be obtained and a measurable suc-
cess probability. Then, the most efficient algorithm, Ref. [91], will be applied to
finish preparing the ground state. Indeed, neglecting the decay problem of the
success probability, the efficiency of the QITP algorithm depends just on the
decay time from the first excited state to the ground state (τ ∼ 1

E1−E0
)
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Chapter 8

Conclusions

In this thesis, some new quantum algorithms based on real and imaginary time
propagation have been described. Their ultimate use would hopefully be for
simulating the dynamics and structure of many-body quantum systems. Specif-
ically, through real time propagation, we could eventually study the real time
evolution of quantum systems. One open problem is the direct simulation of
nucleus-nucleus scattering. On a quantum computer we could start from some
incoming particles, and through real time evolution, we might evaluate the cross-
sections of all possible channels at the same time. Instead, through imaginary
time propagation, we can prepare the ground state of quantum systems, evalu-
ating some physical properties of their structure.
The extremely large computational resources requested by classical algorithms
to simulate quantum systems leads to the computational cost growing expo-
nentially with the number of particles. Hence, quantum computing might be a
possible solution to simulate complex physical systems. We presented some es-
sential aspects of quantum information and quantum simulation. The structure
of utilized quantum hardware based on superconducting devices were briefly
described.
After the introductory chapters, the work of Ref. [9] was presented, showing
how we can extract from the real time evolution the spectra of a Hamiltonian.
In that work the evolution of the spins of two neutrons blocked in space was
studied. We generalized the simulation of that system, re-including the spatial
degrees of freedom. Specifically, a hybrid algorithm (defined as ”coprocessing”)
was developed. The spin evolution is simulated into quantum processors and
the spatial dynamics in a classical device. This scheme represents the first step
towards computationally simulating a scattering experiment through a quantum
processor.
We presented the results of simulations implementing the coprocessing method
studying how we can overcome the contribution of noise sources. The most
significant result is the reinitializing procedure based on the presented state to-
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mography process.
A possible generalization of the coprocessing scheme would study the full quan-
tum simulation of scattering experiments. One may think to sample from the
spatial distribution paths and evaluate through quantum processors the spin
probability or state. Summing all the contributions from the paths, we will
reach the actual quantum transition probability according to the path integrals
theory. However, this approach must deal with very complicated problems for
many-body simulations. The main ones are the difficulty of sampling from the
real-time path integral and the treating of the Fermion sign problem. Moreover,
although we neglect these problems (for example, simulating two-body dynam-
ics), we must consider that the global phase of the final spin state for each path
becomes a relative phase in the path sum. Therefore, we must measure it and
save it some register. Nevertheless, further study to test if the coprocessing
scheme can be generalized may be desirable.
During the real time evolution description, we have also discussed the problems
of the analog or digital quantum approaches. The former, the analog approach
or optimal control, tailors pulses for implementing with a single gate a generic
unitary operation. The drawback is the potentially very large amount of clas-
sical computational resources to compute these pulses. We have seen that a
possible solution consists of reducing the computational time by interpolating
the spectrum of pulses as a function of the Hamiltonian parameters.
Instead, in the digital approach, we decompose a generic quantum operation
in elementary gates. We have discussed the need of efficiently compiling an
arbitrary transformation in digital gates. Indeed, in the translation, we should
consider that the high depth of quantum circuits usually spoils of the accuracy
of results due to the high contribution of noise. For the compilation of real time
propagators in digital gates, we proposed the Similarity Renormalization Group
as a way to simplify the compilation reaching from N qubit gate the simpler 2
qubit gates. The future solution for compiling generic quantum gates would be
a mix of two approaches: decomposing them in gates with smaller dimension-
ality and tailoring the pulses for implementing them.
A version of the Quantum Imaginary Time Propagation (QITP) was presented
at the end of the work. We started from the Imaginary Time Propagation the-
ory, proving that an arbitrary initial state (with a non-zero overlap with the
ground state) decays to the ground state along with the imaginary time evolu-
tion. The problem of translating this method from a classical algorithm to a
quantum one is the non-unitarity of the Imaginary Time propagator. The uni-
tarity is a necessary request to get a quantum gate. We demonstrated that, in
a quantum algorithm, the action of adding an ancillary qubit in order to extend
the Hilbert space to allow controlled dissipation. Implementing a specific quan-
tum unitary operator (U(τ)) and measuring the ancilla in |0〉 is equivalent to
implementing the standard Imaginary Time Propagation in a classical device.
The presented QITP algorithm was tested for different physical quantum sys-
tems, Hydrogen atom and spin-neutron system, in different conditions. Specifi-
cally, we demonstrated that we could reach the ground state applying just once
the U(τ) operator if we tune τ −→ ∞. Furthermore, different improvements to
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the QITP were discussed and the imaginary time evolution was simulated us-
ing imaginary short-time propagators applying these improvements. In all the
simulations, a very good approximation of the ground state was obtained.
We also presented a theoretical analysis of the QITP, focusing on its success
probability and fidelity with the ground state(GS). We also computed them
employing the Trotter decomposition. In this case, we showed the exponential
decay of the success probability to 0 with the number of steps. On the contrary,
the final state reaches the GS subexponenially. The decay of success probability
is a huge problem in the efficiency of the QITP algorithm. However, the QITP
can be very useful as a preconditioner for most efficient algorithms [91]. Indeed,
these algorithms require good initial fidelity to be efficient. We can increase the
initial fidelity with GS of this algorithm by employing the QITP for few steps
earlier. After that, we will implement these most efficient quantum algorithms
to complete the preparation of the GS.
We are still in the NISQ era, where the quantum processors are composed of a
few noisy qubits. Hence, classical computers are is still much more performing
than the quantum ones. Nevertheless, in the future, with the leveraging of the
improvements of quantum machines and quantum compilation, we might be
able to study physical systems that are inaccessible in the present day, helping
us to understand the universe.
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Appendix A

Optimal control and the
GRAPE algorithm

A.1 Optimal control technique

Sec. 3.2 presented how experimentally we implement a quantum gate driving the
real time evolution of qubits. The following equation recalls the most important
equation of that section,

Ulog = T exp

{
− i
~

∫ Tm

0

dτ
[
H0 + ~εI(t)(a† + a) + i~εQ(t)(a† − a)

]}
, (A.1)

where Ulog is the desired quantum gate, Tm is the pulse duration, H0 is the free
Hamiltonian of qubits, εI and εQ are the real and imaginary part of the control
pulse and a and a† are the ladder operator for the transmon.
Now we will continue the discussion presenting some algorithms that numeri-
cally compute the microwave pulse.
We should start from an experimental fact. The implementation of the pulse is
given by digital wave generator. Thereby, the pulse is obtained by a discrete set
of Npulse points with amplitude εk. Therefore, we should discretize eq. (A.1).
We also suppose that between each discrete points the pulses amplitude is con-
stant with value εk. In other words, the experimental control pulse is given by
a sequence of Npulse box functions with height εk with a small pulse duration
∆t such that Tm = Npulse ∆t. An example of our pulse discretization is given
in Fig. A.1.

Now, we should also consider the time order operator in eq. (A.1). So, the
complete discrete real time evolution is given by

U(t) = UN1
UN−2...U1U0 , (A.2)
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Figure A.1: Experimental control pulse as sequence of N small box amplitude.
At each step the function εk is constant.

where Uj is the evolution at time t = j∆t with constant control amplitude uj .
Specifically each small propagators is given by

Uj = exp

{
− i
~

∆τ
[
HQPU + ~εjI(a

† + a) + i~εjQ(a† − a)
]}

, (A.3)

where εjQ and εjI indicate the real and imaginary term of pulse εj .
Our original problem still remains unsolved. What is the pulse such that max-
imize the fidelity (see Sec. 3.2) between the actual real time evolution operator
of the quantum processor and the desired quantum operator (i.e. what is de-
scribed by our quantum algorithm).
In the literature [101], there are many different methods that compute the pulse.
The principals are Krotov’s algorithm [102, 103], the Chopped RAndom Basis
(CRAB) [104, 105], Gradient Optimization of Analytic conTrols (GOAT) [106]
and GRadient Ascent Pulse Engineering (GRAPE) [107, 108] algorithms. The
method implemented in Ref. [9] and in this work is the GRAPE algorithm. De-
tails can be found in the next section.

A.2 GRAPE

This section illustrates the basic aspect of the GRadient Ascent Pulse Engineer-
ing (GRAPE) algorithm to tailor the pulse for implementing a generic N -level
quantum gate.
We want to maximize the fidelity between the evolution operator

U(t) = UN1 UN−2...U1U0 (A.4)

and the logical operator Ulog.
We start from the initial density matrix of qubits ρ0 and we want compute the
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pulse such that after some time t the final density matrix ρ(t) of the physical

qubits is given by C = U†logρ0Ulog, where C indicates the target density matrix.
The used QuTip function that implements GRAPE algorithm is based on a
different fidelity definition. Specifically, the fidelity Φ is given by

Φ = 〈C|ρ(t)〉 = Tr[C† ρ(t)] . (A.5)

The only difference between the definition of fidelity F presented in Sec. 2.5
regards the global phase. Φ depends on the global phase, instead, one that was
defined in Sec. 2.5, F = ‖Φ‖2, does not.
The following demonstration of the GRAPE algorithm is based on Ref. [107].
Substituting equation (A.4), the fidelity between the experimental operator and
the logical one would be given by:

Φ = 〈C|ρ(t)〉 =
〈
C
∣∣∣UN1

... U0ρ0U
†
0 ... U

†
N1

〉
. (A.6)

Looking closer the fidelity definition, we have the trace operation that is invari-
ant under cyclic permutation of the factors. Thereby, we can rewrite eq. (A.6)
as follows:

Φ =
〈
UN1

... Uj+1CU
†
j+1 ... U

†
N1

∣∣∣Uj ... U0ρ0U
†
0 ... U

†
j

〉
(A.7)

where j is index belonged to {0, N}. We can notice the last result is rewritten
in term of the density matrix at time tj = j∆ t,

ρ(tj) = Uj ... U0ρ0U
†
0 ... U

†
j (A.8)

and a density matrix obtained by a backward propagation from the target C,

λj = UN1 ... Uj+1CU
†
j+1 ... U

†
N1
. (A.9)

As we said, our goal is to find a pulse such that it maximizes the fidelity. To do
that, it is convenient to look at the change of propagator due to a small change
of the pulse for the time tk. Varying the k-pulse as εpk = εk + δεk, the k-real
evolution operator would be

Upk = Uk(1− i∆tδεkHc) (A.10)

or

Upk = −i∆tδεkH̄kUk H̄k =

∫ ∆t

0

Uk(τ)HcUk(−τ)dτ . (A.11)

This last definition follows from

d

dx
eA+xB = eA

∫ ∆t

0

eAτBe−Aτdτ . (A.12)

Choosing a small time step ∆t, we can substitute to H̄k ∼ Hc.
Hence, at first order we have the variation of the fidelity due to δεk is given by:

∂Φ

∂εk
= −〈λj |i∆t [Hc, ρj ]〉 . (A.13)
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Figure A.2: Different experimental pulses for the same gate, the Hadamard
gate. Left panel real part, right panel the imaginary part. Tab. 4.5 describes
the parameters used for modelizing the quantum processor device

To maximize the fidelity using the steepest descent algorithm, one has to choose:

εj = εj + γ
∂Φ

∂εk
= εj − γ 〈λj |i∆t [Hc, ρj ]〉 . (A.14)

where ε is a parameter of the steepest descent method.
All the discussed theory is the root of the GRAPE method.
We can recap the steps for the GRAPE method:

1. Starting from an initial control ε(t) and initial density matrix ρ0

2. Compute the forward density matrix ρ(tj) for all j ≤ N

3. Compute the backward density matrix λj for all j ≤ N

4. Evaluate the fidelity derivatives ∂Φ
∂εk

and update the control amplitudes εj
for all j ≤ N .

5. Go to step 2 until the final error fidelity is below a chosen threshold value.

The initial control {εk} can be chosen randomly. However, an educated guess
may lead to a quick convergence.
For a pulse optimization starting from two different initial control pulses, one
can get two very different final pulses that give the same correct quantum gate.
Indeed, pulses obtained by optimization are not unique. This fact is due to
lots of minima in fidelity error manifold. Different pulses correspond to dif-
ferent minima reached in their optimization. Fig. A.2 shows different pulses
implementing the same Hadamard gate with very high fidelity.
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Appendix B

Optimal control for
parametric Hamiltonian

Optimal control techniques that tailor the experimental control pulse sequence
to generate desired quantum gates were discussed in Sec. 3.2 and App. A.2.
However, the substantial amount of classical computing required to obtain cus-
tomized gates overgrows quickly (in many simulations exponentially) with the
number of states.
Ref. [109] proposes two different methods to reconstruct the pulse from a limited
set of pulses.
The first interpolating method proposed in Ref. [109] considers cases for which
the control pulses evaluated from the optimization procedure are relatively sim-
ple. They can be directly fitted with polynomial functions. However, in general
cases, the pulses have shapes that cannot be easily interpolated by elementary
functions since they could contain multiple frequency components.
Therefore, Ref. [109] generalizes the interpolating method. An easy solution is
to expand the control signals using a basis set. The interpolation becomes the
optimization of the coefficients before the basis function. Generally, we deal
with periodic pulses. Therefore, a useful functions class for the basis set is the
Fourier basis. We Fourier-transform the control signal obtaining a function with
peaks in the difference between qubit energies (it follows what we discussed in
Ch. 4). Then, we interpolate the spectra curves as a function of frequency.
This method is very general because we expect the control pulses’ spectrum to
be a function of peaks. These peaks are centered on the difference of energies
between the transmon levels. Studying more complicated parametric systems,
we can avoid evaluating the needed pulse at each time step using this algorithm.
It speeds up the calculation time.
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Pulse interpolation of the spin Hamiltonian of two neutrons

We want to use the Fourier interpolation method to reduce the calculation time
of the microwave pulses of the real time evolution operator of two interacting-
spin neutrons as a function of the three-dimensional relative position.
In Fig. B.1 the real and imaginary parts of different pulses are presented as a
function of relative positions of the two neutrons. The relative position is writ-
ten in spherical coordinates, [r, θ, φ], where r indicates the radial component, θ
and φ are the polar and the azimuthal angles, respectively. The time step of
the propagators is ∆t = 0.01 MeV−1. For the map between spin states and
transmon levels, we use one presented in Sec. 4.2.
Observing the obtained pulses, they are difficult to interpolate in real time.
Instead, Fig. B.2 shows the real part of the Fourier Transform of the real com-
ponent of the pulse (εI(t)). The spectrum of pulses is described by peak func-
tion. Interpolating using a three-dimensional linear fit the spectra, we obtain
the black line as result for the relative position [r, θ, φ] = [1.5, 0.5, 0.2].
Computing the inverse Fourier transform of the black line, we obtain its real
time amplitude. This result is shown in Fig. B.1 with the black lines. The final
fidelity with the desired real time propagator is 0.999921.
Tab. B.1 presents some fidelities results between propagators obtained from the
interpolating pulses and the theoretical ones as a function of the relative posi-
tion of two neutrons. All the obtained fidelities are very close to 1 with an error
fidelity below 10−4.

r (fm) θ φ Fidelity

1.7831 -0.5802 0.6660 0.999972

2.1440 -1.5496 1.2073 0.999998

1.0371 -1.0317 0.7711 0.999923

2.4817 -0.8455 0.9771 0.999997

2.0713 -0.2563 3.0367 0.999981

0.5452 0.8381 1.5885 0.999961

Table B.1: Fidelity between the exact propagator and one obtained from the
interpolated pulse for two spin neutrons as function of distance in spherical
coordinates
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Figure B.1: Real part of pulses for the real time spin propagators of two neutrons
for different relative positions. The black line represent the interpolated result
for [r, θ, φ] = [1.5, 0.5, 0.2].

Figure B.2: Real part of the Fourier Transform of real part of pulses of the real
time spin propagators of two neutrons for different relative positions. The black
line represent the interpolation for [r, θ, φ] = [1.5, 0.5, 0.2]
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Appendix C

Simulated quantum system

This appendix will illustrate the Hamiltonians of the quantum systems used in
this work. We will start from the Hydrogen atom Hamiltonian expended using
a Gaussian basis set. Then, we will move to the Chiral Effective Field Theory
at Leading Order.

C.1 Hydrogen atom in STO-NG basis set

The well-known Hamiltonian that describes the Hydrogen atom is given by:

H = − ~2

2m
∇− e2

r
, (C.1)

where r is the relative distance between the proton and the electron, m is the
reduced mass of proton and electron, e is electron electric charge and ∇ is the
Laplace operator.
If we expand the Schrodinger equation in the radial coordinate and spherical
harmonics, |ψ〉 =

∑
l,m ψl(r)Ylm(θ, φ), we obtain:

Hl ψl(r) =

(
− ~2

2m

d2

dr2
− ~2

22m

2

r

d

dr
+

~2 l (l + 1)

2mr2
− e2

r

)
ψl(r) = El ψl(r) .

(C.2)
There are well-known ab-initio methods that are applied to compute molecular
orbitals of large atomic systems. One of those apply linear combination of
atomic orbitals using a minimal basis set of Slater-type atomic orbitals (STO).
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For example, for light molecules only 1s, 2s and 1p orbitals are used:

φ1s =

(
c31s
π

) 1
2

exp (−c1sr) ;

φ2s =

(
c52s
3π

) 1
2

r exp (−c2sr) ;

φ1p =

(
c51p
π

) 1
2

r exp (−c1pr) cos(θ) .

(C.3)

The coefficients c1s, c2s and c1p are computed through a variational calculations.
Full Slater calculations for the large system are intensively time-consuming be-
cause of two-electron integrals. A simple solution is to replace the Slater-orbitals
(e−ξr) with a Gaussian orbitals (e−ξr

2

). This was proposed by J. Pope [110, 111].
It reduces the time-consuming integrals because of the more quickly fall of Gaus-
sian term in the limit of r infinity and the possibility to compute the integrals
analytically. This new basis set is called STO-NG where N indicates the num-
ber of Gaussian applied in the Hamiltonian expansion. Therefore, our basis for
the 1s and 1p expansions will be:

φ1s =

(
2 c1s
π

) 3
2

exp
(
−c1sr2

)
;

φ1p =

(
128 3c51p
π3

) 1
4

r exp
(
−c1sr2

)
cos(θ) .

(C.4)

The coefficients of the Gaussian exponential are computed through variational
calculations as we do in the Slater orbitals calculations. In Tab. C.1 the well-
known coefficients of STO − 2G,..,STO − 4G basis set are shown [112]. Using
these values, one can obtain the results for Hydrogen ground energies shown in
Tab. C.2, where we used the atomic units (m = ~ = e = 1). In these units, the
exact ground energy of the Hydrogen atom is −0.5 Hartree (-13.6 eV).

The ground energies of Tab. C.2 are computed solving the so-called generalized
eigenvalue problem because the STO −NG basis sets are not orthogonal. The
generalized eigenvalue equation is given by

Hl ψ = E S ψ , (C.5)

where S describes the overlap matrix and it is given by Sij = 〈ψi|ψj〉 with
ψi, ψj ∈ STO − NG and Hl was given by eq. (C.2). Eq. (C.5) is called
Generalized Eigenvalue Equation.
In this work we will use mostly the STO − 2G basis set. The two elements
forming this basis set are two Gaussians describing only the 1 s level of Hydrogen
atom with angular momentum l = 0.
The following subsection (Sec. C.1.1) shows how the algorithm works to solve
eq. (C.5).
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coefficients STO − 2G STO − 3G STO − 4G

c1s

0.151623 0.109818 0.00880187

0.851819 0.45771 0.265204

2.22766 0.954620

5.21686

c1p

0.0974545 0.0751386 0.0544949

0.384244 0.0231031 0.127920

0.994203 0.502989

2.32350

Table C.1: STO-NG coefficients. Taken from Ref. [112]

STO − 2G STO − 3G STO − 4G STO − 5G

Ground energy ( Hartree−1) −0.48199 −0.49491 −0.49848 −0.49951

Table C.2: Hydrogen ground energy for different STO − NG basis sets. The
exact ground energy is −0.5 Hartree−1. Taken from Ref. [112]

C.1.1 Method for solving the Generalized Eigenvalue Equa-
tion

Here, we will show a rigorous method that allows us to solve the generalized
eigenvalue equation [113],

Auk = λk B uk , (C.6)

where in our case A is the Hamiltonian and B is the overlap matrix.
We start from the solution of the eigenvalue problem of B:

B V = DB V , (C.7)

where V and DB indicate the eigenvector and eigenvalues matrices, respectively.
From linear algebraic properties, we have:

V −1B V = DB with V −1 V = 1 and V † = V −1 . (C.8)
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If we multiply D
−1/2
B from left and right hand sides the first condition, we get:

D
− 1

2

B (V −1BV )D
− 1

2

B = D
− 1

2

B DB D
− 1

2

B = 1 . (C.9)

If we redefine φB = V D
− 1

2

B , we get:

φ−1
B B φB = 1 . (C.10)

Now, if we can define AB as:

AB = φ†B AφB , (C.11)

with its eigenvalue Λ and eigenvector φA. Therefore, we have

AB φA = ΛA φA , (C.12)

Rewriting eq. (C.12) for λA, we get

ΛA = φ†AAB φA = φ†A φ
†
B AφB φA = φ†AD

−1/2
B V †B AVB D

−1/2
B φB φA = Φ†AΦ ,

(C.13)

where Φ = VBD
−1/2
B φA = φBφA. We have just proved that Φ diagonalizes A.

The last step to do is to prove that ΛA = Λ. First, we must prove that Φ
diagonalizes B as well:

Φ†BΦ = (φ†AD
−1/2
B V †B)B(VBD

−1/2
B φA) = φ†AD

−1/2
B DBD

−1/2
B φA = φ†AφA = 1 ,

(C.14)

where we used that V †B B VB = DB .
From this relation, we have:

ΛA = 1 ΛA = (Φ†B Φ) ΛA = Φ†B Φ ΛA = Φ†AΦ (C.15)

where the last step we used the result obtained in eq. (C.13) for writing ΛA =
Φ†AΦ.
Simplifying Φ† in eq. (C.15), we obtain

B Φ ΛA = AΦ . (C.16)

The obtained final result of eq. (C.16) is our original generalized eigenvalue
problem, where ΛA = Λ.
Recapping the whole presented method in a bullet point list, to compute the
eigenvalues and eigenvectors from a generalized eigenvalue equation we should

• Compute the Hamiltonian H and the overlap matrix S. We will have
H U = E S U .

• Diagonalize S, VBSVB = DB .

• Define ΦB = VBD
− 1

2

B .
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• Compute A = Φ†BHΦB .

• The eigenvalues E are obtained from the eigenvalue problem of A, AφA =
EφA.

• The eigenvector U is given by U = φBφA = VBD
− 1

2

B φA.

In this work, when we employ Hamiltonians expanded in a non-orthogonal basis
set, we will apply the presented method. For example, when we compute the real
or imaginary time propagator, its Hamiltonian will be obtained from eq. C.12
(or equivalently, from the fourth step of the bullet point list).

C.2 Nucleons systems at the Leading order in
the Chiral Expansion

As discussed in Ch. 1, the QCD theory cannot be applied for today’s nuclear
structure physics due to the high computational time-consuming. Luckily, an-
other efficient approach helps us in our calculations, the Effective Field Theory.
As we discussed in Ch. 1, the first step in an EFT method is to identify the soft
and hard scales. We know that there is a gap between the mesons. The lightest
meson (π) has a mass of order 140 MeV, and the following lightest mesons (ρ
and ω) have masses around 770 MeV and 782 MeV. Hence, we can identify our
soft scale Q of EFT as pions mass mπ and the hard scale Λ as the mass of ρ.
Furthermore, in an EFT approach, one has to write the most general Lagrangian
that is consistent with the real and broken symmetries of the underlying theory
(in our case QCD). In the massless quarks limit, the QCD Lagrangian has chiral
symmetry. It describes that massless quarks right- and left-handed components
do not mix. In particular, it is generated by SU(2) xSU(2).
We know that chiral symmetry is broken. From its axial component, one would
expect for any hadron of positive parity a degenerate hadron state of negative
parity and vice versa, but this is not observed in nature. It causes a spontaneous
symmetry breaking, and the pions are identified as the Goldstone bosons.
So, our nuclear EFT theory would be an expansion in terms of powers of QΛ and
its Lagrangian has to be consistent with the chiral symmetry breaking. Hence,
the Chiral Perturbation Theory (CHPT) is an effective field of QCD, which was
formulated by Weinberg [114] and developed into a systematic tool for analyz-
ing low-energy hadronic observables by Ref. [115, 116]. Refs. [11, 12, 13] show
accurately the theory of chiral EFT.
We are interested in the chiral EFT that describes the interaction of 2 nucleons.
Weinberg in Ref. [117, 118, 119] shows that the power counting of irreducible di-
agrams involving A nucleons. This formula is simplified in the case of interaction
between two nucleons in:

ν = 2L+
∑
i

∆i (C.17)

with ∆ = d+ ni
2 − 2 where d indicates the number of derivatives or pion mass

insertions and n the number of nucleon field operators. ν is called hierarchy.
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Fig. C.1 shows the irreducible Feynman graphs of two-body, three-body and
four-body forces for the lowest orders.

The lowest order of EFT, known as leading order (LO), is when ν = 0. At

Figure C.1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons
and dashed lines pions. Small dots, large solid dots, solid squares, and solid
diamonds denote vertices of index ∆ = 0, 1, 3, 4, respectively. Taken from
Ref. [11]

this level, the NN interaction is described by two contact terms and one-pion
exchange potential. Its Feynman graphs are shown in Fig. C.2.
The LO potential is a crude approximation to the two-nucleon force but accounts
already for some crucial features. It provides the tensor force and describes
quite well the deuteron ground energy. Moreover, it explains NN scattering in
peripheral partial waves of very high orbital angular momentum. In this work,
we will use just the potential obtained from LO expansion.
Of course, by increasing the interaction hierarchy, our nuclear force will improve
and become more realistic.
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Figure C.2: Feynman diagrams for the Chiral EFT at Leading Order

At the lowest order, expanding the effective Lagrangian in powers of the pion
fields, one gets the one-pion exchange and the contact one (Fig. C.2). In the
Center of Mass frame, this yields the following potential in momentum space:

V (q) = − g2
a

4F 2
π

σ1 · ~q σ1 · ~q
~q2 +M2

π

τ1 · τ2 + cs + ctσ1 · σ2 . (C.18)

where we followed Ref. [118] for the contact terms. Indeed, we should have four
contact terms involving the operators 1, σ · σ, τ · τ, σ · στ · τ , but, for the Fierz
identities [120] we have only two terms, involving the operators 1 and σ · σ.
In eq. (C.18), σ and τ are the spin and isospin Pauli matrix respectively, ~q is
the transfer momentum ~q = ~pf − ~pi (~pi initial momentum, ~pf final momentum).
Moreover, Mpi refers to the averaging pion mass (eq. (C.19)) and Fπ and ga
indicates the pion decay and nucleon coupling constant respectively. cs and ct
are the running coupling constant that will be fitted with some experimental
data (a further discussion will be done).
The average of pion mass is given by:

mπ =
1

3
(mπ+ +mπ− +mπ0) . (C.19)

We are interested in having the nucleon-nucleon potential in the spatial coor-
dinates. Therefore, we compute the inverse Fourier transform of eq. (C.18).
Explicitly, we get:

V (r) =

∫ ∫
d~q

(2π)3
e−i ~q rV (q) = − g2

a

4F 2
π

(∫ ∫
d~q

(2π)3

σ1 · q σ1 · q
~q2 +M2

π

τ1 · τ2e−i ~q r
)

+ csδ(~r) + ctσ1 · σ2δ(~r) , (C.20)

where we have used
∫ ∫

d~q
(2π)3 e

−i~q·~r = δ(~r).

We must compute the following integral:

g2
a

4F 2
π

(∫ ∫
d~q

(2π)3

σ1 · ~q σ1 · ~q
~q2 +M2

π

e−i ~q·~r
)

=
g2
a

4F 2
π

τ1 · τ2 (σ1 · ∇σ1 · ∇)∫
d~q

(2π)3
e−i~q·~r

1

~q2 +M2
π

, (C.21)

133



where we have used the Fourier property∫ ∫
d~q

(2π)3
f(q) · qe−iqr = ∇ ·

∫ ∫
d~q

(2π)3
f(q)e−iqr . (C.22)

The remaining integral is the usual Yukawa potential:∫
d~k

(2π)3
e−i

~k·~r 1

~k2 +M2
=

1

4π

e−Mr

r
=

1

4π
YM (r) (C.23)

where we have defined

YM (r) =
e−Mr

r
. (C.24)

Having a gradient in eq. (C.21), our calculation is easier if we apply(
−∇2 +mpi

2
)
Ymπ (r) = 4πYmπ (r) (C.25)

and

σ1 · ∇σ2 · ∇ =

[
σ1 · ∇σ2 · ∇ −

1

3
(σ1 · σ2)∇2

]
+

1

3
(σ1 · σ2)∇2 . (C.26)

Therefore, according to eqs. (C.25) and (C.26) we obtain:

σ1 · ∇σ2 · ∇Ymπ (r) =

[
σ1 · r̂σ2 · r̂ −

1

3
σ1 · σ2

]
(m2

π +
3mπ

r
+

3

r2
Ymπ (r)

+
1

3
(σ1 · σ2)

(
m2
π Ymπ (r)− 4πδ(r)

)
, , (C.27)

where r̂ = ~r
|~r| . Defining usual tensor spin operator

~S12 = 3σ1 · r̂σ2 · r̂ − σ1 · σ2 (C.28)

and the usual tensor function:

Tmπ (r) =

(
1 +

3

mπ r
+ 3

1

mpi2r2

)
Ymπ (r) (C.29)

we can rewrite One-Pion Exchange Potential VOPEP in the standard way:

VOPEP (r) =
1

12π

g2
a

F 2
π

mπ(τ1 · τ2)
[
Tmπ (r)~S12 + (Ymπ (r)− 4πδ(r))σ1 · σ2

]
.

(C.30)
Therefore, the Leading Order Chiral potential is given by:

VLO = VOPEP (r) + csδ(r) + ctσ1 · σ2δ(r)

=
1

12π

g2
a

F 2
π

mπ(τ1 · τ2)
[
Tmπ (r)~S12 + Ymπ (r)σ1 · σ2

]
+ csδ(r) + ctσ1 · σ2δ(r) .

(C.31)
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where we redefined cs and cs in order to include the term cs−−4π 1
12π

g2
a

F 2
π
mπσ1 ·

σ2.

As discussed previously, in EFT, we must choose a soft and hard scale to expand
the interesting dynamics. So, we have a cutoff in our EFT theory, and we must
be sure all the found EFT theory is consistent with the cutoff. Hence, we write
the delta as

δ(r) = αe
− r4

R4
0 , (C.32)

where R0 is connected to our cutoff and α = 1
πΓ(3/4)R3

0
. To ensure the correct

behavior of our EFT potential at a low distance, we multiply the long-term

part (those terms from OPEP) with a regulator function (1− e
− r4

R4
0 ). One can

observe that the regulator by construction preserves the long-range parts of the
interaction.

Explicitly, our final LO Chiral EFT is given by:

VLO =
1

12π

g2
a

F 2
π

mπ(τ1·τ2)

[
Tmπ (r)(1− e

− r4

R4
0 )~S12 + (1− e

− r4

R4
0 )Ymπ (r)σ1 · σ2

]
+

+ csαe
− r4

R4
0 + ctσ1 · σ2αe

− r4

R4
0 . (C.33)

The last thing to do is to fit our running coupling constant cs and ct with some
data. We took the values of cs and ct from Ref. [121, 122] with a cutoff of
Λ = 400 MeV and R0 = 1.2 fm. In particular, in these reference cs and ct are
fitted with neutron-proton phase shift of 1S0 and 3S1 channels. In Tab. C.3 are
shown all the values of nuclear potential.
Fig. C.3 shows the radial component of each contribution of the LO potential,
where:

VS12
=

1

12π

g2
a

F 2
π

mπTmπ (r)(1− e
− r4

R4
0 ) (C.34)

VS1S2 =
1

12π

g2
a

F 2
π

mπ(1− e
− r4

R4
0 )Ymπ (r) (C.35)

Vc = αe
− r4

R4
0 (C.36)
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Parameters of LO potential values

cs -1.79693

ct +0.15442

ga -1.2756

Fπ 92.4 MeV

mπ 134.9766 MeV

Table C.3: Our values of parameters of LO chiral potential with Λ = 400 MeV
and R0 = 1.2 fm

Figure C.3: Radial shape of each components of LO potential using the param-
eters of Tab. C.3
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Appendix D

Test of State Tomography
processes

Here, we will show some tests of our state tomography. We start from a two-
dimensional grid. From this mesh, we build pure states of a single qubit. Specif-
ically, the x−axis corresponds to the probability of measuring |0〉 and y-axis to
the azimuth angle. Then, employing the Bloch-Redfield model (see Sec. 3.3)
after some machine time t, we obtain the corresponding mixed state. The used
two noise parameters T1 and T2 are T1 = 30 µs and T2 = 7 µs.
We applied the two state tomography processes. One is the standard, where
we compute the mean value of X, Y and Z1; the other is presented in this
work in Sec. 5.4. After implementing the tomography operation theoretically
(without including errors), we sampled the probability with a number of shots
Nshot = 8000. This sampling mimics the readout process. From the results
of the tomography processes, we get the corresponding states; at the end, we
computed the fidelity between them and the original pure states. Fig. D.1 shows
the results for t = 4 µs and Fig. D.2 for t = 15 µs.
We can observe that the presented tomography reaches even more accurate fi-
delity to the original pure states on average. In particular, this is true when
we are in the high contribution regime of dephasing, for instance, observing
Fig. D.2. The time of this figure is greater than the dephasing time T2. There-
fore, we have a considerable contribution to this kind of noise source.
However, we should highlight that the presented state tomography suffers when
the state is closer to |1〉 where we have the most contribution of the relaxation
process. When we have a state close to |1〉, it is desirable to employ the standard
state tomography process.

1We also normalize the density matrix to have Tr
[
ρ2

]
= 1
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Figure D.1: Results for the fidelity, left ones with the state obtained from
the presented state fidelity, right with the standard one. The x-axis represent
the azimuth angle and y-axis the probability to measure the |0〉 state. The
parameters are t = 4 µs, T1 = 30 µs, T2 = 7 µs, Nshot = 8000

Figure D.2: Results for the fidelity, left ones with the state obtained from
the presented state fidelity, right with the standard one. The x-axis represent
the azimuth angle and y-axis the probability to measure the |0〉 state. The
parameters are t = 15 µs, T1 = 30 µs, T2 = 7 µs, Nshot = 8000
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Appendix E

Quantum circuits for AQT

This appendix will present some of the actual implemented quantum circuits in
the AQT quantum processor for the different approaches used in Ch. 5.
Fig. E.1 shows the quantum circuit of the full optimized scheme. Fig. E.3
presents it with the implementations of a sequence of propagators at time step
equal 8. Fig. E.3 shows the quantum circuit using a sequence of propagators
applying a reinitializing gate. This gate is represented by the first sequence of
gates ended to the first barrier (the vertical line).
We should observe the difference in depth of the quantum circuits. A deeper
quantum circuit corresponds to a higher contribution of errors from the gate
infidelity and quantum noise of processors.

Figure E.1: Full-optimized quantum circuit
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Figure E.2: Quantum circuit using a sequence of propagators for time step index
t = 8

Figure E.3: Quantum circuit using a sequence of propagators with a reinitializ-
ing gate. Treini = 3.
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Appendix F

Trotter decomposition error
for complex time
propagation

Appendix F of Ref. [98] shows the error bound when we use the Trotter decom-
position for we study the real- or imaginary-time evolution. Here, we will report
its most important lemmas to demonstrate the Trotter errors.

Lemma F.0.1. (Lemma F1) If λ ∈ C and H1, ..., HL Hermitian operators,
then: ∥∥∥∥∥∥Rk

 L∏
j=1

exp{λHj}

∥∥∥∥∥∥ ≤ Rk

exp


L∑
j=1

|λ|‖Hj‖


 (F.1)

where Rk(f) is the remainder of the Taylor series expansion of f , Rk(f) =∑∞
i=k+1

dfi

di xx
i.

Lemma F.0.2. (Lemma F2.) If λ ∈ C, then

|Rk(exp{λ}| ≤ |λ|k+1

(k + 1)!
exp{|λ|} (F.2)

Lemma F.0.3. (Preposition F3.) Let r ∈ N and t ∈ R. Let H1, ..., HL be
Hermitian operators and Λ = maxj ‖Hj‖. Then∥∥∥∥∥∥exp

−it
L∑
j

Hj

−
 L∏

j

exp

{
− it
r
Hj

}r∥∥∥∥∥∥ ≤ (LΛt)2

r
exp

{
LΛ|t|
r

}
(F.3)
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